* i386.cc (Target_i386::Relocate::relocate_tls): Set dynamic type
[platform/upstream/binutils.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "x86_64.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "copy-relocs.h"
36 #include "target.h"
37 #include "target-reloc.h"
38 #include "target-select.h"
39 #include "tls.h"
40
41 namespace
42 {
43
44 using namespace gold;
45
46 class Output_data_plt_x86_64;
47
48 // The x86_64 target class.
49 // See the ABI at
50 //   http://www.x86-64.org/documentation/abi.pdf
51 // TLS info comes from
52 //   http://people.redhat.com/drepper/tls.pdf
53 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
54
55 class Target_x86_64 : public Sized_target<64, false>
56 {
57  public:
58   // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
59   // uses only Elf64_Rela relocation entries with explicit addends."
60   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
61
62   Target_x86_64()
63     : Sized_target<64, false>(&x86_64_info),
64       got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
65       copy_relocs_(elfcpp::R_X86_64_COPY), dynbss_(NULL),
66       got_mod_index_offset_(-1U), tls_base_symbol_defined_(false)
67   { }
68
69   // Scan the relocations to look for symbol adjustments.
70   void
71   scan_relocs(const General_options& options,
72               Symbol_table* symtab,
73               Layout* layout,
74               Sized_relobj<64, false>* object,
75               unsigned int data_shndx,
76               unsigned int sh_type,
77               const unsigned char* prelocs,
78               size_t reloc_count,
79               Output_section* output_section,
80               bool needs_special_offset_handling,
81               size_t local_symbol_count,
82               const unsigned char* plocal_symbols);
83
84   // Finalize the sections.
85   void
86   do_finalize_sections(Layout*);
87
88   // Return the value to use for a dynamic which requires special
89   // treatment.
90   uint64_t
91   do_dynsym_value(const Symbol*) const;
92
93   // Relocate a section.
94   void
95   relocate_section(const Relocate_info<64, false>*,
96                    unsigned int sh_type,
97                    const unsigned char* prelocs,
98                    size_t reloc_count,
99                    Output_section* output_section,
100                    bool needs_special_offset_handling,
101                    unsigned char* view,
102                    elfcpp::Elf_types<64>::Elf_Addr view_address,
103                    section_size_type view_size);
104
105   // Scan the relocs during a relocatable link.
106   void
107   scan_relocatable_relocs(const General_options& options,
108                           Symbol_table* symtab,
109                           Layout* layout,
110                           Sized_relobj<64, false>* object,
111                           unsigned int data_shndx,
112                           unsigned int sh_type,
113                           const unsigned char* prelocs,
114                           size_t reloc_count,
115                           Output_section* output_section,
116                           bool needs_special_offset_handling,
117                           size_t local_symbol_count,
118                           const unsigned char* plocal_symbols,
119                           Relocatable_relocs*);
120
121   // Relocate a section during a relocatable link.
122   void
123   relocate_for_relocatable(const Relocate_info<64, false>*,
124                            unsigned int sh_type,
125                            const unsigned char* prelocs,
126                            size_t reloc_count,
127                            Output_section* output_section,
128                            off_t offset_in_output_section,
129                            const Relocatable_relocs*,
130                            unsigned char* view,
131                            elfcpp::Elf_types<64>::Elf_Addr view_address,
132                            section_size_type view_size,
133                            unsigned char* reloc_view,
134                            section_size_type reloc_view_size);
135
136   // Return a string used to fill a code section with nops.
137   std::string
138   do_code_fill(section_size_type length) const;
139
140   // Return whether SYM is defined by the ABI.
141   bool
142   do_is_defined_by_abi(Symbol* sym) const
143   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
144
145   // Return the size of the GOT section.
146   section_size_type
147   got_size()
148   {
149     gold_assert(this->got_ != NULL);
150     return this->got_->data_size();
151   }
152
153  private:
154   // The class which scans relocations.
155   class Scan
156   {
157   public:
158     Scan()
159       : issued_non_pic_error_(false)
160     { }
161
162     inline void
163     local(const General_options& options, Symbol_table* symtab,
164           Layout* layout, Target_x86_64* target,
165           Sized_relobj<64, false>* object,
166           unsigned int data_shndx,
167           Output_section* output_section,
168           const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
169           const elfcpp::Sym<64, false>& lsym);
170
171     inline void
172     global(const General_options& options, Symbol_table* symtab,
173            Layout* layout, Target_x86_64* target,
174            Sized_relobj<64, false>* object,
175            unsigned int data_shndx,
176            Output_section* output_section,
177            const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
178            Symbol* gsym);
179
180   private:
181     static void
182     unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
183
184     static void
185     unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
186                              Symbol*);
187
188     void
189     check_non_pic(Relobj*, unsigned int r_type);
190
191     // Whether we have issued an error about a non-PIC compilation.
192     bool issued_non_pic_error_;
193   };
194
195   // The class which implements relocation.
196   class Relocate
197   {
198    public:
199     Relocate()
200       : skip_call_tls_get_addr_(false), saw_tls_block_reloc_(false)
201     { }
202
203     ~Relocate()
204     {
205       if (this->skip_call_tls_get_addr_)
206         {
207           // FIXME: This needs to specify the location somehow.
208           gold_error(_("missing expected TLS relocation"));
209         }
210     }
211
212     // Do a relocation.  Return false if the caller should not issue
213     // any warnings about this relocation.
214     inline bool
215     relocate(const Relocate_info<64, false>*, Target_x86_64*, size_t relnum,
216              const elfcpp::Rela<64, false>&,
217              unsigned int r_type, const Sized_symbol<64>*,
218              const Symbol_value<64>*,
219              unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
220              section_size_type);
221
222    private:
223     // Do a TLS relocation.
224     inline void
225     relocate_tls(const Relocate_info<64, false>*, Target_x86_64*,
226                  size_t relnum, const elfcpp::Rela<64, false>&,
227                  unsigned int r_type, const Sized_symbol<64>*,
228                  const Symbol_value<64>*,
229                  unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
230                  section_size_type);
231
232     // Do a TLS General-Dynamic to Initial-Exec transition.
233     inline void
234     tls_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
235                  Output_segment* tls_segment,
236                  const elfcpp::Rela<64, false>&, unsigned int r_type,
237                  elfcpp::Elf_types<64>::Elf_Addr value,
238                  unsigned char* view,
239                  elfcpp::Elf_types<64>::Elf_Addr,
240                  section_size_type view_size);
241
242     // Do a TLS General-Dynamic to Local-Exec transition.
243     inline void
244     tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
245                  Output_segment* tls_segment,
246                  const elfcpp::Rela<64, false>&, unsigned int r_type,
247                  elfcpp::Elf_types<64>::Elf_Addr value,
248                  unsigned char* view,
249                  section_size_type view_size);
250
251     // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
252     inline void
253     tls_desc_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
254                       Output_segment* tls_segment,
255                       const elfcpp::Rela<64, false>&, unsigned int r_type,
256                       elfcpp::Elf_types<64>::Elf_Addr value,
257                       unsigned char* view,
258                       elfcpp::Elf_types<64>::Elf_Addr,
259                       section_size_type view_size);
260
261     // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
262     inline void
263     tls_desc_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
264                       Output_segment* tls_segment,
265                       const elfcpp::Rela<64, false>&, unsigned int r_type,
266                       elfcpp::Elf_types<64>::Elf_Addr value,
267                       unsigned char* view,
268                       section_size_type view_size);
269
270     // Do a TLS Local-Dynamic to Local-Exec transition.
271     inline void
272     tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
273                  Output_segment* tls_segment,
274                  const elfcpp::Rela<64, false>&, unsigned int r_type,
275                  elfcpp::Elf_types<64>::Elf_Addr value,
276                  unsigned char* view,
277                  section_size_type view_size);
278
279     // Do a TLS Initial-Exec to Local-Exec transition.
280     static inline void
281     tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
282                  Output_segment* tls_segment,
283                  const elfcpp::Rela<64, false>&, unsigned int r_type,
284                  elfcpp::Elf_types<64>::Elf_Addr value,
285                  unsigned char* view,
286                  section_size_type view_size);
287
288     // This is set if we should skip the next reloc, which should be a
289     // PLT32 reloc against ___tls_get_addr.
290     bool skip_call_tls_get_addr_;
291
292     // This is set if we see a relocation which could load the address
293     // of the TLS block.  Whether we see such a relocation determines
294     // how we handle the R_X86_64_DTPOFF32 relocation, which is used
295     // in debugging sections.
296     bool saw_tls_block_reloc_;
297   };
298
299   // A class which returns the size required for a relocation type,
300   // used while scanning relocs during a relocatable link.
301   class Relocatable_size_for_reloc
302   {
303    public:
304     unsigned int
305     get_size_for_reloc(unsigned int, Relobj*);
306   };
307
308   // Adjust TLS relocation type based on the options and whether this
309   // is a local symbol.
310   static tls::Tls_optimization
311   optimize_tls_reloc(bool is_final, int r_type);
312
313   // Get the GOT section, creating it if necessary.
314   Output_data_got<64, false>*
315   got_section(Symbol_table*, Layout*);
316
317   // Get the GOT PLT section.
318   Output_data_space*
319   got_plt_section() const
320   {
321     gold_assert(this->got_plt_ != NULL);
322     return this->got_plt_;
323   }
324
325   // Create the PLT section.
326   void
327   make_plt_section(Symbol_table* symtab, Layout* layout);
328
329   // Create a PLT entry for a global symbol.
330   void
331   make_plt_entry(Symbol_table*, Layout*, Symbol*);
332
333   // Define the _TLS_MODULE_BASE_ symbol at the end of the TLS segment.
334   void
335   define_tls_base_symbol(Symbol_table*, Layout*);
336
337   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
338   void
339   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
340
341   // Create a GOT entry for the TLS module index.
342   unsigned int
343   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
344                       Sized_relobj<64, false>* object);
345
346   // Get the PLT section.
347   Output_data_plt_x86_64*
348   plt_section() const
349   {
350     gold_assert(this->plt_ != NULL);
351     return this->plt_;
352   }
353
354   // Get the dynamic reloc section, creating it if necessary.
355   Reloc_section*
356   rela_dyn_section(Layout*);
357
358   // Return true if the symbol may need a COPY relocation.
359   // References from an executable object to non-function symbols
360   // defined in a dynamic object may need a COPY relocation.
361   bool
362   may_need_copy_reloc(Symbol* gsym)
363   {
364     return (!parameters->options().shared()
365             && gsym->is_from_dynobj()
366             && gsym->type() != elfcpp::STT_FUNC);
367   }
368
369   // Add a potential copy relocation.
370   void
371   copy_reloc(Symbol_table* symtab, Layout* layout, Relobj* object,
372              unsigned int shndx, Output_section* output_section,
373              Symbol* sym, const elfcpp::Rela<64, false>& reloc)
374   {
375     this->copy_relocs_.copy_reloc(symtab, layout,
376                                   symtab->get_sized_symbol<64>(sym),
377                                   object, shndx, output_section,
378                                   reloc, this->rela_dyn_section(layout));
379   }
380
381   // Information about this specific target which we pass to the
382   // general Target structure.
383   static const Target::Target_info x86_64_info;
384
385   enum Got_type
386   {
387     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
388     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
389     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
390     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
391   };
392
393   // The GOT section.
394   Output_data_got<64, false>* got_;
395   // The PLT section.
396   Output_data_plt_x86_64* plt_;
397   // The GOT PLT section.
398   Output_data_space* got_plt_;
399   // The dynamic reloc section.
400   Reloc_section* rela_dyn_;
401   // Relocs saved to avoid a COPY reloc.
402   Copy_relocs<elfcpp::SHT_RELA, 64, false> copy_relocs_;
403   // Space for variables copied with a COPY reloc.
404   Output_data_space* dynbss_;
405   // Offset of the GOT entry for the TLS module index.
406   unsigned int got_mod_index_offset_;
407   // True if the _TLS_MODULE_BASE_ symbol has been defined.
408   bool tls_base_symbol_defined_;
409 };
410
411 const Target::Target_info Target_x86_64::x86_64_info =
412 {
413   64,                   // size
414   false,                // is_big_endian
415   elfcpp::EM_X86_64,    // machine_code
416   false,                // has_make_symbol
417   false,                // has_resolve
418   true,                 // has_code_fill
419   true,                 // is_default_stack_executable
420   '\0',                 // wrap_char
421   "/lib/ld64.so.1",     // program interpreter
422   0x400000,             // default_text_segment_address
423   0x1000,               // abi_pagesize (overridable by -z max-page-size)
424   0x1000                // common_pagesize (overridable by -z common-page-size)
425 };
426
427 // Get the GOT section, creating it if necessary.
428
429 Output_data_got<64, false>*
430 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
431 {
432   if (this->got_ == NULL)
433     {
434       gold_assert(symtab != NULL && layout != NULL);
435
436       this->got_ = new Output_data_got<64, false>();
437
438       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
439                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
440                                       this->got_);
441
442       // The old GNU linker creates a .got.plt section.  We just
443       // create another set of data in the .got section.  Note that we
444       // always create a PLT if we create a GOT, although the PLT
445       // might be empty.
446       this->got_plt_ = new Output_data_space(8);
447       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
448                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
449                                       this->got_plt_);
450
451       // The first three entries are reserved.
452       this->got_plt_->set_current_data_size(3 * 8);
453
454       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
455       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
456                                     this->got_plt_,
457                                     0, 0, elfcpp::STT_OBJECT,
458                                     elfcpp::STB_LOCAL,
459                                     elfcpp::STV_HIDDEN, 0,
460                                     false, false);
461     }
462
463   return this->got_;
464 }
465
466 // Get the dynamic reloc section, creating it if necessary.
467
468 Target_x86_64::Reloc_section*
469 Target_x86_64::rela_dyn_section(Layout* layout)
470 {
471   if (this->rela_dyn_ == NULL)
472     {
473       gold_assert(layout != NULL);
474       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
475       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
476                                       elfcpp::SHF_ALLOC, this->rela_dyn_);
477     }
478   return this->rela_dyn_;
479 }
480
481 // A class to handle the PLT data.
482
483 class Output_data_plt_x86_64 : public Output_section_data
484 {
485  public:
486   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
487
488   Output_data_plt_x86_64(Layout*, Output_data_got<64, false>*,
489                          Output_data_space*);
490
491   // Add an entry to the PLT.
492   void
493   add_entry(Symbol* gsym);
494
495   // Add the reserved TLSDESC_PLT entry to the PLT.
496   void
497   reserve_tlsdesc_entry(unsigned int got_offset)
498   { this->tlsdesc_got_offset_ = got_offset; }
499
500   // Return true if a TLSDESC_PLT entry has been reserved.
501   bool
502   has_tlsdesc_entry() const
503   { return this->tlsdesc_got_offset_ != -1U; }
504
505   // Return the GOT offset for the reserved TLSDESC_PLT entry.
506   unsigned int
507   get_tlsdesc_got_offset() const
508   { return this->tlsdesc_got_offset_; }
509
510   // Return the offset of the reserved TLSDESC_PLT entry.
511   unsigned int
512   get_tlsdesc_plt_offset() const
513   { return (this->count_ + 1) * plt_entry_size; }
514
515   // Return the .rel.plt section data.
516   const Reloc_section*
517   rel_plt() const
518   { return this->rel_; }
519
520  protected:
521   void
522   do_adjust_output_section(Output_section* os);
523
524  private:
525   // The size of an entry in the PLT.
526   static const int plt_entry_size = 16;
527
528   // The first entry in the PLT.
529   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
530   // procedure linkage table for both programs and shared objects."
531   static unsigned char first_plt_entry[plt_entry_size];
532
533   // Other entries in the PLT for an executable.
534   static unsigned char plt_entry[plt_entry_size];
535
536   // The reserved TLSDESC entry in the PLT for an executable.
537   static unsigned char tlsdesc_plt_entry[plt_entry_size];
538
539   // Set the final size.
540   void
541   set_final_data_size();
542
543   // Write out the PLT data.
544   void
545   do_write(Output_file*);
546
547   // The reloc section.
548   Reloc_section* rel_;
549   // The .got section.
550   Output_data_got<64, false>* got_;
551   // The .got.plt section.
552   Output_data_space* got_plt_;
553   // The number of PLT entries.
554   unsigned int count_;
555   // Offset of the reserved TLSDESC_GOT entry when needed.
556   unsigned int tlsdesc_got_offset_;
557 };
558
559 // Create the PLT section.  The ordinary .got section is an argument,
560 // since we need to refer to the start.  We also create our own .got
561 // section just for PLT entries.
562
563 Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
564                                                Output_data_got<64, false>* got,
565                                                Output_data_space* got_plt)
566   : Output_section_data(8), got_(got), got_plt_(got_plt), count_(0),
567     tlsdesc_got_offset_(-1U)
568 {
569   this->rel_ = new Reloc_section(false);
570   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
571                                   elfcpp::SHF_ALLOC, this->rel_);
572 }
573
574 void
575 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
576 {
577   // UnixWare sets the entsize of .plt to 4, and so does the old GNU
578   // linker, and so do we.
579   os->set_entsize(4);
580 }
581
582 // Add an entry to the PLT.
583
584 void
585 Output_data_plt_x86_64::add_entry(Symbol* gsym)
586 {
587   gold_assert(!gsym->has_plt_offset());
588
589   // Note that when setting the PLT offset we skip the initial
590   // reserved PLT entry.
591   gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
592
593   ++this->count_;
594
595   section_offset_type got_offset = this->got_plt_->current_data_size();
596
597   // Every PLT entry needs a GOT entry which points back to the PLT
598   // entry (this will be changed by the dynamic linker, normally
599   // lazily when the function is called).
600   this->got_plt_->set_current_data_size(got_offset + 8);
601
602   // Every PLT entry needs a reloc.
603   gsym->set_needs_dynsym_entry();
604   this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
605                          got_offset, 0);
606
607   // Note that we don't need to save the symbol.  The contents of the
608   // PLT are independent of which symbols are used.  The symbols only
609   // appear in the relocations.
610 }
611
612 // Set the final size.
613 void
614 Output_data_plt_x86_64::set_final_data_size()
615 {
616   unsigned int count = this->count_;
617   if (this->has_tlsdesc_entry())
618     ++count;
619   this->set_data_size((count + 1) * plt_entry_size);
620 }
621
622 // The first entry in the PLT for an executable.
623
624 unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
625 {
626   // From AMD64 ABI Draft 0.98, page 76
627   0xff, 0x35,   // pushq contents of memory address
628   0, 0, 0, 0,   // replaced with address of .got + 8
629   0xff, 0x25,   // jmp indirect
630   0, 0, 0, 0,   // replaced with address of .got + 16
631   0x90, 0x90, 0x90, 0x90   // noop (x4)
632 };
633
634 // Subsequent entries in the PLT for an executable.
635
636 unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
637 {
638   // From AMD64 ABI Draft 0.98, page 76
639   0xff, 0x25,   // jmpq indirect
640   0, 0, 0, 0,   // replaced with address of symbol in .got
641   0x68,         // pushq immediate
642   0, 0, 0, 0,   // replaced with offset into relocation table
643   0xe9,         // jmpq relative
644   0, 0, 0, 0    // replaced with offset to start of .plt
645 };
646
647 // The reserved TLSDESC entry in the PLT for an executable.
648
649 unsigned char Output_data_plt_x86_64::tlsdesc_plt_entry[plt_entry_size] =
650 {
651   // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
652   // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
653   0xff, 0x35,   // pushq x(%rip)
654   0, 0, 0, 0,   // replaced with address of linkmap GOT entry (at PLTGOT + 8)
655   0xff, 0x25,   // jmpq *y(%rip)
656   0, 0, 0, 0,   // replaced with offset of reserved TLSDESC_GOT entry
657   0x0f, 0x1f,   // nop
658   0x40, 0
659 };
660
661 // Write out the PLT.  This uses the hand-coded instructions above,
662 // and adjusts them as needed.  This is specified by the AMD64 ABI.
663
664 void
665 Output_data_plt_x86_64::do_write(Output_file* of)
666 {
667   const off_t offset = this->offset();
668   const section_size_type oview_size =
669     convert_to_section_size_type(this->data_size());
670   unsigned char* const oview = of->get_output_view(offset, oview_size);
671
672   const off_t got_file_offset = this->got_plt_->offset();
673   const section_size_type got_size =
674     convert_to_section_size_type(this->got_plt_->data_size());
675   unsigned char* const got_view = of->get_output_view(got_file_offset,
676                                                       got_size);
677
678   unsigned char* pov = oview;
679
680   // The base address of the .plt section.
681   elfcpp::Elf_types<64>::Elf_Addr plt_address = this->address();
682   // The base address of the .got section.
683   elfcpp::Elf_types<64>::Elf_Addr got_base = this->got_->address();
684   // The base address of the PLT portion of the .got section,
685   // which is where the GOT pointer will point, and where the
686   // three reserved GOT entries are located.
687   elfcpp::Elf_types<64>::Elf_Addr got_address = this->got_plt_->address();
688
689   memcpy(pov, first_plt_entry, plt_entry_size);
690   // We do a jmp relative to the PC at the end of this instruction.
691   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
692                                               (got_address + 8
693                                                - (plt_address + 6)));
694   elfcpp::Swap<32, false>::writeval(pov + 8,
695                                     (got_address + 16
696                                      - (plt_address + 12)));
697   pov += plt_entry_size;
698
699   unsigned char* got_pov = got_view;
700
701   memset(got_pov, 0, 24);
702   got_pov += 24;
703
704   unsigned int plt_offset = plt_entry_size;
705   unsigned int got_offset = 24;
706   const unsigned int count = this->count_;
707   for (unsigned int plt_index = 0;
708        plt_index < count;
709        ++plt_index,
710          pov += plt_entry_size,
711          got_pov += 8,
712          plt_offset += plt_entry_size,
713          got_offset += 8)
714     {
715       // Set and adjust the PLT entry itself.
716       memcpy(pov, plt_entry, plt_entry_size);
717       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
718                                                   (got_address + got_offset
719                                                    - (plt_address + plt_offset
720                                                       + 6)));
721
722       elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
723       elfcpp::Swap<32, false>::writeval(pov + 12,
724                                         - (plt_offset + plt_entry_size));
725
726       // Set the entry in the GOT.
727       elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
728     }
729
730   if (this->has_tlsdesc_entry())
731     {
732       // Set and adjust the reserved TLSDESC PLT entry.
733       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
734       memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
735       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
736                                                   (got_address + 8
737                                                    - (plt_address + plt_offset
738                                                       + 6)));
739       elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
740                                                   (got_base
741                                                    + tlsdesc_got_offset
742                                                    - (plt_address + plt_offset
743                                                       + 12)));
744       pov += plt_entry_size;
745     }
746
747   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
748   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
749
750   of->write_output_view(offset, oview_size, oview);
751   of->write_output_view(got_file_offset, got_size, got_view);
752 }
753
754 // Create the PLT section.
755
756 void
757 Target_x86_64::make_plt_section(Symbol_table* symtab, Layout* layout)
758 {
759   if (this->plt_ == NULL)
760     {
761       // Create the GOT sections first.
762       this->got_section(symtab, layout);
763
764       this->plt_ = new Output_data_plt_x86_64(layout, this->got_,
765                                               this->got_plt_);
766       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
767                                       (elfcpp::SHF_ALLOC
768                                        | elfcpp::SHF_EXECINSTR),
769                                       this->plt_);
770     }
771 }
772
773 // Create a PLT entry for a global symbol.
774
775 void
776 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
777                               Symbol* gsym)
778 {
779   if (gsym->has_plt_offset())
780     return;
781
782   if (this->plt_ == NULL)
783     this->make_plt_section(symtab, layout);
784
785   this->plt_->add_entry(gsym);
786 }
787
788 // Define the _TLS_MODULE_BASE_ symbol at the end of the TLS segment.
789
790 void
791 Target_x86_64::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
792 {
793   if (this->tls_base_symbol_defined_)
794     return;
795
796   Output_segment* tls_segment = layout->tls_segment();
797   if (tls_segment != NULL)
798     {
799       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
800                                        tls_segment, 0, 0,
801                                        elfcpp::STT_TLS,
802                                        elfcpp::STB_LOCAL,
803                                        elfcpp::STV_HIDDEN, 0,
804                                        Symbol::SEGMENT_END, true);
805     }
806   this->tls_base_symbol_defined_ = true;
807 }
808
809 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
810
811 void
812 Target_x86_64::reserve_tlsdesc_entries(Symbol_table* symtab,
813                                              Layout* layout)
814 {
815   if (this->plt_ == NULL)
816     this->make_plt_section(symtab, layout);
817
818   if (!this->plt_->has_tlsdesc_entry())
819     {
820       // Allocate the TLSDESC_GOT entry.
821       Output_data_got<64, false>* got = this->got_section(symtab, layout);
822       unsigned int got_offset = got->add_constant(0);
823
824       // Allocate the TLSDESC_PLT entry.
825       this->plt_->reserve_tlsdesc_entry(got_offset);
826     }
827 }
828
829 // Create a GOT entry for the TLS module index.
830
831 unsigned int
832 Target_x86_64::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
833                                    Sized_relobj<64, false>* object)
834 {
835   if (this->got_mod_index_offset_ == -1U)
836     {
837       gold_assert(symtab != NULL && layout != NULL && object != NULL);
838       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
839       Output_data_got<64, false>* got = this->got_section(symtab, layout);
840       unsigned int got_offset = got->add_constant(0);
841       rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
842                           got_offset, 0);
843       got->add_constant(0);
844       this->got_mod_index_offset_ = got_offset;
845     }
846   return this->got_mod_index_offset_;
847 }
848
849 // Optimize the TLS relocation type based on what we know about the
850 // symbol.  IS_FINAL is true if the final address of this symbol is
851 // known at link time.
852
853 tls::Tls_optimization
854 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
855 {
856   // If we are generating a shared library, then we can't do anything
857   // in the linker.
858   if (parameters->options().shared())
859     return tls::TLSOPT_NONE;
860
861   switch (r_type)
862     {
863     case elfcpp::R_X86_64_TLSGD:
864     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
865     case elfcpp::R_X86_64_TLSDESC_CALL:
866       // These are General-Dynamic which permits fully general TLS
867       // access.  Since we know that we are generating an executable,
868       // we can convert this to Initial-Exec.  If we also know that
869       // this is a local symbol, we can further switch to Local-Exec.
870       if (is_final)
871         return tls::TLSOPT_TO_LE;
872       return tls::TLSOPT_TO_IE;
873
874     case elfcpp::R_X86_64_TLSLD:
875       // This is Local-Dynamic, which refers to a local symbol in the
876       // dynamic TLS block.  Since we know that we generating an
877       // executable, we can switch to Local-Exec.
878       return tls::TLSOPT_TO_LE;
879
880     case elfcpp::R_X86_64_DTPOFF32:
881     case elfcpp::R_X86_64_DTPOFF64:
882       // Another Local-Dynamic reloc.
883       return tls::TLSOPT_TO_LE;
884
885     case elfcpp::R_X86_64_GOTTPOFF:
886       // These are Initial-Exec relocs which get the thread offset
887       // from the GOT.  If we know that we are linking against the
888       // local symbol, we can switch to Local-Exec, which links the
889       // thread offset into the instruction.
890       if (is_final)
891         return tls::TLSOPT_TO_LE;
892       return tls::TLSOPT_NONE;
893
894     case elfcpp::R_X86_64_TPOFF32:
895       // When we already have Local-Exec, there is nothing further we
896       // can do.
897       return tls::TLSOPT_NONE;
898
899     default:
900       gold_unreachable();
901     }
902 }
903
904 // Report an unsupported relocation against a local symbol.
905
906 void
907 Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
908                                              unsigned int r_type)
909 {
910   gold_error(_("%s: unsupported reloc %u against local symbol"),
911              object->name().c_str(), r_type);
912 }
913
914 // We are about to emit a dynamic relocation of type R_TYPE.  If the
915 // dynamic linker does not support it, issue an error.  The GNU linker
916 // only issues a non-PIC error for an allocated read-only section.
917 // Here we know the section is allocated, but we don't know that it is
918 // read-only.  But we check for all the relocation types which the
919 // glibc dynamic linker supports, so it seems appropriate to issue an
920 // error even if the section is not read-only.
921
922 void
923 Target_x86_64::Scan::check_non_pic(Relobj* object, unsigned int r_type)
924 {
925   switch (r_type)
926     {
927       // These are the relocation types supported by glibc for x86_64.
928     case elfcpp::R_X86_64_RELATIVE:
929     case elfcpp::R_X86_64_GLOB_DAT:
930     case elfcpp::R_X86_64_JUMP_SLOT:
931     case elfcpp::R_X86_64_DTPMOD64:
932     case elfcpp::R_X86_64_DTPOFF64:
933     case elfcpp::R_X86_64_TPOFF64:
934     case elfcpp::R_X86_64_64:
935     case elfcpp::R_X86_64_32:
936     case elfcpp::R_X86_64_PC32:
937     case elfcpp::R_X86_64_COPY:
938       return;
939
940     default:
941       // This prevents us from issuing more than one error per reloc
942       // section.  But we can still wind up issuing more than one
943       // error per object file.
944       if (this->issued_non_pic_error_)
945         return;
946       object->error(_("requires unsupported dynamic reloc; "
947                       "recompile with -fPIC"));
948       this->issued_non_pic_error_ = true;
949       return;
950
951     case elfcpp::R_X86_64_NONE:
952       gold_unreachable();
953     }
954 }
955
956 // Scan a relocation for a local symbol.
957
958 inline void
959 Target_x86_64::Scan::local(const General_options&,
960                            Symbol_table* symtab,
961                            Layout* layout,
962                            Target_x86_64* target,
963                            Sized_relobj<64, false>* object,
964                            unsigned int data_shndx,
965                            Output_section* output_section,
966                            const elfcpp::Rela<64, false>& reloc,
967                            unsigned int r_type,
968                            const elfcpp::Sym<64, false>& lsym)
969 {
970   switch (r_type)
971     {
972     case elfcpp::R_X86_64_NONE:
973     case elfcpp::R_386_GNU_VTINHERIT:
974     case elfcpp::R_386_GNU_VTENTRY:
975       break;
976
977     case elfcpp::R_X86_64_64:
978       // If building a shared library (or a position-independent
979       // executable), we need to create a dynamic relocation for this
980       // location.  The relocation applied at link time will apply the
981       // link-time value, so we flag the location with an
982       // R_X86_64_RELATIVE relocation so the dynamic loader can
983       // relocate it easily.
984       if (parameters->options().output_is_position_independent())
985         {
986           unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
987           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
988           rela_dyn->add_local_relative(object, r_sym,
989                                        elfcpp::R_X86_64_RELATIVE,
990                                        output_section, data_shndx,
991                                        reloc.get_r_offset(),
992                                        reloc.get_r_addend());
993         }
994       break;
995
996     case elfcpp::R_X86_64_32:
997     case elfcpp::R_X86_64_32S:
998     case elfcpp::R_X86_64_16:
999     case elfcpp::R_X86_64_8:
1000       // If building a shared library (or a position-independent
1001       // executable), we need to create a dynamic relocation for this
1002       // location.  We can't use an R_X86_64_RELATIVE relocation
1003       // because that is always a 64-bit relocation.
1004       if (parameters->options().output_is_position_independent())
1005         {
1006           this->check_non_pic(object, r_type);
1007
1008           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1009           unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1010           if (lsym.get_st_type() != elfcpp::STT_SECTION)
1011             rela_dyn->add_local(object, r_sym, r_type, output_section,
1012                                 data_shndx, reloc.get_r_offset(),
1013                                 reloc.get_r_addend());
1014           else
1015             {
1016               gold_assert(lsym.get_st_value() == 0);
1017               unsigned int shndx = lsym.get_st_shndx();
1018               bool is_ordinary;
1019               shndx = object->adjust_sym_shndx(r_sym, shndx,
1020                                                &is_ordinary);
1021               if (!is_ordinary)
1022                 object->error(_("section symbol %u has bad shndx %u"),
1023                               r_sym, shndx);
1024               else
1025                 rela_dyn->add_local_section(object, shndx,
1026                                             r_type, output_section,
1027                                             data_shndx, reloc.get_r_offset(),
1028                                             reloc.get_r_addend());
1029             }
1030         }
1031       break;
1032
1033     case elfcpp::R_X86_64_PC64:
1034     case elfcpp::R_X86_64_PC32:
1035     case elfcpp::R_X86_64_PC16:
1036     case elfcpp::R_X86_64_PC8:
1037       break;
1038
1039     case elfcpp::R_X86_64_PLT32:
1040       // Since we know this is a local symbol, we can handle this as a
1041       // PC32 reloc.
1042       break;
1043
1044     case elfcpp::R_X86_64_GOTPC32:
1045     case elfcpp::R_X86_64_GOTOFF64:
1046     case elfcpp::R_X86_64_GOTPC64:
1047     case elfcpp::R_X86_64_PLTOFF64:
1048       // We need a GOT section.
1049       target->got_section(symtab, layout);
1050       // For PLTOFF64, we'd normally want a PLT section, but since we
1051       // know this is a local symbol, no PLT is needed.
1052       break;
1053
1054     case elfcpp::R_X86_64_GOT64:
1055     case elfcpp::R_X86_64_GOT32:
1056     case elfcpp::R_X86_64_GOTPCREL64:
1057     case elfcpp::R_X86_64_GOTPCREL:
1058     case elfcpp::R_X86_64_GOTPLT64:
1059       {
1060         // The symbol requires a GOT entry.
1061         Output_data_got<64, false>* got = target->got_section(symtab, layout);
1062         unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1063         if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
1064           {
1065             // If we are generating a shared object, we need to add a
1066             // dynamic relocation for this symbol's GOT entry.
1067             if (parameters->options().output_is_position_independent())
1068               {
1069                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1070                 // R_X86_64_RELATIVE assumes a 64-bit relocation.
1071                 if (r_type != elfcpp::R_X86_64_GOT32)
1072                   rela_dyn->add_local_relative(
1073                       object, r_sym, elfcpp::R_X86_64_RELATIVE, got,
1074                       object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
1075                 else
1076                   {
1077                     this->check_non_pic(object, r_type);
1078
1079                     gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
1080                     rela_dyn->add_local(
1081                         object, r_sym, r_type, got,
1082                         object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
1083                   }
1084               }
1085           }
1086         // For GOTPLT64, we'd normally want a PLT section, but since
1087         // we know this is a local symbol, no PLT is needed.
1088       }
1089       break;
1090
1091     case elfcpp::R_X86_64_COPY:
1092     case elfcpp::R_X86_64_GLOB_DAT:
1093     case elfcpp::R_X86_64_JUMP_SLOT:
1094     case elfcpp::R_X86_64_RELATIVE:
1095       // These are outstanding tls relocs, which are unexpected when linking
1096     case elfcpp::R_X86_64_TPOFF64:
1097     case elfcpp::R_X86_64_DTPMOD64:
1098     case elfcpp::R_X86_64_TLSDESC:
1099       gold_error(_("%s: unexpected reloc %u in object file"),
1100                  object->name().c_str(), r_type);
1101       break;
1102
1103       // These are initial tls relocs, which are expected when linking
1104     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1105     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1106     case elfcpp::R_X86_64_TLSDESC_CALL:
1107     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1108     case elfcpp::R_X86_64_DTPOFF32:
1109     case elfcpp::R_X86_64_DTPOFF64:
1110     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1111     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1112       {
1113         bool output_is_shared = parameters->options().shared();
1114         const tls::Tls_optimization optimized_type
1115             = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
1116         switch (r_type)
1117           {
1118           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
1119             if (optimized_type == tls::TLSOPT_NONE)
1120               {
1121                 // Create a pair of GOT entries for the module index and
1122                 // dtv-relative offset.
1123                 Output_data_got<64, false>* got
1124                     = target->got_section(symtab, layout);
1125                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1126                 unsigned int shndx = lsym.get_st_shndx();
1127                 bool is_ordinary;
1128                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1129                 if (!is_ordinary)
1130                   object->error(_("local symbol %u has bad shndx %u"),
1131                               r_sym, shndx);
1132                 else
1133                   got->add_local_pair_with_rela(object, r_sym,
1134                                                 shndx,
1135                                                 GOT_TYPE_TLS_PAIR,
1136                                                 target->rela_dyn_section(layout),
1137                                                 elfcpp::R_X86_64_DTPMOD64, 0);
1138               }
1139             else if (optimized_type != tls::TLSOPT_TO_LE)
1140               unsupported_reloc_local(object, r_type);
1141             break;
1142
1143           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1144             target->define_tls_base_symbol(symtab, layout);
1145             if (optimized_type == tls::TLSOPT_NONE)
1146               {
1147                 // Create reserved PLT and GOT entries for the resolver.
1148                 target->reserve_tlsdesc_entries(symtab, layout);
1149
1150                 // Generate a double GOT entry with an R_X86_64_TLSDESC reloc.
1151                 Output_data_got<64, false>* got
1152                     = target->got_section(symtab, layout);
1153                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1154                 unsigned int shndx = lsym.get_st_shndx();
1155                 bool is_ordinary;
1156                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1157                 if (!is_ordinary)
1158                   object->error(_("local symbol %u has bad shndx %u"),
1159                               r_sym, shndx);
1160                 else
1161                   got->add_local_pair_with_rela(object, r_sym,
1162                                                 shndx,
1163                                                 GOT_TYPE_TLS_DESC,
1164                                                 target->rela_dyn_section(layout),
1165                                                 elfcpp::R_X86_64_TLSDESC, 0);
1166               }
1167             else if (optimized_type != tls::TLSOPT_TO_LE)
1168               unsupported_reloc_local(object, r_type);
1169             break;
1170
1171           case elfcpp::R_X86_64_TLSDESC_CALL:
1172             break;
1173
1174           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
1175             if (optimized_type == tls::TLSOPT_NONE)
1176               {
1177                 // Create a GOT entry for the module index.
1178                 target->got_mod_index_entry(symtab, layout, object);
1179               }
1180             else if (optimized_type != tls::TLSOPT_TO_LE)
1181               unsupported_reloc_local(object, r_type);
1182             break;
1183
1184           case elfcpp::R_X86_64_DTPOFF32:
1185           case elfcpp::R_X86_64_DTPOFF64:
1186             break;
1187
1188           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
1189             layout->set_has_static_tls();
1190             if (optimized_type == tls::TLSOPT_NONE)
1191               {
1192                 // Create a GOT entry for the tp-relative offset.
1193                 Output_data_got<64, false>* got
1194                     = target->got_section(symtab, layout);
1195                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1196                 got->add_local_with_rela(object, r_sym, GOT_TYPE_TLS_OFFSET,
1197                                          target->rela_dyn_section(layout),
1198                                          elfcpp::R_X86_64_TPOFF64);
1199               }
1200             else if (optimized_type != tls::TLSOPT_TO_LE)
1201               unsupported_reloc_local(object, r_type);
1202             break;
1203
1204           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
1205             layout->set_has_static_tls();
1206             if (output_is_shared)
1207               unsupported_reloc_local(object, r_type);
1208             break;
1209
1210           default:
1211             gold_unreachable();
1212           }
1213       }
1214       break;
1215
1216     case elfcpp::R_X86_64_SIZE32:
1217     case elfcpp::R_X86_64_SIZE64:
1218     default:
1219       gold_error(_("%s: unsupported reloc %u against local symbol"),
1220                  object->name().c_str(), r_type);
1221       break;
1222     }
1223 }
1224
1225
1226 // Report an unsupported relocation against a global symbol.
1227
1228 void
1229 Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
1230                                               unsigned int r_type,
1231                                               Symbol* gsym)
1232 {
1233   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1234              object->name().c_str(), r_type, gsym->demangled_name().c_str());
1235 }
1236
1237 // Scan a relocation for a global symbol.
1238
1239 inline void
1240 Target_x86_64::Scan::global(const General_options&,
1241                             Symbol_table* symtab,
1242                             Layout* layout,
1243                             Target_x86_64* target,
1244                             Sized_relobj<64, false>* object,
1245                             unsigned int data_shndx,
1246                             Output_section* output_section,
1247                             const elfcpp::Rela<64, false>& reloc,
1248                             unsigned int r_type,
1249                             Symbol* gsym)
1250 {
1251   switch (r_type)
1252     {
1253     case elfcpp::R_X86_64_NONE:
1254     case elfcpp::R_386_GNU_VTINHERIT:
1255     case elfcpp::R_386_GNU_VTENTRY:
1256       break;
1257
1258     case elfcpp::R_X86_64_64:
1259     case elfcpp::R_X86_64_32:
1260     case elfcpp::R_X86_64_32S:
1261     case elfcpp::R_X86_64_16:
1262     case elfcpp::R_X86_64_8:
1263       {
1264         // Make a PLT entry if necessary.
1265         if (gsym->needs_plt_entry())
1266           {
1267             target->make_plt_entry(symtab, layout, gsym);
1268             // Since this is not a PC-relative relocation, we may be
1269             // taking the address of a function. In that case we need to
1270             // set the entry in the dynamic symbol table to the address of
1271             // the PLT entry.
1272             if (gsym->is_from_dynobj() && !parameters->options().shared())
1273               gsym->set_needs_dynsym_value();
1274           }
1275         // Make a dynamic relocation if necessary.
1276         if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
1277           {
1278             if (target->may_need_copy_reloc(gsym))
1279               {
1280                 target->copy_reloc(symtab, layout, object,
1281                                    data_shndx, output_section, gsym, reloc);
1282               }
1283             else if (r_type == elfcpp::R_X86_64_64
1284                      && gsym->can_use_relative_reloc(false))
1285               {
1286                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1287                 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1288                                               output_section, object,
1289                                               data_shndx, reloc.get_r_offset(),
1290                                               reloc.get_r_addend());
1291               }
1292             else
1293               {
1294                 this->check_non_pic(object, r_type);
1295                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1296                 rela_dyn->add_global(gsym, r_type, output_section, object,
1297                                      data_shndx, reloc.get_r_offset(),
1298                                      reloc.get_r_addend());
1299               }
1300           }
1301       }
1302       break;
1303
1304     case elfcpp::R_X86_64_PC64:
1305     case elfcpp::R_X86_64_PC32:
1306     case elfcpp::R_X86_64_PC16:
1307     case elfcpp::R_X86_64_PC8:
1308       {
1309         // Make a PLT entry if necessary.
1310         if (gsym->needs_plt_entry())
1311           target->make_plt_entry(symtab, layout, gsym);
1312         // Make a dynamic relocation if necessary.
1313         int flags = Symbol::NON_PIC_REF;
1314         if (gsym->type() == elfcpp::STT_FUNC)
1315           flags |= Symbol::FUNCTION_CALL;
1316         if (gsym->needs_dynamic_reloc(flags))
1317           {
1318             if (target->may_need_copy_reloc(gsym))
1319               {
1320                 target->copy_reloc(symtab, layout, object,
1321                                    data_shndx, output_section, gsym, reloc);
1322               }
1323             else
1324               {
1325                 this->check_non_pic(object, r_type);
1326                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1327                 rela_dyn->add_global(gsym, r_type, output_section, object,
1328                                      data_shndx, reloc.get_r_offset(),
1329                                      reloc.get_r_addend());
1330               }
1331           }
1332       }
1333       break;
1334
1335     case elfcpp::R_X86_64_GOT64:
1336     case elfcpp::R_X86_64_GOT32:
1337     case elfcpp::R_X86_64_GOTPCREL64:
1338     case elfcpp::R_X86_64_GOTPCREL:
1339     case elfcpp::R_X86_64_GOTPLT64:
1340       {
1341         // The symbol requires a GOT entry.
1342         Output_data_got<64, false>* got = target->got_section(symtab, layout);
1343         if (gsym->final_value_is_known())
1344           got->add_global(gsym, GOT_TYPE_STANDARD);
1345         else
1346           {
1347             // If this symbol is not fully resolved, we need to add a
1348             // dynamic relocation for it.
1349             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1350             if (gsym->is_from_dynobj()
1351                 || gsym->is_undefined()
1352                 || gsym->is_preemptible())
1353               got->add_global_with_rela(gsym, GOT_TYPE_STANDARD, rela_dyn,
1354                                         elfcpp::R_X86_64_GLOB_DAT);
1355             else
1356               {
1357                 if (got->add_global(gsym, GOT_TYPE_STANDARD))
1358                   rela_dyn->add_global_relative(
1359                       gsym, elfcpp::R_X86_64_RELATIVE, got,
1360                       gsym->got_offset(GOT_TYPE_STANDARD), 0);
1361               }
1362           }
1363         // For GOTPLT64, we also need a PLT entry (but only if the
1364         // symbol is not fully resolved).
1365         if (r_type == elfcpp::R_X86_64_GOTPLT64
1366             && !gsym->final_value_is_known())
1367           target->make_plt_entry(symtab, layout, gsym);
1368       }
1369       break;
1370
1371     case elfcpp::R_X86_64_PLT32:
1372       // If the symbol is fully resolved, this is just a PC32 reloc.
1373       // Otherwise we need a PLT entry.
1374       if (gsym->final_value_is_known())
1375         break;
1376       // If building a shared library, we can also skip the PLT entry
1377       // if the symbol is defined in the output file and is protected
1378       // or hidden.
1379       if (gsym->is_defined()
1380           && !gsym->is_from_dynobj()
1381           && !gsym->is_preemptible())
1382         break;
1383       target->make_plt_entry(symtab, layout, gsym);
1384       break;
1385
1386     case elfcpp::R_X86_64_GOTPC32:
1387     case elfcpp::R_X86_64_GOTOFF64:
1388     case elfcpp::R_X86_64_GOTPC64:
1389     case elfcpp::R_X86_64_PLTOFF64:
1390       // We need a GOT section.
1391       target->got_section(symtab, layout);
1392       // For PLTOFF64, we also need a PLT entry (but only if the
1393       // symbol is not fully resolved).
1394       if (r_type == elfcpp::R_X86_64_PLTOFF64
1395           && !gsym->final_value_is_known())
1396         target->make_plt_entry(symtab, layout, gsym);
1397       break;
1398
1399     case elfcpp::R_X86_64_COPY:
1400     case elfcpp::R_X86_64_GLOB_DAT:
1401     case elfcpp::R_X86_64_JUMP_SLOT:
1402     case elfcpp::R_X86_64_RELATIVE:
1403       // These are outstanding tls relocs, which are unexpected when linking
1404     case elfcpp::R_X86_64_TPOFF64:
1405     case elfcpp::R_X86_64_DTPMOD64:
1406     case elfcpp::R_X86_64_TLSDESC:
1407       gold_error(_("%s: unexpected reloc %u in object file"),
1408                  object->name().c_str(), r_type);
1409       break;
1410
1411       // These are initial tls relocs, which are expected for global()
1412     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1413     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1414     case elfcpp::R_X86_64_TLSDESC_CALL:
1415     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1416     case elfcpp::R_X86_64_DTPOFF32:
1417     case elfcpp::R_X86_64_DTPOFF64:
1418     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1419     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1420       {
1421         const bool is_final = gsym->final_value_is_known();
1422         const tls::Tls_optimization optimized_type
1423             = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1424         switch (r_type)
1425           {
1426           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
1427             if (optimized_type == tls::TLSOPT_NONE)
1428               {
1429                 // Create a pair of GOT entries for the module index and
1430                 // dtv-relative offset.
1431                 Output_data_got<64, false>* got
1432                     = target->got_section(symtab, layout);
1433                 got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_PAIR,
1434                                                target->rela_dyn_section(layout),
1435                                                elfcpp::R_X86_64_DTPMOD64,
1436                                                elfcpp::R_X86_64_DTPOFF64);
1437               }
1438             else if (optimized_type == tls::TLSOPT_TO_IE)
1439               {
1440                 // Create a GOT entry for the tp-relative offset.
1441                 Output_data_got<64, false>* got
1442                     = target->got_section(symtab, layout);
1443                 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1444                                           target->rela_dyn_section(layout),
1445                                           elfcpp::R_X86_64_TPOFF64);
1446               }
1447             else if (optimized_type != tls::TLSOPT_TO_LE)
1448               unsupported_reloc_global(object, r_type, gsym);
1449             break;
1450
1451           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1452             target->define_tls_base_symbol(symtab, layout);
1453             if (optimized_type == tls::TLSOPT_NONE)
1454               {
1455                 // Create reserved PLT and GOT entries for the resolver.
1456                 target->reserve_tlsdesc_entries(symtab, layout);
1457
1458                 // Create a double GOT entry with an R_X86_64_TLSDESC reloc.
1459                 Output_data_got<64, false>* got
1460                     = target->got_section(symtab, layout);
1461                 got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_DESC,
1462                                                target->rela_dyn_section(layout),
1463                                                elfcpp::R_X86_64_TLSDESC, 0);
1464               }
1465             else if (optimized_type == tls::TLSOPT_TO_IE)
1466               {
1467                 // Create a GOT entry for the tp-relative offset.
1468                 Output_data_got<64, false>* got
1469                     = target->got_section(symtab, layout);
1470                 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1471                                           target->rela_dyn_section(layout),
1472                                           elfcpp::R_X86_64_TPOFF64);
1473               }
1474             else if (optimized_type != tls::TLSOPT_TO_LE)
1475               unsupported_reloc_global(object, r_type, gsym);
1476             break;
1477
1478           case elfcpp::R_X86_64_TLSDESC_CALL:
1479             break;
1480
1481           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
1482             if (optimized_type == tls::TLSOPT_NONE)
1483               {
1484                 // Create a GOT entry for the module index.
1485                 target->got_mod_index_entry(symtab, layout, object);
1486               }
1487             else if (optimized_type != tls::TLSOPT_TO_LE)
1488               unsupported_reloc_global(object, r_type, gsym);
1489             break;
1490
1491           case elfcpp::R_X86_64_DTPOFF32:
1492           case elfcpp::R_X86_64_DTPOFF64:
1493             break;
1494
1495           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
1496             layout->set_has_static_tls();
1497             if (optimized_type == tls::TLSOPT_NONE)
1498               {
1499                 // Create a GOT entry for the tp-relative offset.
1500                 Output_data_got<64, false>* got
1501                     = target->got_section(symtab, layout);
1502                 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1503                                           target->rela_dyn_section(layout),
1504                                           elfcpp::R_X86_64_TPOFF64);
1505               }
1506             else if (optimized_type != tls::TLSOPT_TO_LE)
1507               unsupported_reloc_global(object, r_type, gsym);
1508             break;
1509
1510           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
1511             layout->set_has_static_tls();
1512             if (parameters->options().shared())
1513               unsupported_reloc_local(object, r_type);
1514             break;
1515
1516           default:
1517             gold_unreachable();
1518           }
1519       }
1520       break;
1521
1522     case elfcpp::R_X86_64_SIZE32:
1523     case elfcpp::R_X86_64_SIZE64:
1524     default:
1525       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1526                  object->name().c_str(), r_type,
1527                  gsym->demangled_name().c_str());
1528       break;
1529     }
1530 }
1531
1532 // Scan relocations for a section.
1533
1534 void
1535 Target_x86_64::scan_relocs(const General_options& options,
1536                            Symbol_table* symtab,
1537                            Layout* layout,
1538                            Sized_relobj<64, false>* object,
1539                            unsigned int data_shndx,
1540                            unsigned int sh_type,
1541                            const unsigned char* prelocs,
1542                            size_t reloc_count,
1543                            Output_section* output_section,
1544                            bool needs_special_offset_handling,
1545                            size_t local_symbol_count,
1546                            const unsigned char* plocal_symbols)
1547 {
1548   if (sh_type == elfcpp::SHT_REL)
1549     {
1550       gold_error(_("%s: unsupported REL reloc section"),
1551                  object->name().c_str());
1552       return;
1553     }
1554
1555   gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1556       Target_x86_64::Scan>(
1557     options,
1558     symtab,
1559     layout,
1560     this,
1561     object,
1562     data_shndx,
1563     prelocs,
1564     reloc_count,
1565     output_section,
1566     needs_special_offset_handling,
1567     local_symbol_count,
1568     plocal_symbols);
1569 }
1570
1571 // Finalize the sections.
1572
1573 void
1574 Target_x86_64::do_finalize_sections(Layout* layout)
1575 {
1576   // Fill in some more dynamic tags.
1577   Output_data_dynamic* const odyn = layout->dynamic_data();
1578   if (odyn != NULL)
1579     {
1580       if (this->got_plt_ != NULL)
1581         odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1582
1583       if (this->plt_ != NULL)
1584         {
1585           const Output_data* od = this->plt_->rel_plt();
1586           odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1587           odyn->add_section_address(elfcpp::DT_JMPREL, od);
1588           odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1589           if (this->plt_->has_tlsdesc_entry())
1590             {
1591               unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
1592               unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
1593               this->got_->finalize_data_size();
1594               odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
1595                                             this->plt_, plt_offset);
1596               odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
1597                                             this->got_, got_offset);
1598             }
1599         }
1600
1601       if (this->rela_dyn_ != NULL)
1602         {
1603           const Output_data* od = this->rela_dyn_;
1604           odyn->add_section_address(elfcpp::DT_RELA, od);
1605           odyn->add_section_size(elfcpp::DT_RELASZ, od);
1606           odyn->add_constant(elfcpp::DT_RELAENT,
1607                              elfcpp::Elf_sizes<64>::rela_size);
1608         }
1609
1610       if (!parameters->options().shared())
1611         {
1612           // The value of the DT_DEBUG tag is filled in by the dynamic
1613           // linker at run time, and used by the debugger.
1614           odyn->add_constant(elfcpp::DT_DEBUG, 0);
1615         }
1616     }
1617
1618   // Emit any relocs we saved in an attempt to avoid generating COPY
1619   // relocs.
1620   if (this->copy_relocs_.any_saved_relocs())
1621     this->copy_relocs_.emit(this->rela_dyn_section(layout));
1622 }
1623
1624 // Perform a relocation.
1625
1626 inline bool
1627 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1628                                   Target_x86_64* target,
1629                                   size_t relnum,
1630                                   const elfcpp::Rela<64, false>& rela,
1631                                   unsigned int r_type,
1632                                   const Sized_symbol<64>* gsym,
1633                                   const Symbol_value<64>* psymval,
1634                                   unsigned char* view,
1635                                   elfcpp::Elf_types<64>::Elf_Addr address,
1636                                   section_size_type view_size)
1637 {
1638   if (this->skip_call_tls_get_addr_)
1639     {
1640       if (r_type != elfcpp::R_X86_64_PLT32
1641           || gsym == NULL
1642           || strcmp(gsym->name(), "__tls_get_addr") != 0)
1643         {
1644           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1645                                  _("missing expected TLS relocation"));
1646         }
1647       else
1648         {
1649           this->skip_call_tls_get_addr_ = false;
1650           return false;
1651         }
1652     }
1653
1654   // Pick the value to use for symbols defined in shared objects.
1655   Symbol_value<64> symval;
1656   if (gsym != NULL
1657       && (gsym->is_from_dynobj()
1658           || (parameters->options().shared()
1659               && (gsym->is_undefined() || gsym->is_preemptible())))
1660       && gsym->has_plt_offset())
1661     {
1662       symval.set_output_value(target->plt_section()->address()
1663                               + gsym->plt_offset());
1664       psymval = &symval;
1665     }
1666
1667   const Sized_relobj<64, false>* object = relinfo->object;
1668   const elfcpp::Elf_Xword addend = rela.get_r_addend();
1669
1670   // Get the GOT offset if needed.
1671   // The GOT pointer points to the end of the GOT section.
1672   // We need to subtract the size of the GOT section to get
1673   // the actual offset to use in the relocation.
1674   bool have_got_offset = false;
1675   unsigned int got_offset = 0;
1676   switch (r_type)
1677     {
1678     case elfcpp::R_X86_64_GOT32:
1679     case elfcpp::R_X86_64_GOT64:
1680     case elfcpp::R_X86_64_GOTPLT64:
1681     case elfcpp::R_X86_64_GOTPCREL:
1682     case elfcpp::R_X86_64_GOTPCREL64:
1683       if (gsym != NULL)
1684         {
1685           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
1686           got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
1687         }
1688       else
1689         {
1690           unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1691           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
1692           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
1693                         - target->got_size());
1694         }
1695       have_got_offset = true;
1696       break;
1697
1698     default:
1699       break;
1700     }
1701
1702   switch (r_type)
1703     {
1704     case elfcpp::R_X86_64_NONE:
1705     case elfcpp::R_386_GNU_VTINHERIT:
1706     case elfcpp::R_386_GNU_VTENTRY:
1707       break;
1708
1709     case elfcpp::R_X86_64_64:
1710       Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1711       break;
1712
1713     case elfcpp::R_X86_64_PC64:
1714       Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1715                                               address);
1716       break;
1717
1718     case elfcpp::R_X86_64_32:
1719       // FIXME: we need to verify that value + addend fits into 32 bits:
1720       //    uint64_t x = value + addend;
1721       //    x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1722       // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
1723       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1724       break;
1725
1726     case elfcpp::R_X86_64_32S:
1727       // FIXME: we need to verify that value + addend fits into 32 bits:
1728       //    int64_t x = value + addend;   // note this quantity is signed!
1729       //    x == static_cast<int64_t>(static_cast<int32_t>(x))
1730       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1731       break;
1732
1733     case elfcpp::R_X86_64_PC32:
1734       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1735                                               address);
1736       break;
1737
1738     case elfcpp::R_X86_64_16:
1739       Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1740       break;
1741
1742     case elfcpp::R_X86_64_PC16:
1743       Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1744                                               address);
1745       break;
1746
1747     case elfcpp::R_X86_64_8:
1748       Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1749       break;
1750
1751     case elfcpp::R_X86_64_PC8:
1752       Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1753                                              address);
1754       break;
1755
1756     case elfcpp::R_X86_64_PLT32:
1757       gold_assert(gsym == NULL
1758                   || gsym->has_plt_offset()
1759                   || gsym->final_value_is_known()
1760                   || (gsym->is_defined()
1761                       && !gsym->is_from_dynobj()
1762                       && !gsym->is_preemptible()));
1763       // Note: while this code looks the same as for R_X86_64_PC32, it
1764       // behaves differently because psymval was set to point to
1765       // the PLT entry, rather than the symbol, in Scan::global().
1766       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1767                                               address);
1768       break;
1769
1770     case elfcpp::R_X86_64_PLTOFF64:
1771       {
1772         gold_assert(gsym);
1773         gold_assert(gsym->has_plt_offset()
1774                     || gsym->final_value_is_known());
1775         elfcpp::Elf_types<64>::Elf_Addr got_address;
1776         got_address = target->got_section(NULL, NULL)->address();
1777         Relocate_functions<64, false>::rela64(view, object, psymval,
1778                                               addend - got_address);
1779       }
1780
1781     case elfcpp::R_X86_64_GOT32:
1782       gold_assert(have_got_offset);
1783       Relocate_functions<64, false>::rela32(view, got_offset, addend);
1784       break;
1785
1786     case elfcpp::R_X86_64_GOTPC32:
1787       {
1788         gold_assert(gsym);
1789         elfcpp::Elf_types<64>::Elf_Addr value;
1790         value = target->got_plt_section()->address();
1791         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1792       }
1793       break;
1794
1795     case elfcpp::R_X86_64_GOT64:
1796       // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1797       // Since we always add a PLT entry, this is equivalent.
1798     case elfcpp::R_X86_64_GOTPLT64:
1799       gold_assert(have_got_offset);
1800       Relocate_functions<64, false>::rela64(view, got_offset, addend);
1801       break;
1802
1803     case elfcpp::R_X86_64_GOTPC64:
1804       {
1805         gold_assert(gsym);
1806         elfcpp::Elf_types<64>::Elf_Addr value;
1807         value = target->got_plt_section()->address();
1808         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1809       }
1810       break;
1811
1812     case elfcpp::R_X86_64_GOTOFF64:
1813       {
1814         elfcpp::Elf_types<64>::Elf_Addr value;
1815         value = (psymval->value(object, 0)
1816                  - target->got_plt_section()->address());
1817         Relocate_functions<64, false>::rela64(view, value, addend);
1818       }
1819       break;
1820
1821     case elfcpp::R_X86_64_GOTPCREL:
1822       {
1823         gold_assert(have_got_offset);
1824         elfcpp::Elf_types<64>::Elf_Addr value;
1825         value = target->got_plt_section()->address() + got_offset;
1826         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1827       }
1828       break;
1829
1830     case elfcpp::R_X86_64_GOTPCREL64:
1831       {
1832         gold_assert(have_got_offset);
1833         elfcpp::Elf_types<64>::Elf_Addr value;
1834         value = target->got_plt_section()->address() + got_offset;
1835         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1836       }
1837       break;
1838
1839     case elfcpp::R_X86_64_COPY:
1840     case elfcpp::R_X86_64_GLOB_DAT:
1841     case elfcpp::R_X86_64_JUMP_SLOT:
1842     case elfcpp::R_X86_64_RELATIVE:
1843       // These are outstanding tls relocs, which are unexpected when linking
1844     case elfcpp::R_X86_64_TPOFF64:
1845     case elfcpp::R_X86_64_DTPMOD64:
1846     case elfcpp::R_X86_64_TLSDESC:
1847       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1848                              _("unexpected reloc %u in object file"),
1849                              r_type);
1850       break;
1851
1852       // These are initial tls relocs, which are expected when linking
1853     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1854     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1855     case elfcpp::R_X86_64_TLSDESC_CALL:
1856     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1857     case elfcpp::R_X86_64_DTPOFF32:
1858     case elfcpp::R_X86_64_DTPOFF64:
1859     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1860     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1861       this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
1862                          view, address, view_size);
1863       break;
1864
1865     case elfcpp::R_X86_64_SIZE32:
1866     case elfcpp::R_X86_64_SIZE64:
1867     default:
1868       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1869                              _("unsupported reloc %u"),
1870                              r_type);
1871       break;
1872     }
1873
1874   return true;
1875 }
1876
1877 // Perform a TLS relocation.
1878
1879 inline void
1880 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1881                                       Target_x86_64* target,
1882                                       size_t relnum,
1883                                       const elfcpp::Rela<64, false>& rela,
1884                                       unsigned int r_type,
1885                                       const Sized_symbol<64>* gsym,
1886                                       const Symbol_value<64>* psymval,
1887                                       unsigned char* view,
1888                                       elfcpp::Elf_types<64>::Elf_Addr address,
1889                                       section_size_type view_size)
1890 {
1891   Output_segment* tls_segment = relinfo->layout->tls_segment();
1892
1893   const Sized_relobj<64, false>* object = relinfo->object;
1894   const elfcpp::Elf_Xword addend = rela.get_r_addend();
1895
1896   elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1897
1898   const bool is_final = (gsym == NULL
1899                          ? !parameters->options().output_is_position_independent()
1900                          : gsym->final_value_is_known());
1901   const tls::Tls_optimization optimized_type
1902       = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1903   switch (r_type)
1904     {
1905     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1906       this->saw_tls_block_reloc_ = true;
1907       if (optimized_type == tls::TLSOPT_TO_LE)
1908         {
1909           gold_assert(tls_segment != NULL);
1910           this->tls_gd_to_le(relinfo, relnum, tls_segment,
1911                              rela, r_type, value, view,
1912                              view_size);
1913           break;
1914         }
1915       else
1916         {
1917           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
1918                                    ? GOT_TYPE_TLS_OFFSET
1919                                    : GOT_TYPE_TLS_PAIR);
1920           unsigned int got_offset;
1921           if (gsym != NULL)
1922             {
1923               gold_assert(gsym->has_got_offset(got_type));
1924               got_offset = gsym->got_offset(got_type) - target->got_size();
1925             }
1926           else
1927             {
1928               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1929               gold_assert(object->local_has_got_offset(r_sym, got_type));
1930               got_offset = (object->local_got_offset(r_sym, got_type)
1931                             - target->got_size());
1932             }
1933           if (optimized_type == tls::TLSOPT_TO_IE)
1934             {
1935               gold_assert(tls_segment != NULL);
1936               value = target->got_plt_section()->address() + got_offset;
1937               this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
1938                                  value, view, address, view_size);
1939               break;
1940             }
1941           else if (optimized_type == tls::TLSOPT_NONE)
1942             {
1943               // Relocate the field with the offset of the pair of GOT
1944               // entries.
1945               value = target->got_plt_section()->address() + got_offset;
1946               Relocate_functions<64, false>::pcrela32(view, value, addend,
1947                                                       address);
1948               break;
1949             }
1950         }
1951       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1952                              _("unsupported reloc %u"), r_type);
1953       break;
1954
1955     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1956     case elfcpp::R_X86_64_TLSDESC_CALL:
1957       this->saw_tls_block_reloc_ = true;
1958       if (optimized_type == tls::TLSOPT_TO_LE)
1959         {
1960           gold_assert(tls_segment != NULL);
1961           this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
1962                                   rela, r_type, value, view,
1963                                   view_size);
1964           break;
1965         }
1966       else
1967         {
1968           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
1969                                    ? GOT_TYPE_TLS_OFFSET
1970                                    : GOT_TYPE_TLS_DESC);
1971           unsigned int got_offset;
1972           if (gsym != NULL)
1973             {
1974               gold_assert(gsym->has_got_offset(got_type));
1975               got_offset = gsym->got_offset(got_type) - target->got_size();
1976             }
1977           else
1978             {
1979               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1980               gold_assert(object->local_has_got_offset(r_sym, got_type));
1981               got_offset = (object->local_got_offset(r_sym, got_type)
1982                             - target->got_size());
1983             }
1984           if (optimized_type == tls::TLSOPT_TO_IE)
1985             {
1986               gold_assert(tls_segment != NULL);
1987               value = target->got_plt_section()->address() + got_offset;
1988               this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment,
1989                                       rela, r_type, value, view, address,
1990                                       view_size);
1991               break;
1992             }
1993           else if (optimized_type == tls::TLSOPT_NONE)
1994             {
1995               if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
1996                 {
1997                   // Relocate the field with the offset of the pair of GOT
1998                   // entries.
1999                   value = target->got_plt_section()->address() + got_offset;
2000                   Relocate_functions<64, false>::pcrela32(view, value, addend,
2001                                                           address);
2002                 }
2003               break;
2004             }
2005         }
2006       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2007                              _("unsupported reloc %u"), r_type);
2008       break;
2009
2010     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2011       this->saw_tls_block_reloc_ = true;
2012       if (optimized_type == tls::TLSOPT_TO_LE)
2013         {
2014           gold_assert(tls_segment != NULL);
2015           this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
2016                              value, view, view_size);
2017           break;
2018         }
2019       else if (optimized_type == tls::TLSOPT_NONE)
2020         {
2021           // Relocate the field with the offset of the GOT entry for
2022           // the module index.
2023           unsigned int got_offset;
2024           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
2025                         - target->got_size());
2026           value = target->got_plt_section()->address() + got_offset;
2027           Relocate_functions<64, false>::pcrela32(view, value, addend,
2028                                                   address);
2029           break;
2030         }
2031       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2032                              _("unsupported reloc %u"), r_type);
2033       break;
2034
2035     case elfcpp::R_X86_64_DTPOFF32:
2036       gold_assert(tls_segment != NULL);
2037       if (optimized_type == tls::TLSOPT_TO_LE)
2038         {
2039           // This relocation type is used in debugging information.
2040           // In that case we need to not optimize the value.  If we
2041           // haven't seen a TLSLD reloc, then we assume we should not
2042           // optimize this reloc.
2043           if (this->saw_tls_block_reloc_)
2044             value -= tls_segment->memsz();
2045         }
2046       Relocate_functions<64, false>::rela32(view, value, 0);
2047       break;
2048
2049     case elfcpp::R_X86_64_DTPOFF64:
2050       gold_assert(tls_segment != NULL);
2051       if (optimized_type == tls::TLSOPT_TO_LE)
2052         {
2053           // See R_X86_64_DTPOFF32, just above, for why we test this.
2054           if (this->saw_tls_block_reloc_)
2055             value -= tls_segment->memsz();
2056         }
2057       Relocate_functions<64, false>::rela64(view, value, 0);
2058       break;
2059
2060     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2061       if (optimized_type == tls::TLSOPT_TO_LE)
2062         {
2063           gold_assert(tls_segment != NULL);
2064           Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
2065                                                 rela, r_type, value, view,
2066                                                 view_size);
2067           break;
2068         }
2069       else if (optimized_type == tls::TLSOPT_NONE)
2070         {
2071           // Relocate the field with the offset of the GOT entry for
2072           // the tp-relative offset of the symbol.
2073           unsigned int got_offset;
2074           if (gsym != NULL)
2075             {
2076               gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
2077               got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
2078                             - target->got_size());
2079             }
2080           else
2081             {
2082               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2083               gold_assert(object->local_has_got_offset(r_sym,
2084                                                        GOT_TYPE_TLS_OFFSET));
2085               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
2086                             - target->got_size());
2087             }
2088           value = target->got_plt_section()->address() + got_offset;
2089           Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2090           break;
2091         }
2092       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2093                              _("unsupported reloc type %u"),
2094                              r_type);
2095       break;
2096
2097     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2098       value -= tls_segment->memsz();
2099       Relocate_functions<64, false>::rela32(view, value, 0);
2100       break;
2101     }
2102 }
2103
2104 // Do a relocation in which we convert a TLS General-Dynamic to an
2105 // Initial-Exec.
2106
2107 inline void
2108 Target_x86_64::Relocate::tls_gd_to_ie(const Relocate_info<64, false>* relinfo,
2109                                       size_t relnum,
2110                                       Output_segment*,
2111                                       const elfcpp::Rela<64, false>& rela,
2112                                       unsigned int,
2113                                       elfcpp::Elf_types<64>::Elf_Addr value,
2114                                       unsigned char* view,
2115                                       elfcpp::Elf_types<64>::Elf_Addr address,
2116                                       section_size_type view_size)
2117 {
2118   // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
2119   // .word 0x6666; rex64; call __tls_get_addr
2120   // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
2121
2122   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
2123   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
2124
2125   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2126                  (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
2127   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2128                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
2129
2130   memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
2131
2132   const elfcpp::Elf_Xword addend = rela.get_r_addend();
2133   Relocate_functions<64, false>::pcrela32(view + 8, value, addend - 8, address);
2134
2135   // The next reloc should be a PLT32 reloc against __tls_get_addr.
2136   // We can skip it.
2137   this->skip_call_tls_get_addr_ = true;
2138 }
2139
2140 // Do a relocation in which we convert a TLS General-Dynamic to a
2141 // Local-Exec.
2142
2143 inline void
2144 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
2145                                       size_t relnum,
2146                                       Output_segment* tls_segment,
2147                                       const elfcpp::Rela<64, false>& rela,
2148                                       unsigned int,
2149                                       elfcpp::Elf_types<64>::Elf_Addr value,
2150                                       unsigned char* view,
2151                                       section_size_type view_size)
2152 {
2153   // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
2154   // .word 0x6666; rex64; call __tls_get_addr
2155   // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
2156
2157   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
2158   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
2159
2160   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2161                  (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
2162   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2163                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
2164
2165   memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
2166
2167   value -= tls_segment->memsz();
2168   Relocate_functions<64, false>::rela32(view + 8, value, 0);
2169
2170   // The next reloc should be a PLT32 reloc against __tls_get_addr.
2171   // We can skip it.
2172   this->skip_call_tls_get_addr_ = true;
2173 }
2174
2175 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
2176
2177 inline void
2178 Target_x86_64::Relocate::tls_desc_gd_to_ie(
2179     const Relocate_info<64, false>* relinfo,
2180     size_t relnum,
2181     Output_segment*,
2182     const elfcpp::Rela<64, false>& rela,
2183     unsigned int r_type,
2184     elfcpp::Elf_types<64>::Elf_Addr value,
2185     unsigned char* view,
2186     elfcpp::Elf_types<64>::Elf_Addr address,
2187     section_size_type view_size)
2188 {
2189   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2190     {
2191       // leaq foo@tlsdesc(%rip), %rax
2192       // ==> movq foo@gottpoff(%rip), %rax
2193       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2194       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2195       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2196                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
2197       view[-2] = 0x8b;
2198       const elfcpp::Elf_Xword addend = rela.get_r_addend();
2199       Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2200     }
2201   else
2202     {
2203       // call *foo@tlscall(%rax)
2204       // ==> nop; nop
2205       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
2206       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
2207       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2208                      view[0] == 0xff && view[1] == 0x10);
2209       view[0] = 0x66;
2210       view[1] = 0x90;
2211     }
2212 }
2213
2214 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
2215
2216 inline void
2217 Target_x86_64::Relocate::tls_desc_gd_to_le(
2218     const Relocate_info<64, false>* relinfo,
2219     size_t relnum,
2220     Output_segment* tls_segment,
2221     const elfcpp::Rela<64, false>& rela,
2222     unsigned int r_type,
2223     elfcpp::Elf_types<64>::Elf_Addr value,
2224     unsigned char* view,
2225     section_size_type view_size)
2226 {
2227   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2228     {
2229       // leaq foo@tlsdesc(%rip), %rax
2230       // ==> movq foo@tpoff, %rax
2231       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2232       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2233       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2234                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
2235       view[-2] = 0xc7;
2236       view[-1] = 0xc0;
2237       value -= tls_segment->memsz();
2238       Relocate_functions<64, false>::rela32(view, value, 0);
2239     }
2240   else
2241     {
2242       // call *foo@tlscall(%rax)
2243       // ==> nop; nop
2244       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
2245       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
2246       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2247                      view[0] == 0xff && view[1] == 0x10);
2248       view[0] = 0x66;
2249       view[1] = 0x90;
2250     }
2251 }
2252
2253 inline void
2254 Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
2255                                       size_t relnum,
2256                                       Output_segment*,
2257                                       const elfcpp::Rela<64, false>& rela,
2258                                       unsigned int,
2259                                       elfcpp::Elf_types<64>::Elf_Addr,
2260                                       unsigned char* view,
2261                                       section_size_type view_size)
2262 {
2263   // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
2264   // ... leq foo@dtpoff(%rax),%reg
2265   // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
2266
2267   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2268   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
2269
2270   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2271                  view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
2272
2273   tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
2274
2275   memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
2276
2277   // The next reloc should be a PLT32 reloc against __tls_get_addr.
2278   // We can skip it.
2279   this->skip_call_tls_get_addr_ = true;
2280 }
2281
2282 // Do a relocation in which we convert a TLS Initial-Exec to a
2283 // Local-Exec.
2284
2285 inline void
2286 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
2287                                       size_t relnum,
2288                                       Output_segment* tls_segment,
2289                                       const elfcpp::Rela<64, false>& rela,
2290                                       unsigned int,
2291                                       elfcpp::Elf_types<64>::Elf_Addr value,
2292                                       unsigned char* view,
2293                                       section_size_type view_size)
2294 {
2295   // We need to examine the opcodes to figure out which instruction we
2296   // are looking at.
2297
2298   // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
2299   // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
2300
2301   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2302   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2303
2304   unsigned char op1 = view[-3];
2305   unsigned char op2 = view[-2];
2306   unsigned char op3 = view[-1];
2307   unsigned char reg = op3 >> 3;
2308
2309   if (op2 == 0x8b)
2310     {
2311       // movq
2312       if (op1 == 0x4c)
2313         view[-3] = 0x49;
2314       view[-2] = 0xc7;
2315       view[-1] = 0xc0 | reg;
2316     }
2317   else if (reg == 4)
2318     {
2319       // Special handling for %rsp.
2320       if (op1 == 0x4c)
2321         view[-3] = 0x49;
2322       view[-2] = 0x81;
2323       view[-1] = 0xc0 | reg;
2324     }
2325   else
2326     {
2327       // addq
2328       if (op1 == 0x4c)
2329         view[-3] = 0x4d;
2330       view[-2] = 0x8d;
2331       view[-1] = 0x80 | reg | (reg << 3);
2332     }
2333
2334   value -= tls_segment->memsz();
2335   Relocate_functions<64, false>::rela32(view, value, 0);
2336 }
2337
2338 // Relocate section data.
2339
2340 void
2341 Target_x86_64::relocate_section(const Relocate_info<64, false>* relinfo,
2342                                 unsigned int sh_type,
2343                                 const unsigned char* prelocs,
2344                                 size_t reloc_count,
2345                                 Output_section* output_section,
2346                                 bool needs_special_offset_handling,
2347                                 unsigned char* view,
2348                                 elfcpp::Elf_types<64>::Elf_Addr address,
2349                                 section_size_type view_size)
2350 {
2351   gold_assert(sh_type == elfcpp::SHT_RELA);
2352
2353   gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
2354                          Target_x86_64::Relocate>(
2355     relinfo,
2356     this,
2357     prelocs,
2358     reloc_count,
2359     output_section,
2360     needs_special_offset_handling,
2361     view,
2362     address,
2363     view_size);
2364 }
2365
2366 // Return the size of a relocation while scanning during a relocatable
2367 // link.
2368
2369 unsigned int
2370 Target_x86_64::Relocatable_size_for_reloc::get_size_for_reloc(
2371     unsigned int r_type,
2372     Relobj* object)
2373 {
2374   switch (r_type)
2375     {
2376     case elfcpp::R_X86_64_NONE:
2377     case elfcpp::R_386_GNU_VTINHERIT:
2378     case elfcpp::R_386_GNU_VTENTRY:
2379     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2380     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2381     case elfcpp::R_X86_64_TLSDESC_CALL:
2382     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2383     case elfcpp::R_X86_64_DTPOFF32:
2384     case elfcpp::R_X86_64_DTPOFF64:
2385     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2386     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2387       return 0;
2388
2389     case elfcpp::R_X86_64_64:
2390     case elfcpp::R_X86_64_PC64:
2391     case elfcpp::R_X86_64_GOTOFF64:
2392     case elfcpp::R_X86_64_GOTPC64:
2393     case elfcpp::R_X86_64_PLTOFF64:
2394     case elfcpp::R_X86_64_GOT64:
2395     case elfcpp::R_X86_64_GOTPCREL64:
2396     case elfcpp::R_X86_64_GOTPCREL:
2397     case elfcpp::R_X86_64_GOTPLT64:
2398       return 8;
2399
2400     case elfcpp::R_X86_64_32:
2401     case elfcpp::R_X86_64_32S:
2402     case elfcpp::R_X86_64_PC32:
2403     case elfcpp::R_X86_64_PLT32:
2404     case elfcpp::R_X86_64_GOTPC32:
2405     case elfcpp::R_X86_64_GOT32:
2406       return 4;
2407
2408     case elfcpp::R_X86_64_16:
2409     case elfcpp::R_X86_64_PC16:
2410       return 2;
2411
2412     case elfcpp::R_X86_64_8:
2413     case elfcpp::R_X86_64_PC8:
2414       return 1;
2415
2416     case elfcpp::R_X86_64_COPY:
2417     case elfcpp::R_X86_64_GLOB_DAT:
2418     case elfcpp::R_X86_64_JUMP_SLOT:
2419     case elfcpp::R_X86_64_RELATIVE:
2420       // These are outstanding tls relocs, which are unexpected when linking
2421     case elfcpp::R_X86_64_TPOFF64:
2422     case elfcpp::R_X86_64_DTPMOD64:
2423     case elfcpp::R_X86_64_TLSDESC:
2424       object->error(_("unexpected reloc %u in object file"), r_type);
2425       return 0;
2426
2427     case elfcpp::R_X86_64_SIZE32:
2428     case elfcpp::R_X86_64_SIZE64:
2429     default:
2430       object->error(_("unsupported reloc %u against local symbol"), r_type);
2431       return 0;
2432     }
2433 }
2434
2435 // Scan the relocs during a relocatable link.
2436
2437 void
2438 Target_x86_64::scan_relocatable_relocs(const General_options& options,
2439                                        Symbol_table* symtab,
2440                                        Layout* layout,
2441                                        Sized_relobj<64, false>* object,
2442                                        unsigned int data_shndx,
2443                                        unsigned int sh_type,
2444                                        const unsigned char* prelocs,
2445                                        size_t reloc_count,
2446                                        Output_section* output_section,
2447                                        bool needs_special_offset_handling,
2448                                        size_t local_symbol_count,
2449                                        const unsigned char* plocal_symbols,
2450                                        Relocatable_relocs* rr)
2451 {
2452   gold_assert(sh_type == elfcpp::SHT_RELA);
2453
2454   typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
2455     Relocatable_size_for_reloc> Scan_relocatable_relocs;
2456
2457   gold::scan_relocatable_relocs<64, false, elfcpp::SHT_RELA,
2458       Scan_relocatable_relocs>(
2459     options,
2460     symtab,
2461     layout,
2462     object,
2463     data_shndx,
2464     prelocs,
2465     reloc_count,
2466     output_section,
2467     needs_special_offset_handling,
2468     local_symbol_count,
2469     plocal_symbols,
2470     rr);
2471 }
2472
2473 // Relocate a section during a relocatable link.
2474
2475 void
2476 Target_x86_64::relocate_for_relocatable(
2477     const Relocate_info<64, false>* relinfo,
2478     unsigned int sh_type,
2479     const unsigned char* prelocs,
2480     size_t reloc_count,
2481     Output_section* output_section,
2482     off_t offset_in_output_section,
2483     const Relocatable_relocs* rr,
2484     unsigned char* view,
2485     elfcpp::Elf_types<64>::Elf_Addr view_address,
2486     section_size_type view_size,
2487     unsigned char* reloc_view,
2488     section_size_type reloc_view_size)
2489 {
2490   gold_assert(sh_type == elfcpp::SHT_RELA);
2491
2492   gold::relocate_for_relocatable<64, false, elfcpp::SHT_RELA>(
2493     relinfo,
2494     prelocs,
2495     reloc_count,
2496     output_section,
2497     offset_in_output_section,
2498     rr,
2499     view,
2500     view_address,
2501     view_size,
2502     reloc_view,
2503     reloc_view_size);
2504 }
2505
2506 // Return the value to use for a dynamic which requires special
2507 // treatment.  This is how we support equality comparisons of function
2508 // pointers across shared library boundaries, as described in the
2509 // processor specific ABI supplement.
2510
2511 uint64_t
2512 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
2513 {
2514   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
2515   return this->plt_section()->address() + gsym->plt_offset();
2516 }
2517
2518 // Return a string used to fill a code section with nops to take up
2519 // the specified length.
2520
2521 std::string
2522 Target_x86_64::do_code_fill(section_size_type length) const
2523 {
2524   if (length >= 16)
2525     {
2526       // Build a jmpq instruction to skip over the bytes.
2527       unsigned char jmp[5];
2528       jmp[0] = 0xe9;
2529       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
2530       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
2531               + std::string(length - 5, '\0'));
2532     }
2533
2534   // Nop sequences of various lengths.
2535   const char nop1[1] = { 0x90 };                   // nop
2536   const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
2537   const char nop3[3] = { 0x8d, 0x76, 0x00 };       // leal 0(%esi),%esi
2538   const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00};  // leal 0(%esi,1),%esi
2539   const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26,   // nop
2540                          0x00 };                   // leal 0(%esi,1),%esi
2541   const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00,   // leal 0L(%esi),%esi
2542                          0x00, 0x00 };
2543   const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00,   // leal 0L(%esi,1),%esi
2544                          0x00, 0x00, 0x00 };
2545   const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26,   // nop
2546                          0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
2547   const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc,   // movl %esi,%esi
2548                          0x27, 0x00, 0x00, 0x00,   // leal 0L(%edi,1),%edi
2549                          0x00 };
2550   const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
2551                            0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
2552                            0x00, 0x00 };
2553   const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
2554                            0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
2555                            0x00, 0x00, 0x00 };
2556   const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2557                            0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
2558                            0x00, 0x00, 0x00, 0x00 };
2559   const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2560                            0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
2561                            0x27, 0x00, 0x00, 0x00,
2562                            0x00 };
2563   const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
2564                            0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
2565                            0xbc, 0x27, 0x00, 0x00,
2566                            0x00, 0x00 };
2567   const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
2568                            0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
2569                            0x90, 0x90, 0x90, 0x90,
2570                            0x90, 0x90, 0x90 };
2571
2572   const char* nops[16] = {
2573     NULL,
2574     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
2575     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
2576   };
2577
2578   return std::string(nops[length], length);
2579 }
2580
2581 // The selector for x86_64 object files.
2582
2583 class Target_selector_x86_64 : public Target_selector
2584 {
2585 public:
2586   Target_selector_x86_64()
2587     : Target_selector(elfcpp::EM_X86_64, 64, false, "elf64-x86-64")
2588   { }
2589
2590   Target*
2591   do_instantiate_target()
2592   { return new Target_x86_64(); }
2593 };
2594
2595 Target_selector_x86_64 target_selector_x86_64;
2596
2597 } // End anonymous namespace.