* target-reloc.h (relocate_section): If the reloc offset is out of
[external/binutils.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cstring>
27
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "x86_64.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "freebsd.h"
43 #include "nacl.h"
44 #include "gc.h"
45 #include "icf.h"
46
47 namespace
48 {
49
50 using namespace gold;
51
52 // A class to handle the PLT data.
53 // This is an abstract base class that handles most of the linker details
54 // but does not know the actual contents of PLT entries.  The derived
55 // classes below fill in those details.
56
57 template<int size>
58 class Output_data_plt_x86_64 : public Output_section_data
59 {
60  public:
61   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
62
63   Output_data_plt_x86_64(Layout* layout, uint64_t addralign,
64                          Output_data_got<64, false>* got,
65                          Output_data_space* got_plt,
66                          Output_data_space* got_irelative)
67     : Output_section_data(addralign), layout_(layout), tlsdesc_rel_(NULL),
68       irelative_rel_(NULL), got_(got), got_plt_(got_plt),
69       got_irelative_(got_irelative), count_(0), irelative_count_(0),
70       tlsdesc_got_offset_(-1U), free_list_()
71   { this->init(layout); }
72
73   Output_data_plt_x86_64(Layout* layout, uint64_t plt_entry_size,
74                          Output_data_got<64, false>* got,
75                          Output_data_space* got_plt,
76                          Output_data_space* got_irelative,
77                          unsigned int plt_count)
78     : Output_section_data((plt_count + 1) * plt_entry_size,
79                           plt_entry_size, false),
80       layout_(layout), tlsdesc_rel_(NULL), irelative_rel_(NULL), got_(got),
81       got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
82       irelative_count_(0), tlsdesc_got_offset_(-1U), free_list_()
83   {
84     this->init(layout);
85
86     // Initialize the free list and reserve the first entry.
87     this->free_list_.init((plt_count + 1) * plt_entry_size, false);
88     this->free_list_.remove(0, plt_entry_size);
89   }
90
91   // Initialize the PLT section.
92   void
93   init(Layout* layout);
94
95   // Add an entry to the PLT.
96   void
97   add_entry(Symbol_table*, Layout*, Symbol* gsym);
98
99   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
100   unsigned int
101   add_local_ifunc_entry(Symbol_table* symtab, Layout*,
102                         Sized_relobj_file<size, false>* relobj,
103                         unsigned int local_sym_index);
104
105   // Add the relocation for a PLT entry.
106   void
107   add_relocation(Symbol_table*, Layout*, Symbol* gsym,
108                  unsigned int got_offset);
109
110   // Add the reserved TLSDESC_PLT entry to the PLT.
111   void
112   reserve_tlsdesc_entry(unsigned int got_offset)
113   { this->tlsdesc_got_offset_ = got_offset; }
114
115   // Return true if a TLSDESC_PLT entry has been reserved.
116   bool
117   has_tlsdesc_entry() const
118   { return this->tlsdesc_got_offset_ != -1U; }
119
120   // Return the GOT offset for the reserved TLSDESC_PLT entry.
121   unsigned int
122   get_tlsdesc_got_offset() const
123   { return this->tlsdesc_got_offset_; }
124
125   // Return the offset of the reserved TLSDESC_PLT entry.
126   unsigned int
127   get_tlsdesc_plt_offset() const
128   {
129     return ((this->count_ + this->irelative_count_ + 1)
130             * this->get_plt_entry_size());
131   }
132
133   // Return the .rela.plt section data.
134   Reloc_section*
135   rela_plt()
136   { return this->rel_; }
137
138   // Return where the TLSDESC relocations should go.
139   Reloc_section*
140   rela_tlsdesc(Layout*);
141
142   // Return where the IRELATIVE relocations should go in the PLT
143   // relocations.
144   Reloc_section*
145   rela_irelative(Symbol_table*, Layout*);
146
147   // Return whether we created a section for IRELATIVE relocations.
148   bool
149   has_irelative_section() const
150   { return this->irelative_rel_ != NULL; }
151
152   // Return the number of PLT entries.
153   unsigned int
154   entry_count() const
155   { return this->count_ + this->irelative_count_; }
156
157   // Return the offset of the first non-reserved PLT entry.
158   unsigned int
159   first_plt_entry_offset()
160   { return this->get_plt_entry_size(); }
161
162   // Return the size of a PLT entry.
163   unsigned int
164   get_plt_entry_size() const
165   { return this->do_get_plt_entry_size(); }
166
167   // Reserve a slot in the PLT for an existing symbol in an incremental update.
168   void
169   reserve_slot(unsigned int plt_index)
170   {
171     this->free_list_.remove((plt_index + 1) * this->get_plt_entry_size(),
172                             (plt_index + 2) * this->get_plt_entry_size());
173   }
174
175   // Return the PLT address to use for a global symbol.
176   uint64_t
177   address_for_global(const Symbol*);
178
179   // Return the PLT address to use for a local symbol.
180   uint64_t
181   address_for_local(const Relobj*, unsigned int symndx);
182
183   // Add .eh_frame information for the PLT.
184   void
185   add_eh_frame(Layout* layout)
186   { this->do_add_eh_frame(layout); }
187
188  protected:
189   // Fill in the first PLT entry.
190   void
191   fill_first_plt_entry(unsigned char* pov,
192                        typename elfcpp::Elf_types<size>::Elf_Addr got_address,
193                        typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
194   { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
195
196   // Fill in a normal PLT entry.  Returns the offset into the entry that
197   // should be the initial GOT slot value.
198   unsigned int
199   fill_plt_entry(unsigned char* pov,
200                  typename elfcpp::Elf_types<size>::Elf_Addr got_address,
201                  typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
202                  unsigned int got_offset,
203                  unsigned int plt_offset,
204                  unsigned int plt_index)
205   {
206     return this->do_fill_plt_entry(pov, got_address, plt_address,
207                                    got_offset, plt_offset, plt_index);
208   }
209
210   // Fill in the reserved TLSDESC PLT entry.
211   void
212   fill_tlsdesc_entry(unsigned char* pov,
213                      typename elfcpp::Elf_types<size>::Elf_Addr got_address,
214                      typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
215                      typename elfcpp::Elf_types<size>::Elf_Addr got_base,
216                      unsigned int tlsdesc_got_offset,
217                      unsigned int plt_offset)
218   {
219     this->do_fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
220                                 tlsdesc_got_offset, plt_offset);
221   }
222
223   virtual unsigned int
224   do_get_plt_entry_size() const = 0;
225
226   virtual void
227   do_fill_first_plt_entry(unsigned char* pov,
228                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
229                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr)
230     = 0;
231
232   virtual unsigned int
233   do_fill_plt_entry(unsigned char* pov,
234                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
235                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
236                     unsigned int got_offset,
237                     unsigned int plt_offset,
238                     unsigned int plt_index) = 0;
239
240   virtual void
241   do_fill_tlsdesc_entry(unsigned char* pov,
242                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
243                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
244                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
245                         unsigned int tlsdesc_got_offset,
246                         unsigned int plt_offset) = 0;
247
248   virtual void
249   do_add_eh_frame(Layout* layout) = 0;
250
251   void
252   do_adjust_output_section(Output_section* os);
253
254   // Write to a map file.
255   void
256   do_print_to_mapfile(Mapfile* mapfile) const
257   { mapfile->print_output_data(this, _("** PLT")); }
258
259   // The CIE of the .eh_frame unwind information for the PLT.
260   static const int plt_eh_frame_cie_size = 16;
261   static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
262
263  private:
264   // Set the final size.
265   void
266   set_final_data_size();
267
268   // Write out the PLT data.
269   void
270   do_write(Output_file*);
271
272   // A pointer to the Layout class, so that we can find the .dynamic
273   // section when we write out the GOT PLT section.
274   Layout* layout_;
275   // The reloc section.
276   Reloc_section* rel_;
277   // The TLSDESC relocs, if necessary.  These must follow the regular
278   // PLT relocs.
279   Reloc_section* tlsdesc_rel_;
280   // The IRELATIVE relocs, if necessary.  These must follow the
281   // regular PLT relocations and the TLSDESC relocations.
282   Reloc_section* irelative_rel_;
283   // The .got section.
284   Output_data_got<64, false>* got_;
285   // The .got.plt section.
286   Output_data_space* got_plt_;
287   // The part of the .got.plt section used for IRELATIVE relocs.
288   Output_data_space* got_irelative_;
289   // The number of PLT entries.
290   unsigned int count_;
291   // Number of PLT entries with R_X86_64_IRELATIVE relocs.  These
292   // follow the regular PLT entries.
293   unsigned int irelative_count_;
294   // Offset of the reserved TLSDESC_GOT entry when needed.
295   unsigned int tlsdesc_got_offset_;
296   // List of available regions within the section, for incremental
297   // update links.
298   Free_list free_list_;
299 };
300
301 template<int size>
302 class Output_data_plt_x86_64_standard : public Output_data_plt_x86_64<size>
303 {
304  public:
305   Output_data_plt_x86_64_standard(Layout* layout,
306                                   Output_data_got<64, false>* got,
307                                   Output_data_space* got_plt,
308                                   Output_data_space* got_irelative)
309     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
310                                    got, got_plt, got_irelative)
311   { }
312
313   Output_data_plt_x86_64_standard(Layout* layout,
314                                   Output_data_got<64, false>* got,
315                                   Output_data_space* got_plt,
316                                   Output_data_space* got_irelative,
317                                   unsigned int plt_count)
318     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
319                                    got, got_plt, got_irelative,
320                                    plt_count)
321   { }
322
323  protected:
324   virtual unsigned int
325   do_get_plt_entry_size() const
326   { return plt_entry_size; }
327
328   virtual void
329   do_add_eh_frame(Layout* layout)
330   {
331     layout->add_eh_frame_for_plt(this,
332                                  this->plt_eh_frame_cie,
333                                  this->plt_eh_frame_cie_size,
334                                  plt_eh_frame_fde,
335                                  plt_eh_frame_fde_size);
336   }
337
338   virtual void
339   do_fill_first_plt_entry(unsigned char* pov,
340                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
341                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
342
343   virtual unsigned int
344   do_fill_plt_entry(unsigned char* pov,
345                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
346                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
347                     unsigned int got_offset,
348                     unsigned int plt_offset,
349                     unsigned int plt_index);
350
351   virtual void
352   do_fill_tlsdesc_entry(unsigned char* pov,
353                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
354                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
355                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
356                         unsigned int tlsdesc_got_offset,
357                         unsigned int plt_offset);
358
359  private:
360   // The size of an entry in the PLT.
361   static const int plt_entry_size = 16;
362
363   // The first entry in the PLT.
364   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
365   // procedure linkage table for both programs and shared objects."
366   static const unsigned char first_plt_entry[plt_entry_size];
367
368   // Other entries in the PLT for an executable.
369   static const unsigned char plt_entry[plt_entry_size];
370
371   // The reserved TLSDESC entry in the PLT for an executable.
372   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
373
374   // The .eh_frame unwind information for the PLT.
375   static const int plt_eh_frame_fde_size = 32;
376   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
377 };
378
379 // The x86_64 target class.
380 // See the ABI at
381 //   http://www.x86-64.org/documentation/abi.pdf
382 // TLS info comes from
383 //   http://people.redhat.com/drepper/tls.pdf
384 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
385
386 template<int size>
387 class Target_x86_64 : public Sized_target<size, false>
388 {
389  public:
390   // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
391   // uses only Elf64_Rela relocation entries with explicit addends."
392   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
393
394   Target_x86_64(const Target::Target_info* info = &x86_64_info)
395     : Sized_target<size, false>(info),
396       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
397       got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
398       rela_irelative_(NULL), copy_relocs_(elfcpp::R_X86_64_COPY),
399       dynbss_(NULL), got_mod_index_offset_(-1U), tlsdesc_reloc_info_(),
400       tls_base_symbol_defined_(false)
401   { }
402
403   // Hook for a new output section.
404   void
405   do_new_output_section(Output_section*) const;
406
407   // Scan the relocations to look for symbol adjustments.
408   void
409   gc_process_relocs(Symbol_table* symtab,
410                     Layout* layout,
411                     Sized_relobj_file<size, false>* object,
412                     unsigned int data_shndx,
413                     unsigned int sh_type,
414                     const unsigned char* prelocs,
415                     size_t reloc_count,
416                     Output_section* output_section,
417                     bool needs_special_offset_handling,
418                     size_t local_symbol_count,
419                     const unsigned char* plocal_symbols);
420
421   // Scan the relocations to look for symbol adjustments.
422   void
423   scan_relocs(Symbol_table* symtab,
424               Layout* layout,
425               Sized_relobj_file<size, false>* object,
426               unsigned int data_shndx,
427               unsigned int sh_type,
428               const unsigned char* prelocs,
429               size_t reloc_count,
430               Output_section* output_section,
431               bool needs_special_offset_handling,
432               size_t local_symbol_count,
433               const unsigned char* plocal_symbols);
434
435   // Finalize the sections.
436   void
437   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
438
439   // Return the value to use for a dynamic which requires special
440   // treatment.
441   uint64_t
442   do_dynsym_value(const Symbol*) const;
443
444   // Relocate a section.
445   void
446   relocate_section(const Relocate_info<size, false>*,
447                    unsigned int sh_type,
448                    const unsigned char* prelocs,
449                    size_t reloc_count,
450                    Output_section* output_section,
451                    bool needs_special_offset_handling,
452                    unsigned char* view,
453                    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
454                    section_size_type view_size,
455                    const Reloc_symbol_changes*);
456
457   // Scan the relocs during a relocatable link.
458   void
459   scan_relocatable_relocs(Symbol_table* symtab,
460                           Layout* layout,
461                           Sized_relobj_file<size, false>* object,
462                           unsigned int data_shndx,
463                           unsigned int sh_type,
464                           const unsigned char* prelocs,
465                           size_t reloc_count,
466                           Output_section* output_section,
467                           bool needs_special_offset_handling,
468                           size_t local_symbol_count,
469                           const unsigned char* plocal_symbols,
470                           Relocatable_relocs*);
471
472   // Emit relocations for a section.
473   void
474   relocate_relocs(
475       const Relocate_info<size, false>*,
476       unsigned int sh_type,
477       const unsigned char* prelocs,
478       size_t reloc_count,
479       Output_section* output_section,
480       typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
481       const Relocatable_relocs*,
482       unsigned char* view,
483       typename elfcpp::Elf_types<size>::Elf_Addr view_address,
484       section_size_type view_size,
485       unsigned char* reloc_view,
486       section_size_type reloc_view_size);
487
488   // Return a string used to fill a code section with nops.
489   std::string
490   do_code_fill(section_size_type length) const;
491
492   // Return whether SYM is defined by the ABI.
493   bool
494   do_is_defined_by_abi(const Symbol* sym) const
495   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
496
497   // Return the symbol index to use for a target specific relocation.
498   // The only target specific relocation is R_X86_64_TLSDESC for a
499   // local symbol, which is an absolute reloc.
500   unsigned int
501   do_reloc_symbol_index(void*, unsigned int r_type) const
502   {
503     gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
504     return 0;
505   }
506
507   // Return the addend to use for a target specific relocation.
508   uint64_t
509   do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
510
511   // Return the PLT section.
512   uint64_t
513   do_plt_address_for_global(const Symbol* gsym) const
514   { return this->plt_section()->address_for_global(gsym); }
515
516   uint64_t
517   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
518   { return this->plt_section()->address_for_local(relobj, symndx); }
519
520   // This function should be defined in targets that can use relocation
521   // types to determine (implemented in local_reloc_may_be_function_pointer
522   // and global_reloc_may_be_function_pointer)
523   // if a function's pointer is taken.  ICF uses this in safe mode to only
524   // fold those functions whose pointer is defintely not taken.  For x86_64
525   // pie binaries, safe ICF cannot be done by looking at relocation types.
526   bool
527   do_can_check_for_function_pointers() const
528   { return !parameters->options().pie(); }
529
530   // Return the base for a DW_EH_PE_datarel encoding.
531   uint64_t
532   do_ehframe_datarel_base() const;
533
534   // Adjust -fsplit-stack code which calls non-split-stack code.
535   void
536   do_calls_non_split(Relobj* object, unsigned int shndx,
537                      section_offset_type fnoffset, section_size_type fnsize,
538                      unsigned char* view, section_size_type view_size,
539                      std::string* from, std::string* to) const;
540
541   // Return the size of the GOT section.
542   section_size_type
543   got_size() const
544   {
545     gold_assert(this->got_ != NULL);
546     return this->got_->data_size();
547   }
548
549   // Return the number of entries in the GOT.
550   unsigned int
551   got_entry_count() const
552   {
553     if (this->got_ == NULL)
554       return 0;
555     return this->got_size() / 8;
556   }
557
558   // Return the number of entries in the PLT.
559   unsigned int
560   plt_entry_count() const;
561
562   // Return the offset of the first non-reserved PLT entry.
563   unsigned int
564   first_plt_entry_offset() const;
565
566   // Return the size of each PLT entry.
567   unsigned int
568   plt_entry_size() const;
569
570   // Create the GOT section for an incremental update.
571   Output_data_got_base*
572   init_got_plt_for_update(Symbol_table* symtab,
573                           Layout* layout,
574                           unsigned int got_count,
575                           unsigned int plt_count);
576
577   // Reserve a GOT entry for a local symbol, and regenerate any
578   // necessary dynamic relocations.
579   void
580   reserve_local_got_entry(unsigned int got_index,
581                           Sized_relobj<size, false>* obj,
582                           unsigned int r_sym,
583                           unsigned int got_type);
584
585   // Reserve a GOT entry for a global symbol, and regenerate any
586   // necessary dynamic relocations.
587   void
588   reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
589                            unsigned int got_type);
590
591   // Register an existing PLT entry for a global symbol.
592   void
593   register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
594                             Symbol* gsym);
595
596   // Force a COPY relocation for a given symbol.
597   void
598   emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
599
600   // Apply an incremental relocation.
601   void
602   apply_relocation(const Relocate_info<size, false>* relinfo,
603                    typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
604                    unsigned int r_type,
605                    typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
606                    const Symbol* gsym,
607                    unsigned char* view,
608                    typename elfcpp::Elf_types<size>::Elf_Addr address,
609                    section_size_type view_size);
610
611   // Add a new reloc argument, returning the index in the vector.
612   size_t
613   add_tlsdesc_info(Sized_relobj_file<size, false>* object, unsigned int r_sym)
614   {
615     this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
616     return this->tlsdesc_reloc_info_.size() - 1;
617   }
618
619   Output_data_plt_x86_64<size>*
620   make_data_plt(Layout* layout,
621                 Output_data_got<64, false>* got,
622                 Output_data_space* got_plt,
623                 Output_data_space* got_irelative)
624   {
625     return this->do_make_data_plt(layout, got, got_plt, got_irelative);
626   }
627
628   Output_data_plt_x86_64<size>*
629   make_data_plt(Layout* layout,
630                 Output_data_got<64, false>* got,
631                 Output_data_space* got_plt,
632                 Output_data_space* got_irelative,
633                 unsigned int plt_count)
634   {
635     return this->do_make_data_plt(layout, got, got_plt, got_irelative,
636                                   plt_count);
637   }
638
639   virtual Output_data_plt_x86_64<size>*
640   do_make_data_plt(Layout* layout,
641                    Output_data_got<64, false>* got,
642                    Output_data_space* got_plt,
643                    Output_data_space* got_irelative)
644   {
645     return new Output_data_plt_x86_64_standard<size>(layout, got, got_plt,
646                                                      got_irelative);
647   }
648
649   virtual Output_data_plt_x86_64<size>*
650   do_make_data_plt(Layout* layout,
651                    Output_data_got<64, false>* got,
652                    Output_data_space* got_plt,
653                    Output_data_space* got_irelative,
654                    unsigned int plt_count)
655   {
656     return new Output_data_plt_x86_64_standard<size>(layout, got, got_plt,
657                                                      got_irelative,
658                                                      plt_count);
659   }
660
661  private:
662   // The class which scans relocations.
663   class Scan
664   {
665   public:
666     Scan()
667       : issued_non_pic_error_(false)
668     { }
669
670     static inline int
671     get_reference_flags(unsigned int r_type);
672
673     inline void
674     local(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
675           Sized_relobj_file<size, false>* object,
676           unsigned int data_shndx,
677           Output_section* output_section,
678           const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
679           const elfcpp::Sym<size, false>& lsym,
680           bool is_discarded);
681
682     inline void
683     global(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
684            Sized_relobj_file<size, false>* object,
685            unsigned int data_shndx,
686            Output_section* output_section,
687            const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
688            Symbol* gsym);
689
690     inline bool
691     local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
692                                         Target_x86_64* target,
693                                         Sized_relobj_file<size, false>* object,
694                                         unsigned int data_shndx,
695                                         Output_section* output_section,
696                                         const elfcpp::Rela<size, false>& reloc,
697                                         unsigned int r_type,
698                                         const elfcpp::Sym<size, false>& lsym);
699
700     inline bool
701     global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
702                                          Target_x86_64* target,
703                                          Sized_relobj_file<size, false>* object,
704                                          unsigned int data_shndx,
705                                          Output_section* output_section,
706                                          const elfcpp::Rela<size, false>& reloc,
707                                          unsigned int r_type,
708                                          Symbol* gsym);
709
710   private:
711     static void
712     unsupported_reloc_local(Sized_relobj_file<size, false>*,
713                             unsigned int r_type);
714
715     static void
716     unsupported_reloc_global(Sized_relobj_file<size, false>*,
717                              unsigned int r_type, Symbol*);
718
719     void
720     check_non_pic(Relobj*, unsigned int r_type, Symbol*);
721
722     inline bool
723     possible_function_pointer_reloc(unsigned int r_type);
724
725     bool
726     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, false>*,
727                               unsigned int r_type);
728
729     // Whether we have issued an error about a non-PIC compilation.
730     bool issued_non_pic_error_;
731   };
732
733   // The class which implements relocation.
734   class Relocate
735   {
736    public:
737     Relocate()
738       : skip_call_tls_get_addr_(false)
739     { }
740
741     ~Relocate()
742     {
743       if (this->skip_call_tls_get_addr_)
744         {
745           // FIXME: This needs to specify the location somehow.
746           gold_error(_("missing expected TLS relocation"));
747         }
748     }
749
750     // Do a relocation.  Return false if the caller should not issue
751     // any warnings about this relocation.
752     inline bool
753     relocate(const Relocate_info<size, false>*, Target_x86_64*,
754              Output_section*,
755              size_t relnum, const elfcpp::Rela<size, false>&,
756              unsigned int r_type, const Sized_symbol<size>*,
757              const Symbol_value<size>*,
758              unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
759              section_size_type);
760
761    private:
762     // Do a TLS relocation.
763     inline void
764     relocate_tls(const Relocate_info<size, false>*, Target_x86_64*,
765                  size_t relnum, const elfcpp::Rela<size, false>&,
766                  unsigned int r_type, const Sized_symbol<size>*,
767                  const Symbol_value<size>*,
768                  unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
769                  section_size_type);
770
771     // Do a TLS General-Dynamic to Initial-Exec transition.
772     inline void
773     tls_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
774                  Output_segment* tls_segment,
775                  const elfcpp::Rela<size, false>&, unsigned int r_type,
776                  typename elfcpp::Elf_types<size>::Elf_Addr value,
777                  unsigned char* view,
778                  typename elfcpp::Elf_types<size>::Elf_Addr,
779                  section_size_type view_size);
780
781     // Do a TLS General-Dynamic to Local-Exec transition.
782     inline void
783     tls_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
784                  Output_segment* tls_segment,
785                  const elfcpp::Rela<size, false>&, unsigned int r_type,
786                  typename elfcpp::Elf_types<size>::Elf_Addr value,
787                  unsigned char* view,
788                  section_size_type view_size);
789
790     // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
791     inline void
792     tls_desc_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
793                       Output_segment* tls_segment,
794                       const elfcpp::Rela<size, false>&, unsigned int r_type,
795                       typename elfcpp::Elf_types<size>::Elf_Addr value,
796                       unsigned char* view,
797                       typename elfcpp::Elf_types<size>::Elf_Addr,
798                       section_size_type view_size);
799
800     // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
801     inline void
802     tls_desc_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
803                       Output_segment* tls_segment,
804                       const elfcpp::Rela<size, false>&, unsigned int r_type,
805                       typename elfcpp::Elf_types<size>::Elf_Addr value,
806                       unsigned char* view,
807                       section_size_type view_size);
808
809     // Do a TLS Local-Dynamic to Local-Exec transition.
810     inline void
811     tls_ld_to_le(const Relocate_info<size, false>*, size_t relnum,
812                  Output_segment* tls_segment,
813                  const elfcpp::Rela<size, false>&, unsigned int r_type,
814                  typename elfcpp::Elf_types<size>::Elf_Addr value,
815                  unsigned char* view,
816                  section_size_type view_size);
817
818     // Do a TLS Initial-Exec to Local-Exec transition.
819     static inline void
820     tls_ie_to_le(const Relocate_info<size, false>*, size_t relnum,
821                  Output_segment* tls_segment,
822                  const elfcpp::Rela<size, false>&, unsigned int r_type,
823                  typename elfcpp::Elf_types<size>::Elf_Addr value,
824                  unsigned char* view,
825                  section_size_type view_size);
826
827     // This is set if we should skip the next reloc, which should be a
828     // PLT32 reloc against ___tls_get_addr.
829     bool skip_call_tls_get_addr_;
830   };
831
832   // A class which returns the size required for a relocation type,
833   // used while scanning relocs during a relocatable link.
834   class Relocatable_size_for_reloc
835   {
836    public:
837     unsigned int
838     get_size_for_reloc(unsigned int, Relobj*);
839   };
840
841   // Adjust TLS relocation type based on the options and whether this
842   // is a local symbol.
843   static tls::Tls_optimization
844   optimize_tls_reloc(bool is_final, int r_type);
845
846   // Get the GOT section, creating it if necessary.
847   Output_data_got<64, false>*
848   got_section(Symbol_table*, Layout*);
849
850   // Get the GOT PLT section.
851   Output_data_space*
852   got_plt_section() const
853   {
854     gold_assert(this->got_plt_ != NULL);
855     return this->got_plt_;
856   }
857
858   // Get the GOT section for TLSDESC entries.
859   Output_data_got<64, false>*
860   got_tlsdesc_section() const
861   {
862     gold_assert(this->got_tlsdesc_ != NULL);
863     return this->got_tlsdesc_;
864   }
865
866   // Create the PLT section.
867   void
868   make_plt_section(Symbol_table* symtab, Layout* layout);
869
870   // Create a PLT entry for a global symbol.
871   void
872   make_plt_entry(Symbol_table*, Layout*, Symbol*);
873
874   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
875   void
876   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
877                              Sized_relobj_file<size, false>* relobj,
878                              unsigned int local_sym_index);
879
880   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
881   void
882   define_tls_base_symbol(Symbol_table*, Layout*);
883
884   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
885   void
886   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
887
888   // Create a GOT entry for the TLS module index.
889   unsigned int
890   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
891                       Sized_relobj_file<size, false>* object);
892
893   // Get the PLT section.
894   Output_data_plt_x86_64<size>*
895   plt_section() const
896   {
897     gold_assert(this->plt_ != NULL);
898     return this->plt_;
899   }
900
901   // Get the dynamic reloc section, creating it if necessary.
902   Reloc_section*
903   rela_dyn_section(Layout*);
904
905   // Get the section to use for TLSDESC relocations.
906   Reloc_section*
907   rela_tlsdesc_section(Layout*) const;
908
909   // Get the section to use for IRELATIVE relocations.
910   Reloc_section*
911   rela_irelative_section(Layout*);
912
913   // Add a potential copy relocation.
914   void
915   copy_reloc(Symbol_table* symtab, Layout* layout,
916              Sized_relobj_file<size, false>* object,
917              unsigned int shndx, Output_section* output_section,
918              Symbol* sym, const elfcpp::Rela<size, false>& reloc)
919   {
920     this->copy_relocs_.copy_reloc(symtab, layout,
921                                   symtab->get_sized_symbol<size>(sym),
922                                   object, shndx, output_section,
923                                   reloc, this->rela_dyn_section(layout));
924   }
925
926   // Information about this specific target which we pass to the
927   // general Target structure.
928   static const Target::Target_info x86_64_info;
929
930   // The types of GOT entries needed for this platform.
931   // These values are exposed to the ABI in an incremental link.
932   // Do not renumber existing values without changing the version
933   // number of the .gnu_incremental_inputs section.
934   enum Got_type
935   {
936     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
937     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
938     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
939     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
940   };
941
942   // This type is used as the argument to the target specific
943   // relocation routines.  The only target specific reloc is
944   // R_X86_64_TLSDESC against a local symbol.
945   struct Tlsdesc_info
946   {
947     Tlsdesc_info(Sized_relobj_file<size, false>* a_object, unsigned int a_r_sym)
948       : object(a_object), r_sym(a_r_sym)
949     { }
950
951     // The object in which the local symbol is defined.
952     Sized_relobj_file<size, false>* object;
953     // The local symbol index in the object.
954     unsigned int r_sym;
955   };
956
957   // The GOT section.
958   Output_data_got<64, false>* got_;
959   // The PLT section.
960   Output_data_plt_x86_64<size>* plt_;
961   // The GOT PLT section.
962   Output_data_space* got_plt_;
963   // The GOT section for IRELATIVE relocations.
964   Output_data_space* got_irelative_;
965   // The GOT section for TLSDESC relocations.
966   Output_data_got<64, false>* got_tlsdesc_;
967   // The _GLOBAL_OFFSET_TABLE_ symbol.
968   Symbol* global_offset_table_;
969   // The dynamic reloc section.
970   Reloc_section* rela_dyn_;
971   // The section to use for IRELATIVE relocs.
972   Reloc_section* rela_irelative_;
973   // Relocs saved to avoid a COPY reloc.
974   Copy_relocs<elfcpp::SHT_RELA, size, false> copy_relocs_;
975   // Space for variables copied with a COPY reloc.
976   Output_data_space* dynbss_;
977   // Offset of the GOT entry for the TLS module index.
978   unsigned int got_mod_index_offset_;
979   // We handle R_X86_64_TLSDESC against a local symbol as a target
980   // specific relocation.  Here we store the object and local symbol
981   // index for the relocation.
982   std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
983   // True if the _TLS_MODULE_BASE_ symbol has been defined.
984   bool tls_base_symbol_defined_;
985 };
986
987 template<>
988 const Target::Target_info Target_x86_64<64>::x86_64_info =
989 {
990   64,                   // size
991   false,                // is_big_endian
992   elfcpp::EM_X86_64,    // machine_code
993   false,                // has_make_symbol
994   false,                // has_resolve
995   true,                 // has_code_fill
996   true,                 // is_default_stack_executable
997   true,                 // can_icf_inline_merge_sections
998   '\0',                 // wrap_char
999   "/lib/ld64.so.1",     // program interpreter
1000   0x400000,             // default_text_segment_address
1001   0x1000,               // abi_pagesize (overridable by -z max-page-size)
1002   0x1000,               // common_pagesize (overridable by -z common-page-size)
1003   false,                // isolate_execinstr
1004   0,                    // rosegment_gap
1005   elfcpp::SHN_UNDEF,    // small_common_shndx
1006   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
1007   0,                    // small_common_section_flags
1008   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
1009   NULL,                 // attributes_section
1010   NULL                  // attributes_vendor
1011 };
1012
1013 template<>
1014 const Target::Target_info Target_x86_64<32>::x86_64_info =
1015 {
1016   32,                   // size
1017   false,                // is_big_endian
1018   elfcpp::EM_X86_64,    // machine_code
1019   false,                // has_make_symbol
1020   false,                // has_resolve
1021   true,                 // has_code_fill
1022   true,                 // is_default_stack_executable
1023   true,                 // can_icf_inline_merge_sections
1024   '\0',                 // wrap_char
1025   "/libx32/ldx32.so.1", // program interpreter
1026   0x400000,             // default_text_segment_address
1027   0x1000,               // abi_pagesize (overridable by -z max-page-size)
1028   0x1000,               // common_pagesize (overridable by -z common-page-size)
1029   false,                // isolate_execinstr
1030   0,                    // rosegment_gap
1031   elfcpp::SHN_UNDEF,    // small_common_shndx
1032   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
1033   0,                    // small_common_section_flags
1034   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
1035   NULL,                 // attributes_section
1036   NULL                  // attributes_vendor
1037 };
1038
1039 // This is called when a new output section is created.  This is where
1040 // we handle the SHF_X86_64_LARGE.
1041
1042 template<int size>
1043 void
1044 Target_x86_64<size>::do_new_output_section(Output_section* os) const
1045 {
1046   if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
1047     os->set_is_large_section();
1048 }
1049
1050 // Get the GOT section, creating it if necessary.
1051
1052 template<int size>
1053 Output_data_got<64, false>*
1054 Target_x86_64<size>::got_section(Symbol_table* symtab, Layout* layout)
1055 {
1056   if (this->got_ == NULL)
1057     {
1058       gold_assert(symtab != NULL && layout != NULL);
1059
1060       // When using -z now, we can treat .got.plt as a relro section.
1061       // Without -z now, it is modified after program startup by lazy
1062       // PLT relocations.
1063       bool is_got_plt_relro = parameters->options().now();
1064       Output_section_order got_order = (is_got_plt_relro
1065                                         ? ORDER_RELRO
1066                                         : ORDER_RELRO_LAST);
1067       Output_section_order got_plt_order = (is_got_plt_relro
1068                                             ? ORDER_RELRO
1069                                             : ORDER_NON_RELRO_FIRST);
1070
1071       this->got_ = new Output_data_got<64, false>();
1072
1073       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1074                                       (elfcpp::SHF_ALLOC
1075                                        | elfcpp::SHF_WRITE),
1076                                       this->got_, got_order, true);
1077
1078       this->got_plt_ = new Output_data_space(8, "** GOT PLT");
1079       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1080                                       (elfcpp::SHF_ALLOC
1081                                        | elfcpp::SHF_WRITE),
1082                                       this->got_plt_, got_plt_order,
1083                                       is_got_plt_relro);
1084
1085       // The first three entries are reserved.
1086       this->got_plt_->set_current_data_size(3 * 8);
1087
1088       if (!is_got_plt_relro)
1089         {
1090           // Those bytes can go into the relro segment.
1091           layout->increase_relro(3 * 8);
1092         }
1093
1094       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1095       this->global_offset_table_ =
1096         symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1097                                       Symbol_table::PREDEFINED,
1098                                       this->got_plt_,
1099                                       0, 0, elfcpp::STT_OBJECT,
1100                                       elfcpp::STB_LOCAL,
1101                                       elfcpp::STV_HIDDEN, 0,
1102                                       false, false);
1103
1104       // If there are any IRELATIVE relocations, they get GOT entries
1105       // in .got.plt after the jump slot entries.
1106       this->got_irelative_ = new Output_data_space(8, "** GOT IRELATIVE PLT");
1107       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1108                                       (elfcpp::SHF_ALLOC
1109                                        | elfcpp::SHF_WRITE),
1110                                       this->got_irelative_,
1111                                       got_plt_order, is_got_plt_relro);
1112
1113       // If there are any TLSDESC relocations, they get GOT entries in
1114       // .got.plt after the jump slot and IRELATIVE entries.
1115       this->got_tlsdesc_ = new Output_data_got<64, false>();
1116       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1117                                       (elfcpp::SHF_ALLOC
1118                                        | elfcpp::SHF_WRITE),
1119                                       this->got_tlsdesc_,
1120                                       got_plt_order, is_got_plt_relro);
1121     }
1122
1123   return this->got_;
1124 }
1125
1126 // Get the dynamic reloc section, creating it if necessary.
1127
1128 template<int size>
1129 typename Target_x86_64<size>::Reloc_section*
1130 Target_x86_64<size>::rela_dyn_section(Layout* layout)
1131 {
1132   if (this->rela_dyn_ == NULL)
1133     {
1134       gold_assert(layout != NULL);
1135       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1136       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1137                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
1138                                       ORDER_DYNAMIC_RELOCS, false);
1139     }
1140   return this->rela_dyn_;
1141 }
1142
1143 // Get the section to use for IRELATIVE relocs, creating it if
1144 // necessary.  These go in .rela.dyn, but only after all other dynamic
1145 // relocations.  They need to follow the other dynamic relocations so
1146 // that they can refer to global variables initialized by those
1147 // relocs.
1148
1149 template<int size>
1150 typename Target_x86_64<size>::Reloc_section*
1151 Target_x86_64<size>::rela_irelative_section(Layout* layout)
1152 {
1153   if (this->rela_irelative_ == NULL)
1154     {
1155       // Make sure we have already created the dynamic reloc section.
1156       this->rela_dyn_section(layout);
1157       this->rela_irelative_ = new Reloc_section(false);
1158       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1159                                       elfcpp::SHF_ALLOC, this->rela_irelative_,
1160                                       ORDER_DYNAMIC_RELOCS, false);
1161       gold_assert(this->rela_dyn_->output_section()
1162                   == this->rela_irelative_->output_section());
1163     }
1164   return this->rela_irelative_;
1165 }
1166
1167 // Initialize the PLT section.
1168
1169 template<int size>
1170 void
1171 Output_data_plt_x86_64<size>::init(Layout* layout)
1172 {
1173   this->rel_ = new Reloc_section(false);
1174   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1175                                   elfcpp::SHF_ALLOC, this->rel_,
1176                                   ORDER_DYNAMIC_PLT_RELOCS, false);
1177 }
1178
1179 template<int size>
1180 void
1181 Output_data_plt_x86_64<size>::do_adjust_output_section(Output_section* os)
1182 {
1183   os->set_entsize(this->get_plt_entry_size());
1184 }
1185
1186 // Add an entry to the PLT.
1187
1188 template<int size>
1189 void
1190 Output_data_plt_x86_64<size>::add_entry(Symbol_table* symtab, Layout* layout,
1191                                         Symbol* gsym)
1192 {
1193   gold_assert(!gsym->has_plt_offset());
1194
1195   unsigned int plt_index;
1196   off_t plt_offset;
1197   section_offset_type got_offset;
1198
1199   unsigned int* pcount;
1200   unsigned int offset;
1201   unsigned int reserved;
1202   Output_data_space* got;
1203   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1204       && gsym->can_use_relative_reloc(false))
1205     {
1206       pcount = &this->irelative_count_;
1207       offset = 0;
1208       reserved = 0;
1209       got = this->got_irelative_;
1210     }
1211   else
1212     {
1213       pcount = &this->count_;
1214       offset = 1;
1215       reserved = 3;
1216       got = this->got_plt_;
1217     }
1218
1219   if (!this->is_data_size_valid())
1220     {
1221       // Note that when setting the PLT offset for a non-IRELATIVE
1222       // entry we skip the initial reserved PLT entry.
1223       plt_index = *pcount + offset;
1224       plt_offset = plt_index * this->get_plt_entry_size();
1225
1226       ++*pcount;
1227
1228       got_offset = (plt_index - offset + reserved) * 8;
1229       gold_assert(got_offset == got->current_data_size());
1230
1231       // Every PLT entry needs a GOT entry which points back to the PLT
1232       // entry (this will be changed by the dynamic linker, normally
1233       // lazily when the function is called).
1234       got->set_current_data_size(got_offset + 8);
1235     }
1236   else
1237     {
1238       // FIXME: This is probably not correct for IRELATIVE relocs.
1239
1240       // For incremental updates, find an available slot.
1241       plt_offset = this->free_list_.allocate(this->get_plt_entry_size(),
1242                                              this->get_plt_entry_size(), 0);
1243       if (plt_offset == -1)
1244         gold_fallback(_("out of patch space (PLT);"
1245                         " relink with --incremental-full"));
1246
1247       // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
1248       // can be calculated from the PLT index, adjusting for the three
1249       // reserved entries at the beginning of the GOT.
1250       plt_index = plt_offset / this->get_plt_entry_size() - 1;
1251       got_offset = (plt_index - offset + reserved) * 8;
1252     }
1253
1254   gsym->set_plt_offset(plt_offset);
1255
1256   // Every PLT entry needs a reloc.
1257   this->add_relocation(symtab, layout, gsym, got_offset);
1258
1259   // Note that we don't need to save the symbol.  The contents of the
1260   // PLT are independent of which symbols are used.  The symbols only
1261   // appear in the relocations.
1262 }
1263
1264 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
1265 // the PLT offset.
1266
1267 template<int size>
1268 unsigned int
1269 Output_data_plt_x86_64<size>::add_local_ifunc_entry(
1270     Symbol_table* symtab,
1271     Layout* layout,
1272     Sized_relobj_file<size, false>* relobj,
1273     unsigned int local_sym_index)
1274 {
1275   unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
1276   ++this->irelative_count_;
1277
1278   section_offset_type got_offset = this->got_irelative_->current_data_size();
1279
1280   // Every PLT entry needs a GOT entry which points back to the PLT
1281   // entry.
1282   this->got_irelative_->set_current_data_size(got_offset + 8);
1283
1284   // Every PLT entry needs a reloc.
1285   Reloc_section* rela = this->rela_irelative(symtab, layout);
1286   rela->add_symbolless_local_addend(relobj, local_sym_index,
1287                                     elfcpp::R_X86_64_IRELATIVE,
1288                                     this->got_irelative_, got_offset, 0);
1289
1290   return plt_offset;
1291 }
1292
1293 // Add the relocation for a PLT entry.
1294
1295 template<int size>
1296 void
1297 Output_data_plt_x86_64<size>::add_relocation(Symbol_table* symtab,
1298                                              Layout* layout,
1299                                              Symbol* gsym,
1300                                              unsigned int got_offset)
1301 {
1302   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1303       && gsym->can_use_relative_reloc(false))
1304     {
1305       Reloc_section* rela = this->rela_irelative(symtab, layout);
1306       rela->add_symbolless_global_addend(gsym, elfcpp::R_X86_64_IRELATIVE,
1307                                          this->got_irelative_, got_offset, 0);
1308     }
1309   else
1310     {
1311       gsym->set_needs_dynsym_entry();
1312       this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
1313                              got_offset, 0);
1314     }
1315 }
1316
1317 // Return where the TLSDESC relocations should go, creating it if
1318 // necessary.  These follow the JUMP_SLOT relocations.
1319
1320 template<int size>
1321 typename Output_data_plt_x86_64<size>::Reloc_section*
1322 Output_data_plt_x86_64<size>::rela_tlsdesc(Layout* layout)
1323 {
1324   if (this->tlsdesc_rel_ == NULL)
1325     {
1326       this->tlsdesc_rel_ = new Reloc_section(false);
1327       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1328                                       elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
1329                                       ORDER_DYNAMIC_PLT_RELOCS, false);
1330       gold_assert(this->tlsdesc_rel_->output_section()
1331                   == this->rel_->output_section());
1332     }
1333   return this->tlsdesc_rel_;
1334 }
1335
1336 // Return where the IRELATIVE relocations should go in the PLT.  These
1337 // follow the JUMP_SLOT and the TLSDESC relocations.
1338
1339 template<int size>
1340 typename Output_data_plt_x86_64<size>::Reloc_section*
1341 Output_data_plt_x86_64<size>::rela_irelative(Symbol_table* symtab,
1342                                              Layout* layout)
1343 {
1344   if (this->irelative_rel_ == NULL)
1345     {
1346       // Make sure we have a place for the TLSDESC relocations, in
1347       // case we see any later on.
1348       this->rela_tlsdesc(layout);
1349       this->irelative_rel_ = new Reloc_section(false);
1350       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1351                                       elfcpp::SHF_ALLOC, this->irelative_rel_,
1352                                       ORDER_DYNAMIC_PLT_RELOCS, false);
1353       gold_assert(this->irelative_rel_->output_section()
1354                   == this->rel_->output_section());
1355
1356       if (parameters->doing_static_link())
1357         {
1358           // A statically linked executable will only have a .rela.plt
1359           // section to hold R_X86_64_IRELATIVE relocs for
1360           // STT_GNU_IFUNC symbols.  The library will use these
1361           // symbols to locate the IRELATIVE relocs at program startup
1362           // time.
1363           symtab->define_in_output_data("__rela_iplt_start", NULL,
1364                                         Symbol_table::PREDEFINED,
1365                                         this->irelative_rel_, 0, 0,
1366                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1367                                         elfcpp::STV_HIDDEN, 0, false, true);
1368           symtab->define_in_output_data("__rela_iplt_end", NULL,
1369                                         Symbol_table::PREDEFINED,
1370                                         this->irelative_rel_, 0, 0,
1371                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1372                                         elfcpp::STV_HIDDEN, 0, true, true);
1373         }
1374     }
1375   return this->irelative_rel_;
1376 }
1377
1378 // Return the PLT address to use for a global symbol.
1379
1380 template<int size>
1381 uint64_t
1382 Output_data_plt_x86_64<size>::address_for_global(const Symbol* gsym)
1383 {
1384   uint64_t offset = 0;
1385   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1386       && gsym->can_use_relative_reloc(false))
1387     offset = (this->count_ + 1) * this->get_plt_entry_size();
1388   return this->address() + offset + gsym->plt_offset();
1389 }
1390
1391 // Return the PLT address to use for a local symbol.  These are always
1392 // IRELATIVE relocs.
1393
1394 template<int size>
1395 uint64_t
1396 Output_data_plt_x86_64<size>::address_for_local(const Relobj* object,
1397                                                 unsigned int r_sym)
1398 {
1399   return (this->address()
1400           + (this->count_ + 1) * this->get_plt_entry_size()
1401           + object->local_plt_offset(r_sym));
1402 }
1403
1404 // Set the final size.
1405 template<int size>
1406 void
1407 Output_data_plt_x86_64<size>::set_final_data_size()
1408 {
1409   unsigned int count = this->count_ + this->irelative_count_;
1410   if (this->has_tlsdesc_entry())
1411     ++count;
1412   this->set_data_size((count + 1) * this->get_plt_entry_size());
1413 }
1414
1415 // The first entry in the PLT for an executable.
1416
1417 template<int size>
1418 const unsigned char
1419 Output_data_plt_x86_64_standard<size>::first_plt_entry[plt_entry_size] =
1420 {
1421   // From AMD64 ABI Draft 0.98, page 76
1422   0xff, 0x35,   // pushq contents of memory address
1423   0, 0, 0, 0,   // replaced with address of .got + 8
1424   0xff, 0x25,   // jmp indirect
1425   0, 0, 0, 0,   // replaced with address of .got + 16
1426   0x90, 0x90, 0x90, 0x90   // noop (x4)
1427 };
1428
1429 template<int size>
1430 void
1431 Output_data_plt_x86_64_standard<size>::do_fill_first_plt_entry(
1432     unsigned char* pov,
1433     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1434     typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
1435 {
1436   memcpy(pov, first_plt_entry, plt_entry_size);
1437   // We do a jmp relative to the PC at the end of this instruction.
1438   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1439                                               (got_address + 8
1440                                                - (plt_address + 6)));
1441   elfcpp::Swap<32, false>::writeval(pov + 8,
1442                                     (got_address + 16
1443                                      - (plt_address + 12)));
1444 }
1445
1446 // Subsequent entries in the PLT for an executable.
1447
1448 template<int size>
1449 const unsigned char
1450 Output_data_plt_x86_64_standard<size>::plt_entry[plt_entry_size] =
1451 {
1452   // From AMD64 ABI Draft 0.98, page 76
1453   0xff, 0x25,   // jmpq indirect
1454   0, 0, 0, 0,   // replaced with address of symbol in .got
1455   0x68,         // pushq immediate
1456   0, 0, 0, 0,   // replaced with offset into relocation table
1457   0xe9,         // jmpq relative
1458   0, 0, 0, 0    // replaced with offset to start of .plt
1459 };
1460
1461 template<int size>
1462 unsigned int
1463 Output_data_plt_x86_64_standard<size>::do_fill_plt_entry(
1464     unsigned char* pov,
1465     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1466     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1467     unsigned int got_offset,
1468     unsigned int plt_offset,
1469     unsigned int plt_index)
1470 {
1471   memcpy(pov, plt_entry, plt_entry_size);
1472   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1473                                               (got_address + got_offset
1474                                                - (plt_address + plt_offset
1475                                                   + 6)));
1476
1477   elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
1478   elfcpp::Swap<32, false>::writeval(pov + 12,
1479                                     - (plt_offset + plt_entry_size));
1480
1481   return 6;
1482 }
1483
1484 // The reserved TLSDESC entry in the PLT for an executable.
1485
1486 template<int size>
1487 const unsigned char
1488 Output_data_plt_x86_64_standard<size>::tlsdesc_plt_entry[plt_entry_size] =
1489 {
1490   // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
1491   // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
1492   0xff, 0x35,   // pushq x(%rip)
1493   0, 0, 0, 0,   // replaced with address of linkmap GOT entry (at PLTGOT + 8)
1494   0xff, 0x25,   // jmpq *y(%rip)
1495   0, 0, 0, 0,   // replaced with offset of reserved TLSDESC_GOT entry
1496   0x0f, 0x1f,   // nop
1497   0x40, 0
1498 };
1499
1500 template<int size>
1501 void
1502 Output_data_plt_x86_64_standard<size>::do_fill_tlsdesc_entry(
1503     unsigned char* pov,
1504     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1505     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1506     typename elfcpp::Elf_types<size>::Elf_Addr got_base,
1507     unsigned int tlsdesc_got_offset,
1508     unsigned int plt_offset)
1509 {
1510   memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
1511   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1512                                               (got_address + 8
1513                                                - (plt_address + plt_offset
1514                                                   + 6)));
1515   elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
1516                                               (got_base
1517                                                + tlsdesc_got_offset
1518                                                - (plt_address + plt_offset
1519                                                   + 12)));
1520 }
1521
1522 // The .eh_frame unwind information for the PLT.
1523
1524 template<int size>
1525 const unsigned char
1526 Output_data_plt_x86_64<size>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1527 {
1528   1,                            // CIE version.
1529   'z',                          // Augmentation: augmentation size included.
1530   'R',                          // Augmentation: FDE encoding included.
1531   '\0',                         // End of augmentation string.
1532   1,                            // Code alignment factor.
1533   0x78,                         // Data alignment factor.
1534   16,                           // Return address column.
1535   1,                            // Augmentation size.
1536   (elfcpp::DW_EH_PE_pcrel       // FDE encoding.
1537    | elfcpp::DW_EH_PE_sdata4),
1538   elfcpp::DW_CFA_def_cfa, 7, 8, // DW_CFA_def_cfa: r7 (rsp) ofs 8.
1539   elfcpp::DW_CFA_offset + 16, 1,// DW_CFA_offset: r16 (rip) at cfa-8.
1540   elfcpp::DW_CFA_nop,           // Align to 16 bytes.
1541   elfcpp::DW_CFA_nop
1542 };
1543
1544 template<int size>
1545 const unsigned char
1546 Output_data_plt_x86_64_standard<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
1547 {
1548   0, 0, 0, 0,                           // Replaced with offset to .plt.
1549   0, 0, 0, 0,                           // Replaced with size of .plt.
1550   0,                                    // Augmentation size.
1551   elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
1552   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
1553   elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
1554   elfcpp::DW_CFA_advance_loc + 10,      // Advance 10 to __PLT__ + 16.
1555   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
1556   11,                                   // Block length.
1557   elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
1558   elfcpp::DW_OP_breg16, 0,              // Push %rip.
1559   elfcpp::DW_OP_lit15,                  // Push 0xf.
1560   elfcpp::DW_OP_and,                    // & (%rip & 0xf).
1561   elfcpp::DW_OP_lit11,                  // Push 0xb.
1562   elfcpp::DW_OP_ge,                     // >= ((%rip & 0xf) >= 0xb)
1563   elfcpp::DW_OP_lit3,                   // Push 3.
1564   elfcpp::DW_OP_shl,                    // << (((%rip & 0xf) >= 0xb) << 3)
1565   elfcpp::DW_OP_plus,                   // + ((((%rip&0xf)>=0xb)<<3)+%rsp+8
1566   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
1567   elfcpp::DW_CFA_nop,
1568   elfcpp::DW_CFA_nop,
1569   elfcpp::DW_CFA_nop
1570 };
1571
1572 // Write out the PLT.  This uses the hand-coded instructions above,
1573 // and adjusts them as needed.  This is specified by the AMD64 ABI.
1574
1575 template<int size>
1576 void
1577 Output_data_plt_x86_64<size>::do_write(Output_file* of)
1578 {
1579   const off_t offset = this->offset();
1580   const section_size_type oview_size =
1581     convert_to_section_size_type(this->data_size());
1582   unsigned char* const oview = of->get_output_view(offset, oview_size);
1583
1584   const off_t got_file_offset = this->got_plt_->offset();
1585   gold_assert(parameters->incremental_update()
1586               || (got_file_offset + this->got_plt_->data_size()
1587                   == this->got_irelative_->offset()));
1588   const section_size_type got_size =
1589     convert_to_section_size_type(this->got_plt_->data_size()
1590                                  + this->got_irelative_->data_size());
1591   unsigned char* const got_view = of->get_output_view(got_file_offset,
1592                                                       got_size);
1593
1594   unsigned char* pov = oview;
1595
1596   // The base address of the .plt section.
1597   typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
1598   // The base address of the .got section.
1599   typename elfcpp::Elf_types<size>::Elf_Addr got_base = this->got_->address();
1600   // The base address of the PLT portion of the .got section,
1601   // which is where the GOT pointer will point, and where the
1602   // three reserved GOT entries are located.
1603   typename elfcpp::Elf_types<size>::Elf_Addr got_address
1604     = this->got_plt_->address();
1605
1606   this->fill_first_plt_entry(pov, got_address, plt_address);
1607   pov += this->get_plt_entry_size();
1608
1609   unsigned char* got_pov = got_view;
1610
1611   // The first entry in the GOT is the address of the .dynamic section
1612   // aka the PT_DYNAMIC segment.  The next two entries are reserved.
1613   // We saved space for them when we created the section in
1614   // Target_x86_64::got_section.
1615   Output_section* dynamic = this->layout_->dynamic_section();
1616   uint32_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1617   elfcpp::Swap<64, false>::writeval(got_pov, dynamic_addr);
1618   got_pov += 8;
1619   memset(got_pov, 0, 16);
1620   got_pov += 16;
1621
1622   unsigned int plt_offset = this->get_plt_entry_size();
1623   unsigned int got_offset = 24;
1624   const unsigned int count = this->count_ + this->irelative_count_;
1625   for (unsigned int plt_index = 0;
1626        plt_index < count;
1627        ++plt_index,
1628          pov += this->get_plt_entry_size(),
1629          got_pov += 8,
1630          plt_offset += this->get_plt_entry_size(),
1631          got_offset += 8)
1632     {
1633       // Set and adjust the PLT entry itself.
1634       unsigned int lazy_offset = this->fill_plt_entry(pov,
1635                                                       got_address, plt_address,
1636                                                       got_offset, plt_offset,
1637                                                       plt_index);
1638
1639       // Set the entry in the GOT.
1640       elfcpp::Swap<64, false>::writeval(got_pov,
1641                                         plt_address + plt_offset + lazy_offset);
1642     }
1643
1644   if (this->has_tlsdesc_entry())
1645     {
1646       // Set and adjust the reserved TLSDESC PLT entry.
1647       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
1648       this->fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
1649                                tlsdesc_got_offset, plt_offset);
1650       pov += this->get_plt_entry_size();
1651     }
1652
1653   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1654   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1655
1656   of->write_output_view(offset, oview_size, oview);
1657   of->write_output_view(got_file_offset, got_size, got_view);
1658 }
1659
1660 // Create the PLT section.
1661
1662 template<int size>
1663 void
1664 Target_x86_64<size>::make_plt_section(Symbol_table* symtab, Layout* layout)
1665 {
1666   if (this->plt_ == NULL)
1667     {
1668       // Create the GOT sections first.
1669       this->got_section(symtab, layout);
1670
1671       this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
1672                                        this->got_irelative_);
1673
1674       // Add unwind information if requested.
1675       if (parameters->options().ld_generated_unwind_info())
1676         this->plt_->add_eh_frame(layout);
1677
1678       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1679                                       (elfcpp::SHF_ALLOC
1680                                        | elfcpp::SHF_EXECINSTR),
1681                                       this->plt_, ORDER_PLT, false);
1682
1683       // Make the sh_info field of .rela.plt point to .plt.
1684       Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1685       rela_plt_os->set_info_section(this->plt_->output_section());
1686     }
1687 }
1688
1689 // Return the section for TLSDESC relocations.
1690
1691 template<int size>
1692 typename Target_x86_64<size>::Reloc_section*
1693 Target_x86_64<size>::rela_tlsdesc_section(Layout* layout) const
1694 {
1695   return this->plt_section()->rela_tlsdesc(layout);
1696 }
1697
1698 // Create a PLT entry for a global symbol.
1699
1700 template<int size>
1701 void
1702 Target_x86_64<size>::make_plt_entry(Symbol_table* symtab, Layout* layout,
1703                                     Symbol* gsym)
1704 {
1705   if (gsym->has_plt_offset())
1706     return;
1707
1708   if (this->plt_ == NULL)
1709     this->make_plt_section(symtab, layout);
1710
1711   this->plt_->add_entry(symtab, layout, gsym);
1712 }
1713
1714 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
1715
1716 template<int size>
1717 void
1718 Target_x86_64<size>::make_local_ifunc_plt_entry(
1719     Symbol_table* symtab, Layout* layout,
1720     Sized_relobj_file<size, false>* relobj,
1721     unsigned int local_sym_index)
1722 {
1723   if (relobj->local_has_plt_offset(local_sym_index))
1724     return;
1725   if (this->plt_ == NULL)
1726     this->make_plt_section(symtab, layout);
1727   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
1728                                                               relobj,
1729                                                               local_sym_index);
1730   relobj->set_local_plt_offset(local_sym_index, plt_offset);
1731 }
1732
1733 // Return the number of entries in the PLT.
1734
1735 template<int size>
1736 unsigned int
1737 Target_x86_64<size>::plt_entry_count() const
1738 {
1739   if (this->plt_ == NULL)
1740     return 0;
1741   return this->plt_->entry_count();
1742 }
1743
1744 // Return the offset of the first non-reserved PLT entry.
1745
1746 template<int size>
1747 unsigned int
1748 Target_x86_64<size>::first_plt_entry_offset() const
1749 {
1750   return this->plt_->first_plt_entry_offset();
1751 }
1752
1753 // Return the size of each PLT entry.
1754
1755 template<int size>
1756 unsigned int
1757 Target_x86_64<size>::plt_entry_size() const
1758 {
1759   return this->plt_->get_plt_entry_size();
1760 }
1761
1762 // Create the GOT and PLT sections for an incremental update.
1763
1764 template<int size>
1765 Output_data_got_base*
1766 Target_x86_64<size>::init_got_plt_for_update(Symbol_table* symtab,
1767                                        Layout* layout,
1768                                        unsigned int got_count,
1769                                        unsigned int plt_count)
1770 {
1771   gold_assert(this->got_ == NULL);
1772
1773   this->got_ = new Output_data_got<64, false>(got_count * 8);
1774   layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1775                                   (elfcpp::SHF_ALLOC
1776                                    | elfcpp::SHF_WRITE),
1777                                   this->got_, ORDER_RELRO_LAST,
1778                                   true);
1779
1780   // Add the three reserved entries.
1781   this->got_plt_ = new Output_data_space((plt_count + 3) * 8, 8, "** GOT PLT");
1782   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1783                                   (elfcpp::SHF_ALLOC
1784                                    | elfcpp::SHF_WRITE),
1785                                   this->got_plt_, ORDER_NON_RELRO_FIRST,
1786                                   false);
1787
1788   // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1789   this->global_offset_table_ =
1790     symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1791                                   Symbol_table::PREDEFINED,
1792                                   this->got_plt_,
1793                                   0, 0, elfcpp::STT_OBJECT,
1794                                   elfcpp::STB_LOCAL,
1795                                   elfcpp::STV_HIDDEN, 0,
1796                                   false, false);
1797
1798   // If there are any TLSDESC relocations, they get GOT entries in
1799   // .got.plt after the jump slot entries.
1800   // FIXME: Get the count for TLSDESC entries.
1801   this->got_tlsdesc_ = new Output_data_got<64, false>(0);
1802   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1803                                   elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1804                                   this->got_tlsdesc_,
1805                                   ORDER_NON_RELRO_FIRST, false);
1806
1807   // If there are any IRELATIVE relocations, they get GOT entries in
1808   // .got.plt after the jump slot and TLSDESC entries.
1809   this->got_irelative_ = new Output_data_space(0, 8, "** GOT IRELATIVE PLT");
1810   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1811                                   elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1812                                   this->got_irelative_,
1813                                   ORDER_NON_RELRO_FIRST, false);
1814
1815   // Create the PLT section.
1816   this->plt_ = this->make_data_plt(layout, this->got_,
1817                                    this->got_plt_,
1818                                    this->got_irelative_,
1819                                    plt_count);
1820
1821   // Add unwind information if requested.
1822   if (parameters->options().ld_generated_unwind_info())
1823     this->plt_->add_eh_frame(layout);
1824
1825   layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1826                                   elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
1827                                   this->plt_, ORDER_PLT, false);
1828
1829   // Make the sh_info field of .rela.plt point to .plt.
1830   Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1831   rela_plt_os->set_info_section(this->plt_->output_section());
1832
1833   // Create the rela_dyn section.
1834   this->rela_dyn_section(layout);
1835
1836   return this->got_;
1837 }
1838
1839 // Reserve a GOT entry for a local symbol, and regenerate any
1840 // necessary dynamic relocations.
1841
1842 template<int size>
1843 void
1844 Target_x86_64<size>::reserve_local_got_entry(
1845     unsigned int got_index,
1846     Sized_relobj<size, false>* obj,
1847     unsigned int r_sym,
1848     unsigned int got_type)
1849 {
1850   unsigned int got_offset = got_index * 8;
1851   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1852
1853   this->got_->reserve_local(got_index, obj, r_sym, got_type);
1854   switch (got_type)
1855     {
1856     case GOT_TYPE_STANDARD:
1857       if (parameters->options().output_is_position_independent())
1858         rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_X86_64_RELATIVE,
1859                                      this->got_, got_offset, 0, false);
1860       break;
1861     case GOT_TYPE_TLS_OFFSET:
1862       rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_TPOFF64,
1863                           this->got_, got_offset, 0);
1864       break;
1865     case GOT_TYPE_TLS_PAIR:
1866       this->got_->reserve_slot(got_index + 1);
1867       rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_DTPMOD64,
1868                           this->got_, got_offset, 0);
1869       break;
1870     case GOT_TYPE_TLS_DESC:
1871       gold_fatal(_("TLS_DESC not yet supported for incremental linking"));
1872       // this->got_->reserve_slot(got_index + 1);
1873       // rela_dyn->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
1874       //                               this->got_, got_offset, 0);
1875       break;
1876     default:
1877       gold_unreachable();
1878     }
1879 }
1880
1881 // Reserve a GOT entry for a global symbol, and regenerate any
1882 // necessary dynamic relocations.
1883
1884 template<int size>
1885 void
1886 Target_x86_64<size>::reserve_global_got_entry(unsigned int got_index,
1887                                               Symbol* gsym,
1888                                               unsigned int got_type)
1889 {
1890   unsigned int got_offset = got_index * 8;
1891   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1892
1893   this->got_->reserve_global(got_index, gsym, got_type);
1894   switch (got_type)
1895     {
1896     case GOT_TYPE_STANDARD:
1897       if (!gsym->final_value_is_known())
1898         {
1899           if (gsym->is_from_dynobj()
1900               || gsym->is_undefined()
1901               || gsym->is_preemptible()
1902               || gsym->type() == elfcpp::STT_GNU_IFUNC)
1903             rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT,
1904                                  this->got_, got_offset, 0);
1905           else
1906             rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1907                                           this->got_, got_offset, 0, false);
1908         }
1909       break;
1910     case GOT_TYPE_TLS_OFFSET:
1911       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TPOFF64,
1912                                     this->got_, got_offset, 0, false);
1913       break;
1914     case GOT_TYPE_TLS_PAIR:
1915       this->got_->reserve_slot(got_index + 1);
1916       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPMOD64,
1917                                     this->got_, got_offset, 0, false);
1918       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPOFF64,
1919                                     this->got_, got_offset + 8, 0, false);
1920       break;
1921     case GOT_TYPE_TLS_DESC:
1922       this->got_->reserve_slot(got_index + 1);
1923       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TLSDESC,
1924                                     this->got_, got_offset, 0, false);
1925       break;
1926     default:
1927       gold_unreachable();
1928     }
1929 }
1930
1931 // Register an existing PLT entry for a global symbol.
1932
1933 template<int size>
1934 void
1935 Target_x86_64<size>::register_global_plt_entry(Symbol_table* symtab,
1936                                                Layout* layout,
1937                                                unsigned int plt_index,
1938                                                Symbol* gsym)
1939 {
1940   gold_assert(this->plt_ != NULL);
1941   gold_assert(!gsym->has_plt_offset());
1942
1943   this->plt_->reserve_slot(plt_index);
1944
1945   gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
1946
1947   unsigned int got_offset = (plt_index + 3) * 8;
1948   this->plt_->add_relocation(symtab, layout, gsym, got_offset);
1949 }
1950
1951 // Force a COPY relocation for a given symbol.
1952
1953 template<int size>
1954 void
1955 Target_x86_64<size>::emit_copy_reloc(
1956     Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
1957 {
1958   this->copy_relocs_.emit_copy_reloc(symtab,
1959                                      symtab->get_sized_symbol<size>(sym),
1960                                      os,
1961                                      offset,
1962                                      this->rela_dyn_section(NULL));
1963 }
1964
1965 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
1966
1967 template<int size>
1968 void
1969 Target_x86_64<size>::define_tls_base_symbol(Symbol_table* symtab,
1970                                             Layout* layout)
1971 {
1972   if (this->tls_base_symbol_defined_)
1973     return;
1974
1975   Output_segment* tls_segment = layout->tls_segment();
1976   if (tls_segment != NULL)
1977     {
1978       bool is_exec = parameters->options().output_is_executable();
1979       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
1980                                        Symbol_table::PREDEFINED,
1981                                        tls_segment, 0, 0,
1982                                        elfcpp::STT_TLS,
1983                                        elfcpp::STB_LOCAL,
1984                                        elfcpp::STV_HIDDEN, 0,
1985                                        (is_exec
1986                                         ? Symbol::SEGMENT_END
1987                                         : Symbol::SEGMENT_START),
1988                                        true);
1989     }
1990   this->tls_base_symbol_defined_ = true;
1991 }
1992
1993 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
1994
1995 template<int size>
1996 void
1997 Target_x86_64<size>::reserve_tlsdesc_entries(Symbol_table* symtab,
1998                                              Layout* layout)
1999 {
2000   if (this->plt_ == NULL)
2001     this->make_plt_section(symtab, layout);
2002
2003   if (!this->plt_->has_tlsdesc_entry())
2004     {
2005       // Allocate the TLSDESC_GOT entry.
2006       Output_data_got<64, false>* got = this->got_section(symtab, layout);
2007       unsigned int got_offset = got->add_constant(0);
2008
2009       // Allocate the TLSDESC_PLT entry.
2010       this->plt_->reserve_tlsdesc_entry(got_offset);
2011     }
2012 }
2013
2014 // Create a GOT entry for the TLS module index.
2015
2016 template<int size>
2017 unsigned int
2018 Target_x86_64<size>::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2019                                          Sized_relobj_file<size, false>* object)
2020 {
2021   if (this->got_mod_index_offset_ == -1U)
2022     {
2023       gold_assert(symtab != NULL && layout != NULL && object != NULL);
2024       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
2025       Output_data_got<64, false>* got = this->got_section(symtab, layout);
2026       unsigned int got_offset = got->add_constant(0);
2027       rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
2028                           got_offset, 0);
2029       got->add_constant(0);
2030       this->got_mod_index_offset_ = got_offset;
2031     }
2032   return this->got_mod_index_offset_;
2033 }
2034
2035 // Optimize the TLS relocation type based on what we know about the
2036 // symbol.  IS_FINAL is true if the final address of this symbol is
2037 // known at link time.
2038
2039 template<int size>
2040 tls::Tls_optimization
2041 Target_x86_64<size>::optimize_tls_reloc(bool is_final, int r_type)
2042 {
2043   // If we are generating a shared library, then we can't do anything
2044   // in the linker.
2045   if (parameters->options().shared())
2046     return tls::TLSOPT_NONE;
2047
2048   switch (r_type)
2049     {
2050     case elfcpp::R_X86_64_TLSGD:
2051     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2052     case elfcpp::R_X86_64_TLSDESC_CALL:
2053       // These are General-Dynamic which permits fully general TLS
2054       // access.  Since we know that we are generating an executable,
2055       // we can convert this to Initial-Exec.  If we also know that
2056       // this is a local symbol, we can further switch to Local-Exec.
2057       if (is_final)
2058         return tls::TLSOPT_TO_LE;
2059       return tls::TLSOPT_TO_IE;
2060
2061     case elfcpp::R_X86_64_TLSLD:
2062       // This is Local-Dynamic, which refers to a local symbol in the
2063       // dynamic TLS block.  Since we know that we generating an
2064       // executable, we can switch to Local-Exec.
2065       return tls::TLSOPT_TO_LE;
2066
2067     case elfcpp::R_X86_64_DTPOFF32:
2068     case elfcpp::R_X86_64_DTPOFF64:
2069       // Another Local-Dynamic reloc.
2070       return tls::TLSOPT_TO_LE;
2071
2072     case elfcpp::R_X86_64_GOTTPOFF:
2073       // These are Initial-Exec relocs which get the thread offset
2074       // from the GOT.  If we know that we are linking against the
2075       // local symbol, we can switch to Local-Exec, which links the
2076       // thread offset into the instruction.
2077       if (is_final)
2078         return tls::TLSOPT_TO_LE;
2079       return tls::TLSOPT_NONE;
2080
2081     case elfcpp::R_X86_64_TPOFF32:
2082       // When we already have Local-Exec, there is nothing further we
2083       // can do.
2084       return tls::TLSOPT_NONE;
2085
2086     default:
2087       gold_unreachable();
2088     }
2089 }
2090
2091 // Get the Reference_flags for a particular relocation.
2092
2093 template<int size>
2094 int
2095 Target_x86_64<size>::Scan::get_reference_flags(unsigned int r_type)
2096 {
2097   switch (r_type)
2098     {
2099     case elfcpp::R_X86_64_NONE:
2100     case elfcpp::R_X86_64_GNU_VTINHERIT:
2101     case elfcpp::R_X86_64_GNU_VTENTRY:
2102     case elfcpp::R_X86_64_GOTPC32:
2103     case elfcpp::R_X86_64_GOTPC64:
2104       // No symbol reference.
2105       return 0;
2106
2107     case elfcpp::R_X86_64_64:
2108     case elfcpp::R_X86_64_32:
2109     case elfcpp::R_X86_64_32S:
2110     case elfcpp::R_X86_64_16:
2111     case elfcpp::R_X86_64_8:
2112       return Symbol::ABSOLUTE_REF;
2113
2114     case elfcpp::R_X86_64_PC64:
2115     case elfcpp::R_X86_64_PC32:
2116     case elfcpp::R_X86_64_PC16:
2117     case elfcpp::R_X86_64_PC8:
2118     case elfcpp::R_X86_64_GOTOFF64:
2119       return Symbol::RELATIVE_REF;
2120
2121     case elfcpp::R_X86_64_PLT32:
2122     case elfcpp::R_X86_64_PLTOFF64:
2123       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
2124
2125     case elfcpp::R_X86_64_GOT64:
2126     case elfcpp::R_X86_64_GOT32:
2127     case elfcpp::R_X86_64_GOTPCREL64:
2128     case elfcpp::R_X86_64_GOTPCREL:
2129     case elfcpp::R_X86_64_GOTPLT64:
2130       // Absolute in GOT.
2131       return Symbol::ABSOLUTE_REF;
2132
2133     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2134     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2135     case elfcpp::R_X86_64_TLSDESC_CALL:
2136     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2137     case elfcpp::R_X86_64_DTPOFF32:
2138     case elfcpp::R_X86_64_DTPOFF64:
2139     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2140     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2141       return Symbol::TLS_REF;
2142
2143     case elfcpp::R_X86_64_COPY:
2144     case elfcpp::R_X86_64_GLOB_DAT:
2145     case elfcpp::R_X86_64_JUMP_SLOT:
2146     case elfcpp::R_X86_64_RELATIVE:
2147     case elfcpp::R_X86_64_IRELATIVE:
2148     case elfcpp::R_X86_64_TPOFF64:
2149     case elfcpp::R_X86_64_DTPMOD64:
2150     case elfcpp::R_X86_64_TLSDESC:
2151     case elfcpp::R_X86_64_SIZE32:
2152     case elfcpp::R_X86_64_SIZE64:
2153     default:
2154       // Not expected.  We will give an error later.
2155       return 0;
2156     }
2157 }
2158
2159 // Report an unsupported relocation against a local symbol.
2160
2161 template<int size>
2162 void
2163 Target_x86_64<size>::Scan::unsupported_reloc_local(
2164      Sized_relobj_file<size, false>* object,
2165      unsigned int r_type)
2166 {
2167   gold_error(_("%s: unsupported reloc %u against local symbol"),
2168              object->name().c_str(), r_type);
2169 }
2170
2171 // We are about to emit a dynamic relocation of type R_TYPE.  If the
2172 // dynamic linker does not support it, issue an error.  The GNU linker
2173 // only issues a non-PIC error for an allocated read-only section.
2174 // Here we know the section is allocated, but we don't know that it is
2175 // read-only.  But we check for all the relocation types which the
2176 // glibc dynamic linker supports, so it seems appropriate to issue an
2177 // error even if the section is not read-only.  If GSYM is not NULL,
2178 // it is the symbol the relocation is against; if it is NULL, the
2179 // relocation is against a local symbol.
2180
2181 template<int size>
2182 void
2183 Target_x86_64<size>::Scan::check_non_pic(Relobj* object, unsigned int r_type,
2184                                          Symbol* gsym)
2185 {
2186   switch (r_type)
2187     {
2188       // These are the relocation types supported by glibc for x86_64
2189       // which should always work.
2190     case elfcpp::R_X86_64_RELATIVE:
2191     case elfcpp::R_X86_64_IRELATIVE:
2192     case elfcpp::R_X86_64_GLOB_DAT:
2193     case elfcpp::R_X86_64_JUMP_SLOT:
2194     case elfcpp::R_X86_64_DTPMOD64:
2195     case elfcpp::R_X86_64_DTPOFF64:
2196     case elfcpp::R_X86_64_TPOFF64:
2197     case elfcpp::R_X86_64_64:
2198     case elfcpp::R_X86_64_COPY:
2199       return;
2200
2201       // glibc supports these reloc types, but they can overflow.
2202     case elfcpp::R_X86_64_PC32:
2203       // A PC relative reference is OK against a local symbol or if
2204       // the symbol is defined locally.
2205       if (gsym == NULL
2206           || (!gsym->is_from_dynobj()
2207               && !gsym->is_undefined()
2208               && !gsym->is_preemptible()))
2209         return;
2210       /* Fall through.  */
2211     case elfcpp::R_X86_64_32:
2212       // R_X86_64_32 is OK for x32.
2213       if (size == 32 && r_type == elfcpp::R_X86_64_32)
2214         return;
2215       if (this->issued_non_pic_error_)
2216         return;
2217       gold_assert(parameters->options().output_is_position_independent());
2218       if (gsym == NULL)
2219         object->error(_("requires dynamic R_X86_64_32 reloc which may "
2220                         "overflow at runtime; recompile with -fPIC"));
2221       else
2222         object->error(_("requires dynamic %s reloc against '%s' which may "
2223                         "overflow at runtime; recompile with -fPIC"),
2224                       (r_type == elfcpp::R_X86_64_32
2225                        ? "R_X86_64_32"
2226                        : "R_X86_64_PC32"),
2227                       gsym->name());
2228       this->issued_non_pic_error_ = true;
2229       return;
2230
2231     default:
2232       // This prevents us from issuing more than one error per reloc
2233       // section.  But we can still wind up issuing more than one
2234       // error per object file.
2235       if (this->issued_non_pic_error_)
2236         return;
2237       gold_assert(parameters->options().output_is_position_independent());
2238       object->error(_("requires unsupported dynamic reloc %u; "
2239                       "recompile with -fPIC"),
2240                     r_type);
2241       this->issued_non_pic_error_ = true;
2242       return;
2243
2244     case elfcpp::R_X86_64_NONE:
2245       gold_unreachable();
2246     }
2247 }
2248
2249 // Return whether we need to make a PLT entry for a relocation of the
2250 // given type against a STT_GNU_IFUNC symbol.
2251
2252 template<int size>
2253 bool
2254 Target_x86_64<size>::Scan::reloc_needs_plt_for_ifunc(
2255      Sized_relobj_file<size, false>* object,
2256      unsigned int r_type)
2257 {
2258   int flags = Scan::get_reference_flags(r_type);
2259   if (flags & Symbol::TLS_REF)
2260     gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
2261                object->name().c_str(), r_type);
2262   return flags != 0;
2263 }
2264
2265 // Scan a relocation for a local symbol.
2266
2267 template<int size>
2268 inline void
2269 Target_x86_64<size>::Scan::local(Symbol_table* symtab,
2270                                  Layout* layout,
2271                                  Target_x86_64<size>* target,
2272                                  Sized_relobj_file<size, false>* object,
2273                                  unsigned int data_shndx,
2274                                  Output_section* output_section,
2275                                  const elfcpp::Rela<size, false>& reloc,
2276                                  unsigned int r_type,
2277                                  const elfcpp::Sym<size, false>& lsym,
2278                                  bool is_discarded)
2279 {
2280   if (is_discarded)
2281     return;
2282
2283   // A local STT_GNU_IFUNC symbol may require a PLT entry.
2284   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
2285   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
2286     {
2287       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2288       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
2289     }
2290
2291   switch (r_type)
2292     {
2293     case elfcpp::R_X86_64_NONE:
2294     case elfcpp::R_X86_64_GNU_VTINHERIT:
2295     case elfcpp::R_X86_64_GNU_VTENTRY:
2296       break;
2297
2298     case elfcpp::R_X86_64_64:
2299       // If building a shared library (or a position-independent
2300       // executable), we need to create a dynamic relocation for this
2301       // location.  The relocation applied at link time will apply the
2302       // link-time value, so we flag the location with an
2303       // R_X86_64_RELATIVE relocation so the dynamic loader can
2304       // relocate it easily.
2305       if (parameters->options().output_is_position_independent())
2306         {
2307           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2308           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2309           rela_dyn->add_local_relative(object, r_sym,
2310                                        (size == 32
2311                                         ? elfcpp::R_X86_64_RELATIVE64
2312                                         : elfcpp::R_X86_64_RELATIVE),
2313                                        output_section, data_shndx,
2314                                        reloc.get_r_offset(),
2315                                        reloc.get_r_addend(), is_ifunc);
2316         }
2317       break;
2318
2319     case elfcpp::R_X86_64_32:
2320     case elfcpp::R_X86_64_32S:
2321     case elfcpp::R_X86_64_16:
2322     case elfcpp::R_X86_64_8:
2323       // If building a shared library (or a position-independent
2324       // executable), we need to create a dynamic relocation for this
2325       // location.  We can't use an R_X86_64_RELATIVE relocation
2326       // because that is always a 64-bit relocation.
2327       if (parameters->options().output_is_position_independent())
2328         {
2329           // Use R_X86_64_RELATIVE relocation for R_X86_64_32 under x32.
2330           if (size == 32 && r_type == elfcpp::R_X86_64_32)
2331             {
2332               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2333               Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2334               rela_dyn->add_local_relative(object, r_sym,
2335                                            elfcpp::R_X86_64_RELATIVE,
2336                                            output_section, data_shndx,
2337                                            reloc.get_r_offset(),
2338                                            reloc.get_r_addend(), is_ifunc);
2339               break;
2340             }
2341
2342           this->check_non_pic(object, r_type, NULL);
2343
2344           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2345           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2346           if (lsym.get_st_type() != elfcpp::STT_SECTION)
2347             rela_dyn->add_local(object, r_sym, r_type, output_section,
2348                                 data_shndx, reloc.get_r_offset(),
2349                                 reloc.get_r_addend());
2350           else
2351             {
2352               gold_assert(lsym.get_st_value() == 0);
2353               unsigned int shndx = lsym.get_st_shndx();
2354               bool is_ordinary;
2355               shndx = object->adjust_sym_shndx(r_sym, shndx,
2356                                                &is_ordinary);
2357               if (!is_ordinary)
2358                 object->error(_("section symbol %u has bad shndx %u"),
2359                               r_sym, shndx);
2360               else
2361                 rela_dyn->add_local_section(object, shndx,
2362                                             r_type, output_section,
2363                                             data_shndx, reloc.get_r_offset(),
2364                                             reloc.get_r_addend());
2365             }
2366         }
2367       break;
2368
2369     case elfcpp::R_X86_64_PC64:
2370     case elfcpp::R_X86_64_PC32:
2371     case elfcpp::R_X86_64_PC16:
2372     case elfcpp::R_X86_64_PC8:
2373       break;
2374
2375     case elfcpp::R_X86_64_PLT32:
2376       // Since we know this is a local symbol, we can handle this as a
2377       // PC32 reloc.
2378       break;
2379
2380     case elfcpp::R_X86_64_GOTPC32:
2381     case elfcpp::R_X86_64_GOTOFF64:
2382     case elfcpp::R_X86_64_GOTPC64:
2383     case elfcpp::R_X86_64_PLTOFF64:
2384       // We need a GOT section.
2385       target->got_section(symtab, layout);
2386       // For PLTOFF64, we'd normally want a PLT section, but since we
2387       // know this is a local symbol, no PLT is needed.
2388       break;
2389
2390     case elfcpp::R_X86_64_GOT64:
2391     case elfcpp::R_X86_64_GOT32:
2392     case elfcpp::R_X86_64_GOTPCREL64:
2393     case elfcpp::R_X86_64_GOTPCREL:
2394     case elfcpp::R_X86_64_GOTPLT64:
2395       {
2396         // The symbol requires a GOT entry.
2397         Output_data_got<64, false>* got = target->got_section(symtab, layout);
2398         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2399
2400         // For a STT_GNU_IFUNC symbol we want the PLT offset.  That
2401         // lets function pointers compare correctly with shared
2402         // libraries.  Otherwise we would need an IRELATIVE reloc.
2403         bool is_new;
2404         if (is_ifunc)
2405           is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
2406         else
2407           is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
2408         if (is_new)
2409           {
2410             // If we are generating a shared object, we need to add a
2411             // dynamic relocation for this symbol's GOT entry.
2412             if (parameters->options().output_is_position_independent())
2413               {
2414                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2415                 // R_X86_64_RELATIVE assumes a 64-bit relocation.
2416                 if (r_type != elfcpp::R_X86_64_GOT32)
2417                   {
2418                     unsigned int got_offset =
2419                       object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
2420                     rela_dyn->add_local_relative(object, r_sym,
2421                                                  elfcpp::R_X86_64_RELATIVE,
2422                                                  got, got_offset, 0, is_ifunc);
2423                   }
2424                 else
2425                   {
2426                     this->check_non_pic(object, r_type, NULL);
2427
2428                     gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
2429                     rela_dyn->add_local(
2430                         object, r_sym, r_type, got,
2431                         object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
2432                   }
2433               }
2434           }
2435         // For GOTPLT64, we'd normally want a PLT section, but since
2436         // we know this is a local symbol, no PLT is needed.
2437       }
2438       break;
2439
2440     case elfcpp::R_X86_64_COPY:
2441     case elfcpp::R_X86_64_GLOB_DAT:
2442     case elfcpp::R_X86_64_JUMP_SLOT:
2443     case elfcpp::R_X86_64_RELATIVE:
2444     case elfcpp::R_X86_64_IRELATIVE:
2445       // These are outstanding tls relocs, which are unexpected when linking
2446     case elfcpp::R_X86_64_TPOFF64:
2447     case elfcpp::R_X86_64_DTPMOD64:
2448     case elfcpp::R_X86_64_TLSDESC:
2449       gold_error(_("%s: unexpected reloc %u in object file"),
2450                  object->name().c_str(), r_type);
2451       break;
2452
2453       // These are initial tls relocs, which are expected when linking
2454     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2455     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2456     case elfcpp::R_X86_64_TLSDESC_CALL:
2457     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2458     case elfcpp::R_X86_64_DTPOFF32:
2459     case elfcpp::R_X86_64_DTPOFF64:
2460     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2461     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2462       {
2463         bool output_is_shared = parameters->options().shared();
2464         const tls::Tls_optimization optimized_type
2465             = Target_x86_64<size>::optimize_tls_reloc(!output_is_shared,
2466                                                       r_type);
2467         switch (r_type)
2468           {
2469           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
2470             if (optimized_type == tls::TLSOPT_NONE)
2471               {
2472                 // Create a pair of GOT entries for the module index and
2473                 // dtv-relative offset.
2474                 Output_data_got<64, false>* got
2475                     = target->got_section(symtab, layout);
2476                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2477                 unsigned int shndx = lsym.get_st_shndx();
2478                 bool is_ordinary;
2479                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2480                 if (!is_ordinary)
2481                   object->error(_("local symbol %u has bad shndx %u"),
2482                               r_sym, shndx);
2483                 else
2484                   got->add_local_pair_with_rel(object, r_sym,
2485                                                shndx,
2486                                                GOT_TYPE_TLS_PAIR,
2487                                                target->rela_dyn_section(layout),
2488                                                elfcpp::R_X86_64_DTPMOD64);
2489               }
2490             else if (optimized_type != tls::TLSOPT_TO_LE)
2491               unsupported_reloc_local(object, r_type);
2492             break;
2493
2494           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2495             target->define_tls_base_symbol(symtab, layout);
2496             if (optimized_type == tls::TLSOPT_NONE)
2497               {
2498                 // Create reserved PLT and GOT entries for the resolver.
2499                 target->reserve_tlsdesc_entries(symtab, layout);
2500
2501                 // Generate a double GOT entry with an
2502                 // R_X86_64_TLSDESC reloc.  The R_X86_64_TLSDESC reloc
2503                 // is resolved lazily, so the GOT entry needs to be in
2504                 // an area in .got.plt, not .got.  Call got_section to
2505                 // make sure the section has been created.
2506                 target->got_section(symtab, layout);
2507                 Output_data_got<64, false>* got = target->got_tlsdesc_section();
2508                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2509                 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
2510                   {
2511                     unsigned int got_offset = got->add_constant(0);
2512                     got->add_constant(0);
2513                     object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
2514                                                  got_offset);
2515                     Reloc_section* rt = target->rela_tlsdesc_section(layout);
2516                     // We store the arguments we need in a vector, and
2517                     // use the index into the vector as the parameter
2518                     // to pass to the target specific routines.
2519                     uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
2520                     void* arg = reinterpret_cast<void*>(intarg);
2521                     rt->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
2522                                             got, got_offset, 0);
2523                   }
2524               }
2525             else if (optimized_type != tls::TLSOPT_TO_LE)
2526               unsupported_reloc_local(object, r_type);
2527             break;
2528
2529           case elfcpp::R_X86_64_TLSDESC_CALL:
2530             break;
2531
2532           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
2533             if (optimized_type == tls::TLSOPT_NONE)
2534               {
2535                 // Create a GOT entry for the module index.
2536                 target->got_mod_index_entry(symtab, layout, object);
2537               }
2538             else if (optimized_type != tls::TLSOPT_TO_LE)
2539               unsupported_reloc_local(object, r_type);
2540             break;
2541
2542           case elfcpp::R_X86_64_DTPOFF32:
2543           case elfcpp::R_X86_64_DTPOFF64:
2544             break;
2545
2546           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
2547             layout->set_has_static_tls();
2548             if (optimized_type == tls::TLSOPT_NONE)
2549               {
2550                 // Create a GOT entry for the tp-relative offset.
2551                 Output_data_got<64, false>* got
2552                     = target->got_section(symtab, layout);
2553                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2554                 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
2555                                         target->rela_dyn_section(layout),
2556                                         elfcpp::R_X86_64_TPOFF64);
2557               }
2558             else if (optimized_type != tls::TLSOPT_TO_LE)
2559               unsupported_reloc_local(object, r_type);
2560             break;
2561
2562           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
2563             layout->set_has_static_tls();
2564             if (output_is_shared)
2565               unsupported_reloc_local(object, r_type);
2566             break;
2567
2568           default:
2569             gold_unreachable();
2570           }
2571       }
2572       break;
2573
2574     case elfcpp::R_X86_64_SIZE32:
2575     case elfcpp::R_X86_64_SIZE64:
2576     default:
2577       gold_error(_("%s: unsupported reloc %u against local symbol"),
2578                  object->name().c_str(), r_type);
2579       break;
2580     }
2581 }
2582
2583
2584 // Report an unsupported relocation against a global symbol.
2585
2586 template<int size>
2587 void
2588 Target_x86_64<size>::Scan::unsupported_reloc_global(
2589     Sized_relobj_file<size, false>* object,
2590     unsigned int r_type,
2591     Symbol* gsym)
2592 {
2593   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2594              object->name().c_str(), r_type, gsym->demangled_name().c_str());
2595 }
2596
2597 // Returns true if this relocation type could be that of a function pointer.
2598 template<int size>
2599 inline bool
2600 Target_x86_64<size>::Scan::possible_function_pointer_reloc(unsigned int r_type)
2601 {
2602   switch (r_type)
2603     {
2604     case elfcpp::R_X86_64_64:
2605     case elfcpp::R_X86_64_32:
2606     case elfcpp::R_X86_64_32S:
2607     case elfcpp::R_X86_64_16:
2608     case elfcpp::R_X86_64_8:
2609     case elfcpp::R_X86_64_GOT64:
2610     case elfcpp::R_X86_64_GOT32:
2611     case elfcpp::R_X86_64_GOTPCREL64:
2612     case elfcpp::R_X86_64_GOTPCREL:
2613     case elfcpp::R_X86_64_GOTPLT64:
2614       {
2615         return true;
2616       }
2617     }
2618   return false;
2619 }
2620
2621 // For safe ICF, scan a relocation for a local symbol to check if it
2622 // corresponds to a function pointer being taken.  In that case mark
2623 // the function whose pointer was taken as not foldable.
2624
2625 template<int size>
2626 inline bool
2627 Target_x86_64<size>::Scan::local_reloc_may_be_function_pointer(
2628   Symbol_table* ,
2629   Layout* ,
2630   Target_x86_64<size>* ,
2631   Sized_relobj_file<size, false>* ,
2632   unsigned int ,
2633   Output_section* ,
2634   const elfcpp::Rela<size, false>& ,
2635   unsigned int r_type,
2636   const elfcpp::Sym<size, false>&)
2637 {
2638   // When building a shared library, do not fold any local symbols as it is
2639   // not possible to distinguish pointer taken versus a call by looking at
2640   // the relocation types.
2641   return (parameters->options().shared()
2642           || possible_function_pointer_reloc(r_type));
2643 }
2644
2645 // For safe ICF, scan a relocation for a global symbol to check if it
2646 // corresponds to a function pointer being taken.  In that case mark
2647 // the function whose pointer was taken as not foldable.
2648
2649 template<int size>
2650 inline bool
2651 Target_x86_64<size>::Scan::global_reloc_may_be_function_pointer(
2652   Symbol_table*,
2653   Layout* ,
2654   Target_x86_64<size>* ,
2655   Sized_relobj_file<size, false>* ,
2656   unsigned int ,
2657   Output_section* ,
2658   const elfcpp::Rela<size, false>& ,
2659   unsigned int r_type,
2660   Symbol* gsym)
2661 {
2662   // When building a shared library, do not fold symbols whose visibility
2663   // is hidden, internal or protected.
2664   return ((parameters->options().shared()
2665            && (gsym->visibility() == elfcpp::STV_INTERNAL
2666                || gsym->visibility() == elfcpp::STV_PROTECTED
2667                || gsym->visibility() == elfcpp::STV_HIDDEN))
2668           || possible_function_pointer_reloc(r_type));
2669 }
2670
2671 // Scan a relocation for a global symbol.
2672
2673 template<int size>
2674 inline void
2675 Target_x86_64<size>::Scan::global(Symbol_table* symtab,
2676                             Layout* layout,
2677                             Target_x86_64<size>* target,
2678                             Sized_relobj_file<size, false>* object,
2679                             unsigned int data_shndx,
2680                             Output_section* output_section,
2681                             const elfcpp::Rela<size, false>& reloc,
2682                             unsigned int r_type,
2683                             Symbol* gsym)
2684 {
2685   // A STT_GNU_IFUNC symbol may require a PLT entry.
2686   if (gsym->type() == elfcpp::STT_GNU_IFUNC
2687       && this->reloc_needs_plt_for_ifunc(object, r_type))
2688     target->make_plt_entry(symtab, layout, gsym);
2689
2690   switch (r_type)
2691     {
2692     case elfcpp::R_X86_64_NONE:
2693     case elfcpp::R_X86_64_GNU_VTINHERIT:
2694     case elfcpp::R_X86_64_GNU_VTENTRY:
2695       break;
2696
2697     case elfcpp::R_X86_64_64:
2698     case elfcpp::R_X86_64_32:
2699     case elfcpp::R_X86_64_32S:
2700     case elfcpp::R_X86_64_16:
2701     case elfcpp::R_X86_64_8:
2702       {
2703         // Make a PLT entry if necessary.
2704         if (gsym->needs_plt_entry())
2705           {
2706             target->make_plt_entry(symtab, layout, gsym);
2707             // Since this is not a PC-relative relocation, we may be
2708             // taking the address of a function. In that case we need to
2709             // set the entry in the dynamic symbol table to the address of
2710             // the PLT entry.
2711             if (gsym->is_from_dynobj() && !parameters->options().shared())
2712               gsym->set_needs_dynsym_value();
2713           }
2714         // Make a dynamic relocation if necessary.
2715         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2716           {
2717             if (gsym->may_need_copy_reloc())
2718               {
2719                 target->copy_reloc(symtab, layout, object,
2720                                    data_shndx, output_section, gsym, reloc);
2721               }
2722             else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
2723                       || (size == 32 && r_type == elfcpp::R_X86_64_32))
2724                      && gsym->type() == elfcpp::STT_GNU_IFUNC
2725                      && gsym->can_use_relative_reloc(false)
2726                      && !gsym->is_from_dynobj()
2727                      && !gsym->is_undefined()
2728                      && !gsym->is_preemptible())
2729               {
2730                 // Use an IRELATIVE reloc for a locally defined
2731                 // STT_GNU_IFUNC symbol.  This makes a function
2732                 // address in a PIE executable match the address in a
2733                 // shared library that it links against.
2734                 Reloc_section* rela_dyn =
2735                   target->rela_irelative_section(layout);
2736                 unsigned int r_type = elfcpp::R_X86_64_IRELATIVE;
2737                 rela_dyn->add_symbolless_global_addend(gsym, r_type,
2738                                                        output_section, object,
2739                                                        data_shndx,
2740                                                        reloc.get_r_offset(),
2741                                                        reloc.get_r_addend());
2742               }
2743             else if (r_type == elfcpp::R_X86_64_64
2744                      && gsym->can_use_relative_reloc(false))
2745               {
2746                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2747                 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
2748                                               output_section, object,
2749                                               data_shndx,
2750                                               reloc.get_r_offset(),
2751                                               reloc.get_r_addend(), false);
2752               }
2753             else
2754               {
2755                 this->check_non_pic(object, r_type, gsym);
2756                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2757                 rela_dyn->add_global(gsym, r_type, output_section, object,
2758                                      data_shndx, reloc.get_r_offset(),
2759                                      reloc.get_r_addend());
2760               }
2761           }
2762       }
2763       break;
2764
2765     case elfcpp::R_X86_64_PC64:
2766     case elfcpp::R_X86_64_PC32:
2767     case elfcpp::R_X86_64_PC16:
2768     case elfcpp::R_X86_64_PC8:
2769       {
2770         // Make a PLT entry if necessary.
2771         if (gsym->needs_plt_entry())
2772           target->make_plt_entry(symtab, layout, gsym);
2773         // Make a dynamic relocation if necessary.
2774         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2775           {
2776             if (gsym->may_need_copy_reloc())
2777               {
2778                 target->copy_reloc(symtab, layout, object,
2779                                    data_shndx, output_section, gsym, reloc);
2780               }
2781             else
2782               {
2783                 this->check_non_pic(object, r_type, gsym);
2784                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2785                 rela_dyn->add_global(gsym, r_type, output_section, object,
2786                                      data_shndx, reloc.get_r_offset(),
2787                                      reloc.get_r_addend());
2788               }
2789           }
2790       }
2791       break;
2792
2793     case elfcpp::R_X86_64_GOT64:
2794     case elfcpp::R_X86_64_GOT32:
2795     case elfcpp::R_X86_64_GOTPCREL64:
2796     case elfcpp::R_X86_64_GOTPCREL:
2797     case elfcpp::R_X86_64_GOTPLT64:
2798       {
2799         // The symbol requires a GOT entry.
2800         Output_data_got<64, false>* got = target->got_section(symtab, layout);
2801         if (gsym->final_value_is_known())
2802           {
2803             // For a STT_GNU_IFUNC symbol we want the PLT address.
2804             if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2805               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2806             else
2807               got->add_global(gsym, GOT_TYPE_STANDARD);
2808           }
2809         else
2810           {
2811             // If this symbol is not fully resolved, we need to add a
2812             // dynamic relocation for it.
2813             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2814
2815             // Use a GLOB_DAT rather than a RELATIVE reloc if:
2816             //
2817             // 1) The symbol may be defined in some other module.
2818             //
2819             // 2) We are building a shared library and this is a
2820             // protected symbol; using GLOB_DAT means that the dynamic
2821             // linker can use the address of the PLT in the main
2822             // executable when appropriate so that function address
2823             // comparisons work.
2824             //
2825             // 3) This is a STT_GNU_IFUNC symbol in position dependent
2826             // code, again so that function address comparisons work.
2827             if (gsym->is_from_dynobj()
2828                 || gsym->is_undefined()
2829                 || gsym->is_preemptible()
2830                 || (gsym->visibility() == elfcpp::STV_PROTECTED
2831                     && parameters->options().shared())
2832                 || (gsym->type() == elfcpp::STT_GNU_IFUNC
2833                     && parameters->options().output_is_position_independent()))
2834               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
2835                                        elfcpp::R_X86_64_GLOB_DAT);
2836             else
2837               {
2838                 // For a STT_GNU_IFUNC symbol we want to write the PLT
2839                 // offset into the GOT, so that function pointer
2840                 // comparisons work correctly.
2841                 bool is_new;
2842                 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2843                   is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2844                 else
2845                   {
2846                     is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2847                     // Tell the dynamic linker to use the PLT address
2848                     // when resolving relocations.
2849                     if (gsym->is_from_dynobj()
2850                         && !parameters->options().shared())
2851                       gsym->set_needs_dynsym_value();
2852                   }
2853                 if (is_new)
2854                   {
2855                     unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
2856                     rela_dyn->add_global_relative(gsym,
2857                                                   elfcpp::R_X86_64_RELATIVE,
2858                                                   got, got_off, 0, false);
2859                   }
2860               }
2861           }
2862         // For GOTPLT64, we also need a PLT entry (but only if the
2863         // symbol is not fully resolved).
2864         if (r_type == elfcpp::R_X86_64_GOTPLT64
2865             && !gsym->final_value_is_known())
2866           target->make_plt_entry(symtab, layout, gsym);
2867       }
2868       break;
2869
2870     case elfcpp::R_X86_64_PLT32:
2871       // If the symbol is fully resolved, this is just a PC32 reloc.
2872       // Otherwise we need a PLT entry.
2873       if (gsym->final_value_is_known())
2874         break;
2875       // If building a shared library, we can also skip the PLT entry
2876       // if the symbol is defined in the output file and is protected
2877       // or hidden.
2878       if (gsym->is_defined()
2879           && !gsym->is_from_dynobj()
2880           && !gsym->is_preemptible())
2881         break;
2882       target->make_plt_entry(symtab, layout, gsym);
2883       break;
2884
2885     case elfcpp::R_X86_64_GOTPC32:
2886     case elfcpp::R_X86_64_GOTOFF64:
2887     case elfcpp::R_X86_64_GOTPC64:
2888     case elfcpp::R_X86_64_PLTOFF64:
2889       // We need a GOT section.
2890       target->got_section(symtab, layout);
2891       // For PLTOFF64, we also need a PLT entry (but only if the
2892       // symbol is not fully resolved).
2893       if (r_type == elfcpp::R_X86_64_PLTOFF64
2894           && !gsym->final_value_is_known())
2895         target->make_plt_entry(symtab, layout, gsym);
2896       break;
2897
2898     case elfcpp::R_X86_64_COPY:
2899     case elfcpp::R_X86_64_GLOB_DAT:
2900     case elfcpp::R_X86_64_JUMP_SLOT:
2901     case elfcpp::R_X86_64_RELATIVE:
2902     case elfcpp::R_X86_64_IRELATIVE:
2903       // These are outstanding tls relocs, which are unexpected when linking
2904     case elfcpp::R_X86_64_TPOFF64:
2905     case elfcpp::R_X86_64_DTPMOD64:
2906     case elfcpp::R_X86_64_TLSDESC:
2907       gold_error(_("%s: unexpected reloc %u in object file"),
2908                  object->name().c_str(), r_type);
2909       break;
2910
2911       // These are initial tls relocs, which are expected for global()
2912     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2913     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2914     case elfcpp::R_X86_64_TLSDESC_CALL:
2915     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2916     case elfcpp::R_X86_64_DTPOFF32:
2917     case elfcpp::R_X86_64_DTPOFF64:
2918     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2919     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2920       {
2921         const bool is_final = gsym->final_value_is_known();
2922         const tls::Tls_optimization optimized_type
2923             = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
2924         switch (r_type)
2925           {
2926           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
2927             if (optimized_type == tls::TLSOPT_NONE)
2928               {
2929                 // Create a pair of GOT entries for the module index and
2930                 // dtv-relative offset.
2931                 Output_data_got<64, false>* got
2932                     = target->got_section(symtab, layout);
2933                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
2934                                               target->rela_dyn_section(layout),
2935                                               elfcpp::R_X86_64_DTPMOD64,
2936                                               elfcpp::R_X86_64_DTPOFF64);
2937               }
2938             else if (optimized_type == tls::TLSOPT_TO_IE)
2939               {
2940                 // Create a GOT entry for the tp-relative offset.
2941                 Output_data_got<64, false>* got
2942                     = target->got_section(symtab, layout);
2943                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
2944                                          target->rela_dyn_section(layout),
2945                                          elfcpp::R_X86_64_TPOFF64);
2946               }
2947             else if (optimized_type != tls::TLSOPT_TO_LE)
2948               unsupported_reloc_global(object, r_type, gsym);
2949             break;
2950
2951           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2952             target->define_tls_base_symbol(symtab, layout);
2953             if (optimized_type == tls::TLSOPT_NONE)
2954               {
2955                 // Create reserved PLT and GOT entries for the resolver.
2956                 target->reserve_tlsdesc_entries(symtab, layout);
2957
2958                 // Create a double GOT entry with an R_X86_64_TLSDESC
2959                 // reloc.  The R_X86_64_TLSDESC reloc is resolved
2960                 // lazily, so the GOT entry needs to be in an area in
2961                 // .got.plt, not .got.  Call got_section to make sure
2962                 // the section has been created.
2963                 target->got_section(symtab, layout);
2964                 Output_data_got<64, false>* got = target->got_tlsdesc_section();
2965                 Reloc_section* rt = target->rela_tlsdesc_section(layout);
2966                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
2967                                               elfcpp::R_X86_64_TLSDESC, 0);
2968               }
2969             else if (optimized_type == tls::TLSOPT_TO_IE)
2970               {
2971                 // Create a GOT entry for the tp-relative offset.
2972                 Output_data_got<64, false>* got
2973                     = target->got_section(symtab, layout);
2974                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
2975                                          target->rela_dyn_section(layout),
2976                                          elfcpp::R_X86_64_TPOFF64);
2977               }
2978             else if (optimized_type != tls::TLSOPT_TO_LE)
2979               unsupported_reloc_global(object, r_type, gsym);
2980             break;
2981
2982           case elfcpp::R_X86_64_TLSDESC_CALL:
2983             break;
2984
2985           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
2986             if (optimized_type == tls::TLSOPT_NONE)
2987               {
2988                 // Create a GOT entry for the module index.
2989                 target->got_mod_index_entry(symtab, layout, object);
2990               }
2991             else if (optimized_type != tls::TLSOPT_TO_LE)
2992               unsupported_reloc_global(object, r_type, gsym);
2993             break;
2994
2995           case elfcpp::R_X86_64_DTPOFF32:
2996           case elfcpp::R_X86_64_DTPOFF64:
2997             break;
2998
2999           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
3000             layout->set_has_static_tls();
3001             if (optimized_type == tls::TLSOPT_NONE)
3002               {
3003                 // Create a GOT entry for the tp-relative offset.
3004                 Output_data_got<64, false>* got
3005                     = target->got_section(symtab, layout);
3006                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3007                                          target->rela_dyn_section(layout),
3008                                          elfcpp::R_X86_64_TPOFF64);
3009               }
3010             else if (optimized_type != tls::TLSOPT_TO_LE)
3011               unsupported_reloc_global(object, r_type, gsym);
3012             break;
3013
3014           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
3015             layout->set_has_static_tls();
3016             if (parameters->options().shared())
3017               unsupported_reloc_global(object, r_type, gsym);
3018             break;
3019
3020           default:
3021             gold_unreachable();
3022           }
3023       }
3024       break;
3025
3026     case elfcpp::R_X86_64_SIZE32:
3027     case elfcpp::R_X86_64_SIZE64:
3028     default:
3029       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3030                  object->name().c_str(), r_type,
3031                  gsym->demangled_name().c_str());
3032       break;
3033     }
3034 }
3035
3036 template<int size>
3037 void
3038 Target_x86_64<size>::gc_process_relocs(Symbol_table* symtab,
3039                                        Layout* layout,
3040                                        Sized_relobj_file<size, false>* object,
3041                                        unsigned int data_shndx,
3042                                        unsigned int sh_type,
3043                                        const unsigned char* prelocs,
3044                                        size_t reloc_count,
3045                                        Output_section* output_section,
3046                                        bool needs_special_offset_handling,
3047                                        size_t local_symbol_count,
3048                                        const unsigned char* plocal_symbols)
3049 {
3050
3051   if (sh_type == elfcpp::SHT_REL)
3052     {
3053       return;
3054     }
3055
3056    gold::gc_process_relocs<size, false, Target_x86_64<size>, elfcpp::SHT_RELA,
3057                            typename Target_x86_64<size>::Scan,
3058                            typename Target_x86_64<size>::Relocatable_size_for_reloc>(
3059     symtab,
3060     layout,
3061     this,
3062     object,
3063     data_shndx,
3064     prelocs,
3065     reloc_count,
3066     output_section,
3067     needs_special_offset_handling,
3068     local_symbol_count,
3069     plocal_symbols);
3070
3071 }
3072 // Scan relocations for a section.
3073
3074 template<int size>
3075 void
3076 Target_x86_64<size>::scan_relocs(Symbol_table* symtab,
3077                                  Layout* layout,
3078                                  Sized_relobj_file<size, false>* object,
3079                                  unsigned int data_shndx,
3080                                  unsigned int sh_type,
3081                                  const unsigned char* prelocs,
3082                                  size_t reloc_count,
3083                                  Output_section* output_section,
3084                                  bool needs_special_offset_handling,
3085                                  size_t local_symbol_count,
3086                                  const unsigned char* plocal_symbols)
3087 {
3088   if (sh_type == elfcpp::SHT_REL)
3089     {
3090       gold_error(_("%s: unsupported REL reloc section"),
3091                  object->name().c_str());
3092       return;
3093     }
3094
3095   gold::scan_relocs<size, false, Target_x86_64<size>, elfcpp::SHT_RELA,
3096       typename Target_x86_64<size>::Scan>(
3097     symtab,
3098     layout,
3099     this,
3100     object,
3101     data_shndx,
3102     prelocs,
3103     reloc_count,
3104     output_section,
3105     needs_special_offset_handling,
3106     local_symbol_count,
3107     plocal_symbols);
3108 }
3109
3110 // Finalize the sections.
3111
3112 template<int size>
3113 void
3114 Target_x86_64<size>::do_finalize_sections(
3115     Layout* layout,
3116     const Input_objects*,
3117     Symbol_table* symtab)
3118 {
3119   const Reloc_section* rel_plt = (this->plt_ == NULL
3120                                   ? NULL
3121                                   : this->plt_->rela_plt());
3122   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
3123                                   this->rela_dyn_, true, false);
3124
3125   // Fill in some more dynamic tags.
3126   Output_data_dynamic* const odyn = layout->dynamic_data();
3127   if (odyn != NULL)
3128     {
3129       if (this->plt_ != NULL
3130           && this->plt_->output_section() != NULL
3131           && this->plt_->has_tlsdesc_entry())
3132         {
3133           unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
3134           unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
3135           this->got_->finalize_data_size();
3136           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
3137                                         this->plt_, plt_offset);
3138           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
3139                                         this->got_, got_offset);
3140         }
3141     }
3142
3143   // Emit any relocs we saved in an attempt to avoid generating COPY
3144   // relocs.
3145   if (this->copy_relocs_.any_saved_relocs())
3146     this->copy_relocs_.emit(this->rela_dyn_section(layout));
3147
3148   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
3149   // the .got.plt section.
3150   Symbol* sym = this->global_offset_table_;
3151   if (sym != NULL)
3152     {
3153       uint64_t data_size = this->got_plt_->current_data_size();
3154       symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
3155     }
3156
3157   if (parameters->doing_static_link()
3158       && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
3159     {
3160       // If linking statically, make sure that the __rela_iplt symbols
3161       // were defined if necessary, even if we didn't create a PLT.
3162       static const Define_symbol_in_segment syms[] =
3163         {
3164           {
3165             "__rela_iplt_start",        // name
3166             elfcpp::PT_LOAD,            // segment_type
3167             elfcpp::PF_W,               // segment_flags_set
3168             elfcpp::PF(0),              // segment_flags_clear
3169             0,                          // value
3170             0,                          // size
3171             elfcpp::STT_NOTYPE,         // type
3172             elfcpp::STB_GLOBAL,         // binding
3173             elfcpp::STV_HIDDEN,         // visibility
3174             0,                          // nonvis
3175             Symbol::SEGMENT_START,      // offset_from_base
3176             true                        // only_if_ref
3177           },
3178           {
3179             "__rela_iplt_end",          // name
3180             elfcpp::PT_LOAD,            // segment_type
3181             elfcpp::PF_W,               // segment_flags_set
3182             elfcpp::PF(0),              // segment_flags_clear
3183             0,                          // value
3184             0,                          // size
3185             elfcpp::STT_NOTYPE,         // type
3186             elfcpp::STB_GLOBAL,         // binding
3187             elfcpp::STV_HIDDEN,         // visibility
3188             0,                          // nonvis
3189             Symbol::SEGMENT_START,      // offset_from_base
3190             true                        // only_if_ref
3191           }
3192         };
3193
3194       symtab->define_symbols(layout, 2, syms,
3195                              layout->script_options()->saw_sections_clause());
3196     }
3197 }
3198
3199 // Perform a relocation.
3200
3201 template<int size>
3202 inline bool
3203 Target_x86_64<size>::Relocate::relocate(
3204     const Relocate_info<size, false>* relinfo,
3205     Target_x86_64<size>* target,
3206     Output_section*,
3207     size_t relnum,
3208     const elfcpp::Rela<size, false>& rela,
3209     unsigned int r_type,
3210     const Sized_symbol<size>* gsym,
3211     const Symbol_value<size>* psymval,
3212     unsigned char* view,
3213     typename elfcpp::Elf_types<size>::Elf_Addr address,
3214     section_size_type view_size)
3215 {
3216   if (this->skip_call_tls_get_addr_)
3217     {
3218       if ((r_type != elfcpp::R_X86_64_PLT32
3219            && r_type != elfcpp::R_X86_64_PC32)
3220           || gsym == NULL
3221           || strcmp(gsym->name(), "__tls_get_addr") != 0)
3222         {
3223           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3224                                  _("missing expected TLS relocation"));
3225         }
3226       else
3227         {
3228           this->skip_call_tls_get_addr_ = false;
3229           return false;
3230         }
3231     }
3232
3233   if (view == NULL)
3234     return true;
3235
3236   const Sized_relobj_file<size, false>* object = relinfo->object;
3237
3238   // Pick the value to use for symbols defined in the PLT.
3239   Symbol_value<size> symval;
3240   if (gsym != NULL
3241       && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
3242     {
3243       symval.set_output_value(target->plt_address_for_global(gsym));
3244       psymval = &symval;
3245     }
3246   else if (gsym == NULL && psymval->is_ifunc_symbol())
3247     {
3248       unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3249       if (object->local_has_plt_offset(r_sym))
3250         {
3251           symval.set_output_value(target->plt_address_for_local(object, r_sym));
3252           psymval = &symval;
3253         }
3254     }
3255
3256   const elfcpp::Elf_Xword addend = rela.get_r_addend();
3257
3258   // Get the GOT offset if needed.
3259   // The GOT pointer points to the end of the GOT section.
3260   // We need to subtract the size of the GOT section to get
3261   // the actual offset to use in the relocation.
3262   bool have_got_offset = false;
3263   unsigned int got_offset = 0;
3264   switch (r_type)
3265     {
3266     case elfcpp::R_X86_64_GOT32:
3267     case elfcpp::R_X86_64_GOT64:
3268     case elfcpp::R_X86_64_GOTPLT64:
3269     case elfcpp::R_X86_64_GOTPCREL:
3270     case elfcpp::R_X86_64_GOTPCREL64:
3271       if (gsym != NULL)
3272         {
3273           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
3274           got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
3275         }
3276       else
3277         {
3278           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3279           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
3280           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
3281                         - target->got_size());
3282         }
3283       have_got_offset = true;
3284       break;
3285
3286     default:
3287       break;
3288     }
3289
3290   switch (r_type)
3291     {
3292     case elfcpp::R_X86_64_NONE:
3293     case elfcpp::R_X86_64_GNU_VTINHERIT:
3294     case elfcpp::R_X86_64_GNU_VTENTRY:
3295       break;
3296
3297     case elfcpp::R_X86_64_64:
3298       Relocate_functions<size, false>::rela64(view, object, psymval, addend);
3299       break;
3300
3301     case elfcpp::R_X86_64_PC64:
3302       Relocate_functions<size, false>::pcrela64(view, object, psymval, addend,
3303                                               address);
3304       break;
3305
3306     case elfcpp::R_X86_64_32:
3307       // FIXME: we need to verify that value + addend fits into 32 bits:
3308       //    uint64_t x = value + addend;
3309       //    x == static_cast<uint64_t>(static_cast<uint32_t>(x))
3310       // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
3311       Relocate_functions<size, false>::rela32(view, object, psymval, addend);
3312       break;
3313
3314     case elfcpp::R_X86_64_32S:
3315       // FIXME: we need to verify that value + addend fits into 32 bits:
3316       //    int64_t x = value + addend;   // note this quantity is signed!
3317       //    x == static_cast<int64_t>(static_cast<int32_t>(x))
3318       Relocate_functions<size, false>::rela32(view, object, psymval, addend);
3319       break;
3320
3321     case elfcpp::R_X86_64_PC32:
3322       Relocate_functions<size, false>::pcrela32(view, object, psymval, addend,
3323                                                 address);
3324       break;
3325
3326     case elfcpp::R_X86_64_16:
3327       Relocate_functions<size, false>::rela16(view, object, psymval, addend);
3328       break;
3329
3330     case elfcpp::R_X86_64_PC16:
3331       Relocate_functions<size, false>::pcrela16(view, object, psymval, addend,
3332                                                 address);
3333       break;
3334
3335     case elfcpp::R_X86_64_8:
3336       Relocate_functions<size, false>::rela8(view, object, psymval, addend);
3337       break;
3338
3339     case elfcpp::R_X86_64_PC8:
3340       Relocate_functions<size, false>::pcrela8(view, object, psymval, addend,
3341                                                address);
3342       break;
3343
3344     case elfcpp::R_X86_64_PLT32:
3345       gold_assert(gsym == NULL
3346                   || gsym->has_plt_offset()
3347                   || gsym->final_value_is_known()
3348                   || (gsym->is_defined()
3349                       && !gsym->is_from_dynobj()
3350                       && !gsym->is_preemptible()));
3351       // Note: while this code looks the same as for R_X86_64_PC32, it
3352       // behaves differently because psymval was set to point to
3353       // the PLT entry, rather than the symbol, in Scan::global().
3354       Relocate_functions<size, false>::pcrela32(view, object, psymval, addend,
3355                                                 address);
3356       break;
3357
3358     case elfcpp::R_X86_64_PLTOFF64:
3359       {
3360         gold_assert(gsym);
3361         gold_assert(gsym->has_plt_offset()
3362                     || gsym->final_value_is_known());
3363         typename elfcpp::Elf_types<size>::Elf_Addr got_address;
3364         got_address = target->got_section(NULL, NULL)->address();
3365         Relocate_functions<size, false>::rela64(view, object, psymval,
3366                                                 addend - got_address);
3367       }
3368
3369     case elfcpp::R_X86_64_GOT32:
3370       gold_assert(have_got_offset);
3371       Relocate_functions<size, false>::rela32(view, got_offset, addend);
3372       break;
3373
3374     case elfcpp::R_X86_64_GOTPC32:
3375       {
3376         gold_assert(gsym);
3377         typename elfcpp::Elf_types<size>::Elf_Addr value;
3378         value = target->got_plt_section()->address();
3379         Relocate_functions<size, false>::pcrela32(view, value, addend, address);
3380       }
3381       break;
3382
3383     case elfcpp::R_X86_64_GOT64:
3384       // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
3385       // Since we always add a PLT entry, this is equivalent.
3386     case elfcpp::R_X86_64_GOTPLT64:
3387       gold_assert(have_got_offset);
3388       Relocate_functions<size, false>::rela64(view, got_offset, addend);
3389       break;
3390
3391     case elfcpp::R_X86_64_GOTPC64:
3392       {
3393         gold_assert(gsym);
3394         typename elfcpp::Elf_types<size>::Elf_Addr value;
3395         value = target->got_plt_section()->address();
3396         Relocate_functions<size, false>::pcrela64(view, value, addend, address);
3397       }
3398       break;
3399
3400     case elfcpp::R_X86_64_GOTOFF64:
3401       {
3402         typename elfcpp::Elf_types<size>::Elf_Addr value;
3403         value = (psymval->value(object, 0)
3404                  - target->got_plt_section()->address());
3405         Relocate_functions<size, false>::rela64(view, value, addend);
3406       }
3407       break;
3408
3409     case elfcpp::R_X86_64_GOTPCREL:
3410       {
3411         gold_assert(have_got_offset);
3412         typename elfcpp::Elf_types<size>::Elf_Addr value;
3413         value = target->got_plt_section()->address() + got_offset;
3414         Relocate_functions<size, false>::pcrela32(view, value, addend, address);
3415       }
3416       break;
3417
3418     case elfcpp::R_X86_64_GOTPCREL64:
3419       {
3420         gold_assert(have_got_offset);
3421         typename elfcpp::Elf_types<size>::Elf_Addr value;
3422         value = target->got_plt_section()->address() + got_offset;
3423         Relocate_functions<size, false>::pcrela64(view, value, addend, address);
3424       }
3425       break;
3426
3427     case elfcpp::R_X86_64_COPY:
3428     case elfcpp::R_X86_64_GLOB_DAT:
3429     case elfcpp::R_X86_64_JUMP_SLOT:
3430     case elfcpp::R_X86_64_RELATIVE:
3431     case elfcpp::R_X86_64_IRELATIVE:
3432       // These are outstanding tls relocs, which are unexpected when linking
3433     case elfcpp::R_X86_64_TPOFF64:
3434     case elfcpp::R_X86_64_DTPMOD64:
3435     case elfcpp::R_X86_64_TLSDESC:
3436       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3437                              _("unexpected reloc %u in object file"),
3438                              r_type);
3439       break;
3440
3441       // These are initial tls relocs, which are expected when linking
3442     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3443     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3444     case elfcpp::R_X86_64_TLSDESC_CALL:
3445     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3446     case elfcpp::R_X86_64_DTPOFF32:
3447     case elfcpp::R_X86_64_DTPOFF64:
3448     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3449     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3450       this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
3451                          view, address, view_size);
3452       break;
3453
3454     case elfcpp::R_X86_64_SIZE32:
3455     case elfcpp::R_X86_64_SIZE64:
3456     default:
3457       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3458                              _("unsupported reloc %u"),
3459                              r_type);
3460       break;
3461     }
3462
3463   return true;
3464 }
3465
3466 // Perform a TLS relocation.
3467
3468 template<int size>
3469 inline void
3470 Target_x86_64<size>::Relocate::relocate_tls(
3471     const Relocate_info<size, false>* relinfo,
3472     Target_x86_64<size>* target,
3473     size_t relnum,
3474     const elfcpp::Rela<size, false>& rela,
3475     unsigned int r_type,
3476     const Sized_symbol<size>* gsym,
3477     const Symbol_value<size>* psymval,
3478     unsigned char* view,
3479     typename elfcpp::Elf_types<size>::Elf_Addr address,
3480     section_size_type view_size)
3481 {
3482   Output_segment* tls_segment = relinfo->layout->tls_segment();
3483
3484   const Sized_relobj_file<size, false>* object = relinfo->object;
3485   const elfcpp::Elf_Xword addend = rela.get_r_addend();
3486   elfcpp::Shdr<size, false> data_shdr(relinfo->data_shdr);
3487   bool is_executable = (data_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0;
3488
3489   typename elfcpp::Elf_types<size>::Elf_Addr value = psymval->value(relinfo->object, 0);
3490
3491   const bool is_final = (gsym == NULL
3492                          ? !parameters->options().shared()
3493                          : gsym->final_value_is_known());
3494   tls::Tls_optimization optimized_type
3495       = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
3496   switch (r_type)
3497     {
3498     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3499       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3500         {
3501           // If this code sequence is used in a non-executable section,
3502           // we will not optimize the R_X86_64_DTPOFF32/64 relocation,
3503           // on the assumption that it's being used by itself in a debug
3504           // section.  Therefore, in the unlikely event that the code
3505           // sequence appears in a non-executable section, we simply
3506           // leave it unoptimized.
3507           optimized_type = tls::TLSOPT_NONE;
3508         }
3509       if (optimized_type == tls::TLSOPT_TO_LE)
3510         {
3511           if (tls_segment == NULL)
3512             {
3513               gold_assert(parameters->errors()->error_count() > 0
3514                           || issue_undefined_symbol_error(gsym));
3515               return;
3516             }
3517           this->tls_gd_to_le(relinfo, relnum, tls_segment,
3518                              rela, r_type, value, view,
3519                              view_size);
3520           break;
3521         }
3522       else
3523         {
3524           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3525                                    ? GOT_TYPE_TLS_OFFSET
3526                                    : GOT_TYPE_TLS_PAIR);
3527           unsigned int got_offset;
3528           if (gsym != NULL)
3529             {
3530               gold_assert(gsym->has_got_offset(got_type));
3531               got_offset = gsym->got_offset(got_type) - target->got_size();
3532             }
3533           else
3534             {
3535               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3536               gold_assert(object->local_has_got_offset(r_sym, got_type));
3537               got_offset = (object->local_got_offset(r_sym, got_type)
3538                             - target->got_size());
3539             }
3540           if (optimized_type == tls::TLSOPT_TO_IE)
3541             {
3542               value = target->got_plt_section()->address() + got_offset;
3543               this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
3544                                  value, view, address, view_size);
3545               break;
3546             }
3547           else if (optimized_type == tls::TLSOPT_NONE)
3548             {
3549               // Relocate the field with the offset of the pair of GOT
3550               // entries.
3551               value = target->got_plt_section()->address() + got_offset;
3552               Relocate_functions<size, false>::pcrela32(view, value, addend,
3553                                                         address);
3554               break;
3555             }
3556         }
3557       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3558                              _("unsupported reloc %u"), r_type);
3559       break;
3560
3561     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3562     case elfcpp::R_X86_64_TLSDESC_CALL:
3563       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3564         {
3565           // See above comment for R_X86_64_TLSGD.
3566           optimized_type = tls::TLSOPT_NONE;
3567         }
3568       if (optimized_type == tls::TLSOPT_TO_LE)
3569         {
3570           if (tls_segment == NULL)
3571             {
3572               gold_assert(parameters->errors()->error_count() > 0
3573                           || issue_undefined_symbol_error(gsym));
3574               return;
3575             }
3576           this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
3577                                   rela, r_type, value, view,
3578                                   view_size);
3579           break;
3580         }
3581       else
3582         {
3583           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3584                                    ? GOT_TYPE_TLS_OFFSET
3585                                    : GOT_TYPE_TLS_DESC);
3586           unsigned int got_offset = 0;
3587           if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC
3588               && optimized_type == tls::TLSOPT_NONE)
3589             {
3590               // We created GOT entries in the .got.tlsdesc portion of
3591               // the .got.plt section, but the offset stored in the
3592               // symbol is the offset within .got.tlsdesc.
3593               got_offset = (target->got_size()
3594                             + target->got_plt_section()->data_size());
3595             }
3596           if (gsym != NULL)
3597             {
3598               gold_assert(gsym->has_got_offset(got_type));
3599               got_offset += gsym->got_offset(got_type) - target->got_size();
3600             }
3601           else
3602             {
3603               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3604               gold_assert(object->local_has_got_offset(r_sym, got_type));
3605               got_offset += (object->local_got_offset(r_sym, got_type)
3606                              - target->got_size());
3607             }
3608           if (optimized_type == tls::TLSOPT_TO_IE)
3609             {
3610               if (tls_segment == NULL)
3611                 {
3612                   gold_assert(parameters->errors()->error_count() > 0
3613                               || issue_undefined_symbol_error(gsym));
3614                   return;
3615                 }
3616               value = target->got_plt_section()->address() + got_offset;
3617               this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment,
3618                                       rela, r_type, value, view, address,
3619                                       view_size);
3620               break;
3621             }
3622           else if (optimized_type == tls::TLSOPT_NONE)
3623             {
3624               if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
3625                 {
3626                   // Relocate the field with the offset of the pair of GOT
3627                   // entries.
3628                   value = target->got_plt_section()->address() + got_offset;
3629                   Relocate_functions<size, false>::pcrela32(view, value, addend,
3630                                                             address);
3631                 }
3632               break;
3633             }
3634         }
3635       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3636                              _("unsupported reloc %u"), r_type);
3637       break;
3638
3639     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3640       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3641         {
3642           // See above comment for R_X86_64_TLSGD.
3643           optimized_type = tls::TLSOPT_NONE;
3644         }
3645       if (optimized_type == tls::TLSOPT_TO_LE)
3646         {
3647           if (tls_segment == NULL)
3648             {
3649               gold_assert(parameters->errors()->error_count() > 0
3650                           || issue_undefined_symbol_error(gsym));
3651               return;
3652             }
3653           this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
3654                              value, view, view_size);
3655           break;
3656         }
3657       else if (optimized_type == tls::TLSOPT_NONE)
3658         {
3659           // Relocate the field with the offset of the GOT entry for
3660           // the module index.
3661           unsigned int got_offset;
3662           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
3663                         - target->got_size());
3664           value = target->got_plt_section()->address() + got_offset;
3665           Relocate_functions<size, false>::pcrela32(view, value, addend,
3666                                                     address);
3667           break;
3668         }
3669       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3670                              _("unsupported reloc %u"), r_type);
3671       break;
3672
3673     case elfcpp::R_X86_64_DTPOFF32:
3674       // This relocation type is used in debugging information.
3675       // In that case we need to not optimize the value.  If the
3676       // section is not executable, then we assume we should not
3677       // optimize this reloc.  See comments above for R_X86_64_TLSGD,
3678       // R_X86_64_GOTPC32_TLSDESC, R_X86_64_TLSDESC_CALL, and
3679       // R_X86_64_TLSLD.
3680       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
3681         {
3682           if (tls_segment == NULL)
3683             {
3684               gold_assert(parameters->errors()->error_count() > 0
3685                           || issue_undefined_symbol_error(gsym));
3686               return;
3687             }
3688           value -= tls_segment->memsz();
3689         }
3690       Relocate_functions<size, false>::rela32(view, value, addend);
3691       break;
3692
3693     case elfcpp::R_X86_64_DTPOFF64:
3694       // See R_X86_64_DTPOFF32, just above, for why we check for is_executable.
3695       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
3696         {
3697           if (tls_segment == NULL)
3698             {
3699               gold_assert(parameters->errors()->error_count() > 0
3700                           || issue_undefined_symbol_error(gsym));
3701               return;
3702             }
3703           value -= tls_segment->memsz();
3704         }
3705       Relocate_functions<size, false>::rela64(view, value, addend);
3706       break;
3707
3708     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3709       if (optimized_type == tls::TLSOPT_TO_LE)
3710         {
3711           if (tls_segment == NULL)
3712             {
3713               gold_assert(parameters->errors()->error_count() > 0
3714                           || issue_undefined_symbol_error(gsym));
3715               return;
3716             }
3717           Target_x86_64<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3718                                                       tls_segment, rela,
3719                                                       r_type, value, view,
3720                                                       view_size);
3721           break;
3722         }
3723       else if (optimized_type == tls::TLSOPT_NONE)
3724         {
3725           // Relocate the field with the offset of the GOT entry for
3726           // the tp-relative offset of the symbol.
3727           unsigned int got_offset;
3728           if (gsym != NULL)
3729             {
3730               gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
3731               got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
3732                             - target->got_size());
3733             }
3734           else
3735             {
3736               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3737               gold_assert(object->local_has_got_offset(r_sym,
3738                                                        GOT_TYPE_TLS_OFFSET));
3739               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
3740                             - target->got_size());
3741             }
3742           value = target->got_plt_section()->address() + got_offset;
3743           Relocate_functions<size, false>::pcrela32(view, value, addend,
3744                                                     address);
3745           break;
3746         }
3747       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3748                              _("unsupported reloc type %u"),
3749                              r_type);
3750       break;
3751
3752     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3753       if (tls_segment == NULL)
3754         {
3755           gold_assert(parameters->errors()->error_count() > 0
3756                       || issue_undefined_symbol_error(gsym));
3757           return;
3758         }
3759       value -= tls_segment->memsz();
3760       Relocate_functions<size, false>::rela32(view, value, addend);
3761       break;
3762     }
3763 }
3764
3765 // Do a relocation in which we convert a TLS General-Dynamic to an
3766 // Initial-Exec.
3767
3768 template<int size>
3769 inline void
3770 Target_x86_64<size>::Relocate::tls_gd_to_ie(
3771     const Relocate_info<size, false>* relinfo,
3772     size_t relnum,
3773     Output_segment*,
3774     const elfcpp::Rela<size, false>& rela,
3775     unsigned int,
3776     typename elfcpp::Elf_types<size>::Elf_Addr value,
3777     unsigned char* view,
3778     typename elfcpp::Elf_types<size>::Elf_Addr address,
3779     section_size_type view_size)
3780 {
3781   // For SIZE == 64:
3782   //    .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
3783   //    .word 0x6666; rex64; call __tls_get_addr
3784   //    ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
3785   // For SIZE == 32:
3786   //    leaq foo@tlsgd(%rip),%rdi;
3787   //    .word 0x6666; rex64; call __tls_get_addr
3788   //    ==> movl %fs:0,%eax; addq x@gottpoff(%rip),%rax
3789
3790   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
3791   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3792                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
3793
3794   if (size == 64)
3795     {
3796       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
3797                        -4);
3798       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3799                      (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
3800       memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
3801              16);
3802     }
3803   else
3804     {
3805       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
3806                        -3);
3807       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3808                      (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
3809       memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
3810              15);
3811     }
3812
3813   const elfcpp::Elf_Xword addend = rela.get_r_addend();
3814   Relocate_functions<size, false>::pcrela32(view + 8, value, addend - 8,
3815                                             address);
3816
3817   // The next reloc should be a PLT32 reloc against __tls_get_addr.
3818   // We can skip it.
3819   this->skip_call_tls_get_addr_ = true;
3820 }
3821
3822 // Do a relocation in which we convert a TLS General-Dynamic to a
3823 // Local-Exec.
3824
3825 template<int size>
3826 inline void
3827 Target_x86_64<size>::Relocate::tls_gd_to_le(
3828     const Relocate_info<size, false>* relinfo,
3829     size_t relnum,
3830     Output_segment* tls_segment,
3831     const elfcpp::Rela<size, false>& rela,
3832     unsigned int,
3833     typename elfcpp::Elf_types<size>::Elf_Addr value,
3834     unsigned char* view,
3835     section_size_type view_size)
3836 {
3837   // For SIZE == 64:
3838   //    .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
3839   //    .word 0x6666; rex64; call __tls_get_addr
3840   //    ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
3841   // For SIZE == 32:
3842   //    leaq foo@tlsgd(%rip),%rdi;
3843   //    .word 0x6666; rex64; call __tls_get_addr
3844   //    ==> movl %fs:0,%eax; leaq x@tpoff(%rax),%rax
3845
3846   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
3847   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3848                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
3849
3850   if (size == 64)
3851     {
3852       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
3853                        -4);
3854       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3855                      (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
3856       memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
3857              16);
3858     }
3859   else
3860     {
3861       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
3862                        -3);
3863       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3864                      (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
3865
3866       memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
3867              15);
3868     }
3869
3870   value -= tls_segment->memsz();
3871   Relocate_functions<size, false>::rela32(view + 8, value, 0);
3872
3873   // The next reloc should be a PLT32 reloc against __tls_get_addr.
3874   // We can skip it.
3875   this->skip_call_tls_get_addr_ = true;
3876 }
3877
3878 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
3879
3880 template<int size>
3881 inline void
3882 Target_x86_64<size>::Relocate::tls_desc_gd_to_ie(
3883     const Relocate_info<size, false>* relinfo,
3884     size_t relnum,
3885     Output_segment*,
3886     const elfcpp::Rela<size, false>& rela,
3887     unsigned int r_type,
3888     typename elfcpp::Elf_types<size>::Elf_Addr value,
3889     unsigned char* view,
3890     typename elfcpp::Elf_types<size>::Elf_Addr address,
3891     section_size_type view_size)
3892 {
3893   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
3894     {
3895       // leaq foo@tlsdesc(%rip), %rax
3896       // ==> movq foo@gottpoff(%rip), %rax
3897       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
3898       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3899       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3900                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
3901       view[-2] = 0x8b;
3902       const elfcpp::Elf_Xword addend = rela.get_r_addend();
3903       Relocate_functions<size, false>::pcrela32(view, value, addend, address);
3904     }
3905   else
3906     {
3907       // call *foo@tlscall(%rax)
3908       // ==> nop; nop
3909       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
3910       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
3911       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3912                      view[0] == 0xff && view[1] == 0x10);
3913       view[0] = 0x66;
3914       view[1] = 0x90;
3915     }
3916 }
3917
3918 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
3919
3920 template<int size>
3921 inline void
3922 Target_x86_64<size>::Relocate::tls_desc_gd_to_le(
3923     const Relocate_info<size, false>* relinfo,
3924     size_t relnum,
3925     Output_segment* tls_segment,
3926     const elfcpp::Rela<size, false>& rela,
3927     unsigned int r_type,
3928     typename elfcpp::Elf_types<size>::Elf_Addr value,
3929     unsigned char* view,
3930     section_size_type view_size)
3931 {
3932   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
3933     {
3934       // leaq foo@tlsdesc(%rip), %rax
3935       // ==> movq foo@tpoff, %rax
3936       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
3937       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3938       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3939                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
3940       view[-2] = 0xc7;
3941       view[-1] = 0xc0;
3942       value -= tls_segment->memsz();
3943       Relocate_functions<size, false>::rela32(view, value, 0);
3944     }
3945   else
3946     {
3947       // call *foo@tlscall(%rax)
3948       // ==> nop; nop
3949       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
3950       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
3951       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3952                      view[0] == 0xff && view[1] == 0x10);
3953       view[0] = 0x66;
3954       view[1] = 0x90;
3955     }
3956 }
3957
3958 template<int size>
3959 inline void
3960 Target_x86_64<size>::Relocate::tls_ld_to_le(
3961     const Relocate_info<size, false>* relinfo,
3962     size_t relnum,
3963     Output_segment*,
3964     const elfcpp::Rela<size, false>& rela,
3965     unsigned int,
3966     typename elfcpp::Elf_types<size>::Elf_Addr,
3967     unsigned char* view,
3968     section_size_type view_size)
3969 {
3970   // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
3971   // For SIZE == 64:
3972   // ... leq foo@dtpoff(%rax),%reg
3973   // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
3974   // For SIZE == 32:
3975   // ... leq foo@dtpoff(%rax),%reg
3976   // ==> nopl 0x0(%rax); movl %fs:0,%eax ... leaq x@tpoff(%rax),%rdx
3977
3978   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
3979   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
3980
3981   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3982                  view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
3983
3984   tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
3985
3986   if (size == 64)
3987     memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
3988   else
3989     memcpy(view - 3, "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0\0", 12);
3990
3991   // The next reloc should be a PLT32 reloc against __tls_get_addr.
3992   // We can skip it.
3993   this->skip_call_tls_get_addr_ = true;
3994 }
3995
3996 // Do a relocation in which we convert a TLS Initial-Exec to a
3997 // Local-Exec.
3998
3999 template<int size>
4000 inline void
4001 Target_x86_64<size>::Relocate::tls_ie_to_le(
4002     const Relocate_info<size, false>* relinfo,
4003     size_t relnum,
4004     Output_segment* tls_segment,
4005     const elfcpp::Rela<size, false>& rela,
4006     unsigned int,
4007     typename elfcpp::Elf_types<size>::Elf_Addr value,
4008     unsigned char* view,
4009     section_size_type view_size)
4010 {
4011   // We need to examine the opcodes to figure out which instruction we
4012   // are looking at.
4013
4014   // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
4015   // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
4016
4017   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4018   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
4019
4020   unsigned char op1 = view[-3];
4021   unsigned char op2 = view[-2];
4022   unsigned char op3 = view[-1];
4023   unsigned char reg = op3 >> 3;
4024
4025   if (op2 == 0x8b)
4026     {
4027       // movq
4028       if (op1 == 0x4c)
4029         view[-3] = 0x49;
4030       view[-2] = 0xc7;
4031       view[-1] = 0xc0 | reg;
4032     }
4033   else if (reg == 4)
4034     {
4035       // Special handling for %rsp.
4036       if (op1 == 0x4c)
4037         view[-3] = 0x49;
4038       view[-2] = 0x81;
4039       view[-1] = 0xc0 | reg;
4040     }
4041   else
4042     {
4043       // addq
4044       if (op1 == 0x4c)
4045         view[-3] = 0x4d;
4046       view[-2] = 0x8d;
4047       view[-1] = 0x80 | reg | (reg << 3);
4048     }
4049
4050   value -= tls_segment->memsz();
4051   Relocate_functions<size, false>::rela32(view, value, 0);
4052 }
4053
4054 // Relocate section data.
4055
4056 template<int size>
4057 void
4058 Target_x86_64<size>::relocate_section(
4059     const Relocate_info<size, false>* relinfo,
4060     unsigned int sh_type,
4061     const unsigned char* prelocs,
4062     size_t reloc_count,
4063     Output_section* output_section,
4064     bool needs_special_offset_handling,
4065     unsigned char* view,
4066     typename elfcpp::Elf_types<size>::Elf_Addr address,
4067     section_size_type view_size,
4068     const Reloc_symbol_changes* reloc_symbol_changes)
4069 {
4070   gold_assert(sh_type == elfcpp::SHT_RELA);
4071
4072   gold::relocate_section<size, false, Target_x86_64<size>, elfcpp::SHT_RELA,
4073                          typename Target_x86_64<size>::Relocate,
4074                          gold::Default_comdat_behavior>(
4075     relinfo,
4076     this,
4077     prelocs,
4078     reloc_count,
4079     output_section,
4080     needs_special_offset_handling,
4081     view,
4082     address,
4083     view_size,
4084     reloc_symbol_changes);
4085 }
4086
4087 // Apply an incremental relocation.  Incremental relocations always refer
4088 // to global symbols.
4089
4090 template<int size>
4091 void
4092 Target_x86_64<size>::apply_relocation(
4093     const Relocate_info<size, false>* relinfo,
4094     typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
4095     unsigned int r_type,
4096     typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
4097     const Symbol* gsym,
4098     unsigned char* view,
4099     typename elfcpp::Elf_types<size>::Elf_Addr address,
4100     section_size_type view_size)
4101 {
4102   gold::apply_relocation<size, false, Target_x86_64<size>,
4103                          typename Target_x86_64<size>::Relocate>(
4104     relinfo,
4105     this,
4106     r_offset,
4107     r_type,
4108     r_addend,
4109     gsym,
4110     view,
4111     address,
4112     view_size);
4113 }
4114
4115 // Return the size of a relocation while scanning during a relocatable
4116 // link.
4117
4118 template<int size>
4119 unsigned int
4120 Target_x86_64<size>::Relocatable_size_for_reloc::get_size_for_reloc(
4121     unsigned int r_type,
4122     Relobj* object)
4123 {
4124   switch (r_type)
4125     {
4126     case elfcpp::R_X86_64_NONE:
4127     case elfcpp::R_X86_64_GNU_VTINHERIT:
4128     case elfcpp::R_X86_64_GNU_VTENTRY:
4129     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
4130     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
4131     case elfcpp::R_X86_64_TLSDESC_CALL:
4132     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
4133     case elfcpp::R_X86_64_DTPOFF32:
4134     case elfcpp::R_X86_64_DTPOFF64:
4135     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
4136     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
4137       return 0;
4138
4139     case elfcpp::R_X86_64_64:
4140     case elfcpp::R_X86_64_PC64:
4141     case elfcpp::R_X86_64_GOTOFF64:
4142     case elfcpp::R_X86_64_GOTPC64:
4143     case elfcpp::R_X86_64_PLTOFF64:
4144     case elfcpp::R_X86_64_GOT64:
4145     case elfcpp::R_X86_64_GOTPCREL64:
4146     case elfcpp::R_X86_64_GOTPCREL:
4147     case elfcpp::R_X86_64_GOTPLT64:
4148       return 8;
4149
4150     case elfcpp::R_X86_64_32:
4151     case elfcpp::R_X86_64_32S:
4152     case elfcpp::R_X86_64_PC32:
4153     case elfcpp::R_X86_64_PLT32:
4154     case elfcpp::R_X86_64_GOTPC32:
4155     case elfcpp::R_X86_64_GOT32:
4156       return 4;
4157
4158     case elfcpp::R_X86_64_16:
4159     case elfcpp::R_X86_64_PC16:
4160       return 2;
4161
4162     case elfcpp::R_X86_64_8:
4163     case elfcpp::R_X86_64_PC8:
4164       return 1;
4165
4166     case elfcpp::R_X86_64_COPY:
4167     case elfcpp::R_X86_64_GLOB_DAT:
4168     case elfcpp::R_X86_64_JUMP_SLOT:
4169     case elfcpp::R_X86_64_RELATIVE:
4170     case elfcpp::R_X86_64_IRELATIVE:
4171       // These are outstanding tls relocs, which are unexpected when linking
4172     case elfcpp::R_X86_64_TPOFF64:
4173     case elfcpp::R_X86_64_DTPMOD64:
4174     case elfcpp::R_X86_64_TLSDESC:
4175       object->error(_("unexpected reloc %u in object file"), r_type);
4176       return 0;
4177
4178     case elfcpp::R_X86_64_SIZE32:
4179     case elfcpp::R_X86_64_SIZE64:
4180     default:
4181       object->error(_("unsupported reloc %u against local symbol"), r_type);
4182       return 0;
4183     }
4184 }
4185
4186 // Scan the relocs during a relocatable link.
4187
4188 template<int size>
4189 void
4190 Target_x86_64<size>::scan_relocatable_relocs(
4191     Symbol_table* symtab,
4192     Layout* layout,
4193     Sized_relobj_file<size, false>* object,
4194     unsigned int data_shndx,
4195     unsigned int sh_type,
4196     const unsigned char* prelocs,
4197     size_t reloc_count,
4198     Output_section* output_section,
4199     bool needs_special_offset_handling,
4200     size_t local_symbol_count,
4201     const unsigned char* plocal_symbols,
4202     Relocatable_relocs* rr)
4203 {
4204   gold_assert(sh_type == elfcpp::SHT_RELA);
4205
4206   typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
4207     Relocatable_size_for_reloc> Scan_relocatable_relocs;
4208
4209   gold::scan_relocatable_relocs<size, false, elfcpp::SHT_RELA,
4210       Scan_relocatable_relocs>(
4211     symtab,
4212     layout,
4213     object,
4214     data_shndx,
4215     prelocs,
4216     reloc_count,
4217     output_section,
4218     needs_special_offset_handling,
4219     local_symbol_count,
4220     plocal_symbols,
4221     rr);
4222 }
4223
4224 // Relocate a section during a relocatable link.
4225
4226 template<int size>
4227 void
4228 Target_x86_64<size>::relocate_relocs(
4229     const Relocate_info<size, false>* relinfo,
4230     unsigned int sh_type,
4231     const unsigned char* prelocs,
4232     size_t reloc_count,
4233     Output_section* output_section,
4234     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
4235     const Relocatable_relocs* rr,
4236     unsigned char* view,
4237     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
4238     section_size_type view_size,
4239     unsigned char* reloc_view,
4240     section_size_type reloc_view_size)
4241 {
4242   gold_assert(sh_type == elfcpp::SHT_RELA);
4243
4244   gold::relocate_relocs<size, false, elfcpp::SHT_RELA>(
4245     relinfo,
4246     prelocs,
4247     reloc_count,
4248     output_section,
4249     offset_in_output_section,
4250     rr,
4251     view,
4252     view_address,
4253     view_size,
4254     reloc_view,
4255     reloc_view_size);
4256 }
4257
4258 // Return the value to use for a dynamic which requires special
4259 // treatment.  This is how we support equality comparisons of function
4260 // pointers across shared library boundaries, as described in the
4261 // processor specific ABI supplement.
4262
4263 template<int size>
4264 uint64_t
4265 Target_x86_64<size>::do_dynsym_value(const Symbol* gsym) const
4266 {
4267   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
4268   return this->plt_address_for_global(gsym);
4269 }
4270
4271 // Return a string used to fill a code section with nops to take up
4272 // the specified length.
4273
4274 template<int size>
4275 std::string
4276 Target_x86_64<size>::do_code_fill(section_size_type length) const
4277 {
4278   if (length >= 16)
4279     {
4280       // Build a jmpq instruction to skip over the bytes.
4281       unsigned char jmp[5];
4282       jmp[0] = 0xe9;
4283       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
4284       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
4285               + std::string(length - 5, static_cast<char>(0x90)));
4286     }
4287
4288   // Nop sequences of various lengths.
4289   const char nop1[1] = { '\x90' };                 // nop
4290   const char nop2[2] = { '\x66', '\x90' };         // xchg %ax %ax
4291   const char nop3[3] = { '\x0f', '\x1f', '\x00' }; // nop (%rax)
4292   const char nop4[4] = { '\x0f', '\x1f', '\x40',   // nop 0(%rax)
4293                          '\x00'};
4294   const char nop5[5] = { '\x0f', '\x1f', '\x44',   // nop 0(%rax,%rax,1)
4295                          '\x00', '\x00' };
4296   const char nop6[6] = { '\x66', '\x0f', '\x1f',   // nopw 0(%rax,%rax,1)
4297                          '\x44', '\x00', '\x00' };
4298   const char nop7[7] = { '\x0f', '\x1f', '\x80',   // nopl 0L(%rax)
4299                          '\x00', '\x00', '\x00',
4300                          '\x00' };
4301   const char nop8[8] = { '\x0f', '\x1f', '\x84',   // nopl 0L(%rax,%rax,1)
4302                          '\x00', '\x00', '\x00',
4303                          '\x00', '\x00' };
4304   const char nop9[9] = { '\x66', '\x0f', '\x1f',   // nopw 0L(%rax,%rax,1)
4305                          '\x84', '\x00', '\x00',
4306                          '\x00', '\x00', '\x00' };
4307   const char nop10[10] = { '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
4308                            '\x1f', '\x84', '\x00',
4309                            '\x00', '\x00', '\x00',
4310                            '\x00' };
4311   const char nop11[11] = { '\x66', '\x66', '\x2e', // data16
4312                            '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
4313                            '\x00', '\x00', '\x00',
4314                            '\x00', '\x00' };
4315   const char nop12[12] = { '\x66', '\x66', '\x66', // data16; data16
4316                            '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
4317                            '\x84', '\x00', '\x00',
4318                            '\x00', '\x00', '\x00' };
4319   const char nop13[13] = { '\x66', '\x66', '\x66', // data16; data16; data16
4320                            '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
4321                            '\x1f', '\x84', '\x00',
4322                            '\x00', '\x00', '\x00',
4323                            '\x00' };
4324   const char nop14[14] = { '\x66', '\x66', '\x66', // data16; data16; data16
4325                            '\x66', '\x66', '\x2e', // data16
4326                            '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
4327                            '\x00', '\x00', '\x00',
4328                            '\x00', '\x00' };
4329   const char nop15[15] = { '\x66', '\x66', '\x66', // data16; data16; data16
4330                            '\x66', '\x66', '\x66', // data16; data16
4331                            '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
4332                            '\x84', '\x00', '\x00',
4333                            '\x00', '\x00', '\x00' };
4334
4335   const char* nops[16] = {
4336     NULL,
4337     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
4338     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
4339   };
4340
4341   return std::string(nops[length], length);
4342 }
4343
4344 // Return the addend to use for a target specific relocation.  The
4345 // only target specific relocation is R_X86_64_TLSDESC for a local
4346 // symbol.  We want to set the addend is the offset of the local
4347 // symbol in the TLS segment.
4348
4349 template<int size>
4350 uint64_t
4351 Target_x86_64<size>::do_reloc_addend(void* arg, unsigned int r_type,
4352                                      uint64_t) const
4353 {
4354   gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
4355   uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
4356   gold_assert(intarg < this->tlsdesc_reloc_info_.size());
4357   const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
4358   const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
4359   gold_assert(psymval->is_tls_symbol());
4360   // The value of a TLS symbol is the offset in the TLS segment.
4361   return psymval->value(ti.object, 0);
4362 }
4363
4364 // Return the value to use for the base of a DW_EH_PE_datarel offset
4365 // in an FDE.  Solaris and SVR4 use DW_EH_PE_datarel because their
4366 // assembler can not write out the difference between two labels in
4367 // different sections, so instead of using a pc-relative value they
4368 // use an offset from the GOT.
4369
4370 template<int size>
4371 uint64_t
4372 Target_x86_64<size>::do_ehframe_datarel_base() const
4373 {
4374   gold_assert(this->global_offset_table_ != NULL);
4375   Symbol* sym = this->global_offset_table_;
4376   Sized_symbol<size>* ssym = static_cast<Sized_symbol<size>*>(sym);
4377   return ssym->value();
4378 }
4379
4380 // FNOFFSET in section SHNDX in OBJECT is the start of a function
4381 // compiled with -fsplit-stack.  The function calls non-split-stack
4382 // code.  We have to change the function so that it always ensures
4383 // that it has enough stack space to run some random function.
4384
4385 template<int size>
4386 void
4387 Target_x86_64<size>::do_calls_non_split(Relobj* object, unsigned int shndx,
4388                                         section_offset_type fnoffset,
4389                                         section_size_type fnsize,
4390                                         unsigned char* view,
4391                                         section_size_type view_size,
4392                                         std::string* from,
4393                                         std::string* to) const
4394 {
4395   // The function starts with a comparison of the stack pointer and a
4396   // field in the TCB.  This is followed by a jump.
4397
4398   // cmp %fs:NN,%rsp
4399   if (this->match_view(view, view_size, fnoffset, "\x64\x48\x3b\x24\x25", 5)
4400       && fnsize > 9)
4401     {
4402       // We will call __morestack if the carry flag is set after this
4403       // comparison.  We turn the comparison into an stc instruction
4404       // and some nops.
4405       view[fnoffset] = '\xf9';
4406       this->set_view_to_nop(view, view_size, fnoffset + 1, 8);
4407     }
4408   // lea NN(%rsp),%r10
4409   // lea NN(%rsp),%r11
4410   else if ((this->match_view(view, view_size, fnoffset,
4411                              "\x4c\x8d\x94\x24", 4)
4412             || this->match_view(view, view_size, fnoffset,
4413                                 "\x4c\x8d\x9c\x24", 4))
4414            && fnsize > 8)
4415     {
4416       // This is loading an offset from the stack pointer for a
4417       // comparison.  The offset is negative, so we decrease the
4418       // offset by the amount of space we need for the stack.  This
4419       // means we will avoid calling __morestack if there happens to
4420       // be plenty of space on the stack already.
4421       unsigned char* pval = view + fnoffset + 4;
4422       uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
4423       val -= parameters->options().split_stack_adjust_size();
4424       elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
4425     }
4426   else
4427     {
4428       if (!object->has_no_split_stack())
4429         object->error(_("failed to match split-stack sequence at "
4430                         "section %u offset %0zx"),
4431                       shndx, static_cast<size_t>(fnoffset));
4432       return;
4433     }
4434
4435   // We have to change the function so that it calls
4436   // __morestack_non_split instead of __morestack.  The former will
4437   // allocate additional stack space.
4438   *from = "__morestack";
4439   *to = "__morestack_non_split";
4440 }
4441
4442 // The selector for x86_64 object files.  Note this is never instantiated
4443 // directly.  It's only used in Target_selector_x86_64_nacl, below.
4444
4445 template<int size>
4446 class Target_selector_x86_64 : public Target_selector_freebsd
4447 {
4448 public:
4449   Target_selector_x86_64()
4450     : Target_selector_freebsd(elfcpp::EM_X86_64, size, false,
4451                               (size == 64
4452                                ? "elf64-x86-64" : "elf32-x86-64"),
4453                               (size == 64
4454                                ? "elf64-x86-64-freebsd"
4455                                : "elf32-x86-64-freebsd"),
4456                               (size == 64 ? "elf_x86_64" : "elf32_x86_64"))
4457   { }
4458
4459   Target*
4460   do_instantiate_target()
4461   { return new Target_x86_64<size>(); }
4462
4463 };
4464
4465 // NaCl variant.  It uses different PLT contents.
4466
4467 template<int size>
4468 class Output_data_plt_x86_64_nacl : public Output_data_plt_x86_64<size>
4469 {
4470  public:
4471   Output_data_plt_x86_64_nacl(Layout* layout,
4472                               Output_data_got<64, false>* got,
4473                               Output_data_space* got_plt,
4474                               Output_data_space* got_irelative)
4475     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
4476                                    got, got_plt, got_irelative)
4477   { }
4478
4479   Output_data_plt_x86_64_nacl(Layout* layout,
4480                               Output_data_got<64, false>* got,
4481                               Output_data_space* got_plt,
4482                               Output_data_space* got_irelative,
4483                               unsigned int plt_count)
4484     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
4485                                    got, got_plt, got_irelative,
4486                                    plt_count)
4487   { }
4488
4489  protected:
4490   virtual unsigned int
4491   do_get_plt_entry_size() const
4492   { return plt_entry_size; }
4493
4494   virtual void
4495   do_add_eh_frame(Layout* layout)
4496   {
4497     layout->add_eh_frame_for_plt(this,
4498                                  this->plt_eh_frame_cie,
4499                                  this->plt_eh_frame_cie_size,
4500                                  plt_eh_frame_fde,
4501                                  plt_eh_frame_fde_size);
4502   }
4503
4504   virtual void
4505   do_fill_first_plt_entry(unsigned char* pov,
4506                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
4507                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
4508
4509   virtual unsigned int
4510   do_fill_plt_entry(unsigned char* pov,
4511                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4512                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4513                     unsigned int got_offset,
4514                     unsigned int plt_offset,
4515                     unsigned int plt_index);
4516
4517   virtual void
4518   do_fill_tlsdesc_entry(unsigned char* pov,
4519                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4520                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4521                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
4522                         unsigned int tlsdesc_got_offset,
4523                         unsigned int plt_offset);
4524
4525  private:
4526   // The size of an entry in the PLT.
4527   static const int plt_entry_size = 64;
4528
4529   // The first entry in the PLT.
4530   static const unsigned char first_plt_entry[plt_entry_size];
4531
4532   // Other entries in the PLT for an executable.
4533   static const unsigned char plt_entry[plt_entry_size];
4534
4535   // The reserved TLSDESC entry in the PLT for an executable.
4536   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
4537
4538   // The .eh_frame unwind information for the PLT.
4539   static const int plt_eh_frame_fde_size = 32;
4540   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
4541 };
4542
4543 template<int size>
4544 class Target_x86_64_nacl : public Target_x86_64<size>
4545 {
4546  public:
4547   Target_x86_64_nacl()
4548     : Target_x86_64<size>(&x86_64_nacl_info)
4549   { }
4550
4551   virtual Output_data_plt_x86_64<size>*
4552   do_make_data_plt(Layout* layout,
4553                    Output_data_got<64, false>* got,
4554                    Output_data_space* got_plt,
4555                    Output_data_space* got_irelative)
4556   {
4557     return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
4558                                                  got_irelative);
4559   }
4560
4561   virtual Output_data_plt_x86_64<size>*
4562   do_make_data_plt(Layout* layout,
4563                    Output_data_got<64, false>* got,
4564                    Output_data_space* got_plt,
4565                    Output_data_space* got_irelative,
4566                    unsigned int plt_count)
4567   {
4568     return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
4569                                                  got_irelative,
4570                                                  plt_count);
4571   }
4572
4573  private:
4574   static const Target::Target_info x86_64_nacl_info;
4575 };
4576
4577 template<>
4578 const Target::Target_info Target_x86_64_nacl<64>::x86_64_nacl_info =
4579 {
4580   64,                   // size
4581   false,                // is_big_endian
4582   elfcpp::EM_X86_64,    // machine_code
4583   false,                // has_make_symbol
4584   false,                // has_resolve
4585   true,                 // has_code_fill
4586   true,                 // is_default_stack_executable
4587   true,                 // can_icf_inline_merge_sections
4588   '\0',                 // wrap_char
4589   "/lib64/ld-nacl-x86-64.so.1", // dynamic_linker
4590   0x20000,              // default_text_segment_address
4591   0x10000,              // abi_pagesize (overridable by -z max-page-size)
4592   0x10000,              // common_pagesize (overridable by -z common-page-size)
4593   true,                 // isolate_execinstr
4594   0x10000000,           // rosegment_gap
4595   elfcpp::SHN_UNDEF,    // small_common_shndx
4596   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
4597   0,                    // small_common_section_flags
4598   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
4599   NULL,                 // attributes_section
4600   NULL                  // attributes_vendor
4601 };
4602
4603 template<>
4604 const Target::Target_info Target_x86_64_nacl<32>::x86_64_nacl_info =
4605 {
4606   32,                   // size
4607   false,                // is_big_endian
4608   elfcpp::EM_X86_64,    // machine_code
4609   false,                // has_make_symbol
4610   false,                // has_resolve
4611   true,                 // has_code_fill
4612   true,                 // is_default_stack_executable
4613   true,                 // can_icf_inline_merge_sections
4614   '\0',                 // wrap_char
4615   "/lib/ld-nacl-x86-64.so.1", // dynamic_linker
4616   0x20000,              // default_text_segment_address
4617   0x10000,              // abi_pagesize (overridable by -z max-page-size)
4618   0x10000,              // common_pagesize (overridable by -z common-page-size)
4619   true,                 // isolate_execinstr
4620   0x10000000,           // rosegment_gap
4621   elfcpp::SHN_UNDEF,    // small_common_shndx
4622   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
4623   0,                    // small_common_section_flags
4624   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
4625   NULL,                 // attributes_section
4626   NULL                  // attributes_vendor
4627 };
4628
4629 #define NACLMASK        0xe0            // 32-byte alignment mask.
4630
4631 // The first entry in the PLT.
4632
4633 template<int size>
4634 const unsigned char
4635 Output_data_plt_x86_64_nacl<size>::first_plt_entry[plt_entry_size] =
4636 {
4637   0xff, 0x35,                         // pushq contents of memory address
4638   0, 0, 0, 0,                         // replaced with address of .got + 8
4639   0x4c, 0x8b, 0x1d,                   // mov GOT+16(%rip), %r11
4640   0, 0, 0, 0,                         // replaced with address of .got + 16
4641   0x41, 0x83, 0xe3, NACLMASK,         // and $-32, %r11d
4642   0x4d, 0x01, 0xfb,                   // add %r15, %r11
4643   0x41, 0xff, 0xe3,                   // jmpq *%r11
4644
4645   // 9-byte nop sequence to pad out to the next 32-byte boundary.
4646   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopl %cs:0x0(%rax,%rax,1)
4647
4648   // 32 bytes of nop to pad out to the standard size
4649   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4650   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4651   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4652   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4653   0x66,                                  // excess data32 prefix
4654   0x90                                   // nop
4655 };
4656
4657 template<int size>
4658 void
4659 Output_data_plt_x86_64_nacl<size>::do_fill_first_plt_entry(
4660     unsigned char* pov,
4661     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4662     typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
4663 {
4664   memcpy(pov, first_plt_entry, plt_entry_size);
4665   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
4666                                               (got_address + 8
4667                                                - (plt_address + 2 + 4)));
4668   elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
4669                                               (got_address + 16
4670                                                - (plt_address + 9 + 4)));
4671 }
4672
4673 // Subsequent entries in the PLT.
4674
4675 template<int size>
4676 const unsigned char
4677 Output_data_plt_x86_64_nacl<size>::plt_entry[plt_entry_size] =
4678 {
4679   0x4c, 0x8b, 0x1d,              // mov name@GOTPCREL(%rip),%r11
4680   0, 0, 0, 0,                    // replaced with address of symbol in .got
4681   0x41, 0x83, 0xe3, NACLMASK,    // and $-32, %r11d
4682   0x4d, 0x01, 0xfb,              // add %r15, %r11
4683   0x41, 0xff, 0xe3,              // jmpq *%r11
4684
4685   // 15-byte nop sequence to pad out to the next 32-byte boundary.
4686   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4687   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4688
4689   // Lazy GOT entries point here (32-byte aligned).
4690   0x68,                       // pushq immediate
4691   0, 0, 0, 0,                 // replaced with index into relocation table
4692   0xe9,                       // jmp relative
4693   0, 0, 0, 0,                 // replaced with offset to start of .plt0
4694
4695   // 22 bytes of nop to pad out to the standard size.
4696   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4697   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4698   0x0f, 0x1f, 0x80, 0, 0, 0, 0,          // nopl 0x0(%rax)
4699 };
4700
4701 template<int size>
4702 unsigned int
4703 Output_data_plt_x86_64_nacl<size>::do_fill_plt_entry(
4704     unsigned char* pov,
4705     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4706     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4707     unsigned int got_offset,
4708     unsigned int plt_offset,
4709     unsigned int plt_index)
4710 {
4711   memcpy(pov, plt_entry, plt_entry_size);
4712   elfcpp::Swap_unaligned<32, false>::writeval(pov + 3,
4713                                               (got_address + got_offset
4714                                                - (plt_address + plt_offset
4715                                                   + 3 + 4)));
4716
4717   elfcpp::Swap_unaligned<32, false>::writeval(pov + 33, plt_index);
4718   elfcpp::Swap_unaligned<32, false>::writeval(pov + 38,
4719                                               - (plt_offset + 38 + 4));
4720
4721   return 32;
4722 }
4723
4724 // The reserved TLSDESC entry in the PLT.
4725
4726 template<int size>
4727 const unsigned char
4728 Output_data_plt_x86_64_nacl<size>::tlsdesc_plt_entry[plt_entry_size] =
4729 {
4730   0xff, 0x35,                   // pushq x(%rip)
4731   0, 0, 0, 0,   // replaced with address of linkmap GOT entry (at PLTGOT + 8)
4732   0x4c, 0x8b, 0x1d,             // mov y(%rip),%r11
4733   0, 0, 0, 0,   // replaced with offset of reserved TLSDESC_GOT entry
4734   0x41, 0x83, 0xe3, NACLMASK,   // and $-32, %r11d
4735   0x4d, 0x01, 0xfb,             // add %r15, %r11
4736   0x41, 0xff, 0xe3,             // jmpq *%r11
4737
4738   // 41 bytes of nop to pad out to the standard size.
4739   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4740   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4741   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4742   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4743   0x66, 0x66,                            // excess data32 prefixes
4744   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4745 };
4746
4747 template<int size>
4748 void
4749 Output_data_plt_x86_64_nacl<size>::do_fill_tlsdesc_entry(
4750     unsigned char* pov,
4751     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4752     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4753     typename elfcpp::Elf_types<size>::Elf_Addr got_base,
4754     unsigned int tlsdesc_got_offset,
4755     unsigned int plt_offset)
4756 {
4757   memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
4758   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
4759                                               (got_address + 8
4760                                                - (plt_address + plt_offset
4761                                                   + 2 + 4)));
4762   elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
4763                                               (got_base
4764                                                + tlsdesc_got_offset
4765                                                - (plt_address + plt_offset
4766                                                   + 9 + 4)));
4767 }
4768
4769 // The .eh_frame unwind information for the PLT.
4770
4771 template<int size>
4772 const unsigned char
4773 Output_data_plt_x86_64_nacl<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
4774 {
4775   0, 0, 0, 0,                           // Replaced with offset to .plt.
4776   0, 0, 0, 0,                           // Replaced with size of .plt.
4777   0,                                    // Augmentation size.
4778   elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
4779   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
4780   elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
4781   elfcpp::DW_CFA_advance_loc + 58,      // Advance 58 to __PLT__ + 64.
4782   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
4783   13,                                   // Block length.
4784   elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
4785   elfcpp::DW_OP_breg16, 0,              // Push %rip.
4786   elfcpp::DW_OP_const1u, 63,            // Push 0x3f.
4787   elfcpp::DW_OP_and,                    // & (%rip & 0x3f).
4788   elfcpp::DW_OP_const1u, 37,            // Push 0x25.
4789   elfcpp::DW_OP_ge,                     // >= ((%rip & 0x3f) >= 0x25)
4790   elfcpp::DW_OP_lit3,                   // Push 3.
4791   elfcpp::DW_OP_shl,                    // << (((%rip & 0x3f) >= 0x25) << 3)
4792   elfcpp::DW_OP_plus,                   // + ((((%rip&0x3f)>=0x25)<<3)+%rsp+8
4793   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
4794   elfcpp::DW_CFA_nop
4795 };
4796
4797 // The selector for x86_64-nacl object files.
4798
4799 template<int size>
4800 class Target_selector_x86_64_nacl
4801   : public Target_selector_nacl<Target_selector_x86_64<size>,
4802                                 Target_x86_64_nacl<size> >
4803 {
4804  public:
4805   Target_selector_x86_64_nacl()
4806     : Target_selector_nacl<Target_selector_x86_64<size>,
4807                            Target_x86_64_nacl<size> >("x86-64",
4808                                                       size == 64
4809                                                       ? "elf64-x86-64-nacl"
4810                                                       : "elf32-x86-64-nacl",
4811                                                       size == 64
4812                                                       ? "elf_x86_64_nacl"
4813                                                       : "elf32_x86_64_nacl")
4814   { }
4815 };
4816
4817 Target_selector_x86_64_nacl<64> target_selector_x86_64;
4818 Target_selector_x86_64_nacl<32> target_selector_x32;
4819
4820 } // End anonymous namespace.