1 // x86_64.cc -- x86_64 target support for gold.
3 // Copyright 2006, 2007, Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or
9 // modify it under the terms of the GNU Library General Public License
10 // as published by the Free Software Foundation; either version 2, or
11 // (at your option) any later version.
13 // In addition to the permissions in the GNU Library General Public
14 // License, the Free Software Foundation gives you unlimited
15 // permission to link the compiled version of this file into
16 // combinations with other programs, and to distribute those
17 // combinations without any restriction coming from the use of this
18 // file. (The Library Public License restrictions do apply in other
19 // respects; for example, they cover modification of the file, and
20 /// distribution when not linked into a combined executable.)
22 // This program is distributed in the hope that it will be useful, but
23 // WITHOUT ANY WARRANTY; without even the implied warranty of
24 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 // Library General Public License for more details.
27 // You should have received a copy of the GNU Library General Public
28 // License along with this program; if not, write to the Free Software
29 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
37 #include "parameters.h"
45 #include "target-reloc.h"
46 #include "target-select.h"
54 class Output_data_plt_x86_64;
56 // The x86_64 target class.
58 // http://www.x86-64.org/documentation/abi.pdf
59 // TLS info comes from
60 // http://people.redhat.com/drepper/tls.pdf
61 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
63 class Target_x86_64 : public Sized_target<64, false>
66 // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
67 // uses only Elf64_Rela relocation entries with explicit addends."
68 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
71 : Sized_target<64, false>(&x86_64_info),
72 got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
73 copy_relocs_(NULL), dynbss_(NULL)
76 // Scan the relocations to look for symbol adjustments.
78 scan_relocs(const General_options& options,
81 Sized_relobj<64, false>* object,
82 unsigned int data_shndx,
84 const unsigned char* prelocs,
86 size_t local_symbol_count,
87 const unsigned char* plocal_symbols,
88 Symbol** global_symbols);
90 // Finalize the sections.
92 do_finalize_sections(Layout*);
94 // Return the value to use for a dynamic which requires special
97 do_dynsym_value(const Symbol*) const;
99 // Relocate a section.
101 relocate_section(const Relocate_info<64, false>*,
102 unsigned int sh_type,
103 const unsigned char* prelocs,
106 elfcpp::Elf_types<64>::Elf_Addr view_address,
109 // Return a string used to fill a code section with nops.
111 do_code_fill(off_t length);
114 // The class which scans relocations.
118 local(const General_options& options, Symbol_table* symtab,
119 Layout* layout, Target_x86_64* target,
120 Sized_relobj<64, false>* object,
121 unsigned int data_shndx,
122 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
123 const elfcpp::Sym<64, false>& lsym);
126 global(const General_options& options, Symbol_table* symtab,
127 Layout* layout, Target_x86_64* target,
128 Sized_relobj<64, false>* object,
129 unsigned int data_shndx,
130 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
134 unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
137 unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
141 // The class which implements relocation.
146 : skip_call_tls_get_addr_(false)
151 if (this->skip_call_tls_get_addr_)
153 // FIXME: This needs to specify the location somehow.
154 gold_error(_("missing expected TLS relocation\n"));
158 // Do a relocation. Return false if the caller should not issue
159 // any warnings about this relocation.
161 relocate(const Relocate_info<64, false>*, Target_x86_64*, size_t relnum,
162 const elfcpp::Rela<64, false>&,
163 unsigned int r_type, const Sized_symbol<64>*,
164 const Symbol_value<64>*,
165 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
169 // Do a TLS relocation.
171 relocate_tls(const Relocate_info<64, false>*, size_t relnum,
172 const elfcpp::Rela<64, false>&,
173 unsigned int r_type, const Sized_symbol<64>*,
174 const Symbol_value<64>*,
175 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr, off_t);
177 // Do a TLS Initial-Exec to Local-Exec transition.
179 tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
180 Output_segment* tls_segment,
181 const elfcpp::Rela<64, false>&, unsigned int r_type,
182 elfcpp::Elf_types<64>::Elf_Addr value,
186 // Do a TLS General-Dynamic to Local-Exec transition.
188 tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
189 Output_segment* tls_segment,
190 const elfcpp::Rela<64, false>&, unsigned int r_type,
191 elfcpp::Elf_types<64>::Elf_Addr value,
195 // Check the range for a TLS relocation.
197 check_range(const Relocate_info<64, false>*, size_t relnum,
198 const elfcpp::Rela<64, false>&, off_t, off_t);
200 // Check the validity of a TLS relocation. This is like assert.
202 check_tls(const Relocate_info<64, false>*, size_t relnum,
203 const elfcpp::Rela<64, false>&, bool);
205 // This is set if we should skip the next reloc, which should be a
206 // PLT32 reloc against ___tls_get_addr.
207 bool skip_call_tls_get_addr_;
210 // Adjust TLS relocation type based on the options and whether this
211 // is a local symbol.
212 static tls::Tls_optimization
213 optimize_tls_reloc(bool is_final, int r_type);
215 // Get the GOT section, creating it if necessary.
216 Output_data_got<64, false>*
217 got_section(Symbol_table*, Layout*);
219 // Create a PLT entry for a global symbol.
221 make_plt_entry(Symbol_table*, Layout*, Symbol*);
223 // Get the PLT section.
224 Output_data_plt_x86_64*
227 gold_assert(this->plt_ != NULL);
231 // Get the dynamic reloc section, creating it if necessary.
233 rela_dyn_section(Layout*);
235 // Copy a relocation against a global symbol.
237 copy_reloc(const General_options*, Symbol_table*, Layout*,
238 Sized_relobj<64, false>*, unsigned int,
239 Symbol*, const elfcpp::Rela<64, false>&);
241 // Information about this specific target which we pass to the
242 // general Target structure.
243 static const Target::Target_info x86_64_info;
246 Output_data_got<64, false>* got_;
248 Output_data_plt_x86_64* plt_;
249 // The GOT PLT section.
250 Output_data_space* got_plt_;
251 // The dynamic reloc section.
252 Reloc_section* rela_dyn_;
253 // Relocs saved to avoid a COPY reloc.
254 Copy_relocs<64, false>* copy_relocs_;
255 // Space for variables copied with a COPY reloc.
256 Output_data_space* dynbss_;
259 const Target::Target_info Target_x86_64::x86_64_info =
262 false, // is_big_endian
263 elfcpp::EM_X86_64, // machine_code
264 false, // has_make_symbol
265 false, // has_resolve
266 true, // has_code_fill
267 "/lib/ld64.so.1", // program interpreter
268 0x400000, // text_segment_address
269 0x1000, // abi_pagesize
270 0x1000 // common_pagesize
273 // Get the GOT section, creating it if necessary.
275 Output_data_got<64, false>*
276 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
278 if (this->got_ == NULL)
280 gold_assert(symtab != NULL && layout != NULL);
282 this->got_ = new Output_data_got<64, false>();
284 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
285 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
288 // The old GNU linker creates a .got.plt section. We just
289 // create another set of data in the .got section. Note that we
290 // always create a PLT if we create a GOT, although the PLT
292 // TODO(csilvers): do we really need an alignment of 8?
293 this->got_plt_ = new Output_data_space(8);
294 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
295 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
298 // The first three entries are reserved.
299 this->got_plt_->set_space_size(3 * 8);
301 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
302 symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
304 0, 0, elfcpp::STT_OBJECT,
306 elfcpp::STV_HIDDEN, 0,
313 // Get the dynamic reloc section, creating it if necessary.
315 Target_x86_64::Reloc_section*
316 Target_x86_64::rela_dyn_section(Layout* layout)
318 if (this->rela_dyn_ == NULL)
320 gold_assert(layout != NULL);
321 this->rela_dyn_ = new Reloc_section();
322 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
323 elfcpp::SHF_ALLOC, this->rela_dyn_);
325 return this->rela_dyn_;
328 // A class to handle the PLT data.
330 class Output_data_plt_x86_64 : public Output_section_data
333 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
335 Output_data_plt_x86_64(Layout*, Output_data_space*);
337 // Add an entry to the PLT.
339 add_entry(Symbol* gsym);
341 // Return the .rel.plt section data.
344 { return this->rel_; }
348 do_adjust_output_section(Output_section* os);
351 // The size of an entry in the PLT.
352 static const int plt_entry_size = 16;
354 // The first entry in the PLT.
355 // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
356 // procedure linkage table for both programs and shared objects."
357 static unsigned char first_plt_entry[plt_entry_size];
359 // Other entries in the PLT for an executable.
360 static unsigned char plt_entry[plt_entry_size];
362 // Set the final size.
364 do_set_address(uint64_t, off_t)
365 { this->set_data_size((this->count_ + 1) * plt_entry_size); }
367 // Write out the PLT data.
369 do_write(Output_file*);
371 // The reloc section.
373 // The .got.plt section.
374 Output_data_space* got_plt_;
375 // The number of PLT entries.
379 // Create the PLT section. The ordinary .got section is an argument,
380 // since we need to refer to the start. We also create our own .got
381 // section just for PLT entries.
383 Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
384 Output_data_space* got_plt)
385 // TODO(csilvers): do we really need an alignment of 8?
386 : Output_section_data(8), got_plt_(got_plt), count_(0)
388 this->rel_ = new Reloc_section();
389 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
390 elfcpp::SHF_ALLOC, this->rel_);
394 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
396 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
397 // linker, and so do we.
401 // Add an entry to the PLT.
404 Output_data_plt_x86_64::add_entry(Symbol* gsym)
406 gold_assert(!gsym->has_plt_offset());
408 // Note that when setting the PLT offset we skip the initial
409 // reserved PLT entry.
410 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
414 off_t got_offset = this->got_plt_->data_size();
416 // Every PLT entry needs a GOT entry which points back to the PLT
417 // entry (this will be changed by the dynamic linker, normally
418 // lazily when the function is called).
419 this->got_plt_->set_space_size(got_offset + 8);
421 // Every PLT entry needs a reloc.
422 gsym->set_needs_dynsym_entry();
423 this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
426 // Note that we don't need to save the symbol. The contents of the
427 // PLT are independent of which symbols are used. The symbols only
428 // appear in the relocations.
431 // The first entry in the PLT for an executable.
433 unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
435 // From AMD64 ABI Draft 0.98, page 76
436 0xff, 0x35, // pushq contents of memory address
437 0, 0, 0, 0, // replaced with address of .got + 4
438 0xff, 0x25, // jmp indirect
439 0, 0, 0, 0, // replaced with address of .got + 8
440 0x90, 0x90, 0x90, 0x90 // noop (x4)
443 // Subsequent entries in the PLT for an executable.
445 unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
447 // From AMD64 ABI Draft 0.98, page 76
448 0xff, 0x25, // jmpq indirect
449 0, 0, 0, 0, // replaced with address of symbol in .got
450 0x68, // pushq immediate
451 0, 0, 0, 0, // replaced with offset into relocation table
452 0xe9, // jmpq relative
453 0, 0, 0, 0 // replaced with offset to start of .plt
456 // Write out the PLT. This uses the hand-coded instructions above,
457 // and adjusts them as needed. This is specified by the AMD64 ABI.
460 Output_data_plt_x86_64::do_write(Output_file* of)
462 const off_t offset = this->offset();
463 const off_t oview_size = this->data_size();
464 unsigned char* const oview = of->get_output_view(offset, oview_size);
466 const off_t got_file_offset = this->got_plt_->offset();
467 const off_t got_size = this->got_plt_->data_size();
468 unsigned char* const got_view = of->get_output_view(got_file_offset,
471 unsigned char* pov = oview;
473 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
474 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
476 memcpy(pov, first_plt_entry, plt_entry_size);
477 if (!parameters->output_is_shared())
479 // We do a jmp relative to the PC at the end of this instruction.
480 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 8
481 - (plt_address + 6));
482 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 16
483 - (plt_address + 12));
485 pov += plt_entry_size;
487 unsigned char* got_pov = got_view;
489 memset(got_pov, 0, 24);
492 unsigned int plt_offset = plt_entry_size;
493 unsigned int got_offset = 24;
494 const unsigned int count = this->count_;
495 for (unsigned int plt_index = 0;
498 pov += plt_entry_size,
500 plt_offset += plt_entry_size,
503 // Set and adjust the PLT entry itself.
504 memcpy(pov, plt_entry, plt_entry_size);
505 if (parameters->output_is_shared())
506 // FIXME(csilvers): what's the right thing to write here?
507 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
509 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
510 (got_address + got_offset
511 - (plt_address + plt_offset
514 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
515 elfcpp::Swap<32, false>::writeval(pov + 12,
516 - (plt_offset + plt_entry_size));
518 // Set the entry in the GOT.
519 elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
522 gold_assert(pov - oview == oview_size);
523 gold_assert(got_pov - got_view == got_size);
525 of->write_output_view(offset, oview_size, oview);
526 of->write_output_view(got_file_offset, got_size, got_view);
529 // Create a PLT entry for a global symbol.
532 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
535 if (gsym->has_plt_offset())
538 if (this->plt_ == NULL)
540 // Create the GOT sections first.
541 this->got_section(symtab, layout);
543 this->plt_ = new Output_data_plt_x86_64(layout, this->got_plt_);
544 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
546 | elfcpp::SHF_EXECINSTR),
550 this->plt_->add_entry(gsym);
553 // Handle a relocation against a non-function symbol defined in a
554 // dynamic object. The traditional way to handle this is to generate
555 // a COPY relocation to copy the variable at runtime from the shared
556 // object into the executable's data segment. However, this is
557 // undesirable in general, as if the size of the object changes in the
558 // dynamic object, the executable will no longer work correctly. If
559 // this relocation is in a writable section, then we can create a
560 // dynamic reloc and the dynamic linker will resolve it to the correct
561 // address at runtime. However, we do not want do that if the
562 // relocation is in a read-only section, as it would prevent the
563 // readonly segment from being shared. And if we have to eventually
564 // generate a COPY reloc, then any dynamic relocations will be
565 // useless. So this means that if this is a writable section, we need
566 // to save the relocation until we see whether we have to create a
567 // COPY relocation for this symbol for any other relocation.
570 Target_x86_64::copy_reloc(const General_options* options,
571 Symbol_table* symtab,
573 Sized_relobj<64, false>* object,
574 unsigned int data_shndx, Symbol* gsym,
575 const elfcpp::Rela<64, false>& rel)
577 Sized_symbol<64>* ssym;
578 ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(64) (gsym
581 if (!Copy_relocs<64, false>::need_copy_reloc(options, object,
584 // So far we do not need a COPY reloc. Save this relocation.
585 // If it turns out that we never need a COPY reloc for this
586 // symbol, then we will emit the relocation.
587 if (this->copy_relocs_ == NULL)
588 this->copy_relocs_ = new Copy_relocs<64, false>();
589 this->copy_relocs_->save(ssym, object, data_shndx, rel);
593 // Allocate space for this symbol in the .bss section.
595 elfcpp::Elf_types<64>::Elf_WXword symsize = ssym->symsize();
597 // There is no defined way to determine the required alignment
598 // of the symbol. We pick the alignment based on the size. We
599 // set an arbitrary maximum of 256.
601 for (align = 1; align < 512; align <<= 1)
602 if ((symsize & align) != 0)
605 if (this->dynbss_ == NULL)
607 this->dynbss_ = new Output_data_space(align);
608 layout->add_output_section_data(".bss",
611 | elfcpp::SHF_WRITE),
615 Output_data_space* dynbss = this->dynbss_;
617 if (align > dynbss->addralign())
618 dynbss->set_space_alignment(align);
620 off_t dynbss_size = dynbss->data_size();
621 dynbss_size = align_address(dynbss_size, align);
622 off_t offset = dynbss_size;
623 dynbss->set_space_size(dynbss_size + symsize);
625 // Define the symbol in the .dynbss section.
626 symtab->define_in_output_data(this, ssym->name(), ssym->version(),
627 dynbss, offset, symsize, ssym->type(),
628 ssym->binding(), ssym->visibility(),
629 ssym->nonvis(), false, false);
631 // Add the COPY reloc.
632 ssym->set_needs_dynsym_entry();
633 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
634 rela_dyn->add_global(ssym, elfcpp::R_X86_64_COPY, dynbss, offset, 0);
639 // Optimize the TLS relocation type based on what we know about the
640 // symbol. IS_FINAL is true if the final address of this symbol is
641 // known at link time.
643 tls::Tls_optimization
644 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
646 // If we are generating a shared library, then we can't do anything
648 if (parameters->output_is_shared())
649 return tls::TLSOPT_NONE;
653 case elfcpp::R_X86_64_TLSGD:
654 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
655 case elfcpp::R_X86_64_TLSDESC_CALL:
656 // These are General-Dynamic which permits fully general TLS
657 // access. Since we know that we are generating an executable,
658 // we can convert this to Initial-Exec. If we also know that
659 // this is a local symbol, we can further switch to Local-Exec.
661 return tls::TLSOPT_TO_LE;
662 return tls::TLSOPT_TO_IE;
664 case elfcpp::R_X86_64_TLSLD:
665 // This is Local-Dynamic, which refers to a local symbol in the
666 // dynamic TLS block. Since we know that we generating an
667 // executable, we can switch to Local-Exec.
668 return tls::TLSOPT_TO_LE;
670 case elfcpp::R_X86_64_DTPOFF32:
671 case elfcpp::R_X86_64_DTPOFF64:
672 // Another Local-Dynamic reloc.
673 return tls::TLSOPT_TO_LE;
675 case elfcpp::R_X86_64_GOTTPOFF:
676 // These are Initial-Exec relocs which get the thread offset
677 // from the GOT. If we know that we are linking against the
678 // local symbol, we can switch to Local-Exec, which links the
679 // thread offset into the instruction.
681 return tls::TLSOPT_TO_LE;
682 return tls::TLSOPT_NONE;
684 case elfcpp::R_X86_64_TPOFF32:
685 // When we already have Local-Exec, there is nothing further we
687 return tls::TLSOPT_NONE;
694 // Report an unsupported relocation against a local symbol.
697 Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
700 gold_error(_("%s: unsupported reloc %u against local symbol"),
701 object->name().c_str(), r_type);
704 // Scan a relocation for a local symbol.
707 Target_x86_64::Scan::local(const General_options&,
708 Symbol_table* symtab,
710 Target_x86_64* target,
711 Sized_relobj<64, false>* object,
712 unsigned int data_shndx,
713 const elfcpp::Rela<64, false>& reloc,
715 const elfcpp::Sym<64, false>&)
719 case elfcpp::R_X86_64_NONE:
720 case elfcpp::R_386_GNU_VTINHERIT:
721 case elfcpp::R_386_GNU_VTENTRY:
724 case elfcpp::R_X86_64_64:
725 case elfcpp::R_X86_64_32:
726 case elfcpp::R_X86_64_32S:
727 case elfcpp::R_X86_64_16:
728 case elfcpp::R_X86_64_8:
729 // FIXME: If we are generating a shared object we need to copy
730 // this relocation into the object.
731 gold_assert(!parameters->output_is_shared());
734 case elfcpp::R_X86_64_PC64:
735 case elfcpp::R_X86_64_PC32:
736 case elfcpp::R_X86_64_PC16:
737 case elfcpp::R_X86_64_PC8:
740 case elfcpp::R_X86_64_GOTPC32: // TODO(csilvers): correct?
741 case elfcpp::R_X86_64_GOTOFF64:
742 case elfcpp::R_X86_64_GOTPC64: // TODO(csilvers): correct?
743 case elfcpp::R_X86_64_PLTOFF64: // TODO(csilvers): correct?
744 // We need a GOT section.
745 target->got_section(symtab, layout);
748 case elfcpp::R_X86_64_GOT64:
749 case elfcpp::R_X86_64_GOT32:
750 case elfcpp::R_X86_64_GOTPCREL64:
751 case elfcpp::R_X86_64_GOTPCREL:
753 // The symbol requires a GOT entry.
754 Output_data_got<64, false>* got = target->got_section(symtab, layout);
755 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
756 if (got->add_local(object, r_sym))
758 // If we are generating a shared object, we need to add a
759 // dynamic RELATIVE relocation for this symbol.
760 if (parameters->output_is_shared())
762 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
763 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
764 data_shndx, reloc.get_r_offset(), 0);
770 case elfcpp::R_X86_64_COPY:
771 case elfcpp::R_X86_64_GLOB_DAT:
772 case elfcpp::R_X86_64_JUMP_SLOT:
773 case elfcpp::R_X86_64_RELATIVE:
774 // These are outstanding tls relocs, which are unexpected when linking
775 case elfcpp::R_X86_64_TPOFF64:
776 case elfcpp::R_X86_64_DTPMOD64:
777 case elfcpp::R_X86_64_TLSDESC:
778 gold_error(_("%s: unexpected reloc %u in object file"),
779 object->name().c_str(), r_type);
782 // These are initial tls relocs, which are expected when linking
783 case elfcpp::R_X86_64_TLSGD:
784 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
785 case elfcpp::R_X86_64_TLSDESC_CALL:
786 case elfcpp::R_X86_64_TLSLD:
787 case elfcpp::R_X86_64_GOTTPOFF:
788 case elfcpp::R_X86_64_TPOFF32:
789 case elfcpp::R_X86_64_DTPOFF32:
790 case elfcpp::R_X86_64_DTPOFF64:
792 bool output_is_shared = parameters->output_is_shared();
793 const tls::Tls_optimization optimized_type
794 = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
797 case elfcpp::R_X86_64_TPOFF32: // Local-exec
798 // FIXME: If generating a shared object, we need to copy
799 // this relocation into the object.
800 gold_assert(!output_is_shared);
803 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
804 // FIXME: If not relaxing to LE, we need to generate a
806 if (optimized_type != tls::TLSOPT_TO_LE)
807 unsupported_reloc_local(object, r_type);
810 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
811 case elfcpp::R_X86_64_DTPOFF32:
812 case elfcpp::R_X86_64_DTPOFF64:
813 // FIXME: If not relaxing to LE, we need to generate a
815 if (optimized_type != tls::TLSOPT_TO_LE)
816 unsupported_reloc_local(object, r_type);
820 case elfcpp::R_X86_64_TLSGD: // General-dynamic
821 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
822 case elfcpp::R_X86_64_TLSDESC_CALL:
823 // FIXME: If not relaxing to LE, we need to generate
824 // DTPMOD64 and DTPOFF64 relocs.
825 if (optimized_type != tls::TLSOPT_TO_LE)
826 unsupported_reloc_local(object, r_type);
835 case elfcpp::R_X86_64_GOTPLT64:
836 case elfcpp::R_X86_64_PLT32:
837 case elfcpp::R_X86_64_SIZE32: // TODO(csilvers): correct?
838 case elfcpp::R_X86_64_SIZE64: // TODO(csilvers): correct?
840 gold_error(_("%s: unsupported reloc %u against local symbol"),
841 object->name().c_str(), r_type);
847 // Report an unsupported relocation against a global symbol.
850 Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
854 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
855 object->name().c_str(), r_type, gsym->name());
858 // Scan a relocation for a global symbol.
861 Target_x86_64::Scan::global(const General_options& options,
862 Symbol_table* symtab,
864 Target_x86_64* target,
865 Sized_relobj<64, false>* object,
866 unsigned int data_shndx,
867 const elfcpp::Rela<64, false>& reloc,
873 case elfcpp::R_X86_64_NONE:
874 case elfcpp::R_386_GNU_VTINHERIT:
875 case elfcpp::R_386_GNU_VTENTRY:
878 case elfcpp::R_X86_64_64:
879 case elfcpp::R_X86_64_PC64:
880 case elfcpp::R_X86_64_32:
881 case elfcpp::R_X86_64_32S:
882 case elfcpp::R_X86_64_PC32:
883 case elfcpp::R_X86_64_16:
884 case elfcpp::R_X86_64_PC16:
885 case elfcpp::R_X86_64_8:
886 case elfcpp::R_X86_64_PC8:
887 // FIXME: If we are generating a shared object we may need to
888 // copy this relocation into the object. If this symbol is
889 // defined in a shared object, we may need to copy this
890 // relocation in order to avoid a COPY relocation.
891 gold_assert(!parameters->output_is_shared());
893 if (gsym->is_from_dynobj())
895 // This symbol is defined in a dynamic object. If it is a
896 // function, we make a PLT entry. Otherwise we need to
897 // either generate a COPY reloc or copy this reloc.
898 if (gsym->type() == elfcpp::STT_FUNC)
900 target->make_plt_entry(symtab, layout, gsym);
902 // If this is not a PC relative reference, then we may
903 // be taking the address of the function. In that case
904 // we need to set the entry in the dynamic symbol table
905 // to the address of the PLT entry.
906 if (r_type != elfcpp::R_X86_64_PC64
907 && r_type != elfcpp::R_X86_64_PC32
908 && r_type != elfcpp::R_X86_64_PC16
909 && r_type != elfcpp::R_X86_64_PC8)
910 gsym->set_needs_dynsym_value();
913 target->copy_reloc(&options, symtab, layout, object, data_shndx,
919 case elfcpp::R_X86_64_GOT64:
920 case elfcpp::R_X86_64_GOT32:
921 case elfcpp::R_X86_64_GOTPCREL64:
922 case elfcpp::R_X86_64_GOTPCREL:
923 case elfcpp::R_X86_64_GOTPLT64:
925 // The symbol requires a GOT entry.
926 Output_data_got<64, false>* got = target->got_section(symtab, layout);
927 if (got->add_global(gsym))
929 // If this symbol is not fully resolved, we need to add a
930 // dynamic relocation for it.
931 if (!gsym->final_value_is_known())
933 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
934 rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT, got,
935 gsym->got_offset(), 0);
941 case elfcpp::R_X86_64_PLT32:
942 // If the symbol is fully resolved, this is just a PC32 reloc.
943 // Otherwise we need a PLT entry.
944 if (gsym->final_value_is_known())
946 target->make_plt_entry(symtab, layout, gsym);
949 case elfcpp::R_X86_64_GOTPC32: // TODO(csilvers): correct?
950 case elfcpp::R_X86_64_GOTOFF64:
951 case elfcpp::R_X86_64_GOTPC64: // TODO(csilvers): correct?
952 case elfcpp::R_X86_64_PLTOFF64: // TODO(csilvers): correct?
953 // We need a GOT section.
954 target->got_section(symtab, layout);
957 case elfcpp::R_X86_64_COPY:
958 case elfcpp::R_X86_64_GLOB_DAT:
959 case elfcpp::R_X86_64_JUMP_SLOT:
960 case elfcpp::R_X86_64_RELATIVE:
961 // These are outstanding tls relocs, which are unexpected when linking
962 case elfcpp::R_X86_64_TPOFF64:
963 case elfcpp::R_X86_64_DTPMOD64:
964 case elfcpp::R_X86_64_TLSDESC:
965 gold_error(_("%s: unexpected reloc %u in object file"),
966 object->name().c_str(), r_type);
969 // These are initial tls relocs, which are expected for global()
970 case elfcpp::R_X86_64_TLSGD:
971 case elfcpp::R_X86_64_TLSLD:
972 case elfcpp::R_X86_64_GOTTPOFF:
973 case elfcpp::R_X86_64_TPOFF32:
974 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
975 case elfcpp::R_X86_64_TLSDESC_CALL:
976 case elfcpp::R_X86_64_DTPOFF32:
977 case elfcpp::R_X86_64_DTPOFF64:
979 const bool is_final = gsym->final_value_is_known();
980 const tls::Tls_optimization optimized_type
981 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
984 case elfcpp::R_X86_64_TPOFF32: // Local-exec
985 // FIXME: If generating a shared object, we need to copy
986 // this relocation into the object.
987 gold_assert(is_final);
990 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
991 // FIXME: If not relaxing to LE, we need to generate a
993 if (optimized_type != tls::TLSOPT_TO_LE)
994 unsupported_reloc_global(object, r_type, gsym);
997 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
998 case elfcpp::R_X86_64_DTPOFF32:
999 case elfcpp::R_X86_64_DTPOFF64:
1000 // FIXME: If not relaxing to LE, we need to generate a
1002 if (optimized_type != tls::TLSOPT_TO_LE)
1003 unsupported_reloc_global(object, r_type, gsym);
1007 case elfcpp::R_X86_64_TLSGD: // General-dynamic
1008 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1009 case elfcpp::R_X86_64_TLSDESC_CALL:
1010 // FIXME: If not relaxing to LE, we need to generate
1011 // DTPMOD64 and DTPOFF64, or TLSDESC, relocs.
1012 if (optimized_type != tls::TLSOPT_TO_LE)
1013 unsupported_reloc_global(object, r_type, gsym);
1021 case elfcpp::R_X86_64_SIZE32: // TODO(csilvers): correct?
1022 case elfcpp::R_X86_64_SIZE64: // TODO(csilvers): correct?
1024 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1025 object->name().c_str(), r_type, gsym->name());
1030 // Scan relocations for a section.
1033 Target_x86_64::scan_relocs(const General_options& options,
1034 Symbol_table* symtab,
1036 Sized_relobj<64, false>* object,
1037 unsigned int data_shndx,
1038 unsigned int sh_type,
1039 const unsigned char* prelocs,
1041 size_t local_symbol_count,
1042 const unsigned char* plocal_symbols,
1043 Symbol** global_symbols)
1045 if (sh_type == elfcpp::SHT_REL)
1047 gold_error(_("%s: unsupported REL reloc section"),
1048 object->name().c_str());
1052 gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1053 Target_x86_64::Scan>(
1067 // Finalize the sections.
1070 Target_x86_64::do_finalize_sections(Layout* layout)
1072 // Fill in some more dynamic tags.
1073 Output_data_dynamic* const odyn = layout->dynamic_data();
1076 if (this->got_plt_ != NULL)
1077 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1079 if (this->plt_ != NULL)
1081 const Output_data* od = this->plt_->rel_plt();
1082 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1083 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1084 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1087 if (this->rela_dyn_ != NULL)
1089 const Output_data* od = this->rela_dyn_;
1090 odyn->add_section_address(elfcpp::DT_RELA, od);
1091 odyn->add_section_size(elfcpp::DT_RELASZ, od);
1092 odyn->add_constant(elfcpp::DT_RELAENT,
1093 elfcpp::Elf_sizes<64>::rela_size);
1096 if (!parameters->output_is_shared())
1098 // The value of the DT_DEBUG tag is filled in by the dynamic
1099 // linker at run time, and used by the debugger.
1100 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1104 // Emit any relocs we saved in an attempt to avoid generating COPY
1106 if (this->copy_relocs_ == NULL)
1108 if (this->copy_relocs_->any_to_emit())
1110 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1111 this->copy_relocs_->emit(rela_dyn);
1113 delete this->copy_relocs_;
1114 this->copy_relocs_ = NULL;
1117 // Perform a relocation.
1120 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1121 Target_x86_64* target,
1123 const elfcpp::Rela<64, false>& rela,
1124 unsigned int r_type,
1125 const Sized_symbol<64>* gsym,
1126 const Symbol_value<64>* psymval,
1127 unsigned char* view,
1128 elfcpp::Elf_types<64>::Elf_Addr address,
1131 if (this->skip_call_tls_get_addr_)
1133 if (r_type != elfcpp::R_X86_64_PLT32
1135 || strcmp(gsym->name(), "__tls_get_addr") != 0)
1137 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1138 _("missing expected TLS relocation"));
1142 this->skip_call_tls_get_addr_ = false;
1147 // Pick the value to use for symbols defined in shared objects.
1148 Symbol_value<64> symval;
1149 if (gsym != NULL && gsym->is_from_dynobj() && gsym->has_plt_offset())
1151 symval.set_output_value(target->plt_section()->address()
1152 + gsym->plt_offset());
1156 const Sized_relobj<64, false>* object = relinfo->object;
1157 const elfcpp::Elf_Xword addend = rela.get_r_addend();
1159 // Get the GOT offset if needed.
1160 bool have_got_offset = false;
1161 unsigned int got_offset = 0;
1164 case elfcpp::R_X86_64_GOT32:
1165 case elfcpp::R_X86_64_GOT64:
1166 case elfcpp::R_X86_64_GOTPLT64:
1167 case elfcpp::R_X86_64_GOTPCREL:
1168 case elfcpp::R_X86_64_GOTPCREL64:
1171 gold_assert(gsym->has_got_offset());
1172 got_offset = gsym->got_offset();
1176 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1177 got_offset = object->local_got_offset(r_sym);
1179 have_got_offset = true;
1189 case elfcpp::R_X86_64_NONE:
1190 case elfcpp::R_386_GNU_VTINHERIT:
1191 case elfcpp::R_386_GNU_VTENTRY:
1194 case elfcpp::R_X86_64_64:
1195 Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1198 case elfcpp::R_X86_64_PC64:
1199 Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1203 case elfcpp::R_X86_64_32:
1204 // FIXME: we need to verify that value + addend fits into 32 bits:
1205 // uint64_t x = value + addend;
1206 // x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1207 // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
1208 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1211 case elfcpp::R_X86_64_32S:
1212 // FIXME: we need to verify that value + addend fits into 32 bits:
1213 // int64_t x = value + addend; // note this quantity is signed!
1214 // x == static_cast<int64_t>(static_cast<int32_t>(x))
1215 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1218 case elfcpp::R_X86_64_PC32:
1219 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1223 case elfcpp::R_X86_64_16:
1224 Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1227 case elfcpp::R_X86_64_PC16:
1228 Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1232 case elfcpp::R_X86_64_8:
1233 Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1236 case elfcpp::R_X86_64_PC8:
1237 Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1241 case elfcpp::R_X86_64_PLT32:
1242 gold_assert(gsym->has_plt_offset()
1243 || gsym->final_value_is_known());
1244 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1248 case elfcpp::R_X86_64_GOT32:
1249 gold_assert(have_got_offset);
1250 Relocate_functions<64, false>::rela32(view, got_offset, addend);
1253 case elfcpp::R_X86_64_GOTPC32:
1256 elfcpp::Elf_types<64>::Elf_Addr value;
1257 value = target->got_section(NULL, NULL)->address();
1258 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1262 case elfcpp::R_X86_64_GOT64:
1263 // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1264 // Since we always add a PLT entry, this is equivalent.
1265 case elfcpp::R_X86_64_GOTPLT64: // TODO(csilvers): correct?
1266 gold_assert(have_got_offset);
1267 Relocate_functions<64, false>::rela64(view, got_offset, addend);
1270 case elfcpp::R_X86_64_GOTPC64:
1273 elfcpp::Elf_types<64>::Elf_Addr value;
1274 value = target->got_section(NULL, NULL)->address();
1275 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1279 case elfcpp::R_X86_64_GOTOFF64:
1281 elfcpp::Elf_types<64>::Elf_Addr value;
1282 value = (psymval->value(object, 0)
1283 - target->got_section(NULL, NULL)->address());
1284 Relocate_functions<64, false>::rela64(view, value, addend);
1288 case elfcpp::R_X86_64_GOTPCREL:
1290 gold_assert(have_got_offset);
1291 elfcpp::Elf_types<64>::Elf_Addr value;
1292 value = target->got_section(NULL, NULL)->address() + got_offset;
1293 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1297 case elfcpp::R_X86_64_GOTPCREL64:
1299 gold_assert(have_got_offset);
1300 elfcpp::Elf_types<64>::Elf_Addr value;
1301 value = target->got_section(NULL, NULL)->address() + got_offset;
1302 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1306 case elfcpp::R_X86_64_COPY:
1307 case elfcpp::R_X86_64_GLOB_DAT:
1308 case elfcpp::R_X86_64_JUMP_SLOT:
1309 case elfcpp::R_X86_64_RELATIVE:
1310 // These are outstanding tls relocs, which are unexpected when linking
1311 case elfcpp::R_X86_64_TPOFF64:
1312 case elfcpp::R_X86_64_DTPMOD64:
1313 case elfcpp::R_X86_64_TLSDESC:
1314 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1315 _("unexpected reloc %u in object file"),
1319 // These are initial tls relocs, which are expected when linking
1320 case elfcpp::R_X86_64_TLSGD:
1321 case elfcpp::R_X86_64_TLSLD:
1322 case elfcpp::R_X86_64_GOTTPOFF:
1323 case elfcpp::R_X86_64_TPOFF32:
1324 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1325 case elfcpp::R_X86_64_TLSDESC_CALL:
1326 case elfcpp::R_X86_64_DTPOFF32:
1327 case elfcpp::R_X86_64_DTPOFF64:
1328 this->relocate_tls(relinfo, relnum, rela, r_type, gsym, psymval, view,
1329 address, view_size);
1332 case elfcpp::R_X86_64_SIZE32: // TODO(csilvers): correct?
1333 case elfcpp::R_X86_64_SIZE64: // TODO(csilvers): correct?
1334 case elfcpp::R_X86_64_PLTOFF64: // TODO(csilvers): implement me!
1336 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1337 _("unsupported reloc %u"),
1345 // Perform a TLS relocation.
1348 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1350 const elfcpp::Rela<64, false>& rel,
1351 unsigned int r_type,
1352 const Sized_symbol<64>* gsym,
1353 const Symbol_value<64>* psymval,
1354 unsigned char* view,
1355 elfcpp::Elf_types<64>::Elf_Addr,
1358 Output_segment* tls_segment = relinfo->layout->tls_segment();
1359 if (tls_segment == NULL)
1361 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1362 _("TLS reloc but no TLS segment"));
1366 elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1368 const bool is_final = (gsym == NULL
1369 ? !parameters->output_is_shared()
1370 : gsym->final_value_is_known());
1371 const tls::Tls_optimization optimized_type
1372 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1375 case elfcpp::R_X86_64_TPOFF32: // Local-exec reloc
1376 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1377 Relocate_functions<64, false>::rel32(view, value);
1380 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec reloc
1381 if (optimized_type == tls::TLSOPT_TO_LE)
1383 Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1384 rel, r_type, value, view,
1388 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1389 _("unsupported reloc type %u"),
1393 case elfcpp::R_X86_64_TLSGD:
1394 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1395 case elfcpp::R_X86_64_TLSDESC_CALL:
1396 if (optimized_type == tls::TLSOPT_TO_LE)
1398 this->tls_gd_to_le(relinfo, relnum, tls_segment,
1399 rel, r_type, value, view,
1403 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1404 _("unsupported reloc %u"), r_type);
1407 case elfcpp::R_X86_64_TLSLD:
1408 if (optimized_type == tls::TLSOPT_TO_LE)
1410 // FIXME: implement ld_to_le
1412 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1413 _("unsupported reloc %u"), r_type);
1416 case elfcpp::R_X86_64_DTPOFF32:
1417 if (optimized_type == tls::TLSOPT_TO_LE)
1418 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1420 value = value - tls_segment->vaddr();
1421 Relocate_functions<64, false>::rel32(view, value);
1424 case elfcpp::R_X86_64_DTPOFF64:
1425 if (optimized_type == tls::TLSOPT_TO_LE)
1426 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1428 value = value - tls_segment->vaddr();
1429 Relocate_functions<64, false>::rel64(view, value);
1434 // Do a relocation in which we convert a TLS Initial-Exec to a
1438 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
1440 Output_segment* tls_segment,
1441 const elfcpp::Rela<64, false>& rel,
1443 elfcpp::Elf_types<64>::Elf_Addr value,
1444 unsigned char* view,
1447 // We need to examine the opcodes to figure out which instruction we
1450 // movq foo@gottpoff(%rip),%reg ==> movq $YY,%reg
1451 // addq foo@gottpoff(%rip),%reg ==> addq $YY,%reg
1453 Target_x86_64::Relocate::check_range(relinfo, relnum, rel, view_size, -3);
1454 Target_x86_64::Relocate::check_range(relinfo, relnum, rel, view_size, 4);
1456 unsigned char op1 = view[-3];
1457 unsigned char op2 = view[-2];
1458 unsigned char op3 = view[-1];
1459 unsigned char reg = op3 >> 3;
1467 view[-1] = 0xc0 | reg;
1471 // Special handling for %rsp.
1475 view[-1] = 0xc0 | reg;
1483 view[-1] = 0x80 | reg | (reg << 3);
1486 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1487 Relocate_functions<64, false>::rela32(view, value, 0);
1490 // Do a relocation in which we convert a TLS General-Dynamic to a
1494 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
1496 Output_segment* tls_segment,
1497 const elfcpp::Rela<64, false>& rel,
1499 elfcpp::Elf_types<64>::Elf_Addr value,
1500 unsigned char* view,
1503 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1504 // .word 0x6666; rex64; call __tls_get_addr
1505 // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
1507 Target_x86_64::Relocate::check_range(relinfo, relnum, rel, view_size, -4);
1508 Target_x86_64::Relocate::check_range(relinfo, relnum, rel, view_size, 12);
1510 Target_x86_64::Relocate::check_tls(relinfo, relnum, rel,
1511 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4)
1513 Target_x86_64::Relocate::check_tls(relinfo, relnum, rel,
1514 (memcmp(view + 4, "\x66\x66\x48\xe8", 4)
1517 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
1519 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1520 Relocate_functions<64, false>::rela32(view + 8, value, 0);
1522 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1524 this->skip_call_tls_get_addr_ = true;
1527 // Check the range for a TLS relocation.
1530 Target_x86_64::Relocate::check_range(const Relocate_info<64, false>* relinfo,
1532 const elfcpp::Rela<64, false>& rel,
1533 off_t view_size, off_t off)
1535 off_t offset = rel.get_r_offset() + off;
1536 if (offset < 0 || offset > view_size)
1537 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1538 _("TLS relocation out of range"));
1541 // Check the validity of a TLS relocation. This is like assert.
1544 Target_x86_64::Relocate::check_tls(const Relocate_info<64, false>* relinfo,
1546 const elfcpp::Rela<64, false>& rel,
1550 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1551 _("TLS relocation against invalid instruction"));
1554 // Relocate section data.
1557 Target_x86_64::relocate_section(const Relocate_info<64, false>* relinfo,
1558 unsigned int sh_type,
1559 const unsigned char* prelocs,
1561 unsigned char* view,
1562 elfcpp::Elf_types<64>::Elf_Addr address,
1565 gold_assert(sh_type == elfcpp::SHT_RELA);
1567 gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
1568 Target_x86_64::Relocate>(
1578 // Return the value to use for a dynamic which requires special
1579 // treatment. This is how we support equality comparisons of function
1580 // pointers across shared library boundaries, as described in the
1581 // processor specific ABI supplement.
1584 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
1586 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1587 return this->plt_section()->address() + gsym->plt_offset();
1590 // Return a string used to fill a code section with nops to take up
1591 // the specified length.
1594 Target_x86_64::do_code_fill(off_t length)
1598 // Build a jmpq instruction to skip over the bytes.
1599 unsigned char jmp[5];
1601 elfcpp::Swap_unaligned<64, false>::writeval(jmp + 1, length - 5);
1602 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1603 + std::string(length - 5, '\0'));
1606 // Nop sequences of various lengths.
1607 const char nop1[1] = { 0x90 }; // nop
1608 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
1609 const char nop3[3] = { 0x8d, 0x76, 0x00 }; // leal 0(%esi),%esi
1610 const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00}; // leal 0(%esi,1),%esi
1611 const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26, // nop
1612 0x00 }; // leal 0(%esi,1),%esi
1613 const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1615 const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1617 const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26, // nop
1618 0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1619 const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc, // movl %esi,%esi
1620 0x27, 0x00, 0x00, 0x00, // leal 0L(%edi,1),%edi
1622 const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1623 0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1625 const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1626 0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1628 const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1629 0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1630 0x00, 0x00, 0x00, 0x00 };
1631 const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1632 0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1633 0x27, 0x00, 0x00, 0x00,
1635 const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1636 0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1637 0xbc, 0x27, 0x00, 0x00,
1639 const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1640 0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1641 0x90, 0x90, 0x90, 0x90,
1644 const char* nops[16] = {
1646 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1647 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1650 return std::string(nops[length], length);
1653 // The selector for x86_64 object files.
1655 class Target_selector_x86_64 : public Target_selector
1658 Target_selector_x86_64()
1659 : Target_selector(elfcpp::EM_X86_64, 64, false)
1663 recognize(int machine, int osabi, int abiversion);
1666 Target_x86_64* target_;
1669 // Recognize an x86_64 object file when we already know that the machine
1670 // number is EM_X86_64.
1673 Target_selector_x86_64::recognize(int, int, int)
1675 if (this->target_ == NULL)
1676 this->target_ = new Target_x86_64();
1677 return this->target_;
1680 Target_selector_x86_64 target_selector_x86_64;
1682 } // End anonymous namespace.