* copy-relocs.cc (Copy_relocs::copy_reloc): Call make_copy_reloc
[platform/upstream/binutils.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "x86_64.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "copy-relocs.h"
36 #include "target.h"
37 #include "target-reloc.h"
38 #include "target-select.h"
39 #include "tls.h"
40 #include "freebsd.h"
41 #include "gc.h"
42 #include "icf.h"
43
44 namespace
45 {
46
47 using namespace gold;
48
49 // A class to handle the PLT data.
50
51 class Output_data_plt_x86_64 : public Output_section_data
52 {
53  public:
54   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
55
56   Output_data_plt_x86_64(Symbol_table* symtab, Layout* layout,
57                          Output_data_got<64, false>* got,
58                          Output_data_space* got_plt)
59     : Output_section_data(8), tlsdesc_rel_(NULL), got_(got), got_plt_(got_plt),
60       count_(0), tlsdesc_got_offset_(-1U), free_list_()
61   { this->init(symtab, layout); }
62
63   Output_data_plt_x86_64(Symbol_table* symtab, Layout* layout,
64                          Output_data_got<64, false>* got,
65                          Output_data_space* got_plt,
66                          unsigned int plt_count)
67     : Output_section_data((plt_count + 1) * plt_entry_size, 8, false),
68       tlsdesc_rel_(NULL), got_(got), got_plt_(got_plt),
69       count_(plt_count), tlsdesc_got_offset_(-1U), free_list_()
70   {
71     this->init(symtab, layout);
72
73     // Initialize the free list and reserve the first entry.
74     this->free_list_.init((plt_count + 1) * plt_entry_size, false);
75     this->free_list_.remove(0, plt_entry_size);
76   }
77
78   // Initialize the PLT section.
79   void
80   init(Symbol_table* symtab, Layout* layout);
81
82   // Add an entry to the PLT.
83   void
84   add_entry(Symbol* gsym);
85
86   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
87   unsigned int
88   add_local_ifunc_entry(Sized_relobj_file<64, false>* relobj,
89                         unsigned int local_sym_index);
90
91   // Add the relocation for a PLT entry.
92   void
93   add_relocation(Symbol* gsym, unsigned int got_offset);
94
95   // Add the reserved TLSDESC_PLT entry to the PLT.
96   void
97   reserve_tlsdesc_entry(unsigned int got_offset)
98   { this->tlsdesc_got_offset_ = got_offset; }
99
100   // Return true if a TLSDESC_PLT entry has been reserved.
101   bool
102   has_tlsdesc_entry() const
103   { return this->tlsdesc_got_offset_ != -1U; }
104
105   // Return the GOT offset for the reserved TLSDESC_PLT entry.
106   unsigned int
107   get_tlsdesc_got_offset() const
108   { return this->tlsdesc_got_offset_; }
109
110   // Return the offset of the reserved TLSDESC_PLT entry.
111   unsigned int
112   get_tlsdesc_plt_offset() const
113   { return (this->count_ + 1) * plt_entry_size; }
114
115   // Return the .rela.plt section data.
116   Reloc_section*
117   rela_plt()
118   { return this->rel_; }
119
120   // Return where the TLSDESC relocations should go.
121   Reloc_section*
122   rela_tlsdesc(Layout*);
123
124   // Return the number of PLT entries.
125   unsigned int
126   entry_count() const
127   { return this->count_; }
128
129   // Return the offset of the first non-reserved PLT entry.
130   static unsigned int
131   first_plt_entry_offset()
132   { return plt_entry_size; }
133
134   // Return the size of a PLT entry.
135   static unsigned int
136   get_plt_entry_size()
137   { return plt_entry_size; }
138
139   // Reserve a slot in the PLT for an existing symbol in an incremental update.
140   void
141   reserve_slot(unsigned int plt_index)
142   {
143     this->free_list_.remove((plt_index + 1) * plt_entry_size,
144                             (plt_index + 2) * plt_entry_size);
145   }
146
147  protected:
148   void
149   do_adjust_output_section(Output_section* os);
150
151   // Write to a map file.
152   void
153   do_print_to_mapfile(Mapfile* mapfile) const
154   { mapfile->print_output_data(this, _("** PLT")); }
155
156  private:
157   // The size of an entry in the PLT.
158   static const int plt_entry_size = 16;
159
160   // The first entry in the PLT.
161   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
162   // procedure linkage table for both programs and shared objects."
163   static unsigned char first_plt_entry[plt_entry_size];
164
165   // Other entries in the PLT for an executable.
166   static unsigned char plt_entry[plt_entry_size];
167
168   // The reserved TLSDESC entry in the PLT for an executable.
169   static unsigned char tlsdesc_plt_entry[plt_entry_size];
170
171   // Set the final size.
172   void
173   set_final_data_size();
174
175   // Write out the PLT data.
176   void
177   do_write(Output_file*);
178
179   // The reloc section.
180   Reloc_section* rel_;
181   // The TLSDESC relocs, if necessary.  These must follow the regular
182   // PLT relocs.
183   Reloc_section* tlsdesc_rel_;
184   // The .got section.
185   Output_data_got<64, false>* got_;
186   // The .got.plt section.
187   Output_data_space* got_plt_;
188   // The number of PLT entries.
189   unsigned int count_;
190   // Offset of the reserved TLSDESC_GOT entry when needed.
191   unsigned int tlsdesc_got_offset_;
192   // List of available regions within the section, for incremental
193   // update links.
194   Free_list free_list_;
195 };
196
197 // The x86_64 target class.
198 // See the ABI at
199 //   http://www.x86-64.org/documentation/abi.pdf
200 // TLS info comes from
201 //   http://people.redhat.com/drepper/tls.pdf
202 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
203
204 class Target_x86_64 : public Target_freebsd<64, false>
205 {
206  public:
207   // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
208   // uses only Elf64_Rela relocation entries with explicit addends."
209   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
210
211   Target_x86_64()
212     : Target_freebsd<64, false>(&x86_64_info),
213       got_(NULL), plt_(NULL), got_plt_(NULL), got_tlsdesc_(NULL),
214       global_offset_table_(NULL), rela_dyn_(NULL),
215       copy_relocs_(elfcpp::R_X86_64_COPY), dynbss_(NULL),
216       got_mod_index_offset_(-1U), tlsdesc_reloc_info_(),
217       tls_base_symbol_defined_(false)
218   { }
219
220   // This function should be defined in targets that can use relocation
221   // types to determine (implemented in local_reloc_may_be_function_pointer
222   // and global_reloc_may_be_function_pointer)
223   // if a function's pointer is taken.  ICF uses this in safe mode to only
224   // fold those functions whose pointer is defintely not taken.  For x86_64
225   // pie binaries, safe ICF cannot be done by looking at relocation types.
226   inline bool
227   can_check_for_function_pointers() const
228   { return !parameters->options().pie(); }
229
230   virtual bool
231   can_icf_inline_merge_sections () const
232   { return true; }
233
234   // Hook for a new output section.
235   void
236   do_new_output_section(Output_section*) const;
237
238   // Scan the relocations to look for symbol adjustments.
239   void
240   gc_process_relocs(Symbol_table* symtab,
241                     Layout* layout,
242                     Sized_relobj_file<64, false>* object,
243                     unsigned int data_shndx,
244                     unsigned int sh_type,
245                     const unsigned char* prelocs,
246                     size_t reloc_count,
247                     Output_section* output_section,
248                     bool needs_special_offset_handling,
249                     size_t local_symbol_count,
250                     const unsigned char* plocal_symbols);
251
252   // Scan the relocations to look for symbol adjustments.
253   void
254   scan_relocs(Symbol_table* symtab,
255               Layout* layout,
256               Sized_relobj_file<64, false>* object,
257               unsigned int data_shndx,
258               unsigned int sh_type,
259               const unsigned char* prelocs,
260               size_t reloc_count,
261               Output_section* output_section,
262               bool needs_special_offset_handling,
263               size_t local_symbol_count,
264               const unsigned char* plocal_symbols);
265
266   // Finalize the sections.
267   void
268   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
269
270   // Return the value to use for a dynamic which requires special
271   // treatment.
272   uint64_t
273   do_dynsym_value(const Symbol*) const;
274
275   // Relocate a section.
276   void
277   relocate_section(const Relocate_info<64, false>*,
278                    unsigned int sh_type,
279                    const unsigned char* prelocs,
280                    size_t reloc_count,
281                    Output_section* output_section,
282                    bool needs_special_offset_handling,
283                    unsigned char* view,
284                    elfcpp::Elf_types<64>::Elf_Addr view_address,
285                    section_size_type view_size,
286                    const Reloc_symbol_changes*);
287
288   // Scan the relocs during a relocatable link.
289   void
290   scan_relocatable_relocs(Symbol_table* symtab,
291                           Layout* layout,
292                           Sized_relobj_file<64, false>* object,
293                           unsigned int data_shndx,
294                           unsigned int sh_type,
295                           const unsigned char* prelocs,
296                           size_t reloc_count,
297                           Output_section* output_section,
298                           bool needs_special_offset_handling,
299                           size_t local_symbol_count,
300                           const unsigned char* plocal_symbols,
301                           Relocatable_relocs*);
302
303   // Relocate a section during a relocatable link.
304   void
305   relocate_for_relocatable(const Relocate_info<64, false>*,
306                            unsigned int sh_type,
307                            const unsigned char* prelocs,
308                            size_t reloc_count,
309                            Output_section* output_section,
310                            off_t offset_in_output_section,
311                            const Relocatable_relocs*,
312                            unsigned char* view,
313                            elfcpp::Elf_types<64>::Elf_Addr view_address,
314                            section_size_type view_size,
315                            unsigned char* reloc_view,
316                            section_size_type reloc_view_size);
317
318   // Return a string used to fill a code section with nops.
319   std::string
320   do_code_fill(section_size_type length) const;
321
322   // Return whether SYM is defined by the ABI.
323   bool
324   do_is_defined_by_abi(const Symbol* sym) const
325   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
326
327   // Return the symbol index to use for a target specific relocation.
328   // The only target specific relocation is R_X86_64_TLSDESC for a
329   // local symbol, which is an absolute reloc.
330   unsigned int
331   do_reloc_symbol_index(void*, unsigned int r_type) const
332   {
333     gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
334     return 0;
335   }
336
337   // Return the addend to use for a target specific relocation.
338   uint64_t
339   do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
340
341   // Return the PLT section.
342   Output_data*
343   do_plt_section_for_global(const Symbol*) const
344   { return this->plt_section(); }
345
346   Output_data*
347   do_plt_section_for_local(const Relobj*, unsigned int) const
348   { return this->plt_section(); }
349
350   // Adjust -fsplit-stack code which calls non-split-stack code.
351   void
352   do_calls_non_split(Relobj* object, unsigned int shndx,
353                      section_offset_type fnoffset, section_size_type fnsize,
354                      unsigned char* view, section_size_type view_size,
355                      std::string* from, std::string* to) const;
356
357   // Return the size of the GOT section.
358   section_size_type
359   got_size() const
360   {
361     gold_assert(this->got_ != NULL);
362     return this->got_->data_size();
363   }
364
365   // Return the number of entries in the GOT.
366   unsigned int
367   got_entry_count() const
368   {
369     if (this->got_ == NULL)
370       return 0;
371     return this->got_size() / 8;
372   }
373
374   // Return the number of entries in the PLT.
375   unsigned int
376   plt_entry_count() const;
377
378   // Return the offset of the first non-reserved PLT entry.
379   unsigned int
380   first_plt_entry_offset() const;
381
382   // Return the size of each PLT entry.
383   unsigned int
384   plt_entry_size() const;
385
386   // Create the GOT section for an incremental update.
387   Output_data_got<64, false>*
388   init_got_plt_for_update(Symbol_table* symtab,
389                           Layout* layout,
390                           unsigned int got_count,
391                           unsigned int plt_count);
392
393   // Reserve a GOT entry for a local symbol, and regenerate any
394   // necessary dynamic relocations.
395   void
396   reserve_local_got_entry(unsigned int got_index,
397                           Sized_relobj<64, false>* obj,
398                           unsigned int r_sym,
399                           unsigned int got_type);
400
401   // Reserve a GOT entry for a global symbol, and regenerate any
402   // necessary dynamic relocations.
403   void
404   reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
405                            unsigned int got_type);
406
407   // Register an existing PLT entry for a global symbol.
408   void
409   register_global_plt_entry(unsigned int plt_index, Symbol* gsym);
410
411   // Force a COPY relocation for a given symbol.
412   void
413   emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
414
415   // Apply an incremental relocation.
416   void
417   apply_relocation(const Relocate_info<64, false>* relinfo,
418                    elfcpp::Elf_types<64>::Elf_Addr r_offset,
419                    unsigned int r_type,
420                    elfcpp::Elf_types<64>::Elf_Swxword r_addend,
421                    const Symbol* gsym,
422                    unsigned char* view,
423                    elfcpp::Elf_types<64>::Elf_Addr address,
424                    section_size_type view_size);
425
426   // Add a new reloc argument, returning the index in the vector.
427   size_t
428   add_tlsdesc_info(Sized_relobj_file<64, false>* object, unsigned int r_sym)
429   {
430     this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
431     return this->tlsdesc_reloc_info_.size() - 1;
432   }
433
434  private:
435   // The class which scans relocations.
436   class Scan
437   {
438   public:
439     Scan()
440       : issued_non_pic_error_(false)
441     { }
442
443     static inline int
444     get_reference_flags(unsigned int r_type);
445
446     inline void
447     local(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
448           Sized_relobj_file<64, false>* object,
449           unsigned int data_shndx,
450           Output_section* output_section,
451           const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
452           const elfcpp::Sym<64, false>& lsym);
453
454     inline void
455     global(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
456            Sized_relobj_file<64, false>* object,
457            unsigned int data_shndx,
458            Output_section* output_section,
459            const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
460            Symbol* gsym);
461
462     inline bool
463     local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
464                                         Target_x86_64* target,
465                                         Sized_relobj_file<64, false>* object,
466                                         unsigned int data_shndx,
467                                         Output_section* output_section,
468                                         const elfcpp::Rela<64, false>& reloc,
469                                         unsigned int r_type,
470                                         const elfcpp::Sym<64, false>& lsym);
471
472     inline bool
473     global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
474                                          Target_x86_64* target,
475                                          Sized_relobj_file<64, false>* object,
476                                          unsigned int data_shndx,
477                                          Output_section* output_section,
478                                          const elfcpp::Rela<64, false>& reloc,
479                                          unsigned int r_type,
480                                          Symbol* gsym);
481
482   private:
483     static void
484     unsupported_reloc_local(Sized_relobj_file<64, false>*, unsigned int r_type);
485
486     static void
487     unsupported_reloc_global(Sized_relobj_file<64, false>*, unsigned int r_type,
488                              Symbol*);
489
490     void
491     check_non_pic(Relobj*, unsigned int r_type);
492
493     inline bool
494     possible_function_pointer_reloc(unsigned int r_type);
495
496     bool
497     reloc_needs_plt_for_ifunc(Sized_relobj_file<64, false>*,
498                               unsigned int r_type);
499
500     // Whether we have issued an error about a non-PIC compilation.
501     bool issued_non_pic_error_;
502   };
503
504   // The class which implements relocation.
505   class Relocate
506   {
507    public:
508     Relocate()
509       : skip_call_tls_get_addr_(false)
510     { }
511
512     ~Relocate()
513     {
514       if (this->skip_call_tls_get_addr_)
515         {
516           // FIXME: This needs to specify the location somehow.
517           gold_error(_("missing expected TLS relocation"));
518         }
519     }
520
521     // Do a relocation.  Return false if the caller should not issue
522     // any warnings about this relocation.
523     inline bool
524     relocate(const Relocate_info<64, false>*, Target_x86_64*, Output_section*,
525              size_t relnum, const elfcpp::Rela<64, false>&,
526              unsigned int r_type, const Sized_symbol<64>*,
527              const Symbol_value<64>*,
528              unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
529              section_size_type);
530
531    private:
532     // Do a TLS relocation.
533     inline void
534     relocate_tls(const Relocate_info<64, false>*, Target_x86_64*,
535                  size_t relnum, const elfcpp::Rela<64, false>&,
536                  unsigned int r_type, const Sized_symbol<64>*,
537                  const Symbol_value<64>*,
538                  unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
539                  section_size_type);
540
541     // Do a TLS General-Dynamic to Initial-Exec transition.
542     inline void
543     tls_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
544                  Output_segment* tls_segment,
545                  const elfcpp::Rela<64, false>&, unsigned int r_type,
546                  elfcpp::Elf_types<64>::Elf_Addr value,
547                  unsigned char* view,
548                  elfcpp::Elf_types<64>::Elf_Addr,
549                  section_size_type view_size);
550
551     // Do a TLS General-Dynamic to Local-Exec transition.
552     inline void
553     tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
554                  Output_segment* tls_segment,
555                  const elfcpp::Rela<64, false>&, unsigned int r_type,
556                  elfcpp::Elf_types<64>::Elf_Addr value,
557                  unsigned char* view,
558                  section_size_type view_size);
559
560     // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
561     inline void
562     tls_desc_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
563                       Output_segment* tls_segment,
564                       const elfcpp::Rela<64, false>&, unsigned int r_type,
565                       elfcpp::Elf_types<64>::Elf_Addr value,
566                       unsigned char* view,
567                       elfcpp::Elf_types<64>::Elf_Addr,
568                       section_size_type view_size);
569
570     // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
571     inline void
572     tls_desc_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
573                       Output_segment* tls_segment,
574                       const elfcpp::Rela<64, false>&, unsigned int r_type,
575                       elfcpp::Elf_types<64>::Elf_Addr value,
576                       unsigned char* view,
577                       section_size_type view_size);
578
579     // Do a TLS Local-Dynamic to Local-Exec transition.
580     inline void
581     tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
582                  Output_segment* tls_segment,
583                  const elfcpp::Rela<64, false>&, unsigned int r_type,
584                  elfcpp::Elf_types<64>::Elf_Addr value,
585                  unsigned char* view,
586                  section_size_type view_size);
587
588     // Do a TLS Initial-Exec to Local-Exec transition.
589     static inline void
590     tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
591                  Output_segment* tls_segment,
592                  const elfcpp::Rela<64, false>&, unsigned int r_type,
593                  elfcpp::Elf_types<64>::Elf_Addr value,
594                  unsigned char* view,
595                  section_size_type view_size);
596
597     // This is set if we should skip the next reloc, which should be a
598     // PLT32 reloc against ___tls_get_addr.
599     bool skip_call_tls_get_addr_;
600   };
601
602   // A class which returns the size required for a relocation type,
603   // used while scanning relocs during a relocatable link.
604   class Relocatable_size_for_reloc
605   {
606    public:
607     unsigned int
608     get_size_for_reloc(unsigned int, Relobj*);
609   };
610
611   // Adjust TLS relocation type based on the options and whether this
612   // is a local symbol.
613   static tls::Tls_optimization
614   optimize_tls_reloc(bool is_final, int r_type);
615
616   // Get the GOT section, creating it if necessary.
617   Output_data_got<64, false>*
618   got_section(Symbol_table*, Layout*);
619
620   // Get the GOT PLT section.
621   Output_data_space*
622   got_plt_section() const
623   {
624     gold_assert(this->got_plt_ != NULL);
625     return this->got_plt_;
626   }
627
628   // Get the GOT section for TLSDESC entries.
629   Output_data_got<64, false>*
630   got_tlsdesc_section() const
631   {
632     gold_assert(this->got_tlsdesc_ != NULL);
633     return this->got_tlsdesc_;
634   }
635
636   // Create the PLT section.
637   void
638   make_plt_section(Symbol_table* symtab, Layout* layout);
639
640   // Create a PLT entry for a global symbol.
641   void
642   make_plt_entry(Symbol_table*, Layout*, Symbol*);
643
644   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
645   void
646   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
647                              Sized_relobj_file<64, false>* relobj,
648                              unsigned int local_sym_index);
649
650   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
651   void
652   define_tls_base_symbol(Symbol_table*, Layout*);
653
654   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
655   void
656   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
657
658   // Create a GOT entry for the TLS module index.
659   unsigned int
660   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
661                       Sized_relobj_file<64, false>* object);
662
663   // Get the PLT section.
664   Output_data_plt_x86_64*
665   plt_section() const
666   {
667     gold_assert(this->plt_ != NULL);
668     return this->plt_;
669   }
670
671   // Get the dynamic reloc section, creating it if necessary.
672   Reloc_section*
673   rela_dyn_section(Layout*);
674
675   // Get the section to use for TLSDESC relocations.
676   Reloc_section*
677   rela_tlsdesc_section(Layout*) const;
678
679   // Add a potential copy relocation.
680   void
681   copy_reloc(Symbol_table* symtab, Layout* layout,
682              Sized_relobj_file<64, false>* object,
683              unsigned int shndx, Output_section* output_section,
684              Symbol* sym, const elfcpp::Rela<64, false>& reloc)
685   {
686     this->copy_relocs_.copy_reloc(symtab, layout,
687                                   symtab->get_sized_symbol<64>(sym),
688                                   object, shndx, output_section,
689                                   reloc, this->rela_dyn_section(layout));
690   }
691
692   // Information about this specific target which we pass to the
693   // general Target structure.
694   static const Target::Target_info x86_64_info;
695
696   // The types of GOT entries needed for this platform.
697   // These values are exposed to the ABI in an incremental link.
698   // Do not renumber existing values without changing the version
699   // number of the .gnu_incremental_inputs section.
700   enum Got_type
701   {
702     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
703     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
704     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
705     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
706   };
707
708   // This type is used as the argument to the target specific
709   // relocation routines.  The only target specific reloc is
710   // R_X86_64_TLSDESC against a local symbol.
711   struct Tlsdesc_info
712   {
713     Tlsdesc_info(Sized_relobj_file<64, false>* a_object, unsigned int a_r_sym)
714       : object(a_object), r_sym(a_r_sym)
715     { }
716
717     // The object in which the local symbol is defined.
718     Sized_relobj_file<64, false>* object;
719     // The local symbol index in the object.
720     unsigned int r_sym;
721   };
722
723   // The GOT section.
724   Output_data_got<64, false>* got_;
725   // The PLT section.
726   Output_data_plt_x86_64* plt_;
727   // The GOT PLT section.
728   Output_data_space* got_plt_;
729   // The GOT section for TLSDESC relocations.
730   Output_data_got<64, false>* got_tlsdesc_;
731   // The _GLOBAL_OFFSET_TABLE_ symbol.
732   Symbol* global_offset_table_;
733   // The dynamic reloc section.
734   Reloc_section* rela_dyn_;
735   // Relocs saved to avoid a COPY reloc.
736   Copy_relocs<elfcpp::SHT_RELA, 64, false> copy_relocs_;
737   // Space for variables copied with a COPY reloc.
738   Output_data_space* dynbss_;
739   // Offset of the GOT entry for the TLS module index.
740   unsigned int got_mod_index_offset_;
741   // We handle R_X86_64_TLSDESC against a local symbol as a target
742   // specific relocation.  Here we store the object and local symbol
743   // index for the relocation.
744   std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
745   // True if the _TLS_MODULE_BASE_ symbol has been defined.
746   bool tls_base_symbol_defined_;
747 };
748
749 const Target::Target_info Target_x86_64::x86_64_info =
750 {
751   64,                   // size
752   false,                // is_big_endian
753   elfcpp::EM_X86_64,    // machine_code
754   false,                // has_make_symbol
755   false,                // has_resolve
756   true,                 // has_code_fill
757   true,                 // is_default_stack_executable
758   '\0',                 // wrap_char
759   "/lib/ld64.so.1",     // program interpreter
760   0x400000,             // default_text_segment_address
761   0x1000,               // abi_pagesize (overridable by -z max-page-size)
762   0x1000,               // common_pagesize (overridable by -z common-page-size)
763   elfcpp::SHN_UNDEF,    // small_common_shndx
764   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
765   0,                    // small_common_section_flags
766   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
767   NULL,                 // attributes_section
768   NULL                  // attributes_vendor
769 };
770
771 // This is called when a new output section is created.  This is where
772 // we handle the SHF_X86_64_LARGE.
773
774 void
775 Target_x86_64::do_new_output_section(Output_section* os) const
776 {
777   if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
778     os->set_is_large_section();
779 }
780
781 // Get the GOT section, creating it if necessary.
782
783 Output_data_got<64, false>*
784 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
785 {
786   if (this->got_ == NULL)
787     {
788       gold_assert(symtab != NULL && layout != NULL);
789
790       this->got_ = new Output_data_got<64, false>();
791
792       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
793                                       (elfcpp::SHF_ALLOC
794                                        | elfcpp::SHF_WRITE),
795                                       this->got_, ORDER_RELRO_LAST,
796                                       true);
797
798       this->got_plt_ = new Output_data_space(8, "** GOT PLT");
799       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
800                                       (elfcpp::SHF_ALLOC
801                                        | elfcpp::SHF_WRITE),
802                                       this->got_plt_, ORDER_NON_RELRO_FIRST,
803                                       false);
804
805       // The first three entries are reserved.
806       this->got_plt_->set_current_data_size(3 * 8);
807
808       // Those bytes can go into the relro segment.
809       layout->increase_relro(3 * 8);
810
811       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
812       this->global_offset_table_ =
813         symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
814                                       Symbol_table::PREDEFINED,
815                                       this->got_plt_,
816                                       0, 0, elfcpp::STT_OBJECT,
817                                       elfcpp::STB_LOCAL,
818                                       elfcpp::STV_HIDDEN, 0,
819                                       false, false);
820
821       // If there are any TLSDESC relocations, they get GOT entries in
822       // .got.plt after the jump slot entries.
823       this->got_tlsdesc_ = new Output_data_got<64, false>();
824       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
825                                       (elfcpp::SHF_ALLOC
826                                        | elfcpp::SHF_WRITE),
827                                       this->got_tlsdesc_,
828                                       ORDER_NON_RELRO_FIRST, false);
829     }
830
831   return this->got_;
832 }
833
834 // Get the dynamic reloc section, creating it if necessary.
835
836 Target_x86_64::Reloc_section*
837 Target_x86_64::rela_dyn_section(Layout* layout)
838 {
839   if (this->rela_dyn_ == NULL)
840     {
841       gold_assert(layout != NULL);
842       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
843       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
844                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
845                                       ORDER_DYNAMIC_RELOCS, false);
846     }
847   return this->rela_dyn_;
848 }
849
850 // Initialize the PLT section.
851
852 void
853 Output_data_plt_x86_64::init(Symbol_table* symtab, Layout* layout)
854 {
855   this->rel_ = new Reloc_section(false);
856   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
857                                   elfcpp::SHF_ALLOC, this->rel_,
858                                   ORDER_DYNAMIC_PLT_RELOCS, false);
859
860   if (parameters->doing_static_link())
861     {
862       // A statically linked executable will only have a .rela.plt
863       // section to hold R_X86_64_IRELATIVE relocs for STT_GNU_IFUNC
864       // symbols.  The library will use these symbols to locate the
865       // IRELATIVE relocs at program startup time.
866       symtab->define_in_output_data("__rela_iplt_start", NULL,
867                                     Symbol_table::PREDEFINED,
868                                     this->rel_, 0, 0, elfcpp::STT_NOTYPE,
869                                     elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
870                                     0, false, true);
871       symtab->define_in_output_data("__rela_iplt_end", NULL,
872                                     Symbol_table::PREDEFINED,
873                                     this->rel_, 0, 0, elfcpp::STT_NOTYPE,
874                                     elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
875                                     0, true, true);
876     }
877 }
878
879 void
880 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
881 {
882   os->set_entsize(plt_entry_size);
883 }
884
885 // Add an entry to the PLT.
886
887 void
888 Output_data_plt_x86_64::add_entry(Symbol* gsym)
889 {
890   gold_assert(!gsym->has_plt_offset());
891
892   unsigned int plt_index;
893   off_t plt_offset;
894   section_offset_type got_offset;
895
896   if (!this->is_data_size_valid())
897     {
898       // Note that when setting the PLT offset we skip the initial
899       // reserved PLT entry.
900       plt_index = this->count_ + 1;
901       plt_offset = plt_index * plt_entry_size;
902
903       ++this->count_;
904
905       got_offset = (plt_index - 1 + 3) * 8;
906       gold_assert(got_offset == this->got_plt_->current_data_size());
907
908       // Every PLT entry needs a GOT entry which points back to the PLT
909       // entry (this will be changed by the dynamic linker, normally
910       // lazily when the function is called).
911       this->got_plt_->set_current_data_size(got_offset + 8);
912     }
913   else
914     {
915       // For incremental updates, find an available slot.
916       plt_offset = this->free_list_.allocate(plt_entry_size, plt_entry_size, 0);
917       if (plt_offset == -1)
918         gold_fatal(_("out of patch space (PLT);"
919                      " relink with --incremental-full"));
920
921       // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
922       // can be calculated from the PLT index, adjusting for the three
923       // reserved entries at the beginning of the GOT.
924       plt_index = plt_offset / plt_entry_size - 1;
925       got_offset = (plt_index - 1 + 3) * 8;
926     }
927
928   gsym->set_plt_offset(plt_offset);
929
930   // Every PLT entry needs a reloc.
931   this->add_relocation(gsym, got_offset);
932
933   // Note that we don't need to save the symbol.  The contents of the
934   // PLT are independent of which symbols are used.  The symbols only
935   // appear in the relocations.
936 }
937
938 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
939 // the PLT offset.
940
941 unsigned int
942 Output_data_plt_x86_64::add_local_ifunc_entry(
943     Sized_relobj_file<64, false>* relobj,
944     unsigned int local_sym_index)
945 {
946   unsigned int plt_offset = (this->count_ + 1) * plt_entry_size;
947   ++this->count_;
948
949   section_offset_type got_offset = this->got_plt_->current_data_size();
950
951   // Every PLT entry needs a GOT entry which points back to the PLT
952   // entry.
953   this->got_plt_->set_current_data_size(got_offset + 8);
954
955   // Every PLT entry needs a reloc.
956   this->rel_->add_symbolless_local_addend(relobj, local_sym_index,
957                                           elfcpp::R_X86_64_IRELATIVE,
958                                           this->got_plt_, got_offset, 0);
959
960   return plt_offset;
961 }
962
963 // Add the relocation for a PLT entry.
964
965 void
966 Output_data_plt_x86_64::add_relocation(Symbol* gsym, unsigned int got_offset)
967 {
968   if (gsym->type() == elfcpp::STT_GNU_IFUNC
969       && gsym->can_use_relative_reloc(false))
970     this->rel_->add_symbolless_global_addend(gsym, elfcpp::R_X86_64_IRELATIVE,
971                                              this->got_plt_, got_offset, 0);
972   else
973     {
974       gsym->set_needs_dynsym_entry();
975       this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
976                              got_offset, 0);
977     }
978 }
979
980 // Return where the TLSDESC relocations should go, creating it if
981 // necessary.  These follow the JUMP_SLOT relocations.
982
983 Output_data_plt_x86_64::Reloc_section*
984 Output_data_plt_x86_64::rela_tlsdesc(Layout* layout)
985 {
986   if (this->tlsdesc_rel_ == NULL)
987     {
988       this->tlsdesc_rel_ = new Reloc_section(false);
989       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
990                                       elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
991                                       ORDER_DYNAMIC_PLT_RELOCS, false);
992       gold_assert(this->tlsdesc_rel_->output_section() ==
993                   this->rel_->output_section());
994     }
995   return this->tlsdesc_rel_;
996 }
997
998 // Set the final size.
999 void
1000 Output_data_plt_x86_64::set_final_data_size()
1001 {
1002   unsigned int count = this->count_;
1003   if (this->has_tlsdesc_entry())
1004     ++count;
1005   this->set_data_size((count + 1) * plt_entry_size);
1006 }
1007
1008 // The first entry in the PLT for an executable.
1009
1010 unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
1011 {
1012   // From AMD64 ABI Draft 0.98, page 76
1013   0xff, 0x35,   // pushq contents of memory address
1014   0, 0, 0, 0,   // replaced with address of .got + 8
1015   0xff, 0x25,   // jmp indirect
1016   0, 0, 0, 0,   // replaced with address of .got + 16
1017   0x90, 0x90, 0x90, 0x90   // noop (x4)
1018 };
1019
1020 // Subsequent entries in the PLT for an executable.
1021
1022 unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
1023 {
1024   // From AMD64 ABI Draft 0.98, page 76
1025   0xff, 0x25,   // jmpq indirect
1026   0, 0, 0, 0,   // replaced with address of symbol in .got
1027   0x68,         // pushq immediate
1028   0, 0, 0, 0,   // replaced with offset into relocation table
1029   0xe9,         // jmpq relative
1030   0, 0, 0, 0    // replaced with offset to start of .plt
1031 };
1032
1033 // The reserved TLSDESC entry in the PLT for an executable.
1034
1035 unsigned char Output_data_plt_x86_64::tlsdesc_plt_entry[plt_entry_size] =
1036 {
1037   // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
1038   // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
1039   0xff, 0x35,   // pushq x(%rip)
1040   0, 0, 0, 0,   // replaced with address of linkmap GOT entry (at PLTGOT + 8)
1041   0xff, 0x25,   // jmpq *y(%rip)
1042   0, 0, 0, 0,   // replaced with offset of reserved TLSDESC_GOT entry
1043   0x0f, 0x1f,   // nop
1044   0x40, 0
1045 };
1046
1047 // Write out the PLT.  This uses the hand-coded instructions above,
1048 // and adjusts them as needed.  This is specified by the AMD64 ABI.
1049
1050 void
1051 Output_data_plt_x86_64::do_write(Output_file* of)
1052 {
1053   const off_t offset = this->offset();
1054   const section_size_type oview_size =
1055     convert_to_section_size_type(this->data_size());
1056   unsigned char* const oview = of->get_output_view(offset, oview_size);
1057
1058   const off_t got_file_offset = this->got_plt_->offset();
1059   const section_size_type got_size =
1060     convert_to_section_size_type(this->got_plt_->data_size());
1061   unsigned char* const got_view = of->get_output_view(got_file_offset,
1062                                                       got_size);
1063
1064   unsigned char* pov = oview;
1065
1066   // The base address of the .plt section.
1067   elfcpp::Elf_types<64>::Elf_Addr plt_address = this->address();
1068   // The base address of the .got section.
1069   elfcpp::Elf_types<64>::Elf_Addr got_base = this->got_->address();
1070   // The base address of the PLT portion of the .got section,
1071   // which is where the GOT pointer will point, and where the
1072   // three reserved GOT entries are located.
1073   elfcpp::Elf_types<64>::Elf_Addr got_address = this->got_plt_->address();
1074
1075   memcpy(pov, first_plt_entry, plt_entry_size);
1076   // We do a jmp relative to the PC at the end of this instruction.
1077   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1078                                               (got_address + 8
1079                                                - (plt_address + 6)));
1080   elfcpp::Swap<32, false>::writeval(pov + 8,
1081                                     (got_address + 16
1082                                      - (plt_address + 12)));
1083   pov += plt_entry_size;
1084
1085   unsigned char* got_pov = got_view;
1086
1087   memset(got_pov, 0, 24);
1088   got_pov += 24;
1089
1090   unsigned int plt_offset = plt_entry_size;
1091   unsigned int got_offset = 24;
1092   const unsigned int count = this->count_;
1093   for (unsigned int plt_index = 0;
1094        plt_index < count;
1095        ++plt_index,
1096          pov += plt_entry_size,
1097          got_pov += 8,
1098          plt_offset += plt_entry_size,
1099          got_offset += 8)
1100     {
1101       // Set and adjust the PLT entry itself.
1102       memcpy(pov, plt_entry, plt_entry_size);
1103       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1104                                                   (got_address + got_offset
1105                                                    - (plt_address + plt_offset
1106                                                       + 6)));
1107
1108       elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
1109       elfcpp::Swap<32, false>::writeval(pov + 12,
1110                                         - (plt_offset + plt_entry_size));
1111
1112       // Set the entry in the GOT.
1113       elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
1114     }
1115
1116   if (this->has_tlsdesc_entry())
1117     {
1118       // Set and adjust the reserved TLSDESC PLT entry.
1119       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
1120       memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
1121       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1122                                                   (got_address + 8
1123                                                    - (plt_address + plt_offset
1124                                                       + 6)));
1125       elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
1126                                                   (got_base
1127                                                    + tlsdesc_got_offset
1128                                                    - (plt_address + plt_offset
1129                                                       + 12)));
1130       pov += plt_entry_size;
1131     }
1132
1133   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1134   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1135
1136   of->write_output_view(offset, oview_size, oview);
1137   of->write_output_view(got_file_offset, got_size, got_view);
1138 }
1139
1140 // Create the PLT section.
1141
1142 void
1143 Target_x86_64::make_plt_section(Symbol_table* symtab, Layout* layout)
1144 {
1145   if (this->plt_ == NULL)
1146     {
1147       // Create the GOT sections first.
1148       this->got_section(symtab, layout);
1149
1150       this->plt_ = new Output_data_plt_x86_64(symtab, layout, this->got_,
1151                                               this->got_plt_);
1152       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1153                                       (elfcpp::SHF_ALLOC
1154                                        | elfcpp::SHF_EXECINSTR),
1155                                       this->plt_, ORDER_PLT, false);
1156
1157       // Make the sh_info field of .rela.plt point to .plt.
1158       Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1159       rela_plt_os->set_info_section(this->plt_->output_section());
1160     }
1161 }
1162
1163 // Return the section for TLSDESC relocations.
1164
1165 Target_x86_64::Reloc_section*
1166 Target_x86_64::rela_tlsdesc_section(Layout* layout) const
1167 {
1168   return this->plt_section()->rela_tlsdesc(layout);
1169 }
1170
1171 // Create a PLT entry for a global symbol.
1172
1173 void
1174 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
1175                               Symbol* gsym)
1176 {
1177   if (gsym->has_plt_offset())
1178     return;
1179
1180   if (this->plt_ == NULL)
1181     this->make_plt_section(symtab, layout);
1182
1183   this->plt_->add_entry(gsym);
1184 }
1185
1186 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
1187
1188 void
1189 Target_x86_64::make_local_ifunc_plt_entry(Symbol_table* symtab, Layout* layout,
1190                                           Sized_relobj_file<64, false>* relobj,
1191                                           unsigned int local_sym_index)
1192 {
1193   if (relobj->local_has_plt_offset(local_sym_index))
1194     return;
1195   if (this->plt_ == NULL)
1196     this->make_plt_section(symtab, layout);
1197   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(relobj,
1198                                                               local_sym_index);
1199   relobj->set_local_plt_offset(local_sym_index, plt_offset);
1200 }
1201
1202 // Return the number of entries in the PLT.
1203
1204 unsigned int
1205 Target_x86_64::plt_entry_count() const
1206 {
1207   if (this->plt_ == NULL)
1208     return 0;
1209   return this->plt_->entry_count();
1210 }
1211
1212 // Return the offset of the first non-reserved PLT entry.
1213
1214 unsigned int
1215 Target_x86_64::first_plt_entry_offset() const
1216 {
1217   return Output_data_plt_x86_64::first_plt_entry_offset();
1218 }
1219
1220 // Return the size of each PLT entry.
1221
1222 unsigned int
1223 Target_x86_64::plt_entry_size() const
1224 {
1225   return Output_data_plt_x86_64::get_plt_entry_size();
1226 }
1227
1228 // Create the GOT and PLT sections for an incremental update.
1229
1230 Output_data_got<64, false>*
1231 Target_x86_64::init_got_plt_for_update(Symbol_table* symtab,
1232                                        Layout* layout,
1233                                        unsigned int got_count,
1234                                        unsigned int plt_count)
1235 {
1236   gold_assert(this->got_ == NULL);
1237
1238   this->got_ = new Output_data_got<64, false>(got_count * 8);
1239   layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1240                                   (elfcpp::SHF_ALLOC
1241                                    | elfcpp::SHF_WRITE),
1242                                   this->got_, ORDER_RELRO_LAST,
1243                                   true);
1244
1245   // Add the three reserved entries.
1246   this->got_plt_ = new Output_data_space((plt_count + 3) * 8, 8, "** GOT PLT");
1247   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1248                                   (elfcpp::SHF_ALLOC
1249                                    | elfcpp::SHF_WRITE),
1250                                   this->got_plt_, ORDER_NON_RELRO_FIRST,
1251                                   false);
1252
1253   // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1254   this->global_offset_table_ =
1255     symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1256                                   Symbol_table::PREDEFINED,
1257                                   this->got_plt_,
1258                                   0, 0, elfcpp::STT_OBJECT,
1259                                   elfcpp::STB_LOCAL,
1260                                   elfcpp::STV_HIDDEN, 0,
1261                                   false, false);
1262
1263   // If there are any TLSDESC relocations, they get GOT entries in
1264   // .got.plt after the jump slot entries.
1265   // FIXME: Get the count for TLSDESC entries.
1266   this->got_tlsdesc_ = new Output_data_got<64, false>(0);
1267   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1268                                   elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1269                                   this->got_tlsdesc_,
1270                                   ORDER_NON_RELRO_FIRST, false);
1271
1272   // Create the PLT section.
1273   this->plt_ = new Output_data_plt_x86_64(symtab, layout, this->got_,
1274                                           this->got_plt_, plt_count);
1275   layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1276                                   elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
1277                                   this->plt_, ORDER_PLT, false);
1278
1279   // Make the sh_info field of .rela.plt point to .plt.
1280   Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1281   rela_plt_os->set_info_section(this->plt_->output_section());
1282
1283   // Create the rela_dyn section.
1284   this->rela_dyn_section(layout);
1285
1286   return this->got_;
1287 }
1288
1289 // Reserve a GOT entry for a local symbol, and regenerate any
1290 // necessary dynamic relocations.
1291
1292 void
1293 Target_x86_64::reserve_local_got_entry(
1294     unsigned int got_index,
1295     Sized_relobj<64, false>* obj,
1296     unsigned int r_sym,
1297     unsigned int got_type)
1298 {
1299   unsigned int got_offset = got_index * 8;
1300   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1301
1302   this->got_->reserve_local(got_index, obj, r_sym, got_type);
1303   switch (got_type)
1304     {
1305     case GOT_TYPE_STANDARD:
1306       if (parameters->options().output_is_position_independent())
1307         rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_X86_64_RELATIVE,
1308                                      this->got_, got_offset, 0);
1309       break;
1310     case GOT_TYPE_TLS_OFFSET:
1311       rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_TPOFF64,
1312                           this->got_, got_offset, 0);
1313       break;
1314     case GOT_TYPE_TLS_PAIR:
1315       this->got_->reserve_slot(got_index + 1);
1316       rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_DTPMOD64,
1317                           this->got_, got_offset, 0);
1318       break;
1319     case GOT_TYPE_TLS_DESC:
1320       gold_fatal(_("TLS_DESC not yet supported for incremental linking"));
1321       // this->got_->reserve_slot(got_index + 1);
1322       // rela_dyn->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
1323       //                               this->got_, got_offset, 0);
1324       break;
1325     default:
1326       gold_unreachable();
1327     }
1328 }
1329
1330 // Reserve a GOT entry for a global symbol, and regenerate any
1331 // necessary dynamic relocations.
1332
1333 void
1334 Target_x86_64::reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
1335                                         unsigned int got_type)
1336 {
1337   unsigned int got_offset = got_index * 8;
1338   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1339
1340   this->got_->reserve_global(got_index, gsym, got_type);
1341   switch (got_type)
1342     {
1343     case GOT_TYPE_STANDARD:
1344       if (!gsym->final_value_is_known())
1345         {
1346           if (gsym->is_from_dynobj()
1347               || gsym->is_undefined()
1348               || gsym->is_preemptible()
1349               || gsym->type() == elfcpp::STT_GNU_IFUNC)
1350             rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT,
1351                                  this->got_, got_offset, 0);
1352           else
1353             rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1354                                           this->got_, got_offset, 0);
1355         }
1356       break;
1357     case GOT_TYPE_TLS_OFFSET:
1358       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TPOFF64,
1359                                     this->got_, got_offset, 0);
1360       break;
1361     case GOT_TYPE_TLS_PAIR:
1362       this->got_->reserve_slot(got_index + 1);
1363       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPMOD64,
1364                                     this->got_, got_offset, 0);
1365       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPOFF64,
1366                                     this->got_, got_offset + 8, 0);
1367       break;
1368     case GOT_TYPE_TLS_DESC:
1369       this->got_->reserve_slot(got_index + 1);
1370       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TLSDESC,
1371                                     this->got_, got_offset, 0);
1372       break;
1373     default:
1374       gold_unreachable();
1375     }
1376 }
1377
1378 // Register an existing PLT entry for a global symbol.
1379
1380 void
1381 Target_x86_64::register_global_plt_entry(unsigned int plt_index,
1382                                          Symbol* gsym)
1383 {
1384   gold_assert(this->plt_ != NULL);
1385   gold_assert(!gsym->has_plt_offset());
1386
1387   this->plt_->reserve_slot(plt_index);
1388
1389   gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
1390
1391   unsigned int got_offset = (plt_index + 3) * 8;
1392   this->plt_->add_relocation(gsym, got_offset);
1393 }
1394
1395 // Force a COPY relocation for a given symbol.
1396
1397 void
1398 Target_x86_64::emit_copy_reloc(
1399     Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
1400 {
1401   this->copy_relocs_.emit_copy_reloc(symtab,
1402                                      symtab->get_sized_symbol<64>(sym),
1403                                      os,
1404                                      offset,
1405                                      this->rela_dyn_section(NULL));
1406 }
1407
1408 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
1409
1410 void
1411 Target_x86_64::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
1412 {
1413   if (this->tls_base_symbol_defined_)
1414     return;
1415
1416   Output_segment* tls_segment = layout->tls_segment();
1417   if (tls_segment != NULL)
1418     {
1419       bool is_exec = parameters->options().output_is_executable();
1420       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
1421                                        Symbol_table::PREDEFINED,
1422                                        tls_segment, 0, 0,
1423                                        elfcpp::STT_TLS,
1424                                        elfcpp::STB_LOCAL,
1425                                        elfcpp::STV_HIDDEN, 0,
1426                                        (is_exec
1427                                         ? Symbol::SEGMENT_END
1428                                         : Symbol::SEGMENT_START),
1429                                        true);
1430     }
1431   this->tls_base_symbol_defined_ = true;
1432 }
1433
1434 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
1435
1436 void
1437 Target_x86_64::reserve_tlsdesc_entries(Symbol_table* symtab,
1438                                              Layout* layout)
1439 {
1440   if (this->plt_ == NULL)
1441     this->make_plt_section(symtab, layout);
1442
1443   if (!this->plt_->has_tlsdesc_entry())
1444     {
1445       // Allocate the TLSDESC_GOT entry.
1446       Output_data_got<64, false>* got = this->got_section(symtab, layout);
1447       unsigned int got_offset = got->add_constant(0);
1448
1449       // Allocate the TLSDESC_PLT entry.
1450       this->plt_->reserve_tlsdesc_entry(got_offset);
1451     }
1452 }
1453
1454 // Create a GOT entry for the TLS module index.
1455
1456 unsigned int
1457 Target_x86_64::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1458                                    Sized_relobj_file<64, false>* object)
1459 {
1460   if (this->got_mod_index_offset_ == -1U)
1461     {
1462       gold_assert(symtab != NULL && layout != NULL && object != NULL);
1463       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1464       Output_data_got<64, false>* got = this->got_section(symtab, layout);
1465       unsigned int got_offset = got->add_constant(0);
1466       rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
1467                           got_offset, 0);
1468       got->add_constant(0);
1469       this->got_mod_index_offset_ = got_offset;
1470     }
1471   return this->got_mod_index_offset_;
1472 }
1473
1474 // Optimize the TLS relocation type based on what we know about the
1475 // symbol.  IS_FINAL is true if the final address of this symbol is
1476 // known at link time.
1477
1478 tls::Tls_optimization
1479 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
1480 {
1481   // If we are generating a shared library, then we can't do anything
1482   // in the linker.
1483   if (parameters->options().shared())
1484     return tls::TLSOPT_NONE;
1485
1486   switch (r_type)
1487     {
1488     case elfcpp::R_X86_64_TLSGD:
1489     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1490     case elfcpp::R_X86_64_TLSDESC_CALL:
1491       // These are General-Dynamic which permits fully general TLS
1492       // access.  Since we know that we are generating an executable,
1493       // we can convert this to Initial-Exec.  If we also know that
1494       // this is a local symbol, we can further switch to Local-Exec.
1495       if (is_final)
1496         return tls::TLSOPT_TO_LE;
1497       return tls::TLSOPT_TO_IE;
1498
1499     case elfcpp::R_X86_64_TLSLD:
1500       // This is Local-Dynamic, which refers to a local symbol in the
1501       // dynamic TLS block.  Since we know that we generating an
1502       // executable, we can switch to Local-Exec.
1503       return tls::TLSOPT_TO_LE;
1504
1505     case elfcpp::R_X86_64_DTPOFF32:
1506     case elfcpp::R_X86_64_DTPOFF64:
1507       // Another Local-Dynamic reloc.
1508       return tls::TLSOPT_TO_LE;
1509
1510     case elfcpp::R_X86_64_GOTTPOFF:
1511       // These are Initial-Exec relocs which get the thread offset
1512       // from the GOT.  If we know that we are linking against the
1513       // local symbol, we can switch to Local-Exec, which links the
1514       // thread offset into the instruction.
1515       if (is_final)
1516         return tls::TLSOPT_TO_LE;
1517       return tls::TLSOPT_NONE;
1518
1519     case elfcpp::R_X86_64_TPOFF32:
1520       // When we already have Local-Exec, there is nothing further we
1521       // can do.
1522       return tls::TLSOPT_NONE;
1523
1524     default:
1525       gold_unreachable();
1526     }
1527 }
1528
1529 // Get the Reference_flags for a particular relocation.
1530
1531 int
1532 Target_x86_64::Scan::get_reference_flags(unsigned int r_type)
1533 {
1534   switch (r_type)
1535     {
1536     case elfcpp::R_X86_64_NONE:
1537     case elfcpp::R_X86_64_GNU_VTINHERIT:
1538     case elfcpp::R_X86_64_GNU_VTENTRY:
1539     case elfcpp::R_X86_64_GOTPC32:
1540     case elfcpp::R_X86_64_GOTPC64:
1541       // No symbol reference.
1542       return 0;
1543
1544     case elfcpp::R_X86_64_64:
1545     case elfcpp::R_X86_64_32:
1546     case elfcpp::R_X86_64_32S:
1547     case elfcpp::R_X86_64_16:
1548     case elfcpp::R_X86_64_8:
1549       return Symbol::ABSOLUTE_REF;
1550
1551     case elfcpp::R_X86_64_PC64:
1552     case elfcpp::R_X86_64_PC32:
1553     case elfcpp::R_X86_64_PC16:
1554     case elfcpp::R_X86_64_PC8:
1555     case elfcpp::R_X86_64_GOTOFF64:
1556       return Symbol::RELATIVE_REF;
1557
1558     case elfcpp::R_X86_64_PLT32:
1559     case elfcpp::R_X86_64_PLTOFF64:
1560       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
1561
1562     case elfcpp::R_X86_64_GOT64:
1563     case elfcpp::R_X86_64_GOT32:
1564     case elfcpp::R_X86_64_GOTPCREL64:
1565     case elfcpp::R_X86_64_GOTPCREL:
1566     case elfcpp::R_X86_64_GOTPLT64:
1567       // Absolute in GOT.
1568       return Symbol::ABSOLUTE_REF;
1569
1570     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1571     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1572     case elfcpp::R_X86_64_TLSDESC_CALL:
1573     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1574     case elfcpp::R_X86_64_DTPOFF32:
1575     case elfcpp::R_X86_64_DTPOFF64:
1576     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1577     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1578       return Symbol::TLS_REF;
1579
1580     case elfcpp::R_X86_64_COPY:
1581     case elfcpp::R_X86_64_GLOB_DAT:
1582     case elfcpp::R_X86_64_JUMP_SLOT:
1583     case elfcpp::R_X86_64_RELATIVE:
1584     case elfcpp::R_X86_64_IRELATIVE:
1585     case elfcpp::R_X86_64_TPOFF64:
1586     case elfcpp::R_X86_64_DTPMOD64:
1587     case elfcpp::R_X86_64_TLSDESC:
1588     case elfcpp::R_X86_64_SIZE32:
1589     case elfcpp::R_X86_64_SIZE64:
1590     default:
1591       // Not expected.  We will give an error later.
1592       return 0;
1593     }
1594 }
1595
1596 // Report an unsupported relocation against a local symbol.
1597
1598 void
1599 Target_x86_64::Scan::unsupported_reloc_local(
1600      Sized_relobj_file<64, false>* object,
1601      unsigned int r_type)
1602 {
1603   gold_error(_("%s: unsupported reloc %u against local symbol"),
1604              object->name().c_str(), r_type);
1605 }
1606
1607 // We are about to emit a dynamic relocation of type R_TYPE.  If the
1608 // dynamic linker does not support it, issue an error.  The GNU linker
1609 // only issues a non-PIC error for an allocated read-only section.
1610 // Here we know the section is allocated, but we don't know that it is
1611 // read-only.  But we check for all the relocation types which the
1612 // glibc dynamic linker supports, so it seems appropriate to issue an
1613 // error even if the section is not read-only.
1614
1615 void
1616 Target_x86_64::Scan::check_non_pic(Relobj* object, unsigned int r_type)
1617 {
1618   switch (r_type)
1619     {
1620       // These are the relocation types supported by glibc for x86_64
1621       // which should always work.
1622     case elfcpp::R_X86_64_RELATIVE:
1623     case elfcpp::R_X86_64_IRELATIVE:
1624     case elfcpp::R_X86_64_GLOB_DAT:
1625     case elfcpp::R_X86_64_JUMP_SLOT:
1626     case elfcpp::R_X86_64_DTPMOD64:
1627     case elfcpp::R_X86_64_DTPOFF64:
1628     case elfcpp::R_X86_64_TPOFF64:
1629     case elfcpp::R_X86_64_64:
1630     case elfcpp::R_X86_64_COPY:
1631       return;
1632
1633       // glibc supports these reloc types, but they can overflow.
1634     case elfcpp::R_X86_64_32:
1635     case elfcpp::R_X86_64_PC32:
1636       if (this->issued_non_pic_error_)
1637         return;
1638       gold_assert(parameters->options().output_is_position_independent());
1639       object->error(_("requires dynamic reloc which may overflow at runtime; "
1640                       "recompile with -fPIC"));
1641       this->issued_non_pic_error_ = true;
1642       return;
1643
1644     default:
1645       // This prevents us from issuing more than one error per reloc
1646       // section.  But we can still wind up issuing more than one
1647       // error per object file.
1648       if (this->issued_non_pic_error_)
1649         return;
1650       gold_assert(parameters->options().output_is_position_independent());
1651       object->error(_("requires unsupported dynamic reloc; "
1652                       "recompile with -fPIC"));
1653       this->issued_non_pic_error_ = true;
1654       return;
1655
1656     case elfcpp::R_X86_64_NONE:
1657       gold_unreachable();
1658     }
1659 }
1660
1661 // Return whether we need to make a PLT entry for a relocation of the
1662 // given type against a STT_GNU_IFUNC symbol.
1663
1664 bool
1665 Target_x86_64::Scan::reloc_needs_plt_for_ifunc(
1666      Sized_relobj_file<64, false>* object,
1667      unsigned int r_type)
1668 {
1669   int flags = Scan::get_reference_flags(r_type);
1670   if (flags & Symbol::TLS_REF)
1671     gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
1672                object->name().c_str(), r_type);
1673   return flags != 0;
1674 }
1675
1676 // Scan a relocation for a local symbol.
1677
1678 inline void
1679 Target_x86_64::Scan::local(Symbol_table* symtab,
1680                            Layout* layout,
1681                            Target_x86_64* target,
1682                            Sized_relobj_file<64, false>* object,
1683                            unsigned int data_shndx,
1684                            Output_section* output_section,
1685                            const elfcpp::Rela<64, false>& reloc,
1686                            unsigned int r_type,
1687                            const elfcpp::Sym<64, false>& lsym)
1688 {
1689   // A local STT_GNU_IFUNC symbol may require a PLT entry.
1690   if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC
1691       && this->reloc_needs_plt_for_ifunc(object, r_type))
1692     {
1693       unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1694       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
1695     }
1696
1697   switch (r_type)
1698     {
1699     case elfcpp::R_X86_64_NONE:
1700     case elfcpp::R_X86_64_GNU_VTINHERIT:
1701     case elfcpp::R_X86_64_GNU_VTENTRY:
1702       break;
1703
1704     case elfcpp::R_X86_64_64:
1705       // If building a shared library (or a position-independent
1706       // executable), we need to create a dynamic relocation for this
1707       // location.  The relocation applied at link time will apply the
1708       // link-time value, so we flag the location with an
1709       // R_X86_64_RELATIVE relocation so the dynamic loader can
1710       // relocate it easily.
1711       if (parameters->options().output_is_position_independent())
1712         {
1713           unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1714           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1715           rela_dyn->add_local_relative(object, r_sym,
1716                                        elfcpp::R_X86_64_RELATIVE,
1717                                        output_section, data_shndx,
1718                                        reloc.get_r_offset(),
1719                                        reloc.get_r_addend());
1720         }
1721       break;
1722
1723     case elfcpp::R_X86_64_32:
1724     case elfcpp::R_X86_64_32S:
1725     case elfcpp::R_X86_64_16:
1726     case elfcpp::R_X86_64_8:
1727       // If building a shared library (or a position-independent
1728       // executable), we need to create a dynamic relocation for this
1729       // location.  We can't use an R_X86_64_RELATIVE relocation
1730       // because that is always a 64-bit relocation.
1731       if (parameters->options().output_is_position_independent())
1732         {
1733           this->check_non_pic(object, r_type);
1734
1735           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1736           unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1737           if (lsym.get_st_type() != elfcpp::STT_SECTION)
1738             rela_dyn->add_local(object, r_sym, r_type, output_section,
1739                                 data_shndx, reloc.get_r_offset(),
1740                                 reloc.get_r_addend());
1741           else
1742             {
1743               gold_assert(lsym.get_st_value() == 0);
1744               unsigned int shndx = lsym.get_st_shndx();
1745               bool is_ordinary;
1746               shndx = object->adjust_sym_shndx(r_sym, shndx,
1747                                                &is_ordinary);
1748               if (!is_ordinary)
1749                 object->error(_("section symbol %u has bad shndx %u"),
1750                               r_sym, shndx);
1751               else
1752                 rela_dyn->add_local_section(object, shndx,
1753                                             r_type, output_section,
1754                                             data_shndx, reloc.get_r_offset(),
1755                                             reloc.get_r_addend());
1756             }
1757         }
1758       break;
1759
1760     case elfcpp::R_X86_64_PC64:
1761     case elfcpp::R_X86_64_PC32:
1762     case elfcpp::R_X86_64_PC16:
1763     case elfcpp::R_X86_64_PC8:
1764       break;
1765
1766     case elfcpp::R_X86_64_PLT32:
1767       // Since we know this is a local symbol, we can handle this as a
1768       // PC32 reloc.
1769       break;
1770
1771     case elfcpp::R_X86_64_GOTPC32:
1772     case elfcpp::R_X86_64_GOTOFF64:
1773     case elfcpp::R_X86_64_GOTPC64:
1774     case elfcpp::R_X86_64_PLTOFF64:
1775       // We need a GOT section.
1776       target->got_section(symtab, layout);
1777       // For PLTOFF64, we'd normally want a PLT section, but since we
1778       // know this is a local symbol, no PLT is needed.
1779       break;
1780
1781     case elfcpp::R_X86_64_GOT64:
1782     case elfcpp::R_X86_64_GOT32:
1783     case elfcpp::R_X86_64_GOTPCREL64:
1784     case elfcpp::R_X86_64_GOTPCREL:
1785     case elfcpp::R_X86_64_GOTPLT64:
1786       {
1787         // The symbol requires a GOT entry.
1788         Output_data_got<64, false>* got = target->got_section(symtab, layout);
1789         unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1790
1791         // For a STT_GNU_IFUNC symbol we want the PLT offset.  That
1792         // lets function pointers compare correctly with shared
1793         // libraries.  Otherwise we would need an IRELATIVE reloc.
1794         bool is_new;
1795         if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1796           is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
1797         else
1798           is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
1799         if (is_new)
1800           {
1801             // If we are generating a shared object, we need to add a
1802             // dynamic relocation for this symbol's GOT entry.
1803             if (parameters->options().output_is_position_independent())
1804               {
1805                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1806                 // R_X86_64_RELATIVE assumes a 64-bit relocation.
1807                 if (r_type != elfcpp::R_X86_64_GOT32)
1808                   {
1809                     unsigned int got_offset =
1810                       object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
1811                     rela_dyn->add_local_relative(object, r_sym,
1812                                                  elfcpp::R_X86_64_RELATIVE,
1813                                                  got, got_offset, 0);
1814                   }
1815                 else
1816                   {
1817                     this->check_non_pic(object, r_type);
1818
1819                     gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
1820                     rela_dyn->add_local(
1821                         object, r_sym, r_type, got,
1822                         object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
1823                   }
1824               }
1825           }
1826         // For GOTPLT64, we'd normally want a PLT section, but since
1827         // we know this is a local symbol, no PLT is needed.
1828       }
1829       break;
1830
1831     case elfcpp::R_X86_64_COPY:
1832     case elfcpp::R_X86_64_GLOB_DAT:
1833     case elfcpp::R_X86_64_JUMP_SLOT:
1834     case elfcpp::R_X86_64_RELATIVE:
1835     case elfcpp::R_X86_64_IRELATIVE:
1836       // These are outstanding tls relocs, which are unexpected when linking
1837     case elfcpp::R_X86_64_TPOFF64:
1838     case elfcpp::R_X86_64_DTPMOD64:
1839     case elfcpp::R_X86_64_TLSDESC:
1840       gold_error(_("%s: unexpected reloc %u in object file"),
1841                  object->name().c_str(), r_type);
1842       break;
1843
1844       // These are initial tls relocs, which are expected when linking
1845     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1846     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1847     case elfcpp::R_X86_64_TLSDESC_CALL:
1848     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1849     case elfcpp::R_X86_64_DTPOFF32:
1850     case elfcpp::R_X86_64_DTPOFF64:
1851     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1852     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1853       {
1854         bool output_is_shared = parameters->options().shared();
1855         const tls::Tls_optimization optimized_type
1856             = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
1857         switch (r_type)
1858           {
1859           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
1860             if (optimized_type == tls::TLSOPT_NONE)
1861               {
1862                 // Create a pair of GOT entries for the module index and
1863                 // dtv-relative offset.
1864                 Output_data_got<64, false>* got
1865                     = target->got_section(symtab, layout);
1866                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1867                 unsigned int shndx = lsym.get_st_shndx();
1868                 bool is_ordinary;
1869                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1870                 if (!is_ordinary)
1871                   object->error(_("local symbol %u has bad shndx %u"),
1872                               r_sym, shndx);
1873                 else
1874                   got->add_local_pair_with_rela(object, r_sym,
1875                                                 shndx,
1876                                                 GOT_TYPE_TLS_PAIR,
1877                                                 target->rela_dyn_section(layout),
1878                                                 elfcpp::R_X86_64_DTPMOD64, 0);
1879               }
1880             else if (optimized_type != tls::TLSOPT_TO_LE)
1881               unsupported_reloc_local(object, r_type);
1882             break;
1883
1884           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1885             target->define_tls_base_symbol(symtab, layout);
1886             if (optimized_type == tls::TLSOPT_NONE)
1887               {
1888                 // Create reserved PLT and GOT entries for the resolver.
1889                 target->reserve_tlsdesc_entries(symtab, layout);
1890
1891                 // Generate a double GOT entry with an
1892                 // R_X86_64_TLSDESC reloc.  The R_X86_64_TLSDESC reloc
1893                 // is resolved lazily, so the GOT entry needs to be in
1894                 // an area in .got.plt, not .got.  Call got_section to
1895                 // make sure the section has been created.
1896                 target->got_section(symtab, layout);
1897                 Output_data_got<64, false>* got = target->got_tlsdesc_section();
1898                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1899                 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
1900                   {
1901                     unsigned int got_offset = got->add_constant(0);
1902                     got->add_constant(0);
1903                     object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
1904                                                  got_offset);
1905                     Reloc_section* rt = target->rela_tlsdesc_section(layout);
1906                     // We store the arguments we need in a vector, and
1907                     // use the index into the vector as the parameter
1908                     // to pass to the target specific routines.
1909                     uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
1910                     void* arg = reinterpret_cast<void*>(intarg);
1911                     rt->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
1912                                             got, got_offset, 0);
1913                   }
1914               }
1915             else if (optimized_type != tls::TLSOPT_TO_LE)
1916               unsupported_reloc_local(object, r_type);
1917             break;
1918
1919           case elfcpp::R_X86_64_TLSDESC_CALL:
1920             break;
1921
1922           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
1923             if (optimized_type == tls::TLSOPT_NONE)
1924               {
1925                 // Create a GOT entry for the module index.
1926                 target->got_mod_index_entry(symtab, layout, object);
1927               }
1928             else if (optimized_type != tls::TLSOPT_TO_LE)
1929               unsupported_reloc_local(object, r_type);
1930             break;
1931
1932           case elfcpp::R_X86_64_DTPOFF32:
1933           case elfcpp::R_X86_64_DTPOFF64:
1934             break;
1935
1936           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
1937             layout->set_has_static_tls();
1938             if (optimized_type == tls::TLSOPT_NONE)
1939               {
1940                 // Create a GOT entry for the tp-relative offset.
1941                 Output_data_got<64, false>* got
1942                     = target->got_section(symtab, layout);
1943                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1944                 got->add_local_with_rela(object, r_sym, GOT_TYPE_TLS_OFFSET,
1945                                          target->rela_dyn_section(layout),
1946                                          elfcpp::R_X86_64_TPOFF64);
1947               }
1948             else if (optimized_type != tls::TLSOPT_TO_LE)
1949               unsupported_reloc_local(object, r_type);
1950             break;
1951
1952           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
1953             layout->set_has_static_tls();
1954             if (output_is_shared)
1955               unsupported_reloc_local(object, r_type);
1956             break;
1957
1958           default:
1959             gold_unreachable();
1960           }
1961       }
1962       break;
1963
1964     case elfcpp::R_X86_64_SIZE32:
1965     case elfcpp::R_X86_64_SIZE64:
1966     default:
1967       gold_error(_("%s: unsupported reloc %u against local symbol"),
1968                  object->name().c_str(), r_type);
1969       break;
1970     }
1971 }
1972
1973
1974 // Report an unsupported relocation against a global symbol.
1975
1976 void
1977 Target_x86_64::Scan::unsupported_reloc_global(
1978     Sized_relobj_file<64, false>* object,
1979     unsigned int r_type,
1980     Symbol* gsym)
1981 {
1982   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1983              object->name().c_str(), r_type, gsym->demangled_name().c_str());
1984 }
1985
1986 // Returns true if this relocation type could be that of a function pointer.
1987 inline bool
1988 Target_x86_64::Scan::possible_function_pointer_reloc(unsigned int r_type)
1989 {
1990   switch (r_type)
1991     {
1992     case elfcpp::R_X86_64_64:
1993     case elfcpp::R_X86_64_32:
1994     case elfcpp::R_X86_64_32S:
1995     case elfcpp::R_X86_64_16:
1996     case elfcpp::R_X86_64_8:
1997     case elfcpp::R_X86_64_GOT64:
1998     case elfcpp::R_X86_64_GOT32:
1999     case elfcpp::R_X86_64_GOTPCREL64:
2000     case elfcpp::R_X86_64_GOTPCREL:
2001     case elfcpp::R_X86_64_GOTPLT64:
2002       {
2003         return true;
2004       }
2005     }
2006   return false;
2007 }
2008
2009 // For safe ICF, scan a relocation for a local symbol to check if it
2010 // corresponds to a function pointer being taken.  In that case mark
2011 // the function whose pointer was taken as not foldable.
2012
2013 inline bool
2014 Target_x86_64::Scan::local_reloc_may_be_function_pointer(
2015   Symbol_table* ,
2016   Layout* ,
2017   Target_x86_64* ,
2018   Sized_relobj_file<64, false>* ,
2019   unsigned int ,
2020   Output_section* ,
2021   const elfcpp::Rela<64, false>& ,
2022   unsigned int r_type,
2023   const elfcpp::Sym<64, false>&)
2024 {
2025   // When building a shared library, do not fold any local symbols as it is
2026   // not possible to distinguish pointer taken versus a call by looking at
2027   // the relocation types.
2028   return (parameters->options().shared()
2029           || possible_function_pointer_reloc(r_type));
2030 }
2031
2032 // For safe ICF, scan a relocation for a global symbol to check if it
2033 // corresponds to a function pointer being taken.  In that case mark
2034 // the function whose pointer was taken as not foldable.
2035
2036 inline bool
2037 Target_x86_64::Scan::global_reloc_may_be_function_pointer(
2038   Symbol_table*,
2039   Layout* ,
2040   Target_x86_64* ,
2041   Sized_relobj_file<64, false>* ,
2042   unsigned int ,
2043   Output_section* ,
2044   const elfcpp::Rela<64, false>& ,
2045   unsigned int r_type,
2046   Symbol* gsym)
2047 {
2048   // When building a shared library, do not fold symbols whose visibility
2049   // is hidden, internal or protected.
2050   return ((parameters->options().shared()
2051            && (gsym->visibility() == elfcpp::STV_INTERNAL
2052                || gsym->visibility() == elfcpp::STV_PROTECTED
2053                || gsym->visibility() == elfcpp::STV_HIDDEN))
2054           || possible_function_pointer_reloc(r_type));
2055 }
2056
2057 // Scan a relocation for a global symbol.
2058
2059 inline void
2060 Target_x86_64::Scan::global(Symbol_table* symtab,
2061                             Layout* layout,
2062                             Target_x86_64* target,
2063                             Sized_relobj_file<64, false>* object,
2064                             unsigned int data_shndx,
2065                             Output_section* output_section,
2066                             const elfcpp::Rela<64, false>& reloc,
2067                             unsigned int r_type,
2068                             Symbol* gsym)
2069 {
2070   // A STT_GNU_IFUNC symbol may require a PLT entry.
2071   if (gsym->type() == elfcpp::STT_GNU_IFUNC
2072       && this->reloc_needs_plt_for_ifunc(object, r_type))
2073     target->make_plt_entry(symtab, layout, gsym);
2074
2075   switch (r_type)
2076     {
2077     case elfcpp::R_X86_64_NONE:
2078     case elfcpp::R_X86_64_GNU_VTINHERIT:
2079     case elfcpp::R_X86_64_GNU_VTENTRY:
2080       break;
2081
2082     case elfcpp::R_X86_64_64:
2083     case elfcpp::R_X86_64_32:
2084     case elfcpp::R_X86_64_32S:
2085     case elfcpp::R_X86_64_16:
2086     case elfcpp::R_X86_64_8:
2087       {
2088         // Make a PLT entry if necessary.
2089         if (gsym->needs_plt_entry())
2090           {
2091             target->make_plt_entry(symtab, layout, gsym);
2092             // Since this is not a PC-relative relocation, we may be
2093             // taking the address of a function. In that case we need to
2094             // set the entry in the dynamic symbol table to the address of
2095             // the PLT entry.
2096             if (gsym->is_from_dynobj() && !parameters->options().shared())
2097               gsym->set_needs_dynsym_value();
2098           }
2099         // Make a dynamic relocation if necessary.
2100         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2101           {
2102             if (gsym->may_need_copy_reloc())
2103               {
2104                 target->copy_reloc(symtab, layout, object,
2105                                    data_shndx, output_section, gsym, reloc);
2106               }
2107             else if (r_type == elfcpp::R_X86_64_64
2108                      && gsym->type() == elfcpp::STT_GNU_IFUNC
2109                      && gsym->can_use_relative_reloc(false)
2110                      && !gsym->is_from_dynobj()
2111                      && !gsym->is_undefined()
2112                      && !gsym->is_preemptible())
2113               {
2114                 // Use an IRELATIVE reloc for a locally defined
2115                 // STT_GNU_IFUNC symbol.  This makes a function
2116                 // address in a PIE executable match the address in a
2117                 // shared library that it links against.
2118                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2119                 unsigned int r_type = elfcpp::R_X86_64_IRELATIVE;
2120                 rela_dyn->add_symbolless_global_addend(gsym, r_type,
2121                                                        output_section, object,
2122                                                        data_shndx,
2123                                                        reloc.get_r_offset(),
2124                                                        reloc.get_r_addend());
2125               }
2126             else if (r_type == elfcpp::R_X86_64_64
2127                      && gsym->can_use_relative_reloc(false))
2128               {
2129                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2130                 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
2131                                               output_section, object,
2132                                               data_shndx,
2133                                               reloc.get_r_offset(),
2134                                               reloc.get_r_addend());
2135               }
2136             else
2137               {
2138                 this->check_non_pic(object, r_type);
2139                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2140                 rela_dyn->add_global(gsym, r_type, output_section, object,
2141                                      data_shndx, reloc.get_r_offset(),
2142                                      reloc.get_r_addend());
2143               }
2144           }
2145       }
2146       break;
2147
2148     case elfcpp::R_X86_64_PC64:
2149     case elfcpp::R_X86_64_PC32:
2150     case elfcpp::R_X86_64_PC16:
2151     case elfcpp::R_X86_64_PC8:
2152       {
2153         // Make a PLT entry if necessary.
2154         if (gsym->needs_plt_entry())
2155           target->make_plt_entry(symtab, layout, gsym);
2156         // Make a dynamic relocation if necessary.
2157         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2158           {
2159             if (gsym->may_need_copy_reloc())
2160               {
2161                 target->copy_reloc(symtab, layout, object,
2162                                    data_shndx, output_section, gsym, reloc);
2163               }
2164             else
2165               {
2166                 this->check_non_pic(object, r_type);
2167                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2168                 rela_dyn->add_global(gsym, r_type, output_section, object,
2169                                      data_shndx, reloc.get_r_offset(),
2170                                      reloc.get_r_addend());
2171               }
2172           }
2173       }
2174       break;
2175
2176     case elfcpp::R_X86_64_GOT64:
2177     case elfcpp::R_X86_64_GOT32:
2178     case elfcpp::R_X86_64_GOTPCREL64:
2179     case elfcpp::R_X86_64_GOTPCREL:
2180     case elfcpp::R_X86_64_GOTPLT64:
2181       {
2182         // The symbol requires a GOT entry.
2183         Output_data_got<64, false>* got = target->got_section(symtab, layout);
2184         if (gsym->final_value_is_known())
2185           {
2186             // For a STT_GNU_IFUNC symbol we want the PLT address.
2187             if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2188               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2189             else
2190               got->add_global(gsym, GOT_TYPE_STANDARD);
2191           }
2192         else
2193           {
2194             // If this symbol is not fully resolved, we need to add a
2195             // dynamic relocation for it.
2196             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2197             if (gsym->is_from_dynobj()
2198                 || gsym->is_undefined()
2199                 || gsym->is_preemptible()
2200                 || (gsym->type() == elfcpp::STT_GNU_IFUNC
2201                     && parameters->options().output_is_position_independent()))
2202               got->add_global_with_rela(gsym, GOT_TYPE_STANDARD, rela_dyn,
2203                                         elfcpp::R_X86_64_GLOB_DAT);
2204             else
2205               {
2206                 // For a STT_GNU_IFUNC symbol we want to write the PLT
2207                 // offset into the GOT, so that function pointer
2208                 // comparisons work correctly.
2209                 bool is_new;
2210                 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2211                   is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2212                 else
2213                   {
2214                     is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2215                     // Tell the dynamic linker to use the PLT address
2216                     // when resolving relocations.
2217                     if (gsym->is_from_dynobj()
2218                         && !parameters->options().shared())
2219                       gsym->set_needs_dynsym_value();
2220                   }
2221                 if (is_new)
2222                   {
2223                     unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
2224                     rela_dyn->add_global_relative(gsym,
2225                                                   elfcpp::R_X86_64_RELATIVE,
2226                                                   got, got_off, 0);
2227                   }
2228               }
2229           }
2230         // For GOTPLT64, we also need a PLT entry (but only if the
2231         // symbol is not fully resolved).
2232         if (r_type == elfcpp::R_X86_64_GOTPLT64
2233             && !gsym->final_value_is_known())
2234           target->make_plt_entry(symtab, layout, gsym);
2235       }
2236       break;
2237
2238     case elfcpp::R_X86_64_PLT32:
2239       // If the symbol is fully resolved, this is just a PC32 reloc.
2240       // Otherwise we need a PLT entry.
2241       if (gsym->final_value_is_known())
2242         break;
2243       // If building a shared library, we can also skip the PLT entry
2244       // if the symbol is defined in the output file and is protected
2245       // or hidden.
2246       if (gsym->is_defined()
2247           && !gsym->is_from_dynobj()
2248           && !gsym->is_preemptible())
2249         break;
2250       target->make_plt_entry(symtab, layout, gsym);
2251       break;
2252
2253     case elfcpp::R_X86_64_GOTPC32:
2254     case elfcpp::R_X86_64_GOTOFF64:
2255     case elfcpp::R_X86_64_GOTPC64:
2256     case elfcpp::R_X86_64_PLTOFF64:
2257       // We need a GOT section.
2258       target->got_section(symtab, layout);
2259       // For PLTOFF64, we also need a PLT entry (but only if the
2260       // symbol is not fully resolved).
2261       if (r_type == elfcpp::R_X86_64_PLTOFF64
2262           && !gsym->final_value_is_known())
2263         target->make_plt_entry(symtab, layout, gsym);
2264       break;
2265
2266     case elfcpp::R_X86_64_COPY:
2267     case elfcpp::R_X86_64_GLOB_DAT:
2268     case elfcpp::R_X86_64_JUMP_SLOT:
2269     case elfcpp::R_X86_64_RELATIVE:
2270     case elfcpp::R_X86_64_IRELATIVE:
2271       // These are outstanding tls relocs, which are unexpected when linking
2272     case elfcpp::R_X86_64_TPOFF64:
2273     case elfcpp::R_X86_64_DTPMOD64:
2274     case elfcpp::R_X86_64_TLSDESC:
2275       gold_error(_("%s: unexpected reloc %u in object file"),
2276                  object->name().c_str(), r_type);
2277       break;
2278
2279       // These are initial tls relocs, which are expected for global()
2280     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2281     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2282     case elfcpp::R_X86_64_TLSDESC_CALL:
2283     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2284     case elfcpp::R_X86_64_DTPOFF32:
2285     case elfcpp::R_X86_64_DTPOFF64:
2286     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2287     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2288       {
2289         const bool is_final = gsym->final_value_is_known();
2290         const tls::Tls_optimization optimized_type
2291             = Target_x86_64::optimize_tls_reloc(is_final, r_type);
2292         switch (r_type)
2293           {
2294           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
2295             if (optimized_type == tls::TLSOPT_NONE)
2296               {
2297                 // Create a pair of GOT entries for the module index and
2298                 // dtv-relative offset.
2299                 Output_data_got<64, false>* got
2300                     = target->got_section(symtab, layout);
2301                 got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_PAIR,
2302                                                target->rela_dyn_section(layout),
2303                                                elfcpp::R_X86_64_DTPMOD64,
2304                                                elfcpp::R_X86_64_DTPOFF64);
2305               }
2306             else if (optimized_type == tls::TLSOPT_TO_IE)
2307               {
2308                 // Create a GOT entry for the tp-relative offset.
2309                 Output_data_got<64, false>* got
2310                     = target->got_section(symtab, layout);
2311                 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
2312                                           target->rela_dyn_section(layout),
2313                                           elfcpp::R_X86_64_TPOFF64);
2314               }
2315             else if (optimized_type != tls::TLSOPT_TO_LE)
2316               unsupported_reloc_global(object, r_type, gsym);
2317             break;
2318
2319           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2320             target->define_tls_base_symbol(symtab, layout);
2321             if (optimized_type == tls::TLSOPT_NONE)
2322               {
2323                 // Create reserved PLT and GOT entries for the resolver.
2324                 target->reserve_tlsdesc_entries(symtab, layout);
2325
2326                 // Create a double GOT entry with an R_X86_64_TLSDESC
2327                 // reloc.  The R_X86_64_TLSDESC reloc is resolved
2328                 // lazily, so the GOT entry needs to be in an area in
2329                 // .got.plt, not .got.  Call got_section to make sure
2330                 // the section has been created.
2331                 target->got_section(symtab, layout);
2332                 Output_data_got<64, false>* got = target->got_tlsdesc_section();
2333                 Reloc_section* rt = target->rela_tlsdesc_section(layout);
2334                 got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_DESC, rt,
2335                                                elfcpp::R_X86_64_TLSDESC, 0);
2336               }
2337             else if (optimized_type == tls::TLSOPT_TO_IE)
2338               {
2339                 // Create a GOT entry for the tp-relative offset.
2340                 Output_data_got<64, false>* got
2341                     = target->got_section(symtab, layout);
2342                 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
2343                                           target->rela_dyn_section(layout),
2344                                           elfcpp::R_X86_64_TPOFF64);
2345               }
2346             else if (optimized_type != tls::TLSOPT_TO_LE)
2347               unsupported_reloc_global(object, r_type, gsym);
2348             break;
2349
2350           case elfcpp::R_X86_64_TLSDESC_CALL:
2351             break;
2352
2353           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
2354             if (optimized_type == tls::TLSOPT_NONE)
2355               {
2356                 // Create a GOT entry for the module index.
2357                 target->got_mod_index_entry(symtab, layout, object);
2358               }
2359             else if (optimized_type != tls::TLSOPT_TO_LE)
2360               unsupported_reloc_global(object, r_type, gsym);
2361             break;
2362
2363           case elfcpp::R_X86_64_DTPOFF32:
2364           case elfcpp::R_X86_64_DTPOFF64:
2365             break;
2366
2367           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
2368             layout->set_has_static_tls();
2369             if (optimized_type == tls::TLSOPT_NONE)
2370               {
2371                 // Create a GOT entry for the tp-relative offset.
2372                 Output_data_got<64, false>* got
2373                     = target->got_section(symtab, layout);
2374                 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
2375                                           target->rela_dyn_section(layout),
2376                                           elfcpp::R_X86_64_TPOFF64);
2377               }
2378             else if (optimized_type != tls::TLSOPT_TO_LE)
2379               unsupported_reloc_global(object, r_type, gsym);
2380             break;
2381
2382           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
2383             layout->set_has_static_tls();
2384             if (parameters->options().shared())
2385               unsupported_reloc_local(object, r_type);
2386             break;
2387
2388           default:
2389             gold_unreachable();
2390           }
2391       }
2392       break;
2393
2394     case elfcpp::R_X86_64_SIZE32:
2395     case elfcpp::R_X86_64_SIZE64:
2396     default:
2397       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2398                  object->name().c_str(), r_type,
2399                  gsym->demangled_name().c_str());
2400       break;
2401     }
2402 }
2403
2404 void
2405 Target_x86_64::gc_process_relocs(Symbol_table* symtab,
2406                                  Layout* layout,
2407                                  Sized_relobj_file<64, false>* object,
2408                                  unsigned int data_shndx,
2409                                  unsigned int sh_type,
2410                                  const unsigned char* prelocs,
2411                                  size_t reloc_count,
2412                                  Output_section* output_section,
2413                                  bool needs_special_offset_handling,
2414                                  size_t local_symbol_count,
2415                                  const unsigned char* plocal_symbols)
2416 {
2417
2418   if (sh_type == elfcpp::SHT_REL)
2419     {
2420       return;
2421     }
2422
2423    gold::gc_process_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
2424                            Target_x86_64::Scan,
2425                            Target_x86_64::Relocatable_size_for_reloc>(
2426     symtab,
2427     layout,
2428     this,
2429     object,
2430     data_shndx,
2431     prelocs,
2432     reloc_count,
2433     output_section,
2434     needs_special_offset_handling,
2435     local_symbol_count,
2436     plocal_symbols);
2437  
2438 }
2439 // Scan relocations for a section.
2440
2441 void
2442 Target_x86_64::scan_relocs(Symbol_table* symtab,
2443                            Layout* layout,
2444                            Sized_relobj_file<64, false>* object,
2445                            unsigned int data_shndx,
2446                            unsigned int sh_type,
2447                            const unsigned char* prelocs,
2448                            size_t reloc_count,
2449                            Output_section* output_section,
2450                            bool needs_special_offset_handling,
2451                            size_t local_symbol_count,
2452                            const unsigned char* plocal_symbols)
2453 {
2454   if (sh_type == elfcpp::SHT_REL)
2455     {
2456       gold_error(_("%s: unsupported REL reloc section"),
2457                  object->name().c_str());
2458       return;
2459     }
2460
2461   gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
2462       Target_x86_64::Scan>(
2463     symtab,
2464     layout,
2465     this,
2466     object,
2467     data_shndx,
2468     prelocs,
2469     reloc_count,
2470     output_section,
2471     needs_special_offset_handling,
2472     local_symbol_count,
2473     plocal_symbols);
2474 }
2475
2476 // Finalize the sections.
2477
2478 void
2479 Target_x86_64::do_finalize_sections(
2480     Layout* layout,
2481     const Input_objects*,
2482     Symbol_table* symtab)
2483 {
2484   const Reloc_section* rel_plt = (this->plt_ == NULL
2485                                   ? NULL
2486                                   : this->plt_->rela_plt());
2487   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
2488                                   this->rela_dyn_, true, false);
2489                                   
2490   // Fill in some more dynamic tags.
2491   Output_data_dynamic* const odyn = layout->dynamic_data();
2492   if (odyn != NULL)
2493     {
2494       if (this->plt_ != NULL
2495           && this->plt_->output_section() != NULL
2496           && this->plt_->has_tlsdesc_entry())
2497         {
2498           unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
2499           unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
2500           this->got_->finalize_data_size();
2501           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
2502                                         this->plt_, plt_offset);
2503           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
2504                                         this->got_, got_offset);
2505         }
2506     }
2507
2508   // Emit any relocs we saved in an attempt to avoid generating COPY
2509   // relocs.
2510   if (this->copy_relocs_.any_saved_relocs())
2511     this->copy_relocs_.emit(this->rela_dyn_section(layout));
2512
2513   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
2514   // the .got.plt section.
2515   Symbol* sym = this->global_offset_table_;
2516   if (sym != NULL)
2517     {
2518       uint64_t data_size = this->got_plt_->current_data_size();
2519       symtab->get_sized_symbol<64>(sym)->set_symsize(data_size);
2520     }
2521 }
2522
2523 // Perform a relocation.
2524
2525 inline bool
2526 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
2527                                   Target_x86_64* target,
2528                                   Output_section*,
2529                                   size_t relnum,
2530                                   const elfcpp::Rela<64, false>& rela,
2531                                   unsigned int r_type,
2532                                   const Sized_symbol<64>* gsym,
2533                                   const Symbol_value<64>* psymval,
2534                                   unsigned char* view,
2535                                   elfcpp::Elf_types<64>::Elf_Addr address,
2536                                   section_size_type view_size)
2537 {
2538   if (this->skip_call_tls_get_addr_)
2539     {
2540       if ((r_type != elfcpp::R_X86_64_PLT32
2541            && r_type != elfcpp::R_X86_64_PC32)
2542           || gsym == NULL
2543           || strcmp(gsym->name(), "__tls_get_addr") != 0)
2544         {
2545           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2546                                  _("missing expected TLS relocation"));
2547         }
2548       else
2549         {
2550           this->skip_call_tls_get_addr_ = false;
2551           return false;
2552         }
2553     }
2554
2555   const Sized_relobj_file<64, false>* object = relinfo->object;
2556
2557   // Pick the value to use for symbols defined in the PLT.
2558   Symbol_value<64> symval;
2559   if (gsym != NULL
2560       && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
2561     {
2562       symval.set_output_value(target->plt_section()->address()
2563                               + gsym->plt_offset());
2564       psymval = &symval;
2565     }
2566   else if (gsym == NULL && psymval->is_ifunc_symbol())
2567     {
2568       unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2569       if (object->local_has_plt_offset(r_sym))
2570         {
2571           symval.set_output_value(target->plt_section()->address()
2572                                   + object->local_plt_offset(r_sym));
2573           psymval = &symval;
2574         }
2575     }
2576
2577   const elfcpp::Elf_Xword addend = rela.get_r_addend();
2578
2579   // Get the GOT offset if needed.
2580   // The GOT pointer points to the end of the GOT section.
2581   // We need to subtract the size of the GOT section to get
2582   // the actual offset to use in the relocation.
2583   bool have_got_offset = false;
2584   unsigned int got_offset = 0;
2585   switch (r_type)
2586     {
2587     case elfcpp::R_X86_64_GOT32:
2588     case elfcpp::R_X86_64_GOT64:
2589     case elfcpp::R_X86_64_GOTPLT64:
2590     case elfcpp::R_X86_64_GOTPCREL:
2591     case elfcpp::R_X86_64_GOTPCREL64:
2592       if (gsym != NULL)
2593         {
2594           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
2595           got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
2596         }
2597       else
2598         {
2599           unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2600           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
2601           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
2602                         - target->got_size());
2603         }
2604       have_got_offset = true;
2605       break;
2606
2607     default:
2608       break;
2609     }
2610
2611   switch (r_type)
2612     {
2613     case elfcpp::R_X86_64_NONE:
2614     case elfcpp::R_X86_64_GNU_VTINHERIT:
2615     case elfcpp::R_X86_64_GNU_VTENTRY:
2616       break;
2617
2618     case elfcpp::R_X86_64_64:
2619       Relocate_functions<64, false>::rela64(view, object, psymval, addend);
2620       break;
2621
2622     case elfcpp::R_X86_64_PC64:
2623       Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
2624                                               address);
2625       break;
2626
2627     case elfcpp::R_X86_64_32:
2628       // FIXME: we need to verify that value + addend fits into 32 bits:
2629       //    uint64_t x = value + addend;
2630       //    x == static_cast<uint64_t>(static_cast<uint32_t>(x))
2631       // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
2632       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
2633       break;
2634
2635     case elfcpp::R_X86_64_32S:
2636       // FIXME: we need to verify that value + addend fits into 32 bits:
2637       //    int64_t x = value + addend;   // note this quantity is signed!
2638       //    x == static_cast<int64_t>(static_cast<int32_t>(x))
2639       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
2640       break;
2641
2642     case elfcpp::R_X86_64_PC32:
2643       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
2644                                               address);
2645       break;
2646
2647     case elfcpp::R_X86_64_16:
2648       Relocate_functions<64, false>::rela16(view, object, psymval, addend);
2649       break;
2650
2651     case elfcpp::R_X86_64_PC16:
2652       Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
2653                                               address);
2654       break;
2655
2656     case elfcpp::R_X86_64_8:
2657       Relocate_functions<64, false>::rela8(view, object, psymval, addend);
2658       break;
2659
2660     case elfcpp::R_X86_64_PC8:
2661       Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
2662                                              address);
2663       break;
2664
2665     case elfcpp::R_X86_64_PLT32:
2666       gold_assert(gsym == NULL
2667                   || gsym->has_plt_offset()
2668                   || gsym->final_value_is_known()
2669                   || (gsym->is_defined()
2670                       && !gsym->is_from_dynobj()
2671                       && !gsym->is_preemptible()));
2672       // Note: while this code looks the same as for R_X86_64_PC32, it
2673       // behaves differently because psymval was set to point to
2674       // the PLT entry, rather than the symbol, in Scan::global().
2675       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
2676                                               address);
2677       break;
2678
2679     case elfcpp::R_X86_64_PLTOFF64:
2680       {
2681         gold_assert(gsym);
2682         gold_assert(gsym->has_plt_offset()
2683                     || gsym->final_value_is_known());
2684         elfcpp::Elf_types<64>::Elf_Addr got_address;
2685         got_address = target->got_section(NULL, NULL)->address();
2686         Relocate_functions<64, false>::rela64(view, object, psymval,
2687                                               addend - got_address);
2688       }
2689
2690     case elfcpp::R_X86_64_GOT32:
2691       gold_assert(have_got_offset);
2692       Relocate_functions<64, false>::rela32(view, got_offset, addend);
2693       break;
2694
2695     case elfcpp::R_X86_64_GOTPC32:
2696       {
2697         gold_assert(gsym);
2698         elfcpp::Elf_types<64>::Elf_Addr value;
2699         value = target->got_plt_section()->address();
2700         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2701       }
2702       break;
2703
2704     case elfcpp::R_X86_64_GOT64:
2705       // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
2706       // Since we always add a PLT entry, this is equivalent.
2707     case elfcpp::R_X86_64_GOTPLT64:
2708       gold_assert(have_got_offset);
2709       Relocate_functions<64, false>::rela64(view, got_offset, addend);
2710       break;
2711
2712     case elfcpp::R_X86_64_GOTPC64:
2713       {
2714         gold_assert(gsym);
2715         elfcpp::Elf_types<64>::Elf_Addr value;
2716         value = target->got_plt_section()->address();
2717         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
2718       }
2719       break;
2720
2721     case elfcpp::R_X86_64_GOTOFF64:
2722       {
2723         elfcpp::Elf_types<64>::Elf_Addr value;
2724         value = (psymval->value(object, 0)
2725                  - target->got_plt_section()->address());
2726         Relocate_functions<64, false>::rela64(view, value, addend);
2727       }
2728       break;
2729
2730     case elfcpp::R_X86_64_GOTPCREL:
2731       {
2732         gold_assert(have_got_offset);
2733         elfcpp::Elf_types<64>::Elf_Addr value;
2734         value = target->got_plt_section()->address() + got_offset;
2735         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2736       }
2737       break;
2738
2739     case elfcpp::R_X86_64_GOTPCREL64:
2740       {
2741         gold_assert(have_got_offset);
2742         elfcpp::Elf_types<64>::Elf_Addr value;
2743         value = target->got_plt_section()->address() + got_offset;
2744         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
2745       }
2746       break;
2747
2748     case elfcpp::R_X86_64_COPY:
2749     case elfcpp::R_X86_64_GLOB_DAT:
2750     case elfcpp::R_X86_64_JUMP_SLOT:
2751     case elfcpp::R_X86_64_RELATIVE:
2752     case elfcpp::R_X86_64_IRELATIVE:
2753       // These are outstanding tls relocs, which are unexpected when linking
2754     case elfcpp::R_X86_64_TPOFF64:
2755     case elfcpp::R_X86_64_DTPMOD64:
2756     case elfcpp::R_X86_64_TLSDESC:
2757       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2758                              _("unexpected reloc %u in object file"),
2759                              r_type);
2760       break;
2761
2762       // These are initial tls relocs, which are expected when linking
2763     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2764     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2765     case elfcpp::R_X86_64_TLSDESC_CALL:
2766     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2767     case elfcpp::R_X86_64_DTPOFF32:
2768     case elfcpp::R_X86_64_DTPOFF64:
2769     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2770     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2771       this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
2772                          view, address, view_size);
2773       break;
2774
2775     case elfcpp::R_X86_64_SIZE32:
2776     case elfcpp::R_X86_64_SIZE64:
2777     default:
2778       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2779                              _("unsupported reloc %u"),
2780                              r_type);
2781       break;
2782     }
2783
2784   return true;
2785 }
2786
2787 // Perform a TLS relocation.
2788
2789 inline void
2790 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
2791                                       Target_x86_64* target,
2792                                       size_t relnum,
2793                                       const elfcpp::Rela<64, false>& rela,
2794                                       unsigned int r_type,
2795                                       const Sized_symbol<64>* gsym,
2796                                       const Symbol_value<64>* psymval,
2797                                       unsigned char* view,
2798                                       elfcpp::Elf_types<64>::Elf_Addr address,
2799                                       section_size_type view_size)
2800 {
2801   Output_segment* tls_segment = relinfo->layout->tls_segment();
2802
2803   const Sized_relobj_file<64, false>* object = relinfo->object;
2804   const elfcpp::Elf_Xword addend = rela.get_r_addend();
2805   elfcpp::Shdr<64, false> data_shdr(relinfo->data_shdr);
2806   bool is_executable = (data_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0;
2807
2808   elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
2809
2810   const bool is_final = (gsym == NULL
2811                          ? !parameters->options().shared()
2812                          : gsym->final_value_is_known());
2813   tls::Tls_optimization optimized_type
2814       = Target_x86_64::optimize_tls_reloc(is_final, r_type);
2815   switch (r_type)
2816     {
2817     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2818       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
2819         {
2820           // If this code sequence is used in a non-executable section,
2821           // we will not optimize the R_X86_64_DTPOFF32/64 relocation,
2822           // on the assumption that it's being used by itself in a debug
2823           // section.  Therefore, in the unlikely event that the code
2824           // sequence appears in a non-executable section, we simply
2825           // leave it unoptimized.
2826           optimized_type = tls::TLSOPT_NONE;
2827         }
2828       if (optimized_type == tls::TLSOPT_TO_LE)
2829         {
2830           gold_assert(tls_segment != NULL);
2831           this->tls_gd_to_le(relinfo, relnum, tls_segment,
2832                              rela, r_type, value, view,
2833                              view_size);
2834           break;
2835         }
2836       else
2837         {
2838           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2839                                    ? GOT_TYPE_TLS_OFFSET
2840                                    : GOT_TYPE_TLS_PAIR);
2841           unsigned int got_offset;
2842           if (gsym != NULL)
2843             {
2844               gold_assert(gsym->has_got_offset(got_type));
2845               got_offset = gsym->got_offset(got_type) - target->got_size();
2846             }
2847           else
2848             {
2849               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2850               gold_assert(object->local_has_got_offset(r_sym, got_type));
2851               got_offset = (object->local_got_offset(r_sym, got_type)
2852                             - target->got_size());
2853             }
2854           if (optimized_type == tls::TLSOPT_TO_IE)
2855             {
2856               gold_assert(tls_segment != NULL);
2857               value = target->got_plt_section()->address() + got_offset;
2858               this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
2859                                  value, view, address, view_size);
2860               break;
2861             }
2862           else if (optimized_type == tls::TLSOPT_NONE)
2863             {
2864               // Relocate the field with the offset of the pair of GOT
2865               // entries.
2866               value = target->got_plt_section()->address() + got_offset;
2867               Relocate_functions<64, false>::pcrela32(view, value, addend,
2868                                                       address);
2869               break;
2870             }
2871         }
2872       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2873                              _("unsupported reloc %u"), r_type);
2874       break;
2875
2876     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2877     case elfcpp::R_X86_64_TLSDESC_CALL:
2878       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
2879         {
2880           // See above comment for R_X86_64_TLSGD.
2881           optimized_type = tls::TLSOPT_NONE;
2882         }
2883       if (optimized_type == tls::TLSOPT_TO_LE)
2884         {
2885           gold_assert(tls_segment != NULL);
2886           this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
2887                                   rela, r_type, value, view,
2888                                   view_size);
2889           break;
2890         }
2891       else
2892         {
2893           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2894                                    ? GOT_TYPE_TLS_OFFSET
2895                                    : GOT_TYPE_TLS_DESC);
2896           unsigned int got_offset = 0;
2897           if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC
2898               && optimized_type == tls::TLSOPT_NONE)
2899             {
2900               // We created GOT entries in the .got.tlsdesc portion of
2901               // the .got.plt section, but the offset stored in the
2902               // symbol is the offset within .got.tlsdesc.
2903               got_offset = (target->got_size()
2904                             + target->got_plt_section()->data_size());
2905             }
2906           if (gsym != NULL)
2907             {
2908               gold_assert(gsym->has_got_offset(got_type));
2909               got_offset += gsym->got_offset(got_type) - target->got_size();
2910             }
2911           else
2912             {
2913               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2914               gold_assert(object->local_has_got_offset(r_sym, got_type));
2915               got_offset += (object->local_got_offset(r_sym, got_type)
2916                              - target->got_size());
2917             }
2918           if (optimized_type == tls::TLSOPT_TO_IE)
2919             {
2920               gold_assert(tls_segment != NULL);
2921               value = target->got_plt_section()->address() + got_offset;
2922               this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment,
2923                                       rela, r_type, value, view, address,
2924                                       view_size);
2925               break;
2926             }
2927           else if (optimized_type == tls::TLSOPT_NONE)
2928             {
2929               if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2930                 {
2931                   // Relocate the field with the offset of the pair of GOT
2932                   // entries.
2933                   value = target->got_plt_section()->address() + got_offset;
2934                   Relocate_functions<64, false>::pcrela32(view, value, addend,
2935                                                           address);
2936                 }
2937               break;
2938             }
2939         }
2940       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2941                              _("unsupported reloc %u"), r_type);
2942       break;
2943
2944     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2945       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
2946         {
2947           // See above comment for R_X86_64_TLSGD.
2948           optimized_type = tls::TLSOPT_NONE;
2949         }
2950       if (optimized_type == tls::TLSOPT_TO_LE)
2951         {
2952           gold_assert(tls_segment != NULL);
2953           this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
2954                              value, view, view_size);
2955           break;
2956         }
2957       else if (optimized_type == tls::TLSOPT_NONE)
2958         {
2959           // Relocate the field with the offset of the GOT entry for
2960           // the module index.
2961           unsigned int got_offset;
2962           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
2963                         - target->got_size());
2964           value = target->got_plt_section()->address() + got_offset;
2965           Relocate_functions<64, false>::pcrela32(view, value, addend,
2966                                                   address);
2967           break;
2968         }
2969       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2970                              _("unsupported reloc %u"), r_type);
2971       break;
2972
2973     case elfcpp::R_X86_64_DTPOFF32:
2974       // This relocation type is used in debugging information.
2975       // In that case we need to not optimize the value.  If the
2976       // section is not executable, then we assume we should not
2977       // optimize this reloc.  See comments above for R_X86_64_TLSGD,
2978       // R_X86_64_GOTPC32_TLSDESC, R_X86_64_TLSDESC_CALL, and
2979       // R_X86_64_TLSLD.
2980       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
2981         {
2982           gold_assert(tls_segment != NULL);
2983           value -= tls_segment->memsz();
2984         }
2985       Relocate_functions<64, false>::rela32(view, value, addend);
2986       break;
2987
2988     case elfcpp::R_X86_64_DTPOFF64:
2989       // See R_X86_64_DTPOFF32, just above, for why we check for is_executable.
2990       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
2991         {
2992           gold_assert(tls_segment != NULL);
2993           value -= tls_segment->memsz();
2994         }
2995       Relocate_functions<64, false>::rela64(view, value, addend);
2996       break;
2997
2998     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2999       if (optimized_type == tls::TLSOPT_TO_LE)
3000         {
3001           gold_assert(tls_segment != NULL);
3002           Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
3003                                                 rela, r_type, value, view,
3004                                                 view_size);
3005           break;
3006         }
3007       else if (optimized_type == tls::TLSOPT_NONE)
3008         {
3009           // Relocate the field with the offset of the GOT entry for
3010           // the tp-relative offset of the symbol.
3011           unsigned int got_offset;
3012           if (gsym != NULL)
3013             {
3014               gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
3015               got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
3016                             - target->got_size());
3017             }
3018           else
3019             {
3020               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
3021               gold_assert(object->local_has_got_offset(r_sym,
3022                                                        GOT_TYPE_TLS_OFFSET));
3023               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
3024                             - target->got_size());
3025             }
3026           value = target->got_plt_section()->address() + got_offset;
3027           Relocate_functions<64, false>::pcrela32(view, value, addend, address);
3028           break;
3029         }
3030       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3031                              _("unsupported reloc type %u"),
3032                              r_type);
3033       break;
3034
3035     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3036       value -= tls_segment->memsz();
3037       Relocate_functions<64, false>::rela32(view, value, addend);
3038       break;
3039     }
3040 }
3041
3042 // Do a relocation in which we convert a TLS General-Dynamic to an
3043 // Initial-Exec.
3044
3045 inline void
3046 Target_x86_64::Relocate::tls_gd_to_ie(const Relocate_info<64, false>* relinfo,
3047                                       size_t relnum,
3048                                       Output_segment*,
3049                                       const elfcpp::Rela<64, false>& rela,
3050                                       unsigned int,
3051                                       elfcpp::Elf_types<64>::Elf_Addr value,
3052                                       unsigned char* view,
3053                                       elfcpp::Elf_types<64>::Elf_Addr address,
3054                                       section_size_type view_size)
3055 {
3056   // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
3057   // .word 0x6666; rex64; call __tls_get_addr
3058   // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
3059
3060   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
3061   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
3062
3063   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3064                  (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
3065   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3066                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
3067
3068   memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
3069
3070   const elfcpp::Elf_Xword addend = rela.get_r_addend();
3071   Relocate_functions<64, false>::pcrela32(view + 8, value, addend - 8, address);
3072
3073   // The next reloc should be a PLT32 reloc against __tls_get_addr.
3074   // We can skip it.
3075   this->skip_call_tls_get_addr_ = true;
3076 }
3077
3078 // Do a relocation in which we convert a TLS General-Dynamic to a
3079 // Local-Exec.
3080
3081 inline void
3082 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
3083                                       size_t relnum,
3084                                       Output_segment* tls_segment,
3085                                       const elfcpp::Rela<64, false>& rela,
3086                                       unsigned int,
3087                                       elfcpp::Elf_types<64>::Elf_Addr value,
3088                                       unsigned char* view,
3089                                       section_size_type view_size)
3090 {
3091   // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
3092   // .word 0x6666; rex64; call __tls_get_addr
3093   // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
3094
3095   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
3096   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
3097
3098   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3099                  (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
3100   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3101                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
3102
3103   memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
3104
3105   value -= tls_segment->memsz();
3106   Relocate_functions<64, false>::rela32(view + 8, value, 0);
3107
3108   // The next reloc should be a PLT32 reloc against __tls_get_addr.
3109   // We can skip it.
3110   this->skip_call_tls_get_addr_ = true;
3111 }
3112
3113 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
3114
3115 inline void
3116 Target_x86_64::Relocate::tls_desc_gd_to_ie(
3117     const Relocate_info<64, false>* relinfo,
3118     size_t relnum,
3119     Output_segment*,
3120     const elfcpp::Rela<64, false>& rela,
3121     unsigned int r_type,
3122     elfcpp::Elf_types<64>::Elf_Addr value,
3123     unsigned char* view,
3124     elfcpp::Elf_types<64>::Elf_Addr address,
3125     section_size_type view_size)
3126 {
3127   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
3128     {
3129       // leaq foo@tlsdesc(%rip), %rax
3130       // ==> movq foo@gottpoff(%rip), %rax
3131       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
3132       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3133       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3134                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
3135       view[-2] = 0x8b;
3136       const elfcpp::Elf_Xword addend = rela.get_r_addend();
3137       Relocate_functions<64, false>::pcrela32(view, value, addend, address);
3138     }
3139   else
3140     {
3141       // call *foo@tlscall(%rax)
3142       // ==> nop; nop
3143       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
3144       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
3145       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3146                      view[0] == 0xff && view[1] == 0x10);
3147       view[0] = 0x66;
3148       view[1] = 0x90;
3149     }
3150 }
3151
3152 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
3153
3154 inline void
3155 Target_x86_64::Relocate::tls_desc_gd_to_le(
3156     const Relocate_info<64, false>* relinfo,
3157     size_t relnum,
3158     Output_segment* tls_segment,
3159     const elfcpp::Rela<64, false>& rela,
3160     unsigned int r_type,
3161     elfcpp::Elf_types<64>::Elf_Addr value,
3162     unsigned char* view,
3163     section_size_type view_size)
3164 {
3165   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
3166     {
3167       // leaq foo@tlsdesc(%rip), %rax
3168       // ==> movq foo@tpoff, %rax
3169       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
3170       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3171       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3172                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
3173       view[-2] = 0xc7;
3174       view[-1] = 0xc0;
3175       value -= tls_segment->memsz();
3176       Relocate_functions<64, false>::rela32(view, value, 0);
3177     }
3178   else
3179     {
3180       // call *foo@tlscall(%rax)
3181       // ==> nop; nop
3182       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
3183       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
3184       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3185                      view[0] == 0xff && view[1] == 0x10);
3186       view[0] = 0x66;
3187       view[1] = 0x90;
3188     }
3189 }
3190
3191 inline void
3192 Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
3193                                       size_t relnum,
3194                                       Output_segment*,
3195                                       const elfcpp::Rela<64, false>& rela,
3196                                       unsigned int,
3197                                       elfcpp::Elf_types<64>::Elf_Addr,
3198                                       unsigned char* view,
3199                                       section_size_type view_size)
3200 {
3201   // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
3202   // ... leq foo@dtpoff(%rax),%reg
3203   // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
3204
3205   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
3206   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
3207
3208   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3209                  view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
3210
3211   tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
3212
3213   memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
3214
3215   // The next reloc should be a PLT32 reloc against __tls_get_addr.
3216   // We can skip it.
3217   this->skip_call_tls_get_addr_ = true;
3218 }
3219
3220 // Do a relocation in which we convert a TLS Initial-Exec to a
3221 // Local-Exec.
3222
3223 inline void
3224 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
3225                                       size_t relnum,
3226                                       Output_segment* tls_segment,
3227                                       const elfcpp::Rela<64, false>& rela,
3228                                       unsigned int,
3229                                       elfcpp::Elf_types<64>::Elf_Addr value,
3230                                       unsigned char* view,
3231                                       section_size_type view_size)
3232 {
3233   // We need to examine the opcodes to figure out which instruction we
3234   // are looking at.
3235
3236   // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
3237   // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
3238
3239   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
3240   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3241
3242   unsigned char op1 = view[-3];
3243   unsigned char op2 = view[-2];
3244   unsigned char op3 = view[-1];
3245   unsigned char reg = op3 >> 3;
3246
3247   if (op2 == 0x8b)
3248     {
3249       // movq
3250       if (op1 == 0x4c)
3251         view[-3] = 0x49;
3252       view[-2] = 0xc7;
3253       view[-1] = 0xc0 | reg;
3254     }
3255   else if (reg == 4)
3256     {
3257       // Special handling for %rsp.
3258       if (op1 == 0x4c)
3259         view[-3] = 0x49;
3260       view[-2] = 0x81;
3261       view[-1] = 0xc0 | reg;
3262     }
3263   else
3264     {
3265       // addq
3266       if (op1 == 0x4c)
3267         view[-3] = 0x4d;
3268       view[-2] = 0x8d;
3269       view[-1] = 0x80 | reg | (reg << 3);
3270     }
3271
3272   value -= tls_segment->memsz();
3273   Relocate_functions<64, false>::rela32(view, value, 0);
3274 }
3275
3276 // Relocate section data.
3277
3278 void
3279 Target_x86_64::relocate_section(
3280     const Relocate_info<64, false>* relinfo,
3281     unsigned int sh_type,
3282     const unsigned char* prelocs,
3283     size_t reloc_count,
3284     Output_section* output_section,
3285     bool needs_special_offset_handling,
3286     unsigned char* view,
3287     elfcpp::Elf_types<64>::Elf_Addr address,
3288     section_size_type view_size,
3289     const Reloc_symbol_changes* reloc_symbol_changes)
3290 {
3291   gold_assert(sh_type == elfcpp::SHT_RELA);
3292
3293   gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
3294                          Target_x86_64::Relocate>(
3295     relinfo,
3296     this,
3297     prelocs,
3298     reloc_count,
3299     output_section,
3300     needs_special_offset_handling,
3301     view,
3302     address,
3303     view_size,
3304     reloc_symbol_changes);
3305 }
3306
3307 // Apply an incremental relocation.  Incremental relocations always refer
3308 // to global symbols.
3309
3310 void
3311 Target_x86_64::apply_relocation(
3312     const Relocate_info<64, false>* relinfo,
3313     elfcpp::Elf_types<64>::Elf_Addr r_offset,
3314     unsigned int r_type,
3315     elfcpp::Elf_types<64>::Elf_Swxword r_addend,
3316     const Symbol* gsym,
3317     unsigned char* view,
3318     elfcpp::Elf_types<64>::Elf_Addr address,
3319     section_size_type view_size)
3320 {
3321   gold::apply_relocation<64, false, Target_x86_64, Target_x86_64::Relocate>(
3322     relinfo,
3323     this,
3324     r_offset,
3325     r_type,
3326     r_addend,
3327     gsym,
3328     view,
3329     address,
3330     view_size);
3331 }
3332
3333 // Return the size of a relocation while scanning during a relocatable
3334 // link.
3335
3336 unsigned int
3337 Target_x86_64::Relocatable_size_for_reloc::get_size_for_reloc(
3338     unsigned int r_type,
3339     Relobj* object)
3340 {
3341   switch (r_type)
3342     {
3343     case elfcpp::R_X86_64_NONE:
3344     case elfcpp::R_X86_64_GNU_VTINHERIT:
3345     case elfcpp::R_X86_64_GNU_VTENTRY:
3346     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3347     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3348     case elfcpp::R_X86_64_TLSDESC_CALL:
3349     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3350     case elfcpp::R_X86_64_DTPOFF32:
3351     case elfcpp::R_X86_64_DTPOFF64:
3352     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3353     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3354       return 0;
3355
3356     case elfcpp::R_X86_64_64:
3357     case elfcpp::R_X86_64_PC64:
3358     case elfcpp::R_X86_64_GOTOFF64:
3359     case elfcpp::R_X86_64_GOTPC64:
3360     case elfcpp::R_X86_64_PLTOFF64:
3361     case elfcpp::R_X86_64_GOT64:
3362     case elfcpp::R_X86_64_GOTPCREL64:
3363     case elfcpp::R_X86_64_GOTPCREL:
3364     case elfcpp::R_X86_64_GOTPLT64:
3365       return 8;
3366
3367     case elfcpp::R_X86_64_32:
3368     case elfcpp::R_X86_64_32S:
3369     case elfcpp::R_X86_64_PC32:
3370     case elfcpp::R_X86_64_PLT32:
3371     case elfcpp::R_X86_64_GOTPC32:
3372     case elfcpp::R_X86_64_GOT32:
3373       return 4;
3374
3375     case elfcpp::R_X86_64_16:
3376     case elfcpp::R_X86_64_PC16:
3377       return 2;
3378
3379     case elfcpp::R_X86_64_8:
3380     case elfcpp::R_X86_64_PC8:
3381       return 1;
3382
3383     case elfcpp::R_X86_64_COPY:
3384     case elfcpp::R_X86_64_GLOB_DAT:
3385     case elfcpp::R_X86_64_JUMP_SLOT:
3386     case elfcpp::R_X86_64_RELATIVE:
3387     case elfcpp::R_X86_64_IRELATIVE:
3388       // These are outstanding tls relocs, which are unexpected when linking
3389     case elfcpp::R_X86_64_TPOFF64:
3390     case elfcpp::R_X86_64_DTPMOD64:
3391     case elfcpp::R_X86_64_TLSDESC:
3392       object->error(_("unexpected reloc %u in object file"), r_type);
3393       return 0;
3394
3395     case elfcpp::R_X86_64_SIZE32:
3396     case elfcpp::R_X86_64_SIZE64:
3397     default:
3398       object->error(_("unsupported reloc %u against local symbol"), r_type);
3399       return 0;
3400     }
3401 }
3402
3403 // Scan the relocs during a relocatable link.
3404
3405 void
3406 Target_x86_64::scan_relocatable_relocs(Symbol_table* symtab,
3407                                        Layout* layout,
3408                                        Sized_relobj_file<64, false>* object,
3409                                        unsigned int data_shndx,
3410                                        unsigned int sh_type,
3411                                        const unsigned char* prelocs,
3412                                        size_t reloc_count,
3413                                        Output_section* output_section,
3414                                        bool needs_special_offset_handling,
3415                                        size_t local_symbol_count,
3416                                        const unsigned char* plocal_symbols,
3417                                        Relocatable_relocs* rr)
3418 {
3419   gold_assert(sh_type == elfcpp::SHT_RELA);
3420
3421   typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
3422     Relocatable_size_for_reloc> Scan_relocatable_relocs;
3423
3424   gold::scan_relocatable_relocs<64, false, elfcpp::SHT_RELA,
3425       Scan_relocatable_relocs>(
3426     symtab,
3427     layout,
3428     object,
3429     data_shndx,
3430     prelocs,
3431     reloc_count,
3432     output_section,
3433     needs_special_offset_handling,
3434     local_symbol_count,
3435     plocal_symbols,
3436     rr);
3437 }
3438
3439 // Relocate a section during a relocatable link.
3440
3441 void
3442 Target_x86_64::relocate_for_relocatable(
3443     const Relocate_info<64, false>* relinfo,
3444     unsigned int sh_type,
3445     const unsigned char* prelocs,
3446     size_t reloc_count,
3447     Output_section* output_section,
3448     off_t offset_in_output_section,
3449     const Relocatable_relocs* rr,
3450     unsigned char* view,
3451     elfcpp::Elf_types<64>::Elf_Addr view_address,
3452     section_size_type view_size,
3453     unsigned char* reloc_view,
3454     section_size_type reloc_view_size)
3455 {
3456   gold_assert(sh_type == elfcpp::SHT_RELA);
3457
3458   gold::relocate_for_relocatable<64, false, elfcpp::SHT_RELA>(
3459     relinfo,
3460     prelocs,
3461     reloc_count,
3462     output_section,
3463     offset_in_output_section,
3464     rr,
3465     view,
3466     view_address,
3467     view_size,
3468     reloc_view,
3469     reloc_view_size);
3470 }
3471
3472 // Return the value to use for a dynamic which requires special
3473 // treatment.  This is how we support equality comparisons of function
3474 // pointers across shared library boundaries, as described in the
3475 // processor specific ABI supplement.
3476
3477 uint64_t
3478 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
3479 {
3480   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
3481   return this->plt_section()->address() + gsym->plt_offset();
3482 }
3483
3484 // Return a string used to fill a code section with nops to take up
3485 // the specified length.
3486
3487 std::string
3488 Target_x86_64::do_code_fill(section_size_type length) const
3489 {
3490   if (length >= 16)
3491     {
3492       // Build a jmpq instruction to skip over the bytes.
3493       unsigned char jmp[5];
3494       jmp[0] = 0xe9;
3495       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
3496       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
3497               + std::string(length - 5, '\0'));
3498     }
3499
3500   // Nop sequences of various lengths.
3501   const char nop1[1] = { 0x90 };                   // nop
3502   const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
3503   const char nop3[3] = { 0x0f, 0x1f, 0x00 };       // nop (%rax)
3504   const char nop4[4] = { 0x0f, 0x1f, 0x40, 0x00};  // nop 0(%rax)
3505   const char nop5[5] = { 0x0f, 0x1f, 0x44, 0x00,   // nop 0(%rax,%rax,1)
3506                          0x00 };
3507   const char nop6[6] = { 0x66, 0x0f, 0x1f, 0x44,   // nopw 0(%rax,%rax,1)
3508                          0x00, 0x00 };
3509   const char nop7[7] = { 0x0f, 0x1f, 0x80, 0x00,   // nopl 0L(%rax)
3510                          0x00, 0x00, 0x00 };
3511   const char nop8[8] = { 0x0f, 0x1f, 0x84, 0x00,   // nopl 0L(%rax,%rax,1)
3512                          0x00, 0x00, 0x00, 0x00 };
3513   const char nop9[9] = { 0x66, 0x0f, 0x1f, 0x84,   // nopw 0L(%rax,%rax,1)
3514                          0x00, 0x00, 0x00, 0x00,
3515                          0x00 };
3516   const char nop10[10] = { 0x66, 0x2e, 0x0f, 0x1f, // nopw %cs:0L(%rax,%rax,1)
3517                            0x84, 0x00, 0x00, 0x00,
3518                            0x00, 0x00 };
3519   const char nop11[11] = { 0x66, 0x66, 0x2e, 0x0f, // data16
3520                            0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
3521                            0x00, 0x00, 0x00 };
3522   const char nop12[12] = { 0x66, 0x66, 0x66, 0x2e, // data16; data16
3523                            0x0f, 0x1f, 0x84, 0x00, // nopw %cs:0L(%rax,%rax,1)
3524                            0x00, 0x00, 0x00, 0x00 };
3525   const char nop13[13] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
3526                            0x2e, 0x0f, 0x1f, 0x84, // nopw %cs:0L(%rax,%rax,1)
3527                            0x00, 0x00, 0x00, 0x00,
3528                            0x00 };
3529   const char nop14[14] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
3530                            0x66, 0x2e, 0x0f, 0x1f, // data16
3531                            0x84, 0x00, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
3532                            0x00, 0x00 };
3533   const char nop15[15] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
3534                            0x66, 0x66, 0x2e, 0x0f, // data16; data16
3535                            0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
3536                            0x00, 0x00, 0x00 };
3537
3538   const char* nops[16] = {
3539     NULL,
3540     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
3541     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
3542   };
3543
3544   return std::string(nops[length], length);
3545 }
3546
3547 // Return the addend to use for a target specific relocation.  The
3548 // only target specific relocation is R_X86_64_TLSDESC for a local
3549 // symbol.  We want to set the addend is the offset of the local
3550 // symbol in the TLS segment.
3551
3552 uint64_t
3553 Target_x86_64::do_reloc_addend(void* arg, unsigned int r_type,
3554                                uint64_t) const
3555 {
3556   gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
3557   uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
3558   gold_assert(intarg < this->tlsdesc_reloc_info_.size());
3559   const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
3560   const Symbol_value<64>* psymval = ti.object->local_symbol(ti.r_sym);
3561   gold_assert(psymval->is_tls_symbol());
3562   // The value of a TLS symbol is the offset in the TLS segment.
3563   return psymval->value(ti.object, 0);
3564 }
3565
3566 // FNOFFSET in section SHNDX in OBJECT is the start of a function
3567 // compiled with -fsplit-stack.  The function calls non-split-stack
3568 // code.  We have to change the function so that it always ensures
3569 // that it has enough stack space to run some random function.
3570
3571 void
3572 Target_x86_64::do_calls_non_split(Relobj* object, unsigned int shndx,
3573                                   section_offset_type fnoffset,
3574                                   section_size_type fnsize,
3575                                   unsigned char* view,
3576                                   section_size_type view_size,
3577                                   std::string* from,
3578                                   std::string* to) const
3579 {
3580   // The function starts with a comparison of the stack pointer and a
3581   // field in the TCB.  This is followed by a jump.
3582
3583   // cmp %fs:NN,%rsp
3584   if (this->match_view(view, view_size, fnoffset, "\x64\x48\x3b\x24\x25", 5)
3585       && fnsize > 9)
3586     {
3587       // We will call __morestack if the carry flag is set after this
3588       // comparison.  We turn the comparison into an stc instruction
3589       // and some nops.
3590       view[fnoffset] = '\xf9';
3591       this->set_view_to_nop(view, view_size, fnoffset + 1, 8);
3592     }
3593   // lea NN(%rsp),%r10
3594   // lea NN(%rsp),%r11
3595   else if ((this->match_view(view, view_size, fnoffset,
3596                              "\x4c\x8d\x94\x24", 4)
3597             || this->match_view(view, view_size, fnoffset,
3598                                 "\x4c\x8d\x9c\x24", 4))
3599            && fnsize > 8)
3600     {
3601       // This is loading an offset from the stack pointer for a
3602       // comparison.  The offset is negative, so we decrease the
3603       // offset by the amount of space we need for the stack.  This
3604       // means we will avoid calling __morestack if there happens to
3605       // be plenty of space on the stack already.
3606       unsigned char* pval = view + fnoffset + 4;
3607       uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
3608       val -= parameters->options().split_stack_adjust_size();
3609       elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
3610     }
3611   else
3612     {
3613       if (!object->has_no_split_stack())
3614         object->error(_("failed to match split-stack sequence at "
3615                         "section %u offset %0zx"),
3616                       shndx, static_cast<size_t>(fnoffset));
3617       return;
3618     }
3619
3620   // We have to change the function so that it calls
3621   // __morestack_non_split instead of __morestack.  The former will
3622   // allocate additional stack space.
3623   *from = "__morestack";
3624   *to = "__morestack_non_split";
3625 }
3626
3627 // The selector for x86_64 object files.
3628
3629 class Target_selector_x86_64 : public Target_selector_freebsd
3630 {
3631 public:
3632   Target_selector_x86_64()
3633     : Target_selector_freebsd(elfcpp::EM_X86_64, 64, false, "elf64-x86-64",
3634                               "elf64-x86-64-freebsd")
3635   { }
3636
3637   Target*
3638   do_instantiate_target()
3639   { return new Target_x86_64(); }
3640
3641 };
3642
3643 Target_selector_x86_64 target_selector_x86_64;
3644
3645 } // End anonymous namespace.