Generate a complete exception frame header. Discard duplicate
[platform/upstream/binutils.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright 2006, 2007, Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or
9 // modify it under the terms of the GNU Library General Public License
10 // as published by the Free Software Foundation; either version 2, or
11 // (at your option) any later version.
12
13 // In addition to the permissions in the GNU Library General Public
14 // License, the Free Software Foundation gives you unlimited
15 // permission to link the compiled version of this file into
16 // combinations with other programs, and to distribute those
17 // combinations without any restriction coming from the use of this
18 // file.  (The Library Public License restrictions do apply in other
19 // respects; for example, they cover modification of the file, and
20 /// distribution when not linked into a combined executable.)
21
22 // This program is distributed in the hope that it will be useful, but
23 // WITHOUT ANY WARRANTY; without even the implied warranty of
24 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
25 // Library General Public License for more details.
26
27 // You should have received a copy of the GNU Library General Public
28 // License along with this program; if not, write to the Free Software
29 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30 // 02110-1301, USA.
31
32 #include "gold.h"
33
34 #include <cstring>
35
36 #include "elfcpp.h"
37 #include "parameters.h"
38 #include "reloc.h"
39 #include "x86_64.h"
40 #include "object.h"
41 #include "symtab.h"
42 #include "layout.h"
43 #include "output.h"
44 #include "target.h"
45 #include "target-reloc.h"
46 #include "target-select.h"
47 #include "tls.h"
48
49 namespace
50 {
51
52 using namespace gold;
53
54 class Output_data_plt_x86_64;
55
56 // The x86_64 target class.
57 // See the ABI at
58 //   http://www.x86-64.org/documentation/abi.pdf
59 // TLS info comes from
60 //   http://people.redhat.com/drepper/tls.pdf
61 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
62
63 class Target_x86_64 : public Sized_target<64, false>
64 {
65  public:
66   // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
67   // uses only Elf64_Rela relocation entries with explicit addends."
68   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
69
70   Target_x86_64()
71     : Sized_target<64, false>(&x86_64_info),
72       got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
73       copy_relocs_(NULL), dynbss_(NULL)
74   { }
75
76   // Scan the relocations to look for symbol adjustments.
77   void
78   scan_relocs(const General_options& options,
79               Symbol_table* symtab,
80               Layout* layout,
81               Sized_relobj<64, false>* object,
82               unsigned int data_shndx,
83               unsigned int sh_type,
84               const unsigned char* prelocs,
85               size_t reloc_count,
86               Output_section* output_section,
87               bool needs_special_offset_handling,
88               size_t local_symbol_count,
89               const unsigned char* plocal_symbols);
90
91   // Finalize the sections.
92   void
93   do_finalize_sections(Layout*);
94
95   // Return the value to use for a dynamic which requires special
96   // treatment.
97   uint64_t
98   do_dynsym_value(const Symbol*) const;
99
100   // Relocate a section.
101   void
102   relocate_section(const Relocate_info<64, false>*,
103                    unsigned int sh_type,
104                    const unsigned char* prelocs,
105                    size_t reloc_count,
106                    Output_section* output_section,
107                    bool needs_special_offset_handling,
108                    unsigned char* view,
109                    elfcpp::Elf_types<64>::Elf_Addr view_address,
110                    off_t view_size);
111
112   // Return a string used to fill a code section with nops.
113   std::string
114   do_code_fill(off_t length);
115
116   // Return the size of the GOT section.
117   off_t
118   got_size()
119   {
120     gold_assert(this->got_ != NULL);
121     return this->got_->data_size();
122   }
123
124  private:
125   // The class which scans relocations.
126   struct Scan
127   {
128     inline void
129     local(const General_options& options, Symbol_table* symtab,
130           Layout* layout, Target_x86_64* target,
131           Sized_relobj<64, false>* object,
132           unsigned int data_shndx,
133           const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
134           const elfcpp::Sym<64, false>& lsym);
135
136     inline void
137     global(const General_options& options, Symbol_table* symtab,
138            Layout* layout, Target_x86_64* target,
139            Sized_relobj<64, false>* object,
140            unsigned int data_shndx,
141            const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
142            Symbol* gsym);
143
144     static void
145     unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
146
147     static void
148     unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
149                              Symbol*);
150   };
151
152   // The class which implements relocation.
153   class Relocate
154   {
155    public:
156     Relocate()
157       : skip_call_tls_get_addr_(false)
158     { }
159
160     ~Relocate()
161     {
162       if (this->skip_call_tls_get_addr_)
163         {
164           // FIXME: This needs to specify the location somehow.
165           gold_error(_("missing expected TLS relocation"));
166         }
167     }
168
169     // Do a relocation.  Return false if the caller should not issue
170     // any warnings about this relocation.
171     inline bool
172     relocate(const Relocate_info<64, false>*, Target_x86_64*, size_t relnum,
173              const elfcpp::Rela<64, false>&,
174              unsigned int r_type, const Sized_symbol<64>*,
175              const Symbol_value<64>*,
176              unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
177              off_t);
178
179    private:
180     // Do a TLS relocation.
181     inline void
182     relocate_tls(const Relocate_info<64, false>*, size_t relnum,
183                  const elfcpp::Rela<64, false>&,
184                  unsigned int r_type, const Sized_symbol<64>*,
185                  const Symbol_value<64>*,
186                  unsigned char*, elfcpp::Elf_types<64>::Elf_Addr, off_t);
187
188     // Do a TLS General-Dynamic to Local-Exec transition.
189     inline void
190     tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
191                  Output_segment* tls_segment,
192                  const elfcpp::Rela<64, false>&, unsigned int r_type,
193                  elfcpp::Elf_types<64>::Elf_Addr value,
194                  unsigned char* view,
195                  off_t view_size);
196
197     // Do a TLS Local-Dynamic to Local-Exec transition.
198     inline void
199     tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
200                  Output_segment* tls_segment,
201                  const elfcpp::Rela<64, false>&, unsigned int r_type,
202                  elfcpp::Elf_types<64>::Elf_Addr value,
203                  unsigned char* view,
204                  off_t view_size);
205
206     // Do a TLS Initial-Exec to Local-Exec transition.
207     static inline void
208     tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
209                  Output_segment* tls_segment,
210                  const elfcpp::Rela<64, false>&, unsigned int r_type,
211                  elfcpp::Elf_types<64>::Elf_Addr value,
212                  unsigned char* view,
213                  off_t view_size);
214
215     // This is set if we should skip the next reloc, which should be a
216     // PLT32 reloc against ___tls_get_addr.
217     bool skip_call_tls_get_addr_;
218   };
219
220   // Adjust TLS relocation type based on the options and whether this
221   // is a local symbol.
222   static tls::Tls_optimization
223   optimize_tls_reloc(bool is_final, int r_type);
224
225   // Get the GOT section, creating it if necessary.
226   Output_data_got<64, false>*
227   got_section(Symbol_table*, Layout*);
228
229   // Get the GOT PLT section.
230   Output_data_space*
231   got_plt_section() const
232   {
233     gold_assert(this->got_plt_ != NULL);
234     return this->got_plt_;
235   }
236
237   // Create a PLT entry for a global symbol.
238   void
239   make_plt_entry(Symbol_table*, Layout*, Symbol*);
240
241   // Get the PLT section.
242   Output_data_plt_x86_64*
243   plt_section() const
244   {
245     gold_assert(this->plt_ != NULL);
246     return this->plt_;
247   }
248
249   // Get the dynamic reloc section, creating it if necessary.
250   Reloc_section*
251   rela_dyn_section(Layout*);
252
253   // Copy a relocation against a global symbol.
254   void
255   copy_reloc(const General_options*, Symbol_table*, Layout*,
256              Sized_relobj<64, false>*, unsigned int,
257              Symbol*, const elfcpp::Rela<64, false>&);
258
259   // Information about this specific target which we pass to the
260   // general Target structure.
261   static const Target::Target_info x86_64_info;
262
263   // The GOT section.
264   Output_data_got<64, false>* got_;
265   // The PLT section.
266   Output_data_plt_x86_64* plt_;
267   // The GOT PLT section.
268   Output_data_space* got_plt_;
269   // The dynamic reloc section.
270   Reloc_section* rela_dyn_;
271   // Relocs saved to avoid a COPY reloc.
272   Copy_relocs<64, false>* copy_relocs_;
273   // Space for variables copied with a COPY reloc.
274   Output_data_space* dynbss_;
275 };
276
277 const Target::Target_info Target_x86_64::x86_64_info =
278 {
279   64,                   // size
280   false,                // is_big_endian
281   elfcpp::EM_X86_64,    // machine_code
282   false,                // has_make_symbol
283   false,                // has_resolve
284   true,                 // has_code_fill
285   true,                 // is_default_stack_executable
286   "/lib/ld64.so.1",     // program interpreter
287   0x400000,             // default_text_segment_address
288   0x1000,               // abi_pagesize
289   0x1000                // common_pagesize
290 };
291
292 // Get the GOT section, creating it if necessary.
293
294 Output_data_got<64, false>*
295 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
296 {
297   if (this->got_ == NULL)
298     {
299       gold_assert(symtab != NULL && layout != NULL);
300
301       this->got_ = new Output_data_got<64, false>();
302
303       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
304                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
305                                       this->got_);
306
307       // The old GNU linker creates a .got.plt section.  We just
308       // create another set of data in the .got section.  Note that we
309       // always create a PLT if we create a GOT, although the PLT
310       // might be empty.
311       this->got_plt_ = new Output_data_space(8);
312       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
313                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
314                                       this->got_plt_);
315
316       // The first three entries are reserved.
317       this->got_plt_->set_space_size(3 * 8);
318
319       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
320       symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
321                                     this->got_plt_,
322                                     0, 0, elfcpp::STT_OBJECT,
323                                     elfcpp::STB_LOCAL,
324                                     elfcpp::STV_HIDDEN, 0,
325                                     false, false);
326     }
327
328   return this->got_;
329 }
330
331 // Get the dynamic reloc section, creating it if necessary.
332
333 Target_x86_64::Reloc_section*
334 Target_x86_64::rela_dyn_section(Layout* layout)
335 {
336   if (this->rela_dyn_ == NULL)
337     {
338       gold_assert(layout != NULL);
339       this->rela_dyn_ = new Reloc_section();
340       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
341                                       elfcpp::SHF_ALLOC, this->rela_dyn_);
342     }
343   return this->rela_dyn_;
344 }
345
346 // A class to handle the PLT data.
347
348 class Output_data_plt_x86_64 : public Output_section_data
349 {
350  public:
351   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
352
353   Output_data_plt_x86_64(Layout*, Output_data_space*);
354
355   // Add an entry to the PLT.
356   void
357   add_entry(Symbol* gsym);
358
359   // Return the .rel.plt section data.
360   const Reloc_section*
361   rel_plt() const
362   { return this->rel_; }
363
364  protected:
365   void
366   do_adjust_output_section(Output_section* os);
367
368  private:
369   // The size of an entry in the PLT.
370   static const int plt_entry_size = 16;
371
372   // The first entry in the PLT.
373   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
374   // procedure linkage table for both programs and shared objects."
375   static unsigned char first_plt_entry[plt_entry_size];
376
377   // Other entries in the PLT for an executable.
378   static unsigned char plt_entry[plt_entry_size];
379
380   // Set the final size.
381   void
382   do_set_address(uint64_t, off_t)
383   { this->set_data_size((this->count_ + 1) * plt_entry_size); }
384
385   // Write out the PLT data.
386   void
387   do_write(Output_file*);
388
389   // The reloc section.
390   Reloc_section* rel_;
391   // The .got.plt section.
392   Output_data_space* got_plt_;
393   // The number of PLT entries.
394   unsigned int count_;
395 };
396
397 // Create the PLT section.  The ordinary .got section is an argument,
398 // since we need to refer to the start.  We also create our own .got
399 // section just for PLT entries.
400
401 Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
402                                                Output_data_space* got_plt)
403   : Output_section_data(8), got_plt_(got_plt), count_(0)
404 {
405   this->rel_ = new Reloc_section();
406   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
407                                   elfcpp::SHF_ALLOC, this->rel_);
408 }
409
410 void
411 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
412 {
413   // UnixWare sets the entsize of .plt to 4, and so does the old GNU
414   // linker, and so do we.
415   os->set_entsize(4);
416 }
417
418 // Add an entry to the PLT.
419
420 void
421 Output_data_plt_x86_64::add_entry(Symbol* gsym)
422 {
423   gold_assert(!gsym->has_plt_offset());
424
425   // Note that when setting the PLT offset we skip the initial
426   // reserved PLT entry.
427   gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
428
429   ++this->count_;
430
431   off_t got_offset = this->got_plt_->data_size();
432
433   // Every PLT entry needs a GOT entry which points back to the PLT
434   // entry (this will be changed by the dynamic linker, normally
435   // lazily when the function is called).
436   this->got_plt_->set_space_size(got_offset + 8);
437
438   // Every PLT entry needs a reloc.
439   gsym->set_needs_dynsym_entry();
440   this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
441                          got_offset, 0);
442
443   // Note that we don't need to save the symbol.  The contents of the
444   // PLT are independent of which symbols are used.  The symbols only
445   // appear in the relocations.
446 }
447
448 // The first entry in the PLT for an executable.
449
450 unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
451 {
452   // From AMD64 ABI Draft 0.98, page 76
453   0xff, 0x35,   // pushq contents of memory address
454   0, 0, 0, 0,   // replaced with address of .got + 4
455   0xff, 0x25,   // jmp indirect
456   0, 0, 0, 0,   // replaced with address of .got + 8
457   0x90, 0x90, 0x90, 0x90   // noop (x4)
458 };
459
460 // Subsequent entries in the PLT for an executable.
461
462 unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
463 {
464   // From AMD64 ABI Draft 0.98, page 76
465   0xff, 0x25,   // jmpq indirect
466   0, 0, 0, 0,   // replaced with address of symbol in .got
467   0x68,         // pushq immediate
468   0, 0, 0, 0,   // replaced with offset into relocation table
469   0xe9,         // jmpq relative
470   0, 0, 0, 0    // replaced with offset to start of .plt
471 };
472
473 // Write out the PLT.  This uses the hand-coded instructions above,
474 // and adjusts them as needed.  This is specified by the AMD64 ABI.
475
476 void
477 Output_data_plt_x86_64::do_write(Output_file* of)
478 {
479   const off_t offset = this->offset();
480   const off_t oview_size = this->data_size();
481   unsigned char* const oview = of->get_output_view(offset, oview_size);
482
483   const off_t got_file_offset = this->got_plt_->offset();
484   const off_t got_size = this->got_plt_->data_size();
485   unsigned char* const got_view = of->get_output_view(got_file_offset,
486                                                       got_size);
487
488   unsigned char* pov = oview;
489
490   elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
491   elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
492
493   memcpy(pov, first_plt_entry, plt_entry_size);
494   if (!parameters->output_is_shared())
495     {
496       // We do a jmp relative to the PC at the end of this instruction.
497       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 8
498                                                   - (plt_address + 6));
499       elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 16
500                                         - (plt_address + 12));
501     }
502   pov += plt_entry_size;
503
504   unsigned char* got_pov = got_view;
505
506   memset(got_pov, 0, 24);
507   got_pov += 24;
508
509   unsigned int plt_offset = plt_entry_size;
510   unsigned int got_offset = 24;
511   const unsigned int count = this->count_;
512   for (unsigned int plt_index = 0;
513        plt_index < count;
514        ++plt_index,
515          pov += plt_entry_size,
516          got_pov += 8,
517          plt_offset += plt_entry_size,
518          got_offset += 8)
519     {
520       // Set and adjust the PLT entry itself.
521       memcpy(pov, plt_entry, plt_entry_size);
522       if (parameters->output_is_shared())
523         // FIXME(csilvers): what's the right thing to write here?
524         elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
525       else
526         elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
527                                                     (got_address + got_offset
528                                                      - (plt_address + plt_offset
529                                                         + 6)));
530
531       elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
532       elfcpp::Swap<32, false>::writeval(pov + 12,
533                                         - (plt_offset + plt_entry_size));
534
535       // Set the entry in the GOT.
536       elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
537     }
538
539   gold_assert(pov - oview == oview_size);
540   gold_assert(got_pov - got_view == got_size);
541
542   of->write_output_view(offset, oview_size, oview);
543   of->write_output_view(got_file_offset, got_size, got_view);
544 }
545
546 // Create a PLT entry for a global symbol.
547
548 void
549 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
550                               Symbol* gsym)
551 {
552   if (gsym->has_plt_offset())
553     return;
554
555   if (this->plt_ == NULL)
556     {
557       // Create the GOT sections first.
558       this->got_section(symtab, layout);
559
560       this->plt_ = new Output_data_plt_x86_64(layout, this->got_plt_);
561       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
562                                       (elfcpp::SHF_ALLOC
563                                        | elfcpp::SHF_EXECINSTR),
564                                       this->plt_);
565     }
566
567   this->plt_->add_entry(gsym);
568 }
569
570 // Handle a relocation against a non-function symbol defined in a
571 // dynamic object.  The traditional way to handle this is to generate
572 // a COPY relocation to copy the variable at runtime from the shared
573 // object into the executable's data segment.  However, this is
574 // undesirable in general, as if the size of the object changes in the
575 // dynamic object, the executable will no longer work correctly.  If
576 // this relocation is in a writable section, then we can create a
577 // dynamic reloc and the dynamic linker will resolve it to the correct
578 // address at runtime.  However, we do not want do that if the
579 // relocation is in a read-only section, as it would prevent the
580 // readonly segment from being shared.  And if we have to eventually
581 // generate a COPY reloc, then any dynamic relocations will be
582 // useless.  So this means that if this is a writable section, we need
583 // to save the relocation until we see whether we have to create a
584 // COPY relocation for this symbol for any other relocation.
585
586 void
587 Target_x86_64::copy_reloc(const General_options* options,
588                           Symbol_table* symtab,
589                           Layout* layout,
590                           Sized_relobj<64, false>* object,
591                           unsigned int data_shndx, Symbol* gsym,
592                           const elfcpp::Rela<64, false>& rela)
593 {
594   Sized_symbol<64>* ssym;
595   ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(64) (gsym
596                                                         SELECT_SIZE(64));
597
598   if (!Copy_relocs<64, false>::need_copy_reloc(options, object,
599                                                data_shndx, ssym))
600     {
601       // So far we do not need a COPY reloc.  Save this relocation.
602       // If it turns out that we never need a COPY reloc for this
603       // symbol, then we will emit the relocation.
604       if (this->copy_relocs_ == NULL)
605         this->copy_relocs_ = new Copy_relocs<64, false>();
606       this->copy_relocs_->save(ssym, object, data_shndx, rela);
607     }
608   else
609     {
610       // Allocate space for this symbol in the .bss section.
611
612       elfcpp::Elf_types<64>::Elf_WXword symsize = ssym->symsize();
613
614       // There is no defined way to determine the required alignment
615       // of the symbol.  We pick the alignment based on the size.  We
616       // set an arbitrary maximum of 256.
617       unsigned int align;
618       for (align = 1; align < 512; align <<= 1)
619         if ((symsize & align) != 0)
620           break;
621
622       if (this->dynbss_ == NULL)
623         {
624           this->dynbss_ = new Output_data_space(align);
625           layout->add_output_section_data(".bss",
626                                           elfcpp::SHT_NOBITS,
627                                           (elfcpp::SHF_ALLOC
628                                            | elfcpp::SHF_WRITE),
629                                           this->dynbss_);
630         }
631
632       Output_data_space* dynbss = this->dynbss_;
633
634       if (align > dynbss->addralign())
635         dynbss->set_space_alignment(align);
636
637       off_t dynbss_size = dynbss->data_size();
638       dynbss_size = align_address(dynbss_size, align);
639       off_t offset = dynbss_size;
640       dynbss->set_space_size(dynbss_size + symsize);
641
642       symtab->define_with_copy_reloc(this, ssym, dynbss, offset);
643
644       // Add the COPY reloc.
645       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
646       rela_dyn->add_global(ssym, elfcpp::R_X86_64_COPY, dynbss, offset, 0);
647     }
648 }
649
650
651 // Optimize the TLS relocation type based on what we know about the
652 // symbol.  IS_FINAL is true if the final address of this symbol is
653 // known at link time.
654
655 tls::Tls_optimization
656 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
657 {
658   // If we are generating a shared library, then we can't do anything
659   // in the linker.
660   if (parameters->output_is_shared())
661     return tls::TLSOPT_NONE;
662
663   switch (r_type)
664     {
665     case elfcpp::R_X86_64_TLSGD:
666     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
667     case elfcpp::R_X86_64_TLSDESC_CALL:
668       // These are General-Dynamic which permits fully general TLS
669       // access.  Since we know that we are generating an executable,
670       // we can convert this to Initial-Exec.  If we also know that
671       // this is a local symbol, we can further switch to Local-Exec.
672       if (is_final)
673         return tls::TLSOPT_TO_LE;
674       return tls::TLSOPT_TO_IE;
675
676     case elfcpp::R_X86_64_TLSLD:
677       // This is Local-Dynamic, which refers to a local symbol in the
678       // dynamic TLS block.  Since we know that we generating an
679       // executable, we can switch to Local-Exec.
680       return tls::TLSOPT_TO_LE;
681
682     case elfcpp::R_X86_64_DTPOFF32:
683     case elfcpp::R_X86_64_DTPOFF64:
684       // Another Local-Dynamic reloc.
685       return tls::TLSOPT_TO_LE;
686
687     case elfcpp::R_X86_64_GOTTPOFF:
688       // These are Initial-Exec relocs which get the thread offset
689       // from the GOT.  If we know that we are linking against the
690       // local symbol, we can switch to Local-Exec, which links the
691       // thread offset into the instruction.
692       if (is_final)
693         return tls::TLSOPT_TO_LE;
694       return tls::TLSOPT_NONE;
695
696     case elfcpp::R_X86_64_TPOFF32:
697       // When we already have Local-Exec, there is nothing further we
698       // can do.
699       return tls::TLSOPT_NONE;
700
701     default:
702       gold_unreachable();
703     }
704 }
705
706 // Report an unsupported relocation against a local symbol.
707
708 void
709 Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
710                                              unsigned int r_type)
711 {
712   gold_error(_("%s: unsupported reloc %u against local symbol"),
713              object->name().c_str(), r_type);
714 }
715
716 // Scan a relocation for a local symbol.
717
718 inline void
719 Target_x86_64::Scan::local(const General_options&,
720                            Symbol_table* symtab,
721                            Layout* layout,
722                            Target_x86_64* target,
723                            Sized_relobj<64, false>* object,
724                            unsigned int data_shndx,
725                            const elfcpp::Rela<64, false>& reloc,
726                            unsigned int r_type,
727                            const elfcpp::Sym<64, false>&)
728 {
729   switch (r_type)
730     {
731     case elfcpp::R_X86_64_NONE:
732     case elfcpp::R_386_GNU_VTINHERIT:
733     case elfcpp::R_386_GNU_VTENTRY:
734       break;
735
736     case elfcpp::R_X86_64_64:
737     case elfcpp::R_X86_64_32:
738     case elfcpp::R_X86_64_32S:
739     case elfcpp::R_X86_64_16:
740     case elfcpp::R_X86_64_8:
741       // If building a shared library (or a position-independent
742       // executable), we need to create a dynamic relocation for
743       // this location. The relocation applied at link time will
744       // apply the link-time value, so we flag the location with
745       // an R_386_RELATIVE relocation so the dynamic loader can
746       // relocate it easily.
747       if (parameters->output_is_position_independent())
748         {
749           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
750           if (r_type == elfcpp::R_X86_64_64)
751             rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
752                                 data_shndx, reloc.get_r_offset(), 0);
753           else
754             {
755               unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
756               rela_dyn->add_local(object, r_sym, r_type, data_shndx,
757                                   reloc.get_r_offset(),
758                                   reloc.get_r_addend());
759             }
760         }
761       break;
762
763     case elfcpp::R_X86_64_PC64:
764     case elfcpp::R_X86_64_PC32:
765     case elfcpp::R_X86_64_PC16:
766     case elfcpp::R_X86_64_PC8:
767       break;
768
769     case elfcpp::R_X86_64_PLT32:
770       // Since we know this is a local symbol, we can handle this as a
771       // PC32 reloc.
772       break;
773
774     case elfcpp::R_X86_64_GOTPC32:
775     case elfcpp::R_X86_64_GOTOFF64:
776     case elfcpp::R_X86_64_GOTPC64:
777     case elfcpp::R_X86_64_PLTOFF64:
778       // We need a GOT section.
779       target->got_section(symtab, layout);
780       // For PLTOFF64, we'd normally want a PLT section, but since we
781       // know this is a local symbol, no PLT is needed.
782       break;
783
784     case elfcpp::R_X86_64_GOT64:
785     case elfcpp::R_X86_64_GOT32:
786     case elfcpp::R_X86_64_GOTPCREL64:
787     case elfcpp::R_X86_64_GOTPCREL:
788     case elfcpp::R_X86_64_GOTPLT64:
789       {
790         // The symbol requires a GOT entry.
791         Output_data_got<64, false>* got = target->got_section(symtab, layout);
792         unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
793         if (got->add_local(object, r_sym))
794           {
795             // If we are generating a shared object, we need to add a
796             // dynamic RELATIVE relocation for this symbol.
797             if (parameters->output_is_position_independent())
798               {
799                 // FIXME: R_X86_64_RELATIVE assumes a 64-bit relocation.
800                 gold_assert(r_type != elfcpp::R_X86_64_GOT32);
801
802                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
803                 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
804                                     data_shndx, reloc.get_r_offset(), 0);
805               }
806           }
807         // For GOTPLT64, we'd normally want a PLT section, but since
808         // we know this is a local symbol, no PLT is needed.
809       }
810       break;
811
812     case elfcpp::R_X86_64_COPY:
813     case elfcpp::R_X86_64_GLOB_DAT:
814     case elfcpp::R_X86_64_JUMP_SLOT:
815     case elfcpp::R_X86_64_RELATIVE:
816       // These are outstanding tls relocs, which are unexpected when linking
817     case elfcpp::R_X86_64_TPOFF64:
818     case elfcpp::R_X86_64_DTPMOD64:
819     case elfcpp::R_X86_64_TLSDESC:
820       gold_error(_("%s: unexpected reloc %u in object file"),
821                  object->name().c_str(), r_type);
822       break;
823
824       // These are initial tls relocs, which are expected when linking
825     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
826     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
827     case elfcpp::R_X86_64_TLSDESC_CALL:
828     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
829     case elfcpp::R_X86_64_DTPOFF32:
830     case elfcpp::R_X86_64_DTPOFF64:
831     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
832     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
833       {
834         bool output_is_shared = parameters->output_is_shared();
835         const tls::Tls_optimization optimized_type
836             = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
837         switch (r_type)
838           {
839           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
840           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
841           case elfcpp::R_X86_64_TLSDESC_CALL:
842             // FIXME: If not relaxing to LE, we need to generate
843             // DTPMOD64 and DTPOFF64 relocs.
844             if (optimized_type != tls::TLSOPT_TO_LE)
845               unsupported_reloc_local(object, r_type);
846             break;
847
848           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
849           case elfcpp::R_X86_64_DTPOFF32:
850           case elfcpp::R_X86_64_DTPOFF64:
851             // FIXME: If not relaxing to LE, we need to generate a
852             // DTPMOD64 reloc.
853             if (optimized_type != tls::TLSOPT_TO_LE)
854               unsupported_reloc_local(object, r_type);
855             break;
856
857           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
858             // FIXME: If not relaxing to LE, we need to generate a
859             // TPOFF64 reloc.
860             if (optimized_type != tls::TLSOPT_TO_LE)
861               unsupported_reloc_local(object, r_type);
862             break;
863
864           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
865             // FIXME: If generating a shared object, we need to copy
866             // this relocation into the object.
867             gold_assert(!output_is_shared);
868             break;
869
870           default:
871             gold_unreachable();
872           }
873       }
874       break;
875
876     case elfcpp::R_X86_64_SIZE32:
877     case elfcpp::R_X86_64_SIZE64:
878     default:
879       gold_error(_("%s: unsupported reloc %u against local symbol"),
880                  object->name().c_str(), r_type);
881       break;
882     }
883 }
884
885
886 // Report an unsupported relocation against a global symbol.
887
888 void
889 Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
890                                               unsigned int r_type,
891                                               Symbol* gsym)
892 {
893   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
894              object->name().c_str(), r_type, gsym->name());
895 }
896
897 // Scan a relocation for a global symbol.
898
899 inline void
900 Target_x86_64::Scan::global(const General_options& options,
901                             Symbol_table* symtab,
902                             Layout* layout,
903                             Target_x86_64* target,
904                             Sized_relobj<64, false>* object,
905                             unsigned int data_shndx,
906                             const elfcpp::Rela<64, false>& reloc,
907                             unsigned int r_type,
908                             Symbol* gsym)
909 {
910   switch (r_type)
911     {
912     case elfcpp::R_X86_64_NONE:
913     case elfcpp::R_386_GNU_VTINHERIT:
914     case elfcpp::R_386_GNU_VTENTRY:
915       break;
916
917     case elfcpp::R_X86_64_64:
918     case elfcpp::R_X86_64_PC64:
919     case elfcpp::R_X86_64_32:
920     case elfcpp::R_X86_64_32S:
921     case elfcpp::R_X86_64_PC32:
922     case elfcpp::R_X86_64_16:
923     case elfcpp::R_X86_64_PC16:
924     case elfcpp::R_X86_64_8:
925     case elfcpp::R_X86_64_PC8:
926       {
927         bool is_pcrel = (r_type == elfcpp::R_X86_64_PC64
928                          || r_type == elfcpp::R_X86_64_PC32
929                          || r_type == elfcpp::R_X86_64_PC16
930                          || r_type == elfcpp::R_X86_64_PC8);
931
932         if (gsym->is_from_dynobj()
933             || (parameters->output_is_shared()
934                 && gsym->is_preemptible()))
935           {
936             // (a) This symbol is defined in a dynamic object.  If it is a
937             // function, we make a PLT entry.  Otherwise we need to
938             // either generate a COPY reloc or copy this reloc.
939             // (b) We are building a shared object and this symbol is
940             // preemptible. If it is a function, we make a PLT entry.
941             // Otherwise, we copy the reloc.
942             if (gsym->type() == elfcpp::STT_FUNC)
943               {
944                 target->make_plt_entry(symtab, layout, gsym);
945
946                 // If this is not a PC relative reference, then we may
947                 // be taking the address of the function.  In that case
948                 // we need to set the entry in the dynamic symbol table
949                 // to the address of the PLT entry. We will also need to
950                 // create a dynamic relocation.
951                 if (!is_pcrel)
952                   {
953                     if (gsym->is_from_dynobj())
954                       gsym->set_needs_dynsym_value();
955                     if (parameters->output_is_position_independent())
956                       {
957                         Reloc_section* rela_dyn =
958                           target->rela_dyn_section(layout);
959                         rela_dyn->add_global(gsym, r_type, object, data_shndx, 
960                                             reloc.get_r_offset(),
961                                             reloc.get_r_addend());
962                       }
963                   }
964               }
965             else if (parameters->output_is_shared())
966               {
967                 // We do not make COPY relocs in shared objects.
968                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
969                 rela_dyn->add_global(gsym, r_type, object, data_shndx, 
970                                      reloc.get_r_offset(),
971                                      reloc.get_r_addend());
972               }
973             else
974               target->copy_reloc(&options, symtab, layout, object, data_shndx,
975                                  gsym, reloc);
976           }
977         else if (!is_pcrel && parameters->output_is_position_independent())
978           {
979             // This is not a PC-relative reference, so we need to generate
980             // a dynamic relocation. At this point, we know the symbol
981             // is not preemptible, so we can use the RELATIVE relocation.
982             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
983             if (r_type == elfcpp::R_X86_64_64)
984               rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
985                                   data_shndx,
986                                   reloc.get_r_offset(), 0);
987             else
988               rela_dyn->add_global(gsym, r_type, object, data_shndx, 
989                                    reloc.get_r_offset(),
990                                    reloc.get_r_addend());
991           }
992         }
993       break;
994
995     case elfcpp::R_X86_64_GOT64:
996     case elfcpp::R_X86_64_GOT32:
997     case elfcpp::R_X86_64_GOTPCREL64:
998     case elfcpp::R_X86_64_GOTPCREL:
999     case elfcpp::R_X86_64_GOTPLT64:
1000       {
1001         // The symbol requires a GOT entry.
1002         Output_data_got<64, false>* got = target->got_section(symtab, layout);
1003         if (got->add_global(gsym))
1004           {
1005             // If this symbol is not fully resolved, we need to add a
1006             // dynamic relocation for it.
1007             if (!gsym->final_value_is_known())
1008               {
1009                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1010                 rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT, got,
1011                                      gsym->got_offset(), 0);
1012               }
1013           }
1014         // For GOTPLT64, we also need a PLT entry (but only if the
1015         // symbol is not fully resolved).
1016         if (r_type == elfcpp::R_X86_64_GOTPLT64
1017             && !gsym->final_value_is_known())
1018           target->make_plt_entry(symtab, layout, gsym);
1019       }
1020       break;
1021
1022     case elfcpp::R_X86_64_PLT32:
1023       // If the symbol is fully resolved, this is just a PC32 reloc.
1024       // Otherwise we need a PLT entry.
1025       if (gsym->final_value_is_known())
1026         break;
1027       // If building a shared library, we can also skip the PLT entry
1028       // if the symbol is defined in the output file and is protected
1029       // or hidden.
1030       if (gsym->is_defined()
1031           && !gsym->is_from_dynobj()
1032           && !gsym->is_preemptible())
1033         break;
1034       target->make_plt_entry(symtab, layout, gsym);
1035       break;
1036
1037     case elfcpp::R_X86_64_GOTPC32:
1038     case elfcpp::R_X86_64_GOTOFF64:
1039     case elfcpp::R_X86_64_GOTPC64:
1040     case elfcpp::R_X86_64_PLTOFF64:
1041       // We need a GOT section.
1042       target->got_section(symtab, layout);
1043       // For PLTOFF64, we also need a PLT entry (but only if the
1044       // symbol is not fully resolved).
1045       if (r_type == elfcpp::R_X86_64_PLTOFF64
1046           && !gsym->final_value_is_known())
1047         target->make_plt_entry(symtab, layout, gsym);
1048       break;
1049
1050     case elfcpp::R_X86_64_COPY:
1051     case elfcpp::R_X86_64_GLOB_DAT:
1052     case elfcpp::R_X86_64_JUMP_SLOT:
1053     case elfcpp::R_X86_64_RELATIVE:
1054       // These are outstanding tls relocs, which are unexpected when linking
1055     case elfcpp::R_X86_64_TPOFF64:
1056     case elfcpp::R_X86_64_DTPMOD64:
1057     case elfcpp::R_X86_64_TLSDESC:
1058       gold_error(_("%s: unexpected reloc %u in object file"),
1059                  object->name().c_str(), r_type);
1060       break;
1061
1062       // These are initial tls relocs, which are expected for global()
1063     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1064     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1065     case elfcpp::R_X86_64_TLSDESC_CALL:
1066     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1067     case elfcpp::R_X86_64_DTPOFF32:
1068     case elfcpp::R_X86_64_DTPOFF64:
1069     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1070     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1071       {
1072         const bool is_final = gsym->final_value_is_known();
1073         const tls::Tls_optimization optimized_type
1074             = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1075         switch (r_type)
1076           {
1077           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
1078           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1079           case elfcpp::R_X86_64_TLSDESC_CALL:
1080             // FIXME: If not relaxing to LE, we need to generate
1081             // DTPMOD64 and DTPOFF64, or TLSDESC, relocs.
1082             if (optimized_type != tls::TLSOPT_TO_LE)
1083               unsupported_reloc_global(object, r_type, gsym);
1084             break;
1085
1086           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
1087           case elfcpp::R_X86_64_DTPOFF32:
1088           case elfcpp::R_X86_64_DTPOFF64:
1089             // FIXME: If not relaxing to LE, we need to generate a
1090             // DTPMOD64 reloc.
1091             if (optimized_type != tls::TLSOPT_TO_LE)
1092               unsupported_reloc_global(object, r_type, gsym);
1093             break;
1094
1095           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
1096             // FIXME: If not relaxing to LE, we need to generate a
1097             // TPOFF64 reloc.
1098             if (optimized_type != tls::TLSOPT_TO_LE)
1099               unsupported_reloc_global(object, r_type, gsym);
1100             break;
1101
1102           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
1103             // FIXME: If generating a shared object, we need to copy
1104             // this relocation into the object.
1105             gold_assert(is_final);
1106             break;
1107
1108           default:
1109             gold_unreachable();
1110           }
1111       }
1112       break;
1113
1114     case elfcpp::R_X86_64_SIZE32:
1115     case elfcpp::R_X86_64_SIZE64:
1116     default:
1117       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1118                  object->name().c_str(), r_type, gsym->name());
1119       break;
1120     }
1121 }
1122
1123 // Scan relocations for a section.
1124
1125 void
1126 Target_x86_64::scan_relocs(const General_options& options,
1127                            Symbol_table* symtab,
1128                            Layout* layout,
1129                            Sized_relobj<64, false>* object,
1130                            unsigned int data_shndx,
1131                            unsigned int sh_type,
1132                            const unsigned char* prelocs,
1133                            size_t reloc_count,
1134                            Output_section* output_section,
1135                            bool needs_special_offset_handling,
1136                            size_t local_symbol_count,
1137                            const unsigned char* plocal_symbols)
1138 {
1139   if (sh_type == elfcpp::SHT_REL)
1140     {
1141       gold_error(_("%s: unsupported REL reloc section"),
1142                  object->name().c_str());
1143       return;
1144     }
1145
1146   gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1147       Target_x86_64::Scan>(
1148     options,
1149     symtab,
1150     layout,
1151     this,
1152     object,
1153     data_shndx,
1154     prelocs,
1155     reloc_count,
1156     output_section,
1157     needs_special_offset_handling,
1158     local_symbol_count,
1159     plocal_symbols);
1160 }
1161
1162 // Finalize the sections.
1163
1164 void
1165 Target_x86_64::do_finalize_sections(Layout* layout)
1166 {
1167   // Fill in some more dynamic tags.
1168   Output_data_dynamic* const odyn = layout->dynamic_data();
1169   if (odyn != NULL)
1170     {
1171       if (this->got_plt_ != NULL)
1172         odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1173
1174       if (this->plt_ != NULL)
1175         {
1176           const Output_data* od = this->plt_->rel_plt();
1177           odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1178           odyn->add_section_address(elfcpp::DT_JMPREL, od);
1179           odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1180         }
1181
1182       if (this->rela_dyn_ != NULL)
1183         {
1184           const Output_data* od = this->rela_dyn_;
1185           odyn->add_section_address(elfcpp::DT_RELA, od);
1186           odyn->add_section_size(elfcpp::DT_RELASZ, od);
1187           odyn->add_constant(elfcpp::DT_RELAENT,
1188                              elfcpp::Elf_sizes<64>::rela_size);
1189         }
1190
1191       if (!parameters->output_is_shared())
1192         {
1193           // The value of the DT_DEBUG tag is filled in by the dynamic
1194           // linker at run time, and used by the debugger.
1195           odyn->add_constant(elfcpp::DT_DEBUG, 0);
1196         }
1197     }
1198
1199   // Emit any relocs we saved in an attempt to avoid generating COPY
1200   // relocs.
1201   if (this->copy_relocs_ == NULL)
1202     return;
1203   if (this->copy_relocs_->any_to_emit())
1204     {
1205       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1206       this->copy_relocs_->emit(rela_dyn);
1207     }
1208   delete this->copy_relocs_;
1209   this->copy_relocs_ = NULL;
1210 }
1211
1212 // Perform a relocation.
1213
1214 inline bool
1215 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1216                                   Target_x86_64* target,
1217                                   size_t relnum,
1218                                   const elfcpp::Rela<64, false>& rela,
1219                                   unsigned int r_type,
1220                                   const Sized_symbol<64>* gsym,
1221                                   const Symbol_value<64>* psymval,
1222                                   unsigned char* view,
1223                                   elfcpp::Elf_types<64>::Elf_Addr address,
1224                                   off_t view_size)
1225 {
1226   if (this->skip_call_tls_get_addr_)
1227     {
1228       if (r_type != elfcpp::R_X86_64_PLT32
1229           || gsym == NULL
1230           || strcmp(gsym->name(), "__tls_get_addr") != 0)
1231         {
1232           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1233                                  _("missing expected TLS relocation"));
1234         }
1235       else
1236         {
1237           this->skip_call_tls_get_addr_ = false;
1238           return false;
1239         }
1240     }
1241
1242   // Pick the value to use for symbols defined in shared objects.
1243   Symbol_value<64> symval;
1244   if (gsym != NULL
1245       && (gsym->is_from_dynobj()
1246           || (parameters->output_is_shared()
1247               && gsym->is_preemptible()))
1248       && gsym->has_plt_offset())
1249     {
1250       symval.set_output_value(target->plt_section()->address()
1251                               + gsym->plt_offset());
1252       psymval = &symval;
1253     }
1254
1255   const Sized_relobj<64, false>* object = relinfo->object;
1256   const elfcpp::Elf_Xword addend = rela.get_r_addend();
1257
1258   // Get the GOT offset if needed.
1259   // The GOT pointer points to the end of the GOT section.
1260   // We need to subtract the size of the GOT section to get
1261   // the actual offset to use in the relocation.
1262   bool have_got_offset = false;
1263   unsigned int got_offset = 0;
1264   switch (r_type)
1265     {
1266     case elfcpp::R_X86_64_GOT32:
1267     case elfcpp::R_X86_64_GOT64:
1268     case elfcpp::R_X86_64_GOTPLT64:
1269     case elfcpp::R_X86_64_GOTPCREL:
1270     case elfcpp::R_X86_64_GOTPCREL64:
1271       if (gsym != NULL)
1272         {
1273           gold_assert(gsym->has_got_offset());
1274           got_offset = gsym->got_offset() - target->got_size();
1275         }
1276       else
1277         {
1278           unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1279           got_offset = object->local_got_offset(r_sym) - target->got_size();
1280         }
1281       have_got_offset = true;
1282       break;
1283
1284     default:
1285       break;
1286     }
1287
1288   switch (r_type)
1289     {
1290     case elfcpp::R_X86_64_NONE:
1291     case elfcpp::R_386_GNU_VTINHERIT:
1292     case elfcpp::R_386_GNU_VTENTRY:
1293       break;
1294
1295     case elfcpp::R_X86_64_64:
1296       Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1297       break;
1298
1299     case elfcpp::R_X86_64_PC64:
1300       Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1301                                               address);
1302       break;
1303
1304     case elfcpp::R_X86_64_32:
1305       // FIXME: we need to verify that value + addend fits into 32 bits:
1306       //    uint64_t x = value + addend;
1307       //    x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1308       // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
1309       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1310       break;
1311
1312     case elfcpp::R_X86_64_32S:
1313       // FIXME: we need to verify that value + addend fits into 32 bits:
1314       //    int64_t x = value + addend;   // note this quantity is signed!
1315       //    x == static_cast<int64_t>(static_cast<int32_t>(x))
1316       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1317       break;
1318
1319     case elfcpp::R_X86_64_PC32:
1320       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1321                                               address);
1322       break;
1323
1324     case elfcpp::R_X86_64_16:
1325       Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1326       break;
1327
1328     case elfcpp::R_X86_64_PC16:
1329       Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1330                                               address);
1331       break;
1332
1333     case elfcpp::R_X86_64_8:
1334       Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1335       break;
1336
1337     case elfcpp::R_X86_64_PC8:
1338       Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1339                                              address);
1340       break;
1341
1342     case elfcpp::R_X86_64_PLT32:
1343       gold_assert(gsym == NULL
1344                   || gsym->has_plt_offset()
1345                   || gsym->final_value_is_known());
1346       // Note: while this code looks the same as for R_X86_64_PC32, it
1347       // behaves differently because psymval was set to point to
1348       // the PLT entry, rather than the symbol, in Scan::global().
1349       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1350                                               address);
1351       break;
1352
1353     case elfcpp::R_X86_64_PLTOFF64:
1354       {
1355         gold_assert(gsym);
1356         gold_assert(gsym->has_plt_offset()
1357                     || gsym->final_value_is_known());
1358         elfcpp::Elf_types<64>::Elf_Addr got_address;
1359         got_address = target->got_section(NULL, NULL)->address();
1360         Relocate_functions<64, false>::rela64(view, object, psymval,
1361                                               addend - got_address);
1362       }
1363
1364     case elfcpp::R_X86_64_GOT32:
1365       gold_assert(have_got_offset);
1366       Relocate_functions<64, false>::rela32(view, got_offset, addend);
1367       break;
1368
1369     case elfcpp::R_X86_64_GOTPC32:
1370       {
1371         gold_assert(gsym);
1372         elfcpp::Elf_types<64>::Elf_Addr value;
1373         value = target->got_plt_section()->address();
1374         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1375       }
1376       break;
1377
1378     case elfcpp::R_X86_64_GOT64:
1379       // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1380       // Since we always add a PLT entry, this is equivalent.
1381     case elfcpp::R_X86_64_GOTPLT64:
1382       gold_assert(have_got_offset);
1383       Relocate_functions<64, false>::rela64(view, got_offset, addend);
1384       break;
1385
1386     case elfcpp::R_X86_64_GOTPC64:
1387       {
1388         gold_assert(gsym);
1389         elfcpp::Elf_types<64>::Elf_Addr value;
1390         value = target->got_plt_section()->address();
1391         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1392       }
1393       break;
1394
1395     case elfcpp::R_X86_64_GOTOFF64:
1396       {
1397         elfcpp::Elf_types<64>::Elf_Addr value;
1398         value = (psymval->value(object, 0)
1399                  - target->got_plt_section()->address());
1400         Relocate_functions<64, false>::rela64(view, value, addend);
1401       }
1402       break;
1403
1404     case elfcpp::R_X86_64_GOTPCREL:
1405       {
1406         gold_assert(have_got_offset);
1407         elfcpp::Elf_types<64>::Elf_Addr value;
1408         value = target->got_plt_section()->address() + got_offset;
1409         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1410       }
1411       break;
1412
1413     case elfcpp::R_X86_64_GOTPCREL64:
1414       {
1415         gold_assert(have_got_offset);
1416         elfcpp::Elf_types<64>::Elf_Addr value;
1417         value = target->got_plt_section()->address() + got_offset;
1418         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1419       }
1420       break;
1421
1422     case elfcpp::R_X86_64_COPY:
1423     case elfcpp::R_X86_64_GLOB_DAT:
1424     case elfcpp::R_X86_64_JUMP_SLOT:
1425     case elfcpp::R_X86_64_RELATIVE:
1426       // These are outstanding tls relocs, which are unexpected when linking
1427     case elfcpp::R_X86_64_TPOFF64:
1428     case elfcpp::R_X86_64_DTPMOD64:
1429     case elfcpp::R_X86_64_TLSDESC:
1430       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1431                              _("unexpected reloc %u in object file"),
1432                              r_type);
1433       break;
1434
1435       // These are initial tls relocs, which are expected when linking
1436     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1437     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1438     case elfcpp::R_X86_64_TLSDESC_CALL:
1439     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1440     case elfcpp::R_X86_64_DTPOFF32:
1441     case elfcpp::R_X86_64_DTPOFF64:
1442     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1443     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1444       this->relocate_tls(relinfo, relnum, rela, r_type, gsym, psymval, view,
1445                          address, view_size);
1446       break;
1447
1448     case elfcpp::R_X86_64_SIZE32:
1449     case elfcpp::R_X86_64_SIZE64:
1450     default:
1451       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1452                              _("unsupported reloc %u"),
1453                              r_type);
1454       break;
1455     }
1456
1457   return true;
1458 }
1459
1460 // Perform a TLS relocation.
1461
1462 inline void
1463 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1464                                       size_t relnum,
1465                                       const elfcpp::Rela<64, false>& rela,
1466                                       unsigned int r_type,
1467                                       const Sized_symbol<64>* gsym,
1468                                       const Symbol_value<64>* psymval,
1469                                       unsigned char* view,
1470                                       elfcpp::Elf_types<64>::Elf_Addr,
1471                                       off_t view_size)
1472 {
1473   Output_segment* tls_segment = relinfo->layout->tls_segment();
1474   if (tls_segment == NULL)
1475     {
1476       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1477                              _("TLS reloc but no TLS segment"));
1478       return;
1479     }
1480
1481   elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1482
1483   const bool is_final = (gsym == NULL
1484                          ? !parameters->output_is_position_independent()
1485                          : gsym->final_value_is_known());
1486   const tls::Tls_optimization optimized_type
1487       = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1488   switch (r_type)
1489     {
1490     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1491     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1492     case elfcpp::R_X86_64_TLSDESC_CALL:
1493       if (optimized_type == tls::TLSOPT_TO_LE)
1494         {
1495           this->tls_gd_to_le(relinfo, relnum, tls_segment,
1496                              rela, r_type, value, view,
1497                              view_size);
1498           break;
1499         }
1500       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1501                              _("unsupported reloc %u"), r_type);
1502       break;
1503
1504     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1505       if (optimized_type == tls::TLSOPT_TO_LE)
1506         {
1507           this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
1508                              value, view, view_size);
1509           break;
1510         }
1511       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1512                              _("unsupported reloc %u"), r_type);
1513       break;
1514
1515     case elfcpp::R_X86_64_DTPOFF32:
1516       if (optimized_type == tls::TLSOPT_TO_LE)
1517         value = value - (tls_segment->vaddr() + tls_segment->memsz());
1518       else
1519         value = value - tls_segment->vaddr();
1520       Relocate_functions<64, false>::rel32(view, value);
1521       break;
1522
1523     case elfcpp::R_X86_64_DTPOFF64:
1524       if (optimized_type == tls::TLSOPT_TO_LE)
1525         value = value - (tls_segment->vaddr() + tls_segment->memsz());
1526       else
1527         value = value - tls_segment->vaddr();
1528       Relocate_functions<64, false>::rel64(view, value);
1529       break;
1530
1531     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1532       if (optimized_type == tls::TLSOPT_TO_LE)
1533         {
1534           Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1535                                                 rela, r_type, value, view,
1536                                                 view_size);
1537           break;
1538         }
1539       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1540                              _("unsupported reloc type %u"),
1541                              r_type);
1542       break;
1543
1544     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1545       value = value - (tls_segment->vaddr() + tls_segment->memsz());
1546       Relocate_functions<64, false>::rel32(view, value);
1547       break;
1548     }
1549 }
1550
1551 // Do a relocation in which we convert a TLS General-Dynamic to a
1552 // Local-Exec.
1553
1554 inline void
1555 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
1556                                       size_t relnum,
1557                                       Output_segment* tls_segment,
1558                                       const elfcpp::Rela<64, false>& rela,
1559                                       unsigned int,
1560                                       elfcpp::Elf_types<64>::Elf_Addr value,
1561                                       unsigned char* view,
1562                                       off_t view_size)
1563 {
1564   // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1565   // .word 0x6666; rex64; call __tls_get_addr
1566   // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
1567
1568   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
1569   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
1570
1571   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1572                  (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
1573   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1574                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
1575
1576   memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
1577
1578   value = value - (tls_segment->vaddr() + tls_segment->memsz());
1579   Relocate_functions<64, false>::rela32(view + 8, value, 0);
1580
1581   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1582   // We can skip it.
1583   this->skip_call_tls_get_addr_ = true;
1584 }
1585
1586 inline void
1587 Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
1588                                       size_t relnum,
1589                                       Output_segment*,
1590                                       const elfcpp::Rela<64, false>& rela,
1591                                       unsigned int,
1592                                       elfcpp::Elf_types<64>::Elf_Addr,
1593                                       unsigned char* view,
1594                                       off_t view_size)
1595 {
1596   // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
1597   // ... leq foo@dtpoff(%rax),%reg
1598   // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
1599
1600   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1601   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
1602
1603   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1604                  view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
1605
1606   tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
1607
1608   memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
1609
1610   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1611   // We can skip it.
1612   this->skip_call_tls_get_addr_ = true;
1613 }
1614
1615 // Do a relocation in which we convert a TLS Initial-Exec to a
1616 // Local-Exec.
1617
1618 inline void
1619 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
1620                                       size_t relnum,
1621                                       Output_segment* tls_segment,
1622                                       const elfcpp::Rela<64, false>& rela,
1623                                       unsigned int,
1624                                       elfcpp::Elf_types<64>::Elf_Addr value,
1625                                       unsigned char* view,
1626                                       off_t view_size)
1627 {
1628   // We need to examine the opcodes to figure out which instruction we
1629   // are looking at.
1630
1631   // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
1632   // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
1633
1634   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1635   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
1636
1637   unsigned char op1 = view[-3];
1638   unsigned char op2 = view[-2];
1639   unsigned char op3 = view[-1];
1640   unsigned char reg = op3 >> 3;
1641
1642   if (op2 == 0x8b)
1643     {
1644       // movq
1645       if (op1 == 0x4c)
1646         view[-3] = 0x49;
1647       view[-2] = 0xc7;
1648       view[-1] = 0xc0 | reg;
1649     }
1650   else if (reg == 4)
1651     {
1652       // Special handling for %rsp.
1653       if (op1 == 0x4c)
1654         view[-3] = 0x49;
1655       view[-2] = 0x81;
1656       view[-1] = 0xc0 | reg;
1657     }
1658   else
1659     {
1660       // addq
1661       if (op1 == 0x4c)
1662         view[-3] = 0x4d;
1663       view[-2] = 0x8d;
1664       view[-1] = 0x80 | reg | (reg << 3);
1665     }
1666
1667   value = value - (tls_segment->vaddr() + tls_segment->memsz());
1668   Relocate_functions<64, false>::rela32(view, value, 0);
1669 }
1670
1671 // Relocate section data.
1672
1673 void
1674 Target_x86_64::relocate_section(const Relocate_info<64, false>* relinfo,
1675                                 unsigned int sh_type,
1676                                 const unsigned char* prelocs,
1677                                 size_t reloc_count,
1678                                 Output_section* output_section,
1679                                 bool needs_special_offset_handling,
1680                                 unsigned char* view,
1681                                 elfcpp::Elf_types<64>::Elf_Addr address,
1682                                 off_t view_size)
1683 {
1684   gold_assert(sh_type == elfcpp::SHT_RELA);
1685
1686   gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
1687                          Target_x86_64::Relocate>(
1688     relinfo,
1689     this,
1690     prelocs,
1691     reloc_count,
1692     output_section,
1693     needs_special_offset_handling,
1694     view,
1695     address,
1696     view_size);
1697 }
1698
1699 // Return the value to use for a dynamic which requires special
1700 // treatment.  This is how we support equality comparisons of function
1701 // pointers across shared library boundaries, as described in the
1702 // processor specific ABI supplement.
1703
1704 uint64_t
1705 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
1706 {
1707   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1708   return this->plt_section()->address() + gsym->plt_offset();
1709 }
1710
1711 // Return a string used to fill a code section with nops to take up
1712 // the specified length.
1713
1714 std::string
1715 Target_x86_64::do_code_fill(off_t length)
1716 {
1717   if (length >= 16)
1718     {
1719       // Build a jmpq instruction to skip over the bytes.
1720       unsigned char jmp[5];
1721       jmp[0] = 0xe9;
1722       elfcpp::Swap_unaligned<64, false>::writeval(jmp + 1, length - 5);
1723       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1724               + std::string(length - 5, '\0'));
1725     }
1726
1727   // Nop sequences of various lengths.
1728   const char nop1[1] = { 0x90 };                   // nop
1729   const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
1730   const char nop3[3] = { 0x8d, 0x76, 0x00 };       // leal 0(%esi),%esi
1731   const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00};  // leal 0(%esi,1),%esi
1732   const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26,   // nop
1733                          0x00 };                   // leal 0(%esi,1),%esi
1734   const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00,   // leal 0L(%esi),%esi
1735                          0x00, 0x00 };
1736   const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00,   // leal 0L(%esi,1),%esi
1737                          0x00, 0x00, 0x00 };
1738   const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26,   // nop
1739                          0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1740   const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc,   // movl %esi,%esi
1741                          0x27, 0x00, 0x00, 0x00,   // leal 0L(%edi,1),%edi
1742                          0x00 };
1743   const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1744                            0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1745                            0x00, 0x00 };
1746   const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1747                            0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1748                            0x00, 0x00, 0x00 };
1749   const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1750                            0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1751                            0x00, 0x00, 0x00, 0x00 };
1752   const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1753                            0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1754                            0x27, 0x00, 0x00, 0x00,
1755                            0x00 };
1756   const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1757                            0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1758                            0xbc, 0x27, 0x00, 0x00,
1759                            0x00, 0x00 };
1760   const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1761                            0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1762                            0x90, 0x90, 0x90, 0x90,
1763                            0x90, 0x90, 0x90 };
1764
1765   const char* nops[16] = {
1766     NULL,
1767     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1768     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1769   };
1770
1771   return std::string(nops[length], length);
1772 }
1773
1774 // The selector for x86_64 object files.
1775
1776 class Target_selector_x86_64 : public Target_selector
1777 {
1778 public:
1779   Target_selector_x86_64()
1780     : Target_selector(elfcpp::EM_X86_64, 64, false)
1781   { }
1782
1783   Target*
1784   recognize(int machine, int osabi, int abiversion);
1785
1786  private:
1787   Target_x86_64* target_;
1788 };
1789
1790 // Recognize an x86_64 object file when we already know that the machine
1791 // number is EM_X86_64.
1792
1793 Target*
1794 Target_selector_x86_64::recognize(int, int, int)
1795 {
1796   if (this->target_ == NULL)
1797     this->target_ = new Target_x86_64();
1798   return this->target_;
1799 }
1800
1801 Target_selector_x86_64 target_selector_x86_64;
1802
1803 } // End anonymous namespace.