From Cary Coutant: Fix x86_64 TLS problem.
[platform/upstream/binutils.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright 2006, 2007, Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or
9 // modify it under the terms of the GNU Library General Public License
10 // as published by the Free Software Foundation; either version 2, or
11 // (at your option) any later version.
12
13 // In addition to the permissions in the GNU Library General Public
14 // License, the Free Software Foundation gives you unlimited
15 // permission to link the compiled version of this file into
16 // combinations with other programs, and to distribute those
17 // combinations without any restriction coming from the use of this
18 // file.  (The Library Public License restrictions do apply in other
19 // respects; for example, they cover modification of the file, and
20 /// distribution when not linked into a combined executable.)
21
22 // This program is distributed in the hope that it will be useful, but
23 // WITHOUT ANY WARRANTY; without even the implied warranty of
24 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
25 // Library General Public License for more details.
26
27 // You should have received a copy of the GNU Library General Public
28 // License along with this program; if not, write to the Free Software
29 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30 // 02110-1301, USA.
31
32 #include "gold.h"
33
34 #include <cstring>
35
36 #include "elfcpp.h"
37 #include "parameters.h"
38 #include "reloc.h"
39 #include "x86_64.h"
40 #include "object.h"
41 #include "symtab.h"
42 #include "layout.h"
43 #include "output.h"
44 #include "target.h"
45 #include "target-reloc.h"
46 #include "target-select.h"
47 #include "tls.h"
48
49 namespace
50 {
51
52 using namespace gold;
53
54 class Output_data_plt_x86_64;
55
56 // The x86_64 target class.
57 // See the ABI at
58 //   http://www.x86-64.org/documentation/abi.pdf
59 // TLS info comes from
60 //   http://people.redhat.com/drepper/tls.pdf
61 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
62
63 class Target_x86_64 : public Sized_target<64, false>
64 {
65  public:
66   // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
67   // uses only Elf64_Rela relocation entries with explicit addends."
68   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
69
70   Target_x86_64()
71     : Sized_target<64, false>(&x86_64_info),
72       got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
73       copy_relocs_(NULL), dynbss_(NULL), got_mod_index_offset_(-1U)
74   { }
75
76   // Scan the relocations to look for symbol adjustments.
77   void
78   scan_relocs(const General_options& options,
79               Symbol_table* symtab,
80               Layout* layout,
81               Sized_relobj<64, false>* object,
82               unsigned int data_shndx,
83               unsigned int sh_type,
84               const unsigned char* prelocs,
85               size_t reloc_count,
86               Output_section* output_section,
87               bool needs_special_offset_handling,
88               size_t local_symbol_count,
89               const unsigned char* plocal_symbols);
90
91   // Finalize the sections.
92   void
93   do_finalize_sections(Layout*);
94
95   // Return the value to use for a dynamic which requires special
96   // treatment.
97   uint64_t
98   do_dynsym_value(const Symbol*) const;
99
100   // Relocate a section.
101   void
102   relocate_section(const Relocate_info<64, false>*,
103                    unsigned int sh_type,
104                    const unsigned char* prelocs,
105                    size_t reloc_count,
106                    Output_section* output_section,
107                    bool needs_special_offset_handling,
108                    unsigned char* view,
109                    elfcpp::Elf_types<64>::Elf_Addr view_address,
110                    off_t view_size);
111
112   // Return a string used to fill a code section with nops.
113   std::string
114   do_code_fill(off_t length);
115
116   // Return whether SYM is defined by the ABI.
117   bool
118   do_is_defined_by_abi(Symbol* sym) const
119   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
120
121   // Return the size of the GOT section.
122   off_t
123   got_size()
124   {
125     gold_assert(this->got_ != NULL);
126     return this->got_->data_size();
127   }
128
129  private:
130   // The class which scans relocations.
131   struct Scan
132   {
133     inline void
134     local(const General_options& options, Symbol_table* symtab,
135           Layout* layout, Target_x86_64* target,
136           Sized_relobj<64, false>* object,
137           unsigned int data_shndx,
138           Output_section* output_section,
139           const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
140           const elfcpp::Sym<64, false>& lsym);
141
142     inline void
143     global(const General_options& options, Symbol_table* symtab,
144            Layout* layout, Target_x86_64* target,
145            Sized_relobj<64, false>* object,
146            unsigned int data_shndx,
147            Output_section* output_section,
148            const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
149            Symbol* gsym);
150
151     static void
152     unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
153
154     static void
155     unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
156                              Symbol*);
157   };
158
159   // The class which implements relocation.
160   class Relocate
161   {
162    public:
163     Relocate()
164       : skip_call_tls_get_addr_(false)
165     { }
166
167     ~Relocate()
168     {
169       if (this->skip_call_tls_get_addr_)
170         {
171           // FIXME: This needs to specify the location somehow.
172           gold_error(_("missing expected TLS relocation"));
173         }
174     }
175
176     // Do a relocation.  Return false if the caller should not issue
177     // any warnings about this relocation.
178     inline bool
179     relocate(const Relocate_info<64, false>*, Target_x86_64*, size_t relnum,
180              const elfcpp::Rela<64, false>&,
181              unsigned int r_type, const Sized_symbol<64>*,
182              const Symbol_value<64>*,
183              unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
184              off_t);
185
186    private:
187     // Do a TLS relocation.
188     inline void
189     relocate_tls(const Relocate_info<64, false>*, Target_x86_64*,
190                  size_t relnum, const elfcpp::Rela<64, false>&,
191                  unsigned int r_type, const Sized_symbol<64>*,
192                  const Symbol_value<64>*,
193                  unsigned char*, elfcpp::Elf_types<64>::Elf_Addr, off_t);
194
195     // Do a TLS General-Dynamic to Local-Exec transition.
196     inline void
197     tls_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
198                  Output_segment* tls_segment,
199                  const elfcpp::Rela<64, false>&, unsigned int r_type,
200                  elfcpp::Elf_types<64>::Elf_Addr value,
201                  unsigned char* view,
202                  off_t view_size);
203
204     // Do a TLS General-Dynamic to Local-Exec transition.
205     inline void
206     tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
207                  Output_segment* tls_segment,
208                  const elfcpp::Rela<64, false>&, unsigned int r_type,
209                  elfcpp::Elf_types<64>::Elf_Addr value,
210                  unsigned char* view,
211                  off_t view_size);
212
213     // Do a TLS Local-Dynamic to Local-Exec transition.
214     inline void
215     tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
216                  Output_segment* tls_segment,
217                  const elfcpp::Rela<64, false>&, unsigned int r_type,
218                  elfcpp::Elf_types<64>::Elf_Addr value,
219                  unsigned char* view,
220                  off_t view_size);
221
222     // Do a TLS Initial-Exec to Local-Exec transition.
223     static inline void
224     tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
225                  Output_segment* tls_segment,
226                  const elfcpp::Rela<64, false>&, unsigned int r_type,
227                  elfcpp::Elf_types<64>::Elf_Addr value,
228                  unsigned char* view,
229                  off_t view_size);
230
231     // This is set if we should skip the next reloc, which should be a
232     // PLT32 reloc against ___tls_get_addr.
233     bool skip_call_tls_get_addr_;
234   };
235
236   // Adjust TLS relocation type based on the options and whether this
237   // is a local symbol.
238   static tls::Tls_optimization
239   optimize_tls_reloc(bool is_final, int r_type);
240
241   // Get the GOT section, creating it if necessary.
242   Output_data_got<64, false>*
243   got_section(Symbol_table*, Layout*);
244
245   // Get the GOT PLT section.
246   Output_data_space*
247   got_plt_section() const
248   {
249     gold_assert(this->got_plt_ != NULL);
250     return this->got_plt_;
251   }
252
253   // Create a PLT entry for a global symbol.
254   void
255   make_plt_entry(Symbol_table*, Layout*, Symbol*);
256
257   // Create a GOT entry for the TLS module index.
258   unsigned int
259   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
260                       Sized_relobj<64, false>* object);
261
262   // Get the PLT section.
263   Output_data_plt_x86_64*
264   plt_section() const
265   {
266     gold_assert(this->plt_ != NULL);
267     return this->plt_;
268   }
269
270   // Get the dynamic reloc section, creating it if necessary.
271   Reloc_section*
272   rela_dyn_section(Layout*);
273
274   // Return true if the symbol may need a COPY relocation.
275   // References from an executable object to non-function symbols
276   // defined in a dynamic object may need a COPY relocation.
277   bool
278   may_need_copy_reloc(Symbol* gsym)
279   {
280     return (!parameters->output_is_shared()
281             && gsym->is_from_dynobj()
282             && gsym->type() != elfcpp::STT_FUNC);
283   }
284
285   // Copy a relocation against a global symbol.
286   void
287   copy_reloc(const General_options*, Symbol_table*, Layout*,
288              Sized_relobj<64, false>*, unsigned int,
289              Output_section*, Symbol*, const elfcpp::Rela<64, false>&);
290
291   // Information about this specific target which we pass to the
292   // general Target structure.
293   static const Target::Target_info x86_64_info;
294
295   // The GOT section.
296   Output_data_got<64, false>* got_;
297   // The PLT section.
298   Output_data_plt_x86_64* plt_;
299   // The GOT PLT section.
300   Output_data_space* got_plt_;
301   // The dynamic reloc section.
302   Reloc_section* rela_dyn_;
303   // Relocs saved to avoid a COPY reloc.
304   Copy_relocs<64, false>* copy_relocs_;
305   // Space for variables copied with a COPY reloc.
306   Output_data_space* dynbss_;
307   // Offset of the GOT entry for the TLS module index;
308   unsigned int got_mod_index_offset_;
309 };
310
311 const Target::Target_info Target_x86_64::x86_64_info =
312 {
313   64,                   // size
314   false,                // is_big_endian
315   elfcpp::EM_X86_64,    // machine_code
316   false,                // has_make_symbol
317   false,                // has_resolve
318   true,                 // has_code_fill
319   true,                 // is_default_stack_executable
320   "/lib/ld64.so.1",     // program interpreter
321   0x400000,             // default_text_segment_address
322   0x1000,               // abi_pagesize
323   0x1000                // common_pagesize
324 };
325
326 // Get the GOT section, creating it if necessary.
327
328 Output_data_got<64, false>*
329 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
330 {
331   if (this->got_ == NULL)
332     {
333       gold_assert(symtab != NULL && layout != NULL);
334
335       this->got_ = new Output_data_got<64, false>();
336
337       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
338                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
339                                       this->got_);
340
341       // The old GNU linker creates a .got.plt section.  We just
342       // create another set of data in the .got section.  Note that we
343       // always create a PLT if we create a GOT, although the PLT
344       // might be empty.
345       this->got_plt_ = new Output_data_space(8);
346       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
347                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
348                                       this->got_plt_);
349
350       // The first three entries are reserved.
351       this->got_plt_->set_current_data_size(3 * 8);
352
353       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
354       symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
355                                     this->got_plt_,
356                                     0, 0, elfcpp::STT_OBJECT,
357                                     elfcpp::STB_LOCAL,
358                                     elfcpp::STV_HIDDEN, 0,
359                                     false, false);
360     }
361
362   return this->got_;
363 }
364
365 // Get the dynamic reloc section, creating it if necessary.
366
367 Target_x86_64::Reloc_section*
368 Target_x86_64::rela_dyn_section(Layout* layout)
369 {
370   if (this->rela_dyn_ == NULL)
371     {
372       gold_assert(layout != NULL);
373       this->rela_dyn_ = new Reloc_section();
374       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
375                                       elfcpp::SHF_ALLOC, this->rela_dyn_);
376     }
377   return this->rela_dyn_;
378 }
379
380 // A class to handle the PLT data.
381
382 class Output_data_plt_x86_64 : public Output_section_data
383 {
384  public:
385   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
386
387   Output_data_plt_x86_64(Layout*, Output_data_space*);
388
389   // Add an entry to the PLT.
390   void
391   add_entry(Symbol* gsym);
392
393   // Return the .rel.plt section data.
394   const Reloc_section*
395   rel_plt() const
396   { return this->rel_; }
397
398  protected:
399   void
400   do_adjust_output_section(Output_section* os);
401
402  private:
403   // The size of an entry in the PLT.
404   static const int plt_entry_size = 16;
405
406   // The first entry in the PLT.
407   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
408   // procedure linkage table for both programs and shared objects."
409   static unsigned char first_plt_entry[plt_entry_size];
410
411   // Other entries in the PLT for an executable.
412   static unsigned char plt_entry[plt_entry_size];
413
414   // Set the final size.
415   void
416   set_final_data_size()
417   { this->set_data_size((this->count_ + 1) * plt_entry_size); }
418
419   // Write out the PLT data.
420   void
421   do_write(Output_file*);
422
423   // The reloc section.
424   Reloc_section* rel_;
425   // The .got.plt section.
426   Output_data_space* got_plt_;
427   // The number of PLT entries.
428   unsigned int count_;
429 };
430
431 // Create the PLT section.  The ordinary .got section is an argument,
432 // since we need to refer to the start.  We also create our own .got
433 // section just for PLT entries.
434
435 Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
436                                                Output_data_space* got_plt)
437   : Output_section_data(8), got_plt_(got_plt), count_(0)
438 {
439   this->rel_ = new Reloc_section();
440   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
441                                   elfcpp::SHF_ALLOC, this->rel_);
442 }
443
444 void
445 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
446 {
447   // UnixWare sets the entsize of .plt to 4, and so does the old GNU
448   // linker, and so do we.
449   os->set_entsize(4);
450 }
451
452 // Add an entry to the PLT.
453
454 void
455 Output_data_plt_x86_64::add_entry(Symbol* gsym)
456 {
457   gold_assert(!gsym->has_plt_offset());
458
459   // Note that when setting the PLT offset we skip the initial
460   // reserved PLT entry.
461   gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
462
463   ++this->count_;
464
465   off_t got_offset = this->got_plt_->current_data_size();
466
467   // Every PLT entry needs a GOT entry which points back to the PLT
468   // entry (this will be changed by the dynamic linker, normally
469   // lazily when the function is called).
470   this->got_plt_->set_current_data_size(got_offset + 8);
471
472   // Every PLT entry needs a reloc.
473   gsym->set_needs_dynsym_entry();
474   this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
475                          got_offset, 0);
476
477   // Note that we don't need to save the symbol.  The contents of the
478   // PLT are independent of which symbols are used.  The symbols only
479   // appear in the relocations.
480 }
481
482 // The first entry in the PLT for an executable.
483
484 unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
485 {
486   // From AMD64 ABI Draft 0.98, page 76
487   0xff, 0x35,   // pushq contents of memory address
488   0, 0, 0, 0,   // replaced with address of .got + 8
489   0xff, 0x25,   // jmp indirect
490   0, 0, 0, 0,   // replaced with address of .got + 16
491   0x90, 0x90, 0x90, 0x90   // noop (x4)
492 };
493
494 // Subsequent entries in the PLT for an executable.
495
496 unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
497 {
498   // From AMD64 ABI Draft 0.98, page 76
499   0xff, 0x25,   // jmpq indirect
500   0, 0, 0, 0,   // replaced with address of symbol in .got
501   0x68,         // pushq immediate
502   0, 0, 0, 0,   // replaced with offset into relocation table
503   0xe9,         // jmpq relative
504   0, 0, 0, 0    // replaced with offset to start of .plt
505 };
506
507 // Write out the PLT.  This uses the hand-coded instructions above,
508 // and adjusts them as needed.  This is specified by the AMD64 ABI.
509
510 void
511 Output_data_plt_x86_64::do_write(Output_file* of)
512 {
513   const off_t offset = this->offset();
514   const off_t oview_size = this->data_size();
515   unsigned char* const oview = of->get_output_view(offset, oview_size);
516
517   const off_t got_file_offset = this->got_plt_->offset();
518   const off_t got_size = this->got_plt_->data_size();
519   unsigned char* const got_view = of->get_output_view(got_file_offset,
520                                                       got_size);
521
522   unsigned char* pov = oview;
523
524   elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
525   elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
526
527   memcpy(pov, first_plt_entry, plt_entry_size);
528   // We do a jmp relative to the PC at the end of this instruction.
529   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 8
530                                               - (plt_address + 6));
531   elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 16
532                                     - (plt_address + 12));
533   pov += plt_entry_size;
534
535   unsigned char* got_pov = got_view;
536
537   memset(got_pov, 0, 24);
538   got_pov += 24;
539
540   unsigned int plt_offset = plt_entry_size;
541   unsigned int got_offset = 24;
542   const unsigned int count = this->count_;
543   for (unsigned int plt_index = 0;
544        plt_index < count;
545        ++plt_index,
546          pov += plt_entry_size,
547          got_pov += 8,
548          plt_offset += plt_entry_size,
549          got_offset += 8)
550     {
551       // Set and adjust the PLT entry itself.
552       memcpy(pov, plt_entry, plt_entry_size);
553       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
554                                                   (got_address + got_offset
555                                                    - (plt_address + plt_offset
556                                                       + 6)));
557
558       elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
559       elfcpp::Swap<32, false>::writeval(pov + 12,
560                                         - (plt_offset + plt_entry_size));
561
562       // Set the entry in the GOT.
563       elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
564     }
565
566   gold_assert(pov - oview == oview_size);
567   gold_assert(got_pov - got_view == got_size);
568
569   of->write_output_view(offset, oview_size, oview);
570   of->write_output_view(got_file_offset, got_size, got_view);
571 }
572
573 // Create a PLT entry for a global symbol.
574
575 void
576 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
577                               Symbol* gsym)
578 {
579   if (gsym->has_plt_offset())
580     return;
581
582   if (this->plt_ == NULL)
583     {
584       // Create the GOT sections first.
585       this->got_section(symtab, layout);
586
587       this->plt_ = new Output_data_plt_x86_64(layout, this->got_plt_);
588       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
589                                       (elfcpp::SHF_ALLOC
590                                        | elfcpp::SHF_EXECINSTR),
591                                       this->plt_);
592     }
593
594   this->plt_->add_entry(gsym);
595 }
596
597 // Create a GOT entry for the TLS module index.
598
599 unsigned int
600 Target_x86_64::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
601                                    Sized_relobj<64, false>* object)
602 {
603   if (this->got_mod_index_offset_ == -1U)
604     {
605       gold_assert(symtab != NULL && layout != NULL && object != NULL);
606       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
607       Output_data_got<64, false>* got = this->got_section(symtab, layout);
608       unsigned int got_offset = got->add_constant(0);
609       rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
610                           got_offset, 0);
611       got->add_constant(0);
612       this->got_mod_index_offset_ = got_offset;
613     }
614   return this->got_mod_index_offset_;
615 }
616
617 // Handle a relocation against a non-function symbol defined in a
618 // dynamic object.  The traditional way to handle this is to generate
619 // a COPY relocation to copy the variable at runtime from the shared
620 // object into the executable's data segment.  However, this is
621 // undesirable in general, as if the size of the object changes in the
622 // dynamic object, the executable will no longer work correctly.  If
623 // this relocation is in a writable section, then we can create a
624 // dynamic reloc and the dynamic linker will resolve it to the correct
625 // address at runtime.  However, we do not want do that if the
626 // relocation is in a read-only section, as it would prevent the
627 // readonly segment from being shared.  And if we have to eventually
628 // generate a COPY reloc, then any dynamic relocations will be
629 // useless.  So this means that if this is a writable section, we need
630 // to save the relocation until we see whether we have to create a
631 // COPY relocation for this symbol for any other relocation.
632
633 void
634 Target_x86_64::copy_reloc(const General_options* options,
635                           Symbol_table* symtab,
636                           Layout* layout,
637                           Sized_relobj<64, false>* object,
638                           unsigned int data_shndx,
639                           Output_section* output_section,
640                           Symbol* gsym,
641                           const elfcpp::Rela<64, false>& rela)
642 {
643   Sized_symbol<64>* ssym;
644   ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(64) (gsym
645                                                         SELECT_SIZE(64));
646
647   if (!Copy_relocs<64, false>::need_copy_reloc(options, object,
648                                                data_shndx, ssym))
649     {
650       // So far we do not need a COPY reloc.  Save this relocation.
651       // If it turns out that we never need a COPY reloc for this
652       // symbol, then we will emit the relocation.
653       if (this->copy_relocs_ == NULL)
654         this->copy_relocs_ = new Copy_relocs<64, false>();
655       this->copy_relocs_->save(ssym, object, data_shndx, output_section, rela);
656     }
657   else
658     {
659       // Allocate space for this symbol in the .bss section.
660
661       elfcpp::Elf_types<64>::Elf_WXword symsize = ssym->symsize();
662
663       // There is no defined way to determine the required alignment
664       // of the symbol.  We pick the alignment based on the size.  We
665       // set an arbitrary maximum of 256.
666       unsigned int align;
667       for (align = 1; align < 512; align <<= 1)
668         if ((symsize & align) != 0)
669           break;
670
671       if (this->dynbss_ == NULL)
672         {
673           this->dynbss_ = new Output_data_space(align);
674           layout->add_output_section_data(".bss",
675                                           elfcpp::SHT_NOBITS,
676                                           (elfcpp::SHF_ALLOC
677                                            | elfcpp::SHF_WRITE),
678                                           this->dynbss_);
679         }
680
681       Output_data_space* dynbss = this->dynbss_;
682
683       if (align > dynbss->addralign())
684         dynbss->set_space_alignment(align);
685
686       off_t dynbss_size = dynbss->current_data_size();
687       dynbss_size = align_address(dynbss_size, align);
688       off_t offset = dynbss_size;
689       dynbss->set_current_data_size(dynbss_size + symsize);
690
691       symtab->define_with_copy_reloc(this, ssym, dynbss, offset);
692
693       // Add the COPY reloc.
694       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
695       rela_dyn->add_global(ssym, elfcpp::R_X86_64_COPY, dynbss, offset, 0);
696     }
697 }
698
699
700 // Optimize the TLS relocation type based on what we know about the
701 // symbol.  IS_FINAL is true if the final address of this symbol is
702 // known at link time.
703
704 tls::Tls_optimization
705 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
706 {
707   // If we are generating a shared library, then we can't do anything
708   // in the linker.
709   if (parameters->output_is_shared())
710     return tls::TLSOPT_NONE;
711
712   switch (r_type)
713     {
714     case elfcpp::R_X86_64_TLSGD:
715     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
716     case elfcpp::R_X86_64_TLSDESC_CALL:
717       // These are General-Dynamic which permits fully general TLS
718       // access.  Since we know that we are generating an executable,
719       // we can convert this to Initial-Exec.  If we also know that
720       // this is a local symbol, we can further switch to Local-Exec.
721       if (is_final)
722         return tls::TLSOPT_TO_LE;
723       return tls::TLSOPT_TO_IE;
724
725     case elfcpp::R_X86_64_TLSLD:
726       // This is Local-Dynamic, which refers to a local symbol in the
727       // dynamic TLS block.  Since we know that we generating an
728       // executable, we can switch to Local-Exec.
729       return tls::TLSOPT_TO_LE;
730
731     case elfcpp::R_X86_64_DTPOFF32:
732     case elfcpp::R_X86_64_DTPOFF64:
733       // Another Local-Dynamic reloc.
734       return tls::TLSOPT_TO_LE;
735
736     case elfcpp::R_X86_64_GOTTPOFF:
737       // These are Initial-Exec relocs which get the thread offset
738       // from the GOT.  If we know that we are linking against the
739       // local symbol, we can switch to Local-Exec, which links the
740       // thread offset into the instruction.
741       if (is_final)
742         return tls::TLSOPT_TO_LE;
743       return tls::TLSOPT_NONE;
744
745     case elfcpp::R_X86_64_TPOFF32:
746       // When we already have Local-Exec, there is nothing further we
747       // can do.
748       return tls::TLSOPT_NONE;
749
750     default:
751       gold_unreachable();
752     }
753 }
754
755 // Report an unsupported relocation against a local symbol.
756
757 void
758 Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
759                                              unsigned int r_type)
760 {
761   gold_error(_("%s: unsupported reloc %u against local symbol"),
762              object->name().c_str(), r_type);
763 }
764
765 // Scan a relocation for a local symbol.
766
767 inline void
768 Target_x86_64::Scan::local(const General_options&,
769                            Symbol_table* symtab,
770                            Layout* layout,
771                            Target_x86_64* target,
772                            Sized_relobj<64, false>* object,
773                            unsigned int data_shndx,
774                            Output_section* output_section,
775                            const elfcpp::Rela<64, false>& reloc,
776                            unsigned int r_type,
777                            const elfcpp::Sym<64, false>& lsym)
778 {
779   switch (r_type)
780     {
781     case elfcpp::R_X86_64_NONE:
782     case elfcpp::R_386_GNU_VTINHERIT:
783     case elfcpp::R_386_GNU_VTENTRY:
784       break;
785
786     case elfcpp::R_X86_64_64:
787       // If building a shared library (or a position-independent
788       // executable), we need to create a dynamic relocation for
789       // this location. The relocation applied at link time will
790       // apply the link-time value, so we flag the location with
791       // an R_386_RELATIVE relocation so the dynamic loader can
792       // relocate it easily.
793       if (parameters->output_is_position_independent())
794         {
795           unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
796           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
797           rela_dyn->add_local_relative(object, r_sym,
798                                        elfcpp::R_X86_64_RELATIVE,
799                                        output_section, data_shndx,
800                                        reloc.get_r_offset(),
801                                        reloc.get_r_addend());
802         }
803       break;
804
805     case elfcpp::R_X86_64_32:
806     case elfcpp::R_X86_64_32S:
807     case elfcpp::R_X86_64_16:
808     case elfcpp::R_X86_64_8:
809       // If building a shared library (or a position-independent
810       // executable), we need to create a dynamic relocation for
811       // this location. The relocation applied at link time will
812       // apply the link-time value, so we flag the location with
813       // an R_386_RELATIVE relocation so the dynamic loader can
814       // relocate it easily.
815       if (parameters->output_is_position_independent())
816         {
817           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
818           unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
819           rela_dyn->add_local(object, r_sym, r_type, output_section,
820                               data_shndx, reloc.get_r_offset(),
821                               reloc.get_r_addend());
822         }
823       break;
824
825     case elfcpp::R_X86_64_PC64:
826     case elfcpp::R_X86_64_PC32:
827     case elfcpp::R_X86_64_PC16:
828     case elfcpp::R_X86_64_PC8:
829       break;
830
831     case elfcpp::R_X86_64_PLT32:
832       // Since we know this is a local symbol, we can handle this as a
833       // PC32 reloc.
834       break;
835
836     case elfcpp::R_X86_64_GOTPC32:
837     case elfcpp::R_X86_64_GOTOFF64:
838     case elfcpp::R_X86_64_GOTPC64:
839     case elfcpp::R_X86_64_PLTOFF64:
840       // We need a GOT section.
841       target->got_section(symtab, layout);
842       // For PLTOFF64, we'd normally want a PLT section, but since we
843       // know this is a local symbol, no PLT is needed.
844       break;
845
846     case elfcpp::R_X86_64_GOT64:
847     case elfcpp::R_X86_64_GOT32:
848     case elfcpp::R_X86_64_GOTPCREL64:
849     case elfcpp::R_X86_64_GOTPCREL:
850     case elfcpp::R_X86_64_GOTPLT64:
851       {
852         // The symbol requires a GOT entry.
853         Output_data_got<64, false>* got = target->got_section(symtab, layout);
854         unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
855         if (got->add_local(object, r_sym))
856           {
857             // If we are generating a shared object, we need to add a
858             // dynamic relocation for this symbol's GOT entry.
859             if (parameters->output_is_position_independent())
860               {
861                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
862                 // R_X86_64_RELATIVE assumes a 64-bit relocation.
863                 if (r_type != elfcpp::R_X86_64_GOT32)
864                   rela_dyn->add_local_relative(object, r_sym,
865                                                elfcpp::R_X86_64_RELATIVE, got,
866                                                object->local_got_offset(r_sym),
867                                                0);
868                 else
869                   rela_dyn->add_local(object, r_sym, r_type,
870                                       got, object->local_got_offset(r_sym), 0);
871               }
872           }
873         // For GOTPLT64, we'd normally want a PLT section, but since
874         // we know this is a local symbol, no PLT is needed.
875       }
876       break;
877
878     case elfcpp::R_X86_64_COPY:
879     case elfcpp::R_X86_64_GLOB_DAT:
880     case elfcpp::R_X86_64_JUMP_SLOT:
881     case elfcpp::R_X86_64_RELATIVE:
882       // These are outstanding tls relocs, which are unexpected when linking
883     case elfcpp::R_X86_64_TPOFF64:
884     case elfcpp::R_X86_64_DTPMOD64:
885     case elfcpp::R_X86_64_TLSDESC:
886       gold_error(_("%s: unexpected reloc %u in object file"),
887                  object->name().c_str(), r_type);
888       break;
889
890       // These are initial tls relocs, which are expected when linking
891     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
892     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
893     case elfcpp::R_X86_64_TLSDESC_CALL:
894     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
895     case elfcpp::R_X86_64_DTPOFF32:
896     case elfcpp::R_X86_64_DTPOFF64:
897     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
898     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
899       {
900         bool output_is_shared = parameters->output_is_shared();
901         const tls::Tls_optimization optimized_type
902             = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
903         switch (r_type)
904           {
905           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
906             if (optimized_type == tls::TLSOPT_NONE)
907               {
908                 // Create a pair of GOT entries for the module index and
909                 // dtv-relative offset.
910                 Output_data_got<64, false>* got
911                     = target->got_section(symtab, layout);
912                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
913                 got->add_local_tls_with_rela(object, r_sym,
914                                              lsym.get_st_shndx(), true,
915                                              target->rela_dyn_section(layout),
916                                              elfcpp::R_X86_64_DTPMOD64);
917               }
918             else if (optimized_type != tls::TLSOPT_TO_LE)
919               unsupported_reloc_local(object, r_type);
920             break;
921
922           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
923           case elfcpp::R_X86_64_TLSDESC_CALL:
924             // FIXME: If not relaxing to LE, we need to generate
925             // a GOT entry with a R_x86_64_TLSDESC reloc.
926             if (optimized_type != tls::TLSOPT_TO_LE)
927               unsupported_reloc_local(object, r_type);
928             break;
929
930           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
931             if (optimized_type == tls::TLSOPT_NONE)
932               {
933                 // Create a GOT entry for the module index.
934                 target->got_mod_index_entry(symtab, layout, object);
935               }
936             else if (optimized_type != tls::TLSOPT_TO_LE)
937               unsupported_reloc_local(object, r_type);
938             break;
939
940           case elfcpp::R_X86_64_DTPOFF32:
941           case elfcpp::R_X86_64_DTPOFF64:
942             break;
943
944           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
945             if (optimized_type == tls::TLSOPT_NONE)
946               {
947                 // Create a GOT entry for the tp-relative offset.
948                 Output_data_got<64, false>* got
949                     = target->got_section(symtab, layout);
950                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
951                 got->add_local_with_rela(object, r_sym,
952                                          target->rela_dyn_section(layout),
953                                          elfcpp::R_X86_64_TPOFF64);
954               }
955             else if (optimized_type != tls::TLSOPT_TO_LE)
956               unsupported_reloc_local(object, r_type);
957             break;
958
959           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
960             if (output_is_shared)
961               unsupported_reloc_local(object, r_type);
962             break;
963
964           default:
965             gold_unreachable();
966           }
967       }
968       break;
969
970     case elfcpp::R_X86_64_SIZE32:
971     case elfcpp::R_X86_64_SIZE64:
972     default:
973       gold_error(_("%s: unsupported reloc %u against local symbol"),
974                  object->name().c_str(), r_type);
975       break;
976     }
977 }
978
979
980 // Report an unsupported relocation against a global symbol.
981
982 void
983 Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
984                                               unsigned int r_type,
985                                               Symbol* gsym)
986 {
987   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
988              object->name().c_str(), r_type, gsym->demangled_name().c_str());
989 }
990
991 // Scan a relocation for a global symbol.
992
993 inline void
994 Target_x86_64::Scan::global(const General_options& options,
995                             Symbol_table* symtab,
996                             Layout* layout,
997                             Target_x86_64* target,
998                             Sized_relobj<64, false>* object,
999                             unsigned int data_shndx,
1000                             Output_section* output_section,
1001                             const elfcpp::Rela<64, false>& reloc,
1002                             unsigned int r_type,
1003                             Symbol* gsym)
1004 {
1005   switch (r_type)
1006     {
1007     case elfcpp::R_X86_64_NONE:
1008     case elfcpp::R_386_GNU_VTINHERIT:
1009     case elfcpp::R_386_GNU_VTENTRY:
1010       break;
1011
1012     case elfcpp::R_X86_64_64:
1013     case elfcpp::R_X86_64_32:
1014     case elfcpp::R_X86_64_32S:
1015     case elfcpp::R_X86_64_16:
1016     case elfcpp::R_X86_64_8:
1017       {
1018         // Make a PLT entry if necessary.
1019         if (gsym->needs_plt_entry())
1020           {
1021             target->make_plt_entry(symtab, layout, gsym);
1022             // Since this is not a PC-relative relocation, we may be
1023             // taking the address of a function. In that case we need to
1024             // set the entry in the dynamic symbol table to the address of
1025             // the PLT entry.
1026             if (gsym->is_from_dynobj())
1027               gsym->set_needs_dynsym_value();
1028           }
1029         // Make a dynamic relocation if necessary.
1030         if (gsym->needs_dynamic_reloc(true, false))
1031           {
1032             if (target->may_need_copy_reloc(gsym))
1033               {
1034                 target->copy_reloc(&options, symtab, layout, object,
1035                                    data_shndx, output_section, gsym, reloc);
1036               }
1037             else if (r_type == elfcpp::R_X86_64_64
1038                      && gsym->can_use_relative_reloc(false))
1039               {
1040                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1041                 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1042                                               output_section, object,
1043                                               data_shndx, reloc.get_r_offset(),
1044                                               reloc.get_r_addend());
1045               }
1046             else
1047               {
1048                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1049                 rela_dyn->add_global(gsym, r_type, output_section, object,
1050                                      data_shndx, reloc.get_r_offset(),
1051                                      reloc.get_r_addend());
1052               }
1053           }
1054       }
1055       break;
1056
1057     case elfcpp::R_X86_64_PC64:
1058     case elfcpp::R_X86_64_PC32:
1059     case elfcpp::R_X86_64_PC16:
1060     case elfcpp::R_X86_64_PC8:
1061       {
1062         // Make a PLT entry if necessary.
1063         if (gsym->needs_plt_entry())
1064           target->make_plt_entry(symtab, layout, gsym);
1065         // Make a dynamic relocation if necessary.
1066         bool is_function_call = (gsym->type() == elfcpp::STT_FUNC);
1067         if (gsym->needs_dynamic_reloc(false, is_function_call))
1068           {
1069             if (target->may_need_copy_reloc(gsym))
1070               {
1071                 target->copy_reloc(&options, symtab, layout, object,
1072                                    data_shndx, output_section, gsym, reloc);
1073               }
1074             else
1075               {
1076                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1077                 rela_dyn->add_global(gsym, r_type, output_section, object,
1078                                      data_shndx, reloc.get_r_offset(),
1079                                      reloc.get_r_addend());
1080               }
1081           }
1082       }
1083       break;
1084
1085     case elfcpp::R_X86_64_GOT64:
1086     case elfcpp::R_X86_64_GOT32:
1087     case elfcpp::R_X86_64_GOTPCREL64:
1088     case elfcpp::R_X86_64_GOTPCREL:
1089     case elfcpp::R_X86_64_GOTPLT64:
1090       {
1091         // The symbol requires a GOT entry.
1092         Output_data_got<64, false>* got = target->got_section(symtab, layout);
1093         if (gsym->final_value_is_known())
1094           got->add_global(gsym);
1095         else
1096           {
1097             // If this symbol is not fully resolved, we need to add a
1098             // dynamic relocation for it.
1099             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1100             if (gsym->is_from_dynobj() || gsym->is_preemptible())
1101               got->add_global_with_rela(gsym, rela_dyn,
1102                                         elfcpp::R_X86_64_GLOB_DAT);
1103             else
1104               {
1105                 if (got->add_global(gsym))
1106                   rela_dyn->add_global_relative(gsym,
1107                                                 elfcpp::R_X86_64_RELATIVE,
1108                                                 got, gsym->got_offset(), 0);
1109               }
1110           }
1111         // For GOTPLT64, we also need a PLT entry (but only if the
1112         // symbol is not fully resolved).
1113         if (r_type == elfcpp::R_X86_64_GOTPLT64
1114             && !gsym->final_value_is_known())
1115           target->make_plt_entry(symtab, layout, gsym);
1116       }
1117       break;
1118
1119     case elfcpp::R_X86_64_PLT32:
1120       // If the symbol is fully resolved, this is just a PC32 reloc.
1121       // Otherwise we need a PLT entry.
1122       if (gsym->final_value_is_known())
1123         break;
1124       // If building a shared library, we can also skip the PLT entry
1125       // if the symbol is defined in the output file and is protected
1126       // or hidden.
1127       if (gsym->is_defined()
1128           && !gsym->is_from_dynobj()
1129           && !gsym->is_preemptible())
1130         break;
1131       target->make_plt_entry(symtab, layout, gsym);
1132       break;
1133
1134     case elfcpp::R_X86_64_GOTPC32:
1135     case elfcpp::R_X86_64_GOTOFF64:
1136     case elfcpp::R_X86_64_GOTPC64:
1137     case elfcpp::R_X86_64_PLTOFF64:
1138       // We need a GOT section.
1139       target->got_section(symtab, layout);
1140       // For PLTOFF64, we also need a PLT entry (but only if the
1141       // symbol is not fully resolved).
1142       if (r_type == elfcpp::R_X86_64_PLTOFF64
1143           && !gsym->final_value_is_known())
1144         target->make_plt_entry(symtab, layout, gsym);
1145       break;
1146
1147     case elfcpp::R_X86_64_COPY:
1148     case elfcpp::R_X86_64_GLOB_DAT:
1149     case elfcpp::R_X86_64_JUMP_SLOT:
1150     case elfcpp::R_X86_64_RELATIVE:
1151       // These are outstanding tls relocs, which are unexpected when linking
1152     case elfcpp::R_X86_64_TPOFF64:
1153     case elfcpp::R_X86_64_DTPMOD64:
1154     case elfcpp::R_X86_64_TLSDESC:
1155       gold_error(_("%s: unexpected reloc %u in object file"),
1156                  object->name().c_str(), r_type);
1157       break;
1158
1159       // These are initial tls relocs, which are expected for global()
1160     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1161     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1162     case elfcpp::R_X86_64_TLSDESC_CALL:
1163     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1164     case elfcpp::R_X86_64_DTPOFF32:
1165     case elfcpp::R_X86_64_DTPOFF64:
1166     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1167     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1168       {
1169         const bool is_final = gsym->final_value_is_known();
1170         const tls::Tls_optimization optimized_type
1171             = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1172         switch (r_type)
1173           {
1174           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
1175             if (optimized_type == tls::TLSOPT_NONE)
1176               {
1177                 // Create a pair of GOT entries for the module index and
1178                 // dtv-relative offset.
1179                 Output_data_got<64, false>* got
1180                     = target->got_section(symtab, layout);
1181                 got->add_global_tls_with_rela(gsym,
1182                                               target->rela_dyn_section(layout),
1183                                               elfcpp::R_X86_64_DTPMOD64,
1184                                               elfcpp::R_X86_64_DTPOFF64);
1185               }
1186             else if (optimized_type == tls::TLSOPT_TO_IE)
1187               {
1188                 // Create a GOT entry for the tp-relative offset.
1189                 Output_data_got<64, false>* got
1190                     = target->got_section(symtab, layout);
1191                 got->add_global_with_rela(gsym,
1192                                           target->rela_dyn_section(layout),
1193                                           elfcpp::R_X86_64_TPOFF64);
1194               }
1195             else if (optimized_type != tls::TLSOPT_TO_LE)
1196               unsupported_reloc_global(object, r_type, gsym);
1197             break;
1198
1199           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1200           case elfcpp::R_X86_64_TLSDESC_CALL:
1201             // FIXME: If not relaxing to LE, we need to generate
1202             // DTPMOD64 and DTPOFF64, or TLSDESC, relocs.
1203             if (optimized_type != tls::TLSOPT_TO_LE)
1204               unsupported_reloc_global(object, r_type, gsym);
1205             break;
1206
1207           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
1208             if (optimized_type == tls::TLSOPT_NONE)
1209               {
1210                 // Create a GOT entry for the module index.
1211                 target->got_mod_index_entry(symtab, layout, object);
1212               }
1213             else if (optimized_type != tls::TLSOPT_TO_LE)
1214               unsupported_reloc_global(object, r_type, gsym);
1215             break;
1216
1217           case elfcpp::R_X86_64_DTPOFF32:
1218           case elfcpp::R_X86_64_DTPOFF64:
1219             break;
1220
1221           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
1222             if (optimized_type == tls::TLSOPT_NONE)
1223               {
1224                 // Create a GOT entry for the tp-relative offset.
1225                 Output_data_got<64, false>* got
1226                     = target->got_section(symtab, layout);
1227                 got->add_global_with_rela(gsym,
1228                                           target->rela_dyn_section(layout),
1229                                           elfcpp::R_X86_64_TPOFF64);
1230               }
1231             else if (optimized_type != tls::TLSOPT_TO_LE)
1232               unsupported_reloc_global(object, r_type, gsym);
1233             break;
1234
1235           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
1236             if (parameters->output_is_shared())
1237               unsupported_reloc_local(object, r_type);
1238             break;
1239
1240           default:
1241             gold_unreachable();
1242           }
1243       }
1244       break;
1245
1246     case elfcpp::R_X86_64_SIZE32:
1247     case elfcpp::R_X86_64_SIZE64:
1248     default:
1249       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1250                  object->name().c_str(), r_type,
1251                  gsym->demangled_name().c_str());
1252       break;
1253     }
1254 }
1255
1256 // Scan relocations for a section.
1257
1258 void
1259 Target_x86_64::scan_relocs(const General_options& options,
1260                            Symbol_table* symtab,
1261                            Layout* layout,
1262                            Sized_relobj<64, false>* object,
1263                            unsigned int data_shndx,
1264                            unsigned int sh_type,
1265                            const unsigned char* prelocs,
1266                            size_t reloc_count,
1267                            Output_section* output_section,
1268                            bool needs_special_offset_handling,
1269                            size_t local_symbol_count,
1270                            const unsigned char* plocal_symbols)
1271 {
1272   if (sh_type == elfcpp::SHT_REL)
1273     {
1274       gold_error(_("%s: unsupported REL reloc section"),
1275                  object->name().c_str());
1276       return;
1277     }
1278
1279   gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1280       Target_x86_64::Scan>(
1281     options,
1282     symtab,
1283     layout,
1284     this,
1285     object,
1286     data_shndx,
1287     prelocs,
1288     reloc_count,
1289     output_section,
1290     needs_special_offset_handling,
1291     local_symbol_count,
1292     plocal_symbols);
1293 }
1294
1295 // Finalize the sections.
1296
1297 void
1298 Target_x86_64::do_finalize_sections(Layout* layout)
1299 {
1300   // Fill in some more dynamic tags.
1301   Output_data_dynamic* const odyn = layout->dynamic_data();
1302   if (odyn != NULL)
1303     {
1304       if (this->got_plt_ != NULL)
1305         odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1306
1307       if (this->plt_ != NULL)
1308         {
1309           const Output_data* od = this->plt_->rel_plt();
1310           odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1311           odyn->add_section_address(elfcpp::DT_JMPREL, od);
1312           odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1313         }
1314
1315       if (this->rela_dyn_ != NULL)
1316         {
1317           const Output_data* od = this->rela_dyn_;
1318           odyn->add_section_address(elfcpp::DT_RELA, od);
1319           odyn->add_section_size(elfcpp::DT_RELASZ, od);
1320           odyn->add_constant(elfcpp::DT_RELAENT,
1321                              elfcpp::Elf_sizes<64>::rela_size);
1322         }
1323
1324       if (!parameters->output_is_shared())
1325         {
1326           // The value of the DT_DEBUG tag is filled in by the dynamic
1327           // linker at run time, and used by the debugger.
1328           odyn->add_constant(elfcpp::DT_DEBUG, 0);
1329         }
1330     }
1331
1332   // Emit any relocs we saved in an attempt to avoid generating COPY
1333   // relocs.
1334   if (this->copy_relocs_ == NULL)
1335     return;
1336   if (this->copy_relocs_->any_to_emit())
1337     {
1338       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1339       this->copy_relocs_->emit(rela_dyn);
1340     }
1341   delete this->copy_relocs_;
1342   this->copy_relocs_ = NULL;
1343 }
1344
1345 // Perform a relocation.
1346
1347 inline bool
1348 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1349                                   Target_x86_64* target,
1350                                   size_t relnum,
1351                                   const elfcpp::Rela<64, false>& rela,
1352                                   unsigned int r_type,
1353                                   const Sized_symbol<64>* gsym,
1354                                   const Symbol_value<64>* psymval,
1355                                   unsigned char* view,
1356                                   elfcpp::Elf_types<64>::Elf_Addr address,
1357                                   off_t view_size)
1358 {
1359   if (this->skip_call_tls_get_addr_)
1360     {
1361       if (r_type != elfcpp::R_X86_64_PLT32
1362           || gsym == NULL
1363           || strcmp(gsym->name(), "__tls_get_addr") != 0)
1364         {
1365           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1366                                  _("missing expected TLS relocation"));
1367         }
1368       else
1369         {
1370           this->skip_call_tls_get_addr_ = false;
1371           return false;
1372         }
1373     }
1374
1375   // Pick the value to use for symbols defined in shared objects.
1376   Symbol_value<64> symval;
1377   if (gsym != NULL
1378       && (gsym->is_from_dynobj()
1379           || (parameters->output_is_shared()
1380               && gsym->is_preemptible()))
1381       && gsym->has_plt_offset())
1382     {
1383       symval.set_output_value(target->plt_section()->address()
1384                               + gsym->plt_offset());
1385       psymval = &symval;
1386     }
1387
1388   const Sized_relobj<64, false>* object = relinfo->object;
1389   const elfcpp::Elf_Xword addend = rela.get_r_addend();
1390
1391   // Get the GOT offset if needed.
1392   // The GOT pointer points to the end of the GOT section.
1393   // We need to subtract the size of the GOT section to get
1394   // the actual offset to use in the relocation.
1395   bool have_got_offset = false;
1396   unsigned int got_offset = 0;
1397   switch (r_type)
1398     {
1399     case elfcpp::R_X86_64_GOT32:
1400     case elfcpp::R_X86_64_GOT64:
1401     case elfcpp::R_X86_64_GOTPLT64:
1402     case elfcpp::R_X86_64_GOTPCREL:
1403     case elfcpp::R_X86_64_GOTPCREL64:
1404       if (gsym != NULL)
1405         {
1406           gold_assert(gsym->has_got_offset());
1407           got_offset = gsym->got_offset() - target->got_size();
1408         }
1409       else
1410         {
1411           unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1412           gold_assert(object->local_has_got_offset(r_sym));
1413           got_offset = object->local_got_offset(r_sym) - target->got_size();
1414         }
1415       have_got_offset = true;
1416       break;
1417
1418     default:
1419       break;
1420     }
1421
1422   switch (r_type)
1423     {
1424     case elfcpp::R_X86_64_NONE:
1425     case elfcpp::R_386_GNU_VTINHERIT:
1426     case elfcpp::R_386_GNU_VTENTRY:
1427       break;
1428
1429     case elfcpp::R_X86_64_64:
1430       Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1431       break;
1432
1433     case elfcpp::R_X86_64_PC64:
1434       Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1435                                               address);
1436       break;
1437
1438     case elfcpp::R_X86_64_32:
1439       // FIXME: we need to verify that value + addend fits into 32 bits:
1440       //    uint64_t x = value + addend;
1441       //    x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1442       // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
1443       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1444       break;
1445
1446     case elfcpp::R_X86_64_32S:
1447       // FIXME: we need to verify that value + addend fits into 32 bits:
1448       //    int64_t x = value + addend;   // note this quantity is signed!
1449       //    x == static_cast<int64_t>(static_cast<int32_t>(x))
1450       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1451       break;
1452
1453     case elfcpp::R_X86_64_PC32:
1454       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1455                                               address);
1456       break;
1457
1458     case elfcpp::R_X86_64_16:
1459       Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1460       break;
1461
1462     case elfcpp::R_X86_64_PC16:
1463       Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1464                                               address);
1465       break;
1466
1467     case elfcpp::R_X86_64_8:
1468       Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1469       break;
1470
1471     case elfcpp::R_X86_64_PC8:
1472       Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1473                                              address);
1474       break;
1475
1476     case elfcpp::R_X86_64_PLT32:
1477       gold_assert(gsym == NULL
1478                   || gsym->has_plt_offset()
1479                   || gsym->final_value_is_known());
1480       // Note: while this code looks the same as for R_X86_64_PC32, it
1481       // behaves differently because psymval was set to point to
1482       // the PLT entry, rather than the symbol, in Scan::global().
1483       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1484                                               address);
1485       break;
1486
1487     case elfcpp::R_X86_64_PLTOFF64:
1488       {
1489         gold_assert(gsym);
1490         gold_assert(gsym->has_plt_offset()
1491                     || gsym->final_value_is_known());
1492         elfcpp::Elf_types<64>::Elf_Addr got_address;
1493         got_address = target->got_section(NULL, NULL)->address();
1494         Relocate_functions<64, false>::rela64(view, object, psymval,
1495                                               addend - got_address);
1496       }
1497
1498     case elfcpp::R_X86_64_GOT32:
1499       gold_assert(have_got_offset);
1500       Relocate_functions<64, false>::rela32(view, got_offset, addend);
1501       break;
1502
1503     case elfcpp::R_X86_64_GOTPC32:
1504       {
1505         gold_assert(gsym);
1506         elfcpp::Elf_types<64>::Elf_Addr value;
1507         value = target->got_plt_section()->address();
1508         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1509       }
1510       break;
1511
1512     case elfcpp::R_X86_64_GOT64:
1513       // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1514       // Since we always add a PLT entry, this is equivalent.
1515     case elfcpp::R_X86_64_GOTPLT64:
1516       gold_assert(have_got_offset);
1517       Relocate_functions<64, false>::rela64(view, got_offset, addend);
1518       break;
1519
1520     case elfcpp::R_X86_64_GOTPC64:
1521       {
1522         gold_assert(gsym);
1523         elfcpp::Elf_types<64>::Elf_Addr value;
1524         value = target->got_plt_section()->address();
1525         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1526       }
1527       break;
1528
1529     case elfcpp::R_X86_64_GOTOFF64:
1530       {
1531         elfcpp::Elf_types<64>::Elf_Addr value;
1532         value = (psymval->value(object, 0)
1533                  - target->got_plt_section()->address());
1534         Relocate_functions<64, false>::rela64(view, value, addend);
1535       }
1536       break;
1537
1538     case elfcpp::R_X86_64_GOTPCREL:
1539       {
1540         gold_assert(have_got_offset);
1541         elfcpp::Elf_types<64>::Elf_Addr value;
1542         value = target->got_plt_section()->address() + got_offset;
1543         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1544       }
1545       break;
1546
1547     case elfcpp::R_X86_64_GOTPCREL64:
1548       {
1549         gold_assert(have_got_offset);
1550         elfcpp::Elf_types<64>::Elf_Addr value;
1551         value = target->got_plt_section()->address() + got_offset;
1552         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1553       }
1554       break;
1555
1556     case elfcpp::R_X86_64_COPY:
1557     case elfcpp::R_X86_64_GLOB_DAT:
1558     case elfcpp::R_X86_64_JUMP_SLOT:
1559     case elfcpp::R_X86_64_RELATIVE:
1560       // These are outstanding tls relocs, which are unexpected when linking
1561     case elfcpp::R_X86_64_TPOFF64:
1562     case elfcpp::R_X86_64_DTPMOD64:
1563     case elfcpp::R_X86_64_TLSDESC:
1564       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1565                              _("unexpected reloc %u in object file"),
1566                              r_type);
1567       break;
1568
1569       // These are initial tls relocs, which are expected when linking
1570     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1571     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1572     case elfcpp::R_X86_64_TLSDESC_CALL:
1573     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1574     case elfcpp::R_X86_64_DTPOFF32:
1575     case elfcpp::R_X86_64_DTPOFF64:
1576     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1577     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1578       this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
1579                          view, address, view_size);
1580       break;
1581
1582     case elfcpp::R_X86_64_SIZE32:
1583     case elfcpp::R_X86_64_SIZE64:
1584     default:
1585       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1586                              _("unsupported reloc %u"),
1587                              r_type);
1588       break;
1589     }
1590
1591   return true;
1592 }
1593
1594 // Perform a TLS relocation.
1595
1596 inline void
1597 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1598                                       Target_x86_64* target,
1599                                       size_t relnum,
1600                                       const elfcpp::Rela<64, false>& rela,
1601                                       unsigned int r_type,
1602                                       const Sized_symbol<64>* gsym,
1603                                       const Symbol_value<64>* psymval,
1604                                       unsigned char* view,
1605                                       elfcpp::Elf_types<64>::Elf_Addr address,
1606                                       off_t view_size)
1607 {
1608   Output_segment* tls_segment = relinfo->layout->tls_segment();
1609
1610   const Sized_relobj<64, false>* object = relinfo->object;
1611   const elfcpp::Elf_Xword addend = rela.get_r_addend();
1612
1613   elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1614
1615   const bool is_final = (gsym == NULL
1616                          ? !parameters->output_is_position_independent()
1617                          : gsym->final_value_is_known());
1618   const tls::Tls_optimization optimized_type
1619       = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1620   switch (r_type)
1621     {
1622     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1623     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1624     case elfcpp::R_X86_64_TLSDESC_CALL:
1625       if (optimized_type == tls::TLSOPT_TO_LE)
1626         {
1627           gold_assert(tls_segment != NULL);
1628           this->tls_gd_to_le(relinfo, relnum, tls_segment,
1629                              rela, r_type, value, view,
1630                              view_size);
1631           break;
1632         }
1633       else
1634         {
1635           unsigned int got_offset;
1636           if (gsym != NULL)
1637             {
1638               gold_assert(gsym->has_tls_got_offset(true));
1639               got_offset = gsym->tls_got_offset(true) - target->got_size();
1640             }
1641           else
1642             {
1643               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1644               gold_assert(object->local_has_tls_got_offset(r_sym, true));
1645               got_offset = (object->local_tls_got_offset(r_sym, true)
1646                             - target->got_size());
1647             }
1648           if (optimized_type == tls::TLSOPT_TO_IE)
1649             {
1650               gold_assert(tls_segment != NULL);
1651               this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
1652                                  got_offset, view, view_size);
1653               break;
1654             }
1655           else if (optimized_type == tls::TLSOPT_NONE)
1656             {
1657               // Relocate the field with the offset of the pair of GOT
1658               // entries.
1659               value = target->got_plt_section()->address() + got_offset;
1660               Relocate_functions<64, false>::pcrela32(view, value, addend,
1661                                                       address);
1662               break;
1663             }
1664         }
1665       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1666                              _("unsupported reloc %u"), r_type);
1667       break;
1668
1669     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1670       if (optimized_type == tls::TLSOPT_TO_LE)
1671         {
1672           gold_assert(tls_segment != NULL);
1673           this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
1674                              value, view, view_size);
1675           break;
1676         }
1677       else if (optimized_type == tls::TLSOPT_NONE)
1678         {
1679           // Relocate the field with the offset of the GOT entry for
1680           // the module index.
1681           unsigned int got_offset;
1682           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
1683                         - target->got_size());
1684           value = target->got_plt_section()->address() + got_offset;
1685           Relocate_functions<64, false>::pcrela32(view, value, addend,
1686                                                   address);
1687           break;
1688         }
1689       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1690                              _("unsupported reloc %u"), r_type);
1691       break;
1692
1693     case elfcpp::R_X86_64_DTPOFF32:
1694       gold_assert(tls_segment != NULL);
1695       if (optimized_type == tls::TLSOPT_TO_LE)
1696         value -= tls_segment->memsz();
1697       Relocate_functions<64, false>::rela32(view, value, 0);
1698       break;
1699
1700     case elfcpp::R_X86_64_DTPOFF64:
1701       gold_assert(tls_segment != NULL);
1702       if (optimized_type == tls::TLSOPT_TO_LE)
1703         value -= tls_segment->memsz();
1704       Relocate_functions<64, false>::rela64(view, value, 0);
1705       break;
1706
1707     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1708       if (optimized_type == tls::TLSOPT_TO_LE)
1709         {
1710           gold_assert(tls_segment != NULL);
1711           Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1712                                                 rela, r_type, value, view,
1713                                                 view_size);
1714           break;
1715         }
1716       else if (optimized_type == tls::TLSOPT_NONE)
1717         {
1718           // Relocate the field with the offset of the GOT entry for
1719           // the tp-relative offset of the symbol.
1720           unsigned int got_offset;
1721           if (gsym != NULL)
1722             {
1723               gold_assert(gsym->has_got_offset());
1724               got_offset = gsym->got_offset() - target->got_size();
1725             }
1726           else
1727             {
1728               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1729               gold_assert(object->local_has_got_offset(r_sym));
1730               got_offset = (object->local_got_offset(r_sym)
1731                             - target->got_size());
1732             }
1733           value = target->got_plt_section()->address() + got_offset;
1734           Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1735           break;
1736         }
1737       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1738                              _("unsupported reloc type %u"),
1739                              r_type);
1740       break;
1741
1742     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1743       value -= tls_segment->memsz();
1744       Relocate_functions<64, false>::rela32(view, value, 0);
1745       break;
1746     }
1747 }
1748
1749 // Do a relocation in which we convert a TLS General-Dynamic to an
1750 // Initial-Exec.
1751
1752 inline void
1753 Target_x86_64::Relocate::tls_gd_to_ie(const Relocate_info<64, false>* relinfo,
1754                                       size_t relnum,
1755                                       Output_segment* tls_segment,
1756                                       const elfcpp::Rela<64, false>& rela,
1757                                       unsigned int,
1758                                       elfcpp::Elf_types<64>::Elf_Addr value,
1759                                       unsigned char* view,
1760                                       off_t view_size)
1761 {
1762   // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1763   // .word 0x6666; rex64; call __tls_get_addr
1764   // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
1765
1766   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
1767   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
1768
1769   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1770                  (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
1771   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1772                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
1773
1774   memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
1775
1776   value -= tls_segment->memsz();
1777   Relocate_functions<64, false>::rela32(view + 8, value, 0);
1778
1779   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1780   // We can skip it.
1781   this->skip_call_tls_get_addr_ = true;
1782 }
1783
1784 // Do a relocation in which we convert a TLS General-Dynamic to a
1785 // Local-Exec.
1786
1787 inline void
1788 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
1789                                       size_t relnum,
1790                                       Output_segment* tls_segment,
1791                                       const elfcpp::Rela<64, false>& rela,
1792                                       unsigned int,
1793                                       elfcpp::Elf_types<64>::Elf_Addr value,
1794                                       unsigned char* view,
1795                                       off_t view_size)
1796 {
1797   // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1798   // .word 0x6666; rex64; call __tls_get_addr
1799   // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
1800
1801   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
1802   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
1803
1804   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1805                  (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
1806   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1807                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
1808
1809   memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
1810
1811   value -= tls_segment->memsz();
1812   Relocate_functions<64, false>::rela32(view + 8, value, 0);
1813
1814   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1815   // We can skip it.
1816   this->skip_call_tls_get_addr_ = true;
1817 }
1818
1819 inline void
1820 Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
1821                                       size_t relnum,
1822                                       Output_segment*,
1823                                       const elfcpp::Rela<64, false>& rela,
1824                                       unsigned int,
1825                                       elfcpp::Elf_types<64>::Elf_Addr,
1826                                       unsigned char* view,
1827                                       off_t view_size)
1828 {
1829   // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
1830   // ... leq foo@dtpoff(%rax),%reg
1831   // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
1832
1833   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1834   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
1835
1836   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1837                  view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
1838
1839   tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
1840
1841   memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
1842
1843   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1844   // We can skip it.
1845   this->skip_call_tls_get_addr_ = true;
1846 }
1847
1848 // Do a relocation in which we convert a TLS Initial-Exec to a
1849 // Local-Exec.
1850
1851 inline void
1852 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
1853                                       size_t relnum,
1854                                       Output_segment* tls_segment,
1855                                       const elfcpp::Rela<64, false>& rela,
1856                                       unsigned int,
1857                                       elfcpp::Elf_types<64>::Elf_Addr value,
1858                                       unsigned char* view,
1859                                       off_t view_size)
1860 {
1861   // We need to examine the opcodes to figure out which instruction we
1862   // are looking at.
1863
1864   // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
1865   // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
1866
1867   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1868   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
1869
1870   unsigned char op1 = view[-3];
1871   unsigned char op2 = view[-2];
1872   unsigned char op3 = view[-1];
1873   unsigned char reg = op3 >> 3;
1874
1875   if (op2 == 0x8b)
1876     {
1877       // movq
1878       if (op1 == 0x4c)
1879         view[-3] = 0x49;
1880       view[-2] = 0xc7;
1881       view[-1] = 0xc0 | reg;
1882     }
1883   else if (reg == 4)
1884     {
1885       // Special handling for %rsp.
1886       if (op1 == 0x4c)
1887         view[-3] = 0x49;
1888       view[-2] = 0x81;
1889       view[-1] = 0xc0 | reg;
1890     }
1891   else
1892     {
1893       // addq
1894       if (op1 == 0x4c)
1895         view[-3] = 0x4d;
1896       view[-2] = 0x8d;
1897       view[-1] = 0x80 | reg | (reg << 3);
1898     }
1899
1900   value -= tls_segment->memsz();
1901   Relocate_functions<64, false>::rela32(view, value, 0);
1902 }
1903
1904 // Relocate section data.
1905
1906 void
1907 Target_x86_64::relocate_section(const Relocate_info<64, false>* relinfo,
1908                                 unsigned int sh_type,
1909                                 const unsigned char* prelocs,
1910                                 size_t reloc_count,
1911                                 Output_section* output_section,
1912                                 bool needs_special_offset_handling,
1913                                 unsigned char* view,
1914                                 elfcpp::Elf_types<64>::Elf_Addr address,
1915                                 off_t view_size)
1916 {
1917   gold_assert(sh_type == elfcpp::SHT_RELA);
1918
1919   gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
1920                          Target_x86_64::Relocate>(
1921     relinfo,
1922     this,
1923     prelocs,
1924     reloc_count,
1925     output_section,
1926     needs_special_offset_handling,
1927     view,
1928     address,
1929     view_size);
1930 }
1931
1932 // Return the value to use for a dynamic which requires special
1933 // treatment.  This is how we support equality comparisons of function
1934 // pointers across shared library boundaries, as described in the
1935 // processor specific ABI supplement.
1936
1937 uint64_t
1938 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
1939 {
1940   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1941   return this->plt_section()->address() + gsym->plt_offset();
1942 }
1943
1944 // Return a string used to fill a code section with nops to take up
1945 // the specified length.
1946
1947 std::string
1948 Target_x86_64::do_code_fill(off_t length)
1949 {
1950   if (length >= 16)
1951     {
1952       // Build a jmpq instruction to skip over the bytes.
1953       unsigned char jmp[5];
1954       jmp[0] = 0xe9;
1955       elfcpp::Swap_unaligned<64, false>::writeval(jmp + 1, length - 5);
1956       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1957               + std::string(length - 5, '\0'));
1958     }
1959
1960   // Nop sequences of various lengths.
1961   const char nop1[1] = { 0x90 };                   // nop
1962   const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
1963   const char nop3[3] = { 0x8d, 0x76, 0x00 };       // leal 0(%esi),%esi
1964   const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00};  // leal 0(%esi,1),%esi
1965   const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26,   // nop
1966                          0x00 };                   // leal 0(%esi,1),%esi
1967   const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00,   // leal 0L(%esi),%esi
1968                          0x00, 0x00 };
1969   const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00,   // leal 0L(%esi,1),%esi
1970                          0x00, 0x00, 0x00 };
1971   const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26,   // nop
1972                          0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1973   const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc,   // movl %esi,%esi
1974                          0x27, 0x00, 0x00, 0x00,   // leal 0L(%edi,1),%edi
1975                          0x00 };
1976   const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1977                            0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1978                            0x00, 0x00 };
1979   const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1980                            0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1981                            0x00, 0x00, 0x00 };
1982   const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1983                            0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1984                            0x00, 0x00, 0x00, 0x00 };
1985   const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1986                            0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1987                            0x27, 0x00, 0x00, 0x00,
1988                            0x00 };
1989   const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1990                            0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1991                            0xbc, 0x27, 0x00, 0x00,
1992                            0x00, 0x00 };
1993   const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1994                            0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1995                            0x90, 0x90, 0x90, 0x90,
1996                            0x90, 0x90, 0x90 };
1997
1998   const char* nops[16] = {
1999     NULL,
2000     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
2001     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
2002   };
2003
2004   return std::string(nops[length], length);
2005 }
2006
2007 // The selector for x86_64 object files.
2008
2009 class Target_selector_x86_64 : public Target_selector
2010 {
2011 public:
2012   Target_selector_x86_64()
2013     : Target_selector(elfcpp::EM_X86_64, 64, false)
2014   { }
2015
2016   Target*
2017   recognize(int machine, int osabi, int abiversion);
2018
2019  private:
2020   Target_x86_64* target_;
2021 };
2022
2023 // Recognize an x86_64 object file when we already know that the machine
2024 // number is EM_X86_64.
2025
2026 Target*
2027 Target_selector_x86_64::recognize(int, int, int)
2028 {
2029   if (this->target_ == NULL)
2030     this->target_ = new Target_x86_64();
2031   return this->target_;
2032 }
2033
2034 Target_selector_x86_64 target_selector_x86_64;
2035
2036 } // End anonymous namespace.