Run all error handling through an Errors object. Delete output file
[platform/upstream/binutils.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright 2006, 2007, Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or
9 // modify it under the terms of the GNU Library General Public License
10 // as published by the Free Software Foundation; either version 2, or
11 // (at your option) any later version.
12
13 // In addition to the permissions in the GNU Library General Public
14 // License, the Free Software Foundation gives you unlimited
15 // permission to link the compiled version of this file into
16 // combinations with other programs, and to distribute those
17 // combinations without any restriction coming from the use of this
18 // file.  (The Library Public License restrictions do apply in other
19 // respects; for example, they cover modification of the file, and
20 /// distribution when not linked into a combined executable.)
21
22 // This program is distributed in the hope that it will be useful, but
23 // WITHOUT ANY WARRANTY; without even the implied warranty of
24 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
25 // Library General Public License for more details.
26
27 // You should have received a copy of the GNU Library General Public
28 // License along with this program; if not, write to the Free Software
29 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30 // 02110-1301, USA.
31
32 #include "gold.h"
33
34 #include <cstring>
35
36 #include "elfcpp.h"
37 #include "parameters.h"
38 #include "reloc.h"
39 #include "x86_64.h"
40 #include "object.h"
41 #include "symtab.h"
42 #include "layout.h"
43 #include "output.h"
44 #include "target.h"
45 #include "target-reloc.h"
46 #include "target-select.h"
47 #include "tls.h"
48
49 namespace
50 {
51
52 using namespace gold;
53
54 class Output_data_plt_x86_64;
55
56 // The x86_64 target class.
57 // See the ABI at
58 //   http://www.x86-64.org/documentation/abi.pdf
59 // TLS info comes from
60 //   http://people.redhat.com/drepper/tls.pdf
61 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
62
63 class Target_x86_64 : public Sized_target<64, false>
64 {
65  public:
66   // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
67   // uses only Elf64_Rela relocation entries with explicit addends."
68   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
69
70   Target_x86_64()
71     : Sized_target<64, false>(&x86_64_info),
72       got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
73       copy_relocs_(NULL), dynbss_(NULL)
74   { }
75
76   // Scan the relocations to look for symbol adjustments.
77   void
78   scan_relocs(const General_options& options,
79               Symbol_table* symtab,
80               Layout* layout,
81               Sized_relobj<64, false>* object,
82               unsigned int data_shndx,
83               unsigned int sh_type,
84               const unsigned char* prelocs,
85               size_t reloc_count,
86               size_t local_symbol_count,
87               const unsigned char* plocal_symbols,
88               Symbol** global_symbols);
89
90   // Finalize the sections.
91   void
92   do_finalize_sections(Layout*);
93
94   // Return the value to use for a dynamic which requires special
95   // treatment.
96   uint64_t
97   do_dynsym_value(const Symbol*) const;
98
99   // Relocate a section.
100   void
101   relocate_section(const Relocate_info<64, false>*,
102                    unsigned int sh_type,
103                    const unsigned char* prelocs,
104                    size_t reloc_count,
105                    unsigned char* view,
106                    elfcpp::Elf_types<64>::Elf_Addr view_address,
107                    off_t view_size);
108
109   // Return a string used to fill a code section with nops.
110   std::string
111   do_code_fill(off_t length);
112
113  private:
114   // The class which scans relocations.
115   struct Scan
116   {
117     inline void
118     local(const General_options& options, Symbol_table* symtab,
119           Layout* layout, Target_x86_64* target,
120           Sized_relobj<64, false>* object,
121           unsigned int data_shndx,
122           const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
123           const elfcpp::Sym<64, false>& lsym);
124
125     inline void
126     global(const General_options& options, Symbol_table* symtab,
127            Layout* layout, Target_x86_64* target,
128            Sized_relobj<64, false>* object,
129            unsigned int data_shndx,
130            const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
131            Symbol* gsym);
132
133     static void
134     unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
135
136     static void
137     unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
138                              Symbol*);
139   };
140
141   // The class which implements relocation.
142   class Relocate
143   {
144    public:
145     Relocate()
146       : skip_call_tls_get_addr_(false)
147     { }
148
149     ~Relocate()
150     {
151       if (this->skip_call_tls_get_addr_)
152         {
153           // FIXME: This needs to specify the location somehow.
154           gold_error(_("missing expected TLS relocation\n"));
155         }
156     }
157
158     // Do a relocation.  Return false if the caller should not issue
159     // any warnings about this relocation.
160     inline bool
161     relocate(const Relocate_info<64, false>*, Target_x86_64*, size_t relnum,
162              const elfcpp::Rela<64, false>&,
163              unsigned int r_type, const Sized_symbol<64>*,
164              const Symbol_value<64>*,
165              unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
166              off_t);
167
168    private:
169     // Do a TLS relocation.
170     inline void
171     relocate_tls(const Relocate_info<64, false>*, size_t relnum,
172                  const elfcpp::Rela<64, false>&,
173                  unsigned int r_type, const Sized_symbol<64>*,
174                  const Symbol_value<64>*,
175                  unsigned char*, elfcpp::Elf_types<64>::Elf_Addr, off_t);
176
177     // Do a TLS Initial-Exec to Local-Exec transition.
178     static inline void
179     tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
180                  Output_segment* tls_segment,
181                  const elfcpp::Rela<64, false>&, unsigned int r_type,
182                  elfcpp::Elf_types<64>::Elf_Addr value,
183                  unsigned char* view,
184                  off_t view_size);
185
186     // Do a TLS General-Dynamic to Local-Exec transition.
187     inline void
188     tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
189                  Output_segment* tls_segment,
190                  const elfcpp::Rela<64, false>&, unsigned int r_type,
191                  elfcpp::Elf_types<64>::Elf_Addr value,
192                  unsigned char* view,
193                  off_t view_size);
194
195     // Check the range for a TLS relocation.
196     static inline void
197     check_range(const Relocate_info<64, false>*, size_t relnum,
198                 const elfcpp::Rela<64, false>&, off_t, off_t);
199
200     // Check the validity of a TLS relocation.  This is like assert.
201     static inline void
202     check_tls(const Relocate_info<64, false>*, size_t relnum,
203               const elfcpp::Rela<64, false>&, bool);
204
205     // This is set if we should skip the next reloc, which should be a
206     // PLT32 reloc against ___tls_get_addr.
207     bool skip_call_tls_get_addr_;
208   };
209
210   // Adjust TLS relocation type based on the options and whether this
211   // is a local symbol.
212   static tls::Tls_optimization
213   optimize_tls_reloc(bool is_final, int r_type);
214
215   // Get the GOT section, creating it if necessary.
216   Output_data_got<64, false>*
217   got_section(Symbol_table*, Layout*);
218
219   // Create a PLT entry for a global symbol.
220   void
221   make_plt_entry(Symbol_table*, Layout*, Symbol*);
222
223   // Get the PLT section.
224   Output_data_plt_x86_64*
225   plt_section() const
226   {
227     gold_assert(this->plt_ != NULL);
228     return this->plt_;
229   }
230
231   // Get the dynamic reloc section, creating it if necessary.
232   Reloc_section*
233   rela_dyn_section(Layout*);
234
235   // Copy a relocation against a global symbol.
236   void
237   copy_reloc(const General_options*, Symbol_table*, Layout*,
238              Sized_relobj<64, false>*, unsigned int,
239              Symbol*, const elfcpp::Rela<64, false>&);
240
241   // Information about this specific target which we pass to the
242   // general Target structure.
243   static const Target::Target_info x86_64_info;
244
245   // The GOT section.
246   Output_data_got<64, false>* got_;
247   // The PLT section.
248   Output_data_plt_x86_64* plt_;
249   // The GOT PLT section.
250   Output_data_space* got_plt_;
251   // The dynamic reloc section.
252   Reloc_section* rela_dyn_;
253   // Relocs saved to avoid a COPY reloc.
254   Copy_relocs<64, false>* copy_relocs_;
255   // Space for variables copied with a COPY reloc.
256   Output_data_space* dynbss_;
257 };
258
259 const Target::Target_info Target_x86_64::x86_64_info =
260 {
261   64,                   // size
262   false,                // is_big_endian
263   elfcpp::EM_X86_64,    // machine_code
264   false,                // has_make_symbol
265   false,                // has_resolve
266   true,                 // has_code_fill
267   "/lib/ld64.so.1",     // program interpreter
268   0x400000,             // text_segment_address
269   0x1000,               // abi_pagesize
270   0x1000                // common_pagesize
271 };
272
273 // Get the GOT section, creating it if necessary.
274
275 Output_data_got<64, false>*
276 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
277 {
278   if (this->got_ == NULL)
279     {
280       gold_assert(symtab != NULL && layout != NULL);
281
282       this->got_ = new Output_data_got<64, false>();
283
284       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
285                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
286                                       this->got_);
287
288       // The old GNU linker creates a .got.plt section.  We just
289       // create another set of data in the .got section.  Note that we
290       // always create a PLT if we create a GOT, although the PLT
291       // might be empty.
292       // TODO(csilvers): do we really need an alignment of 8?
293       this->got_plt_ = new Output_data_space(8);
294       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
295                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
296                                       this->got_plt_);
297
298       // The first three entries are reserved.
299       this->got_plt_->set_space_size(3 * 8);
300
301       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
302       symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
303                                     this->got_plt_,
304                                     0, 0, elfcpp::STT_OBJECT,
305                                     elfcpp::STB_LOCAL,
306                                     elfcpp::STV_HIDDEN, 0,
307                                     false, false);
308     }
309
310   return this->got_;
311 }
312
313 // Get the dynamic reloc section, creating it if necessary.
314
315 Target_x86_64::Reloc_section*
316 Target_x86_64::rela_dyn_section(Layout* layout)
317 {
318   if (this->rela_dyn_ == NULL)
319     {
320       gold_assert(layout != NULL);
321       this->rela_dyn_ = new Reloc_section();
322       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
323                                       elfcpp::SHF_ALLOC, this->rela_dyn_);
324     }
325   return this->rela_dyn_;
326 }
327
328 // A class to handle the PLT data.
329
330 class Output_data_plt_x86_64 : public Output_section_data
331 {
332  public:
333   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
334
335   Output_data_plt_x86_64(Layout*, Output_data_space*);
336
337   // Add an entry to the PLT.
338   void
339   add_entry(Symbol* gsym);
340
341   // Return the .rel.plt section data.
342   const Reloc_section*
343   rel_plt() const
344   { return this->rel_; }
345
346  protected:
347   void
348   do_adjust_output_section(Output_section* os);
349
350  private:
351   // The size of an entry in the PLT.
352   static const int plt_entry_size = 16;
353
354   // The first entry in the PLT.
355   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
356   // procedure linkage table for both programs and shared objects."
357   static unsigned char first_plt_entry[plt_entry_size];
358
359   // Other entries in the PLT for an executable.
360   static unsigned char plt_entry[plt_entry_size];
361
362   // Set the final size.
363   void
364   do_set_address(uint64_t, off_t)
365   { this->set_data_size((this->count_ + 1) * plt_entry_size); }
366
367   // Write out the PLT data.
368   void
369   do_write(Output_file*);
370
371   // The reloc section.
372   Reloc_section* rel_;
373   // The .got.plt section.
374   Output_data_space* got_plt_;
375   // The number of PLT entries.
376   unsigned int count_;
377 };
378
379 // Create the PLT section.  The ordinary .got section is an argument,
380 // since we need to refer to the start.  We also create our own .got
381 // section just for PLT entries.
382
383 Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
384                                                Output_data_space* got_plt)
385     // TODO(csilvers): do we really need an alignment of 8?
386   : Output_section_data(8), got_plt_(got_plt), count_(0)
387 {
388   this->rel_ = new Reloc_section();
389   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
390                                   elfcpp::SHF_ALLOC, this->rel_);
391 }
392
393 void
394 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
395 {
396   // UnixWare sets the entsize of .plt to 4, and so does the old GNU
397   // linker, and so do we.
398   os->set_entsize(4);
399 }
400
401 // Add an entry to the PLT.
402
403 void
404 Output_data_plt_x86_64::add_entry(Symbol* gsym)
405 {
406   gold_assert(!gsym->has_plt_offset());
407
408   // Note that when setting the PLT offset we skip the initial
409   // reserved PLT entry.
410   gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
411
412   ++this->count_;
413
414   off_t got_offset = this->got_plt_->data_size();
415
416   // Every PLT entry needs a GOT entry which points back to the PLT
417   // entry (this will be changed by the dynamic linker, normally
418   // lazily when the function is called).
419   this->got_plt_->set_space_size(got_offset + 8);
420
421   // Every PLT entry needs a reloc.
422   gsym->set_needs_dynsym_entry();
423   this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
424                          got_offset, 0);
425
426   // Note that we don't need to save the symbol.  The contents of the
427   // PLT are independent of which symbols are used.  The symbols only
428   // appear in the relocations.
429 }
430
431 // The first entry in the PLT for an executable.
432
433 unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
434 {
435   // From AMD64 ABI Draft 0.98, page 76
436   0xff, 0x35,   // pushq contents of memory address
437   0, 0, 0, 0,   // replaced with address of .got + 4
438   0xff, 0x25,   // jmp indirect
439   0, 0, 0, 0,   // replaced with address of .got + 8
440   0x90, 0x90, 0x90, 0x90   // noop (x4)
441 };
442
443 // Subsequent entries in the PLT for an executable.
444
445 unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
446 {
447   // From AMD64 ABI Draft 0.98, page 76
448   0xff, 0x25,   // jmpq indirect
449   0, 0, 0, 0,   // replaced with address of symbol in .got
450   0x68,         // pushq immediate
451   0, 0, 0, 0,   // replaced with offset into relocation table
452   0xe9,         // jmpq relative
453   0, 0, 0, 0    // replaced with offset to start of .plt
454 };
455
456 // Write out the PLT.  This uses the hand-coded instructions above,
457 // and adjusts them as needed.  This is specified by the AMD64 ABI.
458
459 void
460 Output_data_plt_x86_64::do_write(Output_file* of)
461 {
462   const off_t offset = this->offset();
463   const off_t oview_size = this->data_size();
464   unsigned char* const oview = of->get_output_view(offset, oview_size);
465
466   const off_t got_file_offset = this->got_plt_->offset();
467   const off_t got_size = this->got_plt_->data_size();
468   unsigned char* const got_view = of->get_output_view(got_file_offset,
469                                                       got_size);
470
471   unsigned char* pov = oview;
472
473   elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
474   elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
475
476   memcpy(pov, first_plt_entry, plt_entry_size);
477   if (!parameters->output_is_shared())
478     {
479       // We do a jmp relative to the PC at the end of this instruction.
480       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 8
481                                                   - (plt_address + 6));
482       elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 16
483                                         - (plt_address + 12));
484     }
485   pov += plt_entry_size;
486
487   unsigned char* got_pov = got_view;
488
489   memset(got_pov, 0, 24);
490   got_pov += 24;
491
492   unsigned int plt_offset = plt_entry_size;
493   unsigned int got_offset = 24;
494   const unsigned int count = this->count_;
495   for (unsigned int plt_index = 0;
496        plt_index < count;
497        ++plt_index,
498          pov += plt_entry_size,
499          got_pov += 8,
500          plt_offset += plt_entry_size,
501          got_offset += 8)
502     {
503       // Set and adjust the PLT entry itself.
504       memcpy(pov, plt_entry, plt_entry_size);
505       if (parameters->output_is_shared())
506         // FIXME(csilvers): what's the right thing to write here?
507         elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
508       else
509         elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
510                                                     (got_address + got_offset
511                                                      - (plt_address + plt_offset
512                                                         + 6)));
513
514       elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
515       elfcpp::Swap<32, false>::writeval(pov + 12,
516                                         - (plt_offset + plt_entry_size));
517
518       // Set the entry in the GOT.
519       elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
520     }
521
522   gold_assert(pov - oview == oview_size);
523   gold_assert(got_pov - got_view == got_size);
524
525   of->write_output_view(offset, oview_size, oview);
526   of->write_output_view(got_file_offset, got_size, got_view);
527 }
528
529 // Create a PLT entry for a global symbol.
530
531 void
532 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
533                               Symbol* gsym)
534 {
535   if (gsym->has_plt_offset())
536     return;
537
538   if (this->plt_ == NULL)
539     {
540       // Create the GOT sections first.
541       this->got_section(symtab, layout);
542
543       this->plt_ = new Output_data_plt_x86_64(layout, this->got_plt_);
544       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
545                                       (elfcpp::SHF_ALLOC
546                                        | elfcpp::SHF_EXECINSTR),
547                                       this->plt_);
548     }
549
550   this->plt_->add_entry(gsym);
551 }
552
553 // Handle a relocation against a non-function symbol defined in a
554 // dynamic object.  The traditional way to handle this is to generate
555 // a COPY relocation to copy the variable at runtime from the shared
556 // object into the executable's data segment.  However, this is
557 // undesirable in general, as if the size of the object changes in the
558 // dynamic object, the executable will no longer work correctly.  If
559 // this relocation is in a writable section, then we can create a
560 // dynamic reloc and the dynamic linker will resolve it to the correct
561 // address at runtime.  However, we do not want do that if the
562 // relocation is in a read-only section, as it would prevent the
563 // readonly segment from being shared.  And if we have to eventually
564 // generate a COPY reloc, then any dynamic relocations will be
565 // useless.  So this means that if this is a writable section, we need
566 // to save the relocation until we see whether we have to create a
567 // COPY relocation for this symbol for any other relocation.
568
569 void
570 Target_x86_64::copy_reloc(const General_options* options,
571                           Symbol_table* symtab,
572                           Layout* layout,
573                           Sized_relobj<64, false>* object,
574                           unsigned int data_shndx, Symbol* gsym,
575                           const elfcpp::Rela<64, false>& rel)
576 {
577   Sized_symbol<64>* ssym;
578   ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(64) (gsym
579                                                         SELECT_SIZE(64));
580
581   if (!Copy_relocs<64, false>::need_copy_reloc(options, object,
582                                                data_shndx, ssym))
583     {
584       // So far we do not need a COPY reloc.  Save this relocation.
585       // If it turns out that we never need a COPY reloc for this
586       // symbol, then we will emit the relocation.
587       if (this->copy_relocs_ == NULL)
588         this->copy_relocs_ = new Copy_relocs<64, false>();
589       this->copy_relocs_->save(ssym, object, data_shndx, rel);
590     }
591   else
592     {
593       // Allocate space for this symbol in the .bss section.
594
595       elfcpp::Elf_types<64>::Elf_WXword symsize = ssym->symsize();
596
597       // There is no defined way to determine the required alignment
598       // of the symbol.  We pick the alignment based on the size.  We
599       // set an arbitrary maximum of 256.
600       unsigned int align;
601       for (align = 1; align < 512; align <<= 1)
602         if ((symsize & align) != 0)
603           break;
604
605       if (this->dynbss_ == NULL)
606         {
607           this->dynbss_ = new Output_data_space(align);
608           layout->add_output_section_data(".bss",
609                                           elfcpp::SHT_NOBITS,
610                                           (elfcpp::SHF_ALLOC
611                                            | elfcpp::SHF_WRITE),
612                                           this->dynbss_);
613         }
614
615       Output_data_space* dynbss = this->dynbss_;
616
617       if (align > dynbss->addralign())
618         dynbss->set_space_alignment(align);
619
620       off_t dynbss_size = dynbss->data_size();
621       dynbss_size = align_address(dynbss_size, align);
622       off_t offset = dynbss_size;
623       dynbss->set_space_size(dynbss_size + symsize);
624
625       // Define the symbol in the .dynbss section.
626       symtab->define_in_output_data(this, ssym->name(), ssym->version(),
627                                     dynbss, offset, symsize, ssym->type(),
628                                     ssym->binding(), ssym->visibility(),
629                                     ssym->nonvis(), false, false);
630
631       // Add the COPY reloc.
632       ssym->set_needs_dynsym_entry();
633       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
634       rela_dyn->add_global(ssym, elfcpp::R_X86_64_COPY, dynbss, offset, 0);
635     }
636 }
637
638
639 // Optimize the TLS relocation type based on what we know about the
640 // symbol.  IS_FINAL is true if the final address of this symbol is
641 // known at link time.
642
643 tls::Tls_optimization
644 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
645 {
646   // If we are generating a shared library, then we can't do anything
647   // in the linker.
648   if (parameters->output_is_shared())
649     return tls::TLSOPT_NONE;
650
651   switch (r_type)
652     {
653     case elfcpp::R_X86_64_TLSGD:
654     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
655     case elfcpp::R_X86_64_TLSDESC_CALL:
656       // These are General-Dynamic which permits fully general TLS
657       // access.  Since we know that we are generating an executable,
658       // we can convert this to Initial-Exec.  If we also know that
659       // this is a local symbol, we can further switch to Local-Exec.
660       if (is_final)
661         return tls::TLSOPT_TO_LE;
662       return tls::TLSOPT_TO_IE;
663
664     case elfcpp::R_X86_64_TLSLD:
665       // This is Local-Dynamic, which refers to a local symbol in the
666       // dynamic TLS block.  Since we know that we generating an
667       // executable, we can switch to Local-Exec.
668       return tls::TLSOPT_TO_LE;
669
670     case elfcpp::R_X86_64_DTPOFF32:
671     case elfcpp::R_X86_64_DTPOFF64:
672       // Another Local-Dynamic reloc.
673       return tls::TLSOPT_TO_LE;
674
675     case elfcpp::R_X86_64_GOTTPOFF:
676       // These are Initial-Exec relocs which get the thread offset
677       // from the GOT.  If we know that we are linking against the
678       // local symbol, we can switch to Local-Exec, which links the
679       // thread offset into the instruction.
680       if (is_final)
681         return tls::TLSOPT_TO_LE;
682       return tls::TLSOPT_NONE;
683
684     case elfcpp::R_X86_64_TPOFF32:
685       // When we already have Local-Exec, there is nothing further we
686       // can do.
687       return tls::TLSOPT_NONE;
688
689     default:
690       gold_unreachable();
691     }
692 }
693
694 // Report an unsupported relocation against a local symbol.
695
696 void
697 Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
698                                              unsigned int r_type)
699 {
700   gold_error(_("%s: unsupported reloc %u against local symbol"),
701              object->name().c_str(), r_type);
702 }
703
704 // Scan a relocation for a local symbol.
705
706 inline void
707 Target_x86_64::Scan::local(const General_options&,
708                            Symbol_table* symtab,
709                            Layout* layout,
710                            Target_x86_64* target,
711                            Sized_relobj<64, false>* object,
712                            unsigned int data_shndx,
713                            const elfcpp::Rela<64, false>& reloc,
714                            unsigned int r_type,
715                            const elfcpp::Sym<64, false>&)
716 {
717   switch (r_type)
718     {
719     case elfcpp::R_X86_64_NONE:
720     case elfcpp::R_386_GNU_VTINHERIT:
721     case elfcpp::R_386_GNU_VTENTRY:
722       break;
723
724     case elfcpp::R_X86_64_64:
725     case elfcpp::R_X86_64_32:
726     case elfcpp::R_X86_64_32S:
727     case elfcpp::R_X86_64_16:
728     case elfcpp::R_X86_64_8:
729       // FIXME: If we are generating a shared object we need to copy
730       // this relocation into the object.
731       gold_assert(!parameters->output_is_shared());
732       break;
733
734     case elfcpp::R_X86_64_PC64:
735     case elfcpp::R_X86_64_PC32:
736     case elfcpp::R_X86_64_PC16:
737     case elfcpp::R_X86_64_PC8:
738       break;
739
740     case elfcpp::R_X86_64_GOTPC32:  // TODO(csilvers): correct?
741     case elfcpp::R_X86_64_GOTOFF64:
742     case elfcpp::R_X86_64_GOTPC64:  // TODO(csilvers): correct?
743     case elfcpp::R_X86_64_PLTOFF64:  // TODO(csilvers): correct?
744       // We need a GOT section.
745       target->got_section(symtab, layout);
746       break;
747
748     case elfcpp::R_X86_64_GOT64:
749     case elfcpp::R_X86_64_GOT32:
750     case elfcpp::R_X86_64_GOTPCREL64:
751     case elfcpp::R_X86_64_GOTPCREL:
752       {
753         // The symbol requires a GOT entry.
754         Output_data_got<64, false>* got = target->got_section(symtab, layout);
755         unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
756         if (got->add_local(object, r_sym))
757           {
758             // If we are generating a shared object, we need to add a
759             // dynamic RELATIVE relocation for this symbol.
760             if (parameters->output_is_shared())
761               {
762                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
763                 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
764                                     data_shndx, reloc.get_r_offset(), 0);
765               }
766           }
767       }
768       break;
769
770     case elfcpp::R_X86_64_COPY:
771     case elfcpp::R_X86_64_GLOB_DAT:
772     case elfcpp::R_X86_64_JUMP_SLOT:
773     case elfcpp::R_X86_64_RELATIVE:
774       // These are outstanding tls relocs, which are unexpected when linking
775     case elfcpp::R_X86_64_TPOFF64:
776     case elfcpp::R_X86_64_DTPMOD64:
777     case elfcpp::R_X86_64_TLSDESC:
778       gold_error(_("%s: unexpected reloc %u in object file"),
779                  object->name().c_str(), r_type);
780       break;
781
782       // These are initial tls relocs, which are expected when linking
783     case elfcpp::R_X86_64_TLSGD:
784     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
785     case elfcpp::R_X86_64_TLSDESC_CALL:
786     case elfcpp::R_X86_64_TLSLD:
787     case elfcpp::R_X86_64_GOTTPOFF:
788     case elfcpp::R_X86_64_TPOFF32:
789     case elfcpp::R_X86_64_DTPOFF32:
790     case elfcpp::R_X86_64_DTPOFF64:
791       {
792         bool output_is_shared = parameters->output_is_shared();
793         const tls::Tls_optimization optimized_type
794             = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
795         switch (r_type)
796           {
797           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
798             // FIXME: If generating a shared object, we need to copy
799             // this relocation into the object.
800             gold_assert(!output_is_shared);
801             break;
802
803           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
804             // FIXME: If not relaxing to LE, we need to generate a
805             // TPOFF64 reloc.
806             if (optimized_type != tls::TLSOPT_TO_LE)
807               unsupported_reloc_local(object, r_type);
808             break;
809
810           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
811           case elfcpp::R_X86_64_DTPOFF32:
812           case elfcpp::R_X86_64_DTPOFF64:
813             // FIXME: If not relaxing to LE, we need to generate a
814             // DTPMOD64 reloc.
815             if (optimized_type != tls::TLSOPT_TO_LE)
816               unsupported_reloc_local(object, r_type);
817             break;
818
819
820           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
821           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
822           case elfcpp::R_X86_64_TLSDESC_CALL:
823             // FIXME: If not relaxing to LE, we need to generate
824             // DTPMOD64 and DTPOFF64 relocs.
825             if (optimized_type != tls::TLSOPT_TO_LE)
826               unsupported_reloc_local(object, r_type);
827             break;
828
829           default:
830             gold_unreachable();
831           }
832       }
833       break;
834
835     case elfcpp::R_X86_64_GOTPLT64:
836     case elfcpp::R_X86_64_PLT32:
837     case elfcpp::R_X86_64_SIZE32:  // TODO(csilvers): correct?
838     case elfcpp::R_X86_64_SIZE64:  // TODO(csilvers): correct?
839     default:
840       gold_error(_("%s: unsupported reloc %u against local symbol"),
841                  object->name().c_str(), r_type);
842       break;
843     }
844 }
845
846
847 // Report an unsupported relocation against a global symbol.
848
849 void
850 Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
851                                               unsigned int r_type,
852                                               Symbol* gsym)
853 {
854   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
855              object->name().c_str(), r_type, gsym->name());
856 }
857
858 // Scan a relocation for a global symbol.
859
860 inline void
861 Target_x86_64::Scan::global(const General_options& options,
862                             Symbol_table* symtab,
863                             Layout* layout,
864                             Target_x86_64* target,
865                             Sized_relobj<64, false>* object,
866                             unsigned int data_shndx,
867                             const elfcpp::Rela<64, false>& reloc,
868                             unsigned int r_type,
869                             Symbol* gsym)
870 {
871   switch (r_type)
872     {
873     case elfcpp::R_X86_64_NONE:
874     case elfcpp::R_386_GNU_VTINHERIT:
875     case elfcpp::R_386_GNU_VTENTRY:
876       break;
877
878     case elfcpp::R_X86_64_64:
879     case elfcpp::R_X86_64_PC64:
880     case elfcpp::R_X86_64_32:
881     case elfcpp::R_X86_64_32S:
882     case elfcpp::R_X86_64_PC32:
883     case elfcpp::R_X86_64_16:
884     case elfcpp::R_X86_64_PC16:
885     case elfcpp::R_X86_64_8:
886     case elfcpp::R_X86_64_PC8:
887       // FIXME: If we are generating a shared object we may need to
888       // copy this relocation into the object.  If this symbol is
889       // defined in a shared object, we may need to copy this
890       // relocation in order to avoid a COPY relocation.
891       gold_assert(!parameters->output_is_shared());
892
893       if (gsym->is_from_dynobj())
894         {
895           // This symbol is defined in a dynamic object.  If it is a
896           // function, we make a PLT entry.  Otherwise we need to
897           // either generate a COPY reloc or copy this reloc.
898           if (gsym->type() == elfcpp::STT_FUNC)
899             {
900               target->make_plt_entry(symtab, layout, gsym);
901
902               // If this is not a PC relative reference, then we may
903               // be taking the address of the function.  In that case
904               // we need to set the entry in the dynamic symbol table
905               // to the address of the PLT entry.
906               if (r_type != elfcpp::R_X86_64_PC64
907                   && r_type != elfcpp::R_X86_64_PC32
908                   && r_type != elfcpp::R_X86_64_PC16
909                   && r_type != elfcpp::R_X86_64_PC8)
910                 gsym->set_needs_dynsym_value();
911             }
912           else
913             target->copy_reloc(&options, symtab, layout, object, data_shndx,
914                                gsym, reloc);
915         }
916
917       break;
918
919     case elfcpp::R_X86_64_GOT64:
920     case elfcpp::R_X86_64_GOT32:
921     case elfcpp::R_X86_64_GOTPCREL64:
922     case elfcpp::R_X86_64_GOTPCREL:
923     case elfcpp::R_X86_64_GOTPLT64:
924       {
925         // The symbol requires a GOT entry.
926         Output_data_got<64, false>* got = target->got_section(symtab, layout);
927         if (got->add_global(gsym))
928           {
929             // If this symbol is not fully resolved, we need to add a
930             // dynamic relocation for it.
931             if (!gsym->final_value_is_known())
932               {
933                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
934                 rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT, got,
935                                      gsym->got_offset(), 0);
936               }
937           }
938       }
939       break;
940
941     case elfcpp::R_X86_64_PLT32:
942       // If the symbol is fully resolved, this is just a PC32 reloc.
943       // Otherwise we need a PLT entry.
944       if (gsym->final_value_is_known())
945         break;
946       target->make_plt_entry(symtab, layout, gsym);
947       break;
948
949     case elfcpp::R_X86_64_GOTPC32:  // TODO(csilvers): correct?
950     case elfcpp::R_X86_64_GOTOFF64:
951     case elfcpp::R_X86_64_GOTPC64:  // TODO(csilvers): correct?
952     case elfcpp::R_X86_64_PLTOFF64:  // TODO(csilvers): correct?
953       // We need a GOT section.
954       target->got_section(symtab, layout);
955       break;
956
957     case elfcpp::R_X86_64_COPY:
958     case elfcpp::R_X86_64_GLOB_DAT:
959     case elfcpp::R_X86_64_JUMP_SLOT:
960     case elfcpp::R_X86_64_RELATIVE:
961       // These are outstanding tls relocs, which are unexpected when linking
962     case elfcpp::R_X86_64_TPOFF64:
963     case elfcpp::R_X86_64_DTPMOD64:
964     case elfcpp::R_X86_64_TLSDESC:
965       gold_error(_("%s: unexpected reloc %u in object file"),
966                  object->name().c_str(), r_type);
967       break;
968
969       // These are initial tls relocs, which are expected for global()
970     case elfcpp::R_X86_64_TLSGD:
971     case elfcpp::R_X86_64_TLSLD:
972     case elfcpp::R_X86_64_GOTTPOFF:
973     case elfcpp::R_X86_64_TPOFF32:
974     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
975     case elfcpp::R_X86_64_TLSDESC_CALL:
976     case elfcpp::R_X86_64_DTPOFF32:
977     case elfcpp::R_X86_64_DTPOFF64:
978       {
979         const bool is_final = gsym->final_value_is_known();
980         const tls::Tls_optimization optimized_type
981             = Target_x86_64::optimize_tls_reloc(is_final, r_type);
982         switch (r_type)
983           {
984           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
985             // FIXME: If generating a shared object, we need to copy
986             // this relocation into the object.
987             gold_assert(is_final);
988             break;
989
990           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
991             // FIXME: If not relaxing to LE, we need to generate a
992             // TPOFF64 reloc.
993             if (optimized_type != tls::TLSOPT_TO_LE)
994               unsupported_reloc_global(object, r_type, gsym);
995             break;
996
997           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
998           case elfcpp::R_X86_64_DTPOFF32:
999           case elfcpp::R_X86_64_DTPOFF64:
1000             // FIXME: If not relaxing to LE, we need to generate a
1001             // DTPMOD64 reloc.
1002             if (optimized_type != tls::TLSOPT_TO_LE)
1003               unsupported_reloc_global(object, r_type, gsym);
1004             break;
1005
1006
1007           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
1008           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1009           case elfcpp::R_X86_64_TLSDESC_CALL:
1010             // FIXME: If not relaxing to LE, we need to generate
1011             // DTPMOD64 and DTPOFF64, or TLSDESC, relocs.
1012             if (optimized_type != tls::TLSOPT_TO_LE)
1013               unsupported_reloc_global(object, r_type, gsym);
1014             break;
1015
1016           default:
1017             gold_unreachable();
1018           }
1019       }
1020       break;
1021     case elfcpp::R_X86_64_SIZE32:  // TODO(csilvers): correct?
1022     case elfcpp::R_X86_64_SIZE64:  // TODO(csilvers): correct?
1023     default:
1024       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1025                  object->name().c_str(), r_type, gsym->name());
1026       break;
1027     }
1028 }
1029
1030 // Scan relocations for a section.
1031
1032 void
1033 Target_x86_64::scan_relocs(const General_options& options,
1034                            Symbol_table* symtab,
1035                            Layout* layout,
1036                            Sized_relobj<64, false>* object,
1037                            unsigned int data_shndx,
1038                            unsigned int sh_type,
1039                            const unsigned char* prelocs,
1040                            size_t reloc_count,
1041                            size_t local_symbol_count,
1042                            const unsigned char* plocal_symbols,
1043                            Symbol** global_symbols)
1044 {
1045   if (sh_type == elfcpp::SHT_REL)
1046     {
1047       gold_error(_("%s: unsupported REL reloc section"),
1048                  object->name().c_str());
1049       return;
1050     }
1051
1052   gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1053       Target_x86_64::Scan>(
1054     options,
1055     symtab,
1056     layout,
1057     this,
1058     object,
1059     data_shndx,
1060     prelocs,
1061     reloc_count,
1062     local_symbol_count,
1063     plocal_symbols,
1064     global_symbols);
1065 }
1066
1067 // Finalize the sections.
1068
1069 void
1070 Target_x86_64::do_finalize_sections(Layout* layout)
1071 {
1072   // Fill in some more dynamic tags.
1073   Output_data_dynamic* const odyn = layout->dynamic_data();
1074   if (odyn != NULL)
1075     {
1076       if (this->got_plt_ != NULL)
1077         odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1078
1079       if (this->plt_ != NULL)
1080         {
1081           const Output_data* od = this->plt_->rel_plt();
1082           odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1083           odyn->add_section_address(elfcpp::DT_JMPREL, od);
1084           odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1085         }
1086
1087       if (this->rela_dyn_ != NULL)
1088         {
1089           const Output_data* od = this->rela_dyn_;
1090           odyn->add_section_address(elfcpp::DT_RELA, od);
1091           odyn->add_section_size(elfcpp::DT_RELASZ, od);
1092           odyn->add_constant(elfcpp::DT_RELAENT,
1093                              elfcpp::Elf_sizes<64>::rela_size);
1094         }
1095
1096       if (!parameters->output_is_shared())
1097         {
1098           // The value of the DT_DEBUG tag is filled in by the dynamic
1099           // linker at run time, and used by the debugger.
1100           odyn->add_constant(elfcpp::DT_DEBUG, 0);
1101         }
1102     }
1103
1104   // Emit any relocs we saved in an attempt to avoid generating COPY
1105   // relocs.
1106   if (this->copy_relocs_ == NULL)
1107     return;
1108   if (this->copy_relocs_->any_to_emit())
1109     {
1110       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1111       this->copy_relocs_->emit(rela_dyn);
1112     }
1113   delete this->copy_relocs_;
1114   this->copy_relocs_ = NULL;
1115 }
1116
1117 // Perform a relocation.
1118
1119 inline bool
1120 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1121                                   Target_x86_64* target,
1122                                   size_t relnum,
1123                                   const elfcpp::Rela<64, false>& rela,
1124                                   unsigned int r_type,
1125                                   const Sized_symbol<64>* gsym,
1126                                   const Symbol_value<64>* psymval,
1127                                   unsigned char* view,
1128                                   elfcpp::Elf_types<64>::Elf_Addr address,
1129                                   off_t view_size)
1130 {
1131   if (this->skip_call_tls_get_addr_)
1132     {
1133       if (r_type != elfcpp::R_X86_64_PLT32
1134           || gsym == NULL
1135           || strcmp(gsym->name(), "__tls_get_addr") != 0)
1136         {
1137           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1138                                  _("missing expected TLS relocation"));
1139         }
1140       else
1141         {
1142           this->skip_call_tls_get_addr_ = false;
1143           return false;
1144         }
1145     }
1146
1147   // Pick the value to use for symbols defined in shared objects.
1148   Symbol_value<64> symval;
1149   if (gsym != NULL && gsym->is_from_dynobj() && gsym->has_plt_offset())
1150     {
1151       symval.set_output_value(target->plt_section()->address()
1152                               + gsym->plt_offset());
1153       psymval = &symval;
1154     }
1155
1156   const Sized_relobj<64, false>* object = relinfo->object;
1157   const elfcpp::Elf_Xword addend = rela.get_r_addend();
1158
1159   // Get the GOT offset if needed.
1160   bool have_got_offset = false;
1161   unsigned int got_offset = 0;
1162   switch (r_type)
1163     {
1164     case elfcpp::R_X86_64_GOT32:
1165     case elfcpp::R_X86_64_GOT64:
1166     case elfcpp::R_X86_64_GOTPLT64:
1167     case elfcpp::R_X86_64_GOTPCREL:
1168     case elfcpp::R_X86_64_GOTPCREL64:
1169       if (gsym != NULL)
1170         {
1171           gold_assert(gsym->has_got_offset());
1172           got_offset = gsym->got_offset();
1173         }
1174       else
1175         {
1176           unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1177           got_offset = object->local_got_offset(r_sym);
1178         }
1179       have_got_offset = true;
1180       break;
1181
1182     default:
1183       break;
1184     }
1185   
1186
1187   switch (r_type)
1188     {
1189     case elfcpp::R_X86_64_NONE:
1190     case elfcpp::R_386_GNU_VTINHERIT:
1191     case elfcpp::R_386_GNU_VTENTRY:
1192       break;
1193
1194     case elfcpp::R_X86_64_64:
1195       Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1196       break;
1197
1198     case elfcpp::R_X86_64_PC64:
1199       Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1200                                               address);
1201       break;
1202
1203     case elfcpp::R_X86_64_32:
1204       // FIXME: we need to verify that value + addend fits into 32 bits:
1205       //    uint64_t x = value + addend;
1206       //    x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1207       // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
1208       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1209       break;
1210
1211     case elfcpp::R_X86_64_32S:
1212       // FIXME: we need to verify that value + addend fits into 32 bits:
1213       //    int64_t x = value + addend;   // note this quantity is signed!
1214       //    x == static_cast<int64_t>(static_cast<int32_t>(x))
1215       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1216       break;
1217
1218     case elfcpp::R_X86_64_PC32:
1219       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1220                                               address);
1221       break;
1222
1223     case elfcpp::R_X86_64_16:
1224       Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1225       break;
1226
1227     case elfcpp::R_X86_64_PC16:
1228       Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1229                                               address);
1230       break;
1231
1232     case elfcpp::R_X86_64_8:
1233       Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1234       break;
1235
1236     case elfcpp::R_X86_64_PC8:
1237       Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1238                                              address);
1239       break;
1240
1241     case elfcpp::R_X86_64_PLT32:
1242       gold_assert(gsym->has_plt_offset()
1243                   || gsym->final_value_is_known());
1244       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1245                                               address);
1246       break;
1247
1248     case elfcpp::R_X86_64_GOT32:
1249       gold_assert(have_got_offset);
1250       Relocate_functions<64, false>::rela32(view, got_offset, addend);
1251       break;
1252
1253     case elfcpp::R_X86_64_GOTPC32:
1254       {
1255         gold_assert(gsym);
1256         elfcpp::Elf_types<64>::Elf_Addr value;
1257         value = target->got_section(NULL, NULL)->address();
1258         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1259       }
1260       break;
1261
1262     case elfcpp::R_X86_64_GOT64:
1263       // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1264       // Since we always add a PLT entry, this is equivalent.
1265     case elfcpp::R_X86_64_GOTPLT64:  // TODO(csilvers): correct?
1266       gold_assert(have_got_offset);
1267       Relocate_functions<64, false>::rela64(view, got_offset, addend);
1268       break;
1269
1270     case elfcpp::R_X86_64_GOTPC64:
1271       {
1272         gold_assert(gsym);
1273         elfcpp::Elf_types<64>::Elf_Addr value;
1274         value = target->got_section(NULL, NULL)->address();
1275         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1276       }
1277       break;
1278
1279     case elfcpp::R_X86_64_GOTOFF64:
1280       {
1281         elfcpp::Elf_types<64>::Elf_Addr value;
1282         value = (psymval->value(object, 0)
1283                  - target->got_section(NULL, NULL)->address());
1284         Relocate_functions<64, false>::rela64(view, value, addend);
1285       }
1286       break;
1287
1288     case elfcpp::R_X86_64_GOTPCREL:
1289       {
1290         gold_assert(have_got_offset);
1291         elfcpp::Elf_types<64>::Elf_Addr value;
1292         value = target->got_section(NULL, NULL)->address() + got_offset;
1293         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1294       }
1295       break;
1296
1297     case elfcpp::R_X86_64_GOTPCREL64:
1298       {
1299         gold_assert(have_got_offset);
1300         elfcpp::Elf_types<64>::Elf_Addr value;
1301         value = target->got_section(NULL, NULL)->address() + got_offset;
1302         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1303       }
1304       break;
1305
1306     case elfcpp::R_X86_64_COPY:
1307     case elfcpp::R_X86_64_GLOB_DAT:
1308     case elfcpp::R_X86_64_JUMP_SLOT:
1309     case elfcpp::R_X86_64_RELATIVE:
1310       // These are outstanding tls relocs, which are unexpected when linking
1311     case elfcpp::R_X86_64_TPOFF64:
1312     case elfcpp::R_X86_64_DTPMOD64:
1313     case elfcpp::R_X86_64_TLSDESC:
1314       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1315                              _("unexpected reloc %u in object file"),
1316                              r_type);
1317       break;
1318
1319       // These are initial tls relocs, which are expected when linking
1320     case elfcpp::R_X86_64_TLSGD:
1321     case elfcpp::R_X86_64_TLSLD:
1322     case elfcpp::R_X86_64_GOTTPOFF:
1323     case elfcpp::R_X86_64_TPOFF32:
1324     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1325     case elfcpp::R_X86_64_TLSDESC_CALL:
1326     case elfcpp::R_X86_64_DTPOFF32:
1327     case elfcpp::R_X86_64_DTPOFF64:
1328       this->relocate_tls(relinfo, relnum, rela, r_type, gsym, psymval, view,
1329                          address, view_size);
1330       break;
1331
1332     case elfcpp::R_X86_64_SIZE32:  // TODO(csilvers): correct?
1333     case elfcpp::R_X86_64_SIZE64:  // TODO(csilvers): correct?
1334     case elfcpp::R_X86_64_PLTOFF64:  // TODO(csilvers): implement me!
1335     default:
1336       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1337                              _("unsupported reloc %u"),
1338                              r_type);
1339       break;
1340     }
1341
1342   return true;
1343 }
1344
1345 // Perform a TLS relocation.
1346
1347 inline void
1348 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1349                                       size_t relnum,
1350                                       const elfcpp::Rela<64, false>& rel,
1351                                       unsigned int r_type,
1352                                       const Sized_symbol<64>* gsym,
1353                                       const Symbol_value<64>* psymval,
1354                                       unsigned char* view,
1355                                       elfcpp::Elf_types<64>::Elf_Addr,
1356                                       off_t view_size)
1357 {
1358   Output_segment* tls_segment = relinfo->layout->tls_segment();
1359   if (tls_segment == NULL)
1360     {
1361       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1362                              _("TLS reloc but no TLS segment"));
1363       return;
1364     }
1365
1366   elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1367
1368   const bool is_final = (gsym == NULL
1369                          ? !parameters->output_is_shared()
1370                          : gsym->final_value_is_known());
1371   const tls::Tls_optimization optimized_type
1372       = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1373   switch (r_type)
1374     {
1375     case elfcpp::R_X86_64_TPOFF32:   // Local-exec reloc
1376       value = value - (tls_segment->vaddr() + tls_segment->memsz());
1377       Relocate_functions<64, false>::rel32(view, value);
1378       break;
1379
1380     case elfcpp::R_X86_64_GOTTPOFF:  // Initial-exec reloc
1381       if (optimized_type == tls::TLSOPT_TO_LE)
1382         {
1383           Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1384                                                 rel, r_type, value, view,
1385                                                 view_size);
1386           break;
1387         }
1388       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1389                              _("unsupported reloc type %u"),
1390                              r_type);
1391       break;
1392
1393     case elfcpp::R_X86_64_TLSGD:
1394     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1395     case elfcpp::R_X86_64_TLSDESC_CALL:
1396       if (optimized_type == tls::TLSOPT_TO_LE)
1397         {
1398           this->tls_gd_to_le(relinfo, relnum, tls_segment,
1399                              rel, r_type, value, view,
1400                              view_size);
1401           break;
1402         }
1403       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1404                              _("unsupported reloc %u"), r_type);
1405       break;
1406
1407     case elfcpp::R_X86_64_TLSLD:
1408       if (optimized_type == tls::TLSOPT_TO_LE)
1409         {
1410           // FIXME: implement ld_to_le
1411         }
1412       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1413                              _("unsupported reloc %u"), r_type);
1414       break;
1415
1416     case elfcpp::R_X86_64_DTPOFF32:
1417       if (optimized_type == tls::TLSOPT_TO_LE)
1418         value = value - (tls_segment->vaddr() + tls_segment->memsz());
1419       else
1420         value = value - tls_segment->vaddr();
1421       Relocate_functions<64, false>::rel32(view, value);
1422       break;
1423
1424     case elfcpp::R_X86_64_DTPOFF64:
1425       if (optimized_type == tls::TLSOPT_TO_LE)
1426         value = value - (tls_segment->vaddr() + tls_segment->memsz());
1427       else
1428         value = value - tls_segment->vaddr();
1429       Relocate_functions<64, false>::rel64(view, value);
1430       break;
1431     }
1432 }
1433
1434 // Do a relocation in which we convert a TLS Initial-Exec to a
1435 // Local-Exec.
1436
1437 inline void
1438 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
1439                                       size_t relnum,
1440                                       Output_segment* tls_segment,
1441                                       const elfcpp::Rela<64, false>& rel,
1442                                       unsigned int,
1443                                       elfcpp::Elf_types<64>::Elf_Addr value,
1444                                       unsigned char* view,
1445                                       off_t view_size)
1446 {
1447   // We need to examine the opcodes to figure out which instruction we
1448   // are looking at.
1449
1450   // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
1451   // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
1452
1453   Target_x86_64::Relocate::check_range(relinfo, relnum, rel, view_size, -3);
1454   Target_x86_64::Relocate::check_range(relinfo, relnum, rel, view_size, 4);
1455
1456   unsigned char op1 = view[-3];
1457   unsigned char op2 = view[-2];
1458   unsigned char op3 = view[-1];
1459   unsigned char reg = op3 >> 3;
1460
1461   if (op2 == 0x8b)
1462     {
1463       // movq
1464       if (op1 == 0x4c)
1465         view[-3] = 0x49;
1466       view[-2] = 0xc7;
1467       view[-1] = 0xc0 | reg;
1468     }
1469   else if (reg == 4)
1470     {
1471       // Special handling for %rsp.
1472       if (op1 == 0x4c)
1473         view[-3] = 0x49;
1474       view[-2] = 0x81;
1475       view[-1] = 0xc0 | reg;
1476     }
1477   else
1478     {
1479       // addq
1480       if (op1 == 0x4c)
1481         view[-3] = 0x4d;
1482       view[-2] = 0x8d;
1483       view[-1] = 0x80 | reg | (reg << 3);
1484     }
1485
1486   value = value - (tls_segment->vaddr() + tls_segment->memsz());
1487   Relocate_functions<64, false>::rela32(view, value, 0);
1488 }
1489
1490 // Do a relocation in which we convert a TLS General-Dynamic to a
1491 // Local-Exec.
1492
1493 inline void
1494 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
1495                                       size_t relnum,
1496                                       Output_segment* tls_segment,
1497                                       const elfcpp::Rela<64, false>& rel,
1498                                       unsigned int,
1499                                       elfcpp::Elf_types<64>::Elf_Addr value,
1500                                       unsigned char* view,
1501                                       off_t view_size)
1502 {
1503   // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1504   // .word 0x6666; rex64; call __tls_get_addr
1505   // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
1506
1507   Target_x86_64::Relocate::check_range(relinfo, relnum, rel, view_size, -4);
1508   Target_x86_64::Relocate::check_range(relinfo, relnum, rel, view_size, 12);
1509
1510   Target_x86_64::Relocate::check_tls(relinfo, relnum, rel,
1511                                      (memcmp(view - 4, "\x66\x48\x8d\x3d", 4)
1512                                       == 0));
1513   Target_x86_64::Relocate::check_tls(relinfo, relnum, rel,
1514                                      (memcmp(view + 4, "\x66\x66\x48\xe8", 4)
1515                                       == 0));
1516
1517   memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
1518
1519   value = value - (tls_segment->vaddr() + tls_segment->memsz());
1520   Relocate_functions<64, false>::rela32(view + 8, value, 0);
1521
1522   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1523   // We can skip it.
1524   this->skip_call_tls_get_addr_ = true;
1525 }
1526
1527 // Check the range for a TLS relocation.
1528
1529 inline void
1530 Target_x86_64::Relocate::check_range(const Relocate_info<64, false>* relinfo,
1531                                      size_t relnum,
1532                                      const elfcpp::Rela<64, false>& rel,
1533                                      off_t view_size, off_t off)
1534 {
1535   off_t offset = rel.get_r_offset() + off;
1536   if (offset < 0 || offset > view_size)
1537     gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1538                            _("TLS relocation out of range"));
1539 }
1540
1541 // Check the validity of a TLS relocation.  This is like assert.
1542
1543 inline void
1544 Target_x86_64::Relocate::check_tls(const Relocate_info<64, false>* relinfo,
1545                                    size_t relnum,
1546                                    const elfcpp::Rela<64, false>& rel,
1547                                    bool valid)
1548 {
1549   if (!valid)
1550     gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1551                            _("TLS relocation against invalid instruction"));
1552 }
1553
1554 // Relocate section data.
1555
1556 void
1557 Target_x86_64::relocate_section(const Relocate_info<64, false>* relinfo,
1558                                 unsigned int sh_type,
1559                                 const unsigned char* prelocs,
1560                                 size_t reloc_count,
1561                                 unsigned char* view,
1562                                 elfcpp::Elf_types<64>::Elf_Addr address,
1563                                 off_t view_size)
1564 {
1565   gold_assert(sh_type == elfcpp::SHT_RELA);
1566
1567   gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
1568                          Target_x86_64::Relocate>(
1569     relinfo,
1570     this,
1571     prelocs,
1572     reloc_count,
1573     view,
1574     address,
1575     view_size);
1576 }
1577
1578 // Return the value to use for a dynamic which requires special
1579 // treatment.  This is how we support equality comparisons of function
1580 // pointers across shared library boundaries, as described in the
1581 // processor specific ABI supplement.
1582
1583 uint64_t
1584 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
1585 {
1586   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1587   return this->plt_section()->address() + gsym->plt_offset();
1588 }
1589
1590 // Return a string used to fill a code section with nops to take up
1591 // the specified length.
1592
1593 std::string
1594 Target_x86_64::do_code_fill(off_t length)
1595 {
1596   if (length >= 16)
1597     {
1598       // Build a jmpq instruction to skip over the bytes.
1599       unsigned char jmp[5];
1600       jmp[0] = 0xe9;
1601       elfcpp::Swap_unaligned<64, false>::writeval(jmp + 1, length - 5);
1602       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1603               + std::string(length - 5, '\0'));
1604     }
1605
1606   // Nop sequences of various lengths.
1607   const char nop1[1] = { 0x90 };                   // nop
1608   const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
1609   const char nop3[3] = { 0x8d, 0x76, 0x00 };       // leal 0(%esi),%esi
1610   const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00};  // leal 0(%esi,1),%esi
1611   const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26,   // nop
1612                          0x00 };                   // leal 0(%esi,1),%esi
1613   const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00,   // leal 0L(%esi),%esi
1614                          0x00, 0x00 };
1615   const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00,   // leal 0L(%esi,1),%esi
1616                          0x00, 0x00, 0x00 };
1617   const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26,   // nop
1618                          0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1619   const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc,   // movl %esi,%esi
1620                          0x27, 0x00, 0x00, 0x00,   // leal 0L(%edi,1),%edi
1621                          0x00 };
1622   const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1623                            0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1624                            0x00, 0x00 };
1625   const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1626                            0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1627                            0x00, 0x00, 0x00 };
1628   const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1629                            0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1630                            0x00, 0x00, 0x00, 0x00 };
1631   const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1632                            0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1633                            0x27, 0x00, 0x00, 0x00,
1634                            0x00 };
1635   const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1636                            0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1637                            0xbc, 0x27, 0x00, 0x00,
1638                            0x00, 0x00 };
1639   const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1640                            0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1641                            0x90, 0x90, 0x90, 0x90,
1642                            0x90, 0x90, 0x90 };
1643
1644   const char* nops[16] = {
1645     NULL,
1646     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1647     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1648   };
1649
1650   return std::string(nops[length], length);
1651 }
1652
1653 // The selector for x86_64 object files.
1654
1655 class Target_selector_x86_64 : public Target_selector
1656 {
1657 public:
1658   Target_selector_x86_64()
1659     : Target_selector(elfcpp::EM_X86_64, 64, false)
1660   { }
1661
1662   Target*
1663   recognize(int machine, int osabi, int abiversion);
1664
1665  private:
1666   Target_x86_64* target_;
1667 };
1668
1669 // Recognize an x86_64 object file when we already know that the machine
1670 // number is EM_X86_64.
1671
1672 Target*
1673 Target_selector_x86_64::recognize(int, int, int)
1674 {
1675   if (this->target_ == NULL)
1676     this->target_ = new Target_x86_64();
1677   return this->target_;
1678 }
1679
1680 Target_selector_x86_64 target_selector_x86_64;
1681
1682 } // End anonymous namespace.