2010-02-12 Sriraman Tallam <tmsriram@google.com>
[platform/upstream/binutils.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "x86_64.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "copy-relocs.h"
36 #include "target.h"
37 #include "target-reloc.h"
38 #include "target-select.h"
39 #include "tls.h"
40 #include "freebsd.h"
41 #include "gc.h"
42 #include "icf.h"
43
44 namespace
45 {
46
47 using namespace gold;
48
49 class Output_data_plt_x86_64;
50
51 // The x86_64 target class.
52 // See the ABI at
53 //   http://www.x86-64.org/documentation/abi.pdf
54 // TLS info comes from
55 //   http://people.redhat.com/drepper/tls.pdf
56 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
57
58 class Target_x86_64 : public Target_freebsd<64, false>
59 {
60  public:
61   // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
62   // uses only Elf64_Rela relocation entries with explicit addends."
63   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
64
65   Target_x86_64()
66     : Target_freebsd<64, false>(&x86_64_info),
67       got_(NULL), plt_(NULL), got_plt_(NULL), global_offset_table_(NULL),
68       rela_dyn_(NULL), copy_relocs_(elfcpp::R_X86_64_COPY), dynbss_(NULL),
69       got_mod_index_offset_(-1U), tlsdesc_reloc_info_(),
70       tls_base_symbol_defined_(false)
71   { }
72
73   // This function should be defined in targets that can use relocation
74   // types to determine (implemented in local_reloc_may_be_function_pointer
75   // and global_reloc_may_be_function_pointer)
76   // if a function's pointer is taken.  ICF uses this in safe mode to only
77   // fold those functions whose pointer is defintely not taken.  For x86_64
78   // pie binaries, safe ICF cannot be done by looking at relocation types.
79   inline bool
80   can_check_for_function_pointers() const
81   { return !parameters->options().pie(); }
82
83   // Hook for a new output section.
84   void
85   do_new_output_section(Output_section*) const;
86
87   // Scan the relocations to look for symbol adjustments.
88   void
89   gc_process_relocs(Symbol_table* symtab,
90                     Layout* layout,
91                     Sized_relobj<64, false>* object,
92                     unsigned int data_shndx,
93                     unsigned int sh_type,
94                     const unsigned char* prelocs,
95                     size_t reloc_count,
96                     Output_section* output_section,
97                     bool needs_special_offset_handling,
98                     size_t local_symbol_count,
99                     const unsigned char* plocal_symbols);
100
101   // Scan the relocations to look for symbol adjustments.
102   void
103   scan_relocs(Symbol_table* symtab,
104               Layout* layout,
105               Sized_relobj<64, false>* object,
106               unsigned int data_shndx,
107               unsigned int sh_type,
108               const unsigned char* prelocs,
109               size_t reloc_count,
110               Output_section* output_section,
111               bool needs_special_offset_handling,
112               size_t local_symbol_count,
113               const unsigned char* plocal_symbols);
114
115   // Finalize the sections.
116   void
117   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
118
119   // Return the value to use for a dynamic which requires special
120   // treatment.
121   uint64_t
122   do_dynsym_value(const Symbol*) const;
123
124   // Relocate a section.
125   void
126   relocate_section(const Relocate_info<64, false>*,
127                    unsigned int sh_type,
128                    const unsigned char* prelocs,
129                    size_t reloc_count,
130                    Output_section* output_section,
131                    bool needs_special_offset_handling,
132                    unsigned char* view,
133                    elfcpp::Elf_types<64>::Elf_Addr view_address,
134                    section_size_type view_size,
135                    const Reloc_symbol_changes*);
136
137   // Scan the relocs during a relocatable link.
138   void
139   scan_relocatable_relocs(Symbol_table* symtab,
140                           Layout* layout,
141                           Sized_relobj<64, false>* object,
142                           unsigned int data_shndx,
143                           unsigned int sh_type,
144                           const unsigned char* prelocs,
145                           size_t reloc_count,
146                           Output_section* output_section,
147                           bool needs_special_offset_handling,
148                           size_t local_symbol_count,
149                           const unsigned char* plocal_symbols,
150                           Relocatable_relocs*);
151
152   // Relocate a section during a relocatable link.
153   void
154   relocate_for_relocatable(const Relocate_info<64, false>*,
155                            unsigned int sh_type,
156                            const unsigned char* prelocs,
157                            size_t reloc_count,
158                            Output_section* output_section,
159                            off_t offset_in_output_section,
160                            const Relocatable_relocs*,
161                            unsigned char* view,
162                            elfcpp::Elf_types<64>::Elf_Addr view_address,
163                            section_size_type view_size,
164                            unsigned char* reloc_view,
165                            section_size_type reloc_view_size);
166
167   // Return a string used to fill a code section with nops.
168   std::string
169   do_code_fill(section_size_type length) const;
170
171   // Return whether SYM is defined by the ABI.
172   bool
173   do_is_defined_by_abi(const Symbol* sym) const
174   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
175
176   // Return the symbol index to use for a target specific relocation.
177   // The only target specific relocation is R_X86_64_TLSDESC for a
178   // local symbol, which is an absolute reloc.
179   unsigned int
180   do_reloc_symbol_index(void*, unsigned int r_type) const
181   {
182     gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
183     return 0;
184   }
185
186   // Return the addend to use for a target specific relocation.
187   uint64_t
188   do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
189
190   // Adjust -fstack-split code which calls non-stack-split code.
191   void
192   do_calls_non_split(Relobj* object, unsigned int shndx,
193                      section_offset_type fnoffset, section_size_type fnsize,
194                      unsigned char* view, section_size_type view_size,
195                      std::string* from, std::string* to) const;
196
197   // Return the size of the GOT section.
198   section_size_type
199   got_size()
200   {
201     gold_assert(this->got_ != NULL);
202     return this->got_->data_size();
203   }
204
205   // Add a new reloc argument, returning the index in the vector.
206   size_t
207   add_tlsdesc_info(Sized_relobj<64, false>* object, unsigned int r_sym)
208   {
209     this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
210     return this->tlsdesc_reloc_info_.size() - 1;
211   }
212
213  private:
214   // The class which scans relocations.
215   class Scan
216   {
217   public:
218     Scan()
219       : issued_non_pic_error_(false)
220     { }
221
222     inline void
223     local(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
224           Sized_relobj<64, false>* object,
225           unsigned int data_shndx,
226           Output_section* output_section,
227           const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
228           const elfcpp::Sym<64, false>& lsym);
229
230     inline void
231     global(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
232            Sized_relobj<64, false>* object,
233            unsigned int data_shndx,
234            Output_section* output_section,
235            const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
236            Symbol* gsym);
237
238     inline bool
239     local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
240                                         Target_x86_64* target,
241                                         Sized_relobj<64, false>* object,
242                                         unsigned int data_shndx,
243                                         Output_section* output_section,
244                                         const elfcpp::Rela<64, false>& reloc,
245                                         unsigned int r_type,
246                                         const elfcpp::Sym<64, false>& lsym);
247
248     inline bool
249     global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
250                                          Target_x86_64* target,
251                                          Sized_relobj<64, false>* object,
252                                          unsigned int data_shndx,
253                                          Output_section* output_section,
254                                          const elfcpp::Rela<64, false>& reloc,
255                                          unsigned int r_type,
256                                          Symbol* gsym);
257
258   private:
259     static void
260     unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
261
262     static void
263     unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
264                              Symbol*);
265
266     void
267     check_non_pic(Relobj*, unsigned int r_type);
268
269     inline bool
270     possible_function_pointer_reloc(unsigned int r_type);
271
272     // Whether we have issued an error about a non-PIC compilation.
273     bool issued_non_pic_error_;
274   };
275
276   // The class which implements relocation.
277   class Relocate
278   {
279    public:
280     Relocate()
281       : skip_call_tls_get_addr_(false), saw_tls_block_reloc_(false)
282     { }
283
284     ~Relocate()
285     {
286       if (this->skip_call_tls_get_addr_)
287         {
288           // FIXME: This needs to specify the location somehow.
289           gold_error(_("missing expected TLS relocation"));
290         }
291     }
292
293     // Do a relocation.  Return false if the caller should not issue
294     // any warnings about this relocation.
295     inline bool
296     relocate(const Relocate_info<64, false>*, Target_x86_64*, Output_section*,
297              size_t relnum, const elfcpp::Rela<64, false>&,
298              unsigned int r_type, const Sized_symbol<64>*,
299              const Symbol_value<64>*,
300              unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
301              section_size_type);
302
303    private:
304     // Do a TLS relocation.
305     inline void
306     relocate_tls(const Relocate_info<64, false>*, Target_x86_64*,
307                  size_t relnum, const elfcpp::Rela<64, false>&,
308                  unsigned int r_type, const Sized_symbol<64>*,
309                  const Symbol_value<64>*,
310                  unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
311                  section_size_type);
312
313     // Do a TLS General-Dynamic to Initial-Exec transition.
314     inline void
315     tls_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
316                  Output_segment* tls_segment,
317                  const elfcpp::Rela<64, false>&, unsigned int r_type,
318                  elfcpp::Elf_types<64>::Elf_Addr value,
319                  unsigned char* view,
320                  elfcpp::Elf_types<64>::Elf_Addr,
321                  section_size_type view_size);
322
323     // Do a TLS General-Dynamic to Local-Exec transition.
324     inline void
325     tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
326                  Output_segment* tls_segment,
327                  const elfcpp::Rela<64, false>&, unsigned int r_type,
328                  elfcpp::Elf_types<64>::Elf_Addr value,
329                  unsigned char* view,
330                  section_size_type view_size);
331
332     // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
333     inline void
334     tls_desc_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
335                       Output_segment* tls_segment,
336                       const elfcpp::Rela<64, false>&, unsigned int r_type,
337                       elfcpp::Elf_types<64>::Elf_Addr value,
338                       unsigned char* view,
339                       elfcpp::Elf_types<64>::Elf_Addr,
340                       section_size_type view_size);
341
342     // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
343     inline void
344     tls_desc_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
345                       Output_segment* tls_segment,
346                       const elfcpp::Rela<64, false>&, unsigned int r_type,
347                       elfcpp::Elf_types<64>::Elf_Addr value,
348                       unsigned char* view,
349                       section_size_type view_size);
350
351     // Do a TLS Local-Dynamic to Local-Exec transition.
352     inline void
353     tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
354                  Output_segment* tls_segment,
355                  const elfcpp::Rela<64, false>&, unsigned int r_type,
356                  elfcpp::Elf_types<64>::Elf_Addr value,
357                  unsigned char* view,
358                  section_size_type view_size);
359
360     // Do a TLS Initial-Exec to Local-Exec transition.
361     static inline void
362     tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
363                  Output_segment* tls_segment,
364                  const elfcpp::Rela<64, false>&, unsigned int r_type,
365                  elfcpp::Elf_types<64>::Elf_Addr value,
366                  unsigned char* view,
367                  section_size_type view_size);
368
369     // This is set if we should skip the next reloc, which should be a
370     // PLT32 reloc against ___tls_get_addr.
371     bool skip_call_tls_get_addr_;
372
373     // This is set if we see a relocation which could load the address
374     // of the TLS block.  Whether we see such a relocation determines
375     // how we handle the R_X86_64_DTPOFF32 relocation, which is used
376     // in debugging sections.
377     bool saw_tls_block_reloc_;
378   };
379
380   // A class which returns the size required for a relocation type,
381   // used while scanning relocs during a relocatable link.
382   class Relocatable_size_for_reloc
383   {
384    public:
385     unsigned int
386     get_size_for_reloc(unsigned int, Relobj*);
387   };
388
389   // Adjust TLS relocation type based on the options and whether this
390   // is a local symbol.
391   static tls::Tls_optimization
392   optimize_tls_reloc(bool is_final, int r_type);
393
394   // Get the GOT section, creating it if necessary.
395   Output_data_got<64, false>*
396   got_section(Symbol_table*, Layout*);
397
398   // Get the GOT PLT section.
399   Output_data_space*
400   got_plt_section() const
401   {
402     gold_assert(this->got_plt_ != NULL);
403     return this->got_plt_;
404   }
405
406   // Create the PLT section.
407   void
408   make_plt_section(Symbol_table* symtab, Layout* layout);
409
410   // Create a PLT entry for a global symbol.
411   void
412   make_plt_entry(Symbol_table*, Layout*, Symbol*);
413
414   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
415   void
416   define_tls_base_symbol(Symbol_table*, Layout*);
417
418   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
419   void
420   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
421
422   // Create a GOT entry for the TLS module index.
423   unsigned int
424   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
425                       Sized_relobj<64, false>* object);
426
427   // Get the PLT section.
428   Output_data_plt_x86_64*
429   plt_section() const
430   {
431     gold_assert(this->plt_ != NULL);
432     return this->plt_;
433   }
434
435   // Get the dynamic reloc section, creating it if necessary.
436   Reloc_section*
437   rela_dyn_section(Layout*);
438
439   // Get the section to use for TLSDESC relocations.
440   Reloc_section*
441   rela_tlsdesc_section(Layout*) const;
442
443   // Add a potential copy relocation.
444   void
445   copy_reloc(Symbol_table* symtab, Layout* layout,
446              Sized_relobj<64, false>* object,
447              unsigned int shndx, Output_section* output_section,
448              Symbol* sym, const elfcpp::Rela<64, false>& reloc)
449   {
450     this->copy_relocs_.copy_reloc(symtab, layout,
451                                   symtab->get_sized_symbol<64>(sym),
452                                   object, shndx, output_section,
453                                   reloc, this->rela_dyn_section(layout));
454   }
455
456   // Information about this specific target which we pass to the
457   // general Target structure.
458   static const Target::Target_info x86_64_info;
459
460   enum Got_type
461   {
462     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
463     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
464     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
465     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
466   };
467
468   // This type is used as the argument to the target specific
469   // relocation routines.  The only target specific reloc is
470   // R_X86_64_TLSDESC against a local symbol.
471   struct Tlsdesc_info
472   {
473     Tlsdesc_info(Sized_relobj<64, false>* a_object, unsigned int a_r_sym)
474       : object(a_object), r_sym(a_r_sym)
475     { }
476
477     // The object in which the local symbol is defined.
478     Sized_relobj<64, false>* object;
479     // The local symbol index in the object.
480     unsigned int r_sym;
481   };
482
483   // The GOT section.
484   Output_data_got<64, false>* got_;
485   // The PLT section.
486   Output_data_plt_x86_64* plt_;
487   // The GOT PLT section.
488   Output_data_space* got_plt_;
489   // The _GLOBAL_OFFSET_TABLE_ symbol.
490   Symbol* global_offset_table_;
491   // The dynamic reloc section.
492   Reloc_section* rela_dyn_;
493   // Relocs saved to avoid a COPY reloc.
494   Copy_relocs<elfcpp::SHT_RELA, 64, false> copy_relocs_;
495   // Space for variables copied with a COPY reloc.
496   Output_data_space* dynbss_;
497   // Offset of the GOT entry for the TLS module index.
498   unsigned int got_mod_index_offset_;
499   // We handle R_X86_64_TLSDESC against a local symbol as a target
500   // specific relocation.  Here we store the object and local symbol
501   // index for the relocation.
502   std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
503   // True if the _TLS_MODULE_BASE_ symbol has been defined.
504   bool tls_base_symbol_defined_;
505 };
506
507 const Target::Target_info Target_x86_64::x86_64_info =
508 {
509   64,                   // size
510   false,                // is_big_endian
511   elfcpp::EM_X86_64,    // machine_code
512   false,                // has_make_symbol
513   false,                // has_resolve
514   true,                 // has_code_fill
515   true,                 // is_default_stack_executable
516   '\0',                 // wrap_char
517   "/lib/ld64.so.1",     // program interpreter
518   0x400000,             // default_text_segment_address
519   0x1000,               // abi_pagesize (overridable by -z max-page-size)
520   0x1000,               // common_pagesize (overridable by -z common-page-size)
521   elfcpp::SHN_UNDEF,    // small_common_shndx
522   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
523   0,                    // small_common_section_flags
524   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
525   NULL,                 // attributes_section
526   NULL                  // attributes_vendor
527 };
528
529 // This is called when a new output section is created.  This is where
530 // we handle the SHF_X86_64_LARGE.
531
532 void
533 Target_x86_64::do_new_output_section(Output_section *os) const
534 {
535   if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
536     os->set_is_large_section();
537 }
538
539 // Get the GOT section, creating it if necessary.
540
541 Output_data_got<64, false>*
542 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
543 {
544   if (this->got_ == NULL)
545     {
546       gold_assert(symtab != NULL && layout != NULL);
547
548       this->got_ = new Output_data_got<64, false>();
549
550       Output_section* os;
551       os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
552                                            (elfcpp::SHF_ALLOC
553                                             | elfcpp::SHF_WRITE),
554                                            this->got_, false, true, true,
555                                            false);
556
557       this->got_plt_ = new Output_data_space(8, "** GOT PLT");
558       os = layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
559                                            (elfcpp::SHF_ALLOC
560                                             | elfcpp::SHF_WRITE),
561                                            this->got_plt_, false, false,
562                                            false, true);
563
564       // The first three entries are reserved.
565       this->got_plt_->set_current_data_size(3 * 8);
566
567       // Those bytes can go into the relro segment.
568       layout->increase_relro(3 * 8);
569
570       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
571       this->global_offset_table_ =
572         symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
573                                       Symbol_table::PREDEFINED,
574                                       this->got_plt_,
575                                       0, 0, elfcpp::STT_OBJECT,
576                                       elfcpp::STB_LOCAL,
577                                       elfcpp::STV_HIDDEN, 0,
578                                       false, false);
579     }
580
581   return this->got_;
582 }
583
584 // Get the dynamic reloc section, creating it if necessary.
585
586 Target_x86_64::Reloc_section*
587 Target_x86_64::rela_dyn_section(Layout* layout)
588 {
589   if (this->rela_dyn_ == NULL)
590     {
591       gold_assert(layout != NULL);
592       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
593       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
594                                       elfcpp::SHF_ALLOC, this->rela_dyn_, true,
595                                       false, false, false);
596     }
597   return this->rela_dyn_;
598 }
599
600 // A class to handle the PLT data.
601
602 class Output_data_plt_x86_64 : public Output_section_data
603 {
604  public:
605   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
606
607   Output_data_plt_x86_64(Layout*, Output_data_got<64, false>*,
608                          Output_data_space*);
609
610   // Add an entry to the PLT.
611   void
612   add_entry(Symbol* gsym);
613
614   // Add the reserved TLSDESC_PLT entry to the PLT.
615   void
616   reserve_tlsdesc_entry(unsigned int got_offset)
617   { this->tlsdesc_got_offset_ = got_offset; }
618
619   // Return true if a TLSDESC_PLT entry has been reserved.
620   bool
621   has_tlsdesc_entry() const
622   { return this->tlsdesc_got_offset_ != -1U; }
623
624   // Return the GOT offset for the reserved TLSDESC_PLT entry.
625   unsigned int
626   get_tlsdesc_got_offset() const
627   { return this->tlsdesc_got_offset_; }
628
629   // Return the offset of the reserved TLSDESC_PLT entry.
630   unsigned int
631   get_tlsdesc_plt_offset() const
632   { return (this->count_ + 1) * plt_entry_size; }
633
634   // Return the .rela.plt section data.
635   const Reloc_section*
636   rela_plt() const
637   { return this->rel_; }
638
639   // Return where the TLSDESC relocations should go.
640   Reloc_section*
641   rela_tlsdesc(Layout*);
642
643  protected:
644   void
645   do_adjust_output_section(Output_section* os);
646
647   // Write to a map file.
648   void
649   do_print_to_mapfile(Mapfile* mapfile) const
650   { mapfile->print_output_data(this, _("** PLT")); }
651
652  private:
653   // The size of an entry in the PLT.
654   static const int plt_entry_size = 16;
655
656   // The first entry in the PLT.
657   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
658   // procedure linkage table for both programs and shared objects."
659   static unsigned char first_plt_entry[plt_entry_size];
660
661   // Other entries in the PLT for an executable.
662   static unsigned char plt_entry[plt_entry_size];
663
664   // The reserved TLSDESC entry in the PLT for an executable.
665   static unsigned char tlsdesc_plt_entry[plt_entry_size];
666
667   // Set the final size.
668   void
669   set_final_data_size();
670
671   // Write out the PLT data.
672   void
673   do_write(Output_file*);
674
675   // The reloc section.
676   Reloc_section* rel_;
677   // The TLSDESC relocs, if necessary.  These must follow the regular
678   // PLT relocs.
679   Reloc_section* tlsdesc_rel_;
680   // The .got section.
681   Output_data_got<64, false>* got_;
682   // The .got.plt section.
683   Output_data_space* got_plt_;
684   // The number of PLT entries.
685   unsigned int count_;
686   // Offset of the reserved TLSDESC_GOT entry when needed.
687   unsigned int tlsdesc_got_offset_;
688 };
689
690 // Create the PLT section.  The ordinary .got section is an argument,
691 // since we need to refer to the start.  We also create our own .got
692 // section just for PLT entries.
693
694 Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
695                                                Output_data_got<64, false>* got,
696                                                Output_data_space* got_plt)
697   : Output_section_data(8), tlsdesc_rel_(NULL), got_(got), got_plt_(got_plt),
698     count_(0), tlsdesc_got_offset_(-1U)
699 {
700   this->rel_ = new Reloc_section(false);
701   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
702                                   elfcpp::SHF_ALLOC, this->rel_, true,
703                                   false, false, false);
704 }
705
706 void
707 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
708 {
709   os->set_entsize(plt_entry_size);
710 }
711
712 // Add an entry to the PLT.
713
714 void
715 Output_data_plt_x86_64::add_entry(Symbol* gsym)
716 {
717   gold_assert(!gsym->has_plt_offset());
718
719   // Note that when setting the PLT offset we skip the initial
720   // reserved PLT entry.
721   gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
722
723   ++this->count_;
724
725   section_offset_type got_offset = this->got_plt_->current_data_size();
726
727   // Every PLT entry needs a GOT entry which points back to the PLT
728   // entry (this will be changed by the dynamic linker, normally
729   // lazily when the function is called).
730   this->got_plt_->set_current_data_size(got_offset + 8);
731
732   // Every PLT entry needs a reloc.
733   gsym->set_needs_dynsym_entry();
734   this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
735                          got_offset, 0);
736
737   // Note that we don't need to save the symbol.  The contents of the
738   // PLT are independent of which symbols are used.  The symbols only
739   // appear in the relocations.
740 }
741
742 // Return where the TLSDESC relocations should go, creating it if
743 // necessary.  These follow the JUMP_SLOT relocations.
744
745 Output_data_plt_x86_64::Reloc_section*
746 Output_data_plt_x86_64::rela_tlsdesc(Layout* layout)
747 {
748   if (this->tlsdesc_rel_ == NULL)
749     {
750       this->tlsdesc_rel_ = new Reloc_section(false);
751       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
752                                       elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
753                                       true, false, false, false);
754       gold_assert(this->tlsdesc_rel_->output_section() ==
755                   this->rel_->output_section());
756     }
757   return this->tlsdesc_rel_;
758 }
759
760 // Set the final size.
761 void
762 Output_data_plt_x86_64::set_final_data_size()
763 {
764   unsigned int count = this->count_;
765   if (this->has_tlsdesc_entry())
766     ++count;
767   this->set_data_size((count + 1) * plt_entry_size);
768 }
769
770 // The first entry in the PLT for an executable.
771
772 unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
773 {
774   // From AMD64 ABI Draft 0.98, page 76
775   0xff, 0x35,   // pushq contents of memory address
776   0, 0, 0, 0,   // replaced with address of .got + 8
777   0xff, 0x25,   // jmp indirect
778   0, 0, 0, 0,   // replaced with address of .got + 16
779   0x90, 0x90, 0x90, 0x90   // noop (x4)
780 };
781
782 // Subsequent entries in the PLT for an executable.
783
784 unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
785 {
786   // From AMD64 ABI Draft 0.98, page 76
787   0xff, 0x25,   // jmpq indirect
788   0, 0, 0, 0,   // replaced with address of symbol in .got
789   0x68,         // pushq immediate
790   0, 0, 0, 0,   // replaced with offset into relocation table
791   0xe9,         // jmpq relative
792   0, 0, 0, 0    // replaced with offset to start of .plt
793 };
794
795 // The reserved TLSDESC entry in the PLT for an executable.
796
797 unsigned char Output_data_plt_x86_64::tlsdesc_plt_entry[plt_entry_size] =
798 {
799   // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
800   // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
801   0xff, 0x35,   // pushq x(%rip)
802   0, 0, 0, 0,   // replaced with address of linkmap GOT entry (at PLTGOT + 8)
803   0xff, 0x25,   // jmpq *y(%rip)
804   0, 0, 0, 0,   // replaced with offset of reserved TLSDESC_GOT entry
805   0x0f, 0x1f,   // nop
806   0x40, 0
807 };
808
809 // Write out the PLT.  This uses the hand-coded instructions above,
810 // and adjusts them as needed.  This is specified by the AMD64 ABI.
811
812 void
813 Output_data_plt_x86_64::do_write(Output_file* of)
814 {
815   const off_t offset = this->offset();
816   const section_size_type oview_size =
817     convert_to_section_size_type(this->data_size());
818   unsigned char* const oview = of->get_output_view(offset, oview_size);
819
820   const off_t got_file_offset = this->got_plt_->offset();
821   const section_size_type got_size =
822     convert_to_section_size_type(this->got_plt_->data_size());
823   unsigned char* const got_view = of->get_output_view(got_file_offset,
824                                                       got_size);
825
826   unsigned char* pov = oview;
827
828   // The base address of the .plt section.
829   elfcpp::Elf_types<64>::Elf_Addr plt_address = this->address();
830   // The base address of the .got section.
831   elfcpp::Elf_types<64>::Elf_Addr got_base = this->got_->address();
832   // The base address of the PLT portion of the .got section,
833   // which is where the GOT pointer will point, and where the
834   // three reserved GOT entries are located.
835   elfcpp::Elf_types<64>::Elf_Addr got_address = this->got_plt_->address();
836
837   memcpy(pov, first_plt_entry, plt_entry_size);
838   // We do a jmp relative to the PC at the end of this instruction.
839   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
840                                               (got_address + 8
841                                                - (plt_address + 6)));
842   elfcpp::Swap<32, false>::writeval(pov + 8,
843                                     (got_address + 16
844                                      - (plt_address + 12)));
845   pov += plt_entry_size;
846
847   unsigned char* got_pov = got_view;
848
849   memset(got_pov, 0, 24);
850   got_pov += 24;
851
852   unsigned int plt_offset = plt_entry_size;
853   unsigned int got_offset = 24;
854   const unsigned int count = this->count_;
855   for (unsigned int plt_index = 0;
856        plt_index < count;
857        ++plt_index,
858          pov += plt_entry_size,
859          got_pov += 8,
860          plt_offset += plt_entry_size,
861          got_offset += 8)
862     {
863       // Set and adjust the PLT entry itself.
864       memcpy(pov, plt_entry, plt_entry_size);
865       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
866                                                   (got_address + got_offset
867                                                    - (plt_address + plt_offset
868                                                       + 6)));
869
870       elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
871       elfcpp::Swap<32, false>::writeval(pov + 12,
872                                         - (plt_offset + plt_entry_size));
873
874       // Set the entry in the GOT.
875       elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
876     }
877
878   if (this->has_tlsdesc_entry())
879     {
880       // Set and adjust the reserved TLSDESC PLT entry.
881       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
882       memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
883       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
884                                                   (got_address + 8
885                                                    - (plt_address + plt_offset
886                                                       + 6)));
887       elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
888                                                   (got_base
889                                                    + tlsdesc_got_offset
890                                                    - (plt_address + plt_offset
891                                                       + 12)));
892       pov += plt_entry_size;
893     }
894
895   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
896   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
897
898   of->write_output_view(offset, oview_size, oview);
899   of->write_output_view(got_file_offset, got_size, got_view);
900 }
901
902 // Create the PLT section.
903
904 void
905 Target_x86_64::make_plt_section(Symbol_table* symtab, Layout* layout)
906 {
907   if (this->plt_ == NULL)
908     {
909       // Create the GOT sections first.
910       this->got_section(symtab, layout);
911
912       this->plt_ = new Output_data_plt_x86_64(layout, this->got_,
913                                               this->got_plt_);
914       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
915                                       (elfcpp::SHF_ALLOC
916                                        | elfcpp::SHF_EXECINSTR),
917                                       this->plt_, false, false, false, false);
918     }
919 }
920
921 // Return the section for TLSDESC relocations.
922
923 Target_x86_64::Reloc_section*
924 Target_x86_64::rela_tlsdesc_section(Layout* layout) const
925 {
926   return this->plt_section()->rela_tlsdesc(layout);
927 }
928
929 // Create a PLT entry for a global symbol.
930
931 void
932 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
933                               Symbol* gsym)
934 {
935   if (gsym->has_plt_offset())
936     return;
937
938   if (this->plt_ == NULL)
939     this->make_plt_section(symtab, layout);
940
941   this->plt_->add_entry(gsym);
942 }
943
944 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
945
946 void
947 Target_x86_64::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
948 {
949   if (this->tls_base_symbol_defined_)
950     return;
951
952   Output_segment* tls_segment = layout->tls_segment();
953   if (tls_segment != NULL)
954     {
955       bool is_exec = parameters->options().output_is_executable();
956       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
957                                        Symbol_table::PREDEFINED,
958                                        tls_segment, 0, 0,
959                                        elfcpp::STT_TLS,
960                                        elfcpp::STB_LOCAL,
961                                        elfcpp::STV_HIDDEN, 0,
962                                        (is_exec
963                                         ? Symbol::SEGMENT_END
964                                         : Symbol::SEGMENT_START),
965                                        true);
966     }
967   this->tls_base_symbol_defined_ = true;
968 }
969
970 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
971
972 void
973 Target_x86_64::reserve_tlsdesc_entries(Symbol_table* symtab,
974                                              Layout* layout)
975 {
976   if (this->plt_ == NULL)
977     this->make_plt_section(symtab, layout);
978
979   if (!this->plt_->has_tlsdesc_entry())
980     {
981       // Allocate the TLSDESC_GOT entry.
982       Output_data_got<64, false>* got = this->got_section(symtab, layout);
983       unsigned int got_offset = got->add_constant(0);
984
985       // Allocate the TLSDESC_PLT entry.
986       this->plt_->reserve_tlsdesc_entry(got_offset);
987     }
988 }
989
990 // Create a GOT entry for the TLS module index.
991
992 unsigned int
993 Target_x86_64::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
994                                    Sized_relobj<64, false>* object)
995 {
996   if (this->got_mod_index_offset_ == -1U)
997     {
998       gold_assert(symtab != NULL && layout != NULL && object != NULL);
999       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1000       Output_data_got<64, false>* got = this->got_section(symtab, layout);
1001       unsigned int got_offset = got->add_constant(0);
1002       rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
1003                           got_offset, 0);
1004       got->add_constant(0);
1005       this->got_mod_index_offset_ = got_offset;
1006     }
1007   return this->got_mod_index_offset_;
1008 }
1009
1010 // Optimize the TLS relocation type based on what we know about the
1011 // symbol.  IS_FINAL is true if the final address of this symbol is
1012 // known at link time.
1013
1014 tls::Tls_optimization
1015 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
1016 {
1017   // If we are generating a shared library, then we can't do anything
1018   // in the linker.
1019   if (parameters->options().shared())
1020     return tls::TLSOPT_NONE;
1021
1022   switch (r_type)
1023     {
1024     case elfcpp::R_X86_64_TLSGD:
1025     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1026     case elfcpp::R_X86_64_TLSDESC_CALL:
1027       // These are General-Dynamic which permits fully general TLS
1028       // access.  Since we know that we are generating an executable,
1029       // we can convert this to Initial-Exec.  If we also know that
1030       // this is a local symbol, we can further switch to Local-Exec.
1031       if (is_final)
1032         return tls::TLSOPT_TO_LE;
1033       return tls::TLSOPT_TO_IE;
1034
1035     case elfcpp::R_X86_64_TLSLD:
1036       // This is Local-Dynamic, which refers to a local symbol in the
1037       // dynamic TLS block.  Since we know that we generating an
1038       // executable, we can switch to Local-Exec.
1039       return tls::TLSOPT_TO_LE;
1040
1041     case elfcpp::R_X86_64_DTPOFF32:
1042     case elfcpp::R_X86_64_DTPOFF64:
1043       // Another Local-Dynamic reloc.
1044       return tls::TLSOPT_TO_LE;
1045
1046     case elfcpp::R_X86_64_GOTTPOFF:
1047       // These are Initial-Exec relocs which get the thread offset
1048       // from the GOT.  If we know that we are linking against the
1049       // local symbol, we can switch to Local-Exec, which links the
1050       // thread offset into the instruction.
1051       if (is_final)
1052         return tls::TLSOPT_TO_LE;
1053       return tls::TLSOPT_NONE;
1054
1055     case elfcpp::R_X86_64_TPOFF32:
1056       // When we already have Local-Exec, there is nothing further we
1057       // can do.
1058       return tls::TLSOPT_NONE;
1059
1060     default:
1061       gold_unreachable();
1062     }
1063 }
1064
1065 // Report an unsupported relocation against a local symbol.
1066
1067 void
1068 Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
1069                                              unsigned int r_type)
1070 {
1071   gold_error(_("%s: unsupported reloc %u against local symbol"),
1072              object->name().c_str(), r_type);
1073 }
1074
1075 // We are about to emit a dynamic relocation of type R_TYPE.  If the
1076 // dynamic linker does not support it, issue an error.  The GNU linker
1077 // only issues a non-PIC error for an allocated read-only section.
1078 // Here we know the section is allocated, but we don't know that it is
1079 // read-only.  But we check for all the relocation types which the
1080 // glibc dynamic linker supports, so it seems appropriate to issue an
1081 // error even if the section is not read-only.
1082
1083 void
1084 Target_x86_64::Scan::check_non_pic(Relobj* object, unsigned int r_type)
1085 {
1086   switch (r_type)
1087     {
1088       // These are the relocation types supported by glibc for x86_64.
1089     case elfcpp::R_X86_64_RELATIVE:
1090     case elfcpp::R_X86_64_GLOB_DAT:
1091     case elfcpp::R_X86_64_JUMP_SLOT:
1092     case elfcpp::R_X86_64_DTPMOD64:
1093     case elfcpp::R_X86_64_DTPOFF64:
1094     case elfcpp::R_X86_64_TPOFF64:
1095     case elfcpp::R_X86_64_64:
1096     case elfcpp::R_X86_64_32:
1097     case elfcpp::R_X86_64_PC32:
1098     case elfcpp::R_X86_64_COPY:
1099       return;
1100
1101     default:
1102       // This prevents us from issuing more than one error per reloc
1103       // section.  But we can still wind up issuing more than one
1104       // error per object file.
1105       if (this->issued_non_pic_error_)
1106         return;
1107       gold_assert(parameters->options().output_is_position_independent());
1108       object->error(_("requires unsupported dynamic reloc; "
1109                       "recompile with -fPIC"));
1110       this->issued_non_pic_error_ = true;
1111       return;
1112
1113     case elfcpp::R_X86_64_NONE:
1114       gold_unreachable();
1115     }
1116 }
1117
1118 // Scan a relocation for a local symbol.
1119
1120 inline void
1121 Target_x86_64::Scan::local(Symbol_table* symtab,
1122                            Layout* layout,
1123                            Target_x86_64* target,
1124                            Sized_relobj<64, false>* object,
1125                            unsigned int data_shndx,
1126                            Output_section* output_section,
1127                            const elfcpp::Rela<64, false>& reloc,
1128                            unsigned int r_type,
1129                            const elfcpp::Sym<64, false>& lsym)
1130 {
1131   switch (r_type)
1132     {
1133     case elfcpp::R_X86_64_NONE:
1134     case elfcpp::R_386_GNU_VTINHERIT:
1135     case elfcpp::R_386_GNU_VTENTRY:
1136       break;
1137
1138     case elfcpp::R_X86_64_64:
1139       // If building a shared library (or a position-independent
1140       // executable), we need to create a dynamic relocation for this
1141       // location.  The relocation applied at link time will apply the
1142       // link-time value, so we flag the location with an
1143       // R_X86_64_RELATIVE relocation so the dynamic loader can
1144       // relocate it easily.
1145       if (parameters->options().output_is_position_independent())
1146         {
1147           unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1148           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1149           rela_dyn->add_local_relative(object, r_sym,
1150                                        elfcpp::R_X86_64_RELATIVE,
1151                                        output_section, data_shndx,
1152                                        reloc.get_r_offset(),
1153                                        reloc.get_r_addend());
1154         }
1155       break;
1156
1157     case elfcpp::R_X86_64_32:
1158     case elfcpp::R_X86_64_32S:
1159     case elfcpp::R_X86_64_16:
1160     case elfcpp::R_X86_64_8:
1161       // If building a shared library (or a position-independent
1162       // executable), we need to create a dynamic relocation for this
1163       // location.  We can't use an R_X86_64_RELATIVE relocation
1164       // because that is always a 64-bit relocation.
1165       if (parameters->options().output_is_position_independent())
1166         {
1167           this->check_non_pic(object, r_type);
1168
1169           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1170           unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1171           if (lsym.get_st_type() != elfcpp::STT_SECTION)
1172             rela_dyn->add_local(object, r_sym, r_type, output_section,
1173                                 data_shndx, reloc.get_r_offset(),
1174                                 reloc.get_r_addend());
1175           else
1176             {
1177               gold_assert(lsym.get_st_value() == 0);
1178               unsigned int shndx = lsym.get_st_shndx();
1179               bool is_ordinary;
1180               shndx = object->adjust_sym_shndx(r_sym, shndx,
1181                                                &is_ordinary);
1182               if (!is_ordinary)
1183                 object->error(_("section symbol %u has bad shndx %u"),
1184                               r_sym, shndx);
1185               else
1186                 rela_dyn->add_local_section(object, shndx,
1187                                             r_type, output_section,
1188                                             data_shndx, reloc.get_r_offset(),
1189                                             reloc.get_r_addend());
1190             }
1191         }
1192       break;
1193
1194     case elfcpp::R_X86_64_PC64:
1195     case elfcpp::R_X86_64_PC32:
1196     case elfcpp::R_X86_64_PC16:
1197     case elfcpp::R_X86_64_PC8:
1198       break;
1199
1200     case elfcpp::R_X86_64_PLT32:
1201       // Since we know this is a local symbol, we can handle this as a
1202       // PC32 reloc.
1203       break;
1204
1205     case elfcpp::R_X86_64_GOTPC32:
1206     case elfcpp::R_X86_64_GOTOFF64:
1207     case elfcpp::R_X86_64_GOTPC64:
1208     case elfcpp::R_X86_64_PLTOFF64:
1209       // We need a GOT section.
1210       target->got_section(symtab, layout);
1211       // For PLTOFF64, we'd normally want a PLT section, but since we
1212       // know this is a local symbol, no PLT is needed.
1213       break;
1214
1215     case elfcpp::R_X86_64_GOT64:
1216     case elfcpp::R_X86_64_GOT32:
1217     case elfcpp::R_X86_64_GOTPCREL64:
1218     case elfcpp::R_X86_64_GOTPCREL:
1219     case elfcpp::R_X86_64_GOTPLT64:
1220       {
1221         // The symbol requires a GOT entry.
1222         Output_data_got<64, false>* got = target->got_section(symtab, layout);
1223         unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1224         if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
1225           {
1226             // If we are generating a shared object, we need to add a
1227             // dynamic relocation for this symbol's GOT entry.
1228             if (parameters->options().output_is_position_independent())
1229               {
1230                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1231                 // R_X86_64_RELATIVE assumes a 64-bit relocation.
1232                 if (r_type != elfcpp::R_X86_64_GOT32)
1233                   rela_dyn->add_local_relative(
1234                       object, r_sym, elfcpp::R_X86_64_RELATIVE, got,
1235                       object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
1236                 else
1237                   {
1238                     this->check_non_pic(object, r_type);
1239
1240                     gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
1241                     rela_dyn->add_local(
1242                         object, r_sym, r_type, got,
1243                         object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
1244                   }
1245               }
1246           }
1247         // For GOTPLT64, we'd normally want a PLT section, but since
1248         // we know this is a local symbol, no PLT is needed.
1249       }
1250       break;
1251
1252     case elfcpp::R_X86_64_COPY:
1253     case elfcpp::R_X86_64_GLOB_DAT:
1254     case elfcpp::R_X86_64_JUMP_SLOT:
1255     case elfcpp::R_X86_64_RELATIVE:
1256       // These are outstanding tls relocs, which are unexpected when linking
1257     case elfcpp::R_X86_64_TPOFF64:
1258     case elfcpp::R_X86_64_DTPMOD64:
1259     case elfcpp::R_X86_64_TLSDESC:
1260       gold_error(_("%s: unexpected reloc %u in object file"),
1261                  object->name().c_str(), r_type);
1262       break;
1263
1264       // These are initial tls relocs, which are expected when linking
1265     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1266     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1267     case elfcpp::R_X86_64_TLSDESC_CALL:
1268     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1269     case elfcpp::R_X86_64_DTPOFF32:
1270     case elfcpp::R_X86_64_DTPOFF64:
1271     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1272     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1273       {
1274         bool output_is_shared = parameters->options().shared();
1275         const tls::Tls_optimization optimized_type
1276             = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
1277         switch (r_type)
1278           {
1279           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
1280             if (optimized_type == tls::TLSOPT_NONE)
1281               {
1282                 // Create a pair of GOT entries for the module index and
1283                 // dtv-relative offset.
1284                 Output_data_got<64, false>* got
1285                     = target->got_section(symtab, layout);
1286                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1287                 unsigned int shndx = lsym.get_st_shndx();
1288                 bool is_ordinary;
1289                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1290                 if (!is_ordinary)
1291                   object->error(_("local symbol %u has bad shndx %u"),
1292                               r_sym, shndx);
1293                 else
1294                   got->add_local_pair_with_rela(object, r_sym,
1295                                                 shndx,
1296                                                 GOT_TYPE_TLS_PAIR,
1297                                                 target->rela_dyn_section(layout),
1298                                                 elfcpp::R_X86_64_DTPMOD64, 0);
1299               }
1300             else if (optimized_type != tls::TLSOPT_TO_LE)
1301               unsupported_reloc_local(object, r_type);
1302             break;
1303
1304           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1305             target->define_tls_base_symbol(symtab, layout);
1306             if (optimized_type == tls::TLSOPT_NONE)
1307               {
1308                 // Create reserved PLT and GOT entries for the resolver.
1309                 target->reserve_tlsdesc_entries(symtab, layout);
1310
1311                 // Generate a double GOT entry with an R_X86_64_TLSDESC reloc.
1312                 Output_data_got<64, false>* got
1313                     = target->got_section(symtab, layout);
1314                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1315                 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
1316                   {
1317                     unsigned int got_offset = got->add_constant(0);
1318                     got->add_constant(0);
1319                     object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
1320                                                  got_offset);
1321                     Reloc_section* rt = target->rela_tlsdesc_section(layout);
1322                     // We store the arguments we need in a vector, and
1323                     // use the index into the vector as the parameter
1324                     // to pass to the target specific routines.
1325                     uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
1326                     void* arg = reinterpret_cast<void*>(intarg);
1327                     rt->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
1328                                             got, got_offset, 0);
1329                   }
1330               }
1331             else if (optimized_type != tls::TLSOPT_TO_LE)
1332               unsupported_reloc_local(object, r_type);
1333             break;
1334
1335           case elfcpp::R_X86_64_TLSDESC_CALL:
1336             break;
1337
1338           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
1339             if (optimized_type == tls::TLSOPT_NONE)
1340               {
1341                 // Create a GOT entry for the module index.
1342                 target->got_mod_index_entry(symtab, layout, object);
1343               }
1344             else if (optimized_type != tls::TLSOPT_TO_LE)
1345               unsupported_reloc_local(object, r_type);
1346             break;
1347
1348           case elfcpp::R_X86_64_DTPOFF32:
1349           case elfcpp::R_X86_64_DTPOFF64:
1350             break;
1351
1352           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
1353             layout->set_has_static_tls();
1354             if (optimized_type == tls::TLSOPT_NONE)
1355               {
1356                 // Create a GOT entry for the tp-relative offset.
1357                 Output_data_got<64, false>* got
1358                     = target->got_section(symtab, layout);
1359                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1360                 got->add_local_with_rela(object, r_sym, GOT_TYPE_TLS_OFFSET,
1361                                          target->rela_dyn_section(layout),
1362                                          elfcpp::R_X86_64_TPOFF64);
1363               }
1364             else if (optimized_type != tls::TLSOPT_TO_LE)
1365               unsupported_reloc_local(object, r_type);
1366             break;
1367
1368           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
1369             layout->set_has_static_tls();
1370             if (output_is_shared)
1371               unsupported_reloc_local(object, r_type);
1372             break;
1373
1374           default:
1375             gold_unreachable();
1376           }
1377       }
1378       break;
1379
1380     case elfcpp::R_X86_64_SIZE32:
1381     case elfcpp::R_X86_64_SIZE64:
1382     default:
1383       gold_error(_("%s: unsupported reloc %u against local symbol"),
1384                  object->name().c_str(), r_type);
1385       break;
1386     }
1387 }
1388
1389
1390 // Report an unsupported relocation against a global symbol.
1391
1392 void
1393 Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
1394                                               unsigned int r_type,
1395                                               Symbol* gsym)
1396 {
1397   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1398              object->name().c_str(), r_type, gsym->demangled_name().c_str());
1399 }
1400
1401 // Returns true if this relocation type could be that of a function pointer
1402 // only if the target is not position-independent code.
1403 inline bool
1404 Target_x86_64::Scan::possible_function_pointer_reloc(unsigned int r_type)
1405 {
1406   if (parameters->options().shared())
1407     return false;
1408
1409   switch (r_type)
1410     {
1411     case elfcpp::R_X86_64_64:
1412     case elfcpp::R_X86_64_32:
1413     case elfcpp::R_X86_64_32S:
1414     case elfcpp::R_X86_64_16:
1415     case elfcpp::R_X86_64_8:
1416       {
1417         return true;
1418       }
1419     }
1420   return false;
1421 }
1422
1423 // For safe ICF, scan a relocation for a local symbol to check if it
1424 // corresponds to a function pointer being taken.  In that case mark
1425 // the function whose pointer was taken as not foldable.
1426
1427 inline bool
1428 Target_x86_64::Scan::local_reloc_may_be_function_pointer(
1429   Symbol_table* ,
1430   Layout* ,
1431   Target_x86_64* ,
1432   Sized_relobj<64, false>* ,
1433   unsigned int ,
1434   Output_section* ,
1435   const elfcpp::Rela<64, false>& ,
1436   unsigned int r_type,
1437   const elfcpp::Sym<64, false>&)
1438 {
1439   // When building a shared library, do not fold any local symbols as it is
1440   // not possible to distinguish pointer taken versus a call by looking at
1441   // the relocation types.
1442   return (parameters->options().shared()
1443           || possible_function_pointer_reloc(r_type));
1444 }
1445
1446 // For safe ICF, scan a relocation for a global symbol to check if it
1447 // corresponds to a function pointer being taken.  In that case mark
1448 // the function whose pointer was taken as not foldable.
1449
1450 inline bool
1451 Target_x86_64::Scan::global_reloc_may_be_function_pointer(
1452   Symbol_table*,
1453   Layout* ,
1454   Target_x86_64* ,
1455   Sized_relobj<64, false>* ,
1456   unsigned int ,
1457   Output_section* ,
1458   const elfcpp::Rela<64, false>& ,
1459   unsigned int r_type,
1460   Symbol* gsym)
1461 {
1462   // When building a shared library, do not fold symbols whose visibility
1463   // is hidden, internal or protected.
1464   return ((parameters->options().shared()
1465            && (gsym->visibility() == elfcpp::STV_INTERNAL
1466                || gsym->visibility() == elfcpp::STV_PROTECTED
1467                || gsym->visibility() == elfcpp::STV_HIDDEN))
1468           || possible_function_pointer_reloc(r_type));
1469 }
1470
1471 // Scan a relocation for a global symbol.
1472
1473 inline void
1474 Target_x86_64::Scan::global(Symbol_table* symtab,
1475                             Layout* layout,
1476                             Target_x86_64* target,
1477                             Sized_relobj<64, false>* object,
1478                             unsigned int data_shndx,
1479                             Output_section* output_section,
1480                             const elfcpp::Rela<64, false>& reloc,
1481                             unsigned int r_type,
1482                             Symbol* gsym)
1483 {
1484   switch (r_type)
1485     {
1486     case elfcpp::R_X86_64_NONE:
1487     case elfcpp::R_386_GNU_VTINHERIT:
1488     case elfcpp::R_386_GNU_VTENTRY:
1489       break;
1490
1491     case elfcpp::R_X86_64_64:
1492     case elfcpp::R_X86_64_32:
1493     case elfcpp::R_X86_64_32S:
1494     case elfcpp::R_X86_64_16:
1495     case elfcpp::R_X86_64_8:
1496       {
1497         // Make a PLT entry if necessary.
1498         if (gsym->needs_plt_entry())
1499           {
1500             target->make_plt_entry(symtab, layout, gsym);
1501             // Since this is not a PC-relative relocation, we may be
1502             // taking the address of a function. In that case we need to
1503             // set the entry in the dynamic symbol table to the address of
1504             // the PLT entry.
1505             if (gsym->is_from_dynobj() && !parameters->options().shared())
1506               gsym->set_needs_dynsym_value();
1507           }
1508         // Make a dynamic relocation if necessary.
1509         if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
1510           {
1511             if (gsym->may_need_copy_reloc())
1512               {
1513                 target->copy_reloc(symtab, layout, object,
1514                                    data_shndx, output_section, gsym, reloc);
1515               }
1516             else if (r_type == elfcpp::R_X86_64_64
1517                      && gsym->can_use_relative_reloc(false))
1518               {
1519                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1520                 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1521                                               output_section, object,
1522                                               data_shndx, reloc.get_r_offset(),
1523                                               reloc.get_r_addend());
1524               }
1525             else
1526               {
1527                 this->check_non_pic(object, r_type);
1528                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1529                 rela_dyn->add_global(gsym, r_type, output_section, object,
1530                                      data_shndx, reloc.get_r_offset(),
1531                                      reloc.get_r_addend());
1532               }
1533           }
1534       }
1535       break;
1536
1537     case elfcpp::R_X86_64_PC64:
1538     case elfcpp::R_X86_64_PC32:
1539     case elfcpp::R_X86_64_PC16:
1540     case elfcpp::R_X86_64_PC8:
1541       {
1542         // Make a PLT entry if necessary.
1543         if (gsym->needs_plt_entry())
1544           target->make_plt_entry(symtab, layout, gsym);
1545         // Make a dynamic relocation if necessary.
1546         int flags = Symbol::NON_PIC_REF;
1547         if (gsym->is_func())
1548           flags |= Symbol::FUNCTION_CALL;
1549         if (gsym->needs_dynamic_reloc(flags))
1550           {
1551             if (gsym->may_need_copy_reloc())
1552               {
1553                 target->copy_reloc(symtab, layout, object,
1554                                    data_shndx, output_section, gsym, reloc);
1555               }
1556             else
1557               {
1558                 this->check_non_pic(object, r_type);
1559                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1560                 rela_dyn->add_global(gsym, r_type, output_section, object,
1561                                      data_shndx, reloc.get_r_offset(),
1562                                      reloc.get_r_addend());
1563               }
1564           }
1565       }
1566       break;
1567
1568     case elfcpp::R_X86_64_GOT64:
1569     case elfcpp::R_X86_64_GOT32:
1570     case elfcpp::R_X86_64_GOTPCREL64:
1571     case elfcpp::R_X86_64_GOTPCREL:
1572     case elfcpp::R_X86_64_GOTPLT64:
1573       {
1574         // The symbol requires a GOT entry.
1575         Output_data_got<64, false>* got = target->got_section(symtab, layout);
1576         if (gsym->final_value_is_known())
1577           got->add_global(gsym, GOT_TYPE_STANDARD);
1578         else
1579           {
1580             // If this symbol is not fully resolved, we need to add a
1581             // dynamic relocation for it.
1582             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1583             if (gsym->is_from_dynobj()
1584                 || gsym->is_undefined()
1585                 || gsym->is_preemptible())
1586               got->add_global_with_rela(gsym, GOT_TYPE_STANDARD, rela_dyn,
1587                                         elfcpp::R_X86_64_GLOB_DAT);
1588             else
1589               {
1590                 if (got->add_global(gsym, GOT_TYPE_STANDARD))
1591                   rela_dyn->add_global_relative(
1592                       gsym, elfcpp::R_X86_64_RELATIVE, got,
1593                       gsym->got_offset(GOT_TYPE_STANDARD), 0);
1594               }
1595           }
1596         // For GOTPLT64, we also need a PLT entry (but only if the
1597         // symbol is not fully resolved).
1598         if (r_type == elfcpp::R_X86_64_GOTPLT64
1599             && !gsym->final_value_is_known())
1600           target->make_plt_entry(symtab, layout, gsym);
1601       }
1602       break;
1603
1604     case elfcpp::R_X86_64_PLT32:
1605       // If the symbol is fully resolved, this is just a PC32 reloc.
1606       // Otherwise we need a PLT entry.
1607       if (gsym->final_value_is_known())
1608         break;
1609       // If building a shared library, we can also skip the PLT entry
1610       // if the symbol is defined in the output file and is protected
1611       // or hidden.
1612       if (gsym->is_defined()
1613           && !gsym->is_from_dynobj()
1614           && !gsym->is_preemptible())
1615         break;
1616       target->make_plt_entry(symtab, layout, gsym);
1617       break;
1618
1619     case elfcpp::R_X86_64_GOTPC32:
1620     case elfcpp::R_X86_64_GOTOFF64:
1621     case elfcpp::R_X86_64_GOTPC64:
1622     case elfcpp::R_X86_64_PLTOFF64:
1623       // We need a GOT section.
1624       target->got_section(symtab, layout);
1625       // For PLTOFF64, we also need a PLT entry (but only if the
1626       // symbol is not fully resolved).
1627       if (r_type == elfcpp::R_X86_64_PLTOFF64
1628           && !gsym->final_value_is_known())
1629         target->make_plt_entry(symtab, layout, gsym);
1630       break;
1631
1632     case elfcpp::R_X86_64_COPY:
1633     case elfcpp::R_X86_64_GLOB_DAT:
1634     case elfcpp::R_X86_64_JUMP_SLOT:
1635     case elfcpp::R_X86_64_RELATIVE:
1636       // These are outstanding tls relocs, which are unexpected when linking
1637     case elfcpp::R_X86_64_TPOFF64:
1638     case elfcpp::R_X86_64_DTPMOD64:
1639     case elfcpp::R_X86_64_TLSDESC:
1640       gold_error(_("%s: unexpected reloc %u in object file"),
1641                  object->name().c_str(), r_type);
1642       break;
1643
1644       // These are initial tls relocs, which are expected for global()
1645     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1646     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1647     case elfcpp::R_X86_64_TLSDESC_CALL:
1648     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1649     case elfcpp::R_X86_64_DTPOFF32:
1650     case elfcpp::R_X86_64_DTPOFF64:
1651     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1652     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1653       {
1654         const bool is_final = gsym->final_value_is_known();
1655         const tls::Tls_optimization optimized_type
1656             = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1657         switch (r_type)
1658           {
1659           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
1660             if (optimized_type == tls::TLSOPT_NONE)
1661               {
1662                 // Create a pair of GOT entries for the module index and
1663                 // dtv-relative offset.
1664                 Output_data_got<64, false>* got
1665                     = target->got_section(symtab, layout);
1666                 got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_PAIR,
1667                                                target->rela_dyn_section(layout),
1668                                                elfcpp::R_X86_64_DTPMOD64,
1669                                                elfcpp::R_X86_64_DTPOFF64);
1670               }
1671             else if (optimized_type == tls::TLSOPT_TO_IE)
1672               {
1673                 // Create a GOT entry for the tp-relative offset.
1674                 Output_data_got<64, false>* got
1675                     = target->got_section(symtab, layout);
1676                 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1677                                           target->rela_dyn_section(layout),
1678                                           elfcpp::R_X86_64_TPOFF64);
1679               }
1680             else if (optimized_type != tls::TLSOPT_TO_LE)
1681               unsupported_reloc_global(object, r_type, gsym);
1682             break;
1683
1684           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1685             target->define_tls_base_symbol(symtab, layout);
1686             if (optimized_type == tls::TLSOPT_NONE)
1687               {
1688                 // Create reserved PLT and GOT entries for the resolver.
1689                 target->reserve_tlsdesc_entries(symtab, layout);
1690
1691                 // Create a double GOT entry with an R_X86_64_TLSDESC reloc.
1692                 Output_data_got<64, false>* got
1693                     = target->got_section(symtab, layout);
1694                 Reloc_section *rt = target->rela_tlsdesc_section(layout);
1695                 got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_DESC, rt,
1696                                                elfcpp::R_X86_64_TLSDESC, 0);
1697               }
1698             else if (optimized_type == tls::TLSOPT_TO_IE)
1699               {
1700                 // Create a GOT entry for the tp-relative offset.
1701                 Output_data_got<64, false>* got
1702                     = target->got_section(symtab, layout);
1703                 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1704                                           target->rela_dyn_section(layout),
1705                                           elfcpp::R_X86_64_TPOFF64);
1706               }
1707             else if (optimized_type != tls::TLSOPT_TO_LE)
1708               unsupported_reloc_global(object, r_type, gsym);
1709             break;
1710
1711           case elfcpp::R_X86_64_TLSDESC_CALL:
1712             break;
1713
1714           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
1715             if (optimized_type == tls::TLSOPT_NONE)
1716               {
1717                 // Create a GOT entry for the module index.
1718                 target->got_mod_index_entry(symtab, layout, object);
1719               }
1720             else if (optimized_type != tls::TLSOPT_TO_LE)
1721               unsupported_reloc_global(object, r_type, gsym);
1722             break;
1723
1724           case elfcpp::R_X86_64_DTPOFF32:
1725           case elfcpp::R_X86_64_DTPOFF64:
1726             break;
1727
1728           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
1729             layout->set_has_static_tls();
1730             if (optimized_type == tls::TLSOPT_NONE)
1731               {
1732                 // Create a GOT entry for the tp-relative offset.
1733                 Output_data_got<64, false>* got
1734                     = target->got_section(symtab, layout);
1735                 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1736                                           target->rela_dyn_section(layout),
1737                                           elfcpp::R_X86_64_TPOFF64);
1738               }
1739             else if (optimized_type != tls::TLSOPT_TO_LE)
1740               unsupported_reloc_global(object, r_type, gsym);
1741             break;
1742
1743           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
1744             layout->set_has_static_tls();
1745             if (parameters->options().shared())
1746               unsupported_reloc_local(object, r_type);
1747             break;
1748
1749           default:
1750             gold_unreachable();
1751           }
1752       }
1753       break;
1754
1755     case elfcpp::R_X86_64_SIZE32:
1756     case elfcpp::R_X86_64_SIZE64:
1757     default:
1758       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1759                  object->name().c_str(), r_type,
1760                  gsym->demangled_name().c_str());
1761       break;
1762     }
1763 }
1764
1765 void
1766 Target_x86_64::gc_process_relocs(Symbol_table* symtab,
1767                                  Layout* layout,
1768                                  Sized_relobj<64, false>* object,
1769                                  unsigned int data_shndx,
1770                                  unsigned int sh_type,
1771                                  const unsigned char* prelocs,
1772                                  size_t reloc_count,
1773                                  Output_section* output_section,
1774                                  bool needs_special_offset_handling,
1775                                  size_t local_symbol_count,
1776                                  const unsigned char* plocal_symbols)
1777 {
1778
1779   if (sh_type == elfcpp::SHT_REL)
1780     {
1781       return;
1782     }
1783
1784    gold::gc_process_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1785                            Target_x86_64::Scan>(
1786     symtab,
1787     layout,
1788     this,
1789     object,
1790     data_shndx,
1791     prelocs,
1792     reloc_count,
1793     output_section,
1794     needs_special_offset_handling,
1795     local_symbol_count,
1796     plocal_symbols);
1797  
1798 }
1799 // Scan relocations for a section.
1800
1801 void
1802 Target_x86_64::scan_relocs(Symbol_table* symtab,
1803                            Layout* layout,
1804                            Sized_relobj<64, false>* object,
1805                            unsigned int data_shndx,
1806                            unsigned int sh_type,
1807                            const unsigned char* prelocs,
1808                            size_t reloc_count,
1809                            Output_section* output_section,
1810                            bool needs_special_offset_handling,
1811                            size_t local_symbol_count,
1812                            const unsigned char* plocal_symbols)
1813 {
1814   if (sh_type == elfcpp::SHT_REL)
1815     {
1816       gold_error(_("%s: unsupported REL reloc section"),
1817                  object->name().c_str());
1818       return;
1819     }
1820
1821   gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1822       Target_x86_64::Scan>(
1823     symtab,
1824     layout,
1825     this,
1826     object,
1827     data_shndx,
1828     prelocs,
1829     reloc_count,
1830     output_section,
1831     needs_special_offset_handling,
1832     local_symbol_count,
1833     plocal_symbols);
1834 }
1835
1836 // Finalize the sections.
1837
1838 void
1839 Target_x86_64::do_finalize_sections(
1840     Layout* layout,
1841     const Input_objects*,
1842     Symbol_table* symtab)
1843 {
1844   const Reloc_section* rel_plt = (this->plt_ == NULL
1845                                   ? NULL
1846                                   : this->plt_->rela_plt());
1847   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
1848                                   this->rela_dyn_, true, false);
1849                                   
1850   // Fill in some more dynamic tags.
1851   Output_data_dynamic* const odyn = layout->dynamic_data();
1852   if (odyn != NULL)
1853     {
1854       if (this->plt_ != NULL
1855           && this->plt_->output_section() != NULL
1856           && this->plt_->has_tlsdesc_entry())
1857         {
1858           unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
1859           unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
1860           this->got_->finalize_data_size();
1861           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
1862                                         this->plt_, plt_offset);
1863           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
1864                                         this->got_, got_offset);
1865         }
1866     }
1867
1868   // Emit any relocs we saved in an attempt to avoid generating COPY
1869   // relocs.
1870   if (this->copy_relocs_.any_saved_relocs())
1871     this->copy_relocs_.emit(this->rela_dyn_section(layout));
1872
1873   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
1874   // the .got.plt section.
1875   Symbol* sym = this->global_offset_table_;
1876   if (sym != NULL)
1877     {
1878       uint64_t data_size = this->got_plt_->current_data_size();
1879       symtab->get_sized_symbol<64>(sym)->set_symsize(data_size);
1880     }
1881 }
1882
1883 // Perform a relocation.
1884
1885 inline bool
1886 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1887                                   Target_x86_64* target,
1888                                   Output_section*,
1889                                   size_t relnum,
1890                                   const elfcpp::Rela<64, false>& rela,
1891                                   unsigned int r_type,
1892                                   const Sized_symbol<64>* gsym,
1893                                   const Symbol_value<64>* psymval,
1894                                   unsigned char* view,
1895                                   elfcpp::Elf_types<64>::Elf_Addr address,
1896                                   section_size_type view_size)
1897 {
1898   if (this->skip_call_tls_get_addr_)
1899     {
1900       if ((r_type != elfcpp::R_X86_64_PLT32
1901            && r_type != elfcpp::R_X86_64_PC32)
1902           || gsym == NULL
1903           || strcmp(gsym->name(), "__tls_get_addr") != 0)
1904         {
1905           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1906                                  _("missing expected TLS relocation"));
1907         }
1908       else
1909         {
1910           this->skip_call_tls_get_addr_ = false;
1911           return false;
1912         }
1913     }
1914
1915   // Pick the value to use for symbols defined in shared objects.
1916   Symbol_value<64> symval;
1917   if (gsym != NULL
1918       && gsym->use_plt_offset(r_type == elfcpp::R_X86_64_PC64
1919                               || r_type == elfcpp::R_X86_64_PC32
1920                               || r_type == elfcpp::R_X86_64_PC16
1921                               || r_type == elfcpp::R_X86_64_PC8))
1922     {
1923       symval.set_output_value(target->plt_section()->address()
1924                               + gsym->plt_offset());
1925       psymval = &symval;
1926     }
1927
1928   const Sized_relobj<64, false>* object = relinfo->object;
1929   const elfcpp::Elf_Xword addend = rela.get_r_addend();
1930
1931   // Get the GOT offset if needed.
1932   // The GOT pointer points to the end of the GOT section.
1933   // We need to subtract the size of the GOT section to get
1934   // the actual offset to use in the relocation.
1935   bool have_got_offset = false;
1936   unsigned int got_offset = 0;
1937   switch (r_type)
1938     {
1939     case elfcpp::R_X86_64_GOT32:
1940     case elfcpp::R_X86_64_GOT64:
1941     case elfcpp::R_X86_64_GOTPLT64:
1942     case elfcpp::R_X86_64_GOTPCREL:
1943     case elfcpp::R_X86_64_GOTPCREL64:
1944       if (gsym != NULL)
1945         {
1946           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
1947           got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
1948         }
1949       else
1950         {
1951           unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1952           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
1953           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
1954                         - target->got_size());
1955         }
1956       have_got_offset = true;
1957       break;
1958
1959     default:
1960       break;
1961     }
1962
1963   switch (r_type)
1964     {
1965     case elfcpp::R_X86_64_NONE:
1966     case elfcpp::R_386_GNU_VTINHERIT:
1967     case elfcpp::R_386_GNU_VTENTRY:
1968       break;
1969
1970     case elfcpp::R_X86_64_64:
1971       Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1972       break;
1973
1974     case elfcpp::R_X86_64_PC64:
1975       Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1976                                               address);
1977       break;
1978
1979     case elfcpp::R_X86_64_32:
1980       // FIXME: we need to verify that value + addend fits into 32 bits:
1981       //    uint64_t x = value + addend;
1982       //    x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1983       // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
1984       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1985       break;
1986
1987     case elfcpp::R_X86_64_32S:
1988       // FIXME: we need to verify that value + addend fits into 32 bits:
1989       //    int64_t x = value + addend;   // note this quantity is signed!
1990       //    x == static_cast<int64_t>(static_cast<int32_t>(x))
1991       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1992       break;
1993
1994     case elfcpp::R_X86_64_PC32:
1995       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1996                                               address);
1997       break;
1998
1999     case elfcpp::R_X86_64_16:
2000       Relocate_functions<64, false>::rela16(view, object, psymval, addend);
2001       break;
2002
2003     case elfcpp::R_X86_64_PC16:
2004       Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
2005                                               address);
2006       break;
2007
2008     case elfcpp::R_X86_64_8:
2009       Relocate_functions<64, false>::rela8(view, object, psymval, addend);
2010       break;
2011
2012     case elfcpp::R_X86_64_PC8:
2013       Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
2014                                              address);
2015       break;
2016
2017     case elfcpp::R_X86_64_PLT32:
2018       gold_assert(gsym == NULL
2019                   || gsym->has_plt_offset()
2020                   || gsym->final_value_is_known()
2021                   || (gsym->is_defined()
2022                       && !gsym->is_from_dynobj()
2023                       && !gsym->is_preemptible()));
2024       // Note: while this code looks the same as for R_X86_64_PC32, it
2025       // behaves differently because psymval was set to point to
2026       // the PLT entry, rather than the symbol, in Scan::global().
2027       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
2028                                               address);
2029       break;
2030
2031     case elfcpp::R_X86_64_PLTOFF64:
2032       {
2033         gold_assert(gsym);
2034         gold_assert(gsym->has_plt_offset()
2035                     || gsym->final_value_is_known());
2036         elfcpp::Elf_types<64>::Elf_Addr got_address;
2037         got_address = target->got_section(NULL, NULL)->address();
2038         Relocate_functions<64, false>::rela64(view, object, psymval,
2039                                               addend - got_address);
2040       }
2041
2042     case elfcpp::R_X86_64_GOT32:
2043       gold_assert(have_got_offset);
2044       Relocate_functions<64, false>::rela32(view, got_offset, addend);
2045       break;
2046
2047     case elfcpp::R_X86_64_GOTPC32:
2048       {
2049         gold_assert(gsym);
2050         elfcpp::Elf_types<64>::Elf_Addr value;
2051         value = target->got_plt_section()->address();
2052         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2053       }
2054       break;
2055
2056     case elfcpp::R_X86_64_GOT64:
2057       // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
2058       // Since we always add a PLT entry, this is equivalent.
2059     case elfcpp::R_X86_64_GOTPLT64:
2060       gold_assert(have_got_offset);
2061       Relocate_functions<64, false>::rela64(view, got_offset, addend);
2062       break;
2063
2064     case elfcpp::R_X86_64_GOTPC64:
2065       {
2066         gold_assert(gsym);
2067         elfcpp::Elf_types<64>::Elf_Addr value;
2068         value = target->got_plt_section()->address();
2069         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
2070       }
2071       break;
2072
2073     case elfcpp::R_X86_64_GOTOFF64:
2074       {
2075         elfcpp::Elf_types<64>::Elf_Addr value;
2076         value = (psymval->value(object, 0)
2077                  - target->got_plt_section()->address());
2078         Relocate_functions<64, false>::rela64(view, value, addend);
2079       }
2080       break;
2081
2082     case elfcpp::R_X86_64_GOTPCREL:
2083       {
2084         gold_assert(have_got_offset);
2085         elfcpp::Elf_types<64>::Elf_Addr value;
2086         value = target->got_plt_section()->address() + got_offset;
2087         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2088       }
2089       break;
2090
2091     case elfcpp::R_X86_64_GOTPCREL64:
2092       {
2093         gold_assert(have_got_offset);
2094         elfcpp::Elf_types<64>::Elf_Addr value;
2095         value = target->got_plt_section()->address() + got_offset;
2096         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
2097       }
2098       break;
2099
2100     case elfcpp::R_X86_64_COPY:
2101     case elfcpp::R_X86_64_GLOB_DAT:
2102     case elfcpp::R_X86_64_JUMP_SLOT:
2103     case elfcpp::R_X86_64_RELATIVE:
2104       // These are outstanding tls relocs, which are unexpected when linking
2105     case elfcpp::R_X86_64_TPOFF64:
2106     case elfcpp::R_X86_64_DTPMOD64:
2107     case elfcpp::R_X86_64_TLSDESC:
2108       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2109                              _("unexpected reloc %u in object file"),
2110                              r_type);
2111       break;
2112
2113       // These are initial tls relocs, which are expected when linking
2114     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2115     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2116     case elfcpp::R_X86_64_TLSDESC_CALL:
2117     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2118     case elfcpp::R_X86_64_DTPOFF32:
2119     case elfcpp::R_X86_64_DTPOFF64:
2120     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2121     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2122       this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
2123                          view, address, view_size);
2124       break;
2125
2126     case elfcpp::R_X86_64_SIZE32:
2127     case elfcpp::R_X86_64_SIZE64:
2128     default:
2129       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2130                              _("unsupported reloc %u"),
2131                              r_type);
2132       break;
2133     }
2134
2135   return true;
2136 }
2137
2138 // Perform a TLS relocation.
2139
2140 inline void
2141 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
2142                                       Target_x86_64* target,
2143                                       size_t relnum,
2144                                       const elfcpp::Rela<64, false>& rela,
2145                                       unsigned int r_type,
2146                                       const Sized_symbol<64>* gsym,
2147                                       const Symbol_value<64>* psymval,
2148                                       unsigned char* view,
2149                                       elfcpp::Elf_types<64>::Elf_Addr address,
2150                                       section_size_type view_size)
2151 {
2152   Output_segment* tls_segment = relinfo->layout->tls_segment();
2153
2154   const Sized_relobj<64, false>* object = relinfo->object;
2155   const elfcpp::Elf_Xword addend = rela.get_r_addend();
2156
2157   elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
2158
2159   const bool is_final = (gsym == NULL
2160                          ? !parameters->options().shared()
2161                          : gsym->final_value_is_known());
2162   const tls::Tls_optimization optimized_type
2163       = Target_x86_64::optimize_tls_reloc(is_final, r_type);
2164   switch (r_type)
2165     {
2166     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2167       this->saw_tls_block_reloc_ = true;
2168       if (optimized_type == tls::TLSOPT_TO_LE)
2169         {
2170           gold_assert(tls_segment != NULL);
2171           this->tls_gd_to_le(relinfo, relnum, tls_segment,
2172                              rela, r_type, value, view,
2173                              view_size);
2174           break;
2175         }
2176       else
2177         {
2178           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2179                                    ? GOT_TYPE_TLS_OFFSET
2180                                    : GOT_TYPE_TLS_PAIR);
2181           unsigned int got_offset;
2182           if (gsym != NULL)
2183             {
2184               gold_assert(gsym->has_got_offset(got_type));
2185               got_offset = gsym->got_offset(got_type) - target->got_size();
2186             }
2187           else
2188             {
2189               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2190               gold_assert(object->local_has_got_offset(r_sym, got_type));
2191               got_offset = (object->local_got_offset(r_sym, got_type)
2192                             - target->got_size());
2193             }
2194           if (optimized_type == tls::TLSOPT_TO_IE)
2195             {
2196               gold_assert(tls_segment != NULL);
2197               value = target->got_plt_section()->address() + got_offset;
2198               this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
2199                                  value, view, address, view_size);
2200               break;
2201             }
2202           else if (optimized_type == tls::TLSOPT_NONE)
2203             {
2204               // Relocate the field with the offset of the pair of GOT
2205               // entries.
2206               value = target->got_plt_section()->address() + got_offset;
2207               Relocate_functions<64, false>::pcrela32(view, value, addend,
2208                                                       address);
2209               break;
2210             }
2211         }
2212       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2213                              _("unsupported reloc %u"), r_type);
2214       break;
2215
2216     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2217     case elfcpp::R_X86_64_TLSDESC_CALL:
2218       this->saw_tls_block_reloc_ = true;
2219       if (optimized_type == tls::TLSOPT_TO_LE)
2220         {
2221           gold_assert(tls_segment != NULL);
2222           this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
2223                                   rela, r_type, value, view,
2224                                   view_size);
2225           break;
2226         }
2227       else
2228         {
2229           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2230                                    ? GOT_TYPE_TLS_OFFSET
2231                                    : GOT_TYPE_TLS_DESC);
2232           unsigned int got_offset;
2233           if (gsym != NULL)
2234             {
2235               gold_assert(gsym->has_got_offset(got_type));
2236               got_offset = gsym->got_offset(got_type) - target->got_size();
2237             }
2238           else
2239             {
2240               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2241               gold_assert(object->local_has_got_offset(r_sym, got_type));
2242               got_offset = (object->local_got_offset(r_sym, got_type)
2243                             - target->got_size());
2244             }
2245           if (optimized_type == tls::TLSOPT_TO_IE)
2246             {
2247               gold_assert(tls_segment != NULL);
2248               value = target->got_plt_section()->address() + got_offset;
2249               this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment,
2250                                       rela, r_type, value, view, address,
2251                                       view_size);
2252               break;
2253             }
2254           else if (optimized_type == tls::TLSOPT_NONE)
2255             {
2256               if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2257                 {
2258                   // Relocate the field with the offset of the pair of GOT
2259                   // entries.
2260                   value = target->got_plt_section()->address() + got_offset;
2261                   Relocate_functions<64, false>::pcrela32(view, value, addend,
2262                                                           address);
2263                 }
2264               break;
2265             }
2266         }
2267       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2268                              _("unsupported reloc %u"), r_type);
2269       break;
2270
2271     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2272       this->saw_tls_block_reloc_ = true;
2273       if (optimized_type == tls::TLSOPT_TO_LE)
2274         {
2275           gold_assert(tls_segment != NULL);
2276           this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
2277                              value, view, view_size);
2278           break;
2279         }
2280       else if (optimized_type == tls::TLSOPT_NONE)
2281         {
2282           // Relocate the field with the offset of the GOT entry for
2283           // the module index.
2284           unsigned int got_offset;
2285           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
2286                         - target->got_size());
2287           value = target->got_plt_section()->address() + got_offset;
2288           Relocate_functions<64, false>::pcrela32(view, value, addend,
2289                                                   address);
2290           break;
2291         }
2292       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2293                              _("unsupported reloc %u"), r_type);
2294       break;
2295
2296     case elfcpp::R_X86_64_DTPOFF32:
2297       if (optimized_type == tls::TLSOPT_TO_LE)
2298         {
2299           // This relocation type is used in debugging information.
2300           // In that case we need to not optimize the value.  If we
2301           // haven't seen a TLSLD reloc, then we assume we should not
2302           // optimize this reloc.
2303           if (this->saw_tls_block_reloc_)
2304             {
2305               gold_assert(tls_segment != NULL);
2306               value -= tls_segment->memsz();
2307             }
2308         }
2309       Relocate_functions<64, false>::rela32(view, value, addend);
2310       break;
2311
2312     case elfcpp::R_X86_64_DTPOFF64:
2313       if (optimized_type == tls::TLSOPT_TO_LE)
2314         {
2315           // See R_X86_64_DTPOFF32, just above, for why we test this.
2316           if (this->saw_tls_block_reloc_)
2317             {
2318               gold_assert(tls_segment != NULL);
2319               value -= tls_segment->memsz();
2320             }
2321         }
2322       Relocate_functions<64, false>::rela64(view, value, addend);
2323       break;
2324
2325     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2326       if (optimized_type == tls::TLSOPT_TO_LE)
2327         {
2328           gold_assert(tls_segment != NULL);
2329           Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
2330                                                 rela, r_type, value, view,
2331                                                 view_size);
2332           break;
2333         }
2334       else if (optimized_type == tls::TLSOPT_NONE)
2335         {
2336           // Relocate the field with the offset of the GOT entry for
2337           // the tp-relative offset of the symbol.
2338           unsigned int got_offset;
2339           if (gsym != NULL)
2340             {
2341               gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
2342               got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
2343                             - target->got_size());
2344             }
2345           else
2346             {
2347               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2348               gold_assert(object->local_has_got_offset(r_sym,
2349                                                        GOT_TYPE_TLS_OFFSET));
2350               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
2351                             - target->got_size());
2352             }
2353           value = target->got_plt_section()->address() + got_offset;
2354           Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2355           break;
2356         }
2357       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2358                              _("unsupported reloc type %u"),
2359                              r_type);
2360       break;
2361
2362     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2363       value -= tls_segment->memsz();
2364       Relocate_functions<64, false>::rela32(view, value, addend);
2365       break;
2366     }
2367 }
2368
2369 // Do a relocation in which we convert a TLS General-Dynamic to an
2370 // Initial-Exec.
2371
2372 inline void
2373 Target_x86_64::Relocate::tls_gd_to_ie(const Relocate_info<64, false>* relinfo,
2374                                       size_t relnum,
2375                                       Output_segment*,
2376                                       const elfcpp::Rela<64, false>& rela,
2377                                       unsigned int,
2378                                       elfcpp::Elf_types<64>::Elf_Addr value,
2379                                       unsigned char* view,
2380                                       elfcpp::Elf_types<64>::Elf_Addr address,
2381                                       section_size_type view_size)
2382 {
2383   // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
2384   // .word 0x6666; rex64; call __tls_get_addr
2385   // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
2386
2387   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
2388   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
2389
2390   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2391                  (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
2392   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2393                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
2394
2395   memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
2396
2397   const elfcpp::Elf_Xword addend = rela.get_r_addend();
2398   Relocate_functions<64, false>::pcrela32(view + 8, value, addend - 8, address);
2399
2400   // The next reloc should be a PLT32 reloc against __tls_get_addr.
2401   // We can skip it.
2402   this->skip_call_tls_get_addr_ = true;
2403 }
2404
2405 // Do a relocation in which we convert a TLS General-Dynamic to a
2406 // Local-Exec.
2407
2408 inline void
2409 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
2410                                       size_t relnum,
2411                                       Output_segment* tls_segment,
2412                                       const elfcpp::Rela<64, false>& rela,
2413                                       unsigned int,
2414                                       elfcpp::Elf_types<64>::Elf_Addr value,
2415                                       unsigned char* view,
2416                                       section_size_type view_size)
2417 {
2418   // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
2419   // .word 0x6666; rex64; call __tls_get_addr
2420   // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
2421
2422   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
2423   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
2424
2425   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2426                  (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
2427   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2428                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
2429
2430   memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
2431
2432   value -= tls_segment->memsz();
2433   Relocate_functions<64, false>::rela32(view + 8, value, 0);
2434
2435   // The next reloc should be a PLT32 reloc against __tls_get_addr.
2436   // We can skip it.
2437   this->skip_call_tls_get_addr_ = true;
2438 }
2439
2440 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
2441
2442 inline void
2443 Target_x86_64::Relocate::tls_desc_gd_to_ie(
2444     const Relocate_info<64, false>* relinfo,
2445     size_t relnum,
2446     Output_segment*,
2447     const elfcpp::Rela<64, false>& rela,
2448     unsigned int r_type,
2449     elfcpp::Elf_types<64>::Elf_Addr value,
2450     unsigned char* view,
2451     elfcpp::Elf_types<64>::Elf_Addr address,
2452     section_size_type view_size)
2453 {
2454   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2455     {
2456       // leaq foo@tlsdesc(%rip), %rax
2457       // ==> movq foo@gottpoff(%rip), %rax
2458       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2459       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2460       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2461                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
2462       view[-2] = 0x8b;
2463       const elfcpp::Elf_Xword addend = rela.get_r_addend();
2464       Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2465     }
2466   else
2467     {
2468       // call *foo@tlscall(%rax)
2469       // ==> nop; nop
2470       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
2471       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
2472       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2473                      view[0] == 0xff && view[1] == 0x10);
2474       view[0] = 0x66;
2475       view[1] = 0x90;
2476     }
2477 }
2478
2479 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
2480
2481 inline void
2482 Target_x86_64::Relocate::tls_desc_gd_to_le(
2483     const Relocate_info<64, false>* relinfo,
2484     size_t relnum,
2485     Output_segment* tls_segment,
2486     const elfcpp::Rela<64, false>& rela,
2487     unsigned int r_type,
2488     elfcpp::Elf_types<64>::Elf_Addr value,
2489     unsigned char* view,
2490     section_size_type view_size)
2491 {
2492   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2493     {
2494       // leaq foo@tlsdesc(%rip), %rax
2495       // ==> movq foo@tpoff, %rax
2496       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2497       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2498       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2499                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
2500       view[-2] = 0xc7;
2501       view[-1] = 0xc0;
2502       value -= tls_segment->memsz();
2503       Relocate_functions<64, false>::rela32(view, value, 0);
2504     }
2505   else
2506     {
2507       // call *foo@tlscall(%rax)
2508       // ==> nop; nop
2509       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
2510       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
2511       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2512                      view[0] == 0xff && view[1] == 0x10);
2513       view[0] = 0x66;
2514       view[1] = 0x90;
2515     }
2516 }
2517
2518 inline void
2519 Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
2520                                       size_t relnum,
2521                                       Output_segment*,
2522                                       const elfcpp::Rela<64, false>& rela,
2523                                       unsigned int,
2524                                       elfcpp::Elf_types<64>::Elf_Addr,
2525                                       unsigned char* view,
2526                                       section_size_type view_size)
2527 {
2528   // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
2529   // ... leq foo@dtpoff(%rax),%reg
2530   // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
2531
2532   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2533   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
2534
2535   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2536                  view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
2537
2538   tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
2539
2540   memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
2541
2542   // The next reloc should be a PLT32 reloc against __tls_get_addr.
2543   // We can skip it.
2544   this->skip_call_tls_get_addr_ = true;
2545 }
2546
2547 // Do a relocation in which we convert a TLS Initial-Exec to a
2548 // Local-Exec.
2549
2550 inline void
2551 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
2552                                       size_t relnum,
2553                                       Output_segment* tls_segment,
2554                                       const elfcpp::Rela<64, false>& rela,
2555                                       unsigned int,
2556                                       elfcpp::Elf_types<64>::Elf_Addr value,
2557                                       unsigned char* view,
2558                                       section_size_type view_size)
2559 {
2560   // We need to examine the opcodes to figure out which instruction we
2561   // are looking at.
2562
2563   // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
2564   // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
2565
2566   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2567   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2568
2569   unsigned char op1 = view[-3];
2570   unsigned char op2 = view[-2];
2571   unsigned char op3 = view[-1];
2572   unsigned char reg = op3 >> 3;
2573
2574   if (op2 == 0x8b)
2575     {
2576       // movq
2577       if (op1 == 0x4c)
2578         view[-3] = 0x49;
2579       view[-2] = 0xc7;
2580       view[-1] = 0xc0 | reg;
2581     }
2582   else if (reg == 4)
2583     {
2584       // Special handling for %rsp.
2585       if (op1 == 0x4c)
2586         view[-3] = 0x49;
2587       view[-2] = 0x81;
2588       view[-1] = 0xc0 | reg;
2589     }
2590   else
2591     {
2592       // addq
2593       if (op1 == 0x4c)
2594         view[-3] = 0x4d;
2595       view[-2] = 0x8d;
2596       view[-1] = 0x80 | reg | (reg << 3);
2597     }
2598
2599   value -= tls_segment->memsz();
2600   Relocate_functions<64, false>::rela32(view, value, 0);
2601 }
2602
2603 // Relocate section data.
2604
2605 void
2606 Target_x86_64::relocate_section(
2607     const Relocate_info<64, false>* relinfo,
2608     unsigned int sh_type,
2609     const unsigned char* prelocs,
2610     size_t reloc_count,
2611     Output_section* output_section,
2612     bool needs_special_offset_handling,
2613     unsigned char* view,
2614     elfcpp::Elf_types<64>::Elf_Addr address,
2615     section_size_type view_size,
2616     const Reloc_symbol_changes* reloc_symbol_changes)
2617 {
2618   gold_assert(sh_type == elfcpp::SHT_RELA);
2619
2620   gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
2621                          Target_x86_64::Relocate>(
2622     relinfo,
2623     this,
2624     prelocs,
2625     reloc_count,
2626     output_section,
2627     needs_special_offset_handling,
2628     view,
2629     address,
2630     view_size,
2631     reloc_symbol_changes);
2632 }
2633
2634 // Return the size of a relocation while scanning during a relocatable
2635 // link.
2636
2637 unsigned int
2638 Target_x86_64::Relocatable_size_for_reloc::get_size_for_reloc(
2639     unsigned int r_type,
2640     Relobj* object)
2641 {
2642   switch (r_type)
2643     {
2644     case elfcpp::R_X86_64_NONE:
2645     case elfcpp::R_386_GNU_VTINHERIT:
2646     case elfcpp::R_386_GNU_VTENTRY:
2647     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2648     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2649     case elfcpp::R_X86_64_TLSDESC_CALL:
2650     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2651     case elfcpp::R_X86_64_DTPOFF32:
2652     case elfcpp::R_X86_64_DTPOFF64:
2653     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2654     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2655       return 0;
2656
2657     case elfcpp::R_X86_64_64:
2658     case elfcpp::R_X86_64_PC64:
2659     case elfcpp::R_X86_64_GOTOFF64:
2660     case elfcpp::R_X86_64_GOTPC64:
2661     case elfcpp::R_X86_64_PLTOFF64:
2662     case elfcpp::R_X86_64_GOT64:
2663     case elfcpp::R_X86_64_GOTPCREL64:
2664     case elfcpp::R_X86_64_GOTPCREL:
2665     case elfcpp::R_X86_64_GOTPLT64:
2666       return 8;
2667
2668     case elfcpp::R_X86_64_32:
2669     case elfcpp::R_X86_64_32S:
2670     case elfcpp::R_X86_64_PC32:
2671     case elfcpp::R_X86_64_PLT32:
2672     case elfcpp::R_X86_64_GOTPC32:
2673     case elfcpp::R_X86_64_GOT32:
2674       return 4;
2675
2676     case elfcpp::R_X86_64_16:
2677     case elfcpp::R_X86_64_PC16:
2678       return 2;
2679
2680     case elfcpp::R_X86_64_8:
2681     case elfcpp::R_X86_64_PC8:
2682       return 1;
2683
2684     case elfcpp::R_X86_64_COPY:
2685     case elfcpp::R_X86_64_GLOB_DAT:
2686     case elfcpp::R_X86_64_JUMP_SLOT:
2687     case elfcpp::R_X86_64_RELATIVE:
2688       // These are outstanding tls relocs, which are unexpected when linking
2689     case elfcpp::R_X86_64_TPOFF64:
2690     case elfcpp::R_X86_64_DTPMOD64:
2691     case elfcpp::R_X86_64_TLSDESC:
2692       object->error(_("unexpected reloc %u in object file"), r_type);
2693       return 0;
2694
2695     case elfcpp::R_X86_64_SIZE32:
2696     case elfcpp::R_X86_64_SIZE64:
2697     default:
2698       object->error(_("unsupported reloc %u against local symbol"), r_type);
2699       return 0;
2700     }
2701 }
2702
2703 // Scan the relocs during a relocatable link.
2704
2705 void
2706 Target_x86_64::scan_relocatable_relocs(Symbol_table* symtab,
2707                                        Layout* layout,
2708                                        Sized_relobj<64, false>* object,
2709                                        unsigned int data_shndx,
2710                                        unsigned int sh_type,
2711                                        const unsigned char* prelocs,
2712                                        size_t reloc_count,
2713                                        Output_section* output_section,
2714                                        bool needs_special_offset_handling,
2715                                        size_t local_symbol_count,
2716                                        const unsigned char* plocal_symbols,
2717                                        Relocatable_relocs* rr)
2718 {
2719   gold_assert(sh_type == elfcpp::SHT_RELA);
2720
2721   typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
2722     Relocatable_size_for_reloc> Scan_relocatable_relocs;
2723
2724   gold::scan_relocatable_relocs<64, false, elfcpp::SHT_RELA,
2725       Scan_relocatable_relocs>(
2726     symtab,
2727     layout,
2728     object,
2729     data_shndx,
2730     prelocs,
2731     reloc_count,
2732     output_section,
2733     needs_special_offset_handling,
2734     local_symbol_count,
2735     plocal_symbols,
2736     rr);
2737 }
2738
2739 // Relocate a section during a relocatable link.
2740
2741 void
2742 Target_x86_64::relocate_for_relocatable(
2743     const Relocate_info<64, false>* relinfo,
2744     unsigned int sh_type,
2745     const unsigned char* prelocs,
2746     size_t reloc_count,
2747     Output_section* output_section,
2748     off_t offset_in_output_section,
2749     const Relocatable_relocs* rr,
2750     unsigned char* view,
2751     elfcpp::Elf_types<64>::Elf_Addr view_address,
2752     section_size_type view_size,
2753     unsigned char* reloc_view,
2754     section_size_type reloc_view_size)
2755 {
2756   gold_assert(sh_type == elfcpp::SHT_RELA);
2757
2758   gold::relocate_for_relocatable<64, false, elfcpp::SHT_RELA>(
2759     relinfo,
2760     prelocs,
2761     reloc_count,
2762     output_section,
2763     offset_in_output_section,
2764     rr,
2765     view,
2766     view_address,
2767     view_size,
2768     reloc_view,
2769     reloc_view_size);
2770 }
2771
2772 // Return the value to use for a dynamic which requires special
2773 // treatment.  This is how we support equality comparisons of function
2774 // pointers across shared library boundaries, as described in the
2775 // processor specific ABI supplement.
2776
2777 uint64_t
2778 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
2779 {
2780   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
2781   return this->plt_section()->address() + gsym->plt_offset();
2782 }
2783
2784 // Return a string used to fill a code section with nops to take up
2785 // the specified length.
2786
2787 std::string
2788 Target_x86_64::do_code_fill(section_size_type length) const
2789 {
2790   if (length >= 16)
2791     {
2792       // Build a jmpq instruction to skip over the bytes.
2793       unsigned char jmp[5];
2794       jmp[0] = 0xe9;
2795       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
2796       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
2797               + std::string(length - 5, '\0'));
2798     }
2799
2800   // Nop sequences of various lengths.
2801   const char nop1[1] = { 0x90 };                   // nop
2802   const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
2803   const char nop3[3] = { 0x0f, 0x1f, 0x00 };       // nop (%rax)
2804   const char nop4[4] = { 0x0f, 0x1f, 0x40, 0x00};  // nop 0(%rax)
2805   const char nop5[5] = { 0x0f, 0x1f, 0x44, 0x00,   // nop 0(%rax,%rax,1)
2806                          0x00 };
2807   const char nop6[6] = { 0x66, 0x0f, 0x1f, 0x44,   // nopw 0(%rax,%rax,1)
2808                          0x00, 0x00 };
2809   const char nop7[7] = { 0x0f, 0x1f, 0x80, 0x00,   // nopl 0L(%rax)
2810                          0x00, 0x00, 0x00 };
2811   const char nop8[8] = { 0x0f, 0x1f, 0x84, 0x00,   // nopl 0L(%rax,%rax,1)
2812                          0x00, 0x00, 0x00, 0x00 };
2813   const char nop9[9] = { 0x66, 0x0f, 0x1f, 0x84,   // nopw 0L(%rax,%rax,1)
2814                          0x00, 0x00, 0x00, 0x00,
2815                          0x00 };
2816   const char nop10[10] = { 0x66, 0x2e, 0x0f, 0x1f, // nopw %cs:0L(%rax,%rax,1)
2817                            0x84, 0x00, 0x00, 0x00,
2818                            0x00, 0x00 };
2819   const char nop11[11] = { 0x66, 0x66, 0x2e, 0x0f, // data16
2820                            0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
2821                            0x00, 0x00, 0x00 };
2822   const char nop12[12] = { 0x66, 0x66, 0x66, 0x2e, // data16; data16
2823                            0x0f, 0x1f, 0x84, 0x00, // nopw %cs:0L(%rax,%rax,1)
2824                            0x00, 0x00, 0x00, 0x00 };
2825   const char nop13[13] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
2826                            0x2e, 0x0f, 0x1f, 0x84, // nopw %cs:0L(%rax,%rax,1)
2827                            0x00, 0x00, 0x00, 0x00,
2828                            0x00 };
2829   const char nop14[14] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
2830                            0x66, 0x2e, 0x0f, 0x1f, // data16
2831                            0x84, 0x00, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
2832                            0x00, 0x00 };
2833   const char nop15[15] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
2834                            0x66, 0x66, 0x2e, 0x0f, // data16; data16
2835                            0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
2836                            0x00, 0x00, 0x00 };
2837
2838   const char* nops[16] = {
2839     NULL,
2840     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
2841     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
2842   };
2843
2844   return std::string(nops[length], length);
2845 }
2846
2847 // Return the addend to use for a target specific relocation.  The
2848 // only target specific relocation is R_X86_64_TLSDESC for a local
2849 // symbol.  We want to set the addend is the offset of the local
2850 // symbol in the TLS segment.
2851
2852 uint64_t
2853 Target_x86_64::do_reloc_addend(void* arg, unsigned int r_type,
2854                                uint64_t) const
2855 {
2856   gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
2857   uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
2858   gold_assert(intarg < this->tlsdesc_reloc_info_.size());
2859   const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
2860   const Symbol_value<64>* psymval = ti.object->local_symbol(ti.r_sym);
2861   gold_assert(psymval->is_tls_symbol());
2862   // The value of a TLS symbol is the offset in the TLS segment.
2863   return psymval->value(ti.object, 0);
2864 }
2865
2866 // FNOFFSET in section SHNDX in OBJECT is the start of a function
2867 // compiled with -fstack-split.  The function calls non-stack-split
2868 // code.  We have to change the function so that it always ensures
2869 // that it has enough stack space to run some random function.
2870
2871 void
2872 Target_x86_64::do_calls_non_split(Relobj* object, unsigned int shndx,
2873                                   section_offset_type fnoffset,
2874                                   section_size_type fnsize,
2875                                   unsigned char* view,
2876                                   section_size_type view_size,
2877                                   std::string* from,
2878                                   std::string* to) const
2879 {
2880   // The function starts with a comparison of the stack pointer and a
2881   // field in the TCB.  This is followed by a jump.
2882
2883   // cmp %fs:NN,%rsp
2884   if (this->match_view(view, view_size, fnoffset, "\x64\x48\x3b\x24\x25", 5)
2885       && fnsize > 9)
2886     {
2887       // We will call __morestack if the carry flag is set after this
2888       // comparison.  We turn the comparison into an stc instruction
2889       // and some nops.
2890       view[fnoffset] = '\xf9';
2891       this->set_view_to_nop(view, view_size, fnoffset + 1, 8);
2892     }
2893   // lea NN(%rsp),%r10
2894   // lea NN(%rsp),%r11
2895   else if ((this->match_view(view, view_size, fnoffset,
2896                              "\x4c\x8d\x94\x24", 4)
2897             || this->match_view(view, view_size, fnoffset,
2898                                 "\x4c\x8d\x9c\x24", 4))
2899            && fnsize > 8)
2900     {
2901       // This is loading an offset from the stack pointer for a
2902       // comparison.  The offset is negative, so we decrease the
2903       // offset by the amount of space we need for the stack.  This
2904       // means we will avoid calling __morestack if there happens to
2905       // be plenty of space on the stack already.
2906       unsigned char* pval = view + fnoffset + 4;
2907       uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
2908       val -= parameters->options().split_stack_adjust_size();
2909       elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
2910     }
2911   else
2912     {
2913       if (!object->has_no_split_stack())
2914         object->error(_("failed to match split-stack sequence at "
2915                         "section %u offset %0zx"),
2916                       shndx, static_cast<size_t>(fnoffset));
2917       return;
2918     }
2919
2920   // We have to change the function so that it calls
2921   // __morestack_non_split instead of __morestack.  The former will
2922   // allocate additional stack space.
2923   *from = "__morestack";
2924   *to = "__morestack_non_split";
2925 }
2926
2927 // The selector for x86_64 object files.
2928
2929 class Target_selector_x86_64 : public Target_selector_freebsd
2930 {
2931 public:
2932   Target_selector_x86_64()
2933     : Target_selector_freebsd(elfcpp::EM_X86_64, 64, false, "elf64-x86-64",
2934                               "elf64-x86-64-freebsd")
2935   { }
2936
2937   Target*
2938   do_instantiate_target()
2939   { return new Target_x86_64(); }
2940
2941 };
2942
2943 Target_selector_x86_64 target_selector_x86_64;
2944
2945 } // End anonymous namespace.