Gold: Don't fail on R_X86_64_[REX_]GOTPCRELX relocations
[external/binutils.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "dwarf.h"
29 #include "parameters.h"
30 #include "reloc.h"
31 #include "x86_64.h"
32 #include "object.h"
33 #include "symtab.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "copy-relocs.h"
37 #include "target.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
40 #include "tls.h"
41 #include "freebsd.h"
42 #include "nacl.h"
43 #include "gc.h"
44 #include "icf.h"
45
46 namespace
47 {
48
49 using namespace gold;
50
51 // A class to handle the .got.plt section.
52
53 class Output_data_got_plt_x86_64 : public Output_section_data_build
54 {
55  public:
56   Output_data_got_plt_x86_64(Layout* layout)
57     : Output_section_data_build(8),
58       layout_(layout)
59   { }
60
61   Output_data_got_plt_x86_64(Layout* layout, off_t data_size)
62     : Output_section_data_build(data_size, 8),
63       layout_(layout)
64   { }
65
66  protected:
67   // Write out the PLT data.
68   void
69   do_write(Output_file*);
70
71   // Write to a map file.
72   void
73   do_print_to_mapfile(Mapfile* mapfile) const
74   { mapfile->print_output_data(this, "** GOT PLT"); }
75
76  private:
77   // A pointer to the Layout class, so that we can find the .dynamic
78   // section when we write out the GOT PLT section.
79   Layout* layout_;
80 };
81
82 // A class to handle the PLT data.
83 // This is an abstract base class that handles most of the linker details
84 // but does not know the actual contents of PLT entries.  The derived
85 // classes below fill in those details.
86
87 template<int size>
88 class Output_data_plt_x86_64 : public Output_section_data
89 {
90  public:
91   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
92
93   Output_data_plt_x86_64(Layout* layout, uint64_t addralign,
94                          Output_data_got<64, false>* got,
95                          Output_data_got_plt_x86_64* got_plt,
96                          Output_data_space* got_irelative)
97     : Output_section_data(addralign), tlsdesc_rel_(NULL),
98       irelative_rel_(NULL), got_(got), got_plt_(got_plt),
99       got_irelative_(got_irelative), count_(0), irelative_count_(0),
100       tlsdesc_got_offset_(-1U), free_list_()
101   { this->init(layout); }
102
103   Output_data_plt_x86_64(Layout* layout, uint64_t plt_entry_size,
104                          Output_data_got<64, false>* got,
105                          Output_data_got_plt_x86_64* got_plt,
106                          Output_data_space* got_irelative,
107                          unsigned int plt_count)
108     : Output_section_data((plt_count + 1) * plt_entry_size,
109                           plt_entry_size, false),
110       tlsdesc_rel_(NULL), irelative_rel_(NULL), got_(got),
111       got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
112       irelative_count_(0), tlsdesc_got_offset_(-1U), free_list_()
113   {
114     this->init(layout);
115
116     // Initialize the free list and reserve the first entry.
117     this->free_list_.init((plt_count + 1) * plt_entry_size, false);
118     this->free_list_.remove(0, plt_entry_size);
119   }
120
121   // Initialize the PLT section.
122   void
123   init(Layout* layout);
124
125   // Add an entry to the PLT.
126   void
127   add_entry(Symbol_table*, Layout*, Symbol* gsym);
128
129   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
130   unsigned int
131   add_local_ifunc_entry(Symbol_table* symtab, Layout*,
132                         Sized_relobj_file<size, false>* relobj,
133                         unsigned int local_sym_index);
134
135   // Add the relocation for a PLT entry.
136   void
137   add_relocation(Symbol_table*, Layout*, Symbol* gsym,
138                  unsigned int got_offset);
139
140   // Add the reserved TLSDESC_PLT entry to the PLT.
141   void
142   reserve_tlsdesc_entry(unsigned int got_offset)
143   { this->tlsdesc_got_offset_ = got_offset; }
144
145   // Return true if a TLSDESC_PLT entry has been reserved.
146   bool
147   has_tlsdesc_entry() const
148   { return this->tlsdesc_got_offset_ != -1U; }
149
150   // Return the GOT offset for the reserved TLSDESC_PLT entry.
151   unsigned int
152   get_tlsdesc_got_offset() const
153   { return this->tlsdesc_got_offset_; }
154
155   // Return the offset of the reserved TLSDESC_PLT entry.
156   unsigned int
157   get_tlsdesc_plt_offset() const
158   {
159     return ((this->count_ + this->irelative_count_ + 1)
160             * this->get_plt_entry_size());
161   }
162
163   // Return the .rela.plt section data.
164   Reloc_section*
165   rela_plt()
166   { return this->rel_; }
167
168   // Return where the TLSDESC relocations should go.
169   Reloc_section*
170   rela_tlsdesc(Layout*);
171
172   // Return where the IRELATIVE relocations should go in the PLT
173   // relocations.
174   Reloc_section*
175   rela_irelative(Symbol_table*, Layout*);
176
177   // Return whether we created a section for IRELATIVE relocations.
178   bool
179   has_irelative_section() const
180   { return this->irelative_rel_ != NULL; }
181
182   // Return the number of PLT entries.
183   unsigned int
184   entry_count() const
185   { return this->count_ + this->irelative_count_; }
186
187   // Return the offset of the first non-reserved PLT entry.
188   unsigned int
189   first_plt_entry_offset()
190   { return this->get_plt_entry_size(); }
191
192   // Return the size of a PLT entry.
193   unsigned int
194   get_plt_entry_size() const
195   { return this->do_get_plt_entry_size(); }
196
197   // Reserve a slot in the PLT for an existing symbol in an incremental update.
198   void
199   reserve_slot(unsigned int plt_index)
200   {
201     this->free_list_.remove((plt_index + 1) * this->get_plt_entry_size(),
202                             (plt_index + 2) * this->get_plt_entry_size());
203   }
204
205   // Return the PLT address to use for a global symbol.
206   uint64_t
207   address_for_global(const Symbol*);
208
209   // Return the PLT address to use for a local symbol.
210   uint64_t
211   address_for_local(const Relobj*, unsigned int symndx);
212
213   // Add .eh_frame information for the PLT.
214   void
215   add_eh_frame(Layout* layout)
216   { this->do_add_eh_frame(layout); }
217
218  protected:
219   // Fill in the first PLT entry.
220   void
221   fill_first_plt_entry(unsigned char* pov,
222                        typename elfcpp::Elf_types<size>::Elf_Addr got_address,
223                        typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
224   { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
225
226   // Fill in a normal PLT entry.  Returns the offset into the entry that
227   // should be the initial GOT slot value.
228   unsigned int
229   fill_plt_entry(unsigned char* pov,
230                  typename elfcpp::Elf_types<size>::Elf_Addr got_address,
231                  typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
232                  unsigned int got_offset,
233                  unsigned int plt_offset,
234                  unsigned int plt_index)
235   {
236     return this->do_fill_plt_entry(pov, got_address, plt_address,
237                                    got_offset, plt_offset, plt_index);
238   }
239
240   // Fill in the reserved TLSDESC PLT entry.
241   void
242   fill_tlsdesc_entry(unsigned char* pov,
243                      typename elfcpp::Elf_types<size>::Elf_Addr got_address,
244                      typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
245                      typename elfcpp::Elf_types<size>::Elf_Addr got_base,
246                      unsigned int tlsdesc_got_offset,
247                      unsigned int plt_offset)
248   {
249     this->do_fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
250                                 tlsdesc_got_offset, plt_offset);
251   }
252
253   virtual unsigned int
254   do_get_plt_entry_size() const = 0;
255
256   virtual void
257   do_fill_first_plt_entry(unsigned char* pov,
258                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
259                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr)
260     = 0;
261
262   virtual unsigned int
263   do_fill_plt_entry(unsigned char* pov,
264                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
265                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
266                     unsigned int got_offset,
267                     unsigned int plt_offset,
268                     unsigned int plt_index) = 0;
269
270   virtual void
271   do_fill_tlsdesc_entry(unsigned char* pov,
272                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
273                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
274                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
275                         unsigned int tlsdesc_got_offset,
276                         unsigned int plt_offset) = 0;
277
278   virtual void
279   do_add_eh_frame(Layout* layout) = 0;
280
281   void
282   do_adjust_output_section(Output_section* os);
283
284   // Write to a map file.
285   void
286   do_print_to_mapfile(Mapfile* mapfile) const
287   { mapfile->print_output_data(this, _("** PLT")); }
288
289   // The CIE of the .eh_frame unwind information for the PLT.
290   static const int plt_eh_frame_cie_size = 16;
291   static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
292
293  private:
294   // Set the final size.
295   void
296   set_final_data_size();
297
298   // Write out the PLT data.
299   void
300   do_write(Output_file*);
301
302   // The reloc section.
303   Reloc_section* rel_;
304   // The TLSDESC relocs, if necessary.  These must follow the regular
305   // PLT relocs.
306   Reloc_section* tlsdesc_rel_;
307   // The IRELATIVE relocs, if necessary.  These must follow the
308   // regular PLT relocations and the TLSDESC relocations.
309   Reloc_section* irelative_rel_;
310   // The .got section.
311   Output_data_got<64, false>* got_;
312   // The .got.plt section.
313   Output_data_got_plt_x86_64* got_plt_;
314   // The part of the .got.plt section used for IRELATIVE relocs.
315   Output_data_space* got_irelative_;
316   // The number of PLT entries.
317   unsigned int count_;
318   // Number of PLT entries with R_X86_64_IRELATIVE relocs.  These
319   // follow the regular PLT entries.
320   unsigned int irelative_count_;
321   // Offset of the reserved TLSDESC_GOT entry when needed.
322   unsigned int tlsdesc_got_offset_;
323   // List of available regions within the section, for incremental
324   // update links.
325   Free_list free_list_;
326 };
327
328 template<int size>
329 class Output_data_plt_x86_64_standard : public Output_data_plt_x86_64<size>
330 {
331  public:
332   Output_data_plt_x86_64_standard(Layout* layout,
333                                   Output_data_got<64, false>* got,
334                                   Output_data_got_plt_x86_64* got_plt,
335                                   Output_data_space* got_irelative)
336     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
337                                    got, got_plt, got_irelative)
338   { }
339
340   Output_data_plt_x86_64_standard(Layout* layout,
341                                   Output_data_got<64, false>* got,
342                                   Output_data_got_plt_x86_64* got_plt,
343                                   Output_data_space* got_irelative,
344                                   unsigned int plt_count)
345     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
346                                    got, got_plt, got_irelative,
347                                    plt_count)
348   { }
349
350  protected:
351   virtual unsigned int
352   do_get_plt_entry_size() const
353   { return plt_entry_size; }
354
355   virtual void
356   do_add_eh_frame(Layout* layout)
357   {
358     layout->add_eh_frame_for_plt(this,
359                                  this->plt_eh_frame_cie,
360                                  this->plt_eh_frame_cie_size,
361                                  plt_eh_frame_fde,
362                                  plt_eh_frame_fde_size);
363   }
364
365   virtual void
366   do_fill_first_plt_entry(unsigned char* pov,
367                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
368                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
369
370   virtual unsigned int
371   do_fill_plt_entry(unsigned char* pov,
372                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
373                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
374                     unsigned int got_offset,
375                     unsigned int plt_offset,
376                     unsigned int plt_index);
377
378   virtual void
379   do_fill_tlsdesc_entry(unsigned char* pov,
380                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
381                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
382                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
383                         unsigned int tlsdesc_got_offset,
384                         unsigned int plt_offset);
385
386  private:
387   // The size of an entry in the PLT.
388   static const int plt_entry_size = 16;
389
390   // The first entry in the PLT.
391   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
392   // procedure linkage table for both programs and shared objects."
393   static const unsigned char first_plt_entry[plt_entry_size];
394
395   // Other entries in the PLT for an executable.
396   static const unsigned char plt_entry[plt_entry_size];
397
398   // The reserved TLSDESC entry in the PLT for an executable.
399   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
400
401   // The .eh_frame unwind information for the PLT.
402   static const int plt_eh_frame_fde_size = 32;
403   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
404 };
405
406 // The x86_64 target class.
407 // See the ABI at
408 //   http://www.x86-64.org/documentation/abi.pdf
409 // TLS info comes from
410 //   http://people.redhat.com/drepper/tls.pdf
411 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
412
413 template<int size>
414 class Target_x86_64 : public Sized_target<size, false>
415 {
416  public:
417   // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
418   // uses only Elf64_Rela relocation entries with explicit addends."
419   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
420
421   Target_x86_64(const Target::Target_info* info = &x86_64_info)
422     : Sized_target<size, false>(info),
423       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
424       got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
425       rela_irelative_(NULL), copy_relocs_(elfcpp::R_X86_64_COPY),
426       got_mod_index_offset_(-1U), tlsdesc_reloc_info_(),
427       tls_base_symbol_defined_(false)
428   { }
429
430   // Hook for a new output section.
431   void
432   do_new_output_section(Output_section*) const;
433
434   // Scan the relocations to look for symbol adjustments.
435   void
436   gc_process_relocs(Symbol_table* symtab,
437                     Layout* layout,
438                     Sized_relobj_file<size, false>* object,
439                     unsigned int data_shndx,
440                     unsigned int sh_type,
441                     const unsigned char* prelocs,
442                     size_t reloc_count,
443                     Output_section* output_section,
444                     bool needs_special_offset_handling,
445                     size_t local_symbol_count,
446                     const unsigned char* plocal_symbols);
447
448   // Scan the relocations to look for symbol adjustments.
449   void
450   scan_relocs(Symbol_table* symtab,
451               Layout* layout,
452               Sized_relobj_file<size, false>* object,
453               unsigned int data_shndx,
454               unsigned int sh_type,
455               const unsigned char* prelocs,
456               size_t reloc_count,
457               Output_section* output_section,
458               bool needs_special_offset_handling,
459               size_t local_symbol_count,
460               const unsigned char* plocal_symbols);
461
462   // Finalize the sections.
463   void
464   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
465
466   // Return the value to use for a dynamic which requires special
467   // treatment.
468   uint64_t
469   do_dynsym_value(const Symbol*) const;
470
471   // Relocate a section.
472   void
473   relocate_section(const Relocate_info<size, false>*,
474                    unsigned int sh_type,
475                    const unsigned char* prelocs,
476                    size_t reloc_count,
477                    Output_section* output_section,
478                    bool needs_special_offset_handling,
479                    unsigned char* view,
480                    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
481                    section_size_type view_size,
482                    const Reloc_symbol_changes*);
483
484   // Scan the relocs during a relocatable link.
485   void
486   scan_relocatable_relocs(Symbol_table* symtab,
487                           Layout* layout,
488                           Sized_relobj_file<size, false>* object,
489                           unsigned int data_shndx,
490                           unsigned int sh_type,
491                           const unsigned char* prelocs,
492                           size_t reloc_count,
493                           Output_section* output_section,
494                           bool needs_special_offset_handling,
495                           size_t local_symbol_count,
496                           const unsigned char* plocal_symbols,
497                           Relocatable_relocs*);
498
499   // Emit relocations for a section.
500   void
501   relocate_relocs(
502       const Relocate_info<size, false>*,
503       unsigned int sh_type,
504       const unsigned char* prelocs,
505       size_t reloc_count,
506       Output_section* output_section,
507       typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
508       const Relocatable_relocs*,
509       unsigned char* view,
510       typename elfcpp::Elf_types<size>::Elf_Addr view_address,
511       section_size_type view_size,
512       unsigned char* reloc_view,
513       section_size_type reloc_view_size);
514
515   // Return a string used to fill a code section with nops.
516   std::string
517   do_code_fill(section_size_type length) const;
518
519   // Return whether SYM is defined by the ABI.
520   bool
521   do_is_defined_by_abi(const Symbol* sym) const
522   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
523
524   // Return the symbol index to use for a target specific relocation.
525   // The only target specific relocation is R_X86_64_TLSDESC for a
526   // local symbol, which is an absolute reloc.
527   unsigned int
528   do_reloc_symbol_index(void*, unsigned int r_type) const
529   {
530     gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
531     return 0;
532   }
533
534   // Return the addend to use for a target specific relocation.
535   uint64_t
536   do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
537
538   // Return the PLT section.
539   uint64_t
540   do_plt_address_for_global(const Symbol* gsym) const
541   { return this->plt_section()->address_for_global(gsym); }
542
543   uint64_t
544   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
545   { return this->plt_section()->address_for_local(relobj, symndx); }
546
547   // This function should be defined in targets that can use relocation
548   // types to determine (implemented in local_reloc_may_be_function_pointer
549   // and global_reloc_may_be_function_pointer)
550   // if a function's pointer is taken.  ICF uses this in safe mode to only
551   // fold those functions whose pointer is defintely not taken.  For x86_64
552   // pie binaries, safe ICF cannot be done by looking at relocation types.
553   bool
554   do_can_check_for_function_pointers() const
555   { return !parameters->options().pie(); }
556
557   // Return the base for a DW_EH_PE_datarel encoding.
558   uint64_t
559   do_ehframe_datarel_base() const;
560
561   // Adjust -fsplit-stack code which calls non-split-stack code.
562   void
563   do_calls_non_split(Relobj* object, unsigned int shndx,
564                      section_offset_type fnoffset, section_size_type fnsize,
565                      unsigned char* view, section_size_type view_size,
566                      std::string* from, std::string* to) const;
567
568   // Return the size of the GOT section.
569   section_size_type
570   got_size() const
571   {
572     gold_assert(this->got_ != NULL);
573     return this->got_->data_size();
574   }
575
576   // Return the number of entries in the GOT.
577   unsigned int
578   got_entry_count() const
579   {
580     if (this->got_ == NULL)
581       return 0;
582     return this->got_size() / 8;
583   }
584
585   // Return the number of entries in the PLT.
586   unsigned int
587   plt_entry_count() const;
588
589   // Return the offset of the first non-reserved PLT entry.
590   unsigned int
591   first_plt_entry_offset() const;
592
593   // Return the size of each PLT entry.
594   unsigned int
595   plt_entry_size() const;
596
597   // Create the GOT section for an incremental update.
598   Output_data_got_base*
599   init_got_plt_for_update(Symbol_table* symtab,
600                           Layout* layout,
601                           unsigned int got_count,
602                           unsigned int plt_count);
603
604   // Reserve a GOT entry for a local symbol, and regenerate any
605   // necessary dynamic relocations.
606   void
607   reserve_local_got_entry(unsigned int got_index,
608                           Sized_relobj<size, false>* obj,
609                           unsigned int r_sym,
610                           unsigned int got_type);
611
612   // Reserve a GOT entry for a global symbol, and regenerate any
613   // necessary dynamic relocations.
614   void
615   reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
616                            unsigned int got_type);
617
618   // Register an existing PLT entry for a global symbol.
619   void
620   register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
621                             Symbol* gsym);
622
623   // Force a COPY relocation for a given symbol.
624   void
625   emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
626
627   // Apply an incremental relocation.
628   void
629   apply_relocation(const Relocate_info<size, false>* relinfo,
630                    typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
631                    unsigned int r_type,
632                    typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
633                    const Symbol* gsym,
634                    unsigned char* view,
635                    typename elfcpp::Elf_types<size>::Elf_Addr address,
636                    section_size_type view_size);
637
638   // Add a new reloc argument, returning the index in the vector.
639   size_t
640   add_tlsdesc_info(Sized_relobj_file<size, false>* object, unsigned int r_sym)
641   {
642     this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
643     return this->tlsdesc_reloc_info_.size() - 1;
644   }
645
646   Output_data_plt_x86_64<size>*
647   make_data_plt(Layout* layout,
648                 Output_data_got<64, false>* got,
649                 Output_data_got_plt_x86_64* got_plt,
650                 Output_data_space* got_irelative)
651   {
652     return this->do_make_data_plt(layout, got, got_plt, got_irelative);
653   }
654
655   Output_data_plt_x86_64<size>*
656   make_data_plt(Layout* layout,
657                 Output_data_got<64, false>* got,
658                 Output_data_got_plt_x86_64* got_plt,
659                 Output_data_space* got_irelative,
660                 unsigned int plt_count)
661   {
662     return this->do_make_data_plt(layout, got, got_plt, got_irelative,
663                                   plt_count);
664   }
665
666   virtual Output_data_plt_x86_64<size>*
667   do_make_data_plt(Layout* layout,
668                    Output_data_got<64, false>* got,
669                    Output_data_got_plt_x86_64* got_plt,
670                    Output_data_space* got_irelative)
671   {
672     return new Output_data_plt_x86_64_standard<size>(layout, got, got_plt,
673                                                      got_irelative);
674   }
675
676   virtual Output_data_plt_x86_64<size>*
677   do_make_data_plt(Layout* layout,
678                    Output_data_got<64, false>* got,
679                    Output_data_got_plt_x86_64* got_plt,
680                    Output_data_space* got_irelative,
681                    unsigned int plt_count)
682   {
683     return new Output_data_plt_x86_64_standard<size>(layout, got, got_plt,
684                                                      got_irelative,
685                                                      plt_count);
686   }
687
688  private:
689   // The class which scans relocations.
690   class Scan
691   {
692   public:
693     Scan()
694       : issued_non_pic_error_(false)
695     { }
696
697     static inline int
698     get_reference_flags(unsigned int r_type);
699
700     inline void
701     local(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
702           Sized_relobj_file<size, false>* object,
703           unsigned int data_shndx,
704           Output_section* output_section,
705           const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
706           const elfcpp::Sym<size, false>& lsym,
707           bool is_discarded);
708
709     inline void
710     global(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
711            Sized_relobj_file<size, false>* object,
712            unsigned int data_shndx,
713            Output_section* output_section,
714            const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
715            Symbol* gsym);
716
717     inline bool
718     local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
719                                         Target_x86_64* target,
720                                         Sized_relobj_file<size, false>* object,
721                                         unsigned int data_shndx,
722                                         Output_section* output_section,
723                                         const elfcpp::Rela<size, false>& reloc,
724                                         unsigned int r_type,
725                                         const elfcpp::Sym<size, false>& lsym);
726
727     inline bool
728     global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
729                                          Target_x86_64* target,
730                                          Sized_relobj_file<size, false>* object,
731                                          unsigned int data_shndx,
732                                          Output_section* output_section,
733                                          const elfcpp::Rela<size, false>& reloc,
734                                          unsigned int r_type,
735                                          Symbol* gsym);
736
737   private:
738     static void
739     unsupported_reloc_local(Sized_relobj_file<size, false>*,
740                             unsigned int r_type);
741
742     static void
743     unsupported_reloc_global(Sized_relobj_file<size, false>*,
744                              unsigned int r_type, Symbol*);
745
746     void
747     check_non_pic(Relobj*, unsigned int r_type, Symbol*);
748
749     inline bool
750     possible_function_pointer_reloc(unsigned int r_type);
751
752     bool
753     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, false>*,
754                               unsigned int r_type);
755
756     // Whether we have issued an error about a non-PIC compilation.
757     bool issued_non_pic_error_;
758   };
759
760   // The class which implements relocation.
761   class Relocate
762   {
763    public:
764     Relocate()
765       : skip_call_tls_get_addr_(false)
766     { }
767
768     ~Relocate()
769     {
770       if (this->skip_call_tls_get_addr_)
771         {
772           // FIXME: This needs to specify the location somehow.
773           gold_error(_("missing expected TLS relocation"));
774         }
775     }
776
777     // Do a relocation.  Return false if the caller should not issue
778     // any warnings about this relocation.
779     inline bool
780     relocate(const Relocate_info<size, false>*, Target_x86_64*,
781              Output_section*,
782              size_t relnum, const elfcpp::Rela<size, false>&,
783              unsigned int r_type, const Sized_symbol<size>*,
784              const Symbol_value<size>*,
785              unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
786              section_size_type);
787
788    private:
789     // Do a TLS relocation.
790     inline void
791     relocate_tls(const Relocate_info<size, false>*, Target_x86_64*,
792                  size_t relnum, const elfcpp::Rela<size, false>&,
793                  unsigned int r_type, const Sized_symbol<size>*,
794                  const Symbol_value<size>*,
795                  unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
796                  section_size_type);
797
798     // Do a TLS General-Dynamic to Initial-Exec transition.
799     inline void
800     tls_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
801                  Output_segment* tls_segment,
802                  const elfcpp::Rela<size, false>&, unsigned int r_type,
803                  typename elfcpp::Elf_types<size>::Elf_Addr value,
804                  unsigned char* view,
805                  typename elfcpp::Elf_types<size>::Elf_Addr,
806                  section_size_type view_size);
807
808     // Do a TLS General-Dynamic to Local-Exec transition.
809     inline void
810     tls_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
811                  Output_segment* tls_segment,
812                  const elfcpp::Rela<size, false>&, unsigned int r_type,
813                  typename elfcpp::Elf_types<size>::Elf_Addr value,
814                  unsigned char* view,
815                  section_size_type view_size);
816
817     // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
818     inline void
819     tls_desc_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
820                       Output_segment* tls_segment,
821                       const elfcpp::Rela<size, false>&, unsigned int r_type,
822                       typename elfcpp::Elf_types<size>::Elf_Addr value,
823                       unsigned char* view,
824                       typename elfcpp::Elf_types<size>::Elf_Addr,
825                       section_size_type view_size);
826
827     // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
828     inline void
829     tls_desc_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
830                       Output_segment* tls_segment,
831                       const elfcpp::Rela<size, false>&, unsigned int r_type,
832                       typename elfcpp::Elf_types<size>::Elf_Addr value,
833                       unsigned char* view,
834                       section_size_type view_size);
835
836     // Do a TLS Local-Dynamic to Local-Exec transition.
837     inline void
838     tls_ld_to_le(const Relocate_info<size, false>*, size_t relnum,
839                  Output_segment* tls_segment,
840                  const elfcpp::Rela<size, false>&, unsigned int r_type,
841                  typename elfcpp::Elf_types<size>::Elf_Addr value,
842                  unsigned char* view,
843                  section_size_type view_size);
844
845     // Do a TLS Initial-Exec to Local-Exec transition.
846     static inline void
847     tls_ie_to_le(const Relocate_info<size, false>*, size_t relnum,
848                  Output_segment* tls_segment,
849                  const elfcpp::Rela<size, false>&, unsigned int r_type,
850                  typename elfcpp::Elf_types<size>::Elf_Addr value,
851                  unsigned char* view,
852                  section_size_type view_size);
853
854     // This is set if we should skip the next reloc, which should be a
855     // PLT32 reloc against ___tls_get_addr.
856     bool skip_call_tls_get_addr_;
857   };
858
859   // A class which returns the size required for a relocation type,
860   // used while scanning relocs during a relocatable link.
861   class Relocatable_size_for_reloc
862   {
863    public:
864     unsigned int
865     get_size_for_reloc(unsigned int, Relobj*);
866   };
867
868   // Check if relocation against this symbol is a candidate for
869   // conversion from
870   // mov foo@GOTPCREL(%rip), %reg
871   // to lea foo(%rip), %reg.
872   static bool
873   can_convert_mov_to_lea(const Symbol* gsym)
874   {
875     gold_assert(gsym != NULL);
876     return (gsym->type() != elfcpp::STT_GNU_IFUNC
877             && !gsym->is_undefined ()
878             && !gsym->is_from_dynobj()
879             && !gsym->is_preemptible()
880             && (!parameters->options().shared()
881                 || (gsym->visibility() != elfcpp::STV_DEFAULT
882                     && gsym->visibility() != elfcpp::STV_PROTECTED)
883                 || parameters->options().Bsymbolic())
884             && strcmp(gsym->name(), "_DYNAMIC") != 0);
885   }
886
887   // Adjust TLS relocation type based on the options and whether this
888   // is a local symbol.
889   static tls::Tls_optimization
890   optimize_tls_reloc(bool is_final, int r_type);
891
892   // Get the GOT section, creating it if necessary.
893   Output_data_got<64, false>*
894   got_section(Symbol_table*, Layout*);
895
896   // Get the GOT PLT section.
897   Output_data_got_plt_x86_64*
898   got_plt_section() const
899   {
900     gold_assert(this->got_plt_ != NULL);
901     return this->got_plt_;
902   }
903
904   // Get the GOT section for TLSDESC entries.
905   Output_data_got<64, false>*
906   got_tlsdesc_section() const
907   {
908     gold_assert(this->got_tlsdesc_ != NULL);
909     return this->got_tlsdesc_;
910   }
911
912   // Create the PLT section.
913   void
914   make_plt_section(Symbol_table* symtab, Layout* layout);
915
916   // Create a PLT entry for a global symbol.
917   void
918   make_plt_entry(Symbol_table*, Layout*, Symbol*);
919
920   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
921   void
922   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
923                              Sized_relobj_file<size, false>* relobj,
924                              unsigned int local_sym_index);
925
926   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
927   void
928   define_tls_base_symbol(Symbol_table*, Layout*);
929
930   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
931   void
932   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
933
934   // Create a GOT entry for the TLS module index.
935   unsigned int
936   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
937                       Sized_relobj_file<size, false>* object);
938
939   // Get the PLT section.
940   Output_data_plt_x86_64<size>*
941   plt_section() const
942   {
943     gold_assert(this->plt_ != NULL);
944     return this->plt_;
945   }
946
947   // Get the dynamic reloc section, creating it if necessary.
948   Reloc_section*
949   rela_dyn_section(Layout*);
950
951   // Get the section to use for TLSDESC relocations.
952   Reloc_section*
953   rela_tlsdesc_section(Layout*) const;
954
955   // Get the section to use for IRELATIVE relocations.
956   Reloc_section*
957   rela_irelative_section(Layout*);
958
959   // Add a potential copy relocation.
960   void
961   copy_reloc(Symbol_table* symtab, Layout* layout,
962              Sized_relobj_file<size, false>* object,
963              unsigned int shndx, Output_section* output_section,
964              Symbol* sym, const elfcpp::Rela<size, false>& reloc)
965   {
966     this->copy_relocs_.copy_reloc(symtab, layout,
967                                   symtab->get_sized_symbol<size>(sym),
968                                   object, shndx, output_section,
969                                   reloc, this->rela_dyn_section(layout));
970   }
971
972   // Information about this specific target which we pass to the
973   // general Target structure.
974   static const Target::Target_info x86_64_info;
975
976   // The types of GOT entries needed for this platform.
977   // These values are exposed to the ABI in an incremental link.
978   // Do not renumber existing values without changing the version
979   // number of the .gnu_incremental_inputs section.
980   enum Got_type
981   {
982     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
983     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
984     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
985     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
986   };
987
988   // This type is used as the argument to the target specific
989   // relocation routines.  The only target specific reloc is
990   // R_X86_64_TLSDESC against a local symbol.
991   struct Tlsdesc_info
992   {
993     Tlsdesc_info(Sized_relobj_file<size, false>* a_object, unsigned int a_r_sym)
994       : object(a_object), r_sym(a_r_sym)
995     { }
996
997     // The object in which the local symbol is defined.
998     Sized_relobj_file<size, false>* object;
999     // The local symbol index in the object.
1000     unsigned int r_sym;
1001   };
1002
1003   // The GOT section.
1004   Output_data_got<64, false>* got_;
1005   // The PLT section.
1006   Output_data_plt_x86_64<size>* plt_;
1007   // The GOT PLT section.
1008   Output_data_got_plt_x86_64* got_plt_;
1009   // The GOT section for IRELATIVE relocations.
1010   Output_data_space* got_irelative_;
1011   // The GOT section for TLSDESC relocations.
1012   Output_data_got<64, false>* got_tlsdesc_;
1013   // The _GLOBAL_OFFSET_TABLE_ symbol.
1014   Symbol* global_offset_table_;
1015   // The dynamic reloc section.
1016   Reloc_section* rela_dyn_;
1017   // The section to use for IRELATIVE relocs.
1018   Reloc_section* rela_irelative_;
1019   // Relocs saved to avoid a COPY reloc.
1020   Copy_relocs<elfcpp::SHT_RELA, size, false> copy_relocs_;
1021   // Offset of the GOT entry for the TLS module index.
1022   unsigned int got_mod_index_offset_;
1023   // We handle R_X86_64_TLSDESC against a local symbol as a target
1024   // specific relocation.  Here we store the object and local symbol
1025   // index for the relocation.
1026   std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
1027   // True if the _TLS_MODULE_BASE_ symbol has been defined.
1028   bool tls_base_symbol_defined_;
1029 };
1030
1031 template<>
1032 const Target::Target_info Target_x86_64<64>::x86_64_info =
1033 {
1034   64,                   // size
1035   false,                // is_big_endian
1036   elfcpp::EM_X86_64,    // machine_code
1037   false,                // has_make_symbol
1038   false,                // has_resolve
1039   true,                 // has_code_fill
1040   true,                 // is_default_stack_executable
1041   true,                 // can_icf_inline_merge_sections
1042   '\0',                 // wrap_char
1043   "/lib/ld64.so.1",     // program interpreter
1044   0x400000,             // default_text_segment_address
1045   0x1000,               // abi_pagesize (overridable by -z max-page-size)
1046   0x1000,               // common_pagesize (overridable by -z common-page-size)
1047   false,                // isolate_execinstr
1048   0,                    // rosegment_gap
1049   elfcpp::SHN_UNDEF,    // small_common_shndx
1050   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
1051   0,                    // small_common_section_flags
1052   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
1053   NULL,                 // attributes_section
1054   NULL,                 // attributes_vendor
1055   "_start"              // entry_symbol_name
1056 };
1057
1058 template<>
1059 const Target::Target_info Target_x86_64<32>::x86_64_info =
1060 {
1061   32,                   // size
1062   false,                // is_big_endian
1063   elfcpp::EM_X86_64,    // machine_code
1064   false,                // has_make_symbol
1065   false,                // has_resolve
1066   true,                 // has_code_fill
1067   true,                 // is_default_stack_executable
1068   true,                 // can_icf_inline_merge_sections
1069   '\0',                 // wrap_char
1070   "/libx32/ldx32.so.1", // program interpreter
1071   0x400000,             // default_text_segment_address
1072   0x1000,               // abi_pagesize (overridable by -z max-page-size)
1073   0x1000,               // common_pagesize (overridable by -z common-page-size)
1074   false,                // isolate_execinstr
1075   0,                    // rosegment_gap
1076   elfcpp::SHN_UNDEF,    // small_common_shndx
1077   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
1078   0,                    // small_common_section_flags
1079   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
1080   NULL,                 // attributes_section
1081   NULL,                 // attributes_vendor
1082   "_start"              // entry_symbol_name
1083 };
1084
1085 // This is called when a new output section is created.  This is where
1086 // we handle the SHF_X86_64_LARGE.
1087
1088 template<int size>
1089 void
1090 Target_x86_64<size>::do_new_output_section(Output_section* os) const
1091 {
1092   if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
1093     os->set_is_large_section();
1094 }
1095
1096 // Get the GOT section, creating it if necessary.
1097
1098 template<int size>
1099 Output_data_got<64, false>*
1100 Target_x86_64<size>::got_section(Symbol_table* symtab, Layout* layout)
1101 {
1102   if (this->got_ == NULL)
1103     {
1104       gold_assert(symtab != NULL && layout != NULL);
1105
1106       // When using -z now, we can treat .got.plt as a relro section.
1107       // Without -z now, it is modified after program startup by lazy
1108       // PLT relocations.
1109       bool is_got_plt_relro = parameters->options().now();
1110       Output_section_order got_order = (is_got_plt_relro
1111                                         ? ORDER_RELRO
1112                                         : ORDER_RELRO_LAST);
1113       Output_section_order got_plt_order = (is_got_plt_relro
1114                                             ? ORDER_RELRO
1115                                             : ORDER_NON_RELRO_FIRST);
1116
1117       this->got_ = new Output_data_got<64, false>();
1118
1119       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1120                                       (elfcpp::SHF_ALLOC
1121                                        | elfcpp::SHF_WRITE),
1122                                       this->got_, got_order, true);
1123
1124       this->got_plt_ = new Output_data_got_plt_x86_64(layout);
1125       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1126                                       (elfcpp::SHF_ALLOC
1127                                        | elfcpp::SHF_WRITE),
1128                                       this->got_plt_, got_plt_order,
1129                                       is_got_plt_relro);
1130
1131       // The first three entries are reserved.
1132       this->got_plt_->set_current_data_size(3 * 8);
1133
1134       if (!is_got_plt_relro)
1135         {
1136           // Those bytes can go into the relro segment.
1137           layout->increase_relro(3 * 8);
1138         }
1139
1140       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1141       this->global_offset_table_ =
1142         symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1143                                       Symbol_table::PREDEFINED,
1144                                       this->got_plt_,
1145                                       0, 0, elfcpp::STT_OBJECT,
1146                                       elfcpp::STB_LOCAL,
1147                                       elfcpp::STV_HIDDEN, 0,
1148                                       false, false);
1149
1150       // If there are any IRELATIVE relocations, they get GOT entries
1151       // in .got.plt after the jump slot entries.
1152       this->got_irelative_ = new Output_data_space(8, "** GOT IRELATIVE PLT");
1153       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1154                                       (elfcpp::SHF_ALLOC
1155                                        | elfcpp::SHF_WRITE),
1156                                       this->got_irelative_,
1157                                       got_plt_order, is_got_plt_relro);
1158
1159       // If there are any TLSDESC relocations, they get GOT entries in
1160       // .got.plt after the jump slot and IRELATIVE entries.
1161       this->got_tlsdesc_ = new Output_data_got<64, false>();
1162       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1163                                       (elfcpp::SHF_ALLOC
1164                                        | elfcpp::SHF_WRITE),
1165                                       this->got_tlsdesc_,
1166                                       got_plt_order, is_got_plt_relro);
1167     }
1168
1169   return this->got_;
1170 }
1171
1172 // Get the dynamic reloc section, creating it if necessary.
1173
1174 template<int size>
1175 typename Target_x86_64<size>::Reloc_section*
1176 Target_x86_64<size>::rela_dyn_section(Layout* layout)
1177 {
1178   if (this->rela_dyn_ == NULL)
1179     {
1180       gold_assert(layout != NULL);
1181       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1182       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1183                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
1184                                       ORDER_DYNAMIC_RELOCS, false);
1185     }
1186   return this->rela_dyn_;
1187 }
1188
1189 // Get the section to use for IRELATIVE relocs, creating it if
1190 // necessary.  These go in .rela.dyn, but only after all other dynamic
1191 // relocations.  They need to follow the other dynamic relocations so
1192 // that they can refer to global variables initialized by those
1193 // relocs.
1194
1195 template<int size>
1196 typename Target_x86_64<size>::Reloc_section*
1197 Target_x86_64<size>::rela_irelative_section(Layout* layout)
1198 {
1199   if (this->rela_irelative_ == NULL)
1200     {
1201       // Make sure we have already created the dynamic reloc section.
1202       this->rela_dyn_section(layout);
1203       this->rela_irelative_ = new Reloc_section(false);
1204       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1205                                       elfcpp::SHF_ALLOC, this->rela_irelative_,
1206                                       ORDER_DYNAMIC_RELOCS, false);
1207       gold_assert(this->rela_dyn_->output_section()
1208                   == this->rela_irelative_->output_section());
1209     }
1210   return this->rela_irelative_;
1211 }
1212
1213 // Write the first three reserved words of the .got.plt section.
1214 // The remainder of the section is written while writing the PLT
1215 // in Output_data_plt_i386::do_write.
1216
1217 void
1218 Output_data_got_plt_x86_64::do_write(Output_file* of)
1219 {
1220   // The first entry in the GOT is the address of the .dynamic section
1221   // aka the PT_DYNAMIC segment.  The next two entries are reserved.
1222   // We saved space for them when we created the section in
1223   // Target_x86_64::got_section.
1224   const off_t got_file_offset = this->offset();
1225   gold_assert(this->data_size() >= 24);
1226   unsigned char* const got_view = of->get_output_view(got_file_offset, 24);
1227   Output_section* dynamic = this->layout_->dynamic_section();
1228   uint64_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1229   elfcpp::Swap<64, false>::writeval(got_view, dynamic_addr);
1230   memset(got_view + 8, 0, 16);
1231   of->write_output_view(got_file_offset, 24, got_view);
1232 }
1233
1234 // Initialize the PLT section.
1235
1236 template<int size>
1237 void
1238 Output_data_plt_x86_64<size>::init(Layout* layout)
1239 {
1240   this->rel_ = new Reloc_section(false);
1241   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1242                                   elfcpp::SHF_ALLOC, this->rel_,
1243                                   ORDER_DYNAMIC_PLT_RELOCS, false);
1244 }
1245
1246 template<int size>
1247 void
1248 Output_data_plt_x86_64<size>::do_adjust_output_section(Output_section* os)
1249 {
1250   os->set_entsize(this->get_plt_entry_size());
1251 }
1252
1253 // Add an entry to the PLT.
1254
1255 template<int size>
1256 void
1257 Output_data_plt_x86_64<size>::add_entry(Symbol_table* symtab, Layout* layout,
1258                                         Symbol* gsym)
1259 {
1260   gold_assert(!gsym->has_plt_offset());
1261
1262   unsigned int plt_index;
1263   off_t plt_offset;
1264   section_offset_type got_offset;
1265
1266   unsigned int* pcount;
1267   unsigned int offset;
1268   unsigned int reserved;
1269   Output_section_data_build* got;
1270   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1271       && gsym->can_use_relative_reloc(false))
1272     {
1273       pcount = &this->irelative_count_;
1274       offset = 0;
1275       reserved = 0;
1276       got = this->got_irelative_;
1277     }
1278   else
1279     {
1280       pcount = &this->count_;
1281       offset = 1;
1282       reserved = 3;
1283       got = this->got_plt_;
1284     }
1285
1286   if (!this->is_data_size_valid())
1287     {
1288       // Note that when setting the PLT offset for a non-IRELATIVE
1289       // entry we skip the initial reserved PLT entry.
1290       plt_index = *pcount + offset;
1291       plt_offset = plt_index * this->get_plt_entry_size();
1292
1293       ++*pcount;
1294
1295       got_offset = (plt_index - offset + reserved) * 8;
1296       gold_assert(got_offset == got->current_data_size());
1297
1298       // Every PLT entry needs a GOT entry which points back to the PLT
1299       // entry (this will be changed by the dynamic linker, normally
1300       // lazily when the function is called).
1301       got->set_current_data_size(got_offset + 8);
1302     }
1303   else
1304     {
1305       // FIXME: This is probably not correct for IRELATIVE relocs.
1306
1307       // For incremental updates, find an available slot.
1308       plt_offset = this->free_list_.allocate(this->get_plt_entry_size(),
1309                                              this->get_plt_entry_size(), 0);
1310       if (plt_offset == -1)
1311         gold_fallback(_("out of patch space (PLT);"
1312                         " relink with --incremental-full"));
1313
1314       // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
1315       // can be calculated from the PLT index, adjusting for the three
1316       // reserved entries at the beginning of the GOT.
1317       plt_index = plt_offset / this->get_plt_entry_size() - 1;
1318       got_offset = (plt_index - offset + reserved) * 8;
1319     }
1320
1321   gsym->set_plt_offset(plt_offset);
1322
1323   // Every PLT entry needs a reloc.
1324   this->add_relocation(symtab, layout, gsym, got_offset);
1325
1326   // Note that we don't need to save the symbol.  The contents of the
1327   // PLT are independent of which symbols are used.  The symbols only
1328   // appear in the relocations.
1329 }
1330
1331 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
1332 // the PLT offset.
1333
1334 template<int size>
1335 unsigned int
1336 Output_data_plt_x86_64<size>::add_local_ifunc_entry(
1337     Symbol_table* symtab,
1338     Layout* layout,
1339     Sized_relobj_file<size, false>* relobj,
1340     unsigned int local_sym_index)
1341 {
1342   unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
1343   ++this->irelative_count_;
1344
1345   section_offset_type got_offset = this->got_irelative_->current_data_size();
1346
1347   // Every PLT entry needs a GOT entry which points back to the PLT
1348   // entry.
1349   this->got_irelative_->set_current_data_size(got_offset + 8);
1350
1351   // Every PLT entry needs a reloc.
1352   Reloc_section* rela = this->rela_irelative(symtab, layout);
1353   rela->add_symbolless_local_addend(relobj, local_sym_index,
1354                                     elfcpp::R_X86_64_IRELATIVE,
1355                                     this->got_irelative_, got_offset, 0);
1356
1357   return plt_offset;
1358 }
1359
1360 // Add the relocation for a PLT entry.
1361
1362 template<int size>
1363 void
1364 Output_data_plt_x86_64<size>::add_relocation(Symbol_table* symtab,
1365                                              Layout* layout,
1366                                              Symbol* gsym,
1367                                              unsigned int got_offset)
1368 {
1369   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1370       && gsym->can_use_relative_reloc(false))
1371     {
1372       Reloc_section* rela = this->rela_irelative(symtab, layout);
1373       rela->add_symbolless_global_addend(gsym, elfcpp::R_X86_64_IRELATIVE,
1374                                          this->got_irelative_, got_offset, 0);
1375     }
1376   else
1377     {
1378       gsym->set_needs_dynsym_entry();
1379       this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
1380                              got_offset, 0);
1381     }
1382 }
1383
1384 // Return where the TLSDESC relocations should go, creating it if
1385 // necessary.  These follow the JUMP_SLOT relocations.
1386
1387 template<int size>
1388 typename Output_data_plt_x86_64<size>::Reloc_section*
1389 Output_data_plt_x86_64<size>::rela_tlsdesc(Layout* layout)
1390 {
1391   if (this->tlsdesc_rel_ == NULL)
1392     {
1393       this->tlsdesc_rel_ = new Reloc_section(false);
1394       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1395                                       elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
1396                                       ORDER_DYNAMIC_PLT_RELOCS, false);
1397       gold_assert(this->tlsdesc_rel_->output_section()
1398                   == this->rel_->output_section());
1399     }
1400   return this->tlsdesc_rel_;
1401 }
1402
1403 // Return where the IRELATIVE relocations should go in the PLT.  These
1404 // follow the JUMP_SLOT and the TLSDESC relocations.
1405
1406 template<int size>
1407 typename Output_data_plt_x86_64<size>::Reloc_section*
1408 Output_data_plt_x86_64<size>::rela_irelative(Symbol_table* symtab,
1409                                              Layout* layout)
1410 {
1411   if (this->irelative_rel_ == NULL)
1412     {
1413       // Make sure we have a place for the TLSDESC relocations, in
1414       // case we see any later on.
1415       this->rela_tlsdesc(layout);
1416       this->irelative_rel_ = new Reloc_section(false);
1417       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1418                                       elfcpp::SHF_ALLOC, this->irelative_rel_,
1419                                       ORDER_DYNAMIC_PLT_RELOCS, false);
1420       gold_assert(this->irelative_rel_->output_section()
1421                   == this->rel_->output_section());
1422
1423       if (parameters->doing_static_link())
1424         {
1425           // A statically linked executable will only have a .rela.plt
1426           // section to hold R_X86_64_IRELATIVE relocs for
1427           // STT_GNU_IFUNC symbols.  The library will use these
1428           // symbols to locate the IRELATIVE relocs at program startup
1429           // time.
1430           symtab->define_in_output_data("__rela_iplt_start", NULL,
1431                                         Symbol_table::PREDEFINED,
1432                                         this->irelative_rel_, 0, 0,
1433                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1434                                         elfcpp::STV_HIDDEN, 0, false, true);
1435           symtab->define_in_output_data("__rela_iplt_end", NULL,
1436                                         Symbol_table::PREDEFINED,
1437                                         this->irelative_rel_, 0, 0,
1438                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1439                                         elfcpp::STV_HIDDEN, 0, true, true);
1440         }
1441     }
1442   return this->irelative_rel_;
1443 }
1444
1445 // Return the PLT address to use for a global symbol.
1446
1447 template<int size>
1448 uint64_t
1449 Output_data_plt_x86_64<size>::address_for_global(const Symbol* gsym)
1450 {
1451   uint64_t offset = 0;
1452   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1453       && gsym->can_use_relative_reloc(false))
1454     offset = (this->count_ + 1) * this->get_plt_entry_size();
1455   return this->address() + offset + gsym->plt_offset();
1456 }
1457
1458 // Return the PLT address to use for a local symbol.  These are always
1459 // IRELATIVE relocs.
1460
1461 template<int size>
1462 uint64_t
1463 Output_data_plt_x86_64<size>::address_for_local(const Relobj* object,
1464                                                 unsigned int r_sym)
1465 {
1466   return (this->address()
1467           + (this->count_ + 1) * this->get_plt_entry_size()
1468           + object->local_plt_offset(r_sym));
1469 }
1470
1471 // Set the final size.
1472 template<int size>
1473 void
1474 Output_data_plt_x86_64<size>::set_final_data_size()
1475 {
1476   unsigned int count = this->count_ + this->irelative_count_;
1477   if (this->has_tlsdesc_entry())
1478     ++count;
1479   this->set_data_size((count + 1) * this->get_plt_entry_size());
1480 }
1481
1482 // The first entry in the PLT for an executable.
1483
1484 template<int size>
1485 const unsigned char
1486 Output_data_plt_x86_64_standard<size>::first_plt_entry[plt_entry_size] =
1487 {
1488   // From AMD64 ABI Draft 0.98, page 76
1489   0xff, 0x35,   // pushq contents of memory address
1490   0, 0, 0, 0,   // replaced with address of .got + 8
1491   0xff, 0x25,   // jmp indirect
1492   0, 0, 0, 0,   // replaced with address of .got + 16
1493   0x90, 0x90, 0x90, 0x90   // noop (x4)
1494 };
1495
1496 template<int size>
1497 void
1498 Output_data_plt_x86_64_standard<size>::do_fill_first_plt_entry(
1499     unsigned char* pov,
1500     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1501     typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
1502 {
1503   memcpy(pov, first_plt_entry, plt_entry_size);
1504   // We do a jmp relative to the PC at the end of this instruction.
1505   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1506                                               (got_address + 8
1507                                                - (plt_address + 6)));
1508   elfcpp::Swap<32, false>::writeval(pov + 8,
1509                                     (got_address + 16
1510                                      - (plt_address + 12)));
1511 }
1512
1513 // Subsequent entries in the PLT for an executable.
1514
1515 template<int size>
1516 const unsigned char
1517 Output_data_plt_x86_64_standard<size>::plt_entry[plt_entry_size] =
1518 {
1519   // From AMD64 ABI Draft 0.98, page 76
1520   0xff, 0x25,   // jmpq indirect
1521   0, 0, 0, 0,   // replaced with address of symbol in .got
1522   0x68,         // pushq immediate
1523   0, 0, 0, 0,   // replaced with offset into relocation table
1524   0xe9,         // jmpq relative
1525   0, 0, 0, 0    // replaced with offset to start of .plt
1526 };
1527
1528 template<int size>
1529 unsigned int
1530 Output_data_plt_x86_64_standard<size>::do_fill_plt_entry(
1531     unsigned char* pov,
1532     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1533     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1534     unsigned int got_offset,
1535     unsigned int plt_offset,
1536     unsigned int plt_index)
1537 {
1538   // Check PC-relative offset overflow in PLT entry.
1539   uint64_t plt_got_pcrel_offset = (got_address + got_offset
1540                                    - (plt_address + plt_offset + 6));
1541   if (Bits<32>::has_overflow(plt_got_pcrel_offset))
1542     gold_error(_("PC-relative offset overflow in PLT entry %d"),
1543                plt_index + 1);
1544
1545   memcpy(pov, plt_entry, plt_entry_size);
1546   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1547                                               plt_got_pcrel_offset);
1548
1549   elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
1550   elfcpp::Swap<32, false>::writeval(pov + 12,
1551                                     - (plt_offset + plt_entry_size));
1552
1553   return 6;
1554 }
1555
1556 // The reserved TLSDESC entry in the PLT for an executable.
1557
1558 template<int size>
1559 const unsigned char
1560 Output_data_plt_x86_64_standard<size>::tlsdesc_plt_entry[plt_entry_size] =
1561 {
1562   // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
1563   // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
1564   0xff, 0x35,   // pushq x(%rip)
1565   0, 0, 0, 0,   // replaced with address of linkmap GOT entry (at PLTGOT + 8)
1566   0xff, 0x25,   // jmpq *y(%rip)
1567   0, 0, 0, 0,   // replaced with offset of reserved TLSDESC_GOT entry
1568   0x0f, 0x1f,   // nop
1569   0x40, 0
1570 };
1571
1572 template<int size>
1573 void
1574 Output_data_plt_x86_64_standard<size>::do_fill_tlsdesc_entry(
1575     unsigned char* pov,
1576     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1577     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1578     typename elfcpp::Elf_types<size>::Elf_Addr got_base,
1579     unsigned int tlsdesc_got_offset,
1580     unsigned int plt_offset)
1581 {
1582   memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
1583   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1584                                               (got_address + 8
1585                                                - (plt_address + plt_offset
1586                                                   + 6)));
1587   elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
1588                                               (got_base
1589                                                + tlsdesc_got_offset
1590                                                - (plt_address + plt_offset
1591                                                   + 12)));
1592 }
1593
1594 // The .eh_frame unwind information for the PLT.
1595
1596 template<int size>
1597 const unsigned char
1598 Output_data_plt_x86_64<size>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1599 {
1600   1,                            // CIE version.
1601   'z',                          // Augmentation: augmentation size included.
1602   'R',                          // Augmentation: FDE encoding included.
1603   '\0',                         // End of augmentation string.
1604   1,                            // Code alignment factor.
1605   0x78,                         // Data alignment factor.
1606   16,                           // Return address column.
1607   1,                            // Augmentation size.
1608   (elfcpp::DW_EH_PE_pcrel       // FDE encoding.
1609    | elfcpp::DW_EH_PE_sdata4),
1610   elfcpp::DW_CFA_def_cfa, 7, 8, // DW_CFA_def_cfa: r7 (rsp) ofs 8.
1611   elfcpp::DW_CFA_offset + 16, 1,// DW_CFA_offset: r16 (rip) at cfa-8.
1612   elfcpp::DW_CFA_nop,           // Align to 16 bytes.
1613   elfcpp::DW_CFA_nop
1614 };
1615
1616 template<int size>
1617 const unsigned char
1618 Output_data_plt_x86_64_standard<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
1619 {
1620   0, 0, 0, 0,                           // Replaced with offset to .plt.
1621   0, 0, 0, 0,                           // Replaced with size of .plt.
1622   0,                                    // Augmentation size.
1623   elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
1624   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
1625   elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
1626   elfcpp::DW_CFA_advance_loc + 10,      // Advance 10 to __PLT__ + 16.
1627   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
1628   11,                                   // Block length.
1629   elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
1630   elfcpp::DW_OP_breg16, 0,              // Push %rip.
1631   elfcpp::DW_OP_lit15,                  // Push 0xf.
1632   elfcpp::DW_OP_and,                    // & (%rip & 0xf).
1633   elfcpp::DW_OP_lit11,                  // Push 0xb.
1634   elfcpp::DW_OP_ge,                     // >= ((%rip & 0xf) >= 0xb)
1635   elfcpp::DW_OP_lit3,                   // Push 3.
1636   elfcpp::DW_OP_shl,                    // << (((%rip & 0xf) >= 0xb) << 3)
1637   elfcpp::DW_OP_plus,                   // + ((((%rip&0xf)>=0xb)<<3)+%rsp+8
1638   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
1639   elfcpp::DW_CFA_nop,
1640   elfcpp::DW_CFA_nop,
1641   elfcpp::DW_CFA_nop
1642 };
1643
1644 // Write out the PLT.  This uses the hand-coded instructions above,
1645 // and adjusts them as needed.  This is specified by the AMD64 ABI.
1646
1647 template<int size>
1648 void
1649 Output_data_plt_x86_64<size>::do_write(Output_file* of)
1650 {
1651   const off_t offset = this->offset();
1652   const section_size_type oview_size =
1653     convert_to_section_size_type(this->data_size());
1654   unsigned char* const oview = of->get_output_view(offset, oview_size);
1655
1656   const off_t got_file_offset = this->got_plt_->offset();
1657   gold_assert(parameters->incremental_update()
1658               || (got_file_offset + this->got_plt_->data_size()
1659                   == this->got_irelative_->offset()));
1660   const section_size_type got_size =
1661     convert_to_section_size_type(this->got_plt_->data_size()
1662                                  + this->got_irelative_->data_size());
1663   unsigned char* const got_view = of->get_output_view(got_file_offset,
1664                                                       got_size);
1665
1666   unsigned char* pov = oview;
1667
1668   // The base address of the .plt section.
1669   typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
1670   // The base address of the .got section.
1671   typename elfcpp::Elf_types<size>::Elf_Addr got_base = this->got_->address();
1672   // The base address of the PLT portion of the .got section,
1673   // which is where the GOT pointer will point, and where the
1674   // three reserved GOT entries are located.
1675   typename elfcpp::Elf_types<size>::Elf_Addr got_address
1676     = this->got_plt_->address();
1677
1678   this->fill_first_plt_entry(pov, got_address, plt_address);
1679   pov += this->get_plt_entry_size();
1680
1681   // The first three entries in the GOT are reserved, and are written
1682   // by Output_data_got_plt_x86_64::do_write.
1683   unsigned char* got_pov = got_view + 24;
1684
1685   unsigned int plt_offset = this->get_plt_entry_size();
1686   unsigned int got_offset = 24;
1687   const unsigned int count = this->count_ + this->irelative_count_;
1688   for (unsigned int plt_index = 0;
1689        plt_index < count;
1690        ++plt_index,
1691          pov += this->get_plt_entry_size(),
1692          got_pov += 8,
1693          plt_offset += this->get_plt_entry_size(),
1694          got_offset += 8)
1695     {
1696       // Set and adjust the PLT entry itself.
1697       unsigned int lazy_offset = this->fill_plt_entry(pov,
1698                                                       got_address, plt_address,
1699                                                       got_offset, plt_offset,
1700                                                       plt_index);
1701
1702       // Set the entry in the GOT.
1703       elfcpp::Swap<64, false>::writeval(got_pov,
1704                                         plt_address + plt_offset + lazy_offset);
1705     }
1706
1707   if (this->has_tlsdesc_entry())
1708     {
1709       // Set and adjust the reserved TLSDESC PLT entry.
1710       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
1711       this->fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
1712                                tlsdesc_got_offset, plt_offset);
1713       pov += this->get_plt_entry_size();
1714     }
1715
1716   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1717   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1718
1719   of->write_output_view(offset, oview_size, oview);
1720   of->write_output_view(got_file_offset, got_size, got_view);
1721 }
1722
1723 // Create the PLT section.
1724
1725 template<int size>
1726 void
1727 Target_x86_64<size>::make_plt_section(Symbol_table* symtab, Layout* layout)
1728 {
1729   if (this->plt_ == NULL)
1730     {
1731       // Create the GOT sections first.
1732       this->got_section(symtab, layout);
1733
1734       this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
1735                                        this->got_irelative_);
1736
1737       // Add unwind information if requested.
1738       if (parameters->options().ld_generated_unwind_info())
1739         this->plt_->add_eh_frame(layout);
1740
1741       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1742                                       (elfcpp::SHF_ALLOC
1743                                        | elfcpp::SHF_EXECINSTR),
1744                                       this->plt_, ORDER_PLT, false);
1745
1746       // Make the sh_info field of .rela.plt point to .plt.
1747       Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1748       rela_plt_os->set_info_section(this->plt_->output_section());
1749     }
1750 }
1751
1752 // Return the section for TLSDESC relocations.
1753
1754 template<int size>
1755 typename Target_x86_64<size>::Reloc_section*
1756 Target_x86_64<size>::rela_tlsdesc_section(Layout* layout) const
1757 {
1758   return this->plt_section()->rela_tlsdesc(layout);
1759 }
1760
1761 // Create a PLT entry for a global symbol.
1762
1763 template<int size>
1764 void
1765 Target_x86_64<size>::make_plt_entry(Symbol_table* symtab, Layout* layout,
1766                                     Symbol* gsym)
1767 {
1768   if (gsym->has_plt_offset())
1769     return;
1770
1771   if (this->plt_ == NULL)
1772     this->make_plt_section(symtab, layout);
1773
1774   this->plt_->add_entry(symtab, layout, gsym);
1775 }
1776
1777 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
1778
1779 template<int size>
1780 void
1781 Target_x86_64<size>::make_local_ifunc_plt_entry(
1782     Symbol_table* symtab, Layout* layout,
1783     Sized_relobj_file<size, false>* relobj,
1784     unsigned int local_sym_index)
1785 {
1786   if (relobj->local_has_plt_offset(local_sym_index))
1787     return;
1788   if (this->plt_ == NULL)
1789     this->make_plt_section(symtab, layout);
1790   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
1791                                                               relobj,
1792                                                               local_sym_index);
1793   relobj->set_local_plt_offset(local_sym_index, plt_offset);
1794 }
1795
1796 // Return the number of entries in the PLT.
1797
1798 template<int size>
1799 unsigned int
1800 Target_x86_64<size>::plt_entry_count() const
1801 {
1802   if (this->plt_ == NULL)
1803     return 0;
1804   return this->plt_->entry_count();
1805 }
1806
1807 // Return the offset of the first non-reserved PLT entry.
1808
1809 template<int size>
1810 unsigned int
1811 Target_x86_64<size>::first_plt_entry_offset() const
1812 {
1813   return this->plt_->first_plt_entry_offset();
1814 }
1815
1816 // Return the size of each PLT entry.
1817
1818 template<int size>
1819 unsigned int
1820 Target_x86_64<size>::plt_entry_size() const
1821 {
1822   return this->plt_->get_plt_entry_size();
1823 }
1824
1825 // Create the GOT and PLT sections for an incremental update.
1826
1827 template<int size>
1828 Output_data_got_base*
1829 Target_x86_64<size>::init_got_plt_for_update(Symbol_table* symtab,
1830                                        Layout* layout,
1831                                        unsigned int got_count,
1832                                        unsigned int plt_count)
1833 {
1834   gold_assert(this->got_ == NULL);
1835
1836   this->got_ = new Output_data_got<64, false>(got_count * 8);
1837   layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1838                                   (elfcpp::SHF_ALLOC
1839                                    | elfcpp::SHF_WRITE),
1840                                   this->got_, ORDER_RELRO_LAST,
1841                                   true);
1842
1843   // Add the three reserved entries.
1844   this->got_plt_ = new Output_data_got_plt_x86_64(layout, (plt_count + 3) * 8);
1845   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1846                                   (elfcpp::SHF_ALLOC
1847                                    | elfcpp::SHF_WRITE),
1848                                   this->got_plt_, ORDER_NON_RELRO_FIRST,
1849                                   false);
1850
1851   // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1852   this->global_offset_table_ =
1853     symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1854                                   Symbol_table::PREDEFINED,
1855                                   this->got_plt_,
1856                                   0, 0, elfcpp::STT_OBJECT,
1857                                   elfcpp::STB_LOCAL,
1858                                   elfcpp::STV_HIDDEN, 0,
1859                                   false, false);
1860
1861   // If there are any TLSDESC relocations, they get GOT entries in
1862   // .got.plt after the jump slot entries.
1863   // FIXME: Get the count for TLSDESC entries.
1864   this->got_tlsdesc_ = new Output_data_got<64, false>(0);
1865   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1866                                   elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1867                                   this->got_tlsdesc_,
1868                                   ORDER_NON_RELRO_FIRST, false);
1869
1870   // If there are any IRELATIVE relocations, they get GOT entries in
1871   // .got.plt after the jump slot and TLSDESC entries.
1872   this->got_irelative_ = new Output_data_space(0, 8, "** GOT IRELATIVE PLT");
1873   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1874                                   elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1875                                   this->got_irelative_,
1876                                   ORDER_NON_RELRO_FIRST, false);
1877
1878   // Create the PLT section.
1879   this->plt_ = this->make_data_plt(layout, this->got_,
1880                                    this->got_plt_,
1881                                    this->got_irelative_,
1882                                    plt_count);
1883
1884   // Add unwind information if requested.
1885   if (parameters->options().ld_generated_unwind_info())
1886     this->plt_->add_eh_frame(layout);
1887
1888   layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1889                                   elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
1890                                   this->plt_, ORDER_PLT, false);
1891
1892   // Make the sh_info field of .rela.plt point to .plt.
1893   Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1894   rela_plt_os->set_info_section(this->plt_->output_section());
1895
1896   // Create the rela_dyn section.
1897   this->rela_dyn_section(layout);
1898
1899   return this->got_;
1900 }
1901
1902 // Reserve a GOT entry for a local symbol, and regenerate any
1903 // necessary dynamic relocations.
1904
1905 template<int size>
1906 void
1907 Target_x86_64<size>::reserve_local_got_entry(
1908     unsigned int got_index,
1909     Sized_relobj<size, false>* obj,
1910     unsigned int r_sym,
1911     unsigned int got_type)
1912 {
1913   unsigned int got_offset = got_index * 8;
1914   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1915
1916   this->got_->reserve_local(got_index, obj, r_sym, got_type);
1917   switch (got_type)
1918     {
1919     case GOT_TYPE_STANDARD:
1920       if (parameters->options().output_is_position_independent())
1921         rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_X86_64_RELATIVE,
1922                                      this->got_, got_offset, 0, false);
1923       break;
1924     case GOT_TYPE_TLS_OFFSET:
1925       rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_TPOFF64,
1926                           this->got_, got_offset, 0);
1927       break;
1928     case GOT_TYPE_TLS_PAIR:
1929       this->got_->reserve_slot(got_index + 1);
1930       rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_DTPMOD64,
1931                           this->got_, got_offset, 0);
1932       break;
1933     case GOT_TYPE_TLS_DESC:
1934       gold_fatal(_("TLS_DESC not yet supported for incremental linking"));
1935       // this->got_->reserve_slot(got_index + 1);
1936       // rela_dyn->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
1937       //                               this->got_, got_offset, 0);
1938       break;
1939     default:
1940       gold_unreachable();
1941     }
1942 }
1943
1944 // Reserve a GOT entry for a global symbol, and regenerate any
1945 // necessary dynamic relocations.
1946
1947 template<int size>
1948 void
1949 Target_x86_64<size>::reserve_global_got_entry(unsigned int got_index,
1950                                               Symbol* gsym,
1951                                               unsigned int got_type)
1952 {
1953   unsigned int got_offset = got_index * 8;
1954   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1955
1956   this->got_->reserve_global(got_index, gsym, got_type);
1957   switch (got_type)
1958     {
1959     case GOT_TYPE_STANDARD:
1960       if (!gsym->final_value_is_known())
1961         {
1962           if (gsym->is_from_dynobj()
1963               || gsym->is_undefined()
1964               || gsym->is_preemptible()
1965               || gsym->type() == elfcpp::STT_GNU_IFUNC)
1966             rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT,
1967                                  this->got_, got_offset, 0);
1968           else
1969             rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1970                                           this->got_, got_offset, 0, false);
1971         }
1972       break;
1973     case GOT_TYPE_TLS_OFFSET:
1974       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TPOFF64,
1975                                     this->got_, got_offset, 0, false);
1976       break;
1977     case GOT_TYPE_TLS_PAIR:
1978       this->got_->reserve_slot(got_index + 1);
1979       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPMOD64,
1980                                     this->got_, got_offset, 0, false);
1981       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPOFF64,
1982                                     this->got_, got_offset + 8, 0, false);
1983       break;
1984     case GOT_TYPE_TLS_DESC:
1985       this->got_->reserve_slot(got_index + 1);
1986       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TLSDESC,
1987                                     this->got_, got_offset, 0, false);
1988       break;
1989     default:
1990       gold_unreachable();
1991     }
1992 }
1993
1994 // Register an existing PLT entry for a global symbol.
1995
1996 template<int size>
1997 void
1998 Target_x86_64<size>::register_global_plt_entry(Symbol_table* symtab,
1999                                                Layout* layout,
2000                                                unsigned int plt_index,
2001                                                Symbol* gsym)
2002 {
2003   gold_assert(this->plt_ != NULL);
2004   gold_assert(!gsym->has_plt_offset());
2005
2006   this->plt_->reserve_slot(plt_index);
2007
2008   gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
2009
2010   unsigned int got_offset = (plt_index + 3) * 8;
2011   this->plt_->add_relocation(symtab, layout, gsym, got_offset);
2012 }
2013
2014 // Force a COPY relocation for a given symbol.
2015
2016 template<int size>
2017 void
2018 Target_x86_64<size>::emit_copy_reloc(
2019     Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
2020 {
2021   this->copy_relocs_.emit_copy_reloc(symtab,
2022                                      symtab->get_sized_symbol<size>(sym),
2023                                      os,
2024                                      offset,
2025                                      this->rela_dyn_section(NULL));
2026 }
2027
2028 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2029
2030 template<int size>
2031 void
2032 Target_x86_64<size>::define_tls_base_symbol(Symbol_table* symtab,
2033                                             Layout* layout)
2034 {
2035   if (this->tls_base_symbol_defined_)
2036     return;
2037
2038   Output_segment* tls_segment = layout->tls_segment();
2039   if (tls_segment != NULL)
2040     {
2041       bool is_exec = parameters->options().output_is_executable();
2042       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
2043                                        Symbol_table::PREDEFINED,
2044                                        tls_segment, 0, 0,
2045                                        elfcpp::STT_TLS,
2046                                        elfcpp::STB_LOCAL,
2047                                        elfcpp::STV_HIDDEN, 0,
2048                                        (is_exec
2049                                         ? Symbol::SEGMENT_END
2050                                         : Symbol::SEGMENT_START),
2051                                        true);
2052     }
2053   this->tls_base_symbol_defined_ = true;
2054 }
2055
2056 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
2057
2058 template<int size>
2059 void
2060 Target_x86_64<size>::reserve_tlsdesc_entries(Symbol_table* symtab,
2061                                              Layout* layout)
2062 {
2063   if (this->plt_ == NULL)
2064     this->make_plt_section(symtab, layout);
2065
2066   if (!this->plt_->has_tlsdesc_entry())
2067     {
2068       // Allocate the TLSDESC_GOT entry.
2069       Output_data_got<64, false>* got = this->got_section(symtab, layout);
2070       unsigned int got_offset = got->add_constant(0);
2071
2072       // Allocate the TLSDESC_PLT entry.
2073       this->plt_->reserve_tlsdesc_entry(got_offset);
2074     }
2075 }
2076
2077 // Create a GOT entry for the TLS module index.
2078
2079 template<int size>
2080 unsigned int
2081 Target_x86_64<size>::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2082                                          Sized_relobj_file<size, false>* object)
2083 {
2084   if (this->got_mod_index_offset_ == -1U)
2085     {
2086       gold_assert(symtab != NULL && layout != NULL && object != NULL);
2087       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
2088       Output_data_got<64, false>* got = this->got_section(symtab, layout);
2089       unsigned int got_offset = got->add_constant(0);
2090       rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
2091                           got_offset, 0);
2092       got->add_constant(0);
2093       this->got_mod_index_offset_ = got_offset;
2094     }
2095   return this->got_mod_index_offset_;
2096 }
2097
2098 // Optimize the TLS relocation type based on what we know about the
2099 // symbol.  IS_FINAL is true if the final address of this symbol is
2100 // known at link time.
2101
2102 template<int size>
2103 tls::Tls_optimization
2104 Target_x86_64<size>::optimize_tls_reloc(bool is_final, int r_type)
2105 {
2106   // If we are generating a shared library, then we can't do anything
2107   // in the linker.
2108   if (parameters->options().shared())
2109     return tls::TLSOPT_NONE;
2110
2111   switch (r_type)
2112     {
2113     case elfcpp::R_X86_64_TLSGD:
2114     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2115     case elfcpp::R_X86_64_TLSDESC_CALL:
2116       // These are General-Dynamic which permits fully general TLS
2117       // access.  Since we know that we are generating an executable,
2118       // we can convert this to Initial-Exec.  If we also know that
2119       // this is a local symbol, we can further switch to Local-Exec.
2120       if (is_final)
2121         return tls::TLSOPT_TO_LE;
2122       return tls::TLSOPT_TO_IE;
2123
2124     case elfcpp::R_X86_64_TLSLD:
2125       // This is Local-Dynamic, which refers to a local symbol in the
2126       // dynamic TLS block.  Since we know that we generating an
2127       // executable, we can switch to Local-Exec.
2128       return tls::TLSOPT_TO_LE;
2129
2130     case elfcpp::R_X86_64_DTPOFF32:
2131     case elfcpp::R_X86_64_DTPOFF64:
2132       // Another Local-Dynamic reloc.
2133       return tls::TLSOPT_TO_LE;
2134
2135     case elfcpp::R_X86_64_GOTTPOFF:
2136       // These are Initial-Exec relocs which get the thread offset
2137       // from the GOT.  If we know that we are linking against the
2138       // local symbol, we can switch to Local-Exec, which links the
2139       // thread offset into the instruction.
2140       if (is_final)
2141         return tls::TLSOPT_TO_LE;
2142       return tls::TLSOPT_NONE;
2143
2144     case elfcpp::R_X86_64_TPOFF32:
2145       // When we already have Local-Exec, there is nothing further we
2146       // can do.
2147       return tls::TLSOPT_NONE;
2148
2149     default:
2150       gold_unreachable();
2151     }
2152 }
2153
2154 // Get the Reference_flags for a particular relocation.
2155
2156 template<int size>
2157 int
2158 Target_x86_64<size>::Scan::get_reference_flags(unsigned int r_type)
2159 {
2160   switch (r_type)
2161     {
2162     case elfcpp::R_X86_64_NONE:
2163     case elfcpp::R_X86_64_GNU_VTINHERIT:
2164     case elfcpp::R_X86_64_GNU_VTENTRY:
2165     case elfcpp::R_X86_64_GOTPC32:
2166     case elfcpp::R_X86_64_GOTPC64:
2167       // No symbol reference.
2168       return 0;
2169
2170     case elfcpp::R_X86_64_64:
2171     case elfcpp::R_X86_64_32:
2172     case elfcpp::R_X86_64_32S:
2173     case elfcpp::R_X86_64_16:
2174     case elfcpp::R_X86_64_8:
2175       return Symbol::ABSOLUTE_REF;
2176
2177     case elfcpp::R_X86_64_PC64:
2178     case elfcpp::R_X86_64_PC32:
2179     case elfcpp::R_X86_64_PC32_BND:
2180     case elfcpp::R_X86_64_PC16:
2181     case elfcpp::R_X86_64_PC8:
2182     case elfcpp::R_X86_64_GOTOFF64:
2183       return Symbol::RELATIVE_REF;
2184
2185     case elfcpp::R_X86_64_PLT32:
2186     case elfcpp::R_X86_64_PLT32_BND:
2187     case elfcpp::R_X86_64_PLTOFF64:
2188       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
2189
2190     case elfcpp::R_X86_64_GOT64:
2191     case elfcpp::R_X86_64_GOT32:
2192     case elfcpp::R_X86_64_GOTPCREL64:
2193     case elfcpp::R_X86_64_GOTPCREL:
2194     case elfcpp::R_X86_64_GOTPCRELX:
2195     case elfcpp::R_X86_64_REX_GOTPCRELX:
2196     case elfcpp::R_X86_64_GOTPLT64:
2197       // Absolute in GOT.
2198       return Symbol::ABSOLUTE_REF;
2199
2200     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2201     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2202     case elfcpp::R_X86_64_TLSDESC_CALL:
2203     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2204     case elfcpp::R_X86_64_DTPOFF32:
2205     case elfcpp::R_X86_64_DTPOFF64:
2206     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2207     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2208       return Symbol::TLS_REF;
2209
2210     case elfcpp::R_X86_64_COPY:
2211     case elfcpp::R_X86_64_GLOB_DAT:
2212     case elfcpp::R_X86_64_JUMP_SLOT:
2213     case elfcpp::R_X86_64_RELATIVE:
2214     case elfcpp::R_X86_64_IRELATIVE:
2215     case elfcpp::R_X86_64_TPOFF64:
2216     case elfcpp::R_X86_64_DTPMOD64:
2217     case elfcpp::R_X86_64_TLSDESC:
2218     case elfcpp::R_X86_64_SIZE32:
2219     case elfcpp::R_X86_64_SIZE64:
2220     default:
2221       // Not expected.  We will give an error later.
2222       return 0;
2223     }
2224 }
2225
2226 // Report an unsupported relocation against a local symbol.
2227
2228 template<int size>
2229 void
2230 Target_x86_64<size>::Scan::unsupported_reloc_local(
2231      Sized_relobj_file<size, false>* object,
2232      unsigned int r_type)
2233 {
2234   gold_error(_("%s: unsupported reloc %u against local symbol"),
2235              object->name().c_str(), r_type);
2236 }
2237
2238 // We are about to emit a dynamic relocation of type R_TYPE.  If the
2239 // dynamic linker does not support it, issue an error.  The GNU linker
2240 // only issues a non-PIC error for an allocated read-only section.
2241 // Here we know the section is allocated, but we don't know that it is
2242 // read-only.  But we check for all the relocation types which the
2243 // glibc dynamic linker supports, so it seems appropriate to issue an
2244 // error even if the section is not read-only.  If GSYM is not NULL,
2245 // it is the symbol the relocation is against; if it is NULL, the
2246 // relocation is against a local symbol.
2247
2248 template<int size>
2249 void
2250 Target_x86_64<size>::Scan::check_non_pic(Relobj* object, unsigned int r_type,
2251                                          Symbol* gsym)
2252 {
2253   switch (r_type)
2254     {
2255       // These are the relocation types supported by glibc for x86_64
2256       // which should always work.
2257     case elfcpp::R_X86_64_RELATIVE:
2258     case elfcpp::R_X86_64_IRELATIVE:
2259     case elfcpp::R_X86_64_GLOB_DAT:
2260     case elfcpp::R_X86_64_JUMP_SLOT:
2261     case elfcpp::R_X86_64_DTPMOD64:
2262     case elfcpp::R_X86_64_DTPOFF64:
2263     case elfcpp::R_X86_64_TPOFF64:
2264     case elfcpp::R_X86_64_64:
2265     case elfcpp::R_X86_64_COPY:
2266       return;
2267
2268       // glibc supports these reloc types, but they can overflow.
2269     case elfcpp::R_X86_64_PC32:
2270     case elfcpp::R_X86_64_PC32_BND:
2271       // A PC relative reference is OK against a local symbol or if
2272       // the symbol is defined locally.
2273       if (gsym == NULL
2274           || (!gsym->is_from_dynobj()
2275               && !gsym->is_undefined()
2276               && !gsym->is_preemptible()))
2277         return;
2278       /* Fall through.  */
2279     case elfcpp::R_X86_64_32:
2280       // R_X86_64_32 is OK for x32.
2281       if (size == 32 && r_type == elfcpp::R_X86_64_32)
2282         return;
2283       if (this->issued_non_pic_error_)
2284         return;
2285       gold_assert(parameters->options().output_is_position_independent());
2286       if (gsym == NULL)
2287         object->error(_("requires dynamic R_X86_64_32 reloc which may "
2288                         "overflow at runtime; recompile with -fPIC"));
2289       else
2290         {
2291           const char *r_name;
2292           switch (r_type)
2293             {
2294             case elfcpp::R_X86_64_32:
2295               r_name = "R_X86_64_32";
2296               break;
2297             case elfcpp::R_X86_64_PC32:
2298               r_name = "R_X86_64_PC32";
2299               break;
2300             case elfcpp::R_X86_64_PC32_BND:
2301               r_name = "R_X86_64_PC32_BND";
2302               break;
2303             default:
2304               gold_unreachable();
2305               break;
2306             }
2307           object->error(_("requires dynamic %s reloc against '%s' "
2308                           "which may overflow at runtime; recompile "
2309                           "with -fPIC"),
2310                         r_name, gsym->name());
2311         }
2312       this->issued_non_pic_error_ = true;
2313       return;
2314
2315     default:
2316       // This prevents us from issuing more than one error per reloc
2317       // section.  But we can still wind up issuing more than one
2318       // error per object file.
2319       if (this->issued_non_pic_error_)
2320         return;
2321       gold_assert(parameters->options().output_is_position_independent());
2322       object->error(_("requires unsupported dynamic reloc %u; "
2323                       "recompile with -fPIC"),
2324                     r_type);
2325       this->issued_non_pic_error_ = true;
2326       return;
2327
2328     case elfcpp::R_X86_64_NONE:
2329       gold_unreachable();
2330     }
2331 }
2332
2333 // Return whether we need to make a PLT entry for a relocation of the
2334 // given type against a STT_GNU_IFUNC symbol.
2335
2336 template<int size>
2337 bool
2338 Target_x86_64<size>::Scan::reloc_needs_plt_for_ifunc(
2339      Sized_relobj_file<size, false>* object,
2340      unsigned int r_type)
2341 {
2342   int flags = Scan::get_reference_flags(r_type);
2343   if (flags & Symbol::TLS_REF)
2344     gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
2345                object->name().c_str(), r_type);
2346   return flags != 0;
2347 }
2348
2349 // Scan a relocation for a local symbol.
2350
2351 template<int size>
2352 inline void
2353 Target_x86_64<size>::Scan::local(Symbol_table* symtab,
2354                                  Layout* layout,
2355                                  Target_x86_64<size>* target,
2356                                  Sized_relobj_file<size, false>* object,
2357                                  unsigned int data_shndx,
2358                                  Output_section* output_section,
2359                                  const elfcpp::Rela<size, false>& reloc,
2360                                  unsigned int r_type,
2361                                  const elfcpp::Sym<size, false>& lsym,
2362                                  bool is_discarded)
2363 {
2364   if (is_discarded)
2365     return;
2366
2367   // A local STT_GNU_IFUNC symbol may require a PLT entry.
2368   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
2369   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
2370     {
2371       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2372       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
2373     }
2374
2375   switch (r_type)
2376     {
2377     case elfcpp::R_X86_64_NONE:
2378     case elfcpp::R_X86_64_GNU_VTINHERIT:
2379     case elfcpp::R_X86_64_GNU_VTENTRY:
2380       break;
2381
2382     case elfcpp::R_X86_64_64:
2383       // If building a shared library (or a position-independent
2384       // executable), we need to create a dynamic relocation for this
2385       // location.  The relocation applied at link time will apply the
2386       // link-time value, so we flag the location with an
2387       // R_X86_64_RELATIVE relocation so the dynamic loader can
2388       // relocate it easily.
2389       if (parameters->options().output_is_position_independent())
2390         {
2391           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2392           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2393           rela_dyn->add_local_relative(object, r_sym,
2394                                        (size == 32
2395                                         ? elfcpp::R_X86_64_RELATIVE64
2396                                         : elfcpp::R_X86_64_RELATIVE),
2397                                        output_section, data_shndx,
2398                                        reloc.get_r_offset(),
2399                                        reloc.get_r_addend(), is_ifunc);
2400         }
2401       break;
2402
2403     case elfcpp::R_X86_64_32:
2404     case elfcpp::R_X86_64_32S:
2405     case elfcpp::R_X86_64_16:
2406     case elfcpp::R_X86_64_8:
2407       // If building a shared library (or a position-independent
2408       // executable), we need to create a dynamic relocation for this
2409       // location.  We can't use an R_X86_64_RELATIVE relocation
2410       // because that is always a 64-bit relocation.
2411       if (parameters->options().output_is_position_independent())
2412         {
2413           // Use R_X86_64_RELATIVE relocation for R_X86_64_32 under x32.
2414           if (size == 32 && r_type == elfcpp::R_X86_64_32)
2415             {
2416               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2417               Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2418               rela_dyn->add_local_relative(object, r_sym,
2419                                            elfcpp::R_X86_64_RELATIVE,
2420                                            output_section, data_shndx,
2421                                            reloc.get_r_offset(),
2422                                            reloc.get_r_addend(), is_ifunc);
2423               break;
2424             }
2425
2426           this->check_non_pic(object, r_type, NULL);
2427
2428           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2429           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2430           if (lsym.get_st_type() != elfcpp::STT_SECTION)
2431             rela_dyn->add_local(object, r_sym, r_type, output_section,
2432                                 data_shndx, reloc.get_r_offset(),
2433                                 reloc.get_r_addend());
2434           else
2435             {
2436               gold_assert(lsym.get_st_value() == 0);
2437               unsigned int shndx = lsym.get_st_shndx();
2438               bool is_ordinary;
2439               shndx = object->adjust_sym_shndx(r_sym, shndx,
2440                                                &is_ordinary);
2441               if (!is_ordinary)
2442                 object->error(_("section symbol %u has bad shndx %u"),
2443                               r_sym, shndx);
2444               else
2445                 rela_dyn->add_local_section(object, shndx,
2446                                             r_type, output_section,
2447                                             data_shndx, reloc.get_r_offset(),
2448                                             reloc.get_r_addend());
2449             }
2450         }
2451       break;
2452
2453     case elfcpp::R_X86_64_PC64:
2454     case elfcpp::R_X86_64_PC32:
2455     case elfcpp::R_X86_64_PC32_BND:
2456     case elfcpp::R_X86_64_PC16:
2457     case elfcpp::R_X86_64_PC8:
2458       break;
2459
2460     case elfcpp::R_X86_64_PLT32:
2461     case elfcpp::R_X86_64_PLT32_BND:
2462       // Since we know this is a local symbol, we can handle this as a
2463       // PC32 reloc.
2464       break;
2465
2466     case elfcpp::R_X86_64_GOTPC32:
2467     case elfcpp::R_X86_64_GOTOFF64:
2468     case elfcpp::R_X86_64_GOTPC64:
2469     case elfcpp::R_X86_64_PLTOFF64:
2470       // We need a GOT section.
2471       target->got_section(symtab, layout);
2472       // For PLTOFF64, we'd normally want a PLT section, but since we
2473       // know this is a local symbol, no PLT is needed.
2474       break;
2475
2476     case elfcpp::R_X86_64_GOT64:
2477     case elfcpp::R_X86_64_GOT32:
2478     case elfcpp::R_X86_64_GOTPCREL64:
2479     case elfcpp::R_X86_64_GOTPCREL:
2480     case elfcpp::R_X86_64_GOTPCRELX:
2481     case elfcpp::R_X86_64_REX_GOTPCRELX:
2482     case elfcpp::R_X86_64_GOTPLT64:
2483       {
2484         // The symbol requires a GOT section.
2485         Output_data_got<64, false>* got = target->got_section(symtab, layout);
2486
2487         // If the relocation symbol isn't IFUNC,
2488         // and is local, then we will convert
2489         // mov foo@GOTPCREL(%rip), %reg
2490         // to lea foo(%rip), %reg.
2491         // in Relocate::relocate.
2492         if ((r_type == elfcpp::R_X86_64_GOTPCREL
2493              || r_type == elfcpp::R_X86_64_GOTPCRELX
2494              || r_type == elfcpp::R_X86_64_REX_GOTPCRELX)
2495             && reloc.get_r_offset() >= 2
2496             && !is_ifunc)
2497           {
2498             section_size_type stype;
2499             const unsigned char* view = object->section_contents(data_shndx,
2500                                                                  &stype, true);
2501             if (view[reloc.get_r_offset() - 2] == 0x8b)
2502               break;
2503           }
2504
2505
2506         // The symbol requires a GOT entry.
2507         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2508
2509         // For a STT_GNU_IFUNC symbol we want the PLT offset.  That
2510         // lets function pointers compare correctly with shared
2511         // libraries.  Otherwise we would need an IRELATIVE reloc.
2512         bool is_new;
2513         if (is_ifunc)
2514           is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
2515         else
2516           is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
2517         if (is_new)
2518           {
2519             // If we are generating a shared object, we need to add a
2520             // dynamic relocation for this symbol's GOT entry.
2521             if (parameters->options().output_is_position_independent())
2522               {
2523                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2524                 // R_X86_64_RELATIVE assumes a 64-bit relocation.
2525                 if (r_type != elfcpp::R_X86_64_GOT32)
2526                   {
2527                     unsigned int got_offset =
2528                       object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
2529                     rela_dyn->add_local_relative(object, r_sym,
2530                                                  elfcpp::R_X86_64_RELATIVE,
2531                                                  got, got_offset, 0, is_ifunc);
2532                   }
2533                 else
2534                   {
2535                     this->check_non_pic(object, r_type, NULL);
2536
2537                     gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
2538                     rela_dyn->add_local(
2539                         object, r_sym, r_type, got,
2540                         object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
2541                   }
2542               }
2543           }
2544         // For GOTPLT64, we'd normally want a PLT section, but since
2545         // we know this is a local symbol, no PLT is needed.
2546       }
2547       break;
2548
2549     case elfcpp::R_X86_64_COPY:
2550     case elfcpp::R_X86_64_GLOB_DAT:
2551     case elfcpp::R_X86_64_JUMP_SLOT:
2552     case elfcpp::R_X86_64_RELATIVE:
2553     case elfcpp::R_X86_64_IRELATIVE:
2554       // These are outstanding tls relocs, which are unexpected when linking
2555     case elfcpp::R_X86_64_TPOFF64:
2556     case elfcpp::R_X86_64_DTPMOD64:
2557     case elfcpp::R_X86_64_TLSDESC:
2558       gold_error(_("%s: unexpected reloc %u in object file"),
2559                  object->name().c_str(), r_type);
2560       break;
2561
2562       // These are initial tls relocs, which are expected when linking
2563     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2564     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2565     case elfcpp::R_X86_64_TLSDESC_CALL:
2566     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2567     case elfcpp::R_X86_64_DTPOFF32:
2568     case elfcpp::R_X86_64_DTPOFF64:
2569     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2570     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2571       {
2572         bool output_is_shared = parameters->options().shared();
2573         const tls::Tls_optimization optimized_type
2574             = Target_x86_64<size>::optimize_tls_reloc(!output_is_shared,
2575                                                       r_type);
2576         switch (r_type)
2577           {
2578           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
2579             if (optimized_type == tls::TLSOPT_NONE)
2580               {
2581                 // Create a pair of GOT entries for the module index and
2582                 // dtv-relative offset.
2583                 Output_data_got<64, false>* got
2584                     = target->got_section(symtab, layout);
2585                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2586                 unsigned int shndx = lsym.get_st_shndx();
2587                 bool is_ordinary;
2588                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2589                 if (!is_ordinary)
2590                   object->error(_("local symbol %u has bad shndx %u"),
2591                               r_sym, shndx);
2592                 else
2593                   got->add_local_pair_with_rel(object, r_sym,
2594                                                shndx,
2595                                                GOT_TYPE_TLS_PAIR,
2596                                                target->rela_dyn_section(layout),
2597                                                elfcpp::R_X86_64_DTPMOD64);
2598               }
2599             else if (optimized_type != tls::TLSOPT_TO_LE)
2600               unsupported_reloc_local(object, r_type);
2601             break;
2602
2603           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2604             target->define_tls_base_symbol(symtab, layout);
2605             if (optimized_type == tls::TLSOPT_NONE)
2606               {
2607                 // Create reserved PLT and GOT entries for the resolver.
2608                 target->reserve_tlsdesc_entries(symtab, layout);
2609
2610                 // Generate a double GOT entry with an
2611                 // R_X86_64_TLSDESC reloc.  The R_X86_64_TLSDESC reloc
2612                 // is resolved lazily, so the GOT entry needs to be in
2613                 // an area in .got.plt, not .got.  Call got_section to
2614                 // make sure the section has been created.
2615                 target->got_section(symtab, layout);
2616                 Output_data_got<64, false>* got = target->got_tlsdesc_section();
2617                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2618                 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
2619                   {
2620                     unsigned int got_offset = got->add_constant(0);
2621                     got->add_constant(0);
2622                     object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
2623                                                  got_offset);
2624                     Reloc_section* rt = target->rela_tlsdesc_section(layout);
2625                     // We store the arguments we need in a vector, and
2626                     // use the index into the vector as the parameter
2627                     // to pass to the target specific routines.
2628                     uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
2629                     void* arg = reinterpret_cast<void*>(intarg);
2630                     rt->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
2631                                             got, got_offset, 0);
2632                   }
2633               }
2634             else if (optimized_type != tls::TLSOPT_TO_LE)
2635               unsupported_reloc_local(object, r_type);
2636             break;
2637
2638           case elfcpp::R_X86_64_TLSDESC_CALL:
2639             break;
2640
2641           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
2642             if (optimized_type == tls::TLSOPT_NONE)
2643               {
2644                 // Create a GOT entry for the module index.
2645                 target->got_mod_index_entry(symtab, layout, object);
2646               }
2647             else if (optimized_type != tls::TLSOPT_TO_LE)
2648               unsupported_reloc_local(object, r_type);
2649             break;
2650
2651           case elfcpp::R_X86_64_DTPOFF32:
2652           case elfcpp::R_X86_64_DTPOFF64:
2653             break;
2654
2655           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
2656             layout->set_has_static_tls();
2657             if (optimized_type == tls::TLSOPT_NONE)
2658               {
2659                 // Create a GOT entry for the tp-relative offset.
2660                 Output_data_got<64, false>* got
2661                     = target->got_section(symtab, layout);
2662                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2663                 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
2664                                         target->rela_dyn_section(layout),
2665                                         elfcpp::R_X86_64_TPOFF64);
2666               }
2667             else if (optimized_type != tls::TLSOPT_TO_LE)
2668               unsupported_reloc_local(object, r_type);
2669             break;
2670
2671           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
2672             layout->set_has_static_tls();
2673             if (output_is_shared)
2674               unsupported_reloc_local(object, r_type);
2675             break;
2676
2677           default:
2678             gold_unreachable();
2679           }
2680       }
2681       break;
2682
2683     case elfcpp::R_X86_64_SIZE32:
2684     case elfcpp::R_X86_64_SIZE64:
2685     default:
2686       gold_error(_("%s: unsupported reloc %u against local symbol"),
2687                  object->name().c_str(), r_type);
2688       break;
2689     }
2690 }
2691
2692
2693 // Report an unsupported relocation against a global symbol.
2694
2695 template<int size>
2696 void
2697 Target_x86_64<size>::Scan::unsupported_reloc_global(
2698     Sized_relobj_file<size, false>* object,
2699     unsigned int r_type,
2700     Symbol* gsym)
2701 {
2702   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2703              object->name().c_str(), r_type, gsym->demangled_name().c_str());
2704 }
2705
2706 // Returns true if this relocation type could be that of a function pointer.
2707 template<int size>
2708 inline bool
2709 Target_x86_64<size>::Scan::possible_function_pointer_reloc(unsigned int r_type)
2710 {
2711   switch (r_type)
2712     {
2713     case elfcpp::R_X86_64_64:
2714     case elfcpp::R_X86_64_32:
2715     case elfcpp::R_X86_64_32S:
2716     case elfcpp::R_X86_64_16:
2717     case elfcpp::R_X86_64_8:
2718     case elfcpp::R_X86_64_GOT64:
2719     case elfcpp::R_X86_64_GOT32:
2720     case elfcpp::R_X86_64_GOTPCREL64:
2721     case elfcpp::R_X86_64_GOTPCREL:
2722     case elfcpp::R_X86_64_GOTPCRELX:
2723     case elfcpp::R_X86_64_REX_GOTPCRELX:
2724     case elfcpp::R_X86_64_GOTPLT64:
2725       {
2726         return true;
2727       }
2728     }
2729   return false;
2730 }
2731
2732 // For safe ICF, scan a relocation for a local symbol to check if it
2733 // corresponds to a function pointer being taken.  In that case mark
2734 // the function whose pointer was taken as not foldable.
2735
2736 template<int size>
2737 inline bool
2738 Target_x86_64<size>::Scan::local_reloc_may_be_function_pointer(
2739   Symbol_table* ,
2740   Layout* ,
2741   Target_x86_64<size>* ,
2742   Sized_relobj_file<size, false>* ,
2743   unsigned int ,
2744   Output_section* ,
2745   const elfcpp::Rela<size, false>& ,
2746   unsigned int r_type,
2747   const elfcpp::Sym<size, false>&)
2748 {
2749   // When building a shared library, do not fold any local symbols as it is
2750   // not possible to distinguish pointer taken versus a call by looking at
2751   // the relocation types.
2752   return (parameters->options().shared()
2753           || possible_function_pointer_reloc(r_type));
2754 }
2755
2756 // For safe ICF, scan a relocation for a global symbol to check if it
2757 // corresponds to a function pointer being taken.  In that case mark
2758 // the function whose pointer was taken as not foldable.
2759
2760 template<int size>
2761 inline bool
2762 Target_x86_64<size>::Scan::global_reloc_may_be_function_pointer(
2763   Symbol_table*,
2764   Layout* ,
2765   Target_x86_64<size>* ,
2766   Sized_relobj_file<size, false>* ,
2767   unsigned int ,
2768   Output_section* ,
2769   const elfcpp::Rela<size, false>& ,
2770   unsigned int r_type,
2771   Symbol* gsym)
2772 {
2773   // When building a shared library, do not fold symbols whose visibility
2774   // is hidden, internal or protected.
2775   return ((parameters->options().shared()
2776            && (gsym->visibility() == elfcpp::STV_INTERNAL
2777                || gsym->visibility() == elfcpp::STV_PROTECTED
2778                || gsym->visibility() == elfcpp::STV_HIDDEN))
2779           || possible_function_pointer_reloc(r_type));
2780 }
2781
2782 // Scan a relocation for a global symbol.
2783
2784 template<int size>
2785 inline void
2786 Target_x86_64<size>::Scan::global(Symbol_table* symtab,
2787                             Layout* layout,
2788                             Target_x86_64<size>* target,
2789                             Sized_relobj_file<size, false>* object,
2790                             unsigned int data_shndx,
2791                             Output_section* output_section,
2792                             const elfcpp::Rela<size, false>& reloc,
2793                             unsigned int r_type,
2794                             Symbol* gsym)
2795 {
2796   // A STT_GNU_IFUNC symbol may require a PLT entry.
2797   if (gsym->type() == elfcpp::STT_GNU_IFUNC
2798       && this->reloc_needs_plt_for_ifunc(object, r_type))
2799     target->make_plt_entry(symtab, layout, gsym);
2800
2801   switch (r_type)
2802     {
2803     case elfcpp::R_X86_64_NONE:
2804     case elfcpp::R_X86_64_GNU_VTINHERIT:
2805     case elfcpp::R_X86_64_GNU_VTENTRY:
2806       break;
2807
2808     case elfcpp::R_X86_64_64:
2809     case elfcpp::R_X86_64_32:
2810     case elfcpp::R_X86_64_32S:
2811     case elfcpp::R_X86_64_16:
2812     case elfcpp::R_X86_64_8:
2813       {
2814         // Make a PLT entry if necessary.
2815         if (gsym->needs_plt_entry())
2816           {
2817             target->make_plt_entry(symtab, layout, gsym);
2818             // Since this is not a PC-relative relocation, we may be
2819             // taking the address of a function. In that case we need to
2820             // set the entry in the dynamic symbol table to the address of
2821             // the PLT entry.
2822             if (gsym->is_from_dynobj() && !parameters->options().shared())
2823               gsym->set_needs_dynsym_value();
2824           }
2825         // Make a dynamic relocation if necessary.
2826         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2827           {
2828             if (!parameters->options().output_is_position_independent()
2829                 && gsym->may_need_copy_reloc())
2830               {
2831                 target->copy_reloc(symtab, layout, object,
2832                                    data_shndx, output_section, gsym, reloc);
2833               }
2834             else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
2835                       || (size == 32 && r_type == elfcpp::R_X86_64_32))
2836                      && gsym->type() == elfcpp::STT_GNU_IFUNC
2837                      && gsym->can_use_relative_reloc(false)
2838                      && !gsym->is_from_dynobj()
2839                      && !gsym->is_undefined()
2840                      && !gsym->is_preemptible())
2841               {
2842                 // Use an IRELATIVE reloc for a locally defined
2843                 // STT_GNU_IFUNC symbol.  This makes a function
2844                 // address in a PIE executable match the address in a
2845                 // shared library that it links against.
2846                 Reloc_section* rela_dyn =
2847                   target->rela_irelative_section(layout);
2848                 unsigned int r_type = elfcpp::R_X86_64_IRELATIVE;
2849                 rela_dyn->add_symbolless_global_addend(gsym, r_type,
2850                                                        output_section, object,
2851                                                        data_shndx,
2852                                                        reloc.get_r_offset(),
2853                                                        reloc.get_r_addend());
2854               }
2855             else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
2856                       || (size == 32 && r_type == elfcpp::R_X86_64_32))
2857                      && gsym->can_use_relative_reloc(false))
2858               {
2859                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2860                 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
2861                                               output_section, object,
2862                                               data_shndx,
2863                                               reloc.get_r_offset(),
2864                                               reloc.get_r_addend(), false);
2865               }
2866             else
2867               {
2868                 this->check_non_pic(object, r_type, gsym);
2869                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2870                 rela_dyn->add_global(gsym, r_type, output_section, object,
2871                                      data_shndx, reloc.get_r_offset(),
2872                                      reloc.get_r_addend());
2873               }
2874           }
2875       }
2876       break;
2877
2878     case elfcpp::R_X86_64_PC64:
2879     case elfcpp::R_X86_64_PC32:
2880     case elfcpp::R_X86_64_PC32_BND:
2881     case elfcpp::R_X86_64_PC16:
2882     case elfcpp::R_X86_64_PC8:
2883       {
2884         // Make a PLT entry if necessary.
2885         if (gsym->needs_plt_entry())
2886           target->make_plt_entry(symtab, layout, gsym);
2887         // Make a dynamic relocation if necessary.
2888         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2889           {
2890             if (parameters->options().output_is_executable()
2891                 && gsym->may_need_copy_reloc())
2892               {
2893                 target->copy_reloc(symtab, layout, object,
2894                                    data_shndx, output_section, gsym, reloc);
2895               }
2896             else
2897               {
2898                 this->check_non_pic(object, r_type, gsym);
2899                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2900                 rela_dyn->add_global(gsym, r_type, output_section, object,
2901                                      data_shndx, reloc.get_r_offset(),
2902                                      reloc.get_r_addend());
2903               }
2904           }
2905       }
2906       break;
2907
2908     case elfcpp::R_X86_64_GOT64:
2909     case elfcpp::R_X86_64_GOT32:
2910     case elfcpp::R_X86_64_GOTPCREL64:
2911     case elfcpp::R_X86_64_GOTPCREL:
2912     case elfcpp::R_X86_64_GOTPCRELX:
2913     case elfcpp::R_X86_64_REX_GOTPCRELX:
2914     case elfcpp::R_X86_64_GOTPLT64:
2915       {
2916         // The symbol requires a GOT entry.
2917         Output_data_got<64, false>* got = target->got_section(symtab, layout);
2918
2919         // If we convert this from
2920         // mov foo@GOTPCREL(%rip), %reg
2921         // to lea foo(%rip), %reg.
2922         // in Relocate::relocate, then there is nothing to do here.
2923         if ((r_type == elfcpp::R_X86_64_GOTPCREL
2924              || r_type == elfcpp::R_X86_64_GOTPCRELX
2925              || r_type == elfcpp::R_X86_64_REX_GOTPCRELX)
2926             && reloc.get_r_offset() >= 2
2927             && Target_x86_64<size>::can_convert_mov_to_lea(gsym))
2928           {
2929             section_size_type stype;
2930             const unsigned char* view = object->section_contents(data_shndx,
2931                                                                  &stype, true);
2932             if (view[reloc.get_r_offset() - 2] == 0x8b)
2933               break;
2934           }
2935
2936         if (gsym->final_value_is_known())
2937           {
2938             // For a STT_GNU_IFUNC symbol we want the PLT address.
2939             if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2940               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2941             else
2942               got->add_global(gsym, GOT_TYPE_STANDARD);
2943           }
2944         else
2945           {
2946             // If this symbol is not fully resolved, we need to add a
2947             // dynamic relocation for it.
2948             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2949
2950             // Use a GLOB_DAT rather than a RELATIVE reloc if:
2951             //
2952             // 1) The symbol may be defined in some other module.
2953             //
2954             // 2) We are building a shared library and this is a
2955             // protected symbol; using GLOB_DAT means that the dynamic
2956             // linker can use the address of the PLT in the main
2957             // executable when appropriate so that function address
2958             // comparisons work.
2959             //
2960             // 3) This is a STT_GNU_IFUNC symbol in position dependent
2961             // code, again so that function address comparisons work.
2962             if (gsym->is_from_dynobj()
2963                 || gsym->is_undefined()
2964                 || gsym->is_preemptible()
2965                 || (gsym->visibility() == elfcpp::STV_PROTECTED
2966                     && parameters->options().shared())
2967                 || (gsym->type() == elfcpp::STT_GNU_IFUNC
2968                     && parameters->options().output_is_position_independent()))
2969               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
2970                                        elfcpp::R_X86_64_GLOB_DAT);
2971             else
2972               {
2973                 // For a STT_GNU_IFUNC symbol we want to write the PLT
2974                 // offset into the GOT, so that function pointer
2975                 // comparisons work correctly.
2976                 bool is_new;
2977                 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2978                   is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2979                 else
2980                   {
2981                     is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2982                     // Tell the dynamic linker to use the PLT address
2983                     // when resolving relocations.
2984                     if (gsym->is_from_dynobj()
2985                         && !parameters->options().shared())
2986                       gsym->set_needs_dynsym_value();
2987                   }
2988                 if (is_new)
2989                   {
2990                     unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
2991                     rela_dyn->add_global_relative(gsym,
2992                                                   elfcpp::R_X86_64_RELATIVE,
2993                                                   got, got_off, 0, false);
2994                   }
2995               }
2996           }
2997       }
2998       break;
2999
3000     case elfcpp::R_X86_64_PLT32:
3001     case elfcpp::R_X86_64_PLT32_BND:
3002       // If the symbol is fully resolved, this is just a PC32 reloc.
3003       // Otherwise we need a PLT entry.
3004       if (gsym->final_value_is_known())
3005         break;
3006       // If building a shared library, we can also skip the PLT entry
3007       // if the symbol is defined in the output file and is protected
3008       // or hidden.
3009       if (gsym->is_defined()
3010           && !gsym->is_from_dynobj()
3011           && !gsym->is_preemptible())
3012         break;
3013       target->make_plt_entry(symtab, layout, gsym);
3014       break;
3015
3016     case elfcpp::R_X86_64_GOTPC32:
3017     case elfcpp::R_X86_64_GOTOFF64:
3018     case elfcpp::R_X86_64_GOTPC64:
3019     case elfcpp::R_X86_64_PLTOFF64:
3020       // We need a GOT section.
3021       target->got_section(symtab, layout);
3022       // For PLTOFF64, we also need a PLT entry (but only if the
3023       // symbol is not fully resolved).
3024       if (r_type == elfcpp::R_X86_64_PLTOFF64
3025           && !gsym->final_value_is_known())
3026         target->make_plt_entry(symtab, layout, gsym);
3027       break;
3028
3029     case elfcpp::R_X86_64_COPY:
3030     case elfcpp::R_X86_64_GLOB_DAT:
3031     case elfcpp::R_X86_64_JUMP_SLOT:
3032     case elfcpp::R_X86_64_RELATIVE:
3033     case elfcpp::R_X86_64_IRELATIVE:
3034       // These are outstanding tls relocs, which are unexpected when linking
3035     case elfcpp::R_X86_64_TPOFF64:
3036     case elfcpp::R_X86_64_DTPMOD64:
3037     case elfcpp::R_X86_64_TLSDESC:
3038       gold_error(_("%s: unexpected reloc %u in object file"),
3039                  object->name().c_str(), r_type);
3040       break;
3041
3042       // These are initial tls relocs, which are expected for global()
3043     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3044     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3045     case elfcpp::R_X86_64_TLSDESC_CALL:
3046     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3047     case elfcpp::R_X86_64_DTPOFF32:
3048     case elfcpp::R_X86_64_DTPOFF64:
3049     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3050     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3051       {
3052         // For the Initial-Exec model, we can treat undef symbols as final
3053         // when building an executable.
3054         const bool is_final = (gsym->final_value_is_known() ||
3055                                (r_type == elfcpp::R_X86_64_GOTTPOFF &&
3056                                 gsym->is_undefined() &&
3057                                 parameters->options().output_is_executable()));
3058         const tls::Tls_optimization optimized_type
3059             = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
3060         switch (r_type)
3061           {
3062           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
3063             if (optimized_type == tls::TLSOPT_NONE)
3064               {
3065                 // Create a pair of GOT entries for the module index and
3066                 // dtv-relative offset.
3067                 Output_data_got<64, false>* got
3068                     = target->got_section(symtab, layout);
3069                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
3070                                               target->rela_dyn_section(layout),
3071                                               elfcpp::R_X86_64_DTPMOD64,
3072                                               elfcpp::R_X86_64_DTPOFF64);
3073               }
3074             else if (optimized_type == tls::TLSOPT_TO_IE)
3075               {
3076                 // Create a GOT entry for the tp-relative offset.
3077                 Output_data_got<64, false>* got
3078                     = target->got_section(symtab, layout);
3079                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3080                                          target->rela_dyn_section(layout),
3081                                          elfcpp::R_X86_64_TPOFF64);
3082               }
3083             else if (optimized_type != tls::TLSOPT_TO_LE)
3084               unsupported_reloc_global(object, r_type, gsym);
3085             break;
3086
3087           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
3088             target->define_tls_base_symbol(symtab, layout);
3089             if (optimized_type == tls::TLSOPT_NONE)
3090               {
3091                 // Create reserved PLT and GOT entries for the resolver.
3092                 target->reserve_tlsdesc_entries(symtab, layout);
3093
3094                 // Create a double GOT entry with an R_X86_64_TLSDESC
3095                 // reloc.  The R_X86_64_TLSDESC reloc is resolved
3096                 // lazily, so the GOT entry needs to be in an area in
3097                 // .got.plt, not .got.  Call got_section to make sure
3098                 // the section has been created.
3099                 target->got_section(symtab, layout);
3100                 Output_data_got<64, false>* got = target->got_tlsdesc_section();
3101                 Reloc_section* rt = target->rela_tlsdesc_section(layout);
3102                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
3103                                               elfcpp::R_X86_64_TLSDESC, 0);
3104               }
3105             else if (optimized_type == tls::TLSOPT_TO_IE)
3106               {
3107                 // Create a GOT entry for the tp-relative offset.
3108                 Output_data_got<64, false>* got
3109                     = target->got_section(symtab, layout);
3110                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3111                                          target->rela_dyn_section(layout),
3112                                          elfcpp::R_X86_64_TPOFF64);
3113               }
3114             else if (optimized_type != tls::TLSOPT_TO_LE)
3115               unsupported_reloc_global(object, r_type, gsym);
3116             break;
3117
3118           case elfcpp::R_X86_64_TLSDESC_CALL:
3119             break;
3120
3121           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
3122             if (optimized_type == tls::TLSOPT_NONE)
3123               {
3124                 // Create a GOT entry for the module index.
3125                 target->got_mod_index_entry(symtab, layout, object);
3126               }
3127             else if (optimized_type != tls::TLSOPT_TO_LE)
3128               unsupported_reloc_global(object, r_type, gsym);
3129             break;
3130
3131           case elfcpp::R_X86_64_DTPOFF32:
3132           case elfcpp::R_X86_64_DTPOFF64:
3133             break;
3134
3135           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
3136             layout->set_has_static_tls();
3137             if (optimized_type == tls::TLSOPT_NONE)
3138               {
3139                 // Create a GOT entry for the tp-relative offset.
3140                 Output_data_got<64, false>* got
3141                     = target->got_section(symtab, layout);
3142                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3143                                          target->rela_dyn_section(layout),
3144                                          elfcpp::R_X86_64_TPOFF64);
3145               }
3146             else if (optimized_type != tls::TLSOPT_TO_LE)
3147               unsupported_reloc_global(object, r_type, gsym);
3148             break;
3149
3150           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
3151             layout->set_has_static_tls();
3152             if (parameters->options().shared())
3153               unsupported_reloc_global(object, r_type, gsym);
3154             break;
3155
3156           default:
3157             gold_unreachable();
3158           }
3159       }
3160       break;
3161
3162     case elfcpp::R_X86_64_SIZE32:
3163     case elfcpp::R_X86_64_SIZE64:
3164     default:
3165       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3166                  object->name().c_str(), r_type,
3167                  gsym->demangled_name().c_str());
3168       break;
3169     }
3170 }
3171
3172 template<int size>
3173 void
3174 Target_x86_64<size>::gc_process_relocs(Symbol_table* symtab,
3175                                        Layout* layout,
3176                                        Sized_relobj_file<size, false>* object,
3177                                        unsigned int data_shndx,
3178                                        unsigned int sh_type,
3179                                        const unsigned char* prelocs,
3180                                        size_t reloc_count,
3181                                        Output_section* output_section,
3182                                        bool needs_special_offset_handling,
3183                                        size_t local_symbol_count,
3184                                        const unsigned char* plocal_symbols)
3185 {
3186
3187   if (sh_type == elfcpp::SHT_REL)
3188     {
3189       return;
3190     }
3191
3192    gold::gc_process_relocs<size, false, Target_x86_64<size>, elfcpp::SHT_RELA,
3193                            typename Target_x86_64<size>::Scan,
3194                            typename Target_x86_64<size>::Relocatable_size_for_reloc>(
3195     symtab,
3196     layout,
3197     this,
3198     object,
3199     data_shndx,
3200     prelocs,
3201     reloc_count,
3202     output_section,
3203     needs_special_offset_handling,
3204     local_symbol_count,
3205     plocal_symbols);
3206
3207 }
3208 // Scan relocations for a section.
3209
3210 template<int size>
3211 void
3212 Target_x86_64<size>::scan_relocs(Symbol_table* symtab,
3213                                  Layout* layout,
3214                                  Sized_relobj_file<size, false>* object,
3215                                  unsigned int data_shndx,
3216                                  unsigned int sh_type,
3217                                  const unsigned char* prelocs,
3218                                  size_t reloc_count,
3219                                  Output_section* output_section,
3220                                  bool needs_special_offset_handling,
3221                                  size_t local_symbol_count,
3222                                  const unsigned char* plocal_symbols)
3223 {
3224   if (sh_type == elfcpp::SHT_REL)
3225     {
3226       gold_error(_("%s: unsupported REL reloc section"),
3227                  object->name().c_str());
3228       return;
3229     }
3230
3231   gold::scan_relocs<size, false, Target_x86_64<size>, elfcpp::SHT_RELA,
3232       typename Target_x86_64<size>::Scan>(
3233     symtab,
3234     layout,
3235     this,
3236     object,
3237     data_shndx,
3238     prelocs,
3239     reloc_count,
3240     output_section,
3241     needs_special_offset_handling,
3242     local_symbol_count,
3243     plocal_symbols);
3244 }
3245
3246 // Finalize the sections.
3247
3248 template<int size>
3249 void
3250 Target_x86_64<size>::do_finalize_sections(
3251     Layout* layout,
3252     const Input_objects*,
3253     Symbol_table* symtab)
3254 {
3255   const Reloc_section* rel_plt = (this->plt_ == NULL
3256                                   ? NULL
3257                                   : this->plt_->rela_plt());
3258   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
3259                                   this->rela_dyn_, true, false);
3260
3261   // Fill in some more dynamic tags.
3262   Output_data_dynamic* const odyn = layout->dynamic_data();
3263   if (odyn != NULL)
3264     {
3265       if (this->plt_ != NULL
3266           && this->plt_->output_section() != NULL
3267           && this->plt_->has_tlsdesc_entry())
3268         {
3269           unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
3270           unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
3271           this->got_->finalize_data_size();
3272           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
3273                                         this->plt_, plt_offset);
3274           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
3275                                         this->got_, got_offset);
3276         }
3277     }
3278
3279   // Emit any relocs we saved in an attempt to avoid generating COPY
3280   // relocs.
3281   if (this->copy_relocs_.any_saved_relocs())
3282     this->copy_relocs_.emit(this->rela_dyn_section(layout));
3283
3284   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
3285   // the .got.plt section.
3286   Symbol* sym = this->global_offset_table_;
3287   if (sym != NULL)
3288     {
3289       uint64_t data_size = this->got_plt_->current_data_size();
3290       symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
3291     }
3292
3293   if (parameters->doing_static_link()
3294       && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
3295     {
3296       // If linking statically, make sure that the __rela_iplt symbols
3297       // were defined if necessary, even if we didn't create a PLT.
3298       static const Define_symbol_in_segment syms[] =
3299         {
3300           {
3301             "__rela_iplt_start",        // name
3302             elfcpp::PT_LOAD,            // segment_type
3303             elfcpp::PF_W,               // segment_flags_set
3304             elfcpp::PF(0),              // segment_flags_clear
3305             0,                          // value
3306             0,                          // size
3307             elfcpp::STT_NOTYPE,         // type
3308             elfcpp::STB_GLOBAL,         // binding
3309             elfcpp::STV_HIDDEN,         // visibility
3310             0,                          // nonvis
3311             Symbol::SEGMENT_START,      // offset_from_base
3312             true                        // only_if_ref
3313           },
3314           {
3315             "__rela_iplt_end",          // name
3316             elfcpp::PT_LOAD,            // segment_type
3317             elfcpp::PF_W,               // segment_flags_set
3318             elfcpp::PF(0),              // segment_flags_clear
3319             0,                          // value
3320             0,                          // size
3321             elfcpp::STT_NOTYPE,         // type
3322             elfcpp::STB_GLOBAL,         // binding
3323             elfcpp::STV_HIDDEN,         // visibility
3324             0,                          // nonvis
3325             Symbol::SEGMENT_START,      // offset_from_base
3326             true                        // only_if_ref
3327           }
3328         };
3329
3330       symtab->define_symbols(layout, 2, syms,
3331                              layout->script_options()->saw_sections_clause());
3332     }
3333 }
3334
3335 // Perform a relocation.
3336
3337 template<int size>
3338 inline bool
3339 Target_x86_64<size>::Relocate::relocate(
3340     const Relocate_info<size, false>* relinfo,
3341     Target_x86_64<size>* target,
3342     Output_section*,
3343     size_t relnum,
3344     const elfcpp::Rela<size, false>& rela,
3345     unsigned int r_type,
3346     const Sized_symbol<size>* gsym,
3347     const Symbol_value<size>* psymval,
3348     unsigned char* view,
3349     typename elfcpp::Elf_types<size>::Elf_Addr address,
3350     section_size_type view_size)
3351 {
3352   if (this->skip_call_tls_get_addr_)
3353     {
3354       if ((r_type != elfcpp::R_X86_64_PLT32
3355            && r_type != elfcpp::R_X86_64_PLT32_BND
3356            && r_type != elfcpp::R_X86_64_PC32_BND
3357            && r_type != elfcpp::R_X86_64_PC32)
3358           || gsym == NULL
3359           || strcmp(gsym->name(), "__tls_get_addr") != 0)
3360         {
3361           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3362                                  _("missing expected TLS relocation"));
3363         }
3364       else
3365         {
3366           this->skip_call_tls_get_addr_ = false;
3367           return false;
3368         }
3369     }
3370
3371   if (view == NULL)
3372     return true;
3373
3374   const Sized_relobj_file<size, false>* object = relinfo->object;
3375
3376   // Pick the value to use for symbols defined in the PLT.
3377   Symbol_value<size> symval;
3378   if (gsym != NULL
3379       && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
3380     {
3381       symval.set_output_value(target->plt_address_for_global(gsym));
3382       psymval = &symval;
3383     }
3384   else if (gsym == NULL && psymval->is_ifunc_symbol())
3385     {
3386       unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3387       if (object->local_has_plt_offset(r_sym))
3388         {
3389           symval.set_output_value(target->plt_address_for_local(object, r_sym));
3390           psymval = &symval;
3391         }
3392     }
3393
3394   const elfcpp::Elf_Xword addend = rela.get_r_addend();
3395
3396   // Get the GOT offset if needed.
3397   // The GOT pointer points to the end of the GOT section.
3398   // We need to subtract the size of the GOT section to get
3399   // the actual offset to use in the relocation.
3400   bool have_got_offset = false;
3401   // Since the actual offset is always negative, we use signed int to
3402   // support 64-bit GOT relocations.
3403   int got_offset = 0;
3404   switch (r_type)
3405     {
3406     case elfcpp::R_X86_64_GOT32:
3407     case elfcpp::R_X86_64_GOT64:
3408     case elfcpp::R_X86_64_GOTPLT64:
3409     case elfcpp::R_X86_64_GOTPCREL64:
3410       if (gsym != NULL)
3411         {
3412           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
3413           got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
3414         }
3415       else
3416         {
3417           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3418           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
3419           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
3420                         - target->got_size());
3421         }
3422       have_got_offset = true;
3423       break;
3424
3425     default:
3426       break;
3427     }
3428
3429   switch (r_type)
3430     {
3431     case elfcpp::R_X86_64_NONE:
3432     case elfcpp::R_X86_64_GNU_VTINHERIT:
3433     case elfcpp::R_X86_64_GNU_VTENTRY:
3434       break;
3435
3436     case elfcpp::R_X86_64_64:
3437       Relocate_functions<size, false>::rela64(view, object, psymval, addend);
3438       break;
3439
3440     case elfcpp::R_X86_64_PC64:
3441       Relocate_functions<size, false>::pcrela64(view, object, psymval, addend,
3442                                               address);
3443       break;
3444
3445     case elfcpp::R_X86_64_32:
3446       // FIXME: we need to verify that value + addend fits into 32 bits:
3447       //    uint64_t x = value + addend;
3448       //    x == static_cast<uint64_t>(static_cast<uint32_t>(x))
3449       // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
3450       Relocate_functions<size, false>::rela32(view, object, psymval, addend);
3451       break;
3452
3453     case elfcpp::R_X86_64_32S:
3454       // FIXME: we need to verify that value + addend fits into 32 bits:
3455       //    int64_t x = value + addend;   // note this quantity is signed!
3456       //    x == static_cast<int64_t>(static_cast<int32_t>(x))
3457       Relocate_functions<size, false>::rela32(view, object, psymval, addend);
3458       break;
3459
3460     case elfcpp::R_X86_64_PC32:
3461     case elfcpp::R_X86_64_PC32_BND:
3462       Relocate_functions<size, false>::pcrela32(view, object, psymval, addend,
3463                                                 address);
3464       break;
3465
3466     case elfcpp::R_X86_64_16:
3467       Relocate_functions<size, false>::rela16(view, object, psymval, addend);
3468       break;
3469
3470     case elfcpp::R_X86_64_PC16:
3471       Relocate_functions<size, false>::pcrela16(view, object, psymval, addend,
3472                                                 address);
3473       break;
3474
3475     case elfcpp::R_X86_64_8:
3476       Relocate_functions<size, false>::rela8(view, object, psymval, addend);
3477       break;
3478
3479     case elfcpp::R_X86_64_PC8:
3480       Relocate_functions<size, false>::pcrela8(view, object, psymval, addend,
3481                                                address);
3482       break;
3483
3484     case elfcpp::R_X86_64_PLT32:
3485     case elfcpp::R_X86_64_PLT32_BND:
3486       gold_assert(gsym == NULL
3487                   || gsym->has_plt_offset()
3488                   || gsym->final_value_is_known()
3489                   || (gsym->is_defined()
3490                       && !gsym->is_from_dynobj()
3491                       && !gsym->is_preemptible()));
3492       // Note: while this code looks the same as for R_X86_64_PC32, it
3493       // behaves differently because psymval was set to point to
3494       // the PLT entry, rather than the symbol, in Scan::global().
3495       Relocate_functions<size, false>::pcrela32(view, object, psymval, addend,
3496                                                 address);
3497       break;
3498
3499     case elfcpp::R_X86_64_PLTOFF64:
3500       {
3501         gold_assert(gsym);
3502         gold_assert(gsym->has_plt_offset()
3503                     || gsym->final_value_is_known());
3504         typename elfcpp::Elf_types<size>::Elf_Addr got_address;
3505         // This is the address of GLOBAL_OFFSET_TABLE.
3506         got_address = target->got_plt_section()->address();
3507         Relocate_functions<size, false>::rela64(view, object, psymval,
3508                                                 addend - got_address);
3509       }
3510       break;
3511
3512     case elfcpp::R_X86_64_GOT32:
3513       gold_assert(have_got_offset);
3514       Relocate_functions<size, false>::rela32(view, got_offset, addend);
3515       break;
3516
3517     case elfcpp::R_X86_64_GOTPC32:
3518       {
3519         gold_assert(gsym);
3520         typename elfcpp::Elf_types<size>::Elf_Addr value;
3521         value = target->got_plt_section()->address();
3522         Relocate_functions<size, false>::pcrela32(view, value, addend, address);
3523       }
3524       break;
3525
3526     case elfcpp::R_X86_64_GOT64:
3527     case elfcpp::R_X86_64_GOTPLT64:
3528       // R_X86_64_GOTPLT64 is obsolete and treated the the same as
3529       // GOT64.
3530       gold_assert(have_got_offset);
3531       Relocate_functions<size, false>::rela64(view, got_offset, addend);
3532       break;
3533
3534     case elfcpp::R_X86_64_GOTPC64:
3535       {
3536         gold_assert(gsym);
3537         typename elfcpp::Elf_types<size>::Elf_Addr value;
3538         value = target->got_plt_section()->address();
3539         Relocate_functions<size, false>::pcrela64(view, value, addend, address);
3540       }
3541       break;
3542
3543     case elfcpp::R_X86_64_GOTOFF64:
3544       {
3545         typename elfcpp::Elf_types<size>::Elf_Addr value;
3546         value = (psymval->value(object, 0)
3547                  - target->got_plt_section()->address());
3548         Relocate_functions<size, false>::rela64(view, value, addend);
3549       }
3550       break;
3551
3552     case elfcpp::R_X86_64_GOTPCREL:
3553     case elfcpp::R_X86_64_GOTPCRELX:
3554     case elfcpp::R_X86_64_REX_GOTPCRELX:
3555       {
3556       // Convert
3557       // mov foo@GOTPCREL(%rip), %reg
3558       // to lea foo(%rip), %reg.
3559       // if possible.
3560       if (rela.get_r_offset() >= 2
3561           && view[-2] == 0x8b
3562           && ((gsym == NULL && !psymval->is_ifunc_symbol())
3563               || (gsym != NULL
3564                   && Target_x86_64<size>::can_convert_mov_to_lea(gsym))))
3565         {
3566           view[-2] = 0x8d;
3567           Relocate_functions<size, false>::pcrela32(view, object, psymval, addend,
3568                                                     address);
3569         }
3570       else
3571         {
3572           if (gsym != NULL)
3573             {
3574               gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
3575               got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
3576             }
3577           else
3578             {
3579               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3580               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
3581               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
3582                             - target->got_size());
3583             }
3584           typename elfcpp::Elf_types<size>::Elf_Addr value;
3585           value = target->got_plt_section()->address() + got_offset;
3586           Relocate_functions<size, false>::pcrela32(view, value, addend, address);
3587         }
3588       }
3589       break;
3590
3591     case elfcpp::R_X86_64_GOTPCREL64:
3592       {
3593         gold_assert(have_got_offset);
3594         typename elfcpp::Elf_types<size>::Elf_Addr value;
3595         value = target->got_plt_section()->address() + got_offset;
3596         Relocate_functions<size, false>::pcrela64(view, value, addend, address);
3597       }
3598       break;
3599
3600     case elfcpp::R_X86_64_COPY:
3601     case elfcpp::R_X86_64_GLOB_DAT:
3602     case elfcpp::R_X86_64_JUMP_SLOT:
3603     case elfcpp::R_X86_64_RELATIVE:
3604     case elfcpp::R_X86_64_IRELATIVE:
3605       // These are outstanding tls relocs, which are unexpected when linking
3606     case elfcpp::R_X86_64_TPOFF64:
3607     case elfcpp::R_X86_64_DTPMOD64:
3608     case elfcpp::R_X86_64_TLSDESC:
3609       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3610                              _("unexpected reloc %u in object file"),
3611                              r_type);
3612       break;
3613
3614       // These are initial tls relocs, which are expected when linking
3615     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3616     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3617     case elfcpp::R_X86_64_TLSDESC_CALL:
3618     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3619     case elfcpp::R_X86_64_DTPOFF32:
3620     case elfcpp::R_X86_64_DTPOFF64:
3621     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3622     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3623       this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
3624                          view, address, view_size);
3625       break;
3626
3627     case elfcpp::R_X86_64_SIZE32:
3628     case elfcpp::R_X86_64_SIZE64:
3629     default:
3630       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3631                              _("unsupported reloc %u"),
3632                              r_type);
3633       break;
3634     }
3635
3636   return true;
3637 }
3638
3639 // Perform a TLS relocation.
3640
3641 template<int size>
3642 inline void
3643 Target_x86_64<size>::Relocate::relocate_tls(
3644     const Relocate_info<size, false>* relinfo,
3645     Target_x86_64<size>* target,
3646     size_t relnum,
3647     const elfcpp::Rela<size, false>& rela,
3648     unsigned int r_type,
3649     const Sized_symbol<size>* gsym,
3650     const Symbol_value<size>* psymval,
3651     unsigned char* view,
3652     typename elfcpp::Elf_types<size>::Elf_Addr address,
3653     section_size_type view_size)
3654 {
3655   Output_segment* tls_segment = relinfo->layout->tls_segment();
3656
3657   const Sized_relobj_file<size, false>* object = relinfo->object;
3658   const elfcpp::Elf_Xword addend = rela.get_r_addend();
3659   elfcpp::Shdr<size, false> data_shdr(relinfo->data_shdr);
3660   bool is_executable = (data_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0;
3661
3662   typename elfcpp::Elf_types<size>::Elf_Addr value = psymval->value(relinfo->object, 0);
3663
3664   const bool is_final = (gsym == NULL
3665                          ? !parameters->options().shared()
3666                          : gsym->final_value_is_known());
3667   tls::Tls_optimization optimized_type
3668       = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
3669   switch (r_type)
3670     {
3671     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3672       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3673         {
3674           // If this code sequence is used in a non-executable section,
3675           // we will not optimize the R_X86_64_DTPOFF32/64 relocation,
3676           // on the assumption that it's being used by itself in a debug
3677           // section.  Therefore, in the unlikely event that the code
3678           // sequence appears in a non-executable section, we simply
3679           // leave it unoptimized.
3680           optimized_type = tls::TLSOPT_NONE;
3681         }
3682       if (optimized_type == tls::TLSOPT_TO_LE)
3683         {
3684           if (tls_segment == NULL)
3685             {
3686               gold_assert(parameters->errors()->error_count() > 0
3687                           || issue_undefined_symbol_error(gsym));
3688               return;
3689             }
3690           this->tls_gd_to_le(relinfo, relnum, tls_segment,
3691                              rela, r_type, value, view,
3692                              view_size);
3693           break;
3694         }
3695       else
3696         {
3697           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3698                                    ? GOT_TYPE_TLS_OFFSET
3699                                    : GOT_TYPE_TLS_PAIR);
3700           unsigned int got_offset;
3701           if (gsym != NULL)
3702             {
3703               gold_assert(gsym->has_got_offset(got_type));
3704               got_offset = gsym->got_offset(got_type) - target->got_size();
3705             }
3706           else
3707             {
3708               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3709               gold_assert(object->local_has_got_offset(r_sym, got_type));
3710               got_offset = (object->local_got_offset(r_sym, got_type)
3711                             - target->got_size());
3712             }
3713           if (optimized_type == tls::TLSOPT_TO_IE)
3714             {
3715               value = target->got_plt_section()->address() + got_offset;
3716               this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
3717                                  value, view, address, view_size);
3718               break;
3719             }
3720           else if (optimized_type == tls::TLSOPT_NONE)
3721             {
3722               // Relocate the field with the offset of the pair of GOT
3723               // entries.
3724               value = target->got_plt_section()->address() + got_offset;
3725               Relocate_functions<size, false>::pcrela32(view, value, addend,
3726                                                         address);
3727               break;
3728             }
3729         }
3730       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3731                              _("unsupported reloc %u"), r_type);
3732       break;
3733
3734     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3735     case elfcpp::R_X86_64_TLSDESC_CALL:
3736       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3737         {
3738           // See above comment for R_X86_64_TLSGD.
3739           optimized_type = tls::TLSOPT_NONE;
3740         }
3741       if (optimized_type == tls::TLSOPT_TO_LE)
3742         {
3743           if (tls_segment == NULL)
3744             {
3745               gold_assert(parameters->errors()->error_count() > 0
3746                           || issue_undefined_symbol_error(gsym));
3747               return;
3748             }
3749           this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
3750                                   rela, r_type, value, view,
3751                                   view_size);
3752           break;
3753         }
3754       else
3755         {
3756           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3757                                    ? GOT_TYPE_TLS_OFFSET
3758                                    : GOT_TYPE_TLS_DESC);
3759           unsigned int got_offset = 0;
3760           if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC
3761               && optimized_type == tls::TLSOPT_NONE)
3762             {
3763               // We created GOT entries in the .got.tlsdesc portion of
3764               // the .got.plt section, but the offset stored in the
3765               // symbol is the offset within .got.tlsdesc.
3766               got_offset = (target->got_size()
3767                             + target->got_plt_section()->data_size());
3768             }
3769           if (gsym != NULL)
3770             {
3771               gold_assert(gsym->has_got_offset(got_type));
3772               got_offset += gsym->got_offset(got_type) - target->got_size();
3773             }
3774           else
3775             {
3776               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3777               gold_assert(object->local_has_got_offset(r_sym, got_type));
3778               got_offset += (object->local_got_offset(r_sym, got_type)
3779                              - target->got_size());
3780             }
3781           if (optimized_type == tls::TLSOPT_TO_IE)
3782             {
3783               if (tls_segment == NULL)
3784                 {
3785                   gold_assert(parameters->errors()->error_count() > 0
3786                               || issue_undefined_symbol_error(gsym));
3787                   return;
3788                 }
3789               value = target->got_plt_section()->address() + got_offset;
3790               this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment,
3791                                       rela, r_type, value, view, address,
3792                                       view_size);
3793               break;
3794             }
3795           else if (optimized_type == tls::TLSOPT_NONE)
3796             {
3797               if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
3798                 {
3799                   // Relocate the field with the offset of the pair of GOT
3800                   // entries.
3801                   value = target->got_plt_section()->address() + got_offset;
3802                   Relocate_functions<size, false>::pcrela32(view, value, addend,
3803                                                             address);
3804                 }
3805               break;
3806             }
3807         }
3808       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3809                              _("unsupported reloc %u"), r_type);
3810       break;
3811
3812     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3813       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3814         {
3815           // See above comment for R_X86_64_TLSGD.
3816           optimized_type = tls::TLSOPT_NONE;
3817         }
3818       if (optimized_type == tls::TLSOPT_TO_LE)
3819         {
3820           if (tls_segment == NULL)
3821             {
3822               gold_assert(parameters->errors()->error_count() > 0
3823                           || issue_undefined_symbol_error(gsym));
3824               return;
3825             }
3826           this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
3827                              value, view, view_size);
3828           break;
3829         }
3830       else if (optimized_type == tls::TLSOPT_NONE)
3831         {
3832           // Relocate the field with the offset of the GOT entry for
3833           // the module index.
3834           unsigned int got_offset;
3835           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
3836                         - target->got_size());
3837           value = target->got_plt_section()->address() + got_offset;
3838           Relocate_functions<size, false>::pcrela32(view, value, addend,
3839                                                     address);
3840           break;
3841         }
3842       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3843                              _("unsupported reloc %u"), r_type);
3844       break;
3845
3846     case elfcpp::R_X86_64_DTPOFF32:
3847       // This relocation type is used in debugging information.
3848       // In that case we need to not optimize the value.  If the
3849       // section is not executable, then we assume we should not
3850       // optimize this reloc.  See comments above for R_X86_64_TLSGD,
3851       // R_X86_64_GOTPC32_TLSDESC, R_X86_64_TLSDESC_CALL, and
3852       // R_X86_64_TLSLD.
3853       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
3854         {
3855           if (tls_segment == NULL)
3856             {
3857               gold_assert(parameters->errors()->error_count() > 0
3858                           || issue_undefined_symbol_error(gsym));
3859               return;
3860             }
3861           value -= tls_segment->memsz();
3862         }
3863       Relocate_functions<size, false>::rela32(view, value, addend);
3864       break;
3865
3866     case elfcpp::R_X86_64_DTPOFF64:
3867       // See R_X86_64_DTPOFF32, just above, for why we check for is_executable.
3868       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
3869         {
3870           if (tls_segment == NULL)
3871             {
3872               gold_assert(parameters->errors()->error_count() > 0
3873                           || issue_undefined_symbol_error(gsym));
3874               return;
3875             }
3876           value -= tls_segment->memsz();
3877         }
3878       Relocate_functions<size, false>::rela64(view, value, addend);
3879       break;
3880
3881     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3882       if (gsym != NULL
3883           && gsym->is_undefined()
3884           && parameters->options().output_is_executable())
3885         {
3886           Target_x86_64<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3887                                                       NULL, rela,
3888                                                       r_type, value, view,
3889                                                       view_size);
3890           break;
3891         }
3892       else if (optimized_type == tls::TLSOPT_TO_LE)
3893         {
3894           if (tls_segment == NULL)
3895             {
3896               gold_assert(parameters->errors()->error_count() > 0
3897                           || issue_undefined_symbol_error(gsym));
3898               return;
3899             }
3900           Target_x86_64<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3901                                                       tls_segment, rela,
3902                                                       r_type, value, view,
3903                                                       view_size);
3904           break;
3905         }
3906       else if (optimized_type == tls::TLSOPT_NONE)
3907         {
3908           // Relocate the field with the offset of the GOT entry for
3909           // the tp-relative offset of the symbol.
3910           unsigned int got_offset;
3911           if (gsym != NULL)
3912             {
3913               gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
3914               got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
3915                             - target->got_size());
3916             }
3917           else
3918             {
3919               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3920               gold_assert(object->local_has_got_offset(r_sym,
3921                                                        GOT_TYPE_TLS_OFFSET));
3922               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
3923                             - target->got_size());
3924             }
3925           value = target->got_plt_section()->address() + got_offset;
3926           Relocate_functions<size, false>::pcrela32(view, value, addend,
3927                                                     address);
3928           break;
3929         }
3930       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3931                              _("unsupported reloc type %u"),
3932                              r_type);
3933       break;
3934
3935     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3936       if (tls_segment == NULL)
3937         {
3938           gold_assert(parameters->errors()->error_count() > 0
3939                       || issue_undefined_symbol_error(gsym));
3940           return;
3941         }
3942       value -= tls_segment->memsz();
3943       Relocate_functions<size, false>::rela32(view, value, addend);
3944       break;
3945     }
3946 }
3947
3948 // Do a relocation in which we convert a TLS General-Dynamic to an
3949 // Initial-Exec.
3950
3951 template<int size>
3952 inline void
3953 Target_x86_64<size>::Relocate::tls_gd_to_ie(
3954     const Relocate_info<size, false>* relinfo,
3955     size_t relnum,
3956     Output_segment*,
3957     const elfcpp::Rela<size, false>& rela,
3958     unsigned int,
3959     typename elfcpp::Elf_types<size>::Elf_Addr value,
3960     unsigned char* view,
3961     typename elfcpp::Elf_types<size>::Elf_Addr address,
3962     section_size_type view_size)
3963 {
3964   // For SIZE == 64:
3965   //    .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
3966   //    .word 0x6666; rex64; call __tls_get_addr
3967   //    ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
3968   // For SIZE == 32:
3969   //    leaq foo@tlsgd(%rip),%rdi;
3970   //    .word 0x6666; rex64; call __tls_get_addr
3971   //    ==> movl %fs:0,%eax; addq x@gottpoff(%rip),%rax
3972
3973   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
3974   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3975                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
3976
3977   if (size == 64)
3978     {
3979       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
3980                        -4);
3981       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3982                      (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
3983       memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
3984              16);
3985     }
3986   else
3987     {
3988       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
3989                        -3);
3990       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3991                      (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
3992       memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
3993              15);
3994     }
3995
3996   const elfcpp::Elf_Xword addend = rela.get_r_addend();
3997   Relocate_functions<size, false>::pcrela32(view + 8, value, addend - 8,
3998                                             address);
3999
4000   // The next reloc should be a PLT32 reloc against __tls_get_addr.
4001   // We can skip it.
4002   this->skip_call_tls_get_addr_ = true;
4003 }
4004
4005 // Do a relocation in which we convert a TLS General-Dynamic to a
4006 // Local-Exec.
4007
4008 template<int size>
4009 inline void
4010 Target_x86_64<size>::Relocate::tls_gd_to_le(
4011     const Relocate_info<size, false>* relinfo,
4012     size_t relnum,
4013     Output_segment* tls_segment,
4014     const elfcpp::Rela<size, false>& rela,
4015     unsigned int,
4016     typename elfcpp::Elf_types<size>::Elf_Addr value,
4017     unsigned char* view,
4018     section_size_type view_size)
4019 {
4020   // For SIZE == 64:
4021   //    .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
4022   //    .word 0x6666; rex64; call __tls_get_addr
4023   //    ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
4024   // For SIZE == 32:
4025   //    leaq foo@tlsgd(%rip),%rdi;
4026   //    .word 0x6666; rex64; call __tls_get_addr
4027   //    ==> movl %fs:0,%eax; leaq x@tpoff(%rax),%rax
4028
4029   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
4030   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4031                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
4032
4033   if (size == 64)
4034     {
4035       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
4036                        -4);
4037       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4038                      (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
4039       memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
4040              16);
4041     }
4042   else
4043     {
4044       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
4045                        -3);
4046       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4047                      (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
4048
4049       memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
4050              15);
4051     }
4052
4053   value -= tls_segment->memsz();
4054   Relocate_functions<size, false>::rela32(view + 8, value, 0);
4055
4056   // The next reloc should be a PLT32 reloc against __tls_get_addr.
4057   // We can skip it.
4058   this->skip_call_tls_get_addr_ = true;
4059 }
4060
4061 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
4062
4063 template<int size>
4064 inline void
4065 Target_x86_64<size>::Relocate::tls_desc_gd_to_ie(
4066     const Relocate_info<size, false>* relinfo,
4067     size_t relnum,
4068     Output_segment*,
4069     const elfcpp::Rela<size, false>& rela,
4070     unsigned int r_type,
4071     typename elfcpp::Elf_types<size>::Elf_Addr value,
4072     unsigned char* view,
4073     typename elfcpp::Elf_types<size>::Elf_Addr address,
4074     section_size_type view_size)
4075 {
4076   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
4077     {
4078       // leaq foo@tlsdesc(%rip), %rax
4079       // ==> movq foo@gottpoff(%rip), %rax
4080       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4081       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
4082       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4083                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
4084       view[-2] = 0x8b;
4085       const elfcpp::Elf_Xword addend = rela.get_r_addend();
4086       Relocate_functions<size, false>::pcrela32(view, value, addend, address);
4087     }
4088   else
4089     {
4090       // call *foo@tlscall(%rax)
4091       // ==> nop; nop
4092       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
4093       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
4094       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4095                      view[0] == 0xff && view[1] == 0x10);
4096       view[0] = 0x66;
4097       view[1] = 0x90;
4098     }
4099 }
4100
4101 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
4102
4103 template<int size>
4104 inline void
4105 Target_x86_64<size>::Relocate::tls_desc_gd_to_le(
4106     const Relocate_info<size, false>* relinfo,
4107     size_t relnum,
4108     Output_segment* tls_segment,
4109     const elfcpp::Rela<size, false>& rela,
4110     unsigned int r_type,
4111     typename elfcpp::Elf_types<size>::Elf_Addr value,
4112     unsigned char* view,
4113     section_size_type view_size)
4114 {
4115   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
4116     {
4117       // leaq foo@tlsdesc(%rip), %rax
4118       // ==> movq foo@tpoff, %rax
4119       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4120       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
4121       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4122                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
4123       view[-2] = 0xc7;
4124       view[-1] = 0xc0;
4125       value -= tls_segment->memsz();
4126       Relocate_functions<size, false>::rela32(view, value, 0);
4127     }
4128   else
4129     {
4130       // call *foo@tlscall(%rax)
4131       // ==> nop; nop
4132       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
4133       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
4134       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4135                      view[0] == 0xff && view[1] == 0x10);
4136       view[0] = 0x66;
4137       view[1] = 0x90;
4138     }
4139 }
4140
4141 template<int size>
4142 inline void
4143 Target_x86_64<size>::Relocate::tls_ld_to_le(
4144     const Relocate_info<size, false>* relinfo,
4145     size_t relnum,
4146     Output_segment*,
4147     const elfcpp::Rela<size, false>& rela,
4148     unsigned int,
4149     typename elfcpp::Elf_types<size>::Elf_Addr,
4150     unsigned char* view,
4151     section_size_type view_size)
4152 {
4153   // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
4154   // For SIZE == 64:
4155   // ... leq foo@dtpoff(%rax),%reg
4156   // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
4157   // For SIZE == 32:
4158   // ... leq foo@dtpoff(%rax),%reg
4159   // ==> nopl 0x0(%rax); movl %fs:0,%eax ... leaq x@tpoff(%rax),%rdx
4160
4161   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4162   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
4163
4164   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4165                  view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
4166
4167   tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
4168
4169   if (size == 64)
4170     memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
4171   else
4172     memcpy(view - 3, "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0\0", 12);
4173
4174   // The next reloc should be a PLT32 reloc against __tls_get_addr.
4175   // We can skip it.
4176   this->skip_call_tls_get_addr_ = true;
4177 }
4178
4179 // Do a relocation in which we convert a TLS Initial-Exec to a
4180 // Local-Exec.
4181
4182 template<int size>
4183 inline void
4184 Target_x86_64<size>::Relocate::tls_ie_to_le(
4185     const Relocate_info<size, false>* relinfo,
4186     size_t relnum,
4187     Output_segment* tls_segment,
4188     const elfcpp::Rela<size, false>& rela,
4189     unsigned int,
4190     typename elfcpp::Elf_types<size>::Elf_Addr value,
4191     unsigned char* view,
4192     section_size_type view_size)
4193 {
4194   // We need to examine the opcodes to figure out which instruction we
4195   // are looking at.
4196
4197   // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
4198   // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
4199
4200   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4201   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
4202
4203   unsigned char op1 = view[-3];
4204   unsigned char op2 = view[-2];
4205   unsigned char op3 = view[-1];
4206   unsigned char reg = op3 >> 3;
4207
4208   if (op2 == 0x8b)
4209     {
4210       // movq
4211       if (op1 == 0x4c)
4212         view[-3] = 0x49;
4213       else if (size == 32 && op1 == 0x44)
4214         view[-3] = 0x41;
4215       view[-2] = 0xc7;
4216       view[-1] = 0xc0 | reg;
4217     }
4218   else if (reg == 4)
4219     {
4220       // Special handling for %rsp.
4221       if (op1 == 0x4c)
4222         view[-3] = 0x49;
4223       else if (size == 32 && op1 == 0x44)
4224         view[-3] = 0x41;
4225       view[-2] = 0x81;
4226       view[-1] = 0xc0 | reg;
4227     }
4228   else
4229     {
4230       // addq
4231       if (op1 == 0x4c)
4232         view[-3] = 0x4d;
4233       else if (size == 32 && op1 == 0x44)
4234         view[-3] = 0x45;
4235       view[-2] = 0x8d;
4236       view[-1] = 0x80 | reg | (reg << 3);
4237     }
4238
4239   if (tls_segment != NULL)
4240     value -= tls_segment->memsz();
4241   Relocate_functions<size, false>::rela32(view, value, 0);
4242 }
4243
4244 // Relocate section data.
4245
4246 template<int size>
4247 void
4248 Target_x86_64<size>::relocate_section(
4249     const Relocate_info<size, false>* relinfo,
4250     unsigned int sh_type,
4251     const unsigned char* prelocs,
4252     size_t reloc_count,
4253     Output_section* output_section,
4254     bool needs_special_offset_handling,
4255     unsigned char* view,
4256     typename elfcpp::Elf_types<size>::Elf_Addr address,
4257     section_size_type view_size,
4258     const Reloc_symbol_changes* reloc_symbol_changes)
4259 {
4260   gold_assert(sh_type == elfcpp::SHT_RELA);
4261
4262   gold::relocate_section<size, false, Target_x86_64<size>, elfcpp::SHT_RELA,
4263                          typename Target_x86_64<size>::Relocate,
4264                          gold::Default_comdat_behavior>(
4265     relinfo,
4266     this,
4267     prelocs,
4268     reloc_count,
4269     output_section,
4270     needs_special_offset_handling,
4271     view,
4272     address,
4273     view_size,
4274     reloc_symbol_changes);
4275 }
4276
4277 // Apply an incremental relocation.  Incremental relocations always refer
4278 // to global symbols.
4279
4280 template<int size>
4281 void
4282 Target_x86_64<size>::apply_relocation(
4283     const Relocate_info<size, false>* relinfo,
4284     typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
4285     unsigned int r_type,
4286     typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
4287     const Symbol* gsym,
4288     unsigned char* view,
4289     typename elfcpp::Elf_types<size>::Elf_Addr address,
4290     section_size_type view_size)
4291 {
4292   gold::apply_relocation<size, false, Target_x86_64<size>,
4293                          typename Target_x86_64<size>::Relocate>(
4294     relinfo,
4295     this,
4296     r_offset,
4297     r_type,
4298     r_addend,
4299     gsym,
4300     view,
4301     address,
4302     view_size);
4303 }
4304
4305 // Return the size of a relocation while scanning during a relocatable
4306 // link.
4307
4308 template<int size>
4309 unsigned int
4310 Target_x86_64<size>::Relocatable_size_for_reloc::get_size_for_reloc(
4311     unsigned int r_type,
4312     Relobj* object)
4313 {
4314   switch (r_type)
4315     {
4316     case elfcpp::R_X86_64_NONE:
4317     case elfcpp::R_X86_64_GNU_VTINHERIT:
4318     case elfcpp::R_X86_64_GNU_VTENTRY:
4319     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
4320     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
4321     case elfcpp::R_X86_64_TLSDESC_CALL:
4322     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
4323     case elfcpp::R_X86_64_DTPOFF32:
4324     case elfcpp::R_X86_64_DTPOFF64:
4325     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
4326     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
4327       return 0;
4328
4329     case elfcpp::R_X86_64_64:
4330     case elfcpp::R_X86_64_PC64:
4331     case elfcpp::R_X86_64_GOTOFF64:
4332     case elfcpp::R_X86_64_GOTPC64:
4333     case elfcpp::R_X86_64_PLTOFF64:
4334     case elfcpp::R_X86_64_GOT64:
4335     case elfcpp::R_X86_64_GOTPCREL64:
4336     case elfcpp::R_X86_64_GOTPCREL:
4337     case elfcpp::R_X86_64_GOTPCRELX:
4338     case elfcpp::R_X86_64_REX_GOTPCRELX:
4339     case elfcpp::R_X86_64_GOTPLT64:
4340       return 8;
4341
4342     case elfcpp::R_X86_64_32:
4343     case elfcpp::R_X86_64_32S:
4344     case elfcpp::R_X86_64_PC32:
4345     case elfcpp::R_X86_64_PC32_BND:
4346     case elfcpp::R_X86_64_PLT32:
4347     case elfcpp::R_X86_64_PLT32_BND:
4348     case elfcpp::R_X86_64_GOTPC32:
4349     case elfcpp::R_X86_64_GOT32:
4350       return 4;
4351
4352     case elfcpp::R_X86_64_16:
4353     case elfcpp::R_X86_64_PC16:
4354       return 2;
4355
4356     case elfcpp::R_X86_64_8:
4357     case elfcpp::R_X86_64_PC8:
4358       return 1;
4359
4360     case elfcpp::R_X86_64_COPY:
4361     case elfcpp::R_X86_64_GLOB_DAT:
4362     case elfcpp::R_X86_64_JUMP_SLOT:
4363     case elfcpp::R_X86_64_RELATIVE:
4364     case elfcpp::R_X86_64_IRELATIVE:
4365       // These are outstanding tls relocs, which are unexpected when linking
4366     case elfcpp::R_X86_64_TPOFF64:
4367     case elfcpp::R_X86_64_DTPMOD64:
4368     case elfcpp::R_X86_64_TLSDESC:
4369       object->error(_("unexpected reloc %u in object file"), r_type);
4370       return 0;
4371
4372     case elfcpp::R_X86_64_SIZE32:
4373     case elfcpp::R_X86_64_SIZE64:
4374     default:
4375       object->error(_("unsupported reloc %u against local symbol"), r_type);
4376       return 0;
4377     }
4378 }
4379
4380 // Scan the relocs during a relocatable link.
4381
4382 template<int size>
4383 void
4384 Target_x86_64<size>::scan_relocatable_relocs(
4385     Symbol_table* symtab,
4386     Layout* layout,
4387     Sized_relobj_file<size, false>* object,
4388     unsigned int data_shndx,
4389     unsigned int sh_type,
4390     const unsigned char* prelocs,
4391     size_t reloc_count,
4392     Output_section* output_section,
4393     bool needs_special_offset_handling,
4394     size_t local_symbol_count,
4395     const unsigned char* plocal_symbols,
4396     Relocatable_relocs* rr)
4397 {
4398   gold_assert(sh_type == elfcpp::SHT_RELA);
4399
4400   typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
4401     Relocatable_size_for_reloc> Scan_relocatable_relocs;
4402
4403   gold::scan_relocatable_relocs<size, false, elfcpp::SHT_RELA,
4404       Scan_relocatable_relocs>(
4405     symtab,
4406     layout,
4407     object,
4408     data_shndx,
4409     prelocs,
4410     reloc_count,
4411     output_section,
4412     needs_special_offset_handling,
4413     local_symbol_count,
4414     plocal_symbols,
4415     rr);
4416 }
4417
4418 // Relocate a section during a relocatable link.
4419
4420 template<int size>
4421 void
4422 Target_x86_64<size>::relocate_relocs(
4423     const Relocate_info<size, false>* relinfo,
4424     unsigned int sh_type,
4425     const unsigned char* prelocs,
4426     size_t reloc_count,
4427     Output_section* output_section,
4428     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
4429     const Relocatable_relocs* rr,
4430     unsigned char* view,
4431     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
4432     section_size_type view_size,
4433     unsigned char* reloc_view,
4434     section_size_type reloc_view_size)
4435 {
4436   gold_assert(sh_type == elfcpp::SHT_RELA);
4437
4438   gold::relocate_relocs<size, false, elfcpp::SHT_RELA>(
4439     relinfo,
4440     prelocs,
4441     reloc_count,
4442     output_section,
4443     offset_in_output_section,
4444     rr,
4445     view,
4446     view_address,
4447     view_size,
4448     reloc_view,
4449     reloc_view_size);
4450 }
4451
4452 // Return the value to use for a dynamic which requires special
4453 // treatment.  This is how we support equality comparisons of function
4454 // pointers across shared library boundaries, as described in the
4455 // processor specific ABI supplement.
4456
4457 template<int size>
4458 uint64_t
4459 Target_x86_64<size>::do_dynsym_value(const Symbol* gsym) const
4460 {
4461   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
4462   return this->plt_address_for_global(gsym);
4463 }
4464
4465 // Return a string used to fill a code section with nops to take up
4466 // the specified length.
4467
4468 template<int size>
4469 std::string
4470 Target_x86_64<size>::do_code_fill(section_size_type length) const
4471 {
4472   if (length >= 16)
4473     {
4474       // Build a jmpq instruction to skip over the bytes.
4475       unsigned char jmp[5];
4476       jmp[0] = 0xe9;
4477       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
4478       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
4479               + std::string(length - 5, static_cast<char>(0x90)));
4480     }
4481
4482   // Nop sequences of various lengths.
4483   const char nop1[1] = { '\x90' };                 // nop
4484   const char nop2[2] = { '\x66', '\x90' };         // xchg %ax %ax
4485   const char nop3[3] = { '\x0f', '\x1f', '\x00' }; // nop (%rax)
4486   const char nop4[4] = { '\x0f', '\x1f', '\x40',   // nop 0(%rax)
4487                          '\x00'};
4488   const char nop5[5] = { '\x0f', '\x1f', '\x44',   // nop 0(%rax,%rax,1)
4489                          '\x00', '\x00' };
4490   const char nop6[6] = { '\x66', '\x0f', '\x1f',   // nopw 0(%rax,%rax,1)
4491                          '\x44', '\x00', '\x00' };
4492   const char nop7[7] = { '\x0f', '\x1f', '\x80',   // nopl 0L(%rax)
4493                          '\x00', '\x00', '\x00',
4494                          '\x00' };
4495   const char nop8[8] = { '\x0f', '\x1f', '\x84',   // nopl 0L(%rax,%rax,1)
4496                          '\x00', '\x00', '\x00',
4497                          '\x00', '\x00' };
4498   const char nop9[9] = { '\x66', '\x0f', '\x1f',   // nopw 0L(%rax,%rax,1)
4499                          '\x84', '\x00', '\x00',
4500                          '\x00', '\x00', '\x00' };
4501   const char nop10[10] = { '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
4502                            '\x1f', '\x84', '\x00',
4503                            '\x00', '\x00', '\x00',
4504                            '\x00' };
4505   const char nop11[11] = { '\x66', '\x66', '\x2e', // data16
4506                            '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
4507                            '\x00', '\x00', '\x00',
4508                            '\x00', '\x00' };
4509   const char nop12[12] = { '\x66', '\x66', '\x66', // data16; data16
4510                            '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
4511                            '\x84', '\x00', '\x00',
4512                            '\x00', '\x00', '\x00' };
4513   const char nop13[13] = { '\x66', '\x66', '\x66', // data16; data16; data16
4514                            '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
4515                            '\x1f', '\x84', '\x00',
4516                            '\x00', '\x00', '\x00',
4517                            '\x00' };
4518   const char nop14[14] = { '\x66', '\x66', '\x66', // data16; data16; data16
4519                            '\x66', '\x66', '\x2e', // data16
4520                            '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
4521                            '\x00', '\x00', '\x00',
4522                            '\x00', '\x00' };
4523   const char nop15[15] = { '\x66', '\x66', '\x66', // data16; data16; data16
4524                            '\x66', '\x66', '\x66', // data16; data16
4525                            '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
4526                            '\x84', '\x00', '\x00',
4527                            '\x00', '\x00', '\x00' };
4528
4529   const char* nops[16] = {
4530     NULL,
4531     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
4532     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
4533   };
4534
4535   return std::string(nops[length], length);
4536 }
4537
4538 // Return the addend to use for a target specific relocation.  The
4539 // only target specific relocation is R_X86_64_TLSDESC for a local
4540 // symbol.  We want to set the addend is the offset of the local
4541 // symbol in the TLS segment.
4542
4543 template<int size>
4544 uint64_t
4545 Target_x86_64<size>::do_reloc_addend(void* arg, unsigned int r_type,
4546                                      uint64_t) const
4547 {
4548   gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
4549   uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
4550   gold_assert(intarg < this->tlsdesc_reloc_info_.size());
4551   const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
4552   const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
4553   gold_assert(psymval->is_tls_symbol());
4554   // The value of a TLS symbol is the offset in the TLS segment.
4555   return psymval->value(ti.object, 0);
4556 }
4557
4558 // Return the value to use for the base of a DW_EH_PE_datarel offset
4559 // in an FDE.  Solaris and SVR4 use DW_EH_PE_datarel because their
4560 // assembler can not write out the difference between two labels in
4561 // different sections, so instead of using a pc-relative value they
4562 // use an offset from the GOT.
4563
4564 template<int size>
4565 uint64_t
4566 Target_x86_64<size>::do_ehframe_datarel_base() const
4567 {
4568   gold_assert(this->global_offset_table_ != NULL);
4569   Symbol* sym = this->global_offset_table_;
4570   Sized_symbol<size>* ssym = static_cast<Sized_symbol<size>*>(sym);
4571   return ssym->value();
4572 }
4573
4574 // FNOFFSET in section SHNDX in OBJECT is the start of a function
4575 // compiled with -fsplit-stack.  The function calls non-split-stack
4576 // code.  We have to change the function so that it always ensures
4577 // that it has enough stack space to run some random function.
4578
4579 static const unsigned char cmp_insn_32[] = { 0x64, 0x3b, 0x24, 0x25 };
4580 static const unsigned char lea_r10_insn_32[] = { 0x44, 0x8d, 0x94, 0x24 };
4581 static const unsigned char lea_r11_insn_32[] = { 0x44, 0x8d, 0x9c, 0x24 };
4582
4583 static const unsigned char cmp_insn_64[] = { 0x64, 0x48, 0x3b, 0x24, 0x25 };
4584 static const unsigned char lea_r10_insn_64[] = { 0x4c, 0x8d, 0x94, 0x24 };
4585 static const unsigned char lea_r11_insn_64[] = { 0x4c, 0x8d, 0x9c, 0x24 };
4586
4587 template<int size>
4588 void
4589 Target_x86_64<size>::do_calls_non_split(Relobj* object, unsigned int shndx,
4590                                         section_offset_type fnoffset,
4591                                         section_size_type fnsize,
4592                                         unsigned char* view,
4593                                         section_size_type view_size,
4594                                         std::string* from,
4595                                         std::string* to) const
4596 {
4597   const char* const cmp_insn = reinterpret_cast<const char*>
4598       (size == 32 ? cmp_insn_32 : cmp_insn_64);
4599   const char* const lea_r10_insn = reinterpret_cast<const char*>
4600       (size == 32 ? lea_r10_insn_32 : lea_r10_insn_64);
4601   const char* const lea_r11_insn = reinterpret_cast<const char*>
4602       (size == 32 ? lea_r11_insn_32 : lea_r11_insn_64);
4603
4604   const size_t cmp_insn_len =
4605       (size == 32 ? sizeof(cmp_insn_32) : sizeof(cmp_insn_64));
4606   const size_t lea_r10_insn_len =
4607       (size == 32 ? sizeof(lea_r10_insn_32) : sizeof(lea_r10_insn_64));
4608   const size_t lea_r11_insn_len =
4609       (size == 32 ? sizeof(lea_r11_insn_32) : sizeof(lea_r11_insn_64));
4610   const size_t nop_len = (size == 32 ? 7 : 8);
4611
4612   // The function starts with a comparison of the stack pointer and a
4613   // field in the TCB.  This is followed by a jump.
4614
4615   // cmp %fs:NN,%rsp
4616   if (this->match_view(view, view_size, fnoffset, cmp_insn, cmp_insn_len)
4617       && fnsize > nop_len + 1)
4618     {
4619       // We will call __morestack if the carry flag is set after this
4620       // comparison.  We turn the comparison into an stc instruction
4621       // and some nops.
4622       view[fnoffset] = '\xf9';
4623       this->set_view_to_nop(view, view_size, fnoffset + 1, nop_len);
4624     }
4625   // lea NN(%rsp),%r10
4626   // lea NN(%rsp),%r11
4627   else if ((this->match_view(view, view_size, fnoffset,
4628                              lea_r10_insn, lea_r10_insn_len)
4629             || this->match_view(view, view_size, fnoffset,
4630                                 lea_r11_insn, lea_r11_insn_len))
4631            && fnsize > 8)
4632     {
4633       // This is loading an offset from the stack pointer for a
4634       // comparison.  The offset is negative, so we decrease the
4635       // offset by the amount of space we need for the stack.  This
4636       // means we will avoid calling __morestack if there happens to
4637       // be plenty of space on the stack already.
4638       unsigned char* pval = view + fnoffset + 4;
4639       uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
4640       val -= parameters->options().split_stack_adjust_size();
4641       elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
4642     }
4643   else
4644     {
4645       if (!object->has_no_split_stack())
4646         object->error(_("failed to match split-stack sequence at "
4647                         "section %u offset %0zx"),
4648                       shndx, static_cast<size_t>(fnoffset));
4649       return;
4650     }
4651
4652   // We have to change the function so that it calls
4653   // __morestack_non_split instead of __morestack.  The former will
4654   // allocate additional stack space.
4655   *from = "__morestack";
4656   *to = "__morestack_non_split";
4657 }
4658
4659 // The selector for x86_64 object files.  Note this is never instantiated
4660 // directly.  It's only used in Target_selector_x86_64_nacl, below.
4661
4662 template<int size>
4663 class Target_selector_x86_64 : public Target_selector_freebsd
4664 {
4665 public:
4666   Target_selector_x86_64()
4667     : Target_selector_freebsd(elfcpp::EM_X86_64, size, false,
4668                               (size == 64
4669                                ? "elf64-x86-64" : "elf32-x86-64"),
4670                               (size == 64
4671                                ? "elf64-x86-64-freebsd"
4672                                : "elf32-x86-64-freebsd"),
4673                               (size == 64 ? "elf_x86_64" : "elf32_x86_64"))
4674   { }
4675
4676   Target*
4677   do_instantiate_target()
4678   { return new Target_x86_64<size>(); }
4679
4680 };
4681
4682 // NaCl variant.  It uses different PLT contents.
4683
4684 template<int size>
4685 class Output_data_plt_x86_64_nacl : public Output_data_plt_x86_64<size>
4686 {
4687  public:
4688   Output_data_plt_x86_64_nacl(Layout* layout,
4689                               Output_data_got<64, false>* got,
4690                               Output_data_got_plt_x86_64* got_plt,
4691                               Output_data_space* got_irelative)
4692     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
4693                                    got, got_plt, got_irelative)
4694   { }
4695
4696   Output_data_plt_x86_64_nacl(Layout* layout,
4697                               Output_data_got<64, false>* got,
4698                               Output_data_got_plt_x86_64* got_plt,
4699                               Output_data_space* got_irelative,
4700                               unsigned int plt_count)
4701     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
4702                                    got, got_plt, got_irelative,
4703                                    plt_count)
4704   { }
4705
4706  protected:
4707   virtual unsigned int
4708   do_get_plt_entry_size() const
4709   { return plt_entry_size; }
4710
4711   virtual void
4712   do_add_eh_frame(Layout* layout)
4713   {
4714     layout->add_eh_frame_for_plt(this,
4715                                  this->plt_eh_frame_cie,
4716                                  this->plt_eh_frame_cie_size,
4717                                  plt_eh_frame_fde,
4718                                  plt_eh_frame_fde_size);
4719   }
4720
4721   virtual void
4722   do_fill_first_plt_entry(unsigned char* pov,
4723                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
4724                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
4725
4726   virtual unsigned int
4727   do_fill_plt_entry(unsigned char* pov,
4728                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4729                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4730                     unsigned int got_offset,
4731                     unsigned int plt_offset,
4732                     unsigned int plt_index);
4733
4734   virtual void
4735   do_fill_tlsdesc_entry(unsigned char* pov,
4736                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4737                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4738                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
4739                         unsigned int tlsdesc_got_offset,
4740                         unsigned int plt_offset);
4741
4742  private:
4743   // The size of an entry in the PLT.
4744   static const int plt_entry_size = 64;
4745
4746   // The first entry in the PLT.
4747   static const unsigned char first_plt_entry[plt_entry_size];
4748
4749   // Other entries in the PLT for an executable.
4750   static const unsigned char plt_entry[plt_entry_size];
4751
4752   // The reserved TLSDESC entry in the PLT for an executable.
4753   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
4754
4755   // The .eh_frame unwind information for the PLT.
4756   static const int plt_eh_frame_fde_size = 32;
4757   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
4758 };
4759
4760 template<int size>
4761 class Target_x86_64_nacl : public Target_x86_64<size>
4762 {
4763  public:
4764   Target_x86_64_nacl()
4765     : Target_x86_64<size>(&x86_64_nacl_info)
4766   { }
4767
4768   virtual Output_data_plt_x86_64<size>*
4769   do_make_data_plt(Layout* layout,
4770                    Output_data_got<64, false>* got,
4771                    Output_data_got_plt_x86_64* got_plt,
4772                    Output_data_space* got_irelative)
4773   {
4774     return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
4775                                                  got_irelative);
4776   }
4777
4778   virtual Output_data_plt_x86_64<size>*
4779   do_make_data_plt(Layout* layout,
4780                    Output_data_got<64, false>* got,
4781                    Output_data_got_plt_x86_64* got_plt,
4782                    Output_data_space* got_irelative,
4783                    unsigned int plt_count)
4784   {
4785     return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
4786                                                  got_irelative,
4787                                                  plt_count);
4788   }
4789
4790   virtual std::string
4791   do_code_fill(section_size_type length) const;
4792
4793  private:
4794   static const Target::Target_info x86_64_nacl_info;
4795 };
4796
4797 template<>
4798 const Target::Target_info Target_x86_64_nacl<64>::x86_64_nacl_info =
4799 {
4800   64,                   // size
4801   false,                // is_big_endian
4802   elfcpp::EM_X86_64,    // machine_code
4803   false,                // has_make_symbol
4804   false,                // has_resolve
4805   true,                 // has_code_fill
4806   true,                 // is_default_stack_executable
4807   true,                 // can_icf_inline_merge_sections
4808   '\0',                 // wrap_char
4809   "/lib64/ld-nacl-x86-64.so.1", // dynamic_linker
4810   0x20000,              // default_text_segment_address
4811   0x10000,              // abi_pagesize (overridable by -z max-page-size)
4812   0x10000,              // common_pagesize (overridable by -z common-page-size)
4813   true,                 // isolate_execinstr
4814   0x10000000,           // rosegment_gap
4815   elfcpp::SHN_UNDEF,    // small_common_shndx
4816   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
4817   0,                    // small_common_section_flags
4818   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
4819   NULL,                 // attributes_section
4820   NULL,                 // attributes_vendor
4821   "_start"              // entry_symbol_name
4822 };
4823
4824 template<>
4825 const Target::Target_info Target_x86_64_nacl<32>::x86_64_nacl_info =
4826 {
4827   32,                   // size
4828   false,                // is_big_endian
4829   elfcpp::EM_X86_64,    // machine_code
4830   false,                // has_make_symbol
4831   false,                // has_resolve
4832   true,                 // has_code_fill
4833   true,                 // is_default_stack_executable
4834   true,                 // can_icf_inline_merge_sections
4835   '\0',                 // wrap_char
4836   "/lib/ld-nacl-x86-64.so.1", // dynamic_linker
4837   0x20000,              // default_text_segment_address
4838   0x10000,              // abi_pagesize (overridable by -z max-page-size)
4839   0x10000,              // common_pagesize (overridable by -z common-page-size)
4840   true,                 // isolate_execinstr
4841   0x10000000,           // rosegment_gap
4842   elfcpp::SHN_UNDEF,    // small_common_shndx
4843   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
4844   0,                    // small_common_section_flags
4845   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
4846   NULL,                 // attributes_section
4847   NULL,                 // attributes_vendor
4848   "_start"              // entry_symbol_name
4849 };
4850
4851 #define NACLMASK        0xe0            // 32-byte alignment mask.
4852
4853 // The first entry in the PLT.
4854
4855 template<int size>
4856 const unsigned char
4857 Output_data_plt_x86_64_nacl<size>::first_plt_entry[plt_entry_size] =
4858 {
4859   0xff, 0x35,                         // pushq contents of memory address
4860   0, 0, 0, 0,                         // replaced with address of .got + 8
4861   0x4c, 0x8b, 0x1d,                   // mov GOT+16(%rip), %r11
4862   0, 0, 0, 0,                         // replaced with address of .got + 16
4863   0x41, 0x83, 0xe3, NACLMASK,         // and $-32, %r11d
4864   0x4d, 0x01, 0xfb,                   // add %r15, %r11
4865   0x41, 0xff, 0xe3,                   // jmpq *%r11
4866
4867   // 9-byte nop sequence to pad out to the next 32-byte boundary.
4868   0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw 0x0(%rax,%rax,1)
4869
4870   // 32 bytes of nop to pad out to the standard size
4871   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4872   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4873   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4874   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4875   0x66,                                  // excess data32 prefix
4876   0x90                                   // nop
4877 };
4878
4879 template<int size>
4880 void
4881 Output_data_plt_x86_64_nacl<size>::do_fill_first_plt_entry(
4882     unsigned char* pov,
4883     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4884     typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
4885 {
4886   memcpy(pov, first_plt_entry, plt_entry_size);
4887   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
4888                                               (got_address + 8
4889                                                - (plt_address + 2 + 4)));
4890   elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
4891                                               (got_address + 16
4892                                                - (plt_address + 9 + 4)));
4893 }
4894
4895 // Subsequent entries in the PLT.
4896
4897 template<int size>
4898 const unsigned char
4899 Output_data_plt_x86_64_nacl<size>::plt_entry[plt_entry_size] =
4900 {
4901   0x4c, 0x8b, 0x1d,              // mov name@GOTPCREL(%rip),%r11
4902   0, 0, 0, 0,                    // replaced with address of symbol in .got
4903   0x41, 0x83, 0xe3, NACLMASK,    // and $-32, %r11d
4904   0x4d, 0x01, 0xfb,              // add %r15, %r11
4905   0x41, 0xff, 0xe3,              // jmpq *%r11
4906
4907   // 15-byte nop sequence to pad out to the next 32-byte boundary.
4908   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4909   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4910
4911   // Lazy GOT entries point here (32-byte aligned).
4912   0x68,                       // pushq immediate
4913   0, 0, 0, 0,                 // replaced with index into relocation table
4914   0xe9,                       // jmp relative
4915   0, 0, 0, 0,                 // replaced with offset to start of .plt0
4916
4917   // 22 bytes of nop to pad out to the standard size.
4918   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4919   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4920   0x0f, 0x1f, 0x80, 0, 0, 0, 0,          // nopl 0x0(%rax)
4921 };
4922
4923 template<int size>
4924 unsigned int
4925 Output_data_plt_x86_64_nacl<size>::do_fill_plt_entry(
4926     unsigned char* pov,
4927     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4928     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4929     unsigned int got_offset,
4930     unsigned int plt_offset,
4931     unsigned int plt_index)
4932 {
4933   memcpy(pov, plt_entry, plt_entry_size);
4934   elfcpp::Swap_unaligned<32, false>::writeval(pov + 3,
4935                                               (got_address + got_offset
4936                                                - (plt_address + plt_offset
4937                                                   + 3 + 4)));
4938
4939   elfcpp::Swap_unaligned<32, false>::writeval(pov + 33, plt_index);
4940   elfcpp::Swap_unaligned<32, false>::writeval(pov + 38,
4941                                               - (plt_offset + 38 + 4));
4942
4943   return 32;
4944 }
4945
4946 // The reserved TLSDESC entry in the PLT.
4947
4948 template<int size>
4949 const unsigned char
4950 Output_data_plt_x86_64_nacl<size>::tlsdesc_plt_entry[plt_entry_size] =
4951 {
4952   0xff, 0x35,                   // pushq x(%rip)
4953   0, 0, 0, 0,   // replaced with address of linkmap GOT entry (at PLTGOT + 8)
4954   0x4c, 0x8b, 0x1d,             // mov y(%rip),%r11
4955   0, 0, 0, 0,   // replaced with offset of reserved TLSDESC_GOT entry
4956   0x41, 0x83, 0xe3, NACLMASK,   // and $-32, %r11d
4957   0x4d, 0x01, 0xfb,             // add %r15, %r11
4958   0x41, 0xff, 0xe3,             // jmpq *%r11
4959
4960   // 41 bytes of nop to pad out to the standard size.
4961   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4962   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4963   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4964   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4965   0x66, 0x66,                            // excess data32 prefixes
4966   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4967 };
4968
4969 template<int size>
4970 void
4971 Output_data_plt_x86_64_nacl<size>::do_fill_tlsdesc_entry(
4972     unsigned char* pov,
4973     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4974     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4975     typename elfcpp::Elf_types<size>::Elf_Addr got_base,
4976     unsigned int tlsdesc_got_offset,
4977     unsigned int plt_offset)
4978 {
4979   memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
4980   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
4981                                               (got_address + 8
4982                                                - (plt_address + plt_offset
4983                                                   + 2 + 4)));
4984   elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
4985                                               (got_base
4986                                                + tlsdesc_got_offset
4987                                                - (plt_address + plt_offset
4988                                                   + 9 + 4)));
4989 }
4990
4991 // The .eh_frame unwind information for the PLT.
4992
4993 template<int size>
4994 const unsigned char
4995 Output_data_plt_x86_64_nacl<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
4996 {
4997   0, 0, 0, 0,                           // Replaced with offset to .plt.
4998   0, 0, 0, 0,                           // Replaced with size of .plt.
4999   0,                                    // Augmentation size.
5000   elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
5001   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
5002   elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
5003   elfcpp::DW_CFA_advance_loc + 58,      // Advance 58 to __PLT__ + 64.
5004   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
5005   13,                                   // Block length.
5006   elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
5007   elfcpp::DW_OP_breg16, 0,              // Push %rip.
5008   elfcpp::DW_OP_const1u, 63,            // Push 0x3f.
5009   elfcpp::DW_OP_and,                    // & (%rip & 0x3f).
5010   elfcpp::DW_OP_const1u, 37,            // Push 0x25.
5011   elfcpp::DW_OP_ge,                     // >= ((%rip & 0x3f) >= 0x25)
5012   elfcpp::DW_OP_lit3,                   // Push 3.
5013   elfcpp::DW_OP_shl,                    // << (((%rip & 0x3f) >= 0x25) << 3)
5014   elfcpp::DW_OP_plus,                   // + ((((%rip&0x3f)>=0x25)<<3)+%rsp+8
5015   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
5016   elfcpp::DW_CFA_nop
5017 };
5018
5019 // Return a string used to fill a code section with nops.
5020 // For NaCl, long NOPs are only valid if they do not cross
5021 // bundle alignment boundaries, so keep it simple with one-byte NOPs.
5022 template<int size>
5023 std::string
5024 Target_x86_64_nacl<size>::do_code_fill(section_size_type length) const
5025 {
5026   return std::string(length, static_cast<char>(0x90));
5027 }
5028
5029 // The selector for x86_64-nacl object files.
5030
5031 template<int size>
5032 class Target_selector_x86_64_nacl
5033   : public Target_selector_nacl<Target_selector_x86_64<size>,
5034                                 Target_x86_64_nacl<size> >
5035 {
5036  public:
5037   Target_selector_x86_64_nacl()
5038     : Target_selector_nacl<Target_selector_x86_64<size>,
5039                            Target_x86_64_nacl<size> >("x86-64",
5040                                                       size == 64
5041                                                       ? "elf64-x86-64-nacl"
5042                                                       : "elf32-x86-64-nacl",
5043                                                       size == 64
5044                                                       ? "elf_x86_64_nacl"
5045                                                       : "elf32_x86_64_nacl")
5046   { }
5047 };
5048
5049 Target_selector_x86_64_nacl<64> target_selector_x86_64;
5050 Target_selector_x86_64_nacl<32> target_selector_x32;
5051
5052 } // End anonymous namespace.