PR gold/12571
[platform/upstream/binutils.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "dwarf.h"
29 #include "parameters.h"
30 #include "reloc.h"
31 #include "x86_64.h"
32 #include "object.h"
33 #include "symtab.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "copy-relocs.h"
37 #include "target.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
40 #include "tls.h"
41 #include "freebsd.h"
42 #include "gc.h"
43 #include "icf.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 // A class to handle the PLT data.
51
52 class Output_data_plt_x86_64 : public Output_section_data
53 {
54  public:
55   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
56
57   Output_data_plt_x86_64(Symbol_table* symtab, Layout* layout,
58                          Output_data_got<64, false>* got,
59                          Output_data_space* got_plt)
60     : Output_section_data(16), tlsdesc_rel_(NULL), got_(got), got_plt_(got_plt),
61       count_(0), tlsdesc_got_offset_(-1U), free_list_()
62   { this->init(symtab, layout); }
63
64   Output_data_plt_x86_64(Symbol_table* symtab, Layout* layout,
65                          Output_data_got<64, false>* got,
66                          Output_data_space* got_plt,
67                          unsigned int plt_count)
68     : Output_section_data((plt_count + 1) * plt_entry_size, 16, false),
69       tlsdesc_rel_(NULL), got_(got), got_plt_(got_plt),
70       count_(plt_count), tlsdesc_got_offset_(-1U), free_list_()
71   {
72     this->init(symtab, layout);
73
74     // Initialize the free list and reserve the first entry.
75     this->free_list_.init((plt_count + 1) * plt_entry_size, false);
76     this->free_list_.remove(0, plt_entry_size);
77   }
78
79   // Initialize the PLT section.
80   void
81   init(Symbol_table* symtab, Layout* layout);
82
83   // Add an entry to the PLT.
84   void
85   add_entry(Symbol* gsym);
86
87   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
88   unsigned int
89   add_local_ifunc_entry(Sized_relobj_file<64, false>* relobj,
90                         unsigned int local_sym_index);
91
92   // Add the relocation for a PLT entry.
93   void
94   add_relocation(Symbol* gsym, unsigned int got_offset);
95
96   // Add the reserved TLSDESC_PLT entry to the PLT.
97   void
98   reserve_tlsdesc_entry(unsigned int got_offset)
99   { this->tlsdesc_got_offset_ = got_offset; }
100
101   // Return true if a TLSDESC_PLT entry has been reserved.
102   bool
103   has_tlsdesc_entry() const
104   { return this->tlsdesc_got_offset_ != -1U; }
105
106   // Return the GOT offset for the reserved TLSDESC_PLT entry.
107   unsigned int
108   get_tlsdesc_got_offset() const
109   { return this->tlsdesc_got_offset_; }
110
111   // Return the offset of the reserved TLSDESC_PLT entry.
112   unsigned int
113   get_tlsdesc_plt_offset() const
114   { return (this->count_ + 1) * plt_entry_size; }
115
116   // Return the .rela.plt section data.
117   Reloc_section*
118   rela_plt()
119   { return this->rel_; }
120
121   // Return where the TLSDESC relocations should go.
122   Reloc_section*
123   rela_tlsdesc(Layout*);
124
125   // Return the number of PLT entries.
126   unsigned int
127   entry_count() const
128   { return this->count_; }
129
130   // Return the offset of the first non-reserved PLT entry.
131   static unsigned int
132   first_plt_entry_offset()
133   { return plt_entry_size; }
134
135   // Return the size of a PLT entry.
136   static unsigned int
137   get_plt_entry_size()
138   { return plt_entry_size; }
139
140   // Reserve a slot in the PLT for an existing symbol in an incremental update.
141   void
142   reserve_slot(unsigned int plt_index)
143   {
144     this->free_list_.remove((plt_index + 1) * plt_entry_size,
145                             (plt_index + 2) * plt_entry_size);
146   }
147
148  protected:
149   void
150   do_adjust_output_section(Output_section* os);
151
152   // Write to a map file.
153   void
154   do_print_to_mapfile(Mapfile* mapfile) const
155   { mapfile->print_output_data(this, _("** PLT")); }
156
157  private:
158   // The size of an entry in the PLT.
159   static const int plt_entry_size = 16;
160
161   // The first entry in the PLT.
162   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
163   // procedure linkage table for both programs and shared objects."
164   static const unsigned char first_plt_entry[plt_entry_size];
165
166   // Other entries in the PLT for an executable.
167   static const unsigned char plt_entry[plt_entry_size];
168
169   // The reserved TLSDESC entry in the PLT for an executable.
170   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
171
172   // The .eh_frame unwind information for the PLT.
173   static const int plt_eh_frame_cie_size = 16;
174   static const int plt_eh_frame_fde_size = 32;
175   static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
176   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
177
178   // Set the final size.
179   void
180   set_final_data_size();
181
182   // Write out the PLT data.
183   void
184   do_write(Output_file*);
185
186   // The reloc section.
187   Reloc_section* rel_;
188   // The TLSDESC relocs, if necessary.  These must follow the regular
189   // PLT relocs.
190   Reloc_section* tlsdesc_rel_;
191   // The .got section.
192   Output_data_got<64, false>* got_;
193   // The .got.plt section.
194   Output_data_space* got_plt_;
195   // The number of PLT entries.
196   unsigned int count_;
197   // Offset of the reserved TLSDESC_GOT entry when needed.
198   unsigned int tlsdesc_got_offset_;
199   // List of available regions within the section, for incremental
200   // update links.
201   Free_list free_list_;
202 };
203
204 // The x86_64 target class.
205 // See the ABI at
206 //   http://www.x86-64.org/documentation/abi.pdf
207 // TLS info comes from
208 //   http://people.redhat.com/drepper/tls.pdf
209 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
210
211 class Target_x86_64 : public Sized_target<64, false>
212 {
213  public:
214   // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
215   // uses only Elf64_Rela relocation entries with explicit addends."
216   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
217
218   Target_x86_64()
219     : Sized_target<64, false>(&x86_64_info),
220       got_(NULL), plt_(NULL), got_plt_(NULL), got_tlsdesc_(NULL),
221       global_offset_table_(NULL), rela_dyn_(NULL),
222       copy_relocs_(elfcpp::R_X86_64_COPY), dynbss_(NULL),
223       got_mod_index_offset_(-1U), tlsdesc_reloc_info_(),
224       tls_base_symbol_defined_(false)
225   { }
226
227   // Hook for a new output section.
228   void
229   do_new_output_section(Output_section*) const;
230
231   // Scan the relocations to look for symbol adjustments.
232   void
233   gc_process_relocs(Symbol_table* symtab,
234                     Layout* layout,
235                     Sized_relobj_file<64, false>* object,
236                     unsigned int data_shndx,
237                     unsigned int sh_type,
238                     const unsigned char* prelocs,
239                     size_t reloc_count,
240                     Output_section* output_section,
241                     bool needs_special_offset_handling,
242                     size_t local_symbol_count,
243                     const unsigned char* plocal_symbols);
244
245   // Scan the relocations to look for symbol adjustments.
246   void
247   scan_relocs(Symbol_table* symtab,
248               Layout* layout,
249               Sized_relobj_file<64, false>* object,
250               unsigned int data_shndx,
251               unsigned int sh_type,
252               const unsigned char* prelocs,
253               size_t reloc_count,
254               Output_section* output_section,
255               bool needs_special_offset_handling,
256               size_t local_symbol_count,
257               const unsigned char* plocal_symbols);
258
259   // Finalize the sections.
260   void
261   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
262
263   // Return the value to use for a dynamic which requires special
264   // treatment.
265   uint64_t
266   do_dynsym_value(const Symbol*) const;
267
268   // Relocate a section.
269   void
270   relocate_section(const Relocate_info<64, false>*,
271                    unsigned int sh_type,
272                    const unsigned char* prelocs,
273                    size_t reloc_count,
274                    Output_section* output_section,
275                    bool needs_special_offset_handling,
276                    unsigned char* view,
277                    elfcpp::Elf_types<64>::Elf_Addr view_address,
278                    section_size_type view_size,
279                    const Reloc_symbol_changes*);
280
281   // Scan the relocs during a relocatable link.
282   void
283   scan_relocatable_relocs(Symbol_table* symtab,
284                           Layout* layout,
285                           Sized_relobj_file<64, false>* object,
286                           unsigned int data_shndx,
287                           unsigned int sh_type,
288                           const unsigned char* prelocs,
289                           size_t reloc_count,
290                           Output_section* output_section,
291                           bool needs_special_offset_handling,
292                           size_t local_symbol_count,
293                           const unsigned char* plocal_symbols,
294                           Relocatable_relocs*);
295
296   // Relocate a section during a relocatable link.
297   void
298   relocate_for_relocatable(const Relocate_info<64, false>*,
299                            unsigned int sh_type,
300                            const unsigned char* prelocs,
301                            size_t reloc_count,
302                            Output_section* output_section,
303                            off_t offset_in_output_section,
304                            const Relocatable_relocs*,
305                            unsigned char* view,
306                            elfcpp::Elf_types<64>::Elf_Addr view_address,
307                            section_size_type view_size,
308                            unsigned char* reloc_view,
309                            section_size_type reloc_view_size);
310
311   // Return a string used to fill a code section with nops.
312   std::string
313   do_code_fill(section_size_type length) const;
314
315   // Return whether SYM is defined by the ABI.
316   bool
317   do_is_defined_by_abi(const Symbol* sym) const
318   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
319
320   // Return the symbol index to use for a target specific relocation.
321   // The only target specific relocation is R_X86_64_TLSDESC for a
322   // local symbol, which is an absolute reloc.
323   unsigned int
324   do_reloc_symbol_index(void*, unsigned int r_type) const
325   {
326     gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
327     return 0;
328   }
329
330   // Return the addend to use for a target specific relocation.
331   uint64_t
332   do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
333
334   // Return the PLT section.
335   Output_data*
336   do_plt_section_for_global(const Symbol*) const
337   { return this->plt_section(); }
338
339   Output_data*
340   do_plt_section_for_local(const Relobj*, unsigned int) const
341   { return this->plt_section(); }
342
343   // This function should be defined in targets that can use relocation
344   // types to determine (implemented in local_reloc_may_be_function_pointer
345   // and global_reloc_may_be_function_pointer)
346   // if a function's pointer is taken.  ICF uses this in safe mode to only
347   // fold those functions whose pointer is defintely not taken.  For x86_64
348   // pie binaries, safe ICF cannot be done by looking at relocation types.
349   bool
350   do_can_check_for_function_pointers() const
351   { return !parameters->options().pie(); }
352
353   // Adjust -fsplit-stack code which calls non-split-stack code.
354   void
355   do_calls_non_split(Relobj* object, unsigned int shndx,
356                      section_offset_type fnoffset, section_size_type fnsize,
357                      unsigned char* view, section_size_type view_size,
358                      std::string* from, std::string* to) const;
359
360   // Return the size of the GOT section.
361   section_size_type
362   got_size() const
363   {
364     gold_assert(this->got_ != NULL);
365     return this->got_->data_size();
366   }
367
368   // Return the number of entries in the GOT.
369   unsigned int
370   got_entry_count() const
371   {
372     if (this->got_ == NULL)
373       return 0;
374     return this->got_size() / 8;
375   }
376
377   // Return the number of entries in the PLT.
378   unsigned int
379   plt_entry_count() const;
380
381   // Return the offset of the first non-reserved PLT entry.
382   unsigned int
383   first_plt_entry_offset() const;
384
385   // Return the size of each PLT entry.
386   unsigned int
387   plt_entry_size() const;
388
389   // Create the GOT section for an incremental update.
390   Output_data_got<64, false>*
391   init_got_plt_for_update(Symbol_table* symtab,
392                           Layout* layout,
393                           unsigned int got_count,
394                           unsigned int plt_count);
395
396   // Reserve a GOT entry for a local symbol, and regenerate any
397   // necessary dynamic relocations.
398   void
399   reserve_local_got_entry(unsigned int got_index,
400                           Sized_relobj<64, false>* obj,
401                           unsigned int r_sym,
402                           unsigned int got_type);
403
404   // Reserve a GOT entry for a global symbol, and regenerate any
405   // necessary dynamic relocations.
406   void
407   reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
408                            unsigned int got_type);
409
410   // Register an existing PLT entry for a global symbol.
411   void
412   register_global_plt_entry(unsigned int plt_index, Symbol* gsym);
413
414   // Force a COPY relocation for a given symbol.
415   void
416   emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
417
418   // Apply an incremental relocation.
419   void
420   apply_relocation(const Relocate_info<64, false>* relinfo,
421                    elfcpp::Elf_types<64>::Elf_Addr r_offset,
422                    unsigned int r_type,
423                    elfcpp::Elf_types<64>::Elf_Swxword r_addend,
424                    const Symbol* gsym,
425                    unsigned char* view,
426                    elfcpp::Elf_types<64>::Elf_Addr address,
427                    section_size_type view_size);
428
429   // Add a new reloc argument, returning the index in the vector.
430   size_t
431   add_tlsdesc_info(Sized_relobj_file<64, false>* object, unsigned int r_sym)
432   {
433     this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
434     return this->tlsdesc_reloc_info_.size() - 1;
435   }
436
437  private:
438   // The class which scans relocations.
439   class Scan
440   {
441   public:
442     Scan()
443       : issued_non_pic_error_(false)
444     { }
445
446     static inline int
447     get_reference_flags(unsigned int r_type);
448
449     inline void
450     local(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
451           Sized_relobj_file<64, false>* object,
452           unsigned int data_shndx,
453           Output_section* output_section,
454           const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
455           const elfcpp::Sym<64, false>& lsym);
456
457     inline void
458     global(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
459            Sized_relobj_file<64, false>* object,
460            unsigned int data_shndx,
461            Output_section* output_section,
462            const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
463            Symbol* gsym);
464
465     inline bool
466     local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
467                                         Target_x86_64* target,
468                                         Sized_relobj_file<64, false>* object,
469                                         unsigned int data_shndx,
470                                         Output_section* output_section,
471                                         const elfcpp::Rela<64, false>& reloc,
472                                         unsigned int r_type,
473                                         const elfcpp::Sym<64, false>& lsym);
474
475     inline bool
476     global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
477                                          Target_x86_64* target,
478                                          Sized_relobj_file<64, false>* object,
479                                          unsigned int data_shndx,
480                                          Output_section* output_section,
481                                          const elfcpp::Rela<64, false>& reloc,
482                                          unsigned int r_type,
483                                          Symbol* gsym);
484
485   private:
486     static void
487     unsupported_reloc_local(Sized_relobj_file<64, false>*, unsigned int r_type);
488
489     static void
490     unsupported_reloc_global(Sized_relobj_file<64, false>*, unsigned int r_type,
491                              Symbol*);
492
493     void
494     check_non_pic(Relobj*, unsigned int r_type, Symbol*);
495
496     inline bool
497     possible_function_pointer_reloc(unsigned int r_type);
498
499     bool
500     reloc_needs_plt_for_ifunc(Sized_relobj_file<64, false>*,
501                               unsigned int r_type);
502
503     // Whether we have issued an error about a non-PIC compilation.
504     bool issued_non_pic_error_;
505   };
506
507   // The class which implements relocation.
508   class Relocate
509   {
510    public:
511     Relocate()
512       : skip_call_tls_get_addr_(false)
513     { }
514
515     ~Relocate()
516     {
517       if (this->skip_call_tls_get_addr_)
518         {
519           // FIXME: This needs to specify the location somehow.
520           gold_error(_("missing expected TLS relocation"));
521         }
522     }
523
524     // Do a relocation.  Return false if the caller should not issue
525     // any warnings about this relocation.
526     inline bool
527     relocate(const Relocate_info<64, false>*, Target_x86_64*, Output_section*,
528              size_t relnum, const elfcpp::Rela<64, false>&,
529              unsigned int r_type, const Sized_symbol<64>*,
530              const Symbol_value<64>*,
531              unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
532              section_size_type);
533
534    private:
535     // Do a TLS relocation.
536     inline void
537     relocate_tls(const Relocate_info<64, false>*, Target_x86_64*,
538                  size_t relnum, const elfcpp::Rela<64, false>&,
539                  unsigned int r_type, const Sized_symbol<64>*,
540                  const Symbol_value<64>*,
541                  unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
542                  section_size_type);
543
544     // Do a TLS General-Dynamic to Initial-Exec transition.
545     inline void
546     tls_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
547                  Output_segment* tls_segment,
548                  const elfcpp::Rela<64, false>&, unsigned int r_type,
549                  elfcpp::Elf_types<64>::Elf_Addr value,
550                  unsigned char* view,
551                  elfcpp::Elf_types<64>::Elf_Addr,
552                  section_size_type view_size);
553
554     // Do a TLS General-Dynamic to Local-Exec transition.
555     inline void
556     tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
557                  Output_segment* tls_segment,
558                  const elfcpp::Rela<64, false>&, unsigned int r_type,
559                  elfcpp::Elf_types<64>::Elf_Addr value,
560                  unsigned char* view,
561                  section_size_type view_size);
562
563     // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
564     inline void
565     tls_desc_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
566                       Output_segment* tls_segment,
567                       const elfcpp::Rela<64, false>&, unsigned int r_type,
568                       elfcpp::Elf_types<64>::Elf_Addr value,
569                       unsigned char* view,
570                       elfcpp::Elf_types<64>::Elf_Addr,
571                       section_size_type view_size);
572
573     // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
574     inline void
575     tls_desc_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
576                       Output_segment* tls_segment,
577                       const elfcpp::Rela<64, false>&, unsigned int r_type,
578                       elfcpp::Elf_types<64>::Elf_Addr value,
579                       unsigned char* view,
580                       section_size_type view_size);
581
582     // Do a TLS Local-Dynamic to Local-Exec transition.
583     inline void
584     tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
585                  Output_segment* tls_segment,
586                  const elfcpp::Rela<64, false>&, unsigned int r_type,
587                  elfcpp::Elf_types<64>::Elf_Addr value,
588                  unsigned char* view,
589                  section_size_type view_size);
590
591     // Do a TLS Initial-Exec to Local-Exec transition.
592     static inline void
593     tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
594                  Output_segment* tls_segment,
595                  const elfcpp::Rela<64, false>&, unsigned int r_type,
596                  elfcpp::Elf_types<64>::Elf_Addr value,
597                  unsigned char* view,
598                  section_size_type view_size);
599
600     // This is set if we should skip the next reloc, which should be a
601     // PLT32 reloc against ___tls_get_addr.
602     bool skip_call_tls_get_addr_;
603   };
604
605   // A class which returns the size required for a relocation type,
606   // used while scanning relocs during a relocatable link.
607   class Relocatable_size_for_reloc
608   {
609    public:
610     unsigned int
611     get_size_for_reloc(unsigned int, Relobj*);
612   };
613
614   // Adjust TLS relocation type based on the options and whether this
615   // is a local symbol.
616   static tls::Tls_optimization
617   optimize_tls_reloc(bool is_final, int r_type);
618
619   // Get the GOT section, creating it if necessary.
620   Output_data_got<64, false>*
621   got_section(Symbol_table*, Layout*);
622
623   // Get the GOT PLT section.
624   Output_data_space*
625   got_plt_section() const
626   {
627     gold_assert(this->got_plt_ != NULL);
628     return this->got_plt_;
629   }
630
631   // Get the GOT section for TLSDESC entries.
632   Output_data_got<64, false>*
633   got_tlsdesc_section() const
634   {
635     gold_assert(this->got_tlsdesc_ != NULL);
636     return this->got_tlsdesc_;
637   }
638
639   // Create the PLT section.
640   void
641   make_plt_section(Symbol_table* symtab, Layout* layout);
642
643   // Create a PLT entry for a global symbol.
644   void
645   make_plt_entry(Symbol_table*, Layout*, Symbol*);
646
647   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
648   void
649   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
650                              Sized_relobj_file<64, false>* relobj,
651                              unsigned int local_sym_index);
652
653   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
654   void
655   define_tls_base_symbol(Symbol_table*, Layout*);
656
657   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
658   void
659   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
660
661   // Create a GOT entry for the TLS module index.
662   unsigned int
663   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
664                       Sized_relobj_file<64, false>* object);
665
666   // Get the PLT section.
667   Output_data_plt_x86_64*
668   plt_section() const
669   {
670     gold_assert(this->plt_ != NULL);
671     return this->plt_;
672   }
673
674   // Get the dynamic reloc section, creating it if necessary.
675   Reloc_section*
676   rela_dyn_section(Layout*);
677
678   // Get the section to use for TLSDESC relocations.
679   Reloc_section*
680   rela_tlsdesc_section(Layout*) const;
681
682   // Add a potential copy relocation.
683   void
684   copy_reloc(Symbol_table* symtab, Layout* layout,
685              Sized_relobj_file<64, false>* object,
686              unsigned int shndx, Output_section* output_section,
687              Symbol* sym, const elfcpp::Rela<64, false>& reloc)
688   {
689     this->copy_relocs_.copy_reloc(symtab, layout,
690                                   symtab->get_sized_symbol<64>(sym),
691                                   object, shndx, output_section,
692                                   reloc, this->rela_dyn_section(layout));
693   }
694
695   // Information about this specific target which we pass to the
696   // general Target structure.
697   static const Target::Target_info x86_64_info;
698
699   // The types of GOT entries needed for this platform.
700   // These values are exposed to the ABI in an incremental link.
701   // Do not renumber existing values without changing the version
702   // number of the .gnu_incremental_inputs section.
703   enum Got_type
704   {
705     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
706     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
707     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
708     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
709   };
710
711   // This type is used as the argument to the target specific
712   // relocation routines.  The only target specific reloc is
713   // R_X86_64_TLSDESC against a local symbol.
714   struct Tlsdesc_info
715   {
716     Tlsdesc_info(Sized_relobj_file<64, false>* a_object, unsigned int a_r_sym)
717       : object(a_object), r_sym(a_r_sym)
718     { }
719
720     // The object in which the local symbol is defined.
721     Sized_relobj_file<64, false>* object;
722     // The local symbol index in the object.
723     unsigned int r_sym;
724   };
725
726   // The GOT section.
727   Output_data_got<64, false>* got_;
728   // The PLT section.
729   Output_data_plt_x86_64* plt_;
730   // The GOT PLT section.
731   Output_data_space* got_plt_;
732   // The GOT section for TLSDESC relocations.
733   Output_data_got<64, false>* got_tlsdesc_;
734   // The _GLOBAL_OFFSET_TABLE_ symbol.
735   Symbol* global_offset_table_;
736   // The dynamic reloc section.
737   Reloc_section* rela_dyn_;
738   // Relocs saved to avoid a COPY reloc.
739   Copy_relocs<elfcpp::SHT_RELA, 64, false> copy_relocs_;
740   // Space for variables copied with a COPY reloc.
741   Output_data_space* dynbss_;
742   // Offset of the GOT entry for the TLS module index.
743   unsigned int got_mod_index_offset_;
744   // We handle R_X86_64_TLSDESC against a local symbol as a target
745   // specific relocation.  Here we store the object and local symbol
746   // index for the relocation.
747   std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
748   // True if the _TLS_MODULE_BASE_ symbol has been defined.
749   bool tls_base_symbol_defined_;
750 };
751
752 const Target::Target_info Target_x86_64::x86_64_info =
753 {
754   64,                   // size
755   false,                // is_big_endian
756   elfcpp::EM_X86_64,    // machine_code
757   false,                // has_make_symbol
758   false,                // has_resolve
759   true,                 // has_code_fill
760   true,                 // is_default_stack_executable
761   true,                 // can_icf_inline_merge_sections
762   '\0',                 // wrap_char
763   "/lib/ld64.so.1",     // program interpreter
764   0x400000,             // default_text_segment_address
765   0x1000,               // abi_pagesize (overridable by -z max-page-size)
766   0x1000,               // common_pagesize (overridable by -z common-page-size)
767   elfcpp::SHN_UNDEF,    // small_common_shndx
768   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
769   0,                    // small_common_section_flags
770   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
771   NULL,                 // attributes_section
772   NULL                  // attributes_vendor
773 };
774
775 // This is called when a new output section is created.  This is where
776 // we handle the SHF_X86_64_LARGE.
777
778 void
779 Target_x86_64::do_new_output_section(Output_section* os) const
780 {
781   if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
782     os->set_is_large_section();
783 }
784
785 // Get the GOT section, creating it if necessary.
786
787 Output_data_got<64, false>*
788 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
789 {
790   if (this->got_ == NULL)
791     {
792       gold_assert(symtab != NULL && layout != NULL);
793
794       this->got_ = new Output_data_got<64, false>();
795
796       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
797                                       (elfcpp::SHF_ALLOC
798                                        | elfcpp::SHF_WRITE),
799                                       this->got_, ORDER_RELRO_LAST,
800                                       true);
801
802       this->got_plt_ = new Output_data_space(8, "** GOT PLT");
803       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
804                                       (elfcpp::SHF_ALLOC
805                                        | elfcpp::SHF_WRITE),
806                                       this->got_plt_, ORDER_NON_RELRO_FIRST,
807                                       false);
808
809       // The first three entries are reserved.
810       this->got_plt_->set_current_data_size(3 * 8);
811
812       // Those bytes can go into the relro segment.
813       layout->increase_relro(3 * 8);
814
815       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
816       this->global_offset_table_ =
817         symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
818                                       Symbol_table::PREDEFINED,
819                                       this->got_plt_,
820                                       0, 0, elfcpp::STT_OBJECT,
821                                       elfcpp::STB_LOCAL,
822                                       elfcpp::STV_HIDDEN, 0,
823                                       false, false);
824
825       // If there are any TLSDESC relocations, they get GOT entries in
826       // .got.plt after the jump slot entries.
827       this->got_tlsdesc_ = new Output_data_got<64, false>();
828       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
829                                       (elfcpp::SHF_ALLOC
830                                        | elfcpp::SHF_WRITE),
831                                       this->got_tlsdesc_,
832                                       ORDER_NON_RELRO_FIRST, false);
833     }
834
835   return this->got_;
836 }
837
838 // Get the dynamic reloc section, creating it if necessary.
839
840 Target_x86_64::Reloc_section*
841 Target_x86_64::rela_dyn_section(Layout* layout)
842 {
843   if (this->rela_dyn_ == NULL)
844     {
845       gold_assert(layout != NULL);
846       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
847       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
848                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
849                                       ORDER_DYNAMIC_RELOCS, false);
850     }
851   return this->rela_dyn_;
852 }
853
854 // Initialize the PLT section.
855
856 void
857 Output_data_plt_x86_64::init(Symbol_table* symtab, Layout* layout)
858 {
859   this->rel_ = new Reloc_section(false);
860   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
861                                   elfcpp::SHF_ALLOC, this->rel_,
862                                   ORDER_DYNAMIC_PLT_RELOCS, false);
863
864   if (parameters->doing_static_link())
865     {
866       // A statically linked executable will only have a .rela.plt
867       // section to hold R_X86_64_IRELATIVE relocs for STT_GNU_IFUNC
868       // symbols.  The library will use these symbols to locate the
869       // IRELATIVE relocs at program startup time.
870       symtab->define_in_output_data("__rela_iplt_start", NULL,
871                                     Symbol_table::PREDEFINED,
872                                     this->rel_, 0, 0, elfcpp::STT_NOTYPE,
873                                     elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
874                                     0, false, true);
875       symtab->define_in_output_data("__rela_iplt_end", NULL,
876                                     Symbol_table::PREDEFINED,
877                                     this->rel_, 0, 0, elfcpp::STT_NOTYPE,
878                                     elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
879                                     0, true, true);
880     }
881
882   // Add unwind information if requested.
883   if (parameters->options().ld_generated_unwind_info())
884     layout->add_eh_frame_for_plt(this, plt_eh_frame_cie, plt_eh_frame_cie_size,
885                                  plt_eh_frame_fde, plt_eh_frame_fde_size);
886 }
887
888 void
889 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
890 {
891   os->set_entsize(plt_entry_size);
892 }
893
894 // Add an entry to the PLT.
895
896 void
897 Output_data_plt_x86_64::add_entry(Symbol* gsym)
898 {
899   gold_assert(!gsym->has_plt_offset());
900
901   unsigned int plt_index;
902   off_t plt_offset;
903   section_offset_type got_offset;
904
905   if (!this->is_data_size_valid())
906     {
907       // Note that when setting the PLT offset we skip the initial
908       // reserved PLT entry.
909       plt_index = this->count_ + 1;
910       plt_offset = plt_index * plt_entry_size;
911
912       ++this->count_;
913
914       got_offset = (plt_index - 1 + 3) * 8;
915       gold_assert(got_offset == this->got_plt_->current_data_size());
916
917       // Every PLT entry needs a GOT entry which points back to the PLT
918       // entry (this will be changed by the dynamic linker, normally
919       // lazily when the function is called).
920       this->got_plt_->set_current_data_size(got_offset + 8);
921     }
922   else
923     {
924       // For incremental updates, find an available slot.
925       plt_offset = this->free_list_.allocate(plt_entry_size, plt_entry_size, 0);
926       if (plt_offset == -1)
927         gold_fallback(_("out of patch space (PLT);"
928                         " relink with --incremental-full"));
929
930       // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
931       // can be calculated from the PLT index, adjusting for the three
932       // reserved entries at the beginning of the GOT.
933       plt_index = plt_offset / plt_entry_size - 1;
934       got_offset = (plt_index - 1 + 3) * 8;
935     }
936
937   gsym->set_plt_offset(plt_offset);
938
939   // Every PLT entry needs a reloc.
940   this->add_relocation(gsym, got_offset);
941
942   // Note that we don't need to save the symbol.  The contents of the
943   // PLT are independent of which symbols are used.  The symbols only
944   // appear in the relocations.
945 }
946
947 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
948 // the PLT offset.
949
950 unsigned int
951 Output_data_plt_x86_64::add_local_ifunc_entry(
952     Sized_relobj_file<64, false>* relobj,
953     unsigned int local_sym_index)
954 {
955   unsigned int plt_offset = (this->count_ + 1) * plt_entry_size;
956   ++this->count_;
957
958   section_offset_type got_offset = this->got_plt_->current_data_size();
959
960   // Every PLT entry needs a GOT entry which points back to the PLT
961   // entry.
962   this->got_plt_->set_current_data_size(got_offset + 8);
963
964   // Every PLT entry needs a reloc.
965   this->rel_->add_symbolless_local_addend(relobj, local_sym_index,
966                                           elfcpp::R_X86_64_IRELATIVE,
967                                           this->got_plt_, got_offset, 0);
968
969   return plt_offset;
970 }
971
972 // Add the relocation for a PLT entry.
973
974 void
975 Output_data_plt_x86_64::add_relocation(Symbol* gsym, unsigned int got_offset)
976 {
977   if (gsym->type() == elfcpp::STT_GNU_IFUNC
978       && gsym->can_use_relative_reloc(false))
979     this->rel_->add_symbolless_global_addend(gsym, elfcpp::R_X86_64_IRELATIVE,
980                                              this->got_plt_, got_offset, 0);
981   else
982     {
983       gsym->set_needs_dynsym_entry();
984       this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
985                              got_offset, 0);
986     }
987 }
988
989 // Return where the TLSDESC relocations should go, creating it if
990 // necessary.  These follow the JUMP_SLOT relocations.
991
992 Output_data_plt_x86_64::Reloc_section*
993 Output_data_plt_x86_64::rela_tlsdesc(Layout* layout)
994 {
995   if (this->tlsdesc_rel_ == NULL)
996     {
997       this->tlsdesc_rel_ = new Reloc_section(false);
998       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
999                                       elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
1000                                       ORDER_DYNAMIC_PLT_RELOCS, false);
1001       gold_assert(this->tlsdesc_rel_->output_section() ==
1002                   this->rel_->output_section());
1003     }
1004   return this->tlsdesc_rel_;
1005 }
1006
1007 // Set the final size.
1008 void
1009 Output_data_plt_x86_64::set_final_data_size()
1010 {
1011   unsigned int count = this->count_;
1012   if (this->has_tlsdesc_entry())
1013     ++count;
1014   this->set_data_size((count + 1) * plt_entry_size);
1015 }
1016
1017 // The first entry in the PLT for an executable.
1018
1019 const unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
1020 {
1021   // From AMD64 ABI Draft 0.98, page 76
1022   0xff, 0x35,   // pushq contents of memory address
1023   0, 0, 0, 0,   // replaced with address of .got + 8
1024   0xff, 0x25,   // jmp indirect
1025   0, 0, 0, 0,   // replaced with address of .got + 16
1026   0x90, 0x90, 0x90, 0x90   // noop (x4)
1027 };
1028
1029 // Subsequent entries in the PLT for an executable.
1030
1031 const unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
1032 {
1033   // From AMD64 ABI Draft 0.98, page 76
1034   0xff, 0x25,   // jmpq indirect
1035   0, 0, 0, 0,   // replaced with address of symbol in .got
1036   0x68,         // pushq immediate
1037   0, 0, 0, 0,   // replaced with offset into relocation table
1038   0xe9,         // jmpq relative
1039   0, 0, 0, 0    // replaced with offset to start of .plt
1040 };
1041
1042 // The reserved TLSDESC entry in the PLT for an executable.
1043
1044 const unsigned char Output_data_plt_x86_64::tlsdesc_plt_entry[plt_entry_size] =
1045 {
1046   // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
1047   // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
1048   0xff, 0x35,   // pushq x(%rip)
1049   0, 0, 0, 0,   // replaced with address of linkmap GOT entry (at PLTGOT + 8)
1050   0xff, 0x25,   // jmpq *y(%rip)
1051   0, 0, 0, 0,   // replaced with offset of reserved TLSDESC_GOT entry
1052   0x0f, 0x1f,   // nop
1053   0x40, 0
1054 };
1055
1056 // The .eh_frame unwind information for the PLT.
1057
1058 const unsigned char 
1059 Output_data_plt_x86_64::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1060 {
1061   1,                            // CIE version.
1062   'z',                          // Augmentation: augmentation size included.
1063   'R',                          // Augmentation: FDE encoding included.
1064   '\0',                         // End of augmentation string.
1065   1,                            // Code alignment factor.
1066   0x78,                         // Data alignment factor.
1067   16,                           // Return address column.
1068   1,                            // Augmentation size.
1069   (elfcpp::DW_EH_PE_pcrel       // FDE encoding.
1070    | elfcpp::DW_EH_PE_sdata4),
1071   elfcpp::DW_CFA_def_cfa, 7, 8, // DW_CFA_def_cfa: r7 (rsp) ofs 8.
1072   elfcpp::DW_CFA_offset + 16, 1,// DW_CFA_offset: r16 (rip) at cfa-8.
1073   elfcpp::DW_CFA_nop,           // Align to 16 bytes.
1074   elfcpp::DW_CFA_nop
1075 };
1076
1077 const unsigned char
1078 Output_data_plt_x86_64::plt_eh_frame_fde[plt_eh_frame_fde_size] =
1079 {
1080   0, 0, 0, 0,                           // Replaced with offset to .plt.
1081   0, 0, 0, 0,                           // Replaced with size of .plt.
1082   0,                                    // Augmentation size.
1083   elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
1084   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
1085   elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
1086   elfcpp::DW_CFA_advance_loc + 10,      // Advance 10 to __PLT__ + 16.
1087   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
1088   11,                                   // Block length.
1089   elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
1090   elfcpp::DW_OP_breg16, 0,              // Push %rip.
1091   elfcpp::DW_OP_lit15,                  // Push 0xf.
1092   elfcpp::DW_OP_and,                    // & (%rip & 0xf).
1093   elfcpp::DW_OP_lit11,                  // Push 0xb.
1094   elfcpp::DW_OP_ge,                     // >= ((%rip & 0xf) >= 0xb)
1095   elfcpp::DW_OP_lit3,                   // Push 3.
1096   elfcpp::DW_OP_shl,                    // << (((%rip & 0xf) >= 0xb) << 3)
1097   elfcpp::DW_OP_plus,                   // + ((((%rip&0xf)>=0xb)<<3)+%rsp+8
1098   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
1099   elfcpp::DW_CFA_nop,
1100   elfcpp::DW_CFA_nop,
1101   elfcpp::DW_CFA_nop
1102 };
1103
1104 // Write out the PLT.  This uses the hand-coded instructions above,
1105 // and adjusts them as needed.  This is specified by the AMD64 ABI.
1106
1107 void
1108 Output_data_plt_x86_64::do_write(Output_file* of)
1109 {
1110   const off_t offset = this->offset();
1111   const section_size_type oview_size =
1112     convert_to_section_size_type(this->data_size());
1113   unsigned char* const oview = of->get_output_view(offset, oview_size);
1114
1115   const off_t got_file_offset = this->got_plt_->offset();
1116   const section_size_type got_size =
1117     convert_to_section_size_type(this->got_plt_->data_size());
1118   unsigned char* const got_view = of->get_output_view(got_file_offset,
1119                                                       got_size);
1120
1121   unsigned char* pov = oview;
1122
1123   // The base address of the .plt section.
1124   elfcpp::Elf_types<64>::Elf_Addr plt_address = this->address();
1125   // The base address of the .got section.
1126   elfcpp::Elf_types<64>::Elf_Addr got_base = this->got_->address();
1127   // The base address of the PLT portion of the .got section,
1128   // which is where the GOT pointer will point, and where the
1129   // three reserved GOT entries are located.
1130   elfcpp::Elf_types<64>::Elf_Addr got_address = this->got_plt_->address();
1131
1132   memcpy(pov, first_plt_entry, plt_entry_size);
1133   // We do a jmp relative to the PC at the end of this instruction.
1134   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1135                                               (got_address + 8
1136                                                - (plt_address + 6)));
1137   elfcpp::Swap<32, false>::writeval(pov + 8,
1138                                     (got_address + 16
1139                                      - (plt_address + 12)));
1140   pov += plt_entry_size;
1141
1142   unsigned char* got_pov = got_view;
1143
1144   memset(got_pov, 0, 24);
1145   got_pov += 24;
1146
1147   unsigned int plt_offset = plt_entry_size;
1148   unsigned int got_offset = 24;
1149   const unsigned int count = this->count_;
1150   for (unsigned int plt_index = 0;
1151        plt_index < count;
1152        ++plt_index,
1153          pov += plt_entry_size,
1154          got_pov += 8,
1155          plt_offset += plt_entry_size,
1156          got_offset += 8)
1157     {
1158       // Set and adjust the PLT entry itself.
1159       memcpy(pov, plt_entry, plt_entry_size);
1160       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1161                                                   (got_address + got_offset
1162                                                    - (plt_address + plt_offset
1163                                                       + 6)));
1164
1165       elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
1166       elfcpp::Swap<32, false>::writeval(pov + 12,
1167                                         - (plt_offset + plt_entry_size));
1168
1169       // Set the entry in the GOT.
1170       elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
1171     }
1172
1173   if (this->has_tlsdesc_entry())
1174     {
1175       // Set and adjust the reserved TLSDESC PLT entry.
1176       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
1177       memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
1178       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1179                                                   (got_address + 8
1180                                                    - (plt_address + plt_offset
1181                                                       + 6)));
1182       elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
1183                                                   (got_base
1184                                                    + tlsdesc_got_offset
1185                                                    - (plt_address + plt_offset
1186                                                       + 12)));
1187       pov += plt_entry_size;
1188     }
1189
1190   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1191   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1192
1193   of->write_output_view(offset, oview_size, oview);
1194   of->write_output_view(got_file_offset, got_size, got_view);
1195 }
1196
1197 // Create the PLT section.
1198
1199 void
1200 Target_x86_64::make_plt_section(Symbol_table* symtab, Layout* layout)
1201 {
1202   if (this->plt_ == NULL)
1203     {
1204       // Create the GOT sections first.
1205       this->got_section(symtab, layout);
1206
1207       this->plt_ = new Output_data_plt_x86_64(symtab, layout, this->got_,
1208                                               this->got_plt_);
1209       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1210                                       (elfcpp::SHF_ALLOC
1211                                        | elfcpp::SHF_EXECINSTR),
1212                                       this->plt_, ORDER_PLT, false);
1213
1214       // Make the sh_info field of .rela.plt point to .plt.
1215       Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1216       rela_plt_os->set_info_section(this->plt_->output_section());
1217     }
1218 }
1219
1220 // Return the section for TLSDESC relocations.
1221
1222 Target_x86_64::Reloc_section*
1223 Target_x86_64::rela_tlsdesc_section(Layout* layout) const
1224 {
1225   return this->plt_section()->rela_tlsdesc(layout);
1226 }
1227
1228 // Create a PLT entry for a global symbol.
1229
1230 void
1231 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
1232                               Symbol* gsym)
1233 {
1234   if (gsym->has_plt_offset())
1235     return;
1236
1237   if (this->plt_ == NULL)
1238     this->make_plt_section(symtab, layout);
1239
1240   this->plt_->add_entry(gsym);
1241 }
1242
1243 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
1244
1245 void
1246 Target_x86_64::make_local_ifunc_plt_entry(Symbol_table* symtab, Layout* layout,
1247                                           Sized_relobj_file<64, false>* relobj,
1248                                           unsigned int local_sym_index)
1249 {
1250   if (relobj->local_has_plt_offset(local_sym_index))
1251     return;
1252   if (this->plt_ == NULL)
1253     this->make_plt_section(symtab, layout);
1254   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(relobj,
1255                                                               local_sym_index);
1256   relobj->set_local_plt_offset(local_sym_index, plt_offset);
1257 }
1258
1259 // Return the number of entries in the PLT.
1260
1261 unsigned int
1262 Target_x86_64::plt_entry_count() const
1263 {
1264   if (this->plt_ == NULL)
1265     return 0;
1266   return this->plt_->entry_count();
1267 }
1268
1269 // Return the offset of the first non-reserved PLT entry.
1270
1271 unsigned int
1272 Target_x86_64::first_plt_entry_offset() const
1273 {
1274   return Output_data_plt_x86_64::first_plt_entry_offset();
1275 }
1276
1277 // Return the size of each PLT entry.
1278
1279 unsigned int
1280 Target_x86_64::plt_entry_size() const
1281 {
1282   return Output_data_plt_x86_64::get_plt_entry_size();
1283 }
1284
1285 // Create the GOT and PLT sections for an incremental update.
1286
1287 Output_data_got<64, false>*
1288 Target_x86_64::init_got_plt_for_update(Symbol_table* symtab,
1289                                        Layout* layout,
1290                                        unsigned int got_count,
1291                                        unsigned int plt_count)
1292 {
1293   gold_assert(this->got_ == NULL);
1294
1295   this->got_ = new Output_data_got<64, false>(got_count * 8);
1296   layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1297                                   (elfcpp::SHF_ALLOC
1298                                    | elfcpp::SHF_WRITE),
1299                                   this->got_, ORDER_RELRO_LAST,
1300                                   true);
1301
1302   // Add the three reserved entries.
1303   this->got_plt_ = new Output_data_space((plt_count + 3) * 8, 8, "** GOT PLT");
1304   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1305                                   (elfcpp::SHF_ALLOC
1306                                    | elfcpp::SHF_WRITE),
1307                                   this->got_plt_, ORDER_NON_RELRO_FIRST,
1308                                   false);
1309
1310   // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1311   this->global_offset_table_ =
1312     symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1313                                   Symbol_table::PREDEFINED,
1314                                   this->got_plt_,
1315                                   0, 0, elfcpp::STT_OBJECT,
1316                                   elfcpp::STB_LOCAL,
1317                                   elfcpp::STV_HIDDEN, 0,
1318                                   false, false);
1319
1320   // If there are any TLSDESC relocations, they get GOT entries in
1321   // .got.plt after the jump slot entries.
1322   // FIXME: Get the count for TLSDESC entries.
1323   this->got_tlsdesc_ = new Output_data_got<64, false>(0);
1324   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1325                                   elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1326                                   this->got_tlsdesc_,
1327                                   ORDER_NON_RELRO_FIRST, false);
1328
1329   // Create the PLT section.
1330   this->plt_ = new Output_data_plt_x86_64(symtab, layout, this->got_,
1331                                           this->got_plt_, plt_count);
1332   layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1333                                   elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
1334                                   this->plt_, ORDER_PLT, false);
1335
1336   // Make the sh_info field of .rela.plt point to .plt.
1337   Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1338   rela_plt_os->set_info_section(this->plt_->output_section());
1339
1340   // Create the rela_dyn section.
1341   this->rela_dyn_section(layout);
1342
1343   return this->got_;
1344 }
1345
1346 // Reserve a GOT entry for a local symbol, and regenerate any
1347 // necessary dynamic relocations.
1348
1349 void
1350 Target_x86_64::reserve_local_got_entry(
1351     unsigned int got_index,
1352     Sized_relobj<64, false>* obj,
1353     unsigned int r_sym,
1354     unsigned int got_type)
1355 {
1356   unsigned int got_offset = got_index * 8;
1357   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1358
1359   this->got_->reserve_local(got_index, obj, r_sym, got_type);
1360   switch (got_type)
1361     {
1362     case GOT_TYPE_STANDARD:
1363       if (parameters->options().output_is_position_independent())
1364         rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_X86_64_RELATIVE,
1365                                      this->got_, got_offset, 0);
1366       break;
1367     case GOT_TYPE_TLS_OFFSET:
1368       rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_TPOFF64,
1369                           this->got_, got_offset, 0);
1370       break;
1371     case GOT_TYPE_TLS_PAIR:
1372       this->got_->reserve_slot(got_index + 1);
1373       rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_DTPMOD64,
1374                           this->got_, got_offset, 0);
1375       break;
1376     case GOT_TYPE_TLS_DESC:
1377       gold_fatal(_("TLS_DESC not yet supported for incremental linking"));
1378       // this->got_->reserve_slot(got_index + 1);
1379       // rela_dyn->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
1380       //                               this->got_, got_offset, 0);
1381       break;
1382     default:
1383       gold_unreachable();
1384     }
1385 }
1386
1387 // Reserve a GOT entry for a global symbol, and regenerate any
1388 // necessary dynamic relocations.
1389
1390 void
1391 Target_x86_64::reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
1392                                         unsigned int got_type)
1393 {
1394   unsigned int got_offset = got_index * 8;
1395   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1396
1397   this->got_->reserve_global(got_index, gsym, got_type);
1398   switch (got_type)
1399     {
1400     case GOT_TYPE_STANDARD:
1401       if (!gsym->final_value_is_known())
1402         {
1403           if (gsym->is_from_dynobj()
1404               || gsym->is_undefined()
1405               || gsym->is_preemptible()
1406               || gsym->type() == elfcpp::STT_GNU_IFUNC)
1407             rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT,
1408                                  this->got_, got_offset, 0);
1409           else
1410             rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1411                                           this->got_, got_offset, 0);
1412         }
1413       break;
1414     case GOT_TYPE_TLS_OFFSET:
1415       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TPOFF64,
1416                                     this->got_, got_offset, 0);
1417       break;
1418     case GOT_TYPE_TLS_PAIR:
1419       this->got_->reserve_slot(got_index + 1);
1420       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPMOD64,
1421                                     this->got_, got_offset, 0);
1422       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPOFF64,
1423                                     this->got_, got_offset + 8, 0);
1424       break;
1425     case GOT_TYPE_TLS_DESC:
1426       this->got_->reserve_slot(got_index + 1);
1427       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TLSDESC,
1428                                     this->got_, got_offset, 0);
1429       break;
1430     default:
1431       gold_unreachable();
1432     }
1433 }
1434
1435 // Register an existing PLT entry for a global symbol.
1436
1437 void
1438 Target_x86_64::register_global_plt_entry(unsigned int plt_index,
1439                                          Symbol* gsym)
1440 {
1441   gold_assert(this->plt_ != NULL);
1442   gold_assert(!gsym->has_plt_offset());
1443
1444   this->plt_->reserve_slot(plt_index);
1445
1446   gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
1447
1448   unsigned int got_offset = (plt_index + 3) * 8;
1449   this->plt_->add_relocation(gsym, got_offset);
1450 }
1451
1452 // Force a COPY relocation for a given symbol.
1453
1454 void
1455 Target_x86_64::emit_copy_reloc(
1456     Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
1457 {
1458   this->copy_relocs_.emit_copy_reloc(symtab,
1459                                      symtab->get_sized_symbol<64>(sym),
1460                                      os,
1461                                      offset,
1462                                      this->rela_dyn_section(NULL));
1463 }
1464
1465 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
1466
1467 void
1468 Target_x86_64::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
1469 {
1470   if (this->tls_base_symbol_defined_)
1471     return;
1472
1473   Output_segment* tls_segment = layout->tls_segment();
1474   if (tls_segment != NULL)
1475     {
1476       bool is_exec = parameters->options().output_is_executable();
1477       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
1478                                        Symbol_table::PREDEFINED,
1479                                        tls_segment, 0, 0,
1480                                        elfcpp::STT_TLS,
1481                                        elfcpp::STB_LOCAL,
1482                                        elfcpp::STV_HIDDEN, 0,
1483                                        (is_exec
1484                                         ? Symbol::SEGMENT_END
1485                                         : Symbol::SEGMENT_START),
1486                                        true);
1487     }
1488   this->tls_base_symbol_defined_ = true;
1489 }
1490
1491 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
1492
1493 void
1494 Target_x86_64::reserve_tlsdesc_entries(Symbol_table* symtab,
1495                                              Layout* layout)
1496 {
1497   if (this->plt_ == NULL)
1498     this->make_plt_section(symtab, layout);
1499
1500   if (!this->plt_->has_tlsdesc_entry())
1501     {
1502       // Allocate the TLSDESC_GOT entry.
1503       Output_data_got<64, false>* got = this->got_section(symtab, layout);
1504       unsigned int got_offset = got->add_constant(0);
1505
1506       // Allocate the TLSDESC_PLT entry.
1507       this->plt_->reserve_tlsdesc_entry(got_offset);
1508     }
1509 }
1510
1511 // Create a GOT entry for the TLS module index.
1512
1513 unsigned int
1514 Target_x86_64::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1515                                    Sized_relobj_file<64, false>* object)
1516 {
1517   if (this->got_mod_index_offset_ == -1U)
1518     {
1519       gold_assert(symtab != NULL && layout != NULL && object != NULL);
1520       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1521       Output_data_got<64, false>* got = this->got_section(symtab, layout);
1522       unsigned int got_offset = got->add_constant(0);
1523       rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
1524                           got_offset, 0);
1525       got->add_constant(0);
1526       this->got_mod_index_offset_ = got_offset;
1527     }
1528   return this->got_mod_index_offset_;
1529 }
1530
1531 // Optimize the TLS relocation type based on what we know about the
1532 // symbol.  IS_FINAL is true if the final address of this symbol is
1533 // known at link time.
1534
1535 tls::Tls_optimization
1536 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
1537 {
1538   // If we are generating a shared library, then we can't do anything
1539   // in the linker.
1540   if (parameters->options().shared())
1541     return tls::TLSOPT_NONE;
1542
1543   switch (r_type)
1544     {
1545     case elfcpp::R_X86_64_TLSGD:
1546     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1547     case elfcpp::R_X86_64_TLSDESC_CALL:
1548       // These are General-Dynamic which permits fully general TLS
1549       // access.  Since we know that we are generating an executable,
1550       // we can convert this to Initial-Exec.  If we also know that
1551       // this is a local symbol, we can further switch to Local-Exec.
1552       if (is_final)
1553         return tls::TLSOPT_TO_LE;
1554       return tls::TLSOPT_TO_IE;
1555
1556     case elfcpp::R_X86_64_TLSLD:
1557       // This is Local-Dynamic, which refers to a local symbol in the
1558       // dynamic TLS block.  Since we know that we generating an
1559       // executable, we can switch to Local-Exec.
1560       return tls::TLSOPT_TO_LE;
1561
1562     case elfcpp::R_X86_64_DTPOFF32:
1563     case elfcpp::R_X86_64_DTPOFF64:
1564       // Another Local-Dynamic reloc.
1565       return tls::TLSOPT_TO_LE;
1566
1567     case elfcpp::R_X86_64_GOTTPOFF:
1568       // These are Initial-Exec relocs which get the thread offset
1569       // from the GOT.  If we know that we are linking against the
1570       // local symbol, we can switch to Local-Exec, which links the
1571       // thread offset into the instruction.
1572       if (is_final)
1573         return tls::TLSOPT_TO_LE;
1574       return tls::TLSOPT_NONE;
1575
1576     case elfcpp::R_X86_64_TPOFF32:
1577       // When we already have Local-Exec, there is nothing further we
1578       // can do.
1579       return tls::TLSOPT_NONE;
1580
1581     default:
1582       gold_unreachable();
1583     }
1584 }
1585
1586 // Get the Reference_flags for a particular relocation.
1587
1588 int
1589 Target_x86_64::Scan::get_reference_flags(unsigned int r_type)
1590 {
1591   switch (r_type)
1592     {
1593     case elfcpp::R_X86_64_NONE:
1594     case elfcpp::R_X86_64_GNU_VTINHERIT:
1595     case elfcpp::R_X86_64_GNU_VTENTRY:
1596     case elfcpp::R_X86_64_GOTPC32:
1597     case elfcpp::R_X86_64_GOTPC64:
1598       // No symbol reference.
1599       return 0;
1600
1601     case elfcpp::R_X86_64_64:
1602     case elfcpp::R_X86_64_32:
1603     case elfcpp::R_X86_64_32S:
1604     case elfcpp::R_X86_64_16:
1605     case elfcpp::R_X86_64_8:
1606       return Symbol::ABSOLUTE_REF;
1607
1608     case elfcpp::R_X86_64_PC64:
1609     case elfcpp::R_X86_64_PC32:
1610     case elfcpp::R_X86_64_PC16:
1611     case elfcpp::R_X86_64_PC8:
1612     case elfcpp::R_X86_64_GOTOFF64:
1613       return Symbol::RELATIVE_REF;
1614
1615     case elfcpp::R_X86_64_PLT32:
1616     case elfcpp::R_X86_64_PLTOFF64:
1617       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
1618
1619     case elfcpp::R_X86_64_GOT64:
1620     case elfcpp::R_X86_64_GOT32:
1621     case elfcpp::R_X86_64_GOTPCREL64:
1622     case elfcpp::R_X86_64_GOTPCREL:
1623     case elfcpp::R_X86_64_GOTPLT64:
1624       // Absolute in GOT.
1625       return Symbol::ABSOLUTE_REF;
1626
1627     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1628     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1629     case elfcpp::R_X86_64_TLSDESC_CALL:
1630     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1631     case elfcpp::R_X86_64_DTPOFF32:
1632     case elfcpp::R_X86_64_DTPOFF64:
1633     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1634     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1635       return Symbol::TLS_REF;
1636
1637     case elfcpp::R_X86_64_COPY:
1638     case elfcpp::R_X86_64_GLOB_DAT:
1639     case elfcpp::R_X86_64_JUMP_SLOT:
1640     case elfcpp::R_X86_64_RELATIVE:
1641     case elfcpp::R_X86_64_IRELATIVE:
1642     case elfcpp::R_X86_64_TPOFF64:
1643     case elfcpp::R_X86_64_DTPMOD64:
1644     case elfcpp::R_X86_64_TLSDESC:
1645     case elfcpp::R_X86_64_SIZE32:
1646     case elfcpp::R_X86_64_SIZE64:
1647     default:
1648       // Not expected.  We will give an error later.
1649       return 0;
1650     }
1651 }
1652
1653 // Report an unsupported relocation against a local symbol.
1654
1655 void
1656 Target_x86_64::Scan::unsupported_reloc_local(
1657      Sized_relobj_file<64, false>* object,
1658      unsigned int r_type)
1659 {
1660   gold_error(_("%s: unsupported reloc %u against local symbol"),
1661              object->name().c_str(), r_type);
1662 }
1663
1664 // We are about to emit a dynamic relocation of type R_TYPE.  If the
1665 // dynamic linker does not support it, issue an error.  The GNU linker
1666 // only issues a non-PIC error for an allocated read-only section.
1667 // Here we know the section is allocated, but we don't know that it is
1668 // read-only.  But we check for all the relocation types which the
1669 // glibc dynamic linker supports, so it seems appropriate to issue an
1670 // error even if the section is not read-only.  If GSYM is not NULL,
1671 // it is the symbol the relocation is against; if it is NULL, the
1672 // relocation is against a local symbol.
1673
1674 void
1675 Target_x86_64::Scan::check_non_pic(Relobj* object, unsigned int r_type,
1676                                    Symbol* gsym)
1677 {
1678   switch (r_type)
1679     {
1680       // These are the relocation types supported by glibc for x86_64
1681       // which should always work.
1682     case elfcpp::R_X86_64_RELATIVE:
1683     case elfcpp::R_X86_64_IRELATIVE:
1684     case elfcpp::R_X86_64_GLOB_DAT:
1685     case elfcpp::R_X86_64_JUMP_SLOT:
1686     case elfcpp::R_X86_64_DTPMOD64:
1687     case elfcpp::R_X86_64_DTPOFF64:
1688     case elfcpp::R_X86_64_TPOFF64:
1689     case elfcpp::R_X86_64_64:
1690     case elfcpp::R_X86_64_COPY:
1691       return;
1692
1693       // glibc supports these reloc types, but they can overflow.
1694     case elfcpp::R_X86_64_PC32:
1695       // A PC relative reference is OK against a local symbol or if
1696       // the symbol is defined locally.
1697       if (gsym == NULL
1698           || (!gsym->is_from_dynobj()
1699               && !gsym->is_undefined()
1700               && !gsym->is_preemptible()))
1701         return;
1702       /* Fall through.  */
1703     case elfcpp::R_X86_64_32:
1704       if (this->issued_non_pic_error_)
1705         return;
1706       gold_assert(parameters->options().output_is_position_independent());
1707       if (gsym == NULL)
1708         object->error(_("requires dynamic R_X86_64_32 reloc which may "
1709                         "overflow at runtime; recompile with -fPIC"));
1710       else
1711         object->error(_("requires dynamic %s reloc against '%s' which may "
1712                         "overflow at runtime; recompile with -fPIC"),
1713                       (r_type == elfcpp::R_X86_64_32
1714                        ? "R_X86_64_32"
1715                        : "R_X86_64_PC32"),
1716                       gsym->name());
1717       this->issued_non_pic_error_ = true;
1718       return;
1719
1720     default:
1721       // This prevents us from issuing more than one error per reloc
1722       // section.  But we can still wind up issuing more than one
1723       // error per object file.
1724       if (this->issued_non_pic_error_)
1725         return;
1726       gold_assert(parameters->options().output_is_position_independent());
1727       object->error(_("requires unsupported dynamic reloc %u; "
1728                       "recompile with -fPIC"),
1729                     r_type);
1730       this->issued_non_pic_error_ = true;
1731       return;
1732
1733     case elfcpp::R_X86_64_NONE:
1734       gold_unreachable();
1735     }
1736 }
1737
1738 // Return whether we need to make a PLT entry for a relocation of the
1739 // given type against a STT_GNU_IFUNC symbol.
1740
1741 bool
1742 Target_x86_64::Scan::reloc_needs_plt_for_ifunc(
1743      Sized_relobj_file<64, false>* object,
1744      unsigned int r_type)
1745 {
1746   int flags = Scan::get_reference_flags(r_type);
1747   if (flags & Symbol::TLS_REF)
1748     gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
1749                object->name().c_str(), r_type);
1750   return flags != 0;
1751 }
1752
1753 // Scan a relocation for a local symbol.
1754
1755 inline void
1756 Target_x86_64::Scan::local(Symbol_table* symtab,
1757                            Layout* layout,
1758                            Target_x86_64* target,
1759                            Sized_relobj_file<64, false>* object,
1760                            unsigned int data_shndx,
1761                            Output_section* output_section,
1762                            const elfcpp::Rela<64, false>& reloc,
1763                            unsigned int r_type,
1764                            const elfcpp::Sym<64, false>& lsym)
1765 {
1766   // A local STT_GNU_IFUNC symbol may require a PLT entry.
1767   if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC
1768       && this->reloc_needs_plt_for_ifunc(object, r_type))
1769     {
1770       unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1771       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
1772     }
1773
1774   switch (r_type)
1775     {
1776     case elfcpp::R_X86_64_NONE:
1777     case elfcpp::R_X86_64_GNU_VTINHERIT:
1778     case elfcpp::R_X86_64_GNU_VTENTRY:
1779       break;
1780
1781     case elfcpp::R_X86_64_64:
1782       // If building a shared library (or a position-independent
1783       // executable), we need to create a dynamic relocation for this
1784       // location.  The relocation applied at link time will apply the
1785       // link-time value, so we flag the location with an
1786       // R_X86_64_RELATIVE relocation so the dynamic loader can
1787       // relocate it easily.
1788       if (parameters->options().output_is_position_independent())
1789         {
1790           unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1791           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1792           rela_dyn->add_local_relative(object, r_sym,
1793                                        elfcpp::R_X86_64_RELATIVE,
1794                                        output_section, data_shndx,
1795                                        reloc.get_r_offset(),
1796                                        reloc.get_r_addend());
1797         }
1798       break;
1799
1800     case elfcpp::R_X86_64_32:
1801     case elfcpp::R_X86_64_32S:
1802     case elfcpp::R_X86_64_16:
1803     case elfcpp::R_X86_64_8:
1804       // If building a shared library (or a position-independent
1805       // executable), we need to create a dynamic relocation for this
1806       // location.  We can't use an R_X86_64_RELATIVE relocation
1807       // because that is always a 64-bit relocation.
1808       if (parameters->options().output_is_position_independent())
1809         {
1810           this->check_non_pic(object, r_type, NULL);
1811
1812           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1813           unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1814           if (lsym.get_st_type() != elfcpp::STT_SECTION)
1815             rela_dyn->add_local(object, r_sym, r_type, output_section,
1816                                 data_shndx, reloc.get_r_offset(),
1817                                 reloc.get_r_addend());
1818           else
1819             {
1820               gold_assert(lsym.get_st_value() == 0);
1821               unsigned int shndx = lsym.get_st_shndx();
1822               bool is_ordinary;
1823               shndx = object->adjust_sym_shndx(r_sym, shndx,
1824                                                &is_ordinary);
1825               if (!is_ordinary)
1826                 object->error(_("section symbol %u has bad shndx %u"),
1827                               r_sym, shndx);
1828               else
1829                 rela_dyn->add_local_section(object, shndx,
1830                                             r_type, output_section,
1831                                             data_shndx, reloc.get_r_offset(),
1832                                             reloc.get_r_addend());
1833             }
1834         }
1835       break;
1836
1837     case elfcpp::R_X86_64_PC64:
1838     case elfcpp::R_X86_64_PC32:
1839     case elfcpp::R_X86_64_PC16:
1840     case elfcpp::R_X86_64_PC8:
1841       break;
1842
1843     case elfcpp::R_X86_64_PLT32:
1844       // Since we know this is a local symbol, we can handle this as a
1845       // PC32 reloc.
1846       break;
1847
1848     case elfcpp::R_X86_64_GOTPC32:
1849     case elfcpp::R_X86_64_GOTOFF64:
1850     case elfcpp::R_X86_64_GOTPC64:
1851     case elfcpp::R_X86_64_PLTOFF64:
1852       // We need a GOT section.
1853       target->got_section(symtab, layout);
1854       // For PLTOFF64, we'd normally want a PLT section, but since we
1855       // know this is a local symbol, no PLT is needed.
1856       break;
1857
1858     case elfcpp::R_X86_64_GOT64:
1859     case elfcpp::R_X86_64_GOT32:
1860     case elfcpp::R_X86_64_GOTPCREL64:
1861     case elfcpp::R_X86_64_GOTPCREL:
1862     case elfcpp::R_X86_64_GOTPLT64:
1863       {
1864         // The symbol requires a GOT entry.
1865         Output_data_got<64, false>* got = target->got_section(symtab, layout);
1866         unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1867
1868         // For a STT_GNU_IFUNC symbol we want the PLT offset.  That
1869         // lets function pointers compare correctly with shared
1870         // libraries.  Otherwise we would need an IRELATIVE reloc.
1871         bool is_new;
1872         if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1873           is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
1874         else
1875           is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
1876         if (is_new)
1877           {
1878             // If we are generating a shared object, we need to add a
1879             // dynamic relocation for this symbol's GOT entry.
1880             if (parameters->options().output_is_position_independent())
1881               {
1882                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1883                 // R_X86_64_RELATIVE assumes a 64-bit relocation.
1884                 if (r_type != elfcpp::R_X86_64_GOT32)
1885                   {
1886                     unsigned int got_offset =
1887                       object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
1888                     rela_dyn->add_local_relative(object, r_sym,
1889                                                  elfcpp::R_X86_64_RELATIVE,
1890                                                  got, got_offset, 0);
1891                   }
1892                 else
1893                   {
1894                     this->check_non_pic(object, r_type, NULL);
1895
1896                     gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
1897                     rela_dyn->add_local(
1898                         object, r_sym, r_type, got,
1899                         object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
1900                   }
1901               }
1902           }
1903         // For GOTPLT64, we'd normally want a PLT section, but since
1904         // we know this is a local symbol, no PLT is needed.
1905       }
1906       break;
1907
1908     case elfcpp::R_X86_64_COPY:
1909     case elfcpp::R_X86_64_GLOB_DAT:
1910     case elfcpp::R_X86_64_JUMP_SLOT:
1911     case elfcpp::R_X86_64_RELATIVE:
1912     case elfcpp::R_X86_64_IRELATIVE:
1913       // These are outstanding tls relocs, which are unexpected when linking
1914     case elfcpp::R_X86_64_TPOFF64:
1915     case elfcpp::R_X86_64_DTPMOD64:
1916     case elfcpp::R_X86_64_TLSDESC:
1917       gold_error(_("%s: unexpected reloc %u in object file"),
1918                  object->name().c_str(), r_type);
1919       break;
1920
1921       // These are initial tls relocs, which are expected when linking
1922     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1923     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1924     case elfcpp::R_X86_64_TLSDESC_CALL:
1925     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1926     case elfcpp::R_X86_64_DTPOFF32:
1927     case elfcpp::R_X86_64_DTPOFF64:
1928     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1929     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1930       {
1931         bool output_is_shared = parameters->options().shared();
1932         const tls::Tls_optimization optimized_type
1933             = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
1934         switch (r_type)
1935           {
1936           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
1937             if (optimized_type == tls::TLSOPT_NONE)
1938               {
1939                 // Create a pair of GOT entries for the module index and
1940                 // dtv-relative offset.
1941                 Output_data_got<64, false>* got
1942                     = target->got_section(symtab, layout);
1943                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1944                 unsigned int shndx = lsym.get_st_shndx();
1945                 bool is_ordinary;
1946                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1947                 if (!is_ordinary)
1948                   object->error(_("local symbol %u has bad shndx %u"),
1949                               r_sym, shndx);
1950                 else
1951                   got->add_local_pair_with_rela(object, r_sym,
1952                                                 shndx,
1953                                                 GOT_TYPE_TLS_PAIR,
1954                                                 target->rela_dyn_section(layout),
1955                                                 elfcpp::R_X86_64_DTPMOD64, 0);
1956               }
1957             else if (optimized_type != tls::TLSOPT_TO_LE)
1958               unsupported_reloc_local(object, r_type);
1959             break;
1960
1961           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1962             target->define_tls_base_symbol(symtab, layout);
1963             if (optimized_type == tls::TLSOPT_NONE)
1964               {
1965                 // Create reserved PLT and GOT entries for the resolver.
1966                 target->reserve_tlsdesc_entries(symtab, layout);
1967
1968                 // Generate a double GOT entry with an
1969                 // R_X86_64_TLSDESC reloc.  The R_X86_64_TLSDESC reloc
1970                 // is resolved lazily, so the GOT entry needs to be in
1971                 // an area in .got.plt, not .got.  Call got_section to
1972                 // make sure the section has been created.
1973                 target->got_section(symtab, layout);
1974                 Output_data_got<64, false>* got = target->got_tlsdesc_section();
1975                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1976                 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
1977                   {
1978                     unsigned int got_offset = got->add_constant(0);
1979                     got->add_constant(0);
1980                     object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
1981                                                  got_offset);
1982                     Reloc_section* rt = target->rela_tlsdesc_section(layout);
1983                     // We store the arguments we need in a vector, and
1984                     // use the index into the vector as the parameter
1985                     // to pass to the target specific routines.
1986                     uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
1987                     void* arg = reinterpret_cast<void*>(intarg);
1988                     rt->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
1989                                             got, got_offset, 0);
1990                   }
1991               }
1992             else if (optimized_type != tls::TLSOPT_TO_LE)
1993               unsupported_reloc_local(object, r_type);
1994             break;
1995
1996           case elfcpp::R_X86_64_TLSDESC_CALL:
1997             break;
1998
1999           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
2000             if (optimized_type == tls::TLSOPT_NONE)
2001               {
2002                 // Create a GOT entry for the module index.
2003                 target->got_mod_index_entry(symtab, layout, object);
2004               }
2005             else if (optimized_type != tls::TLSOPT_TO_LE)
2006               unsupported_reloc_local(object, r_type);
2007             break;
2008
2009           case elfcpp::R_X86_64_DTPOFF32:
2010           case elfcpp::R_X86_64_DTPOFF64:
2011             break;
2012
2013           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
2014             layout->set_has_static_tls();
2015             if (optimized_type == tls::TLSOPT_NONE)
2016               {
2017                 // Create a GOT entry for the tp-relative offset.
2018                 Output_data_got<64, false>* got
2019                     = target->got_section(symtab, layout);
2020                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
2021                 got->add_local_with_rela(object, r_sym, GOT_TYPE_TLS_OFFSET,
2022                                          target->rela_dyn_section(layout),
2023                                          elfcpp::R_X86_64_TPOFF64);
2024               }
2025             else if (optimized_type != tls::TLSOPT_TO_LE)
2026               unsupported_reloc_local(object, r_type);
2027             break;
2028
2029           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
2030             layout->set_has_static_tls();
2031             if (output_is_shared)
2032               unsupported_reloc_local(object, r_type);
2033             break;
2034
2035           default:
2036             gold_unreachable();
2037           }
2038       }
2039       break;
2040
2041     case elfcpp::R_X86_64_SIZE32:
2042     case elfcpp::R_X86_64_SIZE64:
2043     default:
2044       gold_error(_("%s: unsupported reloc %u against local symbol"),
2045                  object->name().c_str(), r_type);
2046       break;
2047     }
2048 }
2049
2050
2051 // Report an unsupported relocation against a global symbol.
2052
2053 void
2054 Target_x86_64::Scan::unsupported_reloc_global(
2055     Sized_relobj_file<64, false>* object,
2056     unsigned int r_type,
2057     Symbol* gsym)
2058 {
2059   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2060              object->name().c_str(), r_type, gsym->demangled_name().c_str());
2061 }
2062
2063 // Returns true if this relocation type could be that of a function pointer.
2064 inline bool
2065 Target_x86_64::Scan::possible_function_pointer_reloc(unsigned int r_type)
2066 {
2067   switch (r_type)
2068     {
2069     case elfcpp::R_X86_64_64:
2070     case elfcpp::R_X86_64_32:
2071     case elfcpp::R_X86_64_32S:
2072     case elfcpp::R_X86_64_16:
2073     case elfcpp::R_X86_64_8:
2074     case elfcpp::R_X86_64_GOT64:
2075     case elfcpp::R_X86_64_GOT32:
2076     case elfcpp::R_X86_64_GOTPCREL64:
2077     case elfcpp::R_X86_64_GOTPCREL:
2078     case elfcpp::R_X86_64_GOTPLT64:
2079       {
2080         return true;
2081       }
2082     }
2083   return false;
2084 }
2085
2086 // For safe ICF, scan a relocation for a local symbol to check if it
2087 // corresponds to a function pointer being taken.  In that case mark
2088 // the function whose pointer was taken as not foldable.
2089
2090 inline bool
2091 Target_x86_64::Scan::local_reloc_may_be_function_pointer(
2092   Symbol_table* ,
2093   Layout* ,
2094   Target_x86_64* ,
2095   Sized_relobj_file<64, false>* ,
2096   unsigned int ,
2097   Output_section* ,
2098   const elfcpp::Rela<64, false>& ,
2099   unsigned int r_type,
2100   const elfcpp::Sym<64, false>&)
2101 {
2102   // When building a shared library, do not fold any local symbols as it is
2103   // not possible to distinguish pointer taken versus a call by looking at
2104   // the relocation types.
2105   return (parameters->options().shared()
2106           || possible_function_pointer_reloc(r_type));
2107 }
2108
2109 // For safe ICF, scan a relocation for a global symbol to check if it
2110 // corresponds to a function pointer being taken.  In that case mark
2111 // the function whose pointer was taken as not foldable.
2112
2113 inline bool
2114 Target_x86_64::Scan::global_reloc_may_be_function_pointer(
2115   Symbol_table*,
2116   Layout* ,
2117   Target_x86_64* ,
2118   Sized_relobj_file<64, false>* ,
2119   unsigned int ,
2120   Output_section* ,
2121   const elfcpp::Rela<64, false>& ,
2122   unsigned int r_type,
2123   Symbol* gsym)
2124 {
2125   // When building a shared library, do not fold symbols whose visibility
2126   // is hidden, internal or protected.
2127   return ((parameters->options().shared()
2128            && (gsym->visibility() == elfcpp::STV_INTERNAL
2129                || gsym->visibility() == elfcpp::STV_PROTECTED
2130                || gsym->visibility() == elfcpp::STV_HIDDEN))
2131           || possible_function_pointer_reloc(r_type));
2132 }
2133
2134 // Scan a relocation for a global symbol.
2135
2136 inline void
2137 Target_x86_64::Scan::global(Symbol_table* symtab,
2138                             Layout* layout,
2139                             Target_x86_64* target,
2140                             Sized_relobj_file<64, false>* object,
2141                             unsigned int data_shndx,
2142                             Output_section* output_section,
2143                             const elfcpp::Rela<64, false>& reloc,
2144                             unsigned int r_type,
2145                             Symbol* gsym)
2146 {
2147   // A STT_GNU_IFUNC symbol may require a PLT entry.
2148   if (gsym->type() == elfcpp::STT_GNU_IFUNC
2149       && this->reloc_needs_plt_for_ifunc(object, r_type))
2150     target->make_plt_entry(symtab, layout, gsym);
2151
2152   switch (r_type)
2153     {
2154     case elfcpp::R_X86_64_NONE:
2155     case elfcpp::R_X86_64_GNU_VTINHERIT:
2156     case elfcpp::R_X86_64_GNU_VTENTRY:
2157       break;
2158
2159     case elfcpp::R_X86_64_64:
2160     case elfcpp::R_X86_64_32:
2161     case elfcpp::R_X86_64_32S:
2162     case elfcpp::R_X86_64_16:
2163     case elfcpp::R_X86_64_8:
2164       {
2165         // Make a PLT entry if necessary.
2166         if (gsym->needs_plt_entry())
2167           {
2168             target->make_plt_entry(symtab, layout, gsym);
2169             // Since this is not a PC-relative relocation, we may be
2170             // taking the address of a function. In that case we need to
2171             // set the entry in the dynamic symbol table to the address of
2172             // the PLT entry.
2173             if (gsym->is_from_dynobj() && !parameters->options().shared())
2174               gsym->set_needs_dynsym_value();
2175           }
2176         // Make a dynamic relocation if necessary.
2177         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2178           {
2179             if (gsym->may_need_copy_reloc())
2180               {
2181                 target->copy_reloc(symtab, layout, object,
2182                                    data_shndx, output_section, gsym, reloc);
2183               }
2184             else if (r_type == elfcpp::R_X86_64_64
2185                      && gsym->type() == elfcpp::STT_GNU_IFUNC
2186                      && gsym->can_use_relative_reloc(false)
2187                      && !gsym->is_from_dynobj()
2188                      && !gsym->is_undefined()
2189                      && !gsym->is_preemptible())
2190               {
2191                 // Use an IRELATIVE reloc for a locally defined
2192                 // STT_GNU_IFUNC symbol.  This makes a function
2193                 // address in a PIE executable match the address in a
2194                 // shared library that it links against.
2195                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2196                 unsigned int r_type = elfcpp::R_X86_64_IRELATIVE;
2197                 rela_dyn->add_symbolless_global_addend(gsym, r_type,
2198                                                        output_section, object,
2199                                                        data_shndx,
2200                                                        reloc.get_r_offset(),
2201                                                        reloc.get_r_addend());
2202               }
2203             else if (r_type == elfcpp::R_X86_64_64
2204                      && gsym->can_use_relative_reloc(false))
2205               {
2206                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2207                 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
2208                                               output_section, object,
2209                                               data_shndx,
2210                                               reloc.get_r_offset(),
2211                                               reloc.get_r_addend());
2212               }
2213             else
2214               {
2215                 this->check_non_pic(object, r_type, gsym);
2216                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2217                 rela_dyn->add_global(gsym, r_type, output_section, object,
2218                                      data_shndx, reloc.get_r_offset(),
2219                                      reloc.get_r_addend());
2220               }
2221           }
2222       }
2223       break;
2224
2225     case elfcpp::R_X86_64_PC64:
2226     case elfcpp::R_X86_64_PC32:
2227     case elfcpp::R_X86_64_PC16:
2228     case elfcpp::R_X86_64_PC8:
2229       {
2230         // Make a PLT entry if necessary.
2231         if (gsym->needs_plt_entry())
2232           target->make_plt_entry(symtab, layout, gsym);
2233         // Make a dynamic relocation if necessary.
2234         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2235           {
2236             if (gsym->may_need_copy_reloc())
2237               {
2238                 target->copy_reloc(symtab, layout, object,
2239                                    data_shndx, output_section, gsym, reloc);
2240               }
2241             else
2242               {
2243                 this->check_non_pic(object, r_type, gsym);
2244                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2245                 rela_dyn->add_global(gsym, r_type, output_section, object,
2246                                      data_shndx, reloc.get_r_offset(),
2247                                      reloc.get_r_addend());
2248               }
2249           }
2250       }
2251       break;
2252
2253     case elfcpp::R_X86_64_GOT64:
2254     case elfcpp::R_X86_64_GOT32:
2255     case elfcpp::R_X86_64_GOTPCREL64:
2256     case elfcpp::R_X86_64_GOTPCREL:
2257     case elfcpp::R_X86_64_GOTPLT64:
2258       {
2259         // The symbol requires a GOT entry.
2260         Output_data_got<64, false>* got = target->got_section(symtab, layout);
2261         if (gsym->final_value_is_known())
2262           {
2263             // For a STT_GNU_IFUNC symbol we want the PLT address.
2264             if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2265               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2266             else
2267               got->add_global(gsym, GOT_TYPE_STANDARD);
2268           }
2269         else
2270           {
2271             // If this symbol is not fully resolved, we need to add a
2272             // dynamic relocation for it.
2273             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2274             if (gsym->is_from_dynobj()
2275                 || gsym->is_undefined()
2276                 || gsym->is_preemptible()
2277                 || (gsym->type() == elfcpp::STT_GNU_IFUNC
2278                     && parameters->options().output_is_position_independent()))
2279               got->add_global_with_rela(gsym, GOT_TYPE_STANDARD, rela_dyn,
2280                                         elfcpp::R_X86_64_GLOB_DAT);
2281             else
2282               {
2283                 // For a STT_GNU_IFUNC symbol we want to write the PLT
2284                 // offset into the GOT, so that function pointer
2285                 // comparisons work correctly.
2286                 bool is_new;
2287                 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2288                   is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2289                 else
2290                   {
2291                     is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2292                     // Tell the dynamic linker to use the PLT address
2293                     // when resolving relocations.
2294                     if (gsym->is_from_dynobj()
2295                         && !parameters->options().shared())
2296                       gsym->set_needs_dynsym_value();
2297                   }
2298                 if (is_new)
2299                   {
2300                     unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
2301                     rela_dyn->add_global_relative(gsym,
2302                                                   elfcpp::R_X86_64_RELATIVE,
2303                                                   got, got_off, 0);
2304                   }
2305               }
2306           }
2307         // For GOTPLT64, we also need a PLT entry (but only if the
2308         // symbol is not fully resolved).
2309         if (r_type == elfcpp::R_X86_64_GOTPLT64
2310             && !gsym->final_value_is_known())
2311           target->make_plt_entry(symtab, layout, gsym);
2312       }
2313       break;
2314
2315     case elfcpp::R_X86_64_PLT32:
2316       // If the symbol is fully resolved, this is just a PC32 reloc.
2317       // Otherwise we need a PLT entry.
2318       if (gsym->final_value_is_known())
2319         break;
2320       // If building a shared library, we can also skip the PLT entry
2321       // if the symbol is defined in the output file and is protected
2322       // or hidden.
2323       if (gsym->is_defined()
2324           && !gsym->is_from_dynobj()
2325           && !gsym->is_preemptible())
2326         break;
2327       target->make_plt_entry(symtab, layout, gsym);
2328       break;
2329
2330     case elfcpp::R_X86_64_GOTPC32:
2331     case elfcpp::R_X86_64_GOTOFF64:
2332     case elfcpp::R_X86_64_GOTPC64:
2333     case elfcpp::R_X86_64_PLTOFF64:
2334       // We need a GOT section.
2335       target->got_section(symtab, layout);
2336       // For PLTOFF64, we also need a PLT entry (but only if the
2337       // symbol is not fully resolved).
2338       if (r_type == elfcpp::R_X86_64_PLTOFF64
2339           && !gsym->final_value_is_known())
2340         target->make_plt_entry(symtab, layout, gsym);
2341       break;
2342
2343     case elfcpp::R_X86_64_COPY:
2344     case elfcpp::R_X86_64_GLOB_DAT:
2345     case elfcpp::R_X86_64_JUMP_SLOT:
2346     case elfcpp::R_X86_64_RELATIVE:
2347     case elfcpp::R_X86_64_IRELATIVE:
2348       // These are outstanding tls relocs, which are unexpected when linking
2349     case elfcpp::R_X86_64_TPOFF64:
2350     case elfcpp::R_X86_64_DTPMOD64:
2351     case elfcpp::R_X86_64_TLSDESC:
2352       gold_error(_("%s: unexpected reloc %u in object file"),
2353                  object->name().c_str(), r_type);
2354       break;
2355
2356       // These are initial tls relocs, which are expected for global()
2357     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2358     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2359     case elfcpp::R_X86_64_TLSDESC_CALL:
2360     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2361     case elfcpp::R_X86_64_DTPOFF32:
2362     case elfcpp::R_X86_64_DTPOFF64:
2363     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2364     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2365       {
2366         const bool is_final = gsym->final_value_is_known();
2367         const tls::Tls_optimization optimized_type
2368             = Target_x86_64::optimize_tls_reloc(is_final, r_type);
2369         switch (r_type)
2370           {
2371           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
2372             if (optimized_type == tls::TLSOPT_NONE)
2373               {
2374                 // Create a pair of GOT entries for the module index and
2375                 // dtv-relative offset.
2376                 Output_data_got<64, false>* got
2377                     = target->got_section(symtab, layout);
2378                 got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_PAIR,
2379                                                target->rela_dyn_section(layout),
2380                                                elfcpp::R_X86_64_DTPMOD64,
2381                                                elfcpp::R_X86_64_DTPOFF64);
2382               }
2383             else if (optimized_type == tls::TLSOPT_TO_IE)
2384               {
2385                 // Create a GOT entry for the tp-relative offset.
2386                 Output_data_got<64, false>* got
2387                     = target->got_section(symtab, layout);
2388                 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
2389                                           target->rela_dyn_section(layout),
2390                                           elfcpp::R_X86_64_TPOFF64);
2391               }
2392             else if (optimized_type != tls::TLSOPT_TO_LE)
2393               unsupported_reloc_global(object, r_type, gsym);
2394             break;
2395
2396           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2397             target->define_tls_base_symbol(symtab, layout);
2398             if (optimized_type == tls::TLSOPT_NONE)
2399               {
2400                 // Create reserved PLT and GOT entries for the resolver.
2401                 target->reserve_tlsdesc_entries(symtab, layout);
2402
2403                 // Create a double GOT entry with an R_X86_64_TLSDESC
2404                 // reloc.  The R_X86_64_TLSDESC reloc is resolved
2405                 // lazily, so the GOT entry needs to be in an area in
2406                 // .got.plt, not .got.  Call got_section to make sure
2407                 // the section has been created.
2408                 target->got_section(symtab, layout);
2409                 Output_data_got<64, false>* got = target->got_tlsdesc_section();
2410                 Reloc_section* rt = target->rela_tlsdesc_section(layout);
2411                 got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_DESC, rt,
2412                                                elfcpp::R_X86_64_TLSDESC, 0);
2413               }
2414             else if (optimized_type == tls::TLSOPT_TO_IE)
2415               {
2416                 // Create a GOT entry for the tp-relative offset.
2417                 Output_data_got<64, false>* got
2418                     = target->got_section(symtab, layout);
2419                 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
2420                                           target->rela_dyn_section(layout),
2421                                           elfcpp::R_X86_64_TPOFF64);
2422               }
2423             else if (optimized_type != tls::TLSOPT_TO_LE)
2424               unsupported_reloc_global(object, r_type, gsym);
2425             break;
2426
2427           case elfcpp::R_X86_64_TLSDESC_CALL:
2428             break;
2429
2430           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
2431             if (optimized_type == tls::TLSOPT_NONE)
2432               {
2433                 // Create a GOT entry for the module index.
2434                 target->got_mod_index_entry(symtab, layout, object);
2435               }
2436             else if (optimized_type != tls::TLSOPT_TO_LE)
2437               unsupported_reloc_global(object, r_type, gsym);
2438             break;
2439
2440           case elfcpp::R_X86_64_DTPOFF32:
2441           case elfcpp::R_X86_64_DTPOFF64:
2442             break;
2443
2444           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
2445             layout->set_has_static_tls();
2446             if (optimized_type == tls::TLSOPT_NONE)
2447               {
2448                 // Create a GOT entry for the tp-relative offset.
2449                 Output_data_got<64, false>* got
2450                     = target->got_section(symtab, layout);
2451                 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
2452                                           target->rela_dyn_section(layout),
2453                                           elfcpp::R_X86_64_TPOFF64);
2454               }
2455             else if (optimized_type != tls::TLSOPT_TO_LE)
2456               unsupported_reloc_global(object, r_type, gsym);
2457             break;
2458
2459           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
2460             layout->set_has_static_tls();
2461             if (parameters->options().shared())
2462               unsupported_reloc_local(object, r_type);
2463             break;
2464
2465           default:
2466             gold_unreachable();
2467           }
2468       }
2469       break;
2470
2471     case elfcpp::R_X86_64_SIZE32:
2472     case elfcpp::R_X86_64_SIZE64:
2473     default:
2474       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2475                  object->name().c_str(), r_type,
2476                  gsym->demangled_name().c_str());
2477       break;
2478     }
2479 }
2480
2481 void
2482 Target_x86_64::gc_process_relocs(Symbol_table* symtab,
2483                                  Layout* layout,
2484                                  Sized_relobj_file<64, false>* object,
2485                                  unsigned int data_shndx,
2486                                  unsigned int sh_type,
2487                                  const unsigned char* prelocs,
2488                                  size_t reloc_count,
2489                                  Output_section* output_section,
2490                                  bool needs_special_offset_handling,
2491                                  size_t local_symbol_count,
2492                                  const unsigned char* plocal_symbols)
2493 {
2494
2495   if (sh_type == elfcpp::SHT_REL)
2496     {
2497       return;
2498     }
2499
2500    gold::gc_process_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
2501                            Target_x86_64::Scan,
2502                            Target_x86_64::Relocatable_size_for_reloc>(
2503     symtab,
2504     layout,
2505     this,
2506     object,
2507     data_shndx,
2508     prelocs,
2509     reloc_count,
2510     output_section,
2511     needs_special_offset_handling,
2512     local_symbol_count,
2513     plocal_symbols);
2514  
2515 }
2516 // Scan relocations for a section.
2517
2518 void
2519 Target_x86_64::scan_relocs(Symbol_table* symtab,
2520                            Layout* layout,
2521                            Sized_relobj_file<64, false>* object,
2522                            unsigned int data_shndx,
2523                            unsigned int sh_type,
2524                            const unsigned char* prelocs,
2525                            size_t reloc_count,
2526                            Output_section* output_section,
2527                            bool needs_special_offset_handling,
2528                            size_t local_symbol_count,
2529                            const unsigned char* plocal_symbols)
2530 {
2531   if (sh_type == elfcpp::SHT_REL)
2532     {
2533       gold_error(_("%s: unsupported REL reloc section"),
2534                  object->name().c_str());
2535       return;
2536     }
2537
2538   gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
2539       Target_x86_64::Scan>(
2540     symtab,
2541     layout,
2542     this,
2543     object,
2544     data_shndx,
2545     prelocs,
2546     reloc_count,
2547     output_section,
2548     needs_special_offset_handling,
2549     local_symbol_count,
2550     plocal_symbols);
2551 }
2552
2553 // Finalize the sections.
2554
2555 void
2556 Target_x86_64::do_finalize_sections(
2557     Layout* layout,
2558     const Input_objects*,
2559     Symbol_table* symtab)
2560 {
2561   const Reloc_section* rel_plt = (this->plt_ == NULL
2562                                   ? NULL
2563                                   : this->plt_->rela_plt());
2564   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
2565                                   this->rela_dyn_, true, false);
2566                                   
2567   // Fill in some more dynamic tags.
2568   Output_data_dynamic* const odyn = layout->dynamic_data();
2569   if (odyn != NULL)
2570     {
2571       if (this->plt_ != NULL
2572           && this->plt_->output_section() != NULL
2573           && this->plt_->has_tlsdesc_entry())
2574         {
2575           unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
2576           unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
2577           this->got_->finalize_data_size();
2578           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
2579                                         this->plt_, plt_offset);
2580           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
2581                                         this->got_, got_offset);
2582         }
2583     }
2584
2585   // Emit any relocs we saved in an attempt to avoid generating COPY
2586   // relocs.
2587   if (this->copy_relocs_.any_saved_relocs())
2588     this->copy_relocs_.emit(this->rela_dyn_section(layout));
2589
2590   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
2591   // the .got.plt section.
2592   Symbol* sym = this->global_offset_table_;
2593   if (sym != NULL)
2594     {
2595       uint64_t data_size = this->got_plt_->current_data_size();
2596       symtab->get_sized_symbol<64>(sym)->set_symsize(data_size);
2597     }
2598 }
2599
2600 // Perform a relocation.
2601
2602 inline bool
2603 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
2604                                   Target_x86_64* target,
2605                                   Output_section*,
2606                                   size_t relnum,
2607                                   const elfcpp::Rela<64, false>& rela,
2608                                   unsigned int r_type,
2609                                   const Sized_symbol<64>* gsym,
2610                                   const Symbol_value<64>* psymval,
2611                                   unsigned char* view,
2612                                   elfcpp::Elf_types<64>::Elf_Addr address,
2613                                   section_size_type view_size)
2614 {
2615   if (this->skip_call_tls_get_addr_)
2616     {
2617       if ((r_type != elfcpp::R_X86_64_PLT32
2618            && r_type != elfcpp::R_X86_64_PC32)
2619           || gsym == NULL
2620           || strcmp(gsym->name(), "__tls_get_addr") != 0)
2621         {
2622           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2623                                  _("missing expected TLS relocation"));
2624         }
2625       else
2626         {
2627           this->skip_call_tls_get_addr_ = false;
2628           return false;
2629         }
2630     }
2631
2632   const Sized_relobj_file<64, false>* object = relinfo->object;
2633
2634   // Pick the value to use for symbols defined in the PLT.
2635   Symbol_value<64> symval;
2636   if (gsym != NULL
2637       && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
2638     {
2639       symval.set_output_value(target->plt_section()->address()
2640                               + gsym->plt_offset());
2641       psymval = &symval;
2642     }
2643   else if (gsym == NULL && psymval->is_ifunc_symbol())
2644     {
2645       unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2646       if (object->local_has_plt_offset(r_sym))
2647         {
2648           symval.set_output_value(target->plt_section()->address()
2649                                   + object->local_plt_offset(r_sym));
2650           psymval = &symval;
2651         }
2652     }
2653
2654   const elfcpp::Elf_Xword addend = rela.get_r_addend();
2655
2656   // Get the GOT offset if needed.
2657   // The GOT pointer points to the end of the GOT section.
2658   // We need to subtract the size of the GOT section to get
2659   // the actual offset to use in the relocation.
2660   bool have_got_offset = false;
2661   unsigned int got_offset = 0;
2662   switch (r_type)
2663     {
2664     case elfcpp::R_X86_64_GOT32:
2665     case elfcpp::R_X86_64_GOT64:
2666     case elfcpp::R_X86_64_GOTPLT64:
2667     case elfcpp::R_X86_64_GOTPCREL:
2668     case elfcpp::R_X86_64_GOTPCREL64:
2669       if (gsym != NULL)
2670         {
2671           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
2672           got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
2673         }
2674       else
2675         {
2676           unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2677           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
2678           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
2679                         - target->got_size());
2680         }
2681       have_got_offset = true;
2682       break;
2683
2684     default:
2685       break;
2686     }
2687
2688   switch (r_type)
2689     {
2690     case elfcpp::R_X86_64_NONE:
2691     case elfcpp::R_X86_64_GNU_VTINHERIT:
2692     case elfcpp::R_X86_64_GNU_VTENTRY:
2693       break;
2694
2695     case elfcpp::R_X86_64_64:
2696       Relocate_functions<64, false>::rela64(view, object, psymval, addend);
2697       break;
2698
2699     case elfcpp::R_X86_64_PC64:
2700       Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
2701                                               address);
2702       break;
2703
2704     case elfcpp::R_X86_64_32:
2705       // FIXME: we need to verify that value + addend fits into 32 bits:
2706       //    uint64_t x = value + addend;
2707       //    x == static_cast<uint64_t>(static_cast<uint32_t>(x))
2708       // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
2709       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
2710       break;
2711
2712     case elfcpp::R_X86_64_32S:
2713       // FIXME: we need to verify that value + addend fits into 32 bits:
2714       //    int64_t x = value + addend;   // note this quantity is signed!
2715       //    x == static_cast<int64_t>(static_cast<int32_t>(x))
2716       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
2717       break;
2718
2719     case elfcpp::R_X86_64_PC32:
2720       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
2721                                               address);
2722       break;
2723
2724     case elfcpp::R_X86_64_16:
2725       Relocate_functions<64, false>::rela16(view, object, psymval, addend);
2726       break;
2727
2728     case elfcpp::R_X86_64_PC16:
2729       Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
2730                                               address);
2731       break;
2732
2733     case elfcpp::R_X86_64_8:
2734       Relocate_functions<64, false>::rela8(view, object, psymval, addend);
2735       break;
2736
2737     case elfcpp::R_X86_64_PC8:
2738       Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
2739                                              address);
2740       break;
2741
2742     case elfcpp::R_X86_64_PLT32:
2743       gold_assert(gsym == NULL
2744                   || gsym->has_plt_offset()
2745                   || gsym->final_value_is_known()
2746                   || (gsym->is_defined()
2747                       && !gsym->is_from_dynobj()
2748                       && !gsym->is_preemptible()));
2749       // Note: while this code looks the same as for R_X86_64_PC32, it
2750       // behaves differently because psymval was set to point to
2751       // the PLT entry, rather than the symbol, in Scan::global().
2752       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
2753                                               address);
2754       break;
2755
2756     case elfcpp::R_X86_64_PLTOFF64:
2757       {
2758         gold_assert(gsym);
2759         gold_assert(gsym->has_plt_offset()
2760                     || gsym->final_value_is_known());
2761         elfcpp::Elf_types<64>::Elf_Addr got_address;
2762         got_address = target->got_section(NULL, NULL)->address();
2763         Relocate_functions<64, false>::rela64(view, object, psymval,
2764                                               addend - got_address);
2765       }
2766
2767     case elfcpp::R_X86_64_GOT32:
2768       gold_assert(have_got_offset);
2769       Relocate_functions<64, false>::rela32(view, got_offset, addend);
2770       break;
2771
2772     case elfcpp::R_X86_64_GOTPC32:
2773       {
2774         gold_assert(gsym);
2775         elfcpp::Elf_types<64>::Elf_Addr value;
2776         value = target->got_plt_section()->address();
2777         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2778       }
2779       break;
2780
2781     case elfcpp::R_X86_64_GOT64:
2782       // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
2783       // Since we always add a PLT entry, this is equivalent.
2784     case elfcpp::R_X86_64_GOTPLT64:
2785       gold_assert(have_got_offset);
2786       Relocate_functions<64, false>::rela64(view, got_offset, addend);
2787       break;
2788
2789     case elfcpp::R_X86_64_GOTPC64:
2790       {
2791         gold_assert(gsym);
2792         elfcpp::Elf_types<64>::Elf_Addr value;
2793         value = target->got_plt_section()->address();
2794         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
2795       }
2796       break;
2797
2798     case elfcpp::R_X86_64_GOTOFF64:
2799       {
2800         elfcpp::Elf_types<64>::Elf_Addr value;
2801         value = (psymval->value(object, 0)
2802                  - target->got_plt_section()->address());
2803         Relocate_functions<64, false>::rela64(view, value, addend);
2804       }
2805       break;
2806
2807     case elfcpp::R_X86_64_GOTPCREL:
2808       {
2809         gold_assert(have_got_offset);
2810         elfcpp::Elf_types<64>::Elf_Addr value;
2811         value = target->got_plt_section()->address() + got_offset;
2812         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2813       }
2814       break;
2815
2816     case elfcpp::R_X86_64_GOTPCREL64:
2817       {
2818         gold_assert(have_got_offset);
2819         elfcpp::Elf_types<64>::Elf_Addr value;
2820         value = target->got_plt_section()->address() + got_offset;
2821         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
2822       }
2823       break;
2824
2825     case elfcpp::R_X86_64_COPY:
2826     case elfcpp::R_X86_64_GLOB_DAT:
2827     case elfcpp::R_X86_64_JUMP_SLOT:
2828     case elfcpp::R_X86_64_RELATIVE:
2829     case elfcpp::R_X86_64_IRELATIVE:
2830       // These are outstanding tls relocs, which are unexpected when linking
2831     case elfcpp::R_X86_64_TPOFF64:
2832     case elfcpp::R_X86_64_DTPMOD64:
2833     case elfcpp::R_X86_64_TLSDESC:
2834       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2835                              _("unexpected reloc %u in object file"),
2836                              r_type);
2837       break;
2838
2839       // These are initial tls relocs, which are expected when linking
2840     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2841     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2842     case elfcpp::R_X86_64_TLSDESC_CALL:
2843     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2844     case elfcpp::R_X86_64_DTPOFF32:
2845     case elfcpp::R_X86_64_DTPOFF64:
2846     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2847     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2848       this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
2849                          view, address, view_size);
2850       break;
2851
2852     case elfcpp::R_X86_64_SIZE32:
2853     case elfcpp::R_X86_64_SIZE64:
2854     default:
2855       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2856                              _("unsupported reloc %u"),
2857                              r_type);
2858       break;
2859     }
2860
2861   return true;
2862 }
2863
2864 // Perform a TLS relocation.
2865
2866 inline void
2867 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
2868                                       Target_x86_64* target,
2869                                       size_t relnum,
2870                                       const elfcpp::Rela<64, false>& rela,
2871                                       unsigned int r_type,
2872                                       const Sized_symbol<64>* gsym,
2873                                       const Symbol_value<64>* psymval,
2874                                       unsigned char* view,
2875                                       elfcpp::Elf_types<64>::Elf_Addr address,
2876                                       section_size_type view_size)
2877 {
2878   Output_segment* tls_segment = relinfo->layout->tls_segment();
2879
2880   const Sized_relobj_file<64, false>* object = relinfo->object;
2881   const elfcpp::Elf_Xword addend = rela.get_r_addend();
2882   elfcpp::Shdr<64, false> data_shdr(relinfo->data_shdr);
2883   bool is_executable = (data_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0;
2884
2885   elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
2886
2887   const bool is_final = (gsym == NULL
2888                          ? !parameters->options().shared()
2889                          : gsym->final_value_is_known());
2890   tls::Tls_optimization optimized_type
2891       = Target_x86_64::optimize_tls_reloc(is_final, r_type);
2892   switch (r_type)
2893     {
2894     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2895       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
2896         {
2897           // If this code sequence is used in a non-executable section,
2898           // we will not optimize the R_X86_64_DTPOFF32/64 relocation,
2899           // on the assumption that it's being used by itself in a debug
2900           // section.  Therefore, in the unlikely event that the code
2901           // sequence appears in a non-executable section, we simply
2902           // leave it unoptimized.
2903           optimized_type = tls::TLSOPT_NONE;
2904         }
2905       if (optimized_type == tls::TLSOPT_TO_LE)
2906         {
2907           gold_assert(tls_segment != NULL);
2908           this->tls_gd_to_le(relinfo, relnum, tls_segment,
2909                              rela, r_type, value, view,
2910                              view_size);
2911           break;
2912         }
2913       else
2914         {
2915           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2916                                    ? GOT_TYPE_TLS_OFFSET
2917                                    : GOT_TYPE_TLS_PAIR);
2918           unsigned int got_offset;
2919           if (gsym != NULL)
2920             {
2921               gold_assert(gsym->has_got_offset(got_type));
2922               got_offset = gsym->got_offset(got_type) - target->got_size();
2923             }
2924           else
2925             {
2926               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2927               gold_assert(object->local_has_got_offset(r_sym, got_type));
2928               got_offset = (object->local_got_offset(r_sym, got_type)
2929                             - target->got_size());
2930             }
2931           if (optimized_type == tls::TLSOPT_TO_IE)
2932             {
2933               gold_assert(tls_segment != NULL);
2934               value = target->got_plt_section()->address() + got_offset;
2935               this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
2936                                  value, view, address, view_size);
2937               break;
2938             }
2939           else if (optimized_type == tls::TLSOPT_NONE)
2940             {
2941               // Relocate the field with the offset of the pair of GOT
2942               // entries.
2943               value = target->got_plt_section()->address() + got_offset;
2944               Relocate_functions<64, false>::pcrela32(view, value, addend,
2945                                                       address);
2946               break;
2947             }
2948         }
2949       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2950                              _("unsupported reloc %u"), r_type);
2951       break;
2952
2953     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2954     case elfcpp::R_X86_64_TLSDESC_CALL:
2955       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
2956         {
2957           // See above comment for R_X86_64_TLSGD.
2958           optimized_type = tls::TLSOPT_NONE;
2959         }
2960       if (optimized_type == tls::TLSOPT_TO_LE)
2961         {
2962           gold_assert(tls_segment != NULL);
2963           this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
2964                                   rela, r_type, value, view,
2965                                   view_size);
2966           break;
2967         }
2968       else
2969         {
2970           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2971                                    ? GOT_TYPE_TLS_OFFSET
2972                                    : GOT_TYPE_TLS_DESC);
2973           unsigned int got_offset = 0;
2974           if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC
2975               && optimized_type == tls::TLSOPT_NONE)
2976             {
2977               // We created GOT entries in the .got.tlsdesc portion of
2978               // the .got.plt section, but the offset stored in the
2979               // symbol is the offset within .got.tlsdesc.
2980               got_offset = (target->got_size()
2981                             + target->got_plt_section()->data_size());
2982             }
2983           if (gsym != NULL)
2984             {
2985               gold_assert(gsym->has_got_offset(got_type));
2986               got_offset += gsym->got_offset(got_type) - target->got_size();
2987             }
2988           else
2989             {
2990               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2991               gold_assert(object->local_has_got_offset(r_sym, got_type));
2992               got_offset += (object->local_got_offset(r_sym, got_type)
2993                              - target->got_size());
2994             }
2995           if (optimized_type == tls::TLSOPT_TO_IE)
2996             {
2997               gold_assert(tls_segment != NULL);
2998               value = target->got_plt_section()->address() + got_offset;
2999               this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment,
3000                                       rela, r_type, value, view, address,
3001                                       view_size);
3002               break;
3003             }
3004           else if (optimized_type == tls::TLSOPT_NONE)
3005             {
3006               if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
3007                 {
3008                   // Relocate the field with the offset of the pair of GOT
3009                   // entries.
3010                   value = target->got_plt_section()->address() + got_offset;
3011                   Relocate_functions<64, false>::pcrela32(view, value, addend,
3012                                                           address);
3013                 }
3014               break;
3015             }
3016         }
3017       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3018                              _("unsupported reloc %u"), r_type);
3019       break;
3020
3021     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3022       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3023         {
3024           // See above comment for R_X86_64_TLSGD.
3025           optimized_type = tls::TLSOPT_NONE;
3026         }
3027       if (optimized_type == tls::TLSOPT_TO_LE)
3028         {
3029           gold_assert(tls_segment != NULL);
3030           this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
3031                              value, view, view_size);
3032           break;
3033         }
3034       else if (optimized_type == tls::TLSOPT_NONE)
3035         {
3036           // Relocate the field with the offset of the GOT entry for
3037           // the module index.
3038           unsigned int got_offset;
3039           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
3040                         - target->got_size());
3041           value = target->got_plt_section()->address() + got_offset;
3042           Relocate_functions<64, false>::pcrela32(view, value, addend,
3043                                                   address);
3044           break;
3045         }
3046       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3047                              _("unsupported reloc %u"), r_type);
3048       break;
3049
3050     case elfcpp::R_X86_64_DTPOFF32:
3051       // This relocation type is used in debugging information.
3052       // In that case we need to not optimize the value.  If the
3053       // section is not executable, then we assume we should not
3054       // optimize this reloc.  See comments above for R_X86_64_TLSGD,
3055       // R_X86_64_GOTPC32_TLSDESC, R_X86_64_TLSDESC_CALL, and
3056       // R_X86_64_TLSLD.
3057       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
3058         {
3059           gold_assert(tls_segment != NULL);
3060           value -= tls_segment->memsz();
3061         }
3062       Relocate_functions<64, false>::rela32(view, value, addend);
3063       break;
3064
3065     case elfcpp::R_X86_64_DTPOFF64:
3066       // See R_X86_64_DTPOFF32, just above, for why we check for is_executable.
3067       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
3068         {
3069           gold_assert(tls_segment != NULL);
3070           value -= tls_segment->memsz();
3071         }
3072       Relocate_functions<64, false>::rela64(view, value, addend);
3073       break;
3074
3075     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3076       if (optimized_type == tls::TLSOPT_TO_LE)
3077         {
3078           gold_assert(tls_segment != NULL);
3079           Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
3080                                                 rela, r_type, value, view,
3081                                                 view_size);
3082           break;
3083         }
3084       else if (optimized_type == tls::TLSOPT_NONE)
3085         {
3086           // Relocate the field with the offset of the GOT entry for
3087           // the tp-relative offset of the symbol.
3088           unsigned int got_offset;
3089           if (gsym != NULL)
3090             {
3091               gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
3092               got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
3093                             - target->got_size());
3094             }
3095           else
3096             {
3097               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
3098               gold_assert(object->local_has_got_offset(r_sym,
3099                                                        GOT_TYPE_TLS_OFFSET));
3100               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
3101                             - target->got_size());
3102             }
3103           value = target->got_plt_section()->address() + got_offset;
3104           Relocate_functions<64, false>::pcrela32(view, value, addend, address);
3105           break;
3106         }
3107       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3108                              _("unsupported reloc type %u"),
3109                              r_type);
3110       break;
3111
3112     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3113       value -= tls_segment->memsz();
3114       Relocate_functions<64, false>::rela32(view, value, addend);
3115       break;
3116     }
3117 }
3118
3119 // Do a relocation in which we convert a TLS General-Dynamic to an
3120 // Initial-Exec.
3121
3122 inline void
3123 Target_x86_64::Relocate::tls_gd_to_ie(const Relocate_info<64, false>* relinfo,
3124                                       size_t relnum,
3125                                       Output_segment*,
3126                                       const elfcpp::Rela<64, false>& rela,
3127                                       unsigned int,
3128                                       elfcpp::Elf_types<64>::Elf_Addr value,
3129                                       unsigned char* view,
3130                                       elfcpp::Elf_types<64>::Elf_Addr address,
3131                                       section_size_type view_size)
3132 {
3133   // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
3134   // .word 0x6666; rex64; call __tls_get_addr
3135   // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
3136
3137   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
3138   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
3139
3140   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3141                  (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
3142   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3143                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
3144
3145   memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
3146
3147   const elfcpp::Elf_Xword addend = rela.get_r_addend();
3148   Relocate_functions<64, false>::pcrela32(view + 8, value, addend - 8, address);
3149
3150   // The next reloc should be a PLT32 reloc against __tls_get_addr.
3151   // We can skip it.
3152   this->skip_call_tls_get_addr_ = true;
3153 }
3154
3155 // Do a relocation in which we convert a TLS General-Dynamic to a
3156 // Local-Exec.
3157
3158 inline void
3159 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
3160                                       size_t relnum,
3161                                       Output_segment* tls_segment,
3162                                       const elfcpp::Rela<64, false>& rela,
3163                                       unsigned int,
3164                                       elfcpp::Elf_types<64>::Elf_Addr value,
3165                                       unsigned char* view,
3166                                       section_size_type view_size)
3167 {
3168   // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
3169   // .word 0x6666; rex64; call __tls_get_addr
3170   // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
3171
3172   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
3173   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
3174
3175   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3176                  (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
3177   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3178                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
3179
3180   memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
3181
3182   value -= tls_segment->memsz();
3183   Relocate_functions<64, false>::rela32(view + 8, value, 0);
3184
3185   // The next reloc should be a PLT32 reloc against __tls_get_addr.
3186   // We can skip it.
3187   this->skip_call_tls_get_addr_ = true;
3188 }
3189
3190 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
3191
3192 inline void
3193 Target_x86_64::Relocate::tls_desc_gd_to_ie(
3194     const Relocate_info<64, false>* relinfo,
3195     size_t relnum,
3196     Output_segment*,
3197     const elfcpp::Rela<64, false>& rela,
3198     unsigned int r_type,
3199     elfcpp::Elf_types<64>::Elf_Addr value,
3200     unsigned char* view,
3201     elfcpp::Elf_types<64>::Elf_Addr address,
3202     section_size_type view_size)
3203 {
3204   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
3205     {
3206       // leaq foo@tlsdesc(%rip), %rax
3207       // ==> movq foo@gottpoff(%rip), %rax
3208       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
3209       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3210       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3211                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
3212       view[-2] = 0x8b;
3213       const elfcpp::Elf_Xword addend = rela.get_r_addend();
3214       Relocate_functions<64, false>::pcrela32(view, value, addend, address);
3215     }
3216   else
3217     {
3218       // call *foo@tlscall(%rax)
3219       // ==> nop; nop
3220       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
3221       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
3222       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3223                      view[0] == 0xff && view[1] == 0x10);
3224       view[0] = 0x66;
3225       view[1] = 0x90;
3226     }
3227 }
3228
3229 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
3230
3231 inline void
3232 Target_x86_64::Relocate::tls_desc_gd_to_le(
3233     const Relocate_info<64, false>* relinfo,
3234     size_t relnum,
3235     Output_segment* tls_segment,
3236     const elfcpp::Rela<64, false>& rela,
3237     unsigned int r_type,
3238     elfcpp::Elf_types<64>::Elf_Addr value,
3239     unsigned char* view,
3240     section_size_type view_size)
3241 {
3242   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
3243     {
3244       // leaq foo@tlsdesc(%rip), %rax
3245       // ==> movq foo@tpoff, %rax
3246       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
3247       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3248       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3249                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
3250       view[-2] = 0xc7;
3251       view[-1] = 0xc0;
3252       value -= tls_segment->memsz();
3253       Relocate_functions<64, false>::rela32(view, value, 0);
3254     }
3255   else
3256     {
3257       // call *foo@tlscall(%rax)
3258       // ==> nop; nop
3259       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
3260       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
3261       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3262                      view[0] == 0xff && view[1] == 0x10);
3263       view[0] = 0x66;
3264       view[1] = 0x90;
3265     }
3266 }
3267
3268 inline void
3269 Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
3270                                       size_t relnum,
3271                                       Output_segment*,
3272                                       const elfcpp::Rela<64, false>& rela,
3273                                       unsigned int,
3274                                       elfcpp::Elf_types<64>::Elf_Addr,
3275                                       unsigned char* view,
3276                                       section_size_type view_size)
3277 {
3278   // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
3279   // ... leq foo@dtpoff(%rax),%reg
3280   // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
3281
3282   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
3283   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
3284
3285   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3286                  view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
3287
3288   tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
3289
3290   memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
3291
3292   // The next reloc should be a PLT32 reloc against __tls_get_addr.
3293   // We can skip it.
3294   this->skip_call_tls_get_addr_ = true;
3295 }
3296
3297 // Do a relocation in which we convert a TLS Initial-Exec to a
3298 // Local-Exec.
3299
3300 inline void
3301 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
3302                                       size_t relnum,
3303                                       Output_segment* tls_segment,
3304                                       const elfcpp::Rela<64, false>& rela,
3305                                       unsigned int,
3306                                       elfcpp::Elf_types<64>::Elf_Addr value,
3307                                       unsigned char* view,
3308                                       section_size_type view_size)
3309 {
3310   // We need to examine the opcodes to figure out which instruction we
3311   // are looking at.
3312
3313   // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
3314   // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
3315
3316   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
3317   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3318
3319   unsigned char op1 = view[-3];
3320   unsigned char op2 = view[-2];
3321   unsigned char op3 = view[-1];
3322   unsigned char reg = op3 >> 3;
3323
3324   if (op2 == 0x8b)
3325     {
3326       // movq
3327       if (op1 == 0x4c)
3328         view[-3] = 0x49;
3329       view[-2] = 0xc7;
3330       view[-1] = 0xc0 | reg;
3331     }
3332   else if (reg == 4)
3333     {
3334       // Special handling for %rsp.
3335       if (op1 == 0x4c)
3336         view[-3] = 0x49;
3337       view[-2] = 0x81;
3338       view[-1] = 0xc0 | reg;
3339     }
3340   else
3341     {
3342       // addq
3343       if (op1 == 0x4c)
3344         view[-3] = 0x4d;
3345       view[-2] = 0x8d;
3346       view[-1] = 0x80 | reg | (reg << 3);
3347     }
3348
3349   value -= tls_segment->memsz();
3350   Relocate_functions<64, false>::rela32(view, value, 0);
3351 }
3352
3353 // Relocate section data.
3354
3355 void
3356 Target_x86_64::relocate_section(
3357     const Relocate_info<64, false>* relinfo,
3358     unsigned int sh_type,
3359     const unsigned char* prelocs,
3360     size_t reloc_count,
3361     Output_section* output_section,
3362     bool needs_special_offset_handling,
3363     unsigned char* view,
3364     elfcpp::Elf_types<64>::Elf_Addr address,
3365     section_size_type view_size,
3366     const Reloc_symbol_changes* reloc_symbol_changes)
3367 {
3368   gold_assert(sh_type == elfcpp::SHT_RELA);
3369
3370   gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
3371                          Target_x86_64::Relocate>(
3372     relinfo,
3373     this,
3374     prelocs,
3375     reloc_count,
3376     output_section,
3377     needs_special_offset_handling,
3378     view,
3379     address,
3380     view_size,
3381     reloc_symbol_changes);
3382 }
3383
3384 // Apply an incremental relocation.  Incremental relocations always refer
3385 // to global symbols.
3386
3387 void
3388 Target_x86_64::apply_relocation(
3389     const Relocate_info<64, false>* relinfo,
3390     elfcpp::Elf_types<64>::Elf_Addr r_offset,
3391     unsigned int r_type,
3392     elfcpp::Elf_types<64>::Elf_Swxword r_addend,
3393     const Symbol* gsym,
3394     unsigned char* view,
3395     elfcpp::Elf_types<64>::Elf_Addr address,
3396     section_size_type view_size)
3397 {
3398   gold::apply_relocation<64, false, Target_x86_64, Target_x86_64::Relocate>(
3399     relinfo,
3400     this,
3401     r_offset,
3402     r_type,
3403     r_addend,
3404     gsym,
3405     view,
3406     address,
3407     view_size);
3408 }
3409
3410 // Return the size of a relocation while scanning during a relocatable
3411 // link.
3412
3413 unsigned int
3414 Target_x86_64::Relocatable_size_for_reloc::get_size_for_reloc(
3415     unsigned int r_type,
3416     Relobj* object)
3417 {
3418   switch (r_type)
3419     {
3420     case elfcpp::R_X86_64_NONE:
3421     case elfcpp::R_X86_64_GNU_VTINHERIT:
3422     case elfcpp::R_X86_64_GNU_VTENTRY:
3423     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3424     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3425     case elfcpp::R_X86_64_TLSDESC_CALL:
3426     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3427     case elfcpp::R_X86_64_DTPOFF32:
3428     case elfcpp::R_X86_64_DTPOFF64:
3429     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3430     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3431       return 0;
3432
3433     case elfcpp::R_X86_64_64:
3434     case elfcpp::R_X86_64_PC64:
3435     case elfcpp::R_X86_64_GOTOFF64:
3436     case elfcpp::R_X86_64_GOTPC64:
3437     case elfcpp::R_X86_64_PLTOFF64:
3438     case elfcpp::R_X86_64_GOT64:
3439     case elfcpp::R_X86_64_GOTPCREL64:
3440     case elfcpp::R_X86_64_GOTPCREL:
3441     case elfcpp::R_X86_64_GOTPLT64:
3442       return 8;
3443
3444     case elfcpp::R_X86_64_32:
3445     case elfcpp::R_X86_64_32S:
3446     case elfcpp::R_X86_64_PC32:
3447     case elfcpp::R_X86_64_PLT32:
3448     case elfcpp::R_X86_64_GOTPC32:
3449     case elfcpp::R_X86_64_GOT32:
3450       return 4;
3451
3452     case elfcpp::R_X86_64_16:
3453     case elfcpp::R_X86_64_PC16:
3454       return 2;
3455
3456     case elfcpp::R_X86_64_8:
3457     case elfcpp::R_X86_64_PC8:
3458       return 1;
3459
3460     case elfcpp::R_X86_64_COPY:
3461     case elfcpp::R_X86_64_GLOB_DAT:
3462     case elfcpp::R_X86_64_JUMP_SLOT:
3463     case elfcpp::R_X86_64_RELATIVE:
3464     case elfcpp::R_X86_64_IRELATIVE:
3465       // These are outstanding tls relocs, which are unexpected when linking
3466     case elfcpp::R_X86_64_TPOFF64:
3467     case elfcpp::R_X86_64_DTPMOD64:
3468     case elfcpp::R_X86_64_TLSDESC:
3469       object->error(_("unexpected reloc %u in object file"), r_type);
3470       return 0;
3471
3472     case elfcpp::R_X86_64_SIZE32:
3473     case elfcpp::R_X86_64_SIZE64:
3474     default:
3475       object->error(_("unsupported reloc %u against local symbol"), r_type);
3476       return 0;
3477     }
3478 }
3479
3480 // Scan the relocs during a relocatable link.
3481
3482 void
3483 Target_x86_64::scan_relocatable_relocs(Symbol_table* symtab,
3484                                        Layout* layout,
3485                                        Sized_relobj_file<64, false>* object,
3486                                        unsigned int data_shndx,
3487                                        unsigned int sh_type,
3488                                        const unsigned char* prelocs,
3489                                        size_t reloc_count,
3490                                        Output_section* output_section,
3491                                        bool needs_special_offset_handling,
3492                                        size_t local_symbol_count,
3493                                        const unsigned char* plocal_symbols,
3494                                        Relocatable_relocs* rr)
3495 {
3496   gold_assert(sh_type == elfcpp::SHT_RELA);
3497
3498   typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
3499     Relocatable_size_for_reloc> Scan_relocatable_relocs;
3500
3501   gold::scan_relocatable_relocs<64, false, elfcpp::SHT_RELA,
3502       Scan_relocatable_relocs>(
3503     symtab,
3504     layout,
3505     object,
3506     data_shndx,
3507     prelocs,
3508     reloc_count,
3509     output_section,
3510     needs_special_offset_handling,
3511     local_symbol_count,
3512     plocal_symbols,
3513     rr);
3514 }
3515
3516 // Relocate a section during a relocatable link.
3517
3518 void
3519 Target_x86_64::relocate_for_relocatable(
3520     const Relocate_info<64, false>* relinfo,
3521     unsigned int sh_type,
3522     const unsigned char* prelocs,
3523     size_t reloc_count,
3524     Output_section* output_section,
3525     off_t offset_in_output_section,
3526     const Relocatable_relocs* rr,
3527     unsigned char* view,
3528     elfcpp::Elf_types<64>::Elf_Addr view_address,
3529     section_size_type view_size,
3530     unsigned char* reloc_view,
3531     section_size_type reloc_view_size)
3532 {
3533   gold_assert(sh_type == elfcpp::SHT_RELA);
3534
3535   gold::relocate_for_relocatable<64, false, elfcpp::SHT_RELA>(
3536     relinfo,
3537     prelocs,
3538     reloc_count,
3539     output_section,
3540     offset_in_output_section,
3541     rr,
3542     view,
3543     view_address,
3544     view_size,
3545     reloc_view,
3546     reloc_view_size);
3547 }
3548
3549 // Return the value to use for a dynamic which requires special
3550 // treatment.  This is how we support equality comparisons of function
3551 // pointers across shared library boundaries, as described in the
3552 // processor specific ABI supplement.
3553
3554 uint64_t
3555 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
3556 {
3557   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
3558   return this->plt_section()->address() + gsym->plt_offset();
3559 }
3560
3561 // Return a string used to fill a code section with nops to take up
3562 // the specified length.
3563
3564 std::string
3565 Target_x86_64::do_code_fill(section_size_type length) const
3566 {
3567   if (length >= 16)
3568     {
3569       // Build a jmpq instruction to skip over the bytes.
3570       unsigned char jmp[5];
3571       jmp[0] = 0xe9;
3572       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
3573       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
3574               + std::string(length - 5, '\0'));
3575     }
3576
3577   // Nop sequences of various lengths.
3578   const char nop1[1] = { 0x90 };                   // nop
3579   const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
3580   const char nop3[3] = { 0x0f, 0x1f, 0x00 };       // nop (%rax)
3581   const char nop4[4] = { 0x0f, 0x1f, 0x40, 0x00};  // nop 0(%rax)
3582   const char nop5[5] = { 0x0f, 0x1f, 0x44, 0x00,   // nop 0(%rax,%rax,1)
3583                          0x00 };
3584   const char nop6[6] = { 0x66, 0x0f, 0x1f, 0x44,   // nopw 0(%rax,%rax,1)
3585                          0x00, 0x00 };
3586   const char nop7[7] = { 0x0f, 0x1f, 0x80, 0x00,   // nopl 0L(%rax)
3587                          0x00, 0x00, 0x00 };
3588   const char nop8[8] = { 0x0f, 0x1f, 0x84, 0x00,   // nopl 0L(%rax,%rax,1)
3589                          0x00, 0x00, 0x00, 0x00 };
3590   const char nop9[9] = { 0x66, 0x0f, 0x1f, 0x84,   // nopw 0L(%rax,%rax,1)
3591                          0x00, 0x00, 0x00, 0x00,
3592                          0x00 };
3593   const char nop10[10] = { 0x66, 0x2e, 0x0f, 0x1f, // nopw %cs:0L(%rax,%rax,1)
3594                            0x84, 0x00, 0x00, 0x00,
3595                            0x00, 0x00 };
3596   const char nop11[11] = { 0x66, 0x66, 0x2e, 0x0f, // data16
3597                            0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
3598                            0x00, 0x00, 0x00 };
3599   const char nop12[12] = { 0x66, 0x66, 0x66, 0x2e, // data16; data16
3600                            0x0f, 0x1f, 0x84, 0x00, // nopw %cs:0L(%rax,%rax,1)
3601                            0x00, 0x00, 0x00, 0x00 };
3602   const char nop13[13] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
3603                            0x2e, 0x0f, 0x1f, 0x84, // nopw %cs:0L(%rax,%rax,1)
3604                            0x00, 0x00, 0x00, 0x00,
3605                            0x00 };
3606   const char nop14[14] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
3607                            0x66, 0x2e, 0x0f, 0x1f, // data16
3608                            0x84, 0x00, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
3609                            0x00, 0x00 };
3610   const char nop15[15] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
3611                            0x66, 0x66, 0x2e, 0x0f, // data16; data16
3612                            0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
3613                            0x00, 0x00, 0x00 };
3614
3615   const char* nops[16] = {
3616     NULL,
3617     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
3618     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
3619   };
3620
3621   return std::string(nops[length], length);
3622 }
3623
3624 // Return the addend to use for a target specific relocation.  The
3625 // only target specific relocation is R_X86_64_TLSDESC for a local
3626 // symbol.  We want to set the addend is the offset of the local
3627 // symbol in the TLS segment.
3628
3629 uint64_t
3630 Target_x86_64::do_reloc_addend(void* arg, unsigned int r_type,
3631                                uint64_t) const
3632 {
3633   gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
3634   uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
3635   gold_assert(intarg < this->tlsdesc_reloc_info_.size());
3636   const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
3637   const Symbol_value<64>* psymval = ti.object->local_symbol(ti.r_sym);
3638   gold_assert(psymval->is_tls_symbol());
3639   // The value of a TLS symbol is the offset in the TLS segment.
3640   return psymval->value(ti.object, 0);
3641 }
3642
3643 // FNOFFSET in section SHNDX in OBJECT is the start of a function
3644 // compiled with -fsplit-stack.  The function calls non-split-stack
3645 // code.  We have to change the function so that it always ensures
3646 // that it has enough stack space to run some random function.
3647
3648 void
3649 Target_x86_64::do_calls_non_split(Relobj* object, unsigned int shndx,
3650                                   section_offset_type fnoffset,
3651                                   section_size_type fnsize,
3652                                   unsigned char* view,
3653                                   section_size_type view_size,
3654                                   std::string* from,
3655                                   std::string* to) const
3656 {
3657   // The function starts with a comparison of the stack pointer and a
3658   // field in the TCB.  This is followed by a jump.
3659
3660   // cmp %fs:NN,%rsp
3661   if (this->match_view(view, view_size, fnoffset, "\x64\x48\x3b\x24\x25", 5)
3662       && fnsize > 9)
3663     {
3664       // We will call __morestack if the carry flag is set after this
3665       // comparison.  We turn the comparison into an stc instruction
3666       // and some nops.
3667       view[fnoffset] = '\xf9';
3668       this->set_view_to_nop(view, view_size, fnoffset + 1, 8);
3669     }
3670   // lea NN(%rsp),%r10
3671   // lea NN(%rsp),%r11
3672   else if ((this->match_view(view, view_size, fnoffset,
3673                              "\x4c\x8d\x94\x24", 4)
3674             || this->match_view(view, view_size, fnoffset,
3675                                 "\x4c\x8d\x9c\x24", 4))
3676            && fnsize > 8)
3677     {
3678       // This is loading an offset from the stack pointer for a
3679       // comparison.  The offset is negative, so we decrease the
3680       // offset by the amount of space we need for the stack.  This
3681       // means we will avoid calling __morestack if there happens to
3682       // be plenty of space on the stack already.
3683       unsigned char* pval = view + fnoffset + 4;
3684       uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
3685       val -= parameters->options().split_stack_adjust_size();
3686       elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
3687     }
3688   else
3689     {
3690       if (!object->has_no_split_stack())
3691         object->error(_("failed to match split-stack sequence at "
3692                         "section %u offset %0zx"),
3693                       shndx, static_cast<size_t>(fnoffset));
3694       return;
3695     }
3696
3697   // We have to change the function so that it calls
3698   // __morestack_non_split instead of __morestack.  The former will
3699   // allocate additional stack space.
3700   *from = "__morestack";
3701   *to = "__morestack_non_split";
3702 }
3703
3704 // The selector for x86_64 object files.
3705
3706 class Target_selector_x86_64 : public Target_selector_freebsd
3707 {
3708 public:
3709   Target_selector_x86_64()
3710     : Target_selector_freebsd(elfcpp::EM_X86_64, 64, false, "elf64-x86-64",
3711                               "elf64-x86-64-freebsd", "elf_x86_64")
3712   { }
3713
3714   Target*
3715   do_instantiate_target()
3716   { return new Target_x86_64(); }
3717
3718 };
3719
3720 Target_selector_x86_64 target_selector_x86_64;
3721
3722 } // End anonymous namespace.