From Craig Silverstein: implement -Ttext.
[platform/upstream/binutils.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright 2006, 2007, Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or
9 // modify it under the terms of the GNU Library General Public License
10 // as published by the Free Software Foundation; either version 2, or
11 // (at your option) any later version.
12
13 // In addition to the permissions in the GNU Library General Public
14 // License, the Free Software Foundation gives you unlimited
15 // permission to link the compiled version of this file into
16 // combinations with other programs, and to distribute those
17 // combinations without any restriction coming from the use of this
18 // file.  (The Library Public License restrictions do apply in other
19 // respects; for example, they cover modification of the file, and
20 /// distribution when not linked into a combined executable.)
21
22 // This program is distributed in the hope that it will be useful, but
23 // WITHOUT ANY WARRANTY; without even the implied warranty of
24 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
25 // Library General Public License for more details.
26
27 // You should have received a copy of the GNU Library General Public
28 // License along with this program; if not, write to the Free Software
29 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30 // 02110-1301, USA.
31
32 #include "gold.h"
33
34 #include <cstring>
35
36 #include "elfcpp.h"
37 #include "parameters.h"
38 #include "reloc.h"
39 #include "x86_64.h"
40 #include "object.h"
41 #include "symtab.h"
42 #include "layout.h"
43 #include "output.h"
44 #include "target.h"
45 #include "target-reloc.h"
46 #include "target-select.h"
47 #include "tls.h"
48
49 namespace
50 {
51
52 using namespace gold;
53
54 class Output_data_plt_x86_64;
55
56 // The x86_64 target class.
57 // See the ABI at
58 //   http://www.x86-64.org/documentation/abi.pdf
59 // TLS info comes from
60 //   http://people.redhat.com/drepper/tls.pdf
61 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
62
63 class Target_x86_64 : public Sized_target<64, false>
64 {
65  public:
66   // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
67   // uses only Elf64_Rela relocation entries with explicit addends."
68   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
69
70   Target_x86_64()
71     : Sized_target<64, false>(&x86_64_info),
72       got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
73       copy_relocs_(NULL), dynbss_(NULL)
74   { }
75
76   // Scan the relocations to look for symbol adjustments.
77   void
78   scan_relocs(const General_options& options,
79               Symbol_table* symtab,
80               Layout* layout,
81               Sized_relobj<64, false>* object,
82               unsigned int data_shndx,
83               unsigned int sh_type,
84               const unsigned char* prelocs,
85               size_t reloc_count,
86               size_t local_symbol_count,
87               const unsigned char* plocal_symbols,
88               Symbol** global_symbols);
89
90   // Finalize the sections.
91   void
92   do_finalize_sections(Layout*);
93
94   // Return the value to use for a dynamic which requires special
95   // treatment.
96   uint64_t
97   do_dynsym_value(const Symbol*) const;
98
99   // Relocate a section.
100   void
101   relocate_section(const Relocate_info<64, false>*,
102                    unsigned int sh_type,
103                    const unsigned char* prelocs,
104                    size_t reloc_count,
105                    unsigned char* view,
106                    elfcpp::Elf_types<64>::Elf_Addr view_address,
107                    off_t view_size);
108
109   // Return a string used to fill a code section with nops.
110   std::string
111   do_code_fill(off_t length);
112
113  private:
114   // The class which scans relocations.
115   struct Scan
116   {
117     inline void
118     local(const General_options& options, Symbol_table* symtab,
119           Layout* layout, Target_x86_64* target,
120           Sized_relobj<64, false>* object,
121           unsigned int data_shndx,
122           const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
123           const elfcpp::Sym<64, false>& lsym);
124
125     inline void
126     global(const General_options& options, Symbol_table* symtab,
127            Layout* layout, Target_x86_64* target,
128            Sized_relobj<64, false>* object,
129            unsigned int data_shndx,
130            const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
131            Symbol* gsym);
132
133     static void
134     unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
135
136     static void
137     unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
138                              Symbol*);
139   };
140
141   // The class which implements relocation.
142   class Relocate
143   {
144    public:
145     Relocate()
146       : skip_call_tls_get_addr_(false)
147     { }
148
149     ~Relocate()
150     {
151       if (this->skip_call_tls_get_addr_)
152         {
153           // FIXME: This needs to specify the location somehow.
154           gold_error(_("missing expected TLS relocation"));
155         }
156     }
157
158     // Do a relocation.  Return false if the caller should not issue
159     // any warnings about this relocation.
160     inline bool
161     relocate(const Relocate_info<64, false>*, Target_x86_64*, size_t relnum,
162              const elfcpp::Rela<64, false>&,
163              unsigned int r_type, const Sized_symbol<64>*,
164              const Symbol_value<64>*,
165              unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
166              off_t);
167
168    private:
169     // Do a TLS relocation.
170     inline void
171     relocate_tls(const Relocate_info<64, false>*, size_t relnum,
172                  const elfcpp::Rela<64, false>&,
173                  unsigned int r_type, const Sized_symbol<64>*,
174                  const Symbol_value<64>*,
175                  unsigned char*, elfcpp::Elf_types<64>::Elf_Addr, off_t);
176
177     // Do a TLS Initial-Exec to Local-Exec transition.
178     static inline void
179     tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
180                  Output_segment* tls_segment,
181                  const elfcpp::Rela<64, false>&, unsigned int r_type,
182                  elfcpp::Elf_types<64>::Elf_Addr value,
183                  unsigned char* view,
184                  off_t view_size);
185
186     // Do a TLS General-Dynamic to Local-Exec transition.
187     inline void
188     tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
189                  Output_segment* tls_segment,
190                  const elfcpp::Rela<64, false>&, unsigned int r_type,
191                  elfcpp::Elf_types<64>::Elf_Addr value,
192                  unsigned char* view,
193                  off_t view_size);
194
195     // Do a TLS Local-Dynamic to Local-Exec transition.
196     inline void
197     tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
198                  Output_segment* tls_segment,
199                  const elfcpp::Rela<64, false>&, unsigned int r_type,
200                  elfcpp::Elf_types<64>::Elf_Addr value,
201                  unsigned char* view,
202                  off_t view_size);
203
204     // This is set if we should skip the next reloc, which should be a
205     // PLT32 reloc against ___tls_get_addr.
206     bool skip_call_tls_get_addr_;
207   };
208
209   // Adjust TLS relocation type based on the options and whether this
210   // is a local symbol.
211   static tls::Tls_optimization
212   optimize_tls_reloc(bool is_final, int r_type);
213
214   // Get the GOT section, creating it if necessary.
215   Output_data_got<64, false>*
216   got_section(Symbol_table*, Layout*);
217
218   // Create a PLT entry for a global symbol.
219   void
220   make_plt_entry(Symbol_table*, Layout*, Symbol*);
221
222   // Get the PLT section.
223   Output_data_plt_x86_64*
224   plt_section() const
225   {
226     gold_assert(this->plt_ != NULL);
227     return this->plt_;
228   }
229
230   // Get the dynamic reloc section, creating it if necessary.
231   Reloc_section*
232   rela_dyn_section(Layout*);
233
234   // Copy a relocation against a global symbol.
235   void
236   copy_reloc(const General_options*, Symbol_table*, Layout*,
237              Sized_relobj<64, false>*, unsigned int,
238              Symbol*, const elfcpp::Rela<64, false>&);
239
240   // Information about this specific target which we pass to the
241   // general Target structure.
242   static const Target::Target_info x86_64_info;
243
244   // The GOT section.
245   Output_data_got<64, false>* got_;
246   // The PLT section.
247   Output_data_plt_x86_64* plt_;
248   // The GOT PLT section.
249   Output_data_space* got_plt_;
250   // The dynamic reloc section.
251   Reloc_section* rela_dyn_;
252   // Relocs saved to avoid a COPY reloc.
253   Copy_relocs<64, false>* copy_relocs_;
254   // Space for variables copied with a COPY reloc.
255   Output_data_space* dynbss_;
256 };
257
258 const Target::Target_info Target_x86_64::x86_64_info =
259 {
260   64,                   // size
261   false,                // is_big_endian
262   elfcpp::EM_X86_64,    // machine_code
263   false,                // has_make_symbol
264   false,                // has_resolve
265   true,                 // has_code_fill
266   "/lib/ld64.so.1",     // program interpreter
267   0x400000,             // default_text_segment_address
268   0x1000,               // abi_pagesize
269   0x1000                // common_pagesize
270 };
271
272 // Get the GOT section, creating it if necessary.
273
274 Output_data_got<64, false>*
275 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
276 {
277   if (this->got_ == NULL)
278     {
279       gold_assert(symtab != NULL && layout != NULL);
280
281       this->got_ = new Output_data_got<64, false>();
282
283       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
284                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
285                                       this->got_);
286
287       // The old GNU linker creates a .got.plt section.  We just
288       // create another set of data in the .got section.  Note that we
289       // always create a PLT if we create a GOT, although the PLT
290       // might be empty.
291       // TODO(csilvers): do we really need an alignment of 8?
292       this->got_plt_ = new Output_data_space(8);
293       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
294                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
295                                       this->got_plt_);
296
297       // The first three entries are reserved.
298       this->got_plt_->set_space_size(3 * 8);
299
300       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
301       symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
302                                     this->got_plt_,
303                                     0, 0, elfcpp::STT_OBJECT,
304                                     elfcpp::STB_LOCAL,
305                                     elfcpp::STV_HIDDEN, 0,
306                                     false, false);
307     }
308
309   return this->got_;
310 }
311
312 // Get the dynamic reloc section, creating it if necessary.
313
314 Target_x86_64::Reloc_section*
315 Target_x86_64::rela_dyn_section(Layout* layout)
316 {
317   if (this->rela_dyn_ == NULL)
318     {
319       gold_assert(layout != NULL);
320       this->rela_dyn_ = new Reloc_section();
321       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
322                                       elfcpp::SHF_ALLOC, this->rela_dyn_);
323     }
324   return this->rela_dyn_;
325 }
326
327 // A class to handle the PLT data.
328
329 class Output_data_plt_x86_64 : public Output_section_data
330 {
331  public:
332   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
333
334   Output_data_plt_x86_64(Layout*, Output_data_space*);
335
336   // Add an entry to the PLT.
337   void
338   add_entry(Symbol* gsym);
339
340   // Return the .rel.plt section data.
341   const Reloc_section*
342   rel_plt() const
343   { return this->rel_; }
344
345  protected:
346   void
347   do_adjust_output_section(Output_section* os);
348
349  private:
350   // The size of an entry in the PLT.
351   static const int plt_entry_size = 16;
352
353   // The first entry in the PLT.
354   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
355   // procedure linkage table for both programs and shared objects."
356   static unsigned char first_plt_entry[plt_entry_size];
357
358   // Other entries in the PLT for an executable.
359   static unsigned char plt_entry[plt_entry_size];
360
361   // Set the final size.
362   void
363   do_set_address(uint64_t, off_t)
364   { this->set_data_size((this->count_ + 1) * plt_entry_size); }
365
366   // Write out the PLT data.
367   void
368   do_write(Output_file*);
369
370   // The reloc section.
371   Reloc_section* rel_;
372   // The .got.plt section.
373   Output_data_space* got_plt_;
374   // The number of PLT entries.
375   unsigned int count_;
376 };
377
378 // Create the PLT section.  The ordinary .got section is an argument,
379 // since we need to refer to the start.  We also create our own .got
380 // section just for PLT entries.
381
382 Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
383                                                Output_data_space* got_plt)
384     // TODO(csilvers): do we really need an alignment of 8?
385   : Output_section_data(8), got_plt_(got_plt), count_(0)
386 {
387   this->rel_ = new Reloc_section();
388   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
389                                   elfcpp::SHF_ALLOC, this->rel_);
390 }
391
392 void
393 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
394 {
395   // UnixWare sets the entsize of .plt to 4, and so does the old GNU
396   // linker, and so do we.
397   os->set_entsize(4);
398 }
399
400 // Add an entry to the PLT.
401
402 void
403 Output_data_plt_x86_64::add_entry(Symbol* gsym)
404 {
405   gold_assert(!gsym->has_plt_offset());
406
407   // Note that when setting the PLT offset we skip the initial
408   // reserved PLT entry.
409   gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
410
411   ++this->count_;
412
413   off_t got_offset = this->got_plt_->data_size();
414
415   // Every PLT entry needs a GOT entry which points back to the PLT
416   // entry (this will be changed by the dynamic linker, normally
417   // lazily when the function is called).
418   this->got_plt_->set_space_size(got_offset + 8);
419
420   // Every PLT entry needs a reloc.
421   gsym->set_needs_dynsym_entry();
422   this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
423                          got_offset, 0);
424
425   // Note that we don't need to save the symbol.  The contents of the
426   // PLT are independent of which symbols are used.  The symbols only
427   // appear in the relocations.
428 }
429
430 // The first entry in the PLT for an executable.
431
432 unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
433 {
434   // From AMD64 ABI Draft 0.98, page 76
435   0xff, 0x35,   // pushq contents of memory address
436   0, 0, 0, 0,   // replaced with address of .got + 4
437   0xff, 0x25,   // jmp indirect
438   0, 0, 0, 0,   // replaced with address of .got + 8
439   0x90, 0x90, 0x90, 0x90   // noop (x4)
440 };
441
442 // Subsequent entries in the PLT for an executable.
443
444 unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
445 {
446   // From AMD64 ABI Draft 0.98, page 76
447   0xff, 0x25,   // jmpq indirect
448   0, 0, 0, 0,   // replaced with address of symbol in .got
449   0x68,         // pushq immediate
450   0, 0, 0, 0,   // replaced with offset into relocation table
451   0xe9,         // jmpq relative
452   0, 0, 0, 0    // replaced with offset to start of .plt
453 };
454
455 // Write out the PLT.  This uses the hand-coded instructions above,
456 // and adjusts them as needed.  This is specified by the AMD64 ABI.
457
458 void
459 Output_data_plt_x86_64::do_write(Output_file* of)
460 {
461   const off_t offset = this->offset();
462   const off_t oview_size = this->data_size();
463   unsigned char* const oview = of->get_output_view(offset, oview_size);
464
465   const off_t got_file_offset = this->got_plt_->offset();
466   const off_t got_size = this->got_plt_->data_size();
467   unsigned char* const got_view = of->get_output_view(got_file_offset,
468                                                       got_size);
469
470   unsigned char* pov = oview;
471
472   elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
473   elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
474
475   memcpy(pov, first_plt_entry, plt_entry_size);
476   if (!parameters->output_is_shared())
477     {
478       // We do a jmp relative to the PC at the end of this instruction.
479       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 8
480                                                   - (plt_address + 6));
481       elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 16
482                                         - (plt_address + 12));
483     }
484   pov += plt_entry_size;
485
486   unsigned char* got_pov = got_view;
487
488   memset(got_pov, 0, 24);
489   got_pov += 24;
490
491   unsigned int plt_offset = plt_entry_size;
492   unsigned int got_offset = 24;
493   const unsigned int count = this->count_;
494   for (unsigned int plt_index = 0;
495        plt_index < count;
496        ++plt_index,
497          pov += plt_entry_size,
498          got_pov += 8,
499          plt_offset += plt_entry_size,
500          got_offset += 8)
501     {
502       // Set and adjust the PLT entry itself.
503       memcpy(pov, plt_entry, plt_entry_size);
504       if (parameters->output_is_shared())
505         // FIXME(csilvers): what's the right thing to write here?
506         elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
507       else
508         elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
509                                                     (got_address + got_offset
510                                                      - (plt_address + plt_offset
511                                                         + 6)));
512
513       elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
514       elfcpp::Swap<32, false>::writeval(pov + 12,
515                                         - (plt_offset + plt_entry_size));
516
517       // Set the entry in the GOT.
518       elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
519     }
520
521   gold_assert(pov - oview == oview_size);
522   gold_assert(got_pov - got_view == got_size);
523
524   of->write_output_view(offset, oview_size, oview);
525   of->write_output_view(got_file_offset, got_size, got_view);
526 }
527
528 // Create a PLT entry for a global symbol.
529
530 void
531 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
532                               Symbol* gsym)
533 {
534   if (gsym->has_plt_offset())
535     return;
536
537   if (this->plt_ == NULL)
538     {
539       // Create the GOT sections first.
540       this->got_section(symtab, layout);
541
542       this->plt_ = new Output_data_plt_x86_64(layout, this->got_plt_);
543       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
544                                       (elfcpp::SHF_ALLOC
545                                        | elfcpp::SHF_EXECINSTR),
546                                       this->plt_);
547     }
548
549   this->plt_->add_entry(gsym);
550 }
551
552 // Handle a relocation against a non-function symbol defined in a
553 // dynamic object.  The traditional way to handle this is to generate
554 // a COPY relocation to copy the variable at runtime from the shared
555 // object into the executable's data segment.  However, this is
556 // undesirable in general, as if the size of the object changes in the
557 // dynamic object, the executable will no longer work correctly.  If
558 // this relocation is in a writable section, then we can create a
559 // dynamic reloc and the dynamic linker will resolve it to the correct
560 // address at runtime.  However, we do not want do that if the
561 // relocation is in a read-only section, as it would prevent the
562 // readonly segment from being shared.  And if we have to eventually
563 // generate a COPY reloc, then any dynamic relocations will be
564 // useless.  So this means that if this is a writable section, we need
565 // to save the relocation until we see whether we have to create a
566 // COPY relocation for this symbol for any other relocation.
567
568 void
569 Target_x86_64::copy_reloc(const General_options* options,
570                           Symbol_table* symtab,
571                           Layout* layout,
572                           Sized_relobj<64, false>* object,
573                           unsigned int data_shndx, Symbol* gsym,
574                           const elfcpp::Rela<64, false>& rela)
575 {
576   Sized_symbol<64>* ssym;
577   ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(64) (gsym
578                                                         SELECT_SIZE(64));
579
580   if (!Copy_relocs<64, false>::need_copy_reloc(options, object,
581                                                data_shndx, ssym))
582     {
583       // So far we do not need a COPY reloc.  Save this relocation.
584       // If it turns out that we never need a COPY reloc for this
585       // symbol, then we will emit the relocation.
586       if (this->copy_relocs_ == NULL)
587         this->copy_relocs_ = new Copy_relocs<64, false>();
588       this->copy_relocs_->save(ssym, object, data_shndx, rela);
589     }
590   else
591     {
592       // Allocate space for this symbol in the .bss section.
593
594       elfcpp::Elf_types<64>::Elf_WXword symsize = ssym->symsize();
595
596       // There is no defined way to determine the required alignment
597       // of the symbol.  We pick the alignment based on the size.  We
598       // set an arbitrary maximum of 256.
599       unsigned int align;
600       for (align = 1; align < 512; align <<= 1)
601         if ((symsize & align) != 0)
602           break;
603
604       if (this->dynbss_ == NULL)
605         {
606           this->dynbss_ = new Output_data_space(align);
607           layout->add_output_section_data(".bss",
608                                           elfcpp::SHT_NOBITS,
609                                           (elfcpp::SHF_ALLOC
610                                            | elfcpp::SHF_WRITE),
611                                           this->dynbss_);
612         }
613
614       Output_data_space* dynbss = this->dynbss_;
615
616       if (align > dynbss->addralign())
617         dynbss->set_space_alignment(align);
618
619       off_t dynbss_size = dynbss->data_size();
620       dynbss_size = align_address(dynbss_size, align);
621       off_t offset = dynbss_size;
622       dynbss->set_space_size(dynbss_size + symsize);
623
624       // Define the symbol in the .dynbss section.
625       symtab->define_in_output_data(this, ssym->name(), ssym->version(),
626                                     dynbss, offset, symsize, ssym->type(),
627                                     ssym->binding(), ssym->visibility(),
628                                     ssym->nonvis(), false, false);
629
630       // Add the COPY reloc.
631       ssym->set_needs_dynsym_entry();
632       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
633       rela_dyn->add_global(ssym, elfcpp::R_X86_64_COPY, dynbss, offset, 0);
634     }
635 }
636
637
638 // Optimize the TLS relocation type based on what we know about the
639 // symbol.  IS_FINAL is true if the final address of this symbol is
640 // known at link time.
641
642 tls::Tls_optimization
643 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
644 {
645   // If we are generating a shared library, then we can't do anything
646   // in the linker.
647   if (parameters->output_is_shared())
648     return tls::TLSOPT_NONE;
649
650   switch (r_type)
651     {
652     case elfcpp::R_X86_64_TLSGD:
653     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
654     case elfcpp::R_X86_64_TLSDESC_CALL:
655       // These are General-Dynamic which permits fully general TLS
656       // access.  Since we know that we are generating an executable,
657       // we can convert this to Initial-Exec.  If we also know that
658       // this is a local symbol, we can further switch to Local-Exec.
659       if (is_final)
660         return tls::TLSOPT_TO_LE;
661       return tls::TLSOPT_TO_IE;
662
663     case elfcpp::R_X86_64_TLSLD:
664       // This is Local-Dynamic, which refers to a local symbol in the
665       // dynamic TLS block.  Since we know that we generating an
666       // executable, we can switch to Local-Exec.
667       return tls::TLSOPT_TO_LE;
668
669     case elfcpp::R_X86_64_DTPOFF32:
670     case elfcpp::R_X86_64_DTPOFF64:
671       // Another Local-Dynamic reloc.
672       return tls::TLSOPT_TO_LE;
673
674     case elfcpp::R_X86_64_GOTTPOFF:
675       // These are Initial-Exec relocs which get the thread offset
676       // from the GOT.  If we know that we are linking against the
677       // local symbol, we can switch to Local-Exec, which links the
678       // thread offset into the instruction.
679       if (is_final)
680         return tls::TLSOPT_TO_LE;
681       return tls::TLSOPT_NONE;
682
683     case elfcpp::R_X86_64_TPOFF32:
684       // When we already have Local-Exec, there is nothing further we
685       // can do.
686       return tls::TLSOPT_NONE;
687
688     default:
689       gold_unreachable();
690     }
691 }
692
693 // Report an unsupported relocation against a local symbol.
694
695 void
696 Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
697                                              unsigned int r_type)
698 {
699   gold_error(_("%s: unsupported reloc %u against local symbol"),
700              object->name().c_str(), r_type);
701 }
702
703 // Scan a relocation for a local symbol.
704
705 inline void
706 Target_x86_64::Scan::local(const General_options&,
707                            Symbol_table* symtab,
708                            Layout* layout,
709                            Target_x86_64* target,
710                            Sized_relobj<64, false>* object,
711                            unsigned int data_shndx,
712                            const elfcpp::Rela<64, false>& reloc,
713                            unsigned int r_type,
714                            const elfcpp::Sym<64, false>&)
715 {
716   switch (r_type)
717     {
718     case elfcpp::R_X86_64_NONE:
719     case elfcpp::R_386_GNU_VTINHERIT:
720     case elfcpp::R_386_GNU_VTENTRY:
721       break;
722
723     case elfcpp::R_X86_64_64:
724     case elfcpp::R_X86_64_32:
725     case elfcpp::R_X86_64_32S:
726     case elfcpp::R_X86_64_16:
727     case elfcpp::R_X86_64_8:
728       // FIXME: If we are generating a shared object we need to copy
729       // this relocation into the object.
730       gold_assert(!parameters->output_is_shared());
731       break;
732
733     case elfcpp::R_X86_64_PC64:
734     case elfcpp::R_X86_64_PC32:
735     case elfcpp::R_X86_64_PC16:
736     case elfcpp::R_X86_64_PC8:
737       break;
738
739     case elfcpp::R_X86_64_GOTPC32:  // TODO(csilvers): correct?
740     case elfcpp::R_X86_64_GOTOFF64:
741     case elfcpp::R_X86_64_GOTPC64:  // TODO(csilvers): correct?
742     case elfcpp::R_X86_64_PLTOFF64:  // TODO(csilvers): correct?
743       // We need a GOT section.
744       target->got_section(symtab, layout);
745       break;
746
747     case elfcpp::R_X86_64_GOT64:
748     case elfcpp::R_X86_64_GOT32:
749     case elfcpp::R_X86_64_GOTPCREL64:
750     case elfcpp::R_X86_64_GOTPCREL:
751       {
752         // The symbol requires a GOT entry.
753         Output_data_got<64, false>* got = target->got_section(symtab, layout);
754         unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
755         if (got->add_local(object, r_sym))
756           {
757             // If we are generating a shared object, we need to add a
758             // dynamic RELATIVE relocation for this symbol.
759             if (parameters->output_is_shared())
760               {
761                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
762                 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
763                                     data_shndx, reloc.get_r_offset(), 0);
764               }
765           }
766       }
767       break;
768
769     case elfcpp::R_X86_64_COPY:
770     case elfcpp::R_X86_64_GLOB_DAT:
771     case elfcpp::R_X86_64_JUMP_SLOT:
772     case elfcpp::R_X86_64_RELATIVE:
773       // These are outstanding tls relocs, which are unexpected when linking
774     case elfcpp::R_X86_64_TPOFF64:
775     case elfcpp::R_X86_64_DTPMOD64:
776     case elfcpp::R_X86_64_TLSDESC:
777       gold_error(_("%s: unexpected reloc %u in object file"),
778                  object->name().c_str(), r_type);
779       break;
780
781       // These are initial tls relocs, which are expected when linking
782     case elfcpp::R_X86_64_TLSGD:
783     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
784     case elfcpp::R_X86_64_TLSDESC_CALL:
785     case elfcpp::R_X86_64_TLSLD:
786     case elfcpp::R_X86_64_GOTTPOFF:
787     case elfcpp::R_X86_64_TPOFF32:
788     case elfcpp::R_X86_64_DTPOFF32:
789     case elfcpp::R_X86_64_DTPOFF64:
790       {
791         bool output_is_shared = parameters->output_is_shared();
792         const tls::Tls_optimization optimized_type
793             = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
794         switch (r_type)
795           {
796           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
797             // FIXME: If generating a shared object, we need to copy
798             // this relocation into the object.
799             gold_assert(!output_is_shared);
800             break;
801
802           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
803             // FIXME: If not relaxing to LE, we need to generate a
804             // TPOFF64 reloc.
805             if (optimized_type != tls::TLSOPT_TO_LE)
806               unsupported_reloc_local(object, r_type);
807             break;
808
809           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
810           case elfcpp::R_X86_64_DTPOFF32:
811           case elfcpp::R_X86_64_DTPOFF64:
812             // FIXME: If not relaxing to LE, we need to generate a
813             // DTPMOD64 reloc.
814             if (optimized_type != tls::TLSOPT_TO_LE)
815               unsupported_reloc_local(object, r_type);
816             break;
817
818
819           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
820           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
821           case elfcpp::R_X86_64_TLSDESC_CALL:
822             // FIXME: If not relaxing to LE, we need to generate
823             // DTPMOD64 and DTPOFF64 relocs.
824             if (optimized_type != tls::TLSOPT_TO_LE)
825               unsupported_reloc_local(object, r_type);
826             break;
827
828           default:
829             gold_unreachable();
830           }
831       }
832       break;
833
834     case elfcpp::R_X86_64_GOTPLT64:
835     case elfcpp::R_X86_64_PLT32:
836     case elfcpp::R_X86_64_SIZE32:  // TODO(csilvers): correct?
837     case elfcpp::R_X86_64_SIZE64:  // TODO(csilvers): correct?
838     default:
839       gold_error(_("%s: unsupported reloc %u against local symbol"),
840                  object->name().c_str(), r_type);
841       break;
842     }
843 }
844
845
846 // Report an unsupported relocation against a global symbol.
847
848 void
849 Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
850                                               unsigned int r_type,
851                                               Symbol* gsym)
852 {
853   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
854              object->name().c_str(), r_type, gsym->name());
855 }
856
857 // Scan a relocation for a global symbol.
858
859 inline void
860 Target_x86_64::Scan::global(const General_options& options,
861                             Symbol_table* symtab,
862                             Layout* layout,
863                             Target_x86_64* target,
864                             Sized_relobj<64, false>* object,
865                             unsigned int data_shndx,
866                             const elfcpp::Rela<64, false>& reloc,
867                             unsigned int r_type,
868                             Symbol* gsym)
869 {
870   switch (r_type)
871     {
872     case elfcpp::R_X86_64_NONE:
873     case elfcpp::R_386_GNU_VTINHERIT:
874     case elfcpp::R_386_GNU_VTENTRY:
875       break;
876
877     case elfcpp::R_X86_64_64:
878     case elfcpp::R_X86_64_PC64:
879     case elfcpp::R_X86_64_32:
880     case elfcpp::R_X86_64_32S:
881     case elfcpp::R_X86_64_PC32:
882     case elfcpp::R_X86_64_16:
883     case elfcpp::R_X86_64_PC16:
884     case elfcpp::R_X86_64_8:
885     case elfcpp::R_X86_64_PC8:
886       // FIXME: If we are generating a shared object we may need to
887       // copy this relocation into the object.  If this symbol is
888       // defined in a shared object, we may need to copy this
889       // relocation in order to avoid a COPY relocation.
890       gold_assert(!parameters->output_is_shared());
891
892       if (gsym->is_from_dynobj())
893         {
894           // This symbol is defined in a dynamic object.  If it is a
895           // function, we make a PLT entry.  Otherwise we need to
896           // either generate a COPY reloc or copy this reloc.
897           if (gsym->type() == elfcpp::STT_FUNC)
898             {
899               target->make_plt_entry(symtab, layout, gsym);
900
901               // If this is not a PC relative reference, then we may
902               // be taking the address of the function.  In that case
903               // we need to set the entry in the dynamic symbol table
904               // to the address of the PLT entry.
905               if (r_type != elfcpp::R_X86_64_PC64
906                   && r_type != elfcpp::R_X86_64_PC32
907                   && r_type != elfcpp::R_X86_64_PC16
908                   && r_type != elfcpp::R_X86_64_PC8)
909                 gsym->set_needs_dynsym_value();
910             }
911           else
912             target->copy_reloc(&options, symtab, layout, object, data_shndx,
913                                gsym, reloc);
914         }
915
916       break;
917
918     case elfcpp::R_X86_64_GOT64:
919     case elfcpp::R_X86_64_GOT32:
920     case elfcpp::R_X86_64_GOTPCREL64:
921     case elfcpp::R_X86_64_GOTPCREL:
922     case elfcpp::R_X86_64_GOTPLT64:
923       {
924         // The symbol requires a GOT entry.
925         Output_data_got<64, false>* got = target->got_section(symtab, layout);
926         if (got->add_global(gsym))
927           {
928             // If this symbol is not fully resolved, we need to add a
929             // dynamic relocation for it.
930             if (!gsym->final_value_is_known())
931               {
932                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
933                 rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT, got,
934                                      gsym->got_offset(), 0);
935               }
936           }
937       }
938       break;
939
940     case elfcpp::R_X86_64_PLT32:
941       // If the symbol is fully resolved, this is just a PC32 reloc.
942       // Otherwise we need a PLT entry.
943       if (gsym->final_value_is_known())
944         break;
945       target->make_plt_entry(symtab, layout, gsym);
946       break;
947
948     case elfcpp::R_X86_64_GOTPC32:  // TODO(csilvers): correct?
949     case elfcpp::R_X86_64_GOTOFF64:
950     case elfcpp::R_X86_64_GOTPC64:  // TODO(csilvers): correct?
951     case elfcpp::R_X86_64_PLTOFF64:  // TODO(csilvers): correct?
952       // We need a GOT section.
953       target->got_section(symtab, layout);
954       break;
955
956     case elfcpp::R_X86_64_COPY:
957     case elfcpp::R_X86_64_GLOB_DAT:
958     case elfcpp::R_X86_64_JUMP_SLOT:
959     case elfcpp::R_X86_64_RELATIVE:
960       // These are outstanding tls relocs, which are unexpected when linking
961     case elfcpp::R_X86_64_TPOFF64:
962     case elfcpp::R_X86_64_DTPMOD64:
963     case elfcpp::R_X86_64_TLSDESC:
964       gold_error(_("%s: unexpected reloc %u in object file"),
965                  object->name().c_str(), r_type);
966       break;
967
968       // These are initial tls relocs, which are expected for global()
969     case elfcpp::R_X86_64_TLSGD:
970     case elfcpp::R_X86_64_TLSLD:
971     case elfcpp::R_X86_64_GOTTPOFF:
972     case elfcpp::R_X86_64_TPOFF32:
973     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
974     case elfcpp::R_X86_64_TLSDESC_CALL:
975     case elfcpp::R_X86_64_DTPOFF32:
976     case elfcpp::R_X86_64_DTPOFF64:
977       {
978         const bool is_final = gsym->final_value_is_known();
979         const tls::Tls_optimization optimized_type
980             = Target_x86_64::optimize_tls_reloc(is_final, r_type);
981         switch (r_type)
982           {
983           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
984             // FIXME: If generating a shared object, we need to copy
985             // this relocation into the object.
986             gold_assert(is_final);
987             break;
988
989           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
990             // FIXME: If not relaxing to LE, we need to generate a
991             // TPOFF64 reloc.
992             if (optimized_type != tls::TLSOPT_TO_LE)
993               unsupported_reloc_global(object, r_type, gsym);
994             break;
995
996           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
997           case elfcpp::R_X86_64_DTPOFF32:
998           case elfcpp::R_X86_64_DTPOFF64:
999             // FIXME: If not relaxing to LE, we need to generate a
1000             // DTPMOD64 reloc.
1001             if (optimized_type != tls::TLSOPT_TO_LE)
1002               unsupported_reloc_global(object, r_type, gsym);
1003             break;
1004
1005
1006           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
1007           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1008           case elfcpp::R_X86_64_TLSDESC_CALL:
1009             // FIXME: If not relaxing to LE, we need to generate
1010             // DTPMOD64 and DTPOFF64, or TLSDESC, relocs.
1011             if (optimized_type != tls::TLSOPT_TO_LE)
1012               unsupported_reloc_global(object, r_type, gsym);
1013             break;
1014
1015           default:
1016             gold_unreachable();
1017           }
1018       }
1019       break;
1020     case elfcpp::R_X86_64_SIZE32:  // TODO(csilvers): correct?
1021     case elfcpp::R_X86_64_SIZE64:  // TODO(csilvers): correct?
1022     default:
1023       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1024                  object->name().c_str(), r_type, gsym->name());
1025       break;
1026     }
1027 }
1028
1029 // Scan relocations for a section.
1030
1031 void
1032 Target_x86_64::scan_relocs(const General_options& options,
1033                            Symbol_table* symtab,
1034                            Layout* layout,
1035                            Sized_relobj<64, false>* object,
1036                            unsigned int data_shndx,
1037                            unsigned int sh_type,
1038                            const unsigned char* prelocs,
1039                            size_t reloc_count,
1040                            size_t local_symbol_count,
1041                            const unsigned char* plocal_symbols,
1042                            Symbol** global_symbols)
1043 {
1044   if (sh_type == elfcpp::SHT_REL)
1045     {
1046       gold_error(_("%s: unsupported REL reloc section"),
1047                  object->name().c_str());
1048       return;
1049     }
1050
1051   gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1052       Target_x86_64::Scan>(
1053     options,
1054     symtab,
1055     layout,
1056     this,
1057     object,
1058     data_shndx,
1059     prelocs,
1060     reloc_count,
1061     local_symbol_count,
1062     plocal_symbols,
1063     global_symbols);
1064 }
1065
1066 // Finalize the sections.
1067
1068 void
1069 Target_x86_64::do_finalize_sections(Layout* layout)
1070 {
1071   // Fill in some more dynamic tags.
1072   Output_data_dynamic* const odyn = layout->dynamic_data();
1073   if (odyn != NULL)
1074     {
1075       if (this->got_plt_ != NULL)
1076         odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1077
1078       if (this->plt_ != NULL)
1079         {
1080           const Output_data* od = this->plt_->rel_plt();
1081           odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1082           odyn->add_section_address(elfcpp::DT_JMPREL, od);
1083           odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1084         }
1085
1086       if (this->rela_dyn_ != NULL)
1087         {
1088           const Output_data* od = this->rela_dyn_;
1089           odyn->add_section_address(elfcpp::DT_RELA, od);
1090           odyn->add_section_size(elfcpp::DT_RELASZ, od);
1091           odyn->add_constant(elfcpp::DT_RELAENT,
1092                              elfcpp::Elf_sizes<64>::rela_size);
1093         }
1094
1095       if (!parameters->output_is_shared())
1096         {
1097           // The value of the DT_DEBUG tag is filled in by the dynamic
1098           // linker at run time, and used by the debugger.
1099           odyn->add_constant(elfcpp::DT_DEBUG, 0);
1100         }
1101     }
1102
1103   // Emit any relocs we saved in an attempt to avoid generating COPY
1104   // relocs.
1105   if (this->copy_relocs_ == NULL)
1106     return;
1107   if (this->copy_relocs_->any_to_emit())
1108     {
1109       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1110       this->copy_relocs_->emit(rela_dyn);
1111     }
1112   delete this->copy_relocs_;
1113   this->copy_relocs_ = NULL;
1114 }
1115
1116 // Perform a relocation.
1117
1118 inline bool
1119 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1120                                   Target_x86_64* target,
1121                                   size_t relnum,
1122                                   const elfcpp::Rela<64, false>& rela,
1123                                   unsigned int r_type,
1124                                   const Sized_symbol<64>* gsym,
1125                                   const Symbol_value<64>* psymval,
1126                                   unsigned char* view,
1127                                   elfcpp::Elf_types<64>::Elf_Addr address,
1128                                   off_t view_size)
1129 {
1130   if (this->skip_call_tls_get_addr_)
1131     {
1132       if (r_type != elfcpp::R_X86_64_PLT32
1133           || gsym == NULL
1134           || strcmp(gsym->name(), "__tls_get_addr") != 0)
1135         {
1136           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1137                                  _("missing expected TLS relocation"));
1138         }
1139       else
1140         {
1141           this->skip_call_tls_get_addr_ = false;
1142           return false;
1143         }
1144     }
1145
1146   // Pick the value to use for symbols defined in shared objects.
1147   Symbol_value<64> symval;
1148   if (gsym != NULL && gsym->is_from_dynobj() && gsym->has_plt_offset())
1149     {
1150       symval.set_output_value(target->plt_section()->address()
1151                               + gsym->plt_offset());
1152       psymval = &symval;
1153     }
1154
1155   const Sized_relobj<64, false>* object = relinfo->object;
1156   const elfcpp::Elf_Xword addend = rela.get_r_addend();
1157
1158   // Get the GOT offset if needed.
1159   bool have_got_offset = false;
1160   unsigned int got_offset = 0;
1161   switch (r_type)
1162     {
1163     case elfcpp::R_X86_64_GOT32:
1164     case elfcpp::R_X86_64_GOT64:
1165     case elfcpp::R_X86_64_GOTPLT64:
1166     case elfcpp::R_X86_64_GOTPCREL:
1167     case elfcpp::R_X86_64_GOTPCREL64:
1168       if (gsym != NULL)
1169         {
1170           gold_assert(gsym->has_got_offset());
1171           got_offset = gsym->got_offset();
1172         }
1173       else
1174         {
1175           unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1176           got_offset = object->local_got_offset(r_sym);
1177         }
1178       have_got_offset = true;
1179       break;
1180
1181     default:
1182       break;
1183     }
1184
1185   switch (r_type)
1186     {
1187     case elfcpp::R_X86_64_NONE:
1188     case elfcpp::R_386_GNU_VTINHERIT:
1189     case elfcpp::R_386_GNU_VTENTRY:
1190       break;
1191
1192     case elfcpp::R_X86_64_64:
1193       Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1194       break;
1195
1196     case elfcpp::R_X86_64_PC64:
1197       Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1198                                               address);
1199       break;
1200
1201     case elfcpp::R_X86_64_32:
1202       // FIXME: we need to verify that value + addend fits into 32 bits:
1203       //    uint64_t x = value + addend;
1204       //    x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1205       // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
1206       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1207       break;
1208
1209     case elfcpp::R_X86_64_32S:
1210       // FIXME: we need to verify that value + addend fits into 32 bits:
1211       //    int64_t x = value + addend;   // note this quantity is signed!
1212       //    x == static_cast<int64_t>(static_cast<int32_t>(x))
1213       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1214       break;
1215
1216     case elfcpp::R_X86_64_PC32:
1217       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1218                                               address);
1219       break;
1220
1221     case elfcpp::R_X86_64_16:
1222       Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1223       break;
1224
1225     case elfcpp::R_X86_64_PC16:
1226       Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1227                                               address);
1228       break;
1229
1230     case elfcpp::R_X86_64_8:
1231       Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1232       break;
1233
1234     case elfcpp::R_X86_64_PC8:
1235       Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1236                                              address);
1237       break;
1238
1239     case elfcpp::R_X86_64_PLT32:
1240       gold_assert(gsym->has_plt_offset()
1241                   || gsym->final_value_is_known());
1242       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1243                                               address);
1244       break;
1245
1246     case elfcpp::R_X86_64_GOT32:
1247       gold_assert(have_got_offset);
1248       Relocate_functions<64, false>::rela32(view, got_offset, addend);
1249       break;
1250
1251     case elfcpp::R_X86_64_GOTPC32:
1252       {
1253         gold_assert(gsym);
1254         elfcpp::Elf_types<64>::Elf_Addr value;
1255         value = target->got_section(NULL, NULL)->address();
1256         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1257       }
1258       break;
1259
1260     case elfcpp::R_X86_64_GOT64:
1261       // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1262       // Since we always add a PLT entry, this is equivalent.
1263     case elfcpp::R_X86_64_GOTPLT64:  // TODO(csilvers): correct?
1264       gold_assert(have_got_offset);
1265       Relocate_functions<64, false>::rela64(view, got_offset, addend);
1266       break;
1267
1268     case elfcpp::R_X86_64_GOTPC64:
1269       {
1270         gold_assert(gsym);
1271         elfcpp::Elf_types<64>::Elf_Addr value;
1272         value = target->got_section(NULL, NULL)->address();
1273         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1274       }
1275       break;
1276
1277     case elfcpp::R_X86_64_GOTOFF64:
1278       {
1279         elfcpp::Elf_types<64>::Elf_Addr value;
1280         value = (psymval->value(object, 0)
1281                  - target->got_section(NULL, NULL)->address());
1282         Relocate_functions<64, false>::rela64(view, value, addend);
1283       }
1284       break;
1285
1286     case elfcpp::R_X86_64_GOTPCREL:
1287       {
1288         gold_assert(have_got_offset);
1289         elfcpp::Elf_types<64>::Elf_Addr value;
1290         value = target->got_section(NULL, NULL)->address() + got_offset;
1291         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1292       }
1293       break;
1294
1295     case elfcpp::R_X86_64_GOTPCREL64:
1296       {
1297         gold_assert(have_got_offset);
1298         elfcpp::Elf_types<64>::Elf_Addr value;
1299         value = target->got_section(NULL, NULL)->address() + got_offset;
1300         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1301       }
1302       break;
1303
1304     case elfcpp::R_X86_64_COPY:
1305     case elfcpp::R_X86_64_GLOB_DAT:
1306     case elfcpp::R_X86_64_JUMP_SLOT:
1307     case elfcpp::R_X86_64_RELATIVE:
1308       // These are outstanding tls relocs, which are unexpected when linking
1309     case elfcpp::R_X86_64_TPOFF64:
1310     case elfcpp::R_X86_64_DTPMOD64:
1311     case elfcpp::R_X86_64_TLSDESC:
1312       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1313                              _("unexpected reloc %u in object file"),
1314                              r_type);
1315       break;
1316
1317       // These are initial tls relocs, which are expected when linking
1318     case elfcpp::R_X86_64_TLSGD:
1319     case elfcpp::R_X86_64_TLSLD:
1320     case elfcpp::R_X86_64_GOTTPOFF:
1321     case elfcpp::R_X86_64_TPOFF32:
1322     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1323     case elfcpp::R_X86_64_TLSDESC_CALL:
1324     case elfcpp::R_X86_64_DTPOFF32:
1325     case elfcpp::R_X86_64_DTPOFF64:
1326       this->relocate_tls(relinfo, relnum, rela, r_type, gsym, psymval, view,
1327                          address, view_size);
1328       break;
1329
1330     case elfcpp::R_X86_64_SIZE32:  // TODO(csilvers): correct?
1331     case elfcpp::R_X86_64_SIZE64:  // TODO(csilvers): correct?
1332     case elfcpp::R_X86_64_PLTOFF64:  // TODO(csilvers): implement me!
1333     default:
1334       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1335                              _("unsupported reloc %u"),
1336                              r_type);
1337       break;
1338     }
1339
1340   return true;
1341 }
1342
1343 // Perform a TLS relocation.
1344
1345 inline void
1346 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1347                                       size_t relnum,
1348                                       const elfcpp::Rela<64, false>& rela,
1349                                       unsigned int r_type,
1350                                       const Sized_symbol<64>* gsym,
1351                                       const Symbol_value<64>* psymval,
1352                                       unsigned char* view,
1353                                       elfcpp::Elf_types<64>::Elf_Addr,
1354                                       off_t view_size)
1355 {
1356   Output_segment* tls_segment = relinfo->layout->tls_segment();
1357   if (tls_segment == NULL)
1358     {
1359       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1360                              _("TLS reloc but no TLS segment"));
1361       return;
1362     }
1363
1364   elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1365
1366   const bool is_final = (gsym == NULL
1367                          ? !parameters->output_is_shared()
1368                          : gsym->final_value_is_known());
1369   const tls::Tls_optimization optimized_type
1370       = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1371   switch (r_type)
1372     {
1373     case elfcpp::R_X86_64_TPOFF32:   // Local-exec reloc
1374       value = value - (tls_segment->vaddr() + tls_segment->memsz());
1375       Relocate_functions<64, false>::rel32(view, value);
1376       break;
1377
1378     case elfcpp::R_X86_64_GOTTPOFF:  // Initial-exec reloc
1379       if (optimized_type == tls::TLSOPT_TO_LE)
1380         {
1381           Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1382                                                 rela, r_type, value, view,
1383                                                 view_size);
1384           break;
1385         }
1386       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1387                              _("unsupported reloc type %u"),
1388                              r_type);
1389       break;
1390
1391     case elfcpp::R_X86_64_TLSGD:
1392     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1393     case elfcpp::R_X86_64_TLSDESC_CALL:
1394       if (optimized_type == tls::TLSOPT_TO_LE)
1395         {
1396           this->tls_gd_to_le(relinfo, relnum, tls_segment,
1397                              rela, r_type, value, view,
1398                              view_size);
1399           break;
1400         }
1401       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1402                              _("unsupported reloc %u"), r_type);
1403       break;
1404
1405     case elfcpp::R_X86_64_TLSLD:
1406       if (optimized_type == tls::TLSOPT_TO_LE)
1407         {
1408           this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
1409                              value, view, view_size);
1410           break;
1411         }
1412       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1413                              _("unsupported reloc %u"), r_type);
1414       break;
1415
1416     case elfcpp::R_X86_64_DTPOFF32:
1417       if (optimized_type == tls::TLSOPT_TO_LE)
1418         value = value - (tls_segment->vaddr() + tls_segment->memsz());
1419       else
1420         value = value - tls_segment->vaddr();
1421       Relocate_functions<64, false>::rel32(view, value);
1422       break;
1423
1424     case elfcpp::R_X86_64_DTPOFF64:
1425       if (optimized_type == tls::TLSOPT_TO_LE)
1426         value = value - (tls_segment->vaddr() + tls_segment->memsz());
1427       else
1428         value = value - tls_segment->vaddr();
1429       Relocate_functions<64, false>::rel64(view, value);
1430       break;
1431     }
1432 }
1433
1434 // Do a relocation in which we convert a TLS Initial-Exec to a
1435 // Local-Exec.
1436
1437 inline void
1438 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
1439                                       size_t relnum,
1440                                       Output_segment* tls_segment,
1441                                       const elfcpp::Rela<64, false>& rela,
1442                                       unsigned int,
1443                                       elfcpp::Elf_types<64>::Elf_Addr value,
1444                                       unsigned char* view,
1445                                       off_t view_size)
1446 {
1447   // We need to examine the opcodes to figure out which instruction we
1448   // are looking at.
1449
1450   // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
1451   // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
1452
1453   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1454   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
1455
1456   unsigned char op1 = view[-3];
1457   unsigned char op2 = view[-2];
1458   unsigned char op3 = view[-1];
1459   unsigned char reg = op3 >> 3;
1460
1461   if (op2 == 0x8b)
1462     {
1463       // movq
1464       if (op1 == 0x4c)
1465         view[-3] = 0x49;
1466       view[-2] = 0xc7;
1467       view[-1] = 0xc0 | reg;
1468     }
1469   else if (reg == 4)
1470     {
1471       // Special handling for %rsp.
1472       if (op1 == 0x4c)
1473         view[-3] = 0x49;
1474       view[-2] = 0x81;
1475       view[-1] = 0xc0 | reg;
1476     }
1477   else
1478     {
1479       // addq
1480       if (op1 == 0x4c)
1481         view[-3] = 0x4d;
1482       view[-2] = 0x8d;
1483       view[-1] = 0x80 | reg | (reg << 3);
1484     }
1485
1486   value = value - (tls_segment->vaddr() + tls_segment->memsz());
1487   Relocate_functions<64, false>::rela32(view, value, 0);
1488 }
1489
1490 // Do a relocation in which we convert a TLS General-Dynamic to a
1491 // Local-Exec.
1492
1493 inline void
1494 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
1495                                       size_t relnum,
1496                                       Output_segment* tls_segment,
1497                                       const elfcpp::Rela<64, false>& rela,
1498                                       unsigned int,
1499                                       elfcpp::Elf_types<64>::Elf_Addr value,
1500                                       unsigned char* view,
1501                                       off_t view_size)
1502 {
1503   // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1504   // .word 0x6666; rex64; call __tls_get_addr
1505   // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
1506
1507   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
1508   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
1509
1510   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1511                  (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
1512   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1513                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
1514
1515   memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
1516
1517   value = value - (tls_segment->vaddr() + tls_segment->memsz());
1518   Relocate_functions<64, false>::rela32(view + 8, value, 0);
1519
1520   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1521   // We can skip it.
1522   this->skip_call_tls_get_addr_ = true;
1523 }
1524
1525 inline void
1526 Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
1527                                       size_t relnum,
1528                                       Output_segment*,
1529                                       const elfcpp::Rela<64, false>& rela,
1530                                       unsigned int,
1531                                       elfcpp::Elf_types<64>::Elf_Addr,
1532                                       unsigned char* view,
1533                                       off_t view_size)
1534 {
1535   // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
1536   // ... leq foo@dtpoff(%rax),%reg
1537   // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
1538
1539   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1540   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
1541
1542   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1543                  view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
1544
1545   tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
1546
1547   memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
1548
1549   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1550   // We can skip it.
1551   this->skip_call_tls_get_addr_ = true;
1552 }
1553
1554 // Relocate section data.
1555
1556 void
1557 Target_x86_64::relocate_section(const Relocate_info<64, false>* relinfo,
1558                                 unsigned int sh_type,
1559                                 const unsigned char* prelocs,
1560                                 size_t reloc_count,
1561                                 unsigned char* view,
1562                                 elfcpp::Elf_types<64>::Elf_Addr address,
1563                                 off_t view_size)
1564 {
1565   gold_assert(sh_type == elfcpp::SHT_RELA);
1566
1567   gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
1568                          Target_x86_64::Relocate>(
1569     relinfo,
1570     this,
1571     prelocs,
1572     reloc_count,
1573     view,
1574     address,
1575     view_size);
1576 }
1577
1578 // Return the value to use for a dynamic which requires special
1579 // treatment.  This is how we support equality comparisons of function
1580 // pointers across shared library boundaries, as described in the
1581 // processor specific ABI supplement.
1582
1583 uint64_t
1584 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
1585 {
1586   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1587   return this->plt_section()->address() + gsym->plt_offset();
1588 }
1589
1590 // Return a string used to fill a code section with nops to take up
1591 // the specified length.
1592
1593 std::string
1594 Target_x86_64::do_code_fill(off_t length)
1595 {
1596   if (length >= 16)
1597     {
1598       // Build a jmpq instruction to skip over the bytes.
1599       unsigned char jmp[5];
1600       jmp[0] = 0xe9;
1601       elfcpp::Swap_unaligned<64, false>::writeval(jmp + 1, length - 5);
1602       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1603               + std::string(length - 5, '\0'));
1604     }
1605
1606   // Nop sequences of various lengths.
1607   const char nop1[1] = { 0x90 };                   // nop
1608   const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
1609   const char nop3[3] = { 0x8d, 0x76, 0x00 };       // leal 0(%esi),%esi
1610   const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00};  // leal 0(%esi,1),%esi
1611   const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26,   // nop
1612                          0x00 };                   // leal 0(%esi,1),%esi
1613   const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00,   // leal 0L(%esi),%esi
1614                          0x00, 0x00 };
1615   const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00,   // leal 0L(%esi,1),%esi
1616                          0x00, 0x00, 0x00 };
1617   const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26,   // nop
1618                          0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1619   const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc,   // movl %esi,%esi
1620                          0x27, 0x00, 0x00, 0x00,   // leal 0L(%edi,1),%edi
1621                          0x00 };
1622   const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1623                            0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1624                            0x00, 0x00 };
1625   const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1626                            0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1627                            0x00, 0x00, 0x00 };
1628   const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1629                            0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1630                            0x00, 0x00, 0x00, 0x00 };
1631   const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1632                            0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1633                            0x27, 0x00, 0x00, 0x00,
1634                            0x00 };
1635   const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1636                            0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1637                            0xbc, 0x27, 0x00, 0x00,
1638                            0x00, 0x00 };
1639   const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1640                            0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1641                            0x90, 0x90, 0x90, 0x90,
1642                            0x90, 0x90, 0x90 };
1643
1644   const char* nops[16] = {
1645     NULL,
1646     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1647     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1648   };
1649
1650   return std::string(nops[length], length);
1651 }
1652
1653 // The selector for x86_64 object files.
1654
1655 class Target_selector_x86_64 : public Target_selector
1656 {
1657 public:
1658   Target_selector_x86_64()
1659     : Target_selector(elfcpp::EM_X86_64, 64, false)
1660   { }
1661
1662   Target*
1663   recognize(int machine, int osabi, int abiversion);
1664
1665  private:
1666   Target_x86_64* target_;
1667 };
1668
1669 // Recognize an x86_64 object file when we already know that the machine
1670 // number is EM_X86_64.
1671
1672 Target*
1673 Target_selector_x86_64::recognize(int, int, int)
1674 {
1675   if (this->target_ == NULL)
1676     this->target_ = new Target_x86_64();
1677   return this->target_;
1678 }
1679
1680 Target_selector_x86_64 target_selector_x86_64;
1681
1682 } // End anonymous namespace.