d637b5ef7fea70cb97f82d7e8db8ee03e1f32e06
[external/binutils.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "dwarf.h"
29 #include "parameters.h"
30 #include "reloc.h"
31 #include "x86_64.h"
32 #include "object.h"
33 #include "symtab.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "copy-relocs.h"
37 #include "target.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
40 #include "tls.h"
41 #include "freebsd.h"
42 #include "nacl.h"
43 #include "gc.h"
44 #include "icf.h"
45
46 namespace
47 {
48
49 using namespace gold;
50
51 // A class to handle the .got.plt section.
52
53 class Output_data_got_plt_x86_64 : public Output_section_data_build
54 {
55  public:
56   Output_data_got_plt_x86_64(Layout* layout)
57     : Output_section_data_build(8),
58       layout_(layout)
59   { }
60
61   Output_data_got_plt_x86_64(Layout* layout, off_t data_size)
62     : Output_section_data_build(data_size, 8),
63       layout_(layout)
64   { }
65
66  protected:
67   // Write out the PLT data.
68   void
69   do_write(Output_file*);
70
71   // Write to a map file.
72   void
73   do_print_to_mapfile(Mapfile* mapfile) const
74   { mapfile->print_output_data(this, "** GOT PLT"); }
75
76  private:
77   // A pointer to the Layout class, so that we can find the .dynamic
78   // section when we write out the GOT PLT section.
79   Layout* layout_;
80 };
81
82 // A class to handle the PLT data.
83 // This is an abstract base class that handles most of the linker details
84 // but does not know the actual contents of PLT entries.  The derived
85 // classes below fill in those details.
86
87 template<int size>
88 class Output_data_plt_x86_64 : public Output_section_data
89 {
90  public:
91   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
92
93   Output_data_plt_x86_64(Layout* layout, uint64_t addralign,
94                          Output_data_got<64, false>* got,
95                          Output_data_got_plt_x86_64* got_plt,
96                          Output_data_space* got_irelative)
97     : Output_section_data(addralign), tlsdesc_rel_(NULL),
98       irelative_rel_(NULL), got_(got), got_plt_(got_plt),
99       got_irelative_(got_irelative), count_(0), irelative_count_(0),
100       tlsdesc_got_offset_(-1U), free_list_()
101   { this->init(layout); }
102
103   Output_data_plt_x86_64(Layout* layout, uint64_t plt_entry_size,
104                          Output_data_got<64, false>* got,
105                          Output_data_got_plt_x86_64* got_plt,
106                          Output_data_space* got_irelative,
107                          unsigned int plt_count)
108     : Output_section_data((plt_count + 1) * plt_entry_size,
109                           plt_entry_size, false),
110       tlsdesc_rel_(NULL), irelative_rel_(NULL), got_(got),
111       got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
112       irelative_count_(0), tlsdesc_got_offset_(-1U), free_list_()
113   {
114     this->init(layout);
115
116     // Initialize the free list and reserve the first entry.
117     this->free_list_.init((plt_count + 1) * plt_entry_size, false);
118     this->free_list_.remove(0, plt_entry_size);
119   }
120
121   // Initialize the PLT section.
122   void
123   init(Layout* layout);
124
125   // Add an entry to the PLT.
126   void
127   add_entry(Symbol_table*, Layout*, Symbol* gsym);
128
129   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
130   unsigned int
131   add_local_ifunc_entry(Symbol_table* symtab, Layout*,
132                         Sized_relobj_file<size, false>* relobj,
133                         unsigned int local_sym_index);
134
135   // Add the relocation for a PLT entry.
136   void
137   add_relocation(Symbol_table*, Layout*, Symbol* gsym,
138                  unsigned int got_offset);
139
140   // Add the reserved TLSDESC_PLT entry to the PLT.
141   void
142   reserve_tlsdesc_entry(unsigned int got_offset)
143   { this->tlsdesc_got_offset_ = got_offset; }
144
145   // Return true if a TLSDESC_PLT entry has been reserved.
146   bool
147   has_tlsdesc_entry() const
148   { return this->tlsdesc_got_offset_ != -1U; }
149
150   // Return the GOT offset for the reserved TLSDESC_PLT entry.
151   unsigned int
152   get_tlsdesc_got_offset() const
153   { return this->tlsdesc_got_offset_; }
154
155   // Return the offset of the reserved TLSDESC_PLT entry.
156   unsigned int
157   get_tlsdesc_plt_offset() const
158   {
159     return ((this->count_ + this->irelative_count_ + 1)
160             * this->get_plt_entry_size());
161   }
162
163   // Return the .rela.plt section data.
164   Reloc_section*
165   rela_plt()
166   { return this->rel_; }
167
168   // Return where the TLSDESC relocations should go.
169   Reloc_section*
170   rela_tlsdesc(Layout*);
171
172   // Return where the IRELATIVE relocations should go in the PLT
173   // relocations.
174   Reloc_section*
175   rela_irelative(Symbol_table*, Layout*);
176
177   // Return whether we created a section for IRELATIVE relocations.
178   bool
179   has_irelative_section() const
180   { return this->irelative_rel_ != NULL; }
181
182   // Return the number of PLT entries.
183   unsigned int
184   entry_count() const
185   { return this->count_ + this->irelative_count_; }
186
187   // Return the offset of the first non-reserved PLT entry.
188   unsigned int
189   first_plt_entry_offset()
190   { return this->get_plt_entry_size(); }
191
192   // Return the size of a PLT entry.
193   unsigned int
194   get_plt_entry_size() const
195   { return this->do_get_plt_entry_size(); }
196
197   // Reserve a slot in the PLT for an existing symbol in an incremental update.
198   void
199   reserve_slot(unsigned int plt_index)
200   {
201     this->free_list_.remove((plt_index + 1) * this->get_plt_entry_size(),
202                             (plt_index + 2) * this->get_plt_entry_size());
203   }
204
205   // Return the PLT address to use for a global symbol.
206   uint64_t
207   address_for_global(const Symbol*);
208
209   // Return the PLT address to use for a local symbol.
210   uint64_t
211   address_for_local(const Relobj*, unsigned int symndx);
212
213   // Add .eh_frame information for the PLT.
214   void
215   add_eh_frame(Layout* layout)
216   { this->do_add_eh_frame(layout); }
217
218  protected:
219   // Fill in the first PLT entry.
220   void
221   fill_first_plt_entry(unsigned char* pov,
222                        typename elfcpp::Elf_types<size>::Elf_Addr got_address,
223                        typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
224   { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
225
226   // Fill in a normal PLT entry.  Returns the offset into the entry that
227   // should be the initial GOT slot value.
228   unsigned int
229   fill_plt_entry(unsigned char* pov,
230                  typename elfcpp::Elf_types<size>::Elf_Addr got_address,
231                  typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
232                  unsigned int got_offset,
233                  unsigned int plt_offset,
234                  unsigned int plt_index)
235   {
236     return this->do_fill_plt_entry(pov, got_address, plt_address,
237                                    got_offset, plt_offset, plt_index);
238   }
239
240   // Fill in the reserved TLSDESC PLT entry.
241   void
242   fill_tlsdesc_entry(unsigned char* pov,
243                      typename elfcpp::Elf_types<size>::Elf_Addr got_address,
244                      typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
245                      typename elfcpp::Elf_types<size>::Elf_Addr got_base,
246                      unsigned int tlsdesc_got_offset,
247                      unsigned int plt_offset)
248   {
249     this->do_fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
250                                 tlsdesc_got_offset, plt_offset);
251   }
252
253   virtual unsigned int
254   do_get_plt_entry_size() const = 0;
255
256   virtual void
257   do_fill_first_plt_entry(unsigned char* pov,
258                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
259                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr)
260     = 0;
261
262   virtual unsigned int
263   do_fill_plt_entry(unsigned char* pov,
264                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
265                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
266                     unsigned int got_offset,
267                     unsigned int plt_offset,
268                     unsigned int plt_index) = 0;
269
270   virtual void
271   do_fill_tlsdesc_entry(unsigned char* pov,
272                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
273                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
274                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
275                         unsigned int tlsdesc_got_offset,
276                         unsigned int plt_offset) = 0;
277
278   virtual void
279   do_add_eh_frame(Layout* layout) = 0;
280
281   void
282   do_adjust_output_section(Output_section* os);
283
284   // Write to a map file.
285   void
286   do_print_to_mapfile(Mapfile* mapfile) const
287   { mapfile->print_output_data(this, _("** PLT")); }
288
289   // The CIE of the .eh_frame unwind information for the PLT.
290   static const int plt_eh_frame_cie_size = 16;
291   static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
292
293  private:
294   // Set the final size.
295   void
296   set_final_data_size();
297
298   // Write out the PLT data.
299   void
300   do_write(Output_file*);
301
302   // The reloc section.
303   Reloc_section* rel_;
304   // The TLSDESC relocs, if necessary.  These must follow the regular
305   // PLT relocs.
306   Reloc_section* tlsdesc_rel_;
307   // The IRELATIVE relocs, if necessary.  These must follow the
308   // regular PLT relocations and the TLSDESC relocations.
309   Reloc_section* irelative_rel_;
310   // The .got section.
311   Output_data_got<64, false>* got_;
312   // The .got.plt section.
313   Output_data_got_plt_x86_64* got_plt_;
314   // The part of the .got.plt section used for IRELATIVE relocs.
315   Output_data_space* got_irelative_;
316   // The number of PLT entries.
317   unsigned int count_;
318   // Number of PLT entries with R_X86_64_IRELATIVE relocs.  These
319   // follow the regular PLT entries.
320   unsigned int irelative_count_;
321   // Offset of the reserved TLSDESC_GOT entry when needed.
322   unsigned int tlsdesc_got_offset_;
323   // List of available regions within the section, for incremental
324   // update links.
325   Free_list free_list_;
326 };
327
328 template<int size>
329 class Output_data_plt_x86_64_standard : public Output_data_plt_x86_64<size>
330 {
331  public:
332   Output_data_plt_x86_64_standard(Layout* layout,
333                                   Output_data_got<64, false>* got,
334                                   Output_data_got_plt_x86_64* got_plt,
335                                   Output_data_space* got_irelative)
336     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
337                                    got, got_plt, got_irelative)
338   { }
339
340   Output_data_plt_x86_64_standard(Layout* layout,
341                                   Output_data_got<64, false>* got,
342                                   Output_data_got_plt_x86_64* got_plt,
343                                   Output_data_space* got_irelative,
344                                   unsigned int plt_count)
345     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
346                                    got, got_plt, got_irelative,
347                                    plt_count)
348   { }
349
350  protected:
351   virtual unsigned int
352   do_get_plt_entry_size() const
353   { return plt_entry_size; }
354
355   virtual void
356   do_add_eh_frame(Layout* layout)
357   {
358     layout->add_eh_frame_for_plt(this,
359                                  this->plt_eh_frame_cie,
360                                  this->plt_eh_frame_cie_size,
361                                  plt_eh_frame_fde,
362                                  plt_eh_frame_fde_size);
363   }
364
365   virtual void
366   do_fill_first_plt_entry(unsigned char* pov,
367                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
368                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
369
370   virtual unsigned int
371   do_fill_plt_entry(unsigned char* pov,
372                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
373                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
374                     unsigned int got_offset,
375                     unsigned int plt_offset,
376                     unsigned int plt_index);
377
378   virtual void
379   do_fill_tlsdesc_entry(unsigned char* pov,
380                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
381                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
382                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
383                         unsigned int tlsdesc_got_offset,
384                         unsigned int plt_offset);
385
386  private:
387   // The size of an entry in the PLT.
388   static const int plt_entry_size = 16;
389
390   // The first entry in the PLT.
391   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
392   // procedure linkage table for both programs and shared objects."
393   static const unsigned char first_plt_entry[plt_entry_size];
394
395   // Other entries in the PLT for an executable.
396   static const unsigned char plt_entry[plt_entry_size];
397
398   // The reserved TLSDESC entry in the PLT for an executable.
399   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
400
401   // The .eh_frame unwind information for the PLT.
402   static const int plt_eh_frame_fde_size = 32;
403   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
404 };
405
406 // The x86_64 target class.
407 // See the ABI at
408 //   http://www.x86-64.org/documentation/abi.pdf
409 // TLS info comes from
410 //   http://people.redhat.com/drepper/tls.pdf
411 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
412
413 template<int size>
414 class Target_x86_64 : public Sized_target<size, false>
415 {
416  public:
417   // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
418   // uses only Elf64_Rela relocation entries with explicit addends."
419   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
420
421   Target_x86_64(const Target::Target_info* info = &x86_64_info)
422     : Sized_target<size, false>(info),
423       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
424       got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
425       rela_irelative_(NULL), copy_relocs_(elfcpp::R_X86_64_COPY),
426       got_mod_index_offset_(-1U), tlsdesc_reloc_info_(),
427       tls_base_symbol_defined_(false)
428   { }
429
430   // Hook for a new output section.
431   void
432   do_new_output_section(Output_section*) const;
433
434   // Scan the relocations to look for symbol adjustments.
435   void
436   gc_process_relocs(Symbol_table* symtab,
437                     Layout* layout,
438                     Sized_relobj_file<size, false>* object,
439                     unsigned int data_shndx,
440                     unsigned int sh_type,
441                     const unsigned char* prelocs,
442                     size_t reloc_count,
443                     Output_section* output_section,
444                     bool needs_special_offset_handling,
445                     size_t local_symbol_count,
446                     const unsigned char* plocal_symbols);
447
448   // Scan the relocations to look for symbol adjustments.
449   void
450   scan_relocs(Symbol_table* symtab,
451               Layout* layout,
452               Sized_relobj_file<size, false>* object,
453               unsigned int data_shndx,
454               unsigned int sh_type,
455               const unsigned char* prelocs,
456               size_t reloc_count,
457               Output_section* output_section,
458               bool needs_special_offset_handling,
459               size_t local_symbol_count,
460               const unsigned char* plocal_symbols);
461
462   // Finalize the sections.
463   void
464   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
465
466   // Return the value to use for a dynamic which requires special
467   // treatment.
468   uint64_t
469   do_dynsym_value(const Symbol*) const;
470
471   // Relocate a section.
472   void
473   relocate_section(const Relocate_info<size, false>*,
474                    unsigned int sh_type,
475                    const unsigned char* prelocs,
476                    size_t reloc_count,
477                    Output_section* output_section,
478                    bool needs_special_offset_handling,
479                    unsigned char* view,
480                    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
481                    section_size_type view_size,
482                    const Reloc_symbol_changes*);
483
484   // Scan the relocs during a relocatable link.
485   void
486   scan_relocatable_relocs(Symbol_table* symtab,
487                           Layout* layout,
488                           Sized_relobj_file<size, false>* object,
489                           unsigned int data_shndx,
490                           unsigned int sh_type,
491                           const unsigned char* prelocs,
492                           size_t reloc_count,
493                           Output_section* output_section,
494                           bool needs_special_offset_handling,
495                           size_t local_symbol_count,
496                           const unsigned char* plocal_symbols,
497                           Relocatable_relocs*);
498
499   // Emit relocations for a section.
500   void
501   relocate_relocs(
502       const Relocate_info<size, false>*,
503       unsigned int sh_type,
504       const unsigned char* prelocs,
505       size_t reloc_count,
506       Output_section* output_section,
507       typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
508       const Relocatable_relocs*,
509       unsigned char* view,
510       typename elfcpp::Elf_types<size>::Elf_Addr view_address,
511       section_size_type view_size,
512       unsigned char* reloc_view,
513       section_size_type reloc_view_size);
514
515   // Return a string used to fill a code section with nops.
516   std::string
517   do_code_fill(section_size_type length) const;
518
519   // Return whether SYM is defined by the ABI.
520   bool
521   do_is_defined_by_abi(const Symbol* sym) const
522   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
523
524   // Return the symbol index to use for a target specific relocation.
525   // The only target specific relocation is R_X86_64_TLSDESC for a
526   // local symbol, which is an absolute reloc.
527   unsigned int
528   do_reloc_symbol_index(void*, unsigned int r_type) const
529   {
530     gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
531     return 0;
532   }
533
534   // Return the addend to use for a target specific relocation.
535   uint64_t
536   do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
537
538   // Return the PLT section.
539   uint64_t
540   do_plt_address_for_global(const Symbol* gsym) const
541   { return this->plt_section()->address_for_global(gsym); }
542
543   uint64_t
544   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
545   { return this->plt_section()->address_for_local(relobj, symndx); }
546
547   // This function should be defined in targets that can use relocation
548   // types to determine (implemented in local_reloc_may_be_function_pointer
549   // and global_reloc_may_be_function_pointer)
550   // if a function's pointer is taken.  ICF uses this in safe mode to only
551   // fold those functions whose pointer is defintely not taken.  For x86_64
552   // pie binaries, safe ICF cannot be done by looking at relocation types.
553   bool
554   do_can_check_for_function_pointers() const
555   { return !parameters->options().pie(); }
556
557   // Return the base for a DW_EH_PE_datarel encoding.
558   uint64_t
559   do_ehframe_datarel_base() const;
560
561   // Adjust -fsplit-stack code which calls non-split-stack code.
562   void
563   do_calls_non_split(Relobj* object, unsigned int shndx,
564                      section_offset_type fnoffset, section_size_type fnsize,
565                      unsigned char* view, section_size_type view_size,
566                      std::string* from, std::string* to) const;
567
568   // Return the size of the GOT section.
569   section_size_type
570   got_size() const
571   {
572     gold_assert(this->got_ != NULL);
573     return this->got_->data_size();
574   }
575
576   // Return the number of entries in the GOT.
577   unsigned int
578   got_entry_count() const
579   {
580     if (this->got_ == NULL)
581       return 0;
582     return this->got_size() / 8;
583   }
584
585   // Return the number of entries in the PLT.
586   unsigned int
587   plt_entry_count() const;
588
589   // Return the offset of the first non-reserved PLT entry.
590   unsigned int
591   first_plt_entry_offset() const;
592
593   // Return the size of each PLT entry.
594   unsigned int
595   plt_entry_size() const;
596
597   // Create the GOT section for an incremental update.
598   Output_data_got_base*
599   init_got_plt_for_update(Symbol_table* symtab,
600                           Layout* layout,
601                           unsigned int got_count,
602                           unsigned int plt_count);
603
604   // Reserve a GOT entry for a local symbol, and regenerate any
605   // necessary dynamic relocations.
606   void
607   reserve_local_got_entry(unsigned int got_index,
608                           Sized_relobj<size, false>* obj,
609                           unsigned int r_sym,
610                           unsigned int got_type);
611
612   // Reserve a GOT entry for a global symbol, and regenerate any
613   // necessary dynamic relocations.
614   void
615   reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
616                            unsigned int got_type);
617
618   // Register an existing PLT entry for a global symbol.
619   void
620   register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
621                             Symbol* gsym);
622
623   // Force a COPY relocation for a given symbol.
624   void
625   emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
626
627   // Apply an incremental relocation.
628   void
629   apply_relocation(const Relocate_info<size, false>* relinfo,
630                    typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
631                    unsigned int r_type,
632                    typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
633                    const Symbol* gsym,
634                    unsigned char* view,
635                    typename elfcpp::Elf_types<size>::Elf_Addr address,
636                    section_size_type view_size);
637
638   // Add a new reloc argument, returning the index in the vector.
639   size_t
640   add_tlsdesc_info(Sized_relobj_file<size, false>* object, unsigned int r_sym)
641   {
642     this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
643     return this->tlsdesc_reloc_info_.size() - 1;
644   }
645
646   Output_data_plt_x86_64<size>*
647   make_data_plt(Layout* layout,
648                 Output_data_got<64, false>* got,
649                 Output_data_got_plt_x86_64* got_plt,
650                 Output_data_space* got_irelative)
651   {
652     return this->do_make_data_plt(layout, got, got_plt, got_irelative);
653   }
654
655   Output_data_plt_x86_64<size>*
656   make_data_plt(Layout* layout,
657                 Output_data_got<64, false>* got,
658                 Output_data_got_plt_x86_64* got_plt,
659                 Output_data_space* got_irelative,
660                 unsigned int plt_count)
661   {
662     return this->do_make_data_plt(layout, got, got_plt, got_irelative,
663                                   plt_count);
664   }
665
666   virtual Output_data_plt_x86_64<size>*
667   do_make_data_plt(Layout* layout,
668                    Output_data_got<64, false>* got,
669                    Output_data_got_plt_x86_64* got_plt,
670                    Output_data_space* got_irelative)
671   {
672     return new Output_data_plt_x86_64_standard<size>(layout, got, got_plt,
673                                                      got_irelative);
674   }
675
676   virtual Output_data_plt_x86_64<size>*
677   do_make_data_plt(Layout* layout,
678                    Output_data_got<64, false>* got,
679                    Output_data_got_plt_x86_64* got_plt,
680                    Output_data_space* got_irelative,
681                    unsigned int plt_count)
682   {
683     return new Output_data_plt_x86_64_standard<size>(layout, got, got_plt,
684                                                      got_irelative,
685                                                      plt_count);
686   }
687
688  private:
689   // The class which scans relocations.
690   class Scan
691   {
692   public:
693     Scan()
694       : issued_non_pic_error_(false)
695     { }
696
697     static inline int
698     get_reference_flags(unsigned int r_type);
699
700     inline void
701     local(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
702           Sized_relobj_file<size, false>* object,
703           unsigned int data_shndx,
704           Output_section* output_section,
705           const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
706           const elfcpp::Sym<size, false>& lsym,
707           bool is_discarded);
708
709     inline void
710     global(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
711            Sized_relobj_file<size, false>* object,
712            unsigned int data_shndx,
713            Output_section* output_section,
714            const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
715            Symbol* gsym);
716
717     inline bool
718     local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
719                                         Target_x86_64* target,
720                                         Sized_relobj_file<size, false>* object,
721                                         unsigned int data_shndx,
722                                         Output_section* output_section,
723                                         const elfcpp::Rela<size, false>& reloc,
724                                         unsigned int r_type,
725                                         const elfcpp::Sym<size, false>& lsym);
726
727     inline bool
728     global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
729                                          Target_x86_64* target,
730                                          Sized_relobj_file<size, false>* object,
731                                          unsigned int data_shndx,
732                                          Output_section* output_section,
733                                          const elfcpp::Rela<size, false>& reloc,
734                                          unsigned int r_type,
735                                          Symbol* gsym);
736
737   private:
738     static void
739     unsupported_reloc_local(Sized_relobj_file<size, false>*,
740                             unsigned int r_type);
741
742     static void
743     unsupported_reloc_global(Sized_relobj_file<size, false>*,
744                              unsigned int r_type, Symbol*);
745
746     void
747     check_non_pic(Relobj*, unsigned int r_type, Symbol*);
748
749     inline bool
750     possible_function_pointer_reloc(unsigned int r_type);
751
752     bool
753     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, false>*,
754                               unsigned int r_type);
755
756     // Whether we have issued an error about a non-PIC compilation.
757     bool issued_non_pic_error_;
758   };
759
760   // The class which implements relocation.
761   class Relocate
762   {
763    public:
764     Relocate()
765       : skip_call_tls_get_addr_(false)
766     { }
767
768     ~Relocate()
769     {
770       if (this->skip_call_tls_get_addr_)
771         {
772           // FIXME: This needs to specify the location somehow.
773           gold_error(_("missing expected TLS relocation"));
774         }
775     }
776
777     // Do a relocation.  Return false if the caller should not issue
778     // any warnings about this relocation.
779     inline bool
780     relocate(const Relocate_info<size, false>*, Target_x86_64*,
781              Output_section*,
782              size_t relnum, const elfcpp::Rela<size, false>&,
783              unsigned int r_type, const Sized_symbol<size>*,
784              const Symbol_value<size>*,
785              unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
786              section_size_type);
787
788    private:
789     // Do a TLS relocation.
790     inline void
791     relocate_tls(const Relocate_info<size, false>*, Target_x86_64*,
792                  size_t relnum, const elfcpp::Rela<size, false>&,
793                  unsigned int r_type, const Sized_symbol<size>*,
794                  const Symbol_value<size>*,
795                  unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
796                  section_size_type);
797
798     // Do a TLS General-Dynamic to Initial-Exec transition.
799     inline void
800     tls_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
801                  Output_segment* tls_segment,
802                  const elfcpp::Rela<size, false>&, unsigned int r_type,
803                  typename elfcpp::Elf_types<size>::Elf_Addr value,
804                  unsigned char* view,
805                  typename elfcpp::Elf_types<size>::Elf_Addr,
806                  section_size_type view_size);
807
808     // Do a TLS General-Dynamic to Local-Exec transition.
809     inline void
810     tls_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
811                  Output_segment* tls_segment,
812                  const elfcpp::Rela<size, false>&, unsigned int r_type,
813                  typename elfcpp::Elf_types<size>::Elf_Addr value,
814                  unsigned char* view,
815                  section_size_type view_size);
816
817     // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
818     inline void
819     tls_desc_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
820                       Output_segment* tls_segment,
821                       const elfcpp::Rela<size, false>&, unsigned int r_type,
822                       typename elfcpp::Elf_types<size>::Elf_Addr value,
823                       unsigned char* view,
824                       typename elfcpp::Elf_types<size>::Elf_Addr,
825                       section_size_type view_size);
826
827     // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
828     inline void
829     tls_desc_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
830                       Output_segment* tls_segment,
831                       const elfcpp::Rela<size, false>&, unsigned int r_type,
832                       typename elfcpp::Elf_types<size>::Elf_Addr value,
833                       unsigned char* view,
834                       section_size_type view_size);
835
836     // Do a TLS Local-Dynamic to Local-Exec transition.
837     inline void
838     tls_ld_to_le(const Relocate_info<size, false>*, size_t relnum,
839                  Output_segment* tls_segment,
840                  const elfcpp::Rela<size, false>&, unsigned int r_type,
841                  typename elfcpp::Elf_types<size>::Elf_Addr value,
842                  unsigned char* view,
843                  section_size_type view_size);
844
845     // Do a TLS Initial-Exec to Local-Exec transition.
846     static inline void
847     tls_ie_to_le(const Relocate_info<size, false>*, size_t relnum,
848                  Output_segment* tls_segment,
849                  const elfcpp::Rela<size, false>&, unsigned int r_type,
850                  typename elfcpp::Elf_types<size>::Elf_Addr value,
851                  unsigned char* view,
852                  section_size_type view_size);
853
854     // This is set if we should skip the next reloc, which should be a
855     // PLT32 reloc against ___tls_get_addr.
856     bool skip_call_tls_get_addr_;
857   };
858
859   // A class which returns the size required for a relocation type,
860   // used while scanning relocs during a relocatable link.
861   class Relocatable_size_for_reloc
862   {
863    public:
864     unsigned int
865     get_size_for_reloc(unsigned int, Relobj*);
866   };
867
868   // Check if relocation against this symbol is a candidate for
869   // conversion from
870   // mov foo@GOTPCREL(%rip), %reg
871   // to lea foo(%rip), %reg.
872   static bool
873   can_convert_mov_to_lea(const Symbol* gsym)
874   {
875     gold_assert(gsym != NULL);
876     return (gsym->type() != elfcpp::STT_GNU_IFUNC
877             && !gsym->is_undefined ()
878             && !gsym->is_from_dynobj()
879             && !gsym->is_preemptible()
880             && (!parameters->options().shared()
881                 || (gsym->visibility() != elfcpp::STV_DEFAULT
882                     && gsym->visibility() != elfcpp::STV_PROTECTED)
883                 || parameters->options().Bsymbolic())
884             && strcmp(gsym->name(), "_DYNAMIC") != 0);
885   }
886
887   // Adjust TLS relocation type based on the options and whether this
888   // is a local symbol.
889   static tls::Tls_optimization
890   optimize_tls_reloc(bool is_final, int r_type);
891
892   // Get the GOT section, creating it if necessary.
893   Output_data_got<64, false>*
894   got_section(Symbol_table*, Layout*);
895
896   // Get the GOT PLT section.
897   Output_data_got_plt_x86_64*
898   got_plt_section() const
899   {
900     gold_assert(this->got_plt_ != NULL);
901     return this->got_plt_;
902   }
903
904   // Get the GOT section for TLSDESC entries.
905   Output_data_got<64, false>*
906   got_tlsdesc_section() const
907   {
908     gold_assert(this->got_tlsdesc_ != NULL);
909     return this->got_tlsdesc_;
910   }
911
912   // Create the PLT section.
913   void
914   make_plt_section(Symbol_table* symtab, Layout* layout);
915
916   // Create a PLT entry for a global symbol.
917   void
918   make_plt_entry(Symbol_table*, Layout*, Symbol*);
919
920   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
921   void
922   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
923                              Sized_relobj_file<size, false>* relobj,
924                              unsigned int local_sym_index);
925
926   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
927   void
928   define_tls_base_symbol(Symbol_table*, Layout*);
929
930   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
931   void
932   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
933
934   // Create a GOT entry for the TLS module index.
935   unsigned int
936   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
937                       Sized_relobj_file<size, false>* object);
938
939   // Get the PLT section.
940   Output_data_plt_x86_64<size>*
941   plt_section() const
942   {
943     gold_assert(this->plt_ != NULL);
944     return this->plt_;
945   }
946
947   // Get the dynamic reloc section, creating it if necessary.
948   Reloc_section*
949   rela_dyn_section(Layout*);
950
951   // Get the section to use for TLSDESC relocations.
952   Reloc_section*
953   rela_tlsdesc_section(Layout*) const;
954
955   // Get the section to use for IRELATIVE relocations.
956   Reloc_section*
957   rela_irelative_section(Layout*);
958
959   // Add a potential copy relocation.
960   void
961   copy_reloc(Symbol_table* symtab, Layout* layout,
962              Sized_relobj_file<size, false>* object,
963              unsigned int shndx, Output_section* output_section,
964              Symbol* sym, const elfcpp::Rela<size, false>& reloc)
965   {
966     this->copy_relocs_.copy_reloc(symtab, layout,
967                                   symtab->get_sized_symbol<size>(sym),
968                                   object, shndx, output_section,
969                                   reloc, this->rela_dyn_section(layout));
970   }
971
972   // Information about this specific target which we pass to the
973   // general Target structure.
974   static const Target::Target_info x86_64_info;
975
976   // The types of GOT entries needed for this platform.
977   // These values are exposed to the ABI in an incremental link.
978   // Do not renumber existing values without changing the version
979   // number of the .gnu_incremental_inputs section.
980   enum Got_type
981   {
982     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
983     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
984     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
985     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
986   };
987
988   // This type is used as the argument to the target specific
989   // relocation routines.  The only target specific reloc is
990   // R_X86_64_TLSDESC against a local symbol.
991   struct Tlsdesc_info
992   {
993     Tlsdesc_info(Sized_relobj_file<size, false>* a_object, unsigned int a_r_sym)
994       : object(a_object), r_sym(a_r_sym)
995     { }
996
997     // The object in which the local symbol is defined.
998     Sized_relobj_file<size, false>* object;
999     // The local symbol index in the object.
1000     unsigned int r_sym;
1001   };
1002
1003   // The GOT section.
1004   Output_data_got<64, false>* got_;
1005   // The PLT section.
1006   Output_data_plt_x86_64<size>* plt_;
1007   // The GOT PLT section.
1008   Output_data_got_plt_x86_64* got_plt_;
1009   // The GOT section for IRELATIVE relocations.
1010   Output_data_space* got_irelative_;
1011   // The GOT section for TLSDESC relocations.
1012   Output_data_got<64, false>* got_tlsdesc_;
1013   // The _GLOBAL_OFFSET_TABLE_ symbol.
1014   Symbol* global_offset_table_;
1015   // The dynamic reloc section.
1016   Reloc_section* rela_dyn_;
1017   // The section to use for IRELATIVE relocs.
1018   Reloc_section* rela_irelative_;
1019   // Relocs saved to avoid a COPY reloc.
1020   Copy_relocs<elfcpp::SHT_RELA, size, false> copy_relocs_;
1021   // Offset of the GOT entry for the TLS module index.
1022   unsigned int got_mod_index_offset_;
1023   // We handle R_X86_64_TLSDESC against a local symbol as a target
1024   // specific relocation.  Here we store the object and local symbol
1025   // index for the relocation.
1026   std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
1027   // True if the _TLS_MODULE_BASE_ symbol has been defined.
1028   bool tls_base_symbol_defined_;
1029 };
1030
1031 template<>
1032 const Target::Target_info Target_x86_64<64>::x86_64_info =
1033 {
1034   64,                   // size
1035   false,                // is_big_endian
1036   elfcpp::EM_X86_64,    // machine_code
1037   false,                // has_make_symbol
1038   false,                // has_resolve
1039   true,                 // has_code_fill
1040   true,                 // is_default_stack_executable
1041   true,                 // can_icf_inline_merge_sections
1042   '\0',                 // wrap_char
1043   "/lib/ld64.so.1",     // program interpreter
1044   0x400000,             // default_text_segment_address
1045   0x1000,               // abi_pagesize (overridable by -z max-page-size)
1046   0x1000,               // common_pagesize (overridable by -z common-page-size)
1047   false,                // isolate_execinstr
1048   0,                    // rosegment_gap
1049   elfcpp::SHN_UNDEF,    // small_common_shndx
1050   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
1051   0,                    // small_common_section_flags
1052   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
1053   NULL,                 // attributes_section
1054   NULL,                 // attributes_vendor
1055   "_start",             // entry_symbol_name
1056   32,                   // hash_entry_size
1057 };
1058
1059 template<>
1060 const Target::Target_info Target_x86_64<32>::x86_64_info =
1061 {
1062   32,                   // size
1063   false,                // is_big_endian
1064   elfcpp::EM_X86_64,    // machine_code
1065   false,                // has_make_symbol
1066   false,                // has_resolve
1067   true,                 // has_code_fill
1068   true,                 // is_default_stack_executable
1069   true,                 // can_icf_inline_merge_sections
1070   '\0',                 // wrap_char
1071   "/libx32/ldx32.so.1", // program interpreter
1072   0x400000,             // default_text_segment_address
1073   0x1000,               // abi_pagesize (overridable by -z max-page-size)
1074   0x1000,               // common_pagesize (overridable by -z common-page-size)
1075   false,                // isolate_execinstr
1076   0,                    // rosegment_gap
1077   elfcpp::SHN_UNDEF,    // small_common_shndx
1078   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
1079   0,                    // small_common_section_flags
1080   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
1081   NULL,                 // attributes_section
1082   NULL,                 // attributes_vendor
1083   "_start",             // entry_symbol_name
1084   32,                   // hash_entry_size
1085 };
1086
1087 // This is called when a new output section is created.  This is where
1088 // we handle the SHF_X86_64_LARGE.
1089
1090 template<int size>
1091 void
1092 Target_x86_64<size>::do_new_output_section(Output_section* os) const
1093 {
1094   if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
1095     os->set_is_large_section();
1096 }
1097
1098 // Get the GOT section, creating it if necessary.
1099
1100 template<int size>
1101 Output_data_got<64, false>*
1102 Target_x86_64<size>::got_section(Symbol_table* symtab, Layout* layout)
1103 {
1104   if (this->got_ == NULL)
1105     {
1106       gold_assert(symtab != NULL && layout != NULL);
1107
1108       // When using -z now, we can treat .got.plt as a relro section.
1109       // Without -z now, it is modified after program startup by lazy
1110       // PLT relocations.
1111       bool is_got_plt_relro = parameters->options().now();
1112       Output_section_order got_order = (is_got_plt_relro
1113                                         ? ORDER_RELRO
1114                                         : ORDER_RELRO_LAST);
1115       Output_section_order got_plt_order = (is_got_plt_relro
1116                                             ? ORDER_RELRO
1117                                             : ORDER_NON_RELRO_FIRST);
1118
1119       this->got_ = new Output_data_got<64, false>();
1120
1121       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1122                                       (elfcpp::SHF_ALLOC
1123                                        | elfcpp::SHF_WRITE),
1124                                       this->got_, got_order, true);
1125
1126       this->got_plt_ = new Output_data_got_plt_x86_64(layout);
1127       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1128                                       (elfcpp::SHF_ALLOC
1129                                        | elfcpp::SHF_WRITE),
1130                                       this->got_plt_, got_plt_order,
1131                                       is_got_plt_relro);
1132
1133       // The first three entries are reserved.
1134       this->got_plt_->set_current_data_size(3 * 8);
1135
1136       if (!is_got_plt_relro)
1137         {
1138           // Those bytes can go into the relro segment.
1139           layout->increase_relro(3 * 8);
1140         }
1141
1142       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1143       this->global_offset_table_ =
1144         symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1145                                       Symbol_table::PREDEFINED,
1146                                       this->got_plt_,
1147                                       0, 0, elfcpp::STT_OBJECT,
1148                                       elfcpp::STB_LOCAL,
1149                                       elfcpp::STV_HIDDEN, 0,
1150                                       false, false);
1151
1152       // If there are any IRELATIVE relocations, they get GOT entries
1153       // in .got.plt after the jump slot entries.
1154       this->got_irelative_ = new Output_data_space(8, "** GOT IRELATIVE PLT");
1155       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1156                                       (elfcpp::SHF_ALLOC
1157                                        | elfcpp::SHF_WRITE),
1158                                       this->got_irelative_,
1159                                       got_plt_order, is_got_plt_relro);
1160
1161       // If there are any TLSDESC relocations, they get GOT entries in
1162       // .got.plt after the jump slot and IRELATIVE entries.
1163       this->got_tlsdesc_ = new Output_data_got<64, false>();
1164       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1165                                       (elfcpp::SHF_ALLOC
1166                                        | elfcpp::SHF_WRITE),
1167                                       this->got_tlsdesc_,
1168                                       got_plt_order, is_got_plt_relro);
1169     }
1170
1171   return this->got_;
1172 }
1173
1174 // Get the dynamic reloc section, creating it if necessary.
1175
1176 template<int size>
1177 typename Target_x86_64<size>::Reloc_section*
1178 Target_x86_64<size>::rela_dyn_section(Layout* layout)
1179 {
1180   if (this->rela_dyn_ == NULL)
1181     {
1182       gold_assert(layout != NULL);
1183       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1184       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1185                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
1186                                       ORDER_DYNAMIC_RELOCS, false);
1187     }
1188   return this->rela_dyn_;
1189 }
1190
1191 // Get the section to use for IRELATIVE relocs, creating it if
1192 // necessary.  These go in .rela.dyn, but only after all other dynamic
1193 // relocations.  They need to follow the other dynamic relocations so
1194 // that they can refer to global variables initialized by those
1195 // relocs.
1196
1197 template<int size>
1198 typename Target_x86_64<size>::Reloc_section*
1199 Target_x86_64<size>::rela_irelative_section(Layout* layout)
1200 {
1201   if (this->rela_irelative_ == NULL)
1202     {
1203       // Make sure we have already created the dynamic reloc section.
1204       this->rela_dyn_section(layout);
1205       this->rela_irelative_ = new Reloc_section(false);
1206       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1207                                       elfcpp::SHF_ALLOC, this->rela_irelative_,
1208                                       ORDER_DYNAMIC_RELOCS, false);
1209       gold_assert(this->rela_dyn_->output_section()
1210                   == this->rela_irelative_->output_section());
1211     }
1212   return this->rela_irelative_;
1213 }
1214
1215 // Write the first three reserved words of the .got.plt section.
1216 // The remainder of the section is written while writing the PLT
1217 // in Output_data_plt_i386::do_write.
1218
1219 void
1220 Output_data_got_plt_x86_64::do_write(Output_file* of)
1221 {
1222   // The first entry in the GOT is the address of the .dynamic section
1223   // aka the PT_DYNAMIC segment.  The next two entries are reserved.
1224   // We saved space for them when we created the section in
1225   // Target_x86_64::got_section.
1226   const off_t got_file_offset = this->offset();
1227   gold_assert(this->data_size() >= 24);
1228   unsigned char* const got_view = of->get_output_view(got_file_offset, 24);
1229   Output_section* dynamic = this->layout_->dynamic_section();
1230   uint64_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1231   elfcpp::Swap<64, false>::writeval(got_view, dynamic_addr);
1232   memset(got_view + 8, 0, 16);
1233   of->write_output_view(got_file_offset, 24, got_view);
1234 }
1235
1236 // Initialize the PLT section.
1237
1238 template<int size>
1239 void
1240 Output_data_plt_x86_64<size>::init(Layout* layout)
1241 {
1242   this->rel_ = new Reloc_section(false);
1243   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1244                                   elfcpp::SHF_ALLOC, this->rel_,
1245                                   ORDER_DYNAMIC_PLT_RELOCS, false);
1246 }
1247
1248 template<int size>
1249 void
1250 Output_data_plt_x86_64<size>::do_adjust_output_section(Output_section* os)
1251 {
1252   os->set_entsize(this->get_plt_entry_size());
1253 }
1254
1255 // Add an entry to the PLT.
1256
1257 template<int size>
1258 void
1259 Output_data_plt_x86_64<size>::add_entry(Symbol_table* symtab, Layout* layout,
1260                                         Symbol* gsym)
1261 {
1262   gold_assert(!gsym->has_plt_offset());
1263
1264   unsigned int plt_index;
1265   off_t plt_offset;
1266   section_offset_type got_offset;
1267
1268   unsigned int* pcount;
1269   unsigned int offset;
1270   unsigned int reserved;
1271   Output_section_data_build* got;
1272   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1273       && gsym->can_use_relative_reloc(false))
1274     {
1275       pcount = &this->irelative_count_;
1276       offset = 0;
1277       reserved = 0;
1278       got = this->got_irelative_;
1279     }
1280   else
1281     {
1282       pcount = &this->count_;
1283       offset = 1;
1284       reserved = 3;
1285       got = this->got_plt_;
1286     }
1287
1288   if (!this->is_data_size_valid())
1289     {
1290       // Note that when setting the PLT offset for a non-IRELATIVE
1291       // entry we skip the initial reserved PLT entry.
1292       plt_index = *pcount + offset;
1293       plt_offset = plt_index * this->get_plt_entry_size();
1294
1295       ++*pcount;
1296
1297       got_offset = (plt_index - offset + reserved) * 8;
1298       gold_assert(got_offset == got->current_data_size());
1299
1300       // Every PLT entry needs a GOT entry which points back to the PLT
1301       // entry (this will be changed by the dynamic linker, normally
1302       // lazily when the function is called).
1303       got->set_current_data_size(got_offset + 8);
1304     }
1305   else
1306     {
1307       // FIXME: This is probably not correct for IRELATIVE relocs.
1308
1309       // For incremental updates, find an available slot.
1310       plt_offset = this->free_list_.allocate(this->get_plt_entry_size(),
1311                                              this->get_plt_entry_size(), 0);
1312       if (plt_offset == -1)
1313         gold_fallback(_("out of patch space (PLT);"
1314                         " relink with --incremental-full"));
1315
1316       // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
1317       // can be calculated from the PLT index, adjusting for the three
1318       // reserved entries at the beginning of the GOT.
1319       plt_index = plt_offset / this->get_plt_entry_size() - 1;
1320       got_offset = (plt_index - offset + reserved) * 8;
1321     }
1322
1323   gsym->set_plt_offset(plt_offset);
1324
1325   // Every PLT entry needs a reloc.
1326   this->add_relocation(symtab, layout, gsym, got_offset);
1327
1328   // Note that we don't need to save the symbol.  The contents of the
1329   // PLT are independent of which symbols are used.  The symbols only
1330   // appear in the relocations.
1331 }
1332
1333 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
1334 // the PLT offset.
1335
1336 template<int size>
1337 unsigned int
1338 Output_data_plt_x86_64<size>::add_local_ifunc_entry(
1339     Symbol_table* symtab,
1340     Layout* layout,
1341     Sized_relobj_file<size, false>* relobj,
1342     unsigned int local_sym_index)
1343 {
1344   unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
1345   ++this->irelative_count_;
1346
1347   section_offset_type got_offset = this->got_irelative_->current_data_size();
1348
1349   // Every PLT entry needs a GOT entry which points back to the PLT
1350   // entry.
1351   this->got_irelative_->set_current_data_size(got_offset + 8);
1352
1353   // Every PLT entry needs a reloc.
1354   Reloc_section* rela = this->rela_irelative(symtab, layout);
1355   rela->add_symbolless_local_addend(relobj, local_sym_index,
1356                                     elfcpp::R_X86_64_IRELATIVE,
1357                                     this->got_irelative_, got_offset, 0);
1358
1359   return plt_offset;
1360 }
1361
1362 // Add the relocation for a PLT entry.
1363
1364 template<int size>
1365 void
1366 Output_data_plt_x86_64<size>::add_relocation(Symbol_table* symtab,
1367                                              Layout* layout,
1368                                              Symbol* gsym,
1369                                              unsigned int got_offset)
1370 {
1371   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1372       && gsym->can_use_relative_reloc(false))
1373     {
1374       Reloc_section* rela = this->rela_irelative(symtab, layout);
1375       rela->add_symbolless_global_addend(gsym, elfcpp::R_X86_64_IRELATIVE,
1376                                          this->got_irelative_, got_offset, 0);
1377     }
1378   else
1379     {
1380       gsym->set_needs_dynsym_entry();
1381       this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
1382                              got_offset, 0);
1383     }
1384 }
1385
1386 // Return where the TLSDESC relocations should go, creating it if
1387 // necessary.  These follow the JUMP_SLOT relocations.
1388
1389 template<int size>
1390 typename Output_data_plt_x86_64<size>::Reloc_section*
1391 Output_data_plt_x86_64<size>::rela_tlsdesc(Layout* layout)
1392 {
1393   if (this->tlsdesc_rel_ == NULL)
1394     {
1395       this->tlsdesc_rel_ = new Reloc_section(false);
1396       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1397                                       elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
1398                                       ORDER_DYNAMIC_PLT_RELOCS, false);
1399       gold_assert(this->tlsdesc_rel_->output_section()
1400                   == this->rel_->output_section());
1401     }
1402   return this->tlsdesc_rel_;
1403 }
1404
1405 // Return where the IRELATIVE relocations should go in the PLT.  These
1406 // follow the JUMP_SLOT and the TLSDESC relocations.
1407
1408 template<int size>
1409 typename Output_data_plt_x86_64<size>::Reloc_section*
1410 Output_data_plt_x86_64<size>::rela_irelative(Symbol_table* symtab,
1411                                              Layout* layout)
1412 {
1413   if (this->irelative_rel_ == NULL)
1414     {
1415       // Make sure we have a place for the TLSDESC relocations, in
1416       // case we see any later on.
1417       this->rela_tlsdesc(layout);
1418       this->irelative_rel_ = new Reloc_section(false);
1419       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1420                                       elfcpp::SHF_ALLOC, this->irelative_rel_,
1421                                       ORDER_DYNAMIC_PLT_RELOCS, false);
1422       gold_assert(this->irelative_rel_->output_section()
1423                   == this->rel_->output_section());
1424
1425       if (parameters->doing_static_link())
1426         {
1427           // A statically linked executable will only have a .rela.plt
1428           // section to hold R_X86_64_IRELATIVE relocs for
1429           // STT_GNU_IFUNC symbols.  The library will use these
1430           // symbols to locate the IRELATIVE relocs at program startup
1431           // time.
1432           symtab->define_in_output_data("__rela_iplt_start", NULL,
1433                                         Symbol_table::PREDEFINED,
1434                                         this->irelative_rel_, 0, 0,
1435                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1436                                         elfcpp::STV_HIDDEN, 0, false, true);
1437           symtab->define_in_output_data("__rela_iplt_end", NULL,
1438                                         Symbol_table::PREDEFINED,
1439                                         this->irelative_rel_, 0, 0,
1440                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1441                                         elfcpp::STV_HIDDEN, 0, true, true);
1442         }
1443     }
1444   return this->irelative_rel_;
1445 }
1446
1447 // Return the PLT address to use for a global symbol.
1448
1449 template<int size>
1450 uint64_t
1451 Output_data_plt_x86_64<size>::address_for_global(const Symbol* gsym)
1452 {
1453   uint64_t offset = 0;
1454   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1455       && gsym->can_use_relative_reloc(false))
1456     offset = (this->count_ + 1) * this->get_plt_entry_size();
1457   return this->address() + offset + gsym->plt_offset();
1458 }
1459
1460 // Return the PLT address to use for a local symbol.  These are always
1461 // IRELATIVE relocs.
1462
1463 template<int size>
1464 uint64_t
1465 Output_data_plt_x86_64<size>::address_for_local(const Relobj* object,
1466                                                 unsigned int r_sym)
1467 {
1468   return (this->address()
1469           + (this->count_ + 1) * this->get_plt_entry_size()
1470           + object->local_plt_offset(r_sym));
1471 }
1472
1473 // Set the final size.
1474 template<int size>
1475 void
1476 Output_data_plt_x86_64<size>::set_final_data_size()
1477 {
1478   unsigned int count = this->count_ + this->irelative_count_;
1479   if (this->has_tlsdesc_entry())
1480     ++count;
1481   this->set_data_size((count + 1) * this->get_plt_entry_size());
1482 }
1483
1484 // The first entry in the PLT for an executable.
1485
1486 template<int size>
1487 const unsigned char
1488 Output_data_plt_x86_64_standard<size>::first_plt_entry[plt_entry_size] =
1489 {
1490   // From AMD64 ABI Draft 0.98, page 76
1491   0xff, 0x35,   // pushq contents of memory address
1492   0, 0, 0, 0,   // replaced with address of .got + 8
1493   0xff, 0x25,   // jmp indirect
1494   0, 0, 0, 0,   // replaced with address of .got + 16
1495   0x90, 0x90, 0x90, 0x90   // noop (x4)
1496 };
1497
1498 template<int size>
1499 void
1500 Output_data_plt_x86_64_standard<size>::do_fill_first_plt_entry(
1501     unsigned char* pov,
1502     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1503     typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
1504 {
1505   memcpy(pov, first_plt_entry, plt_entry_size);
1506   // We do a jmp relative to the PC at the end of this instruction.
1507   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1508                                               (got_address + 8
1509                                                - (plt_address + 6)));
1510   elfcpp::Swap<32, false>::writeval(pov + 8,
1511                                     (got_address + 16
1512                                      - (plt_address + 12)));
1513 }
1514
1515 // Subsequent entries in the PLT for an executable.
1516
1517 template<int size>
1518 const unsigned char
1519 Output_data_plt_x86_64_standard<size>::plt_entry[plt_entry_size] =
1520 {
1521   // From AMD64 ABI Draft 0.98, page 76
1522   0xff, 0x25,   // jmpq indirect
1523   0, 0, 0, 0,   // replaced with address of symbol in .got
1524   0x68,         // pushq immediate
1525   0, 0, 0, 0,   // replaced with offset into relocation table
1526   0xe9,         // jmpq relative
1527   0, 0, 0, 0    // replaced with offset to start of .plt
1528 };
1529
1530 template<int size>
1531 unsigned int
1532 Output_data_plt_x86_64_standard<size>::do_fill_plt_entry(
1533     unsigned char* pov,
1534     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1535     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1536     unsigned int got_offset,
1537     unsigned int plt_offset,
1538     unsigned int plt_index)
1539 {
1540   // Check PC-relative offset overflow in PLT entry.
1541   uint64_t plt_got_pcrel_offset = (got_address + got_offset
1542                                    - (plt_address + plt_offset + 6));
1543   if (Bits<32>::has_overflow(plt_got_pcrel_offset))
1544     gold_error(_("PC-relative offset overflow in PLT entry %d"),
1545                plt_index + 1);
1546
1547   memcpy(pov, plt_entry, plt_entry_size);
1548   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1549                                               plt_got_pcrel_offset);
1550
1551   elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
1552   elfcpp::Swap<32, false>::writeval(pov + 12,
1553                                     - (plt_offset + plt_entry_size));
1554
1555   return 6;
1556 }
1557
1558 // The reserved TLSDESC entry in the PLT for an executable.
1559
1560 template<int size>
1561 const unsigned char
1562 Output_data_plt_x86_64_standard<size>::tlsdesc_plt_entry[plt_entry_size] =
1563 {
1564   // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
1565   // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
1566   0xff, 0x35,   // pushq x(%rip)
1567   0, 0, 0, 0,   // replaced with address of linkmap GOT entry (at PLTGOT + 8)
1568   0xff, 0x25,   // jmpq *y(%rip)
1569   0, 0, 0, 0,   // replaced with offset of reserved TLSDESC_GOT entry
1570   0x0f, 0x1f,   // nop
1571   0x40, 0
1572 };
1573
1574 template<int size>
1575 void
1576 Output_data_plt_x86_64_standard<size>::do_fill_tlsdesc_entry(
1577     unsigned char* pov,
1578     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1579     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1580     typename elfcpp::Elf_types<size>::Elf_Addr got_base,
1581     unsigned int tlsdesc_got_offset,
1582     unsigned int plt_offset)
1583 {
1584   memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
1585   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1586                                               (got_address + 8
1587                                                - (plt_address + plt_offset
1588                                                   + 6)));
1589   elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
1590                                               (got_base
1591                                                + tlsdesc_got_offset
1592                                                - (plt_address + plt_offset
1593                                                   + 12)));
1594 }
1595
1596 // The .eh_frame unwind information for the PLT.
1597
1598 template<int size>
1599 const unsigned char
1600 Output_data_plt_x86_64<size>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1601 {
1602   1,                            // CIE version.
1603   'z',                          // Augmentation: augmentation size included.
1604   'R',                          // Augmentation: FDE encoding included.
1605   '\0',                         // End of augmentation string.
1606   1,                            // Code alignment factor.
1607   0x78,                         // Data alignment factor.
1608   16,                           // Return address column.
1609   1,                            // Augmentation size.
1610   (elfcpp::DW_EH_PE_pcrel       // FDE encoding.
1611    | elfcpp::DW_EH_PE_sdata4),
1612   elfcpp::DW_CFA_def_cfa, 7, 8, // DW_CFA_def_cfa: r7 (rsp) ofs 8.
1613   elfcpp::DW_CFA_offset + 16, 1,// DW_CFA_offset: r16 (rip) at cfa-8.
1614   elfcpp::DW_CFA_nop,           // Align to 16 bytes.
1615   elfcpp::DW_CFA_nop
1616 };
1617
1618 template<int size>
1619 const unsigned char
1620 Output_data_plt_x86_64_standard<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
1621 {
1622   0, 0, 0, 0,                           // Replaced with offset to .plt.
1623   0, 0, 0, 0,                           // Replaced with size of .plt.
1624   0,                                    // Augmentation size.
1625   elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
1626   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
1627   elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
1628   elfcpp::DW_CFA_advance_loc + 10,      // Advance 10 to __PLT__ + 16.
1629   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
1630   11,                                   // Block length.
1631   elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
1632   elfcpp::DW_OP_breg16, 0,              // Push %rip.
1633   elfcpp::DW_OP_lit15,                  // Push 0xf.
1634   elfcpp::DW_OP_and,                    // & (%rip & 0xf).
1635   elfcpp::DW_OP_lit11,                  // Push 0xb.
1636   elfcpp::DW_OP_ge,                     // >= ((%rip & 0xf) >= 0xb)
1637   elfcpp::DW_OP_lit3,                   // Push 3.
1638   elfcpp::DW_OP_shl,                    // << (((%rip & 0xf) >= 0xb) << 3)
1639   elfcpp::DW_OP_plus,                   // + ((((%rip&0xf)>=0xb)<<3)+%rsp+8
1640   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
1641   elfcpp::DW_CFA_nop,
1642   elfcpp::DW_CFA_nop,
1643   elfcpp::DW_CFA_nop
1644 };
1645
1646 // Write out the PLT.  This uses the hand-coded instructions above,
1647 // and adjusts them as needed.  This is specified by the AMD64 ABI.
1648
1649 template<int size>
1650 void
1651 Output_data_plt_x86_64<size>::do_write(Output_file* of)
1652 {
1653   const off_t offset = this->offset();
1654   const section_size_type oview_size =
1655     convert_to_section_size_type(this->data_size());
1656   unsigned char* const oview = of->get_output_view(offset, oview_size);
1657
1658   const off_t got_file_offset = this->got_plt_->offset();
1659   gold_assert(parameters->incremental_update()
1660               || (got_file_offset + this->got_plt_->data_size()
1661                   == this->got_irelative_->offset()));
1662   const section_size_type got_size =
1663     convert_to_section_size_type(this->got_plt_->data_size()
1664                                  + this->got_irelative_->data_size());
1665   unsigned char* const got_view = of->get_output_view(got_file_offset,
1666                                                       got_size);
1667
1668   unsigned char* pov = oview;
1669
1670   // The base address of the .plt section.
1671   typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
1672   // The base address of the .got section.
1673   typename elfcpp::Elf_types<size>::Elf_Addr got_base = this->got_->address();
1674   // The base address of the PLT portion of the .got section,
1675   // which is where the GOT pointer will point, and where the
1676   // three reserved GOT entries are located.
1677   typename elfcpp::Elf_types<size>::Elf_Addr got_address
1678     = this->got_plt_->address();
1679
1680   this->fill_first_plt_entry(pov, got_address, plt_address);
1681   pov += this->get_plt_entry_size();
1682
1683   // The first three entries in the GOT are reserved, and are written
1684   // by Output_data_got_plt_x86_64::do_write.
1685   unsigned char* got_pov = got_view + 24;
1686
1687   unsigned int plt_offset = this->get_plt_entry_size();
1688   unsigned int got_offset = 24;
1689   const unsigned int count = this->count_ + this->irelative_count_;
1690   for (unsigned int plt_index = 0;
1691        plt_index < count;
1692        ++plt_index,
1693          pov += this->get_plt_entry_size(),
1694          got_pov += 8,
1695          plt_offset += this->get_plt_entry_size(),
1696          got_offset += 8)
1697     {
1698       // Set and adjust the PLT entry itself.
1699       unsigned int lazy_offset = this->fill_plt_entry(pov,
1700                                                       got_address, plt_address,
1701                                                       got_offset, plt_offset,
1702                                                       plt_index);
1703
1704       // Set the entry in the GOT.
1705       elfcpp::Swap<64, false>::writeval(got_pov,
1706                                         plt_address + plt_offset + lazy_offset);
1707     }
1708
1709   if (this->has_tlsdesc_entry())
1710     {
1711       // Set and adjust the reserved TLSDESC PLT entry.
1712       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
1713       this->fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
1714                                tlsdesc_got_offset, plt_offset);
1715       pov += this->get_plt_entry_size();
1716     }
1717
1718   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1719   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1720
1721   of->write_output_view(offset, oview_size, oview);
1722   of->write_output_view(got_file_offset, got_size, got_view);
1723 }
1724
1725 // Create the PLT section.
1726
1727 template<int size>
1728 void
1729 Target_x86_64<size>::make_plt_section(Symbol_table* symtab, Layout* layout)
1730 {
1731   if (this->plt_ == NULL)
1732     {
1733       // Create the GOT sections first.
1734       this->got_section(symtab, layout);
1735
1736       this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
1737                                        this->got_irelative_);
1738
1739       // Add unwind information if requested.
1740       if (parameters->options().ld_generated_unwind_info())
1741         this->plt_->add_eh_frame(layout);
1742
1743       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1744                                       (elfcpp::SHF_ALLOC
1745                                        | elfcpp::SHF_EXECINSTR),
1746                                       this->plt_, ORDER_PLT, false);
1747
1748       // Make the sh_info field of .rela.plt point to .plt.
1749       Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1750       rela_plt_os->set_info_section(this->plt_->output_section());
1751     }
1752 }
1753
1754 // Return the section for TLSDESC relocations.
1755
1756 template<int size>
1757 typename Target_x86_64<size>::Reloc_section*
1758 Target_x86_64<size>::rela_tlsdesc_section(Layout* layout) const
1759 {
1760   return this->plt_section()->rela_tlsdesc(layout);
1761 }
1762
1763 // Create a PLT entry for a global symbol.
1764
1765 template<int size>
1766 void
1767 Target_x86_64<size>::make_plt_entry(Symbol_table* symtab, Layout* layout,
1768                                     Symbol* gsym)
1769 {
1770   if (gsym->has_plt_offset())
1771     return;
1772
1773   if (this->plt_ == NULL)
1774     this->make_plt_section(symtab, layout);
1775
1776   this->plt_->add_entry(symtab, layout, gsym);
1777 }
1778
1779 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
1780
1781 template<int size>
1782 void
1783 Target_x86_64<size>::make_local_ifunc_plt_entry(
1784     Symbol_table* symtab, Layout* layout,
1785     Sized_relobj_file<size, false>* relobj,
1786     unsigned int local_sym_index)
1787 {
1788   if (relobj->local_has_plt_offset(local_sym_index))
1789     return;
1790   if (this->plt_ == NULL)
1791     this->make_plt_section(symtab, layout);
1792   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
1793                                                               relobj,
1794                                                               local_sym_index);
1795   relobj->set_local_plt_offset(local_sym_index, plt_offset);
1796 }
1797
1798 // Return the number of entries in the PLT.
1799
1800 template<int size>
1801 unsigned int
1802 Target_x86_64<size>::plt_entry_count() const
1803 {
1804   if (this->plt_ == NULL)
1805     return 0;
1806   return this->plt_->entry_count();
1807 }
1808
1809 // Return the offset of the first non-reserved PLT entry.
1810
1811 template<int size>
1812 unsigned int
1813 Target_x86_64<size>::first_plt_entry_offset() const
1814 {
1815   return this->plt_->first_plt_entry_offset();
1816 }
1817
1818 // Return the size of each PLT entry.
1819
1820 template<int size>
1821 unsigned int
1822 Target_x86_64<size>::plt_entry_size() const
1823 {
1824   return this->plt_->get_plt_entry_size();
1825 }
1826
1827 // Create the GOT and PLT sections for an incremental update.
1828
1829 template<int size>
1830 Output_data_got_base*
1831 Target_x86_64<size>::init_got_plt_for_update(Symbol_table* symtab,
1832                                        Layout* layout,
1833                                        unsigned int got_count,
1834                                        unsigned int plt_count)
1835 {
1836   gold_assert(this->got_ == NULL);
1837
1838   this->got_ = new Output_data_got<64, false>(got_count * 8);
1839   layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1840                                   (elfcpp::SHF_ALLOC
1841                                    | elfcpp::SHF_WRITE),
1842                                   this->got_, ORDER_RELRO_LAST,
1843                                   true);
1844
1845   // Add the three reserved entries.
1846   this->got_plt_ = new Output_data_got_plt_x86_64(layout, (plt_count + 3) * 8);
1847   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1848                                   (elfcpp::SHF_ALLOC
1849                                    | elfcpp::SHF_WRITE),
1850                                   this->got_plt_, ORDER_NON_RELRO_FIRST,
1851                                   false);
1852
1853   // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1854   this->global_offset_table_ =
1855     symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1856                                   Symbol_table::PREDEFINED,
1857                                   this->got_plt_,
1858                                   0, 0, elfcpp::STT_OBJECT,
1859                                   elfcpp::STB_LOCAL,
1860                                   elfcpp::STV_HIDDEN, 0,
1861                                   false, false);
1862
1863   // If there are any TLSDESC relocations, they get GOT entries in
1864   // .got.plt after the jump slot entries.
1865   // FIXME: Get the count for TLSDESC entries.
1866   this->got_tlsdesc_ = new Output_data_got<64, false>(0);
1867   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1868                                   elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1869                                   this->got_tlsdesc_,
1870                                   ORDER_NON_RELRO_FIRST, false);
1871
1872   // If there are any IRELATIVE relocations, they get GOT entries in
1873   // .got.plt after the jump slot and TLSDESC entries.
1874   this->got_irelative_ = new Output_data_space(0, 8, "** GOT IRELATIVE PLT");
1875   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1876                                   elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1877                                   this->got_irelative_,
1878                                   ORDER_NON_RELRO_FIRST, false);
1879
1880   // Create the PLT section.
1881   this->plt_ = this->make_data_plt(layout, this->got_,
1882                                    this->got_plt_,
1883                                    this->got_irelative_,
1884                                    plt_count);
1885
1886   // Add unwind information if requested.
1887   if (parameters->options().ld_generated_unwind_info())
1888     this->plt_->add_eh_frame(layout);
1889
1890   layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1891                                   elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
1892                                   this->plt_, ORDER_PLT, false);
1893
1894   // Make the sh_info field of .rela.plt point to .plt.
1895   Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1896   rela_plt_os->set_info_section(this->plt_->output_section());
1897
1898   // Create the rela_dyn section.
1899   this->rela_dyn_section(layout);
1900
1901   return this->got_;
1902 }
1903
1904 // Reserve a GOT entry for a local symbol, and regenerate any
1905 // necessary dynamic relocations.
1906
1907 template<int size>
1908 void
1909 Target_x86_64<size>::reserve_local_got_entry(
1910     unsigned int got_index,
1911     Sized_relobj<size, false>* obj,
1912     unsigned int r_sym,
1913     unsigned int got_type)
1914 {
1915   unsigned int got_offset = got_index * 8;
1916   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1917
1918   this->got_->reserve_local(got_index, obj, r_sym, got_type);
1919   switch (got_type)
1920     {
1921     case GOT_TYPE_STANDARD:
1922       if (parameters->options().output_is_position_independent())
1923         rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_X86_64_RELATIVE,
1924                                      this->got_, got_offset, 0, false);
1925       break;
1926     case GOT_TYPE_TLS_OFFSET:
1927       rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_TPOFF64,
1928                           this->got_, got_offset, 0);
1929       break;
1930     case GOT_TYPE_TLS_PAIR:
1931       this->got_->reserve_slot(got_index + 1);
1932       rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_DTPMOD64,
1933                           this->got_, got_offset, 0);
1934       break;
1935     case GOT_TYPE_TLS_DESC:
1936       gold_fatal(_("TLS_DESC not yet supported for incremental linking"));
1937       // this->got_->reserve_slot(got_index + 1);
1938       // rela_dyn->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
1939       //                               this->got_, got_offset, 0);
1940       break;
1941     default:
1942       gold_unreachable();
1943     }
1944 }
1945
1946 // Reserve a GOT entry for a global symbol, and regenerate any
1947 // necessary dynamic relocations.
1948
1949 template<int size>
1950 void
1951 Target_x86_64<size>::reserve_global_got_entry(unsigned int got_index,
1952                                               Symbol* gsym,
1953                                               unsigned int got_type)
1954 {
1955   unsigned int got_offset = got_index * 8;
1956   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1957
1958   this->got_->reserve_global(got_index, gsym, got_type);
1959   switch (got_type)
1960     {
1961     case GOT_TYPE_STANDARD:
1962       if (!gsym->final_value_is_known())
1963         {
1964           if (gsym->is_from_dynobj()
1965               || gsym->is_undefined()
1966               || gsym->is_preemptible()
1967               || gsym->type() == elfcpp::STT_GNU_IFUNC)
1968             rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT,
1969                                  this->got_, got_offset, 0);
1970           else
1971             rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1972                                           this->got_, got_offset, 0, false);
1973         }
1974       break;
1975     case GOT_TYPE_TLS_OFFSET:
1976       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TPOFF64,
1977                                     this->got_, got_offset, 0, false);
1978       break;
1979     case GOT_TYPE_TLS_PAIR:
1980       this->got_->reserve_slot(got_index + 1);
1981       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPMOD64,
1982                                     this->got_, got_offset, 0, false);
1983       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPOFF64,
1984                                     this->got_, got_offset + 8, 0, false);
1985       break;
1986     case GOT_TYPE_TLS_DESC:
1987       this->got_->reserve_slot(got_index + 1);
1988       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TLSDESC,
1989                                     this->got_, got_offset, 0, false);
1990       break;
1991     default:
1992       gold_unreachable();
1993     }
1994 }
1995
1996 // Register an existing PLT entry for a global symbol.
1997
1998 template<int size>
1999 void
2000 Target_x86_64<size>::register_global_plt_entry(Symbol_table* symtab,
2001                                                Layout* layout,
2002                                                unsigned int plt_index,
2003                                                Symbol* gsym)
2004 {
2005   gold_assert(this->plt_ != NULL);
2006   gold_assert(!gsym->has_plt_offset());
2007
2008   this->plt_->reserve_slot(plt_index);
2009
2010   gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
2011
2012   unsigned int got_offset = (plt_index + 3) * 8;
2013   this->plt_->add_relocation(symtab, layout, gsym, got_offset);
2014 }
2015
2016 // Force a COPY relocation for a given symbol.
2017
2018 template<int size>
2019 void
2020 Target_x86_64<size>::emit_copy_reloc(
2021     Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
2022 {
2023   this->copy_relocs_.emit_copy_reloc(symtab,
2024                                      symtab->get_sized_symbol<size>(sym),
2025                                      os,
2026                                      offset,
2027                                      this->rela_dyn_section(NULL));
2028 }
2029
2030 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2031
2032 template<int size>
2033 void
2034 Target_x86_64<size>::define_tls_base_symbol(Symbol_table* symtab,
2035                                             Layout* layout)
2036 {
2037   if (this->tls_base_symbol_defined_)
2038     return;
2039
2040   Output_segment* tls_segment = layout->tls_segment();
2041   if (tls_segment != NULL)
2042     {
2043       bool is_exec = parameters->options().output_is_executable();
2044       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
2045                                        Symbol_table::PREDEFINED,
2046                                        tls_segment, 0, 0,
2047                                        elfcpp::STT_TLS,
2048                                        elfcpp::STB_LOCAL,
2049                                        elfcpp::STV_HIDDEN, 0,
2050                                        (is_exec
2051                                         ? Symbol::SEGMENT_END
2052                                         : Symbol::SEGMENT_START),
2053                                        true);
2054     }
2055   this->tls_base_symbol_defined_ = true;
2056 }
2057
2058 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
2059
2060 template<int size>
2061 void
2062 Target_x86_64<size>::reserve_tlsdesc_entries(Symbol_table* symtab,
2063                                              Layout* layout)
2064 {
2065   if (this->plt_ == NULL)
2066     this->make_plt_section(symtab, layout);
2067
2068   if (!this->plt_->has_tlsdesc_entry())
2069     {
2070       // Allocate the TLSDESC_GOT entry.
2071       Output_data_got<64, false>* got = this->got_section(symtab, layout);
2072       unsigned int got_offset = got->add_constant(0);
2073
2074       // Allocate the TLSDESC_PLT entry.
2075       this->plt_->reserve_tlsdesc_entry(got_offset);
2076     }
2077 }
2078
2079 // Create a GOT entry for the TLS module index.
2080
2081 template<int size>
2082 unsigned int
2083 Target_x86_64<size>::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2084                                          Sized_relobj_file<size, false>* object)
2085 {
2086   if (this->got_mod_index_offset_ == -1U)
2087     {
2088       gold_assert(symtab != NULL && layout != NULL && object != NULL);
2089       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
2090       Output_data_got<64, false>* got = this->got_section(symtab, layout);
2091       unsigned int got_offset = got->add_constant(0);
2092       rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
2093                           got_offset, 0);
2094       got->add_constant(0);
2095       this->got_mod_index_offset_ = got_offset;
2096     }
2097   return this->got_mod_index_offset_;
2098 }
2099
2100 // Optimize the TLS relocation type based on what we know about the
2101 // symbol.  IS_FINAL is true if the final address of this symbol is
2102 // known at link time.
2103
2104 template<int size>
2105 tls::Tls_optimization
2106 Target_x86_64<size>::optimize_tls_reloc(bool is_final, int r_type)
2107 {
2108   // If we are generating a shared library, then we can't do anything
2109   // in the linker.
2110   if (parameters->options().shared())
2111     return tls::TLSOPT_NONE;
2112
2113   switch (r_type)
2114     {
2115     case elfcpp::R_X86_64_TLSGD:
2116     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2117     case elfcpp::R_X86_64_TLSDESC_CALL:
2118       // These are General-Dynamic which permits fully general TLS
2119       // access.  Since we know that we are generating an executable,
2120       // we can convert this to Initial-Exec.  If we also know that
2121       // this is a local symbol, we can further switch to Local-Exec.
2122       if (is_final)
2123         return tls::TLSOPT_TO_LE;
2124       return tls::TLSOPT_TO_IE;
2125
2126     case elfcpp::R_X86_64_TLSLD:
2127       // This is Local-Dynamic, which refers to a local symbol in the
2128       // dynamic TLS block.  Since we know that we generating an
2129       // executable, we can switch to Local-Exec.
2130       return tls::TLSOPT_TO_LE;
2131
2132     case elfcpp::R_X86_64_DTPOFF32:
2133     case elfcpp::R_X86_64_DTPOFF64:
2134       // Another Local-Dynamic reloc.
2135       return tls::TLSOPT_TO_LE;
2136
2137     case elfcpp::R_X86_64_GOTTPOFF:
2138       // These are Initial-Exec relocs which get the thread offset
2139       // from the GOT.  If we know that we are linking against the
2140       // local symbol, we can switch to Local-Exec, which links the
2141       // thread offset into the instruction.
2142       if (is_final)
2143         return tls::TLSOPT_TO_LE;
2144       return tls::TLSOPT_NONE;
2145
2146     case elfcpp::R_X86_64_TPOFF32:
2147       // When we already have Local-Exec, there is nothing further we
2148       // can do.
2149       return tls::TLSOPT_NONE;
2150
2151     default:
2152       gold_unreachable();
2153     }
2154 }
2155
2156 // Get the Reference_flags for a particular relocation.
2157
2158 template<int size>
2159 int
2160 Target_x86_64<size>::Scan::get_reference_flags(unsigned int r_type)
2161 {
2162   switch (r_type)
2163     {
2164     case elfcpp::R_X86_64_NONE:
2165     case elfcpp::R_X86_64_GNU_VTINHERIT:
2166     case elfcpp::R_X86_64_GNU_VTENTRY:
2167     case elfcpp::R_X86_64_GOTPC32:
2168     case elfcpp::R_X86_64_GOTPC64:
2169       // No symbol reference.
2170       return 0;
2171
2172     case elfcpp::R_X86_64_64:
2173     case elfcpp::R_X86_64_32:
2174     case elfcpp::R_X86_64_32S:
2175     case elfcpp::R_X86_64_16:
2176     case elfcpp::R_X86_64_8:
2177       return Symbol::ABSOLUTE_REF;
2178
2179     case elfcpp::R_X86_64_PC64:
2180     case elfcpp::R_X86_64_PC32:
2181     case elfcpp::R_X86_64_PC32_BND:
2182     case elfcpp::R_X86_64_PC16:
2183     case elfcpp::R_X86_64_PC8:
2184     case elfcpp::R_X86_64_GOTOFF64:
2185       return Symbol::RELATIVE_REF;
2186
2187     case elfcpp::R_X86_64_PLT32:
2188     case elfcpp::R_X86_64_PLT32_BND:
2189     case elfcpp::R_X86_64_PLTOFF64:
2190       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
2191
2192     case elfcpp::R_X86_64_GOT64:
2193     case elfcpp::R_X86_64_GOT32:
2194     case elfcpp::R_X86_64_GOTPCREL64:
2195     case elfcpp::R_X86_64_GOTPCREL:
2196     case elfcpp::R_X86_64_GOTPCRELX:
2197     case elfcpp::R_X86_64_REX_GOTPCRELX:
2198     case elfcpp::R_X86_64_GOTPLT64:
2199       // Absolute in GOT.
2200       return Symbol::ABSOLUTE_REF;
2201
2202     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2203     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2204     case elfcpp::R_X86_64_TLSDESC_CALL:
2205     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2206     case elfcpp::R_X86_64_DTPOFF32:
2207     case elfcpp::R_X86_64_DTPOFF64:
2208     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2209     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2210       return Symbol::TLS_REF;
2211
2212     case elfcpp::R_X86_64_COPY:
2213     case elfcpp::R_X86_64_GLOB_DAT:
2214     case elfcpp::R_X86_64_JUMP_SLOT:
2215     case elfcpp::R_X86_64_RELATIVE:
2216     case elfcpp::R_X86_64_IRELATIVE:
2217     case elfcpp::R_X86_64_TPOFF64:
2218     case elfcpp::R_X86_64_DTPMOD64:
2219     case elfcpp::R_X86_64_TLSDESC:
2220     case elfcpp::R_X86_64_SIZE32:
2221     case elfcpp::R_X86_64_SIZE64:
2222     default:
2223       // Not expected.  We will give an error later.
2224       return 0;
2225     }
2226 }
2227
2228 // Report an unsupported relocation against a local symbol.
2229
2230 template<int size>
2231 void
2232 Target_x86_64<size>::Scan::unsupported_reloc_local(
2233      Sized_relobj_file<size, false>* object,
2234      unsigned int r_type)
2235 {
2236   gold_error(_("%s: unsupported reloc %u against local symbol"),
2237              object->name().c_str(), r_type);
2238 }
2239
2240 // We are about to emit a dynamic relocation of type R_TYPE.  If the
2241 // dynamic linker does not support it, issue an error.  The GNU linker
2242 // only issues a non-PIC error for an allocated read-only section.
2243 // Here we know the section is allocated, but we don't know that it is
2244 // read-only.  But we check for all the relocation types which the
2245 // glibc dynamic linker supports, so it seems appropriate to issue an
2246 // error even if the section is not read-only.  If GSYM is not NULL,
2247 // it is the symbol the relocation is against; if it is NULL, the
2248 // relocation is against a local symbol.
2249
2250 template<int size>
2251 void
2252 Target_x86_64<size>::Scan::check_non_pic(Relobj* object, unsigned int r_type,
2253                                          Symbol* gsym)
2254 {
2255   switch (r_type)
2256     {
2257       // These are the relocation types supported by glibc for x86_64
2258       // which should always work.
2259     case elfcpp::R_X86_64_RELATIVE:
2260     case elfcpp::R_X86_64_IRELATIVE:
2261     case elfcpp::R_X86_64_GLOB_DAT:
2262     case elfcpp::R_X86_64_JUMP_SLOT:
2263     case elfcpp::R_X86_64_DTPMOD64:
2264     case elfcpp::R_X86_64_DTPOFF64:
2265     case elfcpp::R_X86_64_TPOFF64:
2266     case elfcpp::R_X86_64_64:
2267     case elfcpp::R_X86_64_COPY:
2268       return;
2269
2270       // glibc supports these reloc types, but they can overflow.
2271     case elfcpp::R_X86_64_PC32:
2272     case elfcpp::R_X86_64_PC32_BND:
2273       // A PC relative reference is OK against a local symbol or if
2274       // the symbol is defined locally.
2275       if (gsym == NULL
2276           || (!gsym->is_from_dynobj()
2277               && !gsym->is_undefined()
2278               && !gsym->is_preemptible()))
2279         return;
2280       /* Fall through.  */
2281     case elfcpp::R_X86_64_32:
2282       // R_X86_64_32 is OK for x32.
2283       if (size == 32 && r_type == elfcpp::R_X86_64_32)
2284         return;
2285       if (this->issued_non_pic_error_)
2286         return;
2287       gold_assert(parameters->options().output_is_position_independent());
2288       if (gsym == NULL)
2289         object->error(_("requires dynamic R_X86_64_32 reloc which may "
2290                         "overflow at runtime; recompile with -fPIC"));
2291       else
2292         {
2293           const char *r_name;
2294           switch (r_type)
2295             {
2296             case elfcpp::R_X86_64_32:
2297               r_name = "R_X86_64_32";
2298               break;
2299             case elfcpp::R_X86_64_PC32:
2300               r_name = "R_X86_64_PC32";
2301               break;
2302             case elfcpp::R_X86_64_PC32_BND:
2303               r_name = "R_X86_64_PC32_BND";
2304               break;
2305             default:
2306               gold_unreachable();
2307               break;
2308             }
2309           object->error(_("requires dynamic %s reloc against '%s' "
2310                           "which may overflow at runtime; recompile "
2311                           "with -fPIC"),
2312                         r_name, gsym->name());
2313         }
2314       this->issued_non_pic_error_ = true;
2315       return;
2316
2317     default:
2318       // This prevents us from issuing more than one error per reloc
2319       // section.  But we can still wind up issuing more than one
2320       // error per object file.
2321       if (this->issued_non_pic_error_)
2322         return;
2323       gold_assert(parameters->options().output_is_position_independent());
2324       object->error(_("requires unsupported dynamic reloc %u; "
2325                       "recompile with -fPIC"),
2326                     r_type);
2327       this->issued_non_pic_error_ = true;
2328       return;
2329
2330     case elfcpp::R_X86_64_NONE:
2331       gold_unreachable();
2332     }
2333 }
2334
2335 // Return whether we need to make a PLT entry for a relocation of the
2336 // given type against a STT_GNU_IFUNC symbol.
2337
2338 template<int size>
2339 bool
2340 Target_x86_64<size>::Scan::reloc_needs_plt_for_ifunc(
2341      Sized_relobj_file<size, false>* object,
2342      unsigned int r_type)
2343 {
2344   int flags = Scan::get_reference_flags(r_type);
2345   if (flags & Symbol::TLS_REF)
2346     gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
2347                object->name().c_str(), r_type);
2348   return flags != 0;
2349 }
2350
2351 // Scan a relocation for a local symbol.
2352
2353 template<int size>
2354 inline void
2355 Target_x86_64<size>::Scan::local(Symbol_table* symtab,
2356                                  Layout* layout,
2357                                  Target_x86_64<size>* target,
2358                                  Sized_relobj_file<size, false>* object,
2359                                  unsigned int data_shndx,
2360                                  Output_section* output_section,
2361                                  const elfcpp::Rela<size, false>& reloc,
2362                                  unsigned int r_type,
2363                                  const elfcpp::Sym<size, false>& lsym,
2364                                  bool is_discarded)
2365 {
2366   if (is_discarded)
2367     return;
2368
2369   // A local STT_GNU_IFUNC symbol may require a PLT entry.
2370   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
2371   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
2372     {
2373       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2374       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
2375     }
2376
2377   switch (r_type)
2378     {
2379     case elfcpp::R_X86_64_NONE:
2380     case elfcpp::R_X86_64_GNU_VTINHERIT:
2381     case elfcpp::R_X86_64_GNU_VTENTRY:
2382       break;
2383
2384     case elfcpp::R_X86_64_64:
2385       // If building a shared library (or a position-independent
2386       // executable), we need to create a dynamic relocation for this
2387       // location.  The relocation applied at link time will apply the
2388       // link-time value, so we flag the location with an
2389       // R_X86_64_RELATIVE relocation so the dynamic loader can
2390       // relocate it easily.
2391       if (parameters->options().output_is_position_independent())
2392         {
2393           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2394           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2395           rela_dyn->add_local_relative(object, r_sym,
2396                                        (size == 32
2397                                         ? elfcpp::R_X86_64_RELATIVE64
2398                                         : elfcpp::R_X86_64_RELATIVE),
2399                                        output_section, data_shndx,
2400                                        reloc.get_r_offset(),
2401                                        reloc.get_r_addend(), is_ifunc);
2402         }
2403       break;
2404
2405     case elfcpp::R_X86_64_32:
2406     case elfcpp::R_X86_64_32S:
2407     case elfcpp::R_X86_64_16:
2408     case elfcpp::R_X86_64_8:
2409       // If building a shared library (or a position-independent
2410       // executable), we need to create a dynamic relocation for this
2411       // location.  We can't use an R_X86_64_RELATIVE relocation
2412       // because that is always a 64-bit relocation.
2413       if (parameters->options().output_is_position_independent())
2414         {
2415           // Use R_X86_64_RELATIVE relocation for R_X86_64_32 under x32.
2416           if (size == 32 && r_type == elfcpp::R_X86_64_32)
2417             {
2418               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2419               Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2420               rela_dyn->add_local_relative(object, r_sym,
2421                                            elfcpp::R_X86_64_RELATIVE,
2422                                            output_section, data_shndx,
2423                                            reloc.get_r_offset(),
2424                                            reloc.get_r_addend(), is_ifunc);
2425               break;
2426             }
2427
2428           this->check_non_pic(object, r_type, NULL);
2429
2430           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2431           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2432           if (lsym.get_st_type() != elfcpp::STT_SECTION)
2433             rela_dyn->add_local(object, r_sym, r_type, output_section,
2434                                 data_shndx, reloc.get_r_offset(),
2435                                 reloc.get_r_addend());
2436           else
2437             {
2438               gold_assert(lsym.get_st_value() == 0);
2439               unsigned int shndx = lsym.get_st_shndx();
2440               bool is_ordinary;
2441               shndx = object->adjust_sym_shndx(r_sym, shndx,
2442                                                &is_ordinary);
2443               if (!is_ordinary)
2444                 object->error(_("section symbol %u has bad shndx %u"),
2445                               r_sym, shndx);
2446               else
2447                 rela_dyn->add_local_section(object, shndx,
2448                                             r_type, output_section,
2449                                             data_shndx, reloc.get_r_offset(),
2450                                             reloc.get_r_addend());
2451             }
2452         }
2453       break;
2454
2455     case elfcpp::R_X86_64_PC64:
2456     case elfcpp::R_X86_64_PC32:
2457     case elfcpp::R_X86_64_PC32_BND:
2458     case elfcpp::R_X86_64_PC16:
2459     case elfcpp::R_X86_64_PC8:
2460       break;
2461
2462     case elfcpp::R_X86_64_PLT32:
2463     case elfcpp::R_X86_64_PLT32_BND:
2464       // Since we know this is a local symbol, we can handle this as a
2465       // PC32 reloc.
2466       break;
2467
2468     case elfcpp::R_X86_64_GOTPC32:
2469     case elfcpp::R_X86_64_GOTOFF64:
2470     case elfcpp::R_X86_64_GOTPC64:
2471     case elfcpp::R_X86_64_PLTOFF64:
2472       // We need a GOT section.
2473       target->got_section(symtab, layout);
2474       // For PLTOFF64, we'd normally want a PLT section, but since we
2475       // know this is a local symbol, no PLT is needed.
2476       break;
2477
2478     case elfcpp::R_X86_64_GOT64:
2479     case elfcpp::R_X86_64_GOT32:
2480     case elfcpp::R_X86_64_GOTPCREL64:
2481     case elfcpp::R_X86_64_GOTPCREL:
2482     case elfcpp::R_X86_64_GOTPCRELX:
2483     case elfcpp::R_X86_64_REX_GOTPCRELX:
2484     case elfcpp::R_X86_64_GOTPLT64:
2485       {
2486         // The symbol requires a GOT section.
2487         Output_data_got<64, false>* got = target->got_section(symtab, layout);
2488
2489         // If the relocation symbol isn't IFUNC,
2490         // and is local, then we will convert
2491         // mov foo@GOTPCREL(%rip), %reg
2492         // to lea foo(%rip), %reg.
2493         // in Relocate::relocate.
2494         if ((r_type == elfcpp::R_X86_64_GOTPCREL
2495              || r_type == elfcpp::R_X86_64_GOTPCRELX
2496              || r_type == elfcpp::R_X86_64_REX_GOTPCRELX)
2497             && reloc.get_r_offset() >= 2
2498             && !is_ifunc)
2499           {
2500             section_size_type stype;
2501             const unsigned char* view = object->section_contents(data_shndx,
2502                                                                  &stype, true);
2503             if (view[reloc.get_r_offset() - 2] == 0x8b)
2504               break;
2505           }
2506
2507
2508         // The symbol requires a GOT entry.
2509         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2510
2511         // For a STT_GNU_IFUNC symbol we want the PLT offset.  That
2512         // lets function pointers compare correctly with shared
2513         // libraries.  Otherwise we would need an IRELATIVE reloc.
2514         bool is_new;
2515         if (is_ifunc)
2516           is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
2517         else
2518           is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
2519         if (is_new)
2520           {
2521             // If we are generating a shared object, we need to add a
2522             // dynamic relocation for this symbol's GOT entry.
2523             if (parameters->options().output_is_position_independent())
2524               {
2525                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2526                 // R_X86_64_RELATIVE assumes a 64-bit relocation.
2527                 if (r_type != elfcpp::R_X86_64_GOT32)
2528                   {
2529                     unsigned int got_offset =
2530                       object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
2531                     rela_dyn->add_local_relative(object, r_sym,
2532                                                  elfcpp::R_X86_64_RELATIVE,
2533                                                  got, got_offset, 0, is_ifunc);
2534                   }
2535                 else
2536                   {
2537                     this->check_non_pic(object, r_type, NULL);
2538
2539                     gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
2540                     rela_dyn->add_local(
2541                         object, r_sym, r_type, got,
2542                         object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
2543                   }
2544               }
2545           }
2546         // For GOTPLT64, we'd normally want a PLT section, but since
2547         // we know this is a local symbol, no PLT is needed.
2548       }
2549       break;
2550
2551     case elfcpp::R_X86_64_COPY:
2552     case elfcpp::R_X86_64_GLOB_DAT:
2553     case elfcpp::R_X86_64_JUMP_SLOT:
2554     case elfcpp::R_X86_64_RELATIVE:
2555     case elfcpp::R_X86_64_IRELATIVE:
2556       // These are outstanding tls relocs, which are unexpected when linking
2557     case elfcpp::R_X86_64_TPOFF64:
2558     case elfcpp::R_X86_64_DTPMOD64:
2559     case elfcpp::R_X86_64_TLSDESC:
2560       gold_error(_("%s: unexpected reloc %u in object file"),
2561                  object->name().c_str(), r_type);
2562       break;
2563
2564       // These are initial tls relocs, which are expected when linking
2565     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2566     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2567     case elfcpp::R_X86_64_TLSDESC_CALL:
2568     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2569     case elfcpp::R_X86_64_DTPOFF32:
2570     case elfcpp::R_X86_64_DTPOFF64:
2571     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2572     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2573       {
2574         bool output_is_shared = parameters->options().shared();
2575         const tls::Tls_optimization optimized_type
2576             = Target_x86_64<size>::optimize_tls_reloc(!output_is_shared,
2577                                                       r_type);
2578         switch (r_type)
2579           {
2580           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
2581             if (optimized_type == tls::TLSOPT_NONE)
2582               {
2583                 // Create a pair of GOT entries for the module index and
2584                 // dtv-relative offset.
2585                 Output_data_got<64, false>* got
2586                     = target->got_section(symtab, layout);
2587                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2588                 unsigned int shndx = lsym.get_st_shndx();
2589                 bool is_ordinary;
2590                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2591                 if (!is_ordinary)
2592                   object->error(_("local symbol %u has bad shndx %u"),
2593                               r_sym, shndx);
2594                 else
2595                   got->add_local_pair_with_rel(object, r_sym,
2596                                                shndx,
2597                                                GOT_TYPE_TLS_PAIR,
2598                                                target->rela_dyn_section(layout),
2599                                                elfcpp::R_X86_64_DTPMOD64);
2600               }
2601             else if (optimized_type != tls::TLSOPT_TO_LE)
2602               unsupported_reloc_local(object, r_type);
2603             break;
2604
2605           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2606             target->define_tls_base_symbol(symtab, layout);
2607             if (optimized_type == tls::TLSOPT_NONE)
2608               {
2609                 // Create reserved PLT and GOT entries for the resolver.
2610                 target->reserve_tlsdesc_entries(symtab, layout);
2611
2612                 // Generate a double GOT entry with an
2613                 // R_X86_64_TLSDESC reloc.  The R_X86_64_TLSDESC reloc
2614                 // is resolved lazily, so the GOT entry needs to be in
2615                 // an area in .got.plt, not .got.  Call got_section to
2616                 // make sure the section has been created.
2617                 target->got_section(symtab, layout);
2618                 Output_data_got<64, false>* got = target->got_tlsdesc_section();
2619                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2620                 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
2621                   {
2622                     unsigned int got_offset = got->add_constant(0);
2623                     got->add_constant(0);
2624                     object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
2625                                                  got_offset);
2626                     Reloc_section* rt = target->rela_tlsdesc_section(layout);
2627                     // We store the arguments we need in a vector, and
2628                     // use the index into the vector as the parameter
2629                     // to pass to the target specific routines.
2630                     uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
2631                     void* arg = reinterpret_cast<void*>(intarg);
2632                     rt->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
2633                                             got, got_offset, 0);
2634                   }
2635               }
2636             else if (optimized_type != tls::TLSOPT_TO_LE)
2637               unsupported_reloc_local(object, r_type);
2638             break;
2639
2640           case elfcpp::R_X86_64_TLSDESC_CALL:
2641             break;
2642
2643           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
2644             if (optimized_type == tls::TLSOPT_NONE)
2645               {
2646                 // Create a GOT entry for the module index.
2647                 target->got_mod_index_entry(symtab, layout, object);
2648               }
2649             else if (optimized_type != tls::TLSOPT_TO_LE)
2650               unsupported_reloc_local(object, r_type);
2651             break;
2652
2653           case elfcpp::R_X86_64_DTPOFF32:
2654           case elfcpp::R_X86_64_DTPOFF64:
2655             break;
2656
2657           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
2658             layout->set_has_static_tls();
2659             if (optimized_type == tls::TLSOPT_NONE)
2660               {
2661                 // Create a GOT entry for the tp-relative offset.
2662                 Output_data_got<64, false>* got
2663                     = target->got_section(symtab, layout);
2664                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2665                 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
2666                                         target->rela_dyn_section(layout),
2667                                         elfcpp::R_X86_64_TPOFF64);
2668               }
2669             else if (optimized_type != tls::TLSOPT_TO_LE)
2670               unsupported_reloc_local(object, r_type);
2671             break;
2672
2673           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
2674             layout->set_has_static_tls();
2675             if (output_is_shared)
2676               unsupported_reloc_local(object, r_type);
2677             break;
2678
2679           default:
2680             gold_unreachable();
2681           }
2682       }
2683       break;
2684
2685     case elfcpp::R_X86_64_SIZE32:
2686     case elfcpp::R_X86_64_SIZE64:
2687     default:
2688       gold_error(_("%s: unsupported reloc %u against local symbol"),
2689                  object->name().c_str(), r_type);
2690       break;
2691     }
2692 }
2693
2694
2695 // Report an unsupported relocation against a global symbol.
2696
2697 template<int size>
2698 void
2699 Target_x86_64<size>::Scan::unsupported_reloc_global(
2700     Sized_relobj_file<size, false>* object,
2701     unsigned int r_type,
2702     Symbol* gsym)
2703 {
2704   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2705              object->name().c_str(), r_type, gsym->demangled_name().c_str());
2706 }
2707
2708 // Returns true if this relocation type could be that of a function pointer.
2709 template<int size>
2710 inline bool
2711 Target_x86_64<size>::Scan::possible_function_pointer_reloc(unsigned int r_type)
2712 {
2713   switch (r_type)
2714     {
2715     case elfcpp::R_X86_64_64:
2716     case elfcpp::R_X86_64_32:
2717     case elfcpp::R_X86_64_32S:
2718     case elfcpp::R_X86_64_16:
2719     case elfcpp::R_X86_64_8:
2720     case elfcpp::R_X86_64_GOT64:
2721     case elfcpp::R_X86_64_GOT32:
2722     case elfcpp::R_X86_64_GOTPCREL64:
2723     case elfcpp::R_X86_64_GOTPCREL:
2724     case elfcpp::R_X86_64_GOTPCRELX:
2725     case elfcpp::R_X86_64_REX_GOTPCRELX:
2726     case elfcpp::R_X86_64_GOTPLT64:
2727       {
2728         return true;
2729       }
2730     }
2731   return false;
2732 }
2733
2734 // For safe ICF, scan a relocation for a local symbol to check if it
2735 // corresponds to a function pointer being taken.  In that case mark
2736 // the function whose pointer was taken as not foldable.
2737
2738 template<int size>
2739 inline bool
2740 Target_x86_64<size>::Scan::local_reloc_may_be_function_pointer(
2741   Symbol_table* ,
2742   Layout* ,
2743   Target_x86_64<size>* ,
2744   Sized_relobj_file<size, false>* ,
2745   unsigned int ,
2746   Output_section* ,
2747   const elfcpp::Rela<size, false>& ,
2748   unsigned int r_type,
2749   const elfcpp::Sym<size, false>&)
2750 {
2751   // When building a shared library, do not fold any local symbols as it is
2752   // not possible to distinguish pointer taken versus a call by looking at
2753   // the relocation types.
2754   return (parameters->options().shared()
2755           || possible_function_pointer_reloc(r_type));
2756 }
2757
2758 // For safe ICF, scan a relocation for a global symbol to check if it
2759 // corresponds to a function pointer being taken.  In that case mark
2760 // the function whose pointer was taken as not foldable.
2761
2762 template<int size>
2763 inline bool
2764 Target_x86_64<size>::Scan::global_reloc_may_be_function_pointer(
2765   Symbol_table*,
2766   Layout* ,
2767   Target_x86_64<size>* ,
2768   Sized_relobj_file<size, false>* ,
2769   unsigned int ,
2770   Output_section* ,
2771   const elfcpp::Rela<size, false>& ,
2772   unsigned int r_type,
2773   Symbol* gsym)
2774 {
2775   // When building a shared library, do not fold symbols whose visibility
2776   // is hidden, internal or protected.
2777   return ((parameters->options().shared()
2778            && (gsym->visibility() == elfcpp::STV_INTERNAL
2779                || gsym->visibility() == elfcpp::STV_PROTECTED
2780                || gsym->visibility() == elfcpp::STV_HIDDEN))
2781           || possible_function_pointer_reloc(r_type));
2782 }
2783
2784 // Scan a relocation for a global symbol.
2785
2786 template<int size>
2787 inline void
2788 Target_x86_64<size>::Scan::global(Symbol_table* symtab,
2789                             Layout* layout,
2790                             Target_x86_64<size>* target,
2791                             Sized_relobj_file<size, false>* object,
2792                             unsigned int data_shndx,
2793                             Output_section* output_section,
2794                             const elfcpp::Rela<size, false>& reloc,
2795                             unsigned int r_type,
2796                             Symbol* gsym)
2797 {
2798   // A STT_GNU_IFUNC symbol may require a PLT entry.
2799   if (gsym->type() == elfcpp::STT_GNU_IFUNC
2800       && this->reloc_needs_plt_for_ifunc(object, r_type))
2801     target->make_plt_entry(symtab, layout, gsym);
2802
2803   switch (r_type)
2804     {
2805     case elfcpp::R_X86_64_NONE:
2806     case elfcpp::R_X86_64_GNU_VTINHERIT:
2807     case elfcpp::R_X86_64_GNU_VTENTRY:
2808       break;
2809
2810     case elfcpp::R_X86_64_64:
2811     case elfcpp::R_X86_64_32:
2812     case elfcpp::R_X86_64_32S:
2813     case elfcpp::R_X86_64_16:
2814     case elfcpp::R_X86_64_8:
2815       {
2816         // Make a PLT entry if necessary.
2817         if (gsym->needs_plt_entry())
2818           {
2819             target->make_plt_entry(symtab, layout, gsym);
2820             // Since this is not a PC-relative relocation, we may be
2821             // taking the address of a function. In that case we need to
2822             // set the entry in the dynamic symbol table to the address of
2823             // the PLT entry.
2824             if (gsym->is_from_dynobj() && !parameters->options().shared())
2825               gsym->set_needs_dynsym_value();
2826           }
2827         // Make a dynamic relocation if necessary.
2828         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2829           {
2830             if (!parameters->options().output_is_position_independent()
2831                 && gsym->may_need_copy_reloc())
2832               {
2833                 target->copy_reloc(symtab, layout, object,
2834                                    data_shndx, output_section, gsym, reloc);
2835               }
2836             else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
2837                       || (size == 32 && r_type == elfcpp::R_X86_64_32))
2838                      && gsym->type() == elfcpp::STT_GNU_IFUNC
2839                      && gsym->can_use_relative_reloc(false)
2840                      && !gsym->is_from_dynobj()
2841                      && !gsym->is_undefined()
2842                      && !gsym->is_preemptible())
2843               {
2844                 // Use an IRELATIVE reloc for a locally defined
2845                 // STT_GNU_IFUNC symbol.  This makes a function
2846                 // address in a PIE executable match the address in a
2847                 // shared library that it links against.
2848                 Reloc_section* rela_dyn =
2849                   target->rela_irelative_section(layout);
2850                 unsigned int r_type = elfcpp::R_X86_64_IRELATIVE;
2851                 rela_dyn->add_symbolless_global_addend(gsym, r_type,
2852                                                        output_section, object,
2853                                                        data_shndx,
2854                                                        reloc.get_r_offset(),
2855                                                        reloc.get_r_addend());
2856               }
2857             else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
2858                       || (size == 32 && r_type == elfcpp::R_X86_64_32))
2859                      && gsym->can_use_relative_reloc(false))
2860               {
2861                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2862                 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
2863                                               output_section, object,
2864                                               data_shndx,
2865                                               reloc.get_r_offset(),
2866                                               reloc.get_r_addend(), false);
2867               }
2868             else
2869               {
2870                 this->check_non_pic(object, r_type, gsym);
2871                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2872                 rela_dyn->add_global(gsym, r_type, output_section, object,
2873                                      data_shndx, reloc.get_r_offset(),
2874                                      reloc.get_r_addend());
2875               }
2876           }
2877       }
2878       break;
2879
2880     case elfcpp::R_X86_64_PC64:
2881     case elfcpp::R_X86_64_PC32:
2882     case elfcpp::R_X86_64_PC32_BND:
2883     case elfcpp::R_X86_64_PC16:
2884     case elfcpp::R_X86_64_PC8:
2885       {
2886         // Make a PLT entry if necessary.
2887         if (gsym->needs_plt_entry())
2888           target->make_plt_entry(symtab, layout, gsym);
2889         // Make a dynamic relocation if necessary.
2890         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2891           {
2892             if (parameters->options().output_is_executable()
2893                 && gsym->may_need_copy_reloc())
2894               {
2895                 target->copy_reloc(symtab, layout, object,
2896                                    data_shndx, output_section, gsym, reloc);
2897               }
2898             else
2899               {
2900                 this->check_non_pic(object, r_type, gsym);
2901                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2902                 rela_dyn->add_global(gsym, r_type, output_section, object,
2903                                      data_shndx, reloc.get_r_offset(),
2904                                      reloc.get_r_addend());
2905               }
2906           }
2907       }
2908       break;
2909
2910     case elfcpp::R_X86_64_GOT64:
2911     case elfcpp::R_X86_64_GOT32:
2912     case elfcpp::R_X86_64_GOTPCREL64:
2913     case elfcpp::R_X86_64_GOTPCREL:
2914     case elfcpp::R_X86_64_GOTPCRELX:
2915     case elfcpp::R_X86_64_REX_GOTPCRELX:
2916     case elfcpp::R_X86_64_GOTPLT64:
2917       {
2918         // The symbol requires a GOT entry.
2919         Output_data_got<64, false>* got = target->got_section(symtab, layout);
2920
2921         // If we convert this from
2922         // mov foo@GOTPCREL(%rip), %reg
2923         // to lea foo(%rip), %reg.
2924         // in Relocate::relocate, then there is nothing to do here.
2925         if ((r_type == elfcpp::R_X86_64_GOTPCREL
2926              || r_type == elfcpp::R_X86_64_GOTPCRELX
2927              || r_type == elfcpp::R_X86_64_REX_GOTPCRELX)
2928             && reloc.get_r_offset() >= 2
2929             && Target_x86_64<size>::can_convert_mov_to_lea(gsym))
2930           {
2931             section_size_type stype;
2932             const unsigned char* view = object->section_contents(data_shndx,
2933                                                                  &stype, true);
2934             if (view[reloc.get_r_offset() - 2] == 0x8b)
2935               break;
2936           }
2937
2938         if (gsym->final_value_is_known())
2939           {
2940             // For a STT_GNU_IFUNC symbol we want the PLT address.
2941             if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2942               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2943             else
2944               got->add_global(gsym, GOT_TYPE_STANDARD);
2945           }
2946         else
2947           {
2948             // If this symbol is not fully resolved, we need to add a
2949             // dynamic relocation for it.
2950             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2951
2952             // Use a GLOB_DAT rather than a RELATIVE reloc if:
2953             //
2954             // 1) The symbol may be defined in some other module.
2955             //
2956             // 2) We are building a shared library and this is a
2957             // protected symbol; using GLOB_DAT means that the dynamic
2958             // linker can use the address of the PLT in the main
2959             // executable when appropriate so that function address
2960             // comparisons work.
2961             //
2962             // 3) This is a STT_GNU_IFUNC symbol in position dependent
2963             // code, again so that function address comparisons work.
2964             if (gsym->is_from_dynobj()
2965                 || gsym->is_undefined()
2966                 || gsym->is_preemptible()
2967                 || (gsym->visibility() == elfcpp::STV_PROTECTED
2968                     && parameters->options().shared())
2969                 || (gsym->type() == elfcpp::STT_GNU_IFUNC
2970                     && parameters->options().output_is_position_independent()))
2971               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
2972                                        elfcpp::R_X86_64_GLOB_DAT);
2973             else
2974               {
2975                 // For a STT_GNU_IFUNC symbol we want to write the PLT
2976                 // offset into the GOT, so that function pointer
2977                 // comparisons work correctly.
2978                 bool is_new;
2979                 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2980                   is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2981                 else
2982                   {
2983                     is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2984                     // Tell the dynamic linker to use the PLT address
2985                     // when resolving relocations.
2986                     if (gsym->is_from_dynobj()
2987                         && !parameters->options().shared())
2988                       gsym->set_needs_dynsym_value();
2989                   }
2990                 if (is_new)
2991                   {
2992                     unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
2993                     rela_dyn->add_global_relative(gsym,
2994                                                   elfcpp::R_X86_64_RELATIVE,
2995                                                   got, got_off, 0, false);
2996                   }
2997               }
2998           }
2999       }
3000       break;
3001
3002     case elfcpp::R_X86_64_PLT32:
3003     case elfcpp::R_X86_64_PLT32_BND:
3004       // If the symbol is fully resolved, this is just a PC32 reloc.
3005       // Otherwise we need a PLT entry.
3006       if (gsym->final_value_is_known())
3007         break;
3008       // If building a shared library, we can also skip the PLT entry
3009       // if the symbol is defined in the output file and is protected
3010       // or hidden.
3011       if (gsym->is_defined()
3012           && !gsym->is_from_dynobj()
3013           && !gsym->is_preemptible())
3014         break;
3015       target->make_plt_entry(symtab, layout, gsym);
3016       break;
3017
3018     case elfcpp::R_X86_64_GOTPC32:
3019     case elfcpp::R_X86_64_GOTOFF64:
3020     case elfcpp::R_X86_64_GOTPC64:
3021     case elfcpp::R_X86_64_PLTOFF64:
3022       // We need a GOT section.
3023       target->got_section(symtab, layout);
3024       // For PLTOFF64, we also need a PLT entry (but only if the
3025       // symbol is not fully resolved).
3026       if (r_type == elfcpp::R_X86_64_PLTOFF64
3027           && !gsym->final_value_is_known())
3028         target->make_plt_entry(symtab, layout, gsym);
3029       break;
3030
3031     case elfcpp::R_X86_64_COPY:
3032     case elfcpp::R_X86_64_GLOB_DAT:
3033     case elfcpp::R_X86_64_JUMP_SLOT:
3034     case elfcpp::R_X86_64_RELATIVE:
3035     case elfcpp::R_X86_64_IRELATIVE:
3036       // These are outstanding tls relocs, which are unexpected when linking
3037     case elfcpp::R_X86_64_TPOFF64:
3038     case elfcpp::R_X86_64_DTPMOD64:
3039     case elfcpp::R_X86_64_TLSDESC:
3040       gold_error(_("%s: unexpected reloc %u in object file"),
3041                  object->name().c_str(), r_type);
3042       break;
3043
3044       // These are initial tls relocs, which are expected for global()
3045     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3046     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3047     case elfcpp::R_X86_64_TLSDESC_CALL:
3048     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3049     case elfcpp::R_X86_64_DTPOFF32:
3050     case elfcpp::R_X86_64_DTPOFF64:
3051     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3052     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3053       {
3054         // For the Initial-Exec model, we can treat undef symbols as final
3055         // when building an executable.
3056         const bool is_final = (gsym->final_value_is_known() ||
3057                                (r_type == elfcpp::R_X86_64_GOTTPOFF &&
3058                                 gsym->is_undefined() &&
3059                                 parameters->options().output_is_executable()));
3060         const tls::Tls_optimization optimized_type
3061             = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
3062         switch (r_type)
3063           {
3064           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
3065             if (optimized_type == tls::TLSOPT_NONE)
3066               {
3067                 // Create a pair of GOT entries for the module index and
3068                 // dtv-relative offset.
3069                 Output_data_got<64, false>* got
3070                     = target->got_section(symtab, layout);
3071                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
3072                                               target->rela_dyn_section(layout),
3073                                               elfcpp::R_X86_64_DTPMOD64,
3074                                               elfcpp::R_X86_64_DTPOFF64);
3075               }
3076             else if (optimized_type == tls::TLSOPT_TO_IE)
3077               {
3078                 // Create a GOT entry for the tp-relative offset.
3079                 Output_data_got<64, false>* got
3080                     = target->got_section(symtab, layout);
3081                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3082                                          target->rela_dyn_section(layout),
3083                                          elfcpp::R_X86_64_TPOFF64);
3084               }
3085             else if (optimized_type != tls::TLSOPT_TO_LE)
3086               unsupported_reloc_global(object, r_type, gsym);
3087             break;
3088
3089           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
3090             target->define_tls_base_symbol(symtab, layout);
3091             if (optimized_type == tls::TLSOPT_NONE)
3092               {
3093                 // Create reserved PLT and GOT entries for the resolver.
3094                 target->reserve_tlsdesc_entries(symtab, layout);
3095
3096                 // Create a double GOT entry with an R_X86_64_TLSDESC
3097                 // reloc.  The R_X86_64_TLSDESC reloc is resolved
3098                 // lazily, so the GOT entry needs to be in an area in
3099                 // .got.plt, not .got.  Call got_section to make sure
3100                 // the section has been created.
3101                 target->got_section(symtab, layout);
3102                 Output_data_got<64, false>* got = target->got_tlsdesc_section();
3103                 Reloc_section* rt = target->rela_tlsdesc_section(layout);
3104                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
3105                                               elfcpp::R_X86_64_TLSDESC, 0);
3106               }
3107             else if (optimized_type == tls::TLSOPT_TO_IE)
3108               {
3109                 // Create a GOT entry for the tp-relative offset.
3110                 Output_data_got<64, false>* got
3111                     = target->got_section(symtab, layout);
3112                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3113                                          target->rela_dyn_section(layout),
3114                                          elfcpp::R_X86_64_TPOFF64);
3115               }
3116             else if (optimized_type != tls::TLSOPT_TO_LE)
3117               unsupported_reloc_global(object, r_type, gsym);
3118             break;
3119
3120           case elfcpp::R_X86_64_TLSDESC_CALL:
3121             break;
3122
3123           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
3124             if (optimized_type == tls::TLSOPT_NONE)
3125               {
3126                 // Create a GOT entry for the module index.
3127                 target->got_mod_index_entry(symtab, layout, object);
3128               }
3129             else if (optimized_type != tls::TLSOPT_TO_LE)
3130               unsupported_reloc_global(object, r_type, gsym);
3131             break;
3132
3133           case elfcpp::R_X86_64_DTPOFF32:
3134           case elfcpp::R_X86_64_DTPOFF64:
3135             break;
3136
3137           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
3138             layout->set_has_static_tls();
3139             if (optimized_type == tls::TLSOPT_NONE)
3140               {
3141                 // Create a GOT entry for the tp-relative offset.
3142                 Output_data_got<64, false>* got
3143                     = target->got_section(symtab, layout);
3144                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3145                                          target->rela_dyn_section(layout),
3146                                          elfcpp::R_X86_64_TPOFF64);
3147               }
3148             else if (optimized_type != tls::TLSOPT_TO_LE)
3149               unsupported_reloc_global(object, r_type, gsym);
3150             break;
3151
3152           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
3153             layout->set_has_static_tls();
3154             if (parameters->options().shared())
3155               unsupported_reloc_global(object, r_type, gsym);
3156             break;
3157
3158           default:
3159             gold_unreachable();
3160           }
3161       }
3162       break;
3163
3164     case elfcpp::R_X86_64_SIZE32:
3165     case elfcpp::R_X86_64_SIZE64:
3166     default:
3167       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3168                  object->name().c_str(), r_type,
3169                  gsym->demangled_name().c_str());
3170       break;
3171     }
3172 }
3173
3174 template<int size>
3175 void
3176 Target_x86_64<size>::gc_process_relocs(Symbol_table* symtab,
3177                                        Layout* layout,
3178                                        Sized_relobj_file<size, false>* object,
3179                                        unsigned int data_shndx,
3180                                        unsigned int sh_type,
3181                                        const unsigned char* prelocs,
3182                                        size_t reloc_count,
3183                                        Output_section* output_section,
3184                                        bool needs_special_offset_handling,
3185                                        size_t local_symbol_count,
3186                                        const unsigned char* plocal_symbols)
3187 {
3188
3189   if (sh_type == elfcpp::SHT_REL)
3190     {
3191       return;
3192     }
3193
3194    gold::gc_process_relocs<size, false, Target_x86_64<size>, elfcpp::SHT_RELA,
3195                            typename Target_x86_64<size>::Scan,
3196                            typename Target_x86_64<size>::Relocatable_size_for_reloc>(
3197     symtab,
3198     layout,
3199     this,
3200     object,
3201     data_shndx,
3202     prelocs,
3203     reloc_count,
3204     output_section,
3205     needs_special_offset_handling,
3206     local_symbol_count,
3207     plocal_symbols);
3208
3209 }
3210 // Scan relocations for a section.
3211
3212 template<int size>
3213 void
3214 Target_x86_64<size>::scan_relocs(Symbol_table* symtab,
3215                                  Layout* layout,
3216                                  Sized_relobj_file<size, false>* object,
3217                                  unsigned int data_shndx,
3218                                  unsigned int sh_type,
3219                                  const unsigned char* prelocs,
3220                                  size_t reloc_count,
3221                                  Output_section* output_section,
3222                                  bool needs_special_offset_handling,
3223                                  size_t local_symbol_count,
3224                                  const unsigned char* plocal_symbols)
3225 {
3226   if (sh_type == elfcpp::SHT_REL)
3227     {
3228       gold_error(_("%s: unsupported REL reloc section"),
3229                  object->name().c_str());
3230       return;
3231     }
3232
3233   gold::scan_relocs<size, false, Target_x86_64<size>, elfcpp::SHT_RELA,
3234       typename Target_x86_64<size>::Scan>(
3235     symtab,
3236     layout,
3237     this,
3238     object,
3239     data_shndx,
3240     prelocs,
3241     reloc_count,
3242     output_section,
3243     needs_special_offset_handling,
3244     local_symbol_count,
3245     plocal_symbols);
3246 }
3247
3248 // Finalize the sections.
3249
3250 template<int size>
3251 void
3252 Target_x86_64<size>::do_finalize_sections(
3253     Layout* layout,
3254     const Input_objects*,
3255     Symbol_table* symtab)
3256 {
3257   const Reloc_section* rel_plt = (this->plt_ == NULL
3258                                   ? NULL
3259                                   : this->plt_->rela_plt());
3260   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
3261                                   this->rela_dyn_, true, false);
3262
3263   // Fill in some more dynamic tags.
3264   Output_data_dynamic* const odyn = layout->dynamic_data();
3265   if (odyn != NULL)
3266     {
3267       if (this->plt_ != NULL
3268           && this->plt_->output_section() != NULL
3269           && this->plt_->has_tlsdesc_entry())
3270         {
3271           unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
3272           unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
3273           this->got_->finalize_data_size();
3274           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
3275                                         this->plt_, plt_offset);
3276           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
3277                                         this->got_, got_offset);
3278         }
3279     }
3280
3281   // Emit any relocs we saved in an attempt to avoid generating COPY
3282   // relocs.
3283   if (this->copy_relocs_.any_saved_relocs())
3284     this->copy_relocs_.emit(this->rela_dyn_section(layout));
3285
3286   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
3287   // the .got.plt section.
3288   Symbol* sym = this->global_offset_table_;
3289   if (sym != NULL)
3290     {
3291       uint64_t data_size = this->got_plt_->current_data_size();
3292       symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
3293     }
3294
3295   if (parameters->doing_static_link()
3296       && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
3297     {
3298       // If linking statically, make sure that the __rela_iplt symbols
3299       // were defined if necessary, even if we didn't create a PLT.
3300       static const Define_symbol_in_segment syms[] =
3301         {
3302           {
3303             "__rela_iplt_start",        // name
3304             elfcpp::PT_LOAD,            // segment_type
3305             elfcpp::PF_W,               // segment_flags_set
3306             elfcpp::PF(0),              // segment_flags_clear
3307             0,                          // value
3308             0,                          // size
3309             elfcpp::STT_NOTYPE,         // type
3310             elfcpp::STB_GLOBAL,         // binding
3311             elfcpp::STV_HIDDEN,         // visibility
3312             0,                          // nonvis
3313             Symbol::SEGMENT_START,      // offset_from_base
3314             true                        // only_if_ref
3315           },
3316           {
3317             "__rela_iplt_end",          // name
3318             elfcpp::PT_LOAD,            // segment_type
3319             elfcpp::PF_W,               // segment_flags_set
3320             elfcpp::PF(0),              // segment_flags_clear
3321             0,                          // value
3322             0,                          // size
3323             elfcpp::STT_NOTYPE,         // type
3324             elfcpp::STB_GLOBAL,         // binding
3325             elfcpp::STV_HIDDEN,         // visibility
3326             0,                          // nonvis
3327             Symbol::SEGMENT_START,      // offset_from_base
3328             true                        // only_if_ref
3329           }
3330         };
3331
3332       symtab->define_symbols(layout, 2, syms,
3333                              layout->script_options()->saw_sections_clause());
3334     }
3335 }
3336
3337 // Perform a relocation.
3338
3339 template<int size>
3340 inline bool
3341 Target_x86_64<size>::Relocate::relocate(
3342     const Relocate_info<size, false>* relinfo,
3343     Target_x86_64<size>* target,
3344     Output_section*,
3345     size_t relnum,
3346     const elfcpp::Rela<size, false>& rela,
3347     unsigned int r_type,
3348     const Sized_symbol<size>* gsym,
3349     const Symbol_value<size>* psymval,
3350     unsigned char* view,
3351     typename elfcpp::Elf_types<size>::Elf_Addr address,
3352     section_size_type view_size)
3353 {
3354   if (this->skip_call_tls_get_addr_)
3355     {
3356       if ((r_type != elfcpp::R_X86_64_PLT32
3357            && r_type != elfcpp::R_X86_64_PLT32_BND
3358            && r_type != elfcpp::R_X86_64_PC32_BND
3359            && r_type != elfcpp::R_X86_64_PC32)
3360           || gsym == NULL
3361           || strcmp(gsym->name(), "__tls_get_addr") != 0)
3362         {
3363           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3364                                  _("missing expected TLS relocation"));
3365         }
3366       else
3367         {
3368           this->skip_call_tls_get_addr_ = false;
3369           return false;
3370         }
3371     }
3372
3373   if (view == NULL)
3374     return true;
3375
3376   const Sized_relobj_file<size, false>* object = relinfo->object;
3377
3378   // Pick the value to use for symbols defined in the PLT.
3379   Symbol_value<size> symval;
3380   if (gsym != NULL
3381       && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
3382     {
3383       symval.set_output_value(target->plt_address_for_global(gsym));
3384       psymval = &symval;
3385     }
3386   else if (gsym == NULL && psymval->is_ifunc_symbol())
3387     {
3388       unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3389       if (object->local_has_plt_offset(r_sym))
3390         {
3391           symval.set_output_value(target->plt_address_for_local(object, r_sym));
3392           psymval = &symval;
3393         }
3394     }
3395
3396   const elfcpp::Elf_Xword addend = rela.get_r_addend();
3397
3398   // Get the GOT offset if needed.
3399   // The GOT pointer points to the end of the GOT section.
3400   // We need to subtract the size of the GOT section to get
3401   // the actual offset to use in the relocation.
3402   bool have_got_offset = false;
3403   // Since the actual offset is always negative, we use signed int to
3404   // support 64-bit GOT relocations.
3405   int got_offset = 0;
3406   switch (r_type)
3407     {
3408     case elfcpp::R_X86_64_GOT32:
3409     case elfcpp::R_X86_64_GOT64:
3410     case elfcpp::R_X86_64_GOTPLT64:
3411     case elfcpp::R_X86_64_GOTPCREL64:
3412       if (gsym != NULL)
3413         {
3414           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
3415           got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
3416         }
3417       else
3418         {
3419           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3420           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
3421           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
3422                         - target->got_size());
3423         }
3424       have_got_offset = true;
3425       break;
3426
3427     default:
3428       break;
3429     }
3430
3431   switch (r_type)
3432     {
3433     case elfcpp::R_X86_64_NONE:
3434     case elfcpp::R_X86_64_GNU_VTINHERIT:
3435     case elfcpp::R_X86_64_GNU_VTENTRY:
3436       break;
3437
3438     case elfcpp::R_X86_64_64:
3439       Relocate_functions<size, false>::rela64(view, object, psymval, addend);
3440       break;
3441
3442     case elfcpp::R_X86_64_PC64:
3443       Relocate_functions<size, false>::pcrela64(view, object, psymval, addend,
3444                                               address);
3445       break;
3446
3447     case elfcpp::R_X86_64_32:
3448       // FIXME: we need to verify that value + addend fits into 32 bits:
3449       //    uint64_t x = value + addend;
3450       //    x == static_cast<uint64_t>(static_cast<uint32_t>(x))
3451       // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
3452       Relocate_functions<size, false>::rela32(view, object, psymval, addend);
3453       break;
3454
3455     case elfcpp::R_X86_64_32S:
3456       // FIXME: we need to verify that value + addend fits into 32 bits:
3457       //    int64_t x = value + addend;   // note this quantity is signed!
3458       //    x == static_cast<int64_t>(static_cast<int32_t>(x))
3459       Relocate_functions<size, false>::rela32(view, object, psymval, addend);
3460       break;
3461
3462     case elfcpp::R_X86_64_PC32:
3463     case elfcpp::R_X86_64_PC32_BND:
3464       Relocate_functions<size, false>::pcrela32(view, object, psymval, addend,
3465                                                 address);
3466       break;
3467
3468     case elfcpp::R_X86_64_16:
3469       Relocate_functions<size, false>::rela16(view, object, psymval, addend);
3470       break;
3471
3472     case elfcpp::R_X86_64_PC16:
3473       Relocate_functions<size, false>::pcrela16(view, object, psymval, addend,
3474                                                 address);
3475       break;
3476
3477     case elfcpp::R_X86_64_8:
3478       Relocate_functions<size, false>::rela8(view, object, psymval, addend);
3479       break;
3480
3481     case elfcpp::R_X86_64_PC8:
3482       Relocate_functions<size, false>::pcrela8(view, object, psymval, addend,
3483                                                address);
3484       break;
3485
3486     case elfcpp::R_X86_64_PLT32:
3487     case elfcpp::R_X86_64_PLT32_BND:
3488       gold_assert(gsym == NULL
3489                   || gsym->has_plt_offset()
3490                   || gsym->final_value_is_known()
3491                   || (gsym->is_defined()
3492                       && !gsym->is_from_dynobj()
3493                       && !gsym->is_preemptible()));
3494       // Note: while this code looks the same as for R_X86_64_PC32, it
3495       // behaves differently because psymval was set to point to
3496       // the PLT entry, rather than the symbol, in Scan::global().
3497       Relocate_functions<size, false>::pcrela32(view, object, psymval, addend,
3498                                                 address);
3499       break;
3500
3501     case elfcpp::R_X86_64_PLTOFF64:
3502       {
3503         gold_assert(gsym);
3504         gold_assert(gsym->has_plt_offset()
3505                     || gsym->final_value_is_known());
3506         typename elfcpp::Elf_types<size>::Elf_Addr got_address;
3507         // This is the address of GLOBAL_OFFSET_TABLE.
3508         got_address = target->got_plt_section()->address();
3509         Relocate_functions<size, false>::rela64(view, object, psymval,
3510                                                 addend - got_address);
3511       }
3512       break;
3513
3514     case elfcpp::R_X86_64_GOT32:
3515       gold_assert(have_got_offset);
3516       Relocate_functions<size, false>::rela32(view, got_offset, addend);
3517       break;
3518
3519     case elfcpp::R_X86_64_GOTPC32:
3520       {
3521         gold_assert(gsym);
3522         typename elfcpp::Elf_types<size>::Elf_Addr value;
3523         value = target->got_plt_section()->address();
3524         Relocate_functions<size, false>::pcrela32(view, value, addend, address);
3525       }
3526       break;
3527
3528     case elfcpp::R_X86_64_GOT64:
3529     case elfcpp::R_X86_64_GOTPLT64:
3530       // R_X86_64_GOTPLT64 is obsolete and treated the the same as
3531       // GOT64.
3532       gold_assert(have_got_offset);
3533       Relocate_functions<size, false>::rela64(view, got_offset, addend);
3534       break;
3535
3536     case elfcpp::R_X86_64_GOTPC64:
3537       {
3538         gold_assert(gsym);
3539         typename elfcpp::Elf_types<size>::Elf_Addr value;
3540         value = target->got_plt_section()->address();
3541         Relocate_functions<size, false>::pcrela64(view, value, addend, address);
3542       }
3543       break;
3544
3545     case elfcpp::R_X86_64_GOTOFF64:
3546       {
3547         typename elfcpp::Elf_types<size>::Elf_Addr value;
3548         value = (psymval->value(object, 0)
3549                  - target->got_plt_section()->address());
3550         Relocate_functions<size, false>::rela64(view, value, addend);
3551       }
3552       break;
3553
3554     case elfcpp::R_X86_64_GOTPCREL:
3555     case elfcpp::R_X86_64_GOTPCRELX:
3556     case elfcpp::R_X86_64_REX_GOTPCRELX:
3557       {
3558       // Convert
3559       // mov foo@GOTPCREL(%rip), %reg
3560       // to lea foo(%rip), %reg.
3561       // if possible.
3562       if (rela.get_r_offset() >= 2
3563           && view[-2] == 0x8b
3564           && ((gsym == NULL && !psymval->is_ifunc_symbol())
3565               || (gsym != NULL
3566                   && Target_x86_64<size>::can_convert_mov_to_lea(gsym))))
3567         {
3568           view[-2] = 0x8d;
3569           Relocate_functions<size, false>::pcrela32(view, object, psymval, addend,
3570                                                     address);
3571         }
3572       else
3573         {
3574           if (gsym != NULL)
3575             {
3576               gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
3577               got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
3578             }
3579           else
3580             {
3581               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3582               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
3583               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
3584                             - target->got_size());
3585             }
3586           typename elfcpp::Elf_types<size>::Elf_Addr value;
3587           value = target->got_plt_section()->address() + got_offset;
3588           Relocate_functions<size, false>::pcrela32(view, value, addend, address);
3589         }
3590       }
3591       break;
3592
3593     case elfcpp::R_X86_64_GOTPCREL64:
3594       {
3595         gold_assert(have_got_offset);
3596         typename elfcpp::Elf_types<size>::Elf_Addr value;
3597         value = target->got_plt_section()->address() + got_offset;
3598         Relocate_functions<size, false>::pcrela64(view, value, addend, address);
3599       }
3600       break;
3601
3602     case elfcpp::R_X86_64_COPY:
3603     case elfcpp::R_X86_64_GLOB_DAT:
3604     case elfcpp::R_X86_64_JUMP_SLOT:
3605     case elfcpp::R_X86_64_RELATIVE:
3606     case elfcpp::R_X86_64_IRELATIVE:
3607       // These are outstanding tls relocs, which are unexpected when linking
3608     case elfcpp::R_X86_64_TPOFF64:
3609     case elfcpp::R_X86_64_DTPMOD64:
3610     case elfcpp::R_X86_64_TLSDESC:
3611       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3612                              _("unexpected reloc %u in object file"),
3613                              r_type);
3614       break;
3615
3616       // These are initial tls relocs, which are expected when linking
3617     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3618     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3619     case elfcpp::R_X86_64_TLSDESC_CALL:
3620     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3621     case elfcpp::R_X86_64_DTPOFF32:
3622     case elfcpp::R_X86_64_DTPOFF64:
3623     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3624     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3625       this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
3626                          view, address, view_size);
3627       break;
3628
3629     case elfcpp::R_X86_64_SIZE32:
3630     case elfcpp::R_X86_64_SIZE64:
3631     default:
3632       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3633                              _("unsupported reloc %u"),
3634                              r_type);
3635       break;
3636     }
3637
3638   return true;
3639 }
3640
3641 // Perform a TLS relocation.
3642
3643 template<int size>
3644 inline void
3645 Target_x86_64<size>::Relocate::relocate_tls(
3646     const Relocate_info<size, false>* relinfo,
3647     Target_x86_64<size>* target,
3648     size_t relnum,
3649     const elfcpp::Rela<size, false>& rela,
3650     unsigned int r_type,
3651     const Sized_symbol<size>* gsym,
3652     const Symbol_value<size>* psymval,
3653     unsigned char* view,
3654     typename elfcpp::Elf_types<size>::Elf_Addr address,
3655     section_size_type view_size)
3656 {
3657   Output_segment* tls_segment = relinfo->layout->tls_segment();
3658
3659   const Sized_relobj_file<size, false>* object = relinfo->object;
3660   const elfcpp::Elf_Xword addend = rela.get_r_addend();
3661   elfcpp::Shdr<size, false> data_shdr(relinfo->data_shdr);
3662   bool is_executable = (data_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0;
3663
3664   typename elfcpp::Elf_types<size>::Elf_Addr value = psymval->value(relinfo->object, 0);
3665
3666   const bool is_final = (gsym == NULL
3667                          ? !parameters->options().shared()
3668                          : gsym->final_value_is_known());
3669   tls::Tls_optimization optimized_type
3670       = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
3671   switch (r_type)
3672     {
3673     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3674       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3675         {
3676           // If this code sequence is used in a non-executable section,
3677           // we will not optimize the R_X86_64_DTPOFF32/64 relocation,
3678           // on the assumption that it's being used by itself in a debug
3679           // section.  Therefore, in the unlikely event that the code
3680           // sequence appears in a non-executable section, we simply
3681           // leave it unoptimized.
3682           optimized_type = tls::TLSOPT_NONE;
3683         }
3684       if (optimized_type == tls::TLSOPT_TO_LE)
3685         {
3686           if (tls_segment == NULL)
3687             {
3688               gold_assert(parameters->errors()->error_count() > 0
3689                           || issue_undefined_symbol_error(gsym));
3690               return;
3691             }
3692           this->tls_gd_to_le(relinfo, relnum, tls_segment,
3693                              rela, r_type, value, view,
3694                              view_size);
3695           break;
3696         }
3697       else
3698         {
3699           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3700                                    ? GOT_TYPE_TLS_OFFSET
3701                                    : GOT_TYPE_TLS_PAIR);
3702           unsigned int got_offset;
3703           if (gsym != NULL)
3704             {
3705               gold_assert(gsym->has_got_offset(got_type));
3706               got_offset = gsym->got_offset(got_type) - target->got_size();
3707             }
3708           else
3709             {
3710               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3711               gold_assert(object->local_has_got_offset(r_sym, got_type));
3712               got_offset = (object->local_got_offset(r_sym, got_type)
3713                             - target->got_size());
3714             }
3715           if (optimized_type == tls::TLSOPT_TO_IE)
3716             {
3717               value = target->got_plt_section()->address() + got_offset;
3718               this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
3719                                  value, view, address, view_size);
3720               break;
3721             }
3722           else if (optimized_type == tls::TLSOPT_NONE)
3723             {
3724               // Relocate the field with the offset of the pair of GOT
3725               // entries.
3726               value = target->got_plt_section()->address() + got_offset;
3727               Relocate_functions<size, false>::pcrela32(view, value, addend,
3728                                                         address);
3729               break;
3730             }
3731         }
3732       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3733                              _("unsupported reloc %u"), r_type);
3734       break;
3735
3736     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3737     case elfcpp::R_X86_64_TLSDESC_CALL:
3738       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3739         {
3740           // See above comment for R_X86_64_TLSGD.
3741           optimized_type = tls::TLSOPT_NONE;
3742         }
3743       if (optimized_type == tls::TLSOPT_TO_LE)
3744         {
3745           if (tls_segment == NULL)
3746             {
3747               gold_assert(parameters->errors()->error_count() > 0
3748                           || issue_undefined_symbol_error(gsym));
3749               return;
3750             }
3751           this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
3752                                   rela, r_type, value, view,
3753                                   view_size);
3754           break;
3755         }
3756       else
3757         {
3758           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3759                                    ? GOT_TYPE_TLS_OFFSET
3760                                    : GOT_TYPE_TLS_DESC);
3761           unsigned int got_offset = 0;
3762           if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC
3763               && optimized_type == tls::TLSOPT_NONE)
3764             {
3765               // We created GOT entries in the .got.tlsdesc portion of
3766               // the .got.plt section, but the offset stored in the
3767               // symbol is the offset within .got.tlsdesc.
3768               got_offset = (target->got_size()
3769                             + target->got_plt_section()->data_size());
3770             }
3771           if (gsym != NULL)
3772             {
3773               gold_assert(gsym->has_got_offset(got_type));
3774               got_offset += gsym->got_offset(got_type) - target->got_size();
3775             }
3776           else
3777             {
3778               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3779               gold_assert(object->local_has_got_offset(r_sym, got_type));
3780               got_offset += (object->local_got_offset(r_sym, got_type)
3781                              - target->got_size());
3782             }
3783           if (optimized_type == tls::TLSOPT_TO_IE)
3784             {
3785               if (tls_segment == NULL)
3786                 {
3787                   gold_assert(parameters->errors()->error_count() > 0
3788                               || issue_undefined_symbol_error(gsym));
3789                   return;
3790                 }
3791               value = target->got_plt_section()->address() + got_offset;
3792               this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment,
3793                                       rela, r_type, value, view, address,
3794                                       view_size);
3795               break;
3796             }
3797           else if (optimized_type == tls::TLSOPT_NONE)
3798             {
3799               if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
3800                 {
3801                   // Relocate the field with the offset of the pair of GOT
3802                   // entries.
3803                   value = target->got_plt_section()->address() + got_offset;
3804                   Relocate_functions<size, false>::pcrela32(view, value, addend,
3805                                                             address);
3806                 }
3807               break;
3808             }
3809         }
3810       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3811                              _("unsupported reloc %u"), r_type);
3812       break;
3813
3814     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3815       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3816         {
3817           // See above comment for R_X86_64_TLSGD.
3818           optimized_type = tls::TLSOPT_NONE;
3819         }
3820       if (optimized_type == tls::TLSOPT_TO_LE)
3821         {
3822           if (tls_segment == NULL)
3823             {
3824               gold_assert(parameters->errors()->error_count() > 0
3825                           || issue_undefined_symbol_error(gsym));
3826               return;
3827             }
3828           this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
3829                              value, view, view_size);
3830           break;
3831         }
3832       else if (optimized_type == tls::TLSOPT_NONE)
3833         {
3834           // Relocate the field with the offset of the GOT entry for
3835           // the module index.
3836           unsigned int got_offset;
3837           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
3838                         - target->got_size());
3839           value = target->got_plt_section()->address() + got_offset;
3840           Relocate_functions<size, false>::pcrela32(view, value, addend,
3841                                                     address);
3842           break;
3843         }
3844       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3845                              _("unsupported reloc %u"), r_type);
3846       break;
3847
3848     case elfcpp::R_X86_64_DTPOFF32:
3849       // This relocation type is used in debugging information.
3850       // In that case we need to not optimize the value.  If the
3851       // section is not executable, then we assume we should not
3852       // optimize this reloc.  See comments above for R_X86_64_TLSGD,
3853       // R_X86_64_GOTPC32_TLSDESC, R_X86_64_TLSDESC_CALL, and
3854       // R_X86_64_TLSLD.
3855       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
3856         {
3857           if (tls_segment == NULL)
3858             {
3859               gold_assert(parameters->errors()->error_count() > 0
3860                           || issue_undefined_symbol_error(gsym));
3861               return;
3862             }
3863           value -= tls_segment->memsz();
3864         }
3865       Relocate_functions<size, false>::rela32(view, value, addend);
3866       break;
3867
3868     case elfcpp::R_X86_64_DTPOFF64:
3869       // See R_X86_64_DTPOFF32, just above, for why we check for is_executable.
3870       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
3871         {
3872           if (tls_segment == NULL)
3873             {
3874               gold_assert(parameters->errors()->error_count() > 0
3875                           || issue_undefined_symbol_error(gsym));
3876               return;
3877             }
3878           value -= tls_segment->memsz();
3879         }
3880       Relocate_functions<size, false>::rela64(view, value, addend);
3881       break;
3882
3883     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3884       if (gsym != NULL
3885           && gsym->is_undefined()
3886           && parameters->options().output_is_executable())
3887         {
3888           Target_x86_64<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3889                                                       NULL, rela,
3890                                                       r_type, value, view,
3891                                                       view_size);
3892           break;
3893         }
3894       else if (optimized_type == tls::TLSOPT_TO_LE)
3895         {
3896           if (tls_segment == NULL)
3897             {
3898               gold_assert(parameters->errors()->error_count() > 0
3899                           || issue_undefined_symbol_error(gsym));
3900               return;
3901             }
3902           Target_x86_64<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3903                                                       tls_segment, rela,
3904                                                       r_type, value, view,
3905                                                       view_size);
3906           break;
3907         }
3908       else if (optimized_type == tls::TLSOPT_NONE)
3909         {
3910           // Relocate the field with the offset of the GOT entry for
3911           // the tp-relative offset of the symbol.
3912           unsigned int got_offset;
3913           if (gsym != NULL)
3914             {
3915               gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
3916               got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
3917                             - target->got_size());
3918             }
3919           else
3920             {
3921               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3922               gold_assert(object->local_has_got_offset(r_sym,
3923                                                        GOT_TYPE_TLS_OFFSET));
3924               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
3925                             - target->got_size());
3926             }
3927           value = target->got_plt_section()->address() + got_offset;
3928           Relocate_functions<size, false>::pcrela32(view, value, addend,
3929                                                     address);
3930           break;
3931         }
3932       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3933                              _("unsupported reloc type %u"),
3934                              r_type);
3935       break;
3936
3937     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3938       if (tls_segment == NULL)
3939         {
3940           gold_assert(parameters->errors()->error_count() > 0
3941                       || issue_undefined_symbol_error(gsym));
3942           return;
3943         }
3944       value -= tls_segment->memsz();
3945       Relocate_functions<size, false>::rela32(view, value, addend);
3946       break;
3947     }
3948 }
3949
3950 // Do a relocation in which we convert a TLS General-Dynamic to an
3951 // Initial-Exec.
3952
3953 template<int size>
3954 inline void
3955 Target_x86_64<size>::Relocate::tls_gd_to_ie(
3956     const Relocate_info<size, false>* relinfo,
3957     size_t relnum,
3958     Output_segment*,
3959     const elfcpp::Rela<size, false>& rela,
3960     unsigned int,
3961     typename elfcpp::Elf_types<size>::Elf_Addr value,
3962     unsigned char* view,
3963     typename elfcpp::Elf_types<size>::Elf_Addr address,
3964     section_size_type view_size)
3965 {
3966   // For SIZE == 64:
3967   //    .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
3968   //    .word 0x6666; rex64; call __tls_get_addr
3969   //    ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
3970   // For SIZE == 32:
3971   //    leaq foo@tlsgd(%rip),%rdi;
3972   //    .word 0x6666; rex64; call __tls_get_addr
3973   //    ==> movl %fs:0,%eax; addq x@gottpoff(%rip),%rax
3974
3975   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
3976   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3977                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
3978
3979   if (size == 64)
3980     {
3981       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
3982                        -4);
3983       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3984                      (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
3985       memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
3986              16);
3987     }
3988   else
3989     {
3990       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
3991                        -3);
3992       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3993                      (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
3994       memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
3995              15);
3996     }
3997
3998   const elfcpp::Elf_Xword addend = rela.get_r_addend();
3999   Relocate_functions<size, false>::pcrela32(view + 8, value, addend - 8,
4000                                             address);
4001
4002   // The next reloc should be a PLT32 reloc against __tls_get_addr.
4003   // We can skip it.
4004   this->skip_call_tls_get_addr_ = true;
4005 }
4006
4007 // Do a relocation in which we convert a TLS General-Dynamic to a
4008 // Local-Exec.
4009
4010 template<int size>
4011 inline void
4012 Target_x86_64<size>::Relocate::tls_gd_to_le(
4013     const Relocate_info<size, false>* relinfo,
4014     size_t relnum,
4015     Output_segment* tls_segment,
4016     const elfcpp::Rela<size, false>& rela,
4017     unsigned int,
4018     typename elfcpp::Elf_types<size>::Elf_Addr value,
4019     unsigned char* view,
4020     section_size_type view_size)
4021 {
4022   // For SIZE == 64:
4023   //    .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
4024   //    .word 0x6666; rex64; call __tls_get_addr
4025   //    ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
4026   // For SIZE == 32:
4027   //    leaq foo@tlsgd(%rip),%rdi;
4028   //    .word 0x6666; rex64; call __tls_get_addr
4029   //    ==> movl %fs:0,%eax; leaq x@tpoff(%rax),%rax
4030
4031   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
4032   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4033                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
4034
4035   if (size == 64)
4036     {
4037       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
4038                        -4);
4039       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4040                      (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
4041       memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
4042              16);
4043     }
4044   else
4045     {
4046       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
4047                        -3);
4048       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4049                      (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
4050
4051       memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
4052              15);
4053     }
4054
4055   value -= tls_segment->memsz();
4056   Relocate_functions<size, false>::rela32(view + 8, value, 0);
4057
4058   // The next reloc should be a PLT32 reloc against __tls_get_addr.
4059   // We can skip it.
4060   this->skip_call_tls_get_addr_ = true;
4061 }
4062
4063 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
4064
4065 template<int size>
4066 inline void
4067 Target_x86_64<size>::Relocate::tls_desc_gd_to_ie(
4068     const Relocate_info<size, false>* relinfo,
4069     size_t relnum,
4070     Output_segment*,
4071     const elfcpp::Rela<size, false>& rela,
4072     unsigned int r_type,
4073     typename elfcpp::Elf_types<size>::Elf_Addr value,
4074     unsigned char* view,
4075     typename elfcpp::Elf_types<size>::Elf_Addr address,
4076     section_size_type view_size)
4077 {
4078   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
4079     {
4080       // leaq foo@tlsdesc(%rip), %rax
4081       // ==> movq foo@gottpoff(%rip), %rax
4082       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4083       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
4084       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4085                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
4086       view[-2] = 0x8b;
4087       const elfcpp::Elf_Xword addend = rela.get_r_addend();
4088       Relocate_functions<size, false>::pcrela32(view, value, addend, address);
4089     }
4090   else
4091     {
4092       // call *foo@tlscall(%rax)
4093       // ==> nop; nop
4094       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
4095       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
4096       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4097                      view[0] == 0xff && view[1] == 0x10);
4098       view[0] = 0x66;
4099       view[1] = 0x90;
4100     }
4101 }
4102
4103 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
4104
4105 template<int size>
4106 inline void
4107 Target_x86_64<size>::Relocate::tls_desc_gd_to_le(
4108     const Relocate_info<size, false>* relinfo,
4109     size_t relnum,
4110     Output_segment* tls_segment,
4111     const elfcpp::Rela<size, false>& rela,
4112     unsigned int r_type,
4113     typename elfcpp::Elf_types<size>::Elf_Addr value,
4114     unsigned char* view,
4115     section_size_type view_size)
4116 {
4117   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
4118     {
4119       // leaq foo@tlsdesc(%rip), %rax
4120       // ==> movq foo@tpoff, %rax
4121       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4122       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
4123       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4124                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
4125       view[-2] = 0xc7;
4126       view[-1] = 0xc0;
4127       value -= tls_segment->memsz();
4128       Relocate_functions<size, false>::rela32(view, value, 0);
4129     }
4130   else
4131     {
4132       // call *foo@tlscall(%rax)
4133       // ==> nop; nop
4134       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
4135       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
4136       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4137                      view[0] == 0xff && view[1] == 0x10);
4138       view[0] = 0x66;
4139       view[1] = 0x90;
4140     }
4141 }
4142
4143 template<int size>
4144 inline void
4145 Target_x86_64<size>::Relocate::tls_ld_to_le(
4146     const Relocate_info<size, false>* relinfo,
4147     size_t relnum,
4148     Output_segment*,
4149     const elfcpp::Rela<size, false>& rela,
4150     unsigned int,
4151     typename elfcpp::Elf_types<size>::Elf_Addr,
4152     unsigned char* view,
4153     section_size_type view_size)
4154 {
4155   // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
4156   // For SIZE == 64:
4157   // ... leq foo@dtpoff(%rax),%reg
4158   // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
4159   // For SIZE == 32:
4160   // ... leq foo@dtpoff(%rax),%reg
4161   // ==> nopl 0x0(%rax); movl %fs:0,%eax ... leaq x@tpoff(%rax),%rdx
4162
4163   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4164   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
4165
4166   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4167                  view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
4168
4169   tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
4170
4171   if (size == 64)
4172     memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
4173   else
4174     memcpy(view - 3, "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0\0", 12);
4175
4176   // The next reloc should be a PLT32 reloc against __tls_get_addr.
4177   // We can skip it.
4178   this->skip_call_tls_get_addr_ = true;
4179 }
4180
4181 // Do a relocation in which we convert a TLS Initial-Exec to a
4182 // Local-Exec.
4183
4184 template<int size>
4185 inline void
4186 Target_x86_64<size>::Relocate::tls_ie_to_le(
4187     const Relocate_info<size, false>* relinfo,
4188     size_t relnum,
4189     Output_segment* tls_segment,
4190     const elfcpp::Rela<size, false>& rela,
4191     unsigned int,
4192     typename elfcpp::Elf_types<size>::Elf_Addr value,
4193     unsigned char* view,
4194     section_size_type view_size)
4195 {
4196   // We need to examine the opcodes to figure out which instruction we
4197   // are looking at.
4198
4199   // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
4200   // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
4201
4202   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4203   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
4204
4205   unsigned char op1 = view[-3];
4206   unsigned char op2 = view[-2];
4207   unsigned char op3 = view[-1];
4208   unsigned char reg = op3 >> 3;
4209
4210   if (op2 == 0x8b)
4211     {
4212       // movq
4213       if (op1 == 0x4c)
4214         view[-3] = 0x49;
4215       else if (size == 32 && op1 == 0x44)
4216         view[-3] = 0x41;
4217       view[-2] = 0xc7;
4218       view[-1] = 0xc0 | reg;
4219     }
4220   else if (reg == 4)
4221     {
4222       // Special handling for %rsp.
4223       if (op1 == 0x4c)
4224         view[-3] = 0x49;
4225       else if (size == 32 && op1 == 0x44)
4226         view[-3] = 0x41;
4227       view[-2] = 0x81;
4228       view[-1] = 0xc0 | reg;
4229     }
4230   else
4231     {
4232       // addq
4233       if (op1 == 0x4c)
4234         view[-3] = 0x4d;
4235       else if (size == 32 && op1 == 0x44)
4236         view[-3] = 0x45;
4237       view[-2] = 0x8d;
4238       view[-1] = 0x80 | reg | (reg << 3);
4239     }
4240
4241   if (tls_segment != NULL)
4242     value -= tls_segment->memsz();
4243   Relocate_functions<size, false>::rela32(view, value, 0);
4244 }
4245
4246 // Relocate section data.
4247
4248 template<int size>
4249 void
4250 Target_x86_64<size>::relocate_section(
4251     const Relocate_info<size, false>* relinfo,
4252     unsigned int sh_type,
4253     const unsigned char* prelocs,
4254     size_t reloc_count,
4255     Output_section* output_section,
4256     bool needs_special_offset_handling,
4257     unsigned char* view,
4258     typename elfcpp::Elf_types<size>::Elf_Addr address,
4259     section_size_type view_size,
4260     const Reloc_symbol_changes* reloc_symbol_changes)
4261 {
4262   gold_assert(sh_type == elfcpp::SHT_RELA);
4263
4264   gold::relocate_section<size, false, Target_x86_64<size>, elfcpp::SHT_RELA,
4265                          typename Target_x86_64<size>::Relocate,
4266                          gold::Default_comdat_behavior>(
4267     relinfo,
4268     this,
4269     prelocs,
4270     reloc_count,
4271     output_section,
4272     needs_special_offset_handling,
4273     view,
4274     address,
4275     view_size,
4276     reloc_symbol_changes);
4277 }
4278
4279 // Apply an incremental relocation.  Incremental relocations always refer
4280 // to global symbols.
4281
4282 template<int size>
4283 void
4284 Target_x86_64<size>::apply_relocation(
4285     const Relocate_info<size, false>* relinfo,
4286     typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
4287     unsigned int r_type,
4288     typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
4289     const Symbol* gsym,
4290     unsigned char* view,
4291     typename elfcpp::Elf_types<size>::Elf_Addr address,
4292     section_size_type view_size)
4293 {
4294   gold::apply_relocation<size, false, Target_x86_64<size>,
4295                          typename Target_x86_64<size>::Relocate>(
4296     relinfo,
4297     this,
4298     r_offset,
4299     r_type,
4300     r_addend,
4301     gsym,
4302     view,
4303     address,
4304     view_size);
4305 }
4306
4307 // Return the size of a relocation while scanning during a relocatable
4308 // link.
4309
4310 template<int size>
4311 unsigned int
4312 Target_x86_64<size>::Relocatable_size_for_reloc::get_size_for_reloc(
4313     unsigned int r_type,
4314     Relobj* object)
4315 {
4316   switch (r_type)
4317     {
4318     case elfcpp::R_X86_64_NONE:
4319     case elfcpp::R_X86_64_GNU_VTINHERIT:
4320     case elfcpp::R_X86_64_GNU_VTENTRY:
4321     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
4322     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
4323     case elfcpp::R_X86_64_TLSDESC_CALL:
4324     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
4325     case elfcpp::R_X86_64_DTPOFF32:
4326     case elfcpp::R_X86_64_DTPOFF64:
4327     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
4328     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
4329       return 0;
4330
4331     case elfcpp::R_X86_64_64:
4332     case elfcpp::R_X86_64_PC64:
4333     case elfcpp::R_X86_64_GOTOFF64:
4334     case elfcpp::R_X86_64_GOTPC64:
4335     case elfcpp::R_X86_64_PLTOFF64:
4336     case elfcpp::R_X86_64_GOT64:
4337     case elfcpp::R_X86_64_GOTPCREL64:
4338     case elfcpp::R_X86_64_GOTPCREL:
4339     case elfcpp::R_X86_64_GOTPCRELX:
4340     case elfcpp::R_X86_64_REX_GOTPCRELX:
4341     case elfcpp::R_X86_64_GOTPLT64:
4342       return 8;
4343
4344     case elfcpp::R_X86_64_32:
4345     case elfcpp::R_X86_64_32S:
4346     case elfcpp::R_X86_64_PC32:
4347     case elfcpp::R_X86_64_PC32_BND:
4348     case elfcpp::R_X86_64_PLT32:
4349     case elfcpp::R_X86_64_PLT32_BND:
4350     case elfcpp::R_X86_64_GOTPC32:
4351     case elfcpp::R_X86_64_GOT32:
4352       return 4;
4353
4354     case elfcpp::R_X86_64_16:
4355     case elfcpp::R_X86_64_PC16:
4356       return 2;
4357
4358     case elfcpp::R_X86_64_8:
4359     case elfcpp::R_X86_64_PC8:
4360       return 1;
4361
4362     case elfcpp::R_X86_64_COPY:
4363     case elfcpp::R_X86_64_GLOB_DAT:
4364     case elfcpp::R_X86_64_JUMP_SLOT:
4365     case elfcpp::R_X86_64_RELATIVE:
4366     case elfcpp::R_X86_64_IRELATIVE:
4367       // These are outstanding tls relocs, which are unexpected when linking
4368     case elfcpp::R_X86_64_TPOFF64:
4369     case elfcpp::R_X86_64_DTPMOD64:
4370     case elfcpp::R_X86_64_TLSDESC:
4371       object->error(_("unexpected reloc %u in object file"), r_type);
4372       return 0;
4373
4374     case elfcpp::R_X86_64_SIZE32:
4375     case elfcpp::R_X86_64_SIZE64:
4376     default:
4377       object->error(_("unsupported reloc %u against local symbol"), r_type);
4378       return 0;
4379     }
4380 }
4381
4382 // Scan the relocs during a relocatable link.
4383
4384 template<int size>
4385 void
4386 Target_x86_64<size>::scan_relocatable_relocs(
4387     Symbol_table* symtab,
4388     Layout* layout,
4389     Sized_relobj_file<size, false>* object,
4390     unsigned int data_shndx,
4391     unsigned int sh_type,
4392     const unsigned char* prelocs,
4393     size_t reloc_count,
4394     Output_section* output_section,
4395     bool needs_special_offset_handling,
4396     size_t local_symbol_count,
4397     const unsigned char* plocal_symbols,
4398     Relocatable_relocs* rr)
4399 {
4400   gold_assert(sh_type == elfcpp::SHT_RELA);
4401
4402   typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
4403     Relocatable_size_for_reloc> Scan_relocatable_relocs;
4404
4405   gold::scan_relocatable_relocs<size, false, elfcpp::SHT_RELA,
4406       Scan_relocatable_relocs>(
4407     symtab,
4408     layout,
4409     object,
4410     data_shndx,
4411     prelocs,
4412     reloc_count,
4413     output_section,
4414     needs_special_offset_handling,
4415     local_symbol_count,
4416     plocal_symbols,
4417     rr);
4418 }
4419
4420 // Relocate a section during a relocatable link.
4421
4422 template<int size>
4423 void
4424 Target_x86_64<size>::relocate_relocs(
4425     const Relocate_info<size, false>* relinfo,
4426     unsigned int sh_type,
4427     const unsigned char* prelocs,
4428     size_t reloc_count,
4429     Output_section* output_section,
4430     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
4431     const Relocatable_relocs* rr,
4432     unsigned char* view,
4433     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
4434     section_size_type view_size,
4435     unsigned char* reloc_view,
4436     section_size_type reloc_view_size)
4437 {
4438   gold_assert(sh_type == elfcpp::SHT_RELA);
4439
4440   gold::relocate_relocs<size, false, elfcpp::SHT_RELA>(
4441     relinfo,
4442     prelocs,
4443     reloc_count,
4444     output_section,
4445     offset_in_output_section,
4446     rr,
4447     view,
4448     view_address,
4449     view_size,
4450     reloc_view,
4451     reloc_view_size);
4452 }
4453
4454 // Return the value to use for a dynamic which requires special
4455 // treatment.  This is how we support equality comparisons of function
4456 // pointers across shared library boundaries, as described in the
4457 // processor specific ABI supplement.
4458
4459 template<int size>
4460 uint64_t
4461 Target_x86_64<size>::do_dynsym_value(const Symbol* gsym) const
4462 {
4463   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
4464   return this->plt_address_for_global(gsym);
4465 }
4466
4467 // Return a string used to fill a code section with nops to take up
4468 // the specified length.
4469
4470 template<int size>
4471 std::string
4472 Target_x86_64<size>::do_code_fill(section_size_type length) const
4473 {
4474   if (length >= 16)
4475     {
4476       // Build a jmpq instruction to skip over the bytes.
4477       unsigned char jmp[5];
4478       jmp[0] = 0xe9;
4479       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
4480       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
4481               + std::string(length - 5, static_cast<char>(0x90)));
4482     }
4483
4484   // Nop sequences of various lengths.
4485   const char nop1[1] = { '\x90' };                 // nop
4486   const char nop2[2] = { '\x66', '\x90' };         // xchg %ax %ax
4487   const char nop3[3] = { '\x0f', '\x1f', '\x00' }; // nop (%rax)
4488   const char nop4[4] = { '\x0f', '\x1f', '\x40',   // nop 0(%rax)
4489                          '\x00'};
4490   const char nop5[5] = { '\x0f', '\x1f', '\x44',   // nop 0(%rax,%rax,1)
4491                          '\x00', '\x00' };
4492   const char nop6[6] = { '\x66', '\x0f', '\x1f',   // nopw 0(%rax,%rax,1)
4493                          '\x44', '\x00', '\x00' };
4494   const char nop7[7] = { '\x0f', '\x1f', '\x80',   // nopl 0L(%rax)
4495                          '\x00', '\x00', '\x00',
4496                          '\x00' };
4497   const char nop8[8] = { '\x0f', '\x1f', '\x84',   // nopl 0L(%rax,%rax,1)
4498                          '\x00', '\x00', '\x00',
4499                          '\x00', '\x00' };
4500   const char nop9[9] = { '\x66', '\x0f', '\x1f',   // nopw 0L(%rax,%rax,1)
4501                          '\x84', '\x00', '\x00',
4502                          '\x00', '\x00', '\x00' };
4503   const char nop10[10] = { '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
4504                            '\x1f', '\x84', '\x00',
4505                            '\x00', '\x00', '\x00',
4506                            '\x00' };
4507   const char nop11[11] = { '\x66', '\x66', '\x2e', // data16
4508                            '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
4509                            '\x00', '\x00', '\x00',
4510                            '\x00', '\x00' };
4511   const char nop12[12] = { '\x66', '\x66', '\x66', // data16; data16
4512                            '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
4513                            '\x84', '\x00', '\x00',
4514                            '\x00', '\x00', '\x00' };
4515   const char nop13[13] = { '\x66', '\x66', '\x66', // data16; data16; data16
4516                            '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
4517                            '\x1f', '\x84', '\x00',
4518                            '\x00', '\x00', '\x00',
4519                            '\x00' };
4520   const char nop14[14] = { '\x66', '\x66', '\x66', // data16; data16; data16
4521                            '\x66', '\x66', '\x2e', // data16
4522                            '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
4523                            '\x00', '\x00', '\x00',
4524                            '\x00', '\x00' };
4525   const char nop15[15] = { '\x66', '\x66', '\x66', // data16; data16; data16
4526                            '\x66', '\x66', '\x66', // data16; data16
4527                            '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
4528                            '\x84', '\x00', '\x00',
4529                            '\x00', '\x00', '\x00' };
4530
4531   const char* nops[16] = {
4532     NULL,
4533     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
4534     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
4535   };
4536
4537   return std::string(nops[length], length);
4538 }
4539
4540 // Return the addend to use for a target specific relocation.  The
4541 // only target specific relocation is R_X86_64_TLSDESC for a local
4542 // symbol.  We want to set the addend is the offset of the local
4543 // symbol in the TLS segment.
4544
4545 template<int size>
4546 uint64_t
4547 Target_x86_64<size>::do_reloc_addend(void* arg, unsigned int r_type,
4548                                      uint64_t) const
4549 {
4550   gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
4551   uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
4552   gold_assert(intarg < this->tlsdesc_reloc_info_.size());
4553   const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
4554   const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
4555   gold_assert(psymval->is_tls_symbol());
4556   // The value of a TLS symbol is the offset in the TLS segment.
4557   return psymval->value(ti.object, 0);
4558 }
4559
4560 // Return the value to use for the base of a DW_EH_PE_datarel offset
4561 // in an FDE.  Solaris and SVR4 use DW_EH_PE_datarel because their
4562 // assembler can not write out the difference between two labels in
4563 // different sections, so instead of using a pc-relative value they
4564 // use an offset from the GOT.
4565
4566 template<int size>
4567 uint64_t
4568 Target_x86_64<size>::do_ehframe_datarel_base() const
4569 {
4570   gold_assert(this->global_offset_table_ != NULL);
4571   Symbol* sym = this->global_offset_table_;
4572   Sized_symbol<size>* ssym = static_cast<Sized_symbol<size>*>(sym);
4573   return ssym->value();
4574 }
4575
4576 // FNOFFSET in section SHNDX in OBJECT is the start of a function
4577 // compiled with -fsplit-stack.  The function calls non-split-stack
4578 // code.  We have to change the function so that it always ensures
4579 // that it has enough stack space to run some random function.
4580
4581 static const unsigned char cmp_insn_32[] = { 0x64, 0x3b, 0x24, 0x25 };
4582 static const unsigned char lea_r10_insn_32[] = { 0x44, 0x8d, 0x94, 0x24 };
4583 static const unsigned char lea_r11_insn_32[] = { 0x44, 0x8d, 0x9c, 0x24 };
4584
4585 static const unsigned char cmp_insn_64[] = { 0x64, 0x48, 0x3b, 0x24, 0x25 };
4586 static const unsigned char lea_r10_insn_64[] = { 0x4c, 0x8d, 0x94, 0x24 };
4587 static const unsigned char lea_r11_insn_64[] = { 0x4c, 0x8d, 0x9c, 0x24 };
4588
4589 template<int size>
4590 void
4591 Target_x86_64<size>::do_calls_non_split(Relobj* object, unsigned int shndx,
4592                                         section_offset_type fnoffset,
4593                                         section_size_type fnsize,
4594                                         unsigned char* view,
4595                                         section_size_type view_size,
4596                                         std::string* from,
4597                                         std::string* to) const
4598 {
4599   const char* const cmp_insn = reinterpret_cast<const char*>
4600       (size == 32 ? cmp_insn_32 : cmp_insn_64);
4601   const char* const lea_r10_insn = reinterpret_cast<const char*>
4602       (size == 32 ? lea_r10_insn_32 : lea_r10_insn_64);
4603   const char* const lea_r11_insn = reinterpret_cast<const char*>
4604       (size == 32 ? lea_r11_insn_32 : lea_r11_insn_64);
4605
4606   const size_t cmp_insn_len =
4607       (size == 32 ? sizeof(cmp_insn_32) : sizeof(cmp_insn_64));
4608   const size_t lea_r10_insn_len =
4609       (size == 32 ? sizeof(lea_r10_insn_32) : sizeof(lea_r10_insn_64));
4610   const size_t lea_r11_insn_len =
4611       (size == 32 ? sizeof(lea_r11_insn_32) : sizeof(lea_r11_insn_64));
4612   const size_t nop_len = (size == 32 ? 7 : 8);
4613
4614   // The function starts with a comparison of the stack pointer and a
4615   // field in the TCB.  This is followed by a jump.
4616
4617   // cmp %fs:NN,%rsp
4618   if (this->match_view(view, view_size, fnoffset, cmp_insn, cmp_insn_len)
4619       && fnsize > nop_len + 1)
4620     {
4621       // We will call __morestack if the carry flag is set after this
4622       // comparison.  We turn the comparison into an stc instruction
4623       // and some nops.
4624       view[fnoffset] = '\xf9';
4625       this->set_view_to_nop(view, view_size, fnoffset + 1, nop_len);
4626     }
4627   // lea NN(%rsp),%r10
4628   // lea NN(%rsp),%r11
4629   else if ((this->match_view(view, view_size, fnoffset,
4630                              lea_r10_insn, lea_r10_insn_len)
4631             || this->match_view(view, view_size, fnoffset,
4632                                 lea_r11_insn, lea_r11_insn_len))
4633            && fnsize > 8)
4634     {
4635       // This is loading an offset from the stack pointer for a
4636       // comparison.  The offset is negative, so we decrease the
4637       // offset by the amount of space we need for the stack.  This
4638       // means we will avoid calling __morestack if there happens to
4639       // be plenty of space on the stack already.
4640       unsigned char* pval = view + fnoffset + 4;
4641       uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
4642       val -= parameters->options().split_stack_adjust_size();
4643       elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
4644     }
4645   else
4646     {
4647       if (!object->has_no_split_stack())
4648         object->error(_("failed to match split-stack sequence at "
4649                         "section %u offset %0zx"),
4650                       shndx, static_cast<size_t>(fnoffset));
4651       return;
4652     }
4653
4654   // We have to change the function so that it calls
4655   // __morestack_non_split instead of __morestack.  The former will
4656   // allocate additional stack space.
4657   *from = "__morestack";
4658   *to = "__morestack_non_split";
4659 }
4660
4661 // The selector for x86_64 object files.  Note this is never instantiated
4662 // directly.  It's only used in Target_selector_x86_64_nacl, below.
4663
4664 template<int size>
4665 class Target_selector_x86_64 : public Target_selector_freebsd
4666 {
4667 public:
4668   Target_selector_x86_64()
4669     : Target_selector_freebsd(elfcpp::EM_X86_64, size, false,
4670                               (size == 64
4671                                ? "elf64-x86-64" : "elf32-x86-64"),
4672                               (size == 64
4673                                ? "elf64-x86-64-freebsd"
4674                                : "elf32-x86-64-freebsd"),
4675                               (size == 64 ? "elf_x86_64" : "elf32_x86_64"))
4676   { }
4677
4678   Target*
4679   do_instantiate_target()
4680   { return new Target_x86_64<size>(); }
4681
4682 };
4683
4684 // NaCl variant.  It uses different PLT contents.
4685
4686 template<int size>
4687 class Output_data_plt_x86_64_nacl : public Output_data_plt_x86_64<size>
4688 {
4689  public:
4690   Output_data_plt_x86_64_nacl(Layout* layout,
4691                               Output_data_got<64, false>* got,
4692                               Output_data_got_plt_x86_64* got_plt,
4693                               Output_data_space* got_irelative)
4694     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
4695                                    got, got_plt, got_irelative)
4696   { }
4697
4698   Output_data_plt_x86_64_nacl(Layout* layout,
4699                               Output_data_got<64, false>* got,
4700                               Output_data_got_plt_x86_64* got_plt,
4701                               Output_data_space* got_irelative,
4702                               unsigned int plt_count)
4703     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
4704                                    got, got_plt, got_irelative,
4705                                    plt_count)
4706   { }
4707
4708  protected:
4709   virtual unsigned int
4710   do_get_plt_entry_size() const
4711   { return plt_entry_size; }
4712
4713   virtual void
4714   do_add_eh_frame(Layout* layout)
4715   {
4716     layout->add_eh_frame_for_plt(this,
4717                                  this->plt_eh_frame_cie,
4718                                  this->plt_eh_frame_cie_size,
4719                                  plt_eh_frame_fde,
4720                                  plt_eh_frame_fde_size);
4721   }
4722
4723   virtual void
4724   do_fill_first_plt_entry(unsigned char* pov,
4725                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
4726                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
4727
4728   virtual unsigned int
4729   do_fill_plt_entry(unsigned char* pov,
4730                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4731                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4732                     unsigned int got_offset,
4733                     unsigned int plt_offset,
4734                     unsigned int plt_index);
4735
4736   virtual void
4737   do_fill_tlsdesc_entry(unsigned char* pov,
4738                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4739                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4740                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
4741                         unsigned int tlsdesc_got_offset,
4742                         unsigned int plt_offset);
4743
4744  private:
4745   // The size of an entry in the PLT.
4746   static const int plt_entry_size = 64;
4747
4748   // The first entry in the PLT.
4749   static const unsigned char first_plt_entry[plt_entry_size];
4750
4751   // Other entries in the PLT for an executable.
4752   static const unsigned char plt_entry[plt_entry_size];
4753
4754   // The reserved TLSDESC entry in the PLT for an executable.
4755   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
4756
4757   // The .eh_frame unwind information for the PLT.
4758   static const int plt_eh_frame_fde_size = 32;
4759   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
4760 };
4761
4762 template<int size>
4763 class Target_x86_64_nacl : public Target_x86_64<size>
4764 {
4765  public:
4766   Target_x86_64_nacl()
4767     : Target_x86_64<size>(&x86_64_nacl_info)
4768   { }
4769
4770   virtual Output_data_plt_x86_64<size>*
4771   do_make_data_plt(Layout* layout,
4772                    Output_data_got<64, false>* got,
4773                    Output_data_got_plt_x86_64* got_plt,
4774                    Output_data_space* got_irelative)
4775   {
4776     return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
4777                                                  got_irelative);
4778   }
4779
4780   virtual Output_data_plt_x86_64<size>*
4781   do_make_data_plt(Layout* layout,
4782                    Output_data_got<64, false>* got,
4783                    Output_data_got_plt_x86_64* got_plt,
4784                    Output_data_space* got_irelative,
4785                    unsigned int plt_count)
4786   {
4787     return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
4788                                                  got_irelative,
4789                                                  plt_count);
4790   }
4791
4792   virtual std::string
4793   do_code_fill(section_size_type length) const;
4794
4795  private:
4796   static const Target::Target_info x86_64_nacl_info;
4797 };
4798
4799 template<>
4800 const Target::Target_info Target_x86_64_nacl<64>::x86_64_nacl_info =
4801 {
4802   64,                   // size
4803   false,                // is_big_endian
4804   elfcpp::EM_X86_64,    // machine_code
4805   false,                // has_make_symbol
4806   false,                // has_resolve
4807   true,                 // has_code_fill
4808   true,                 // is_default_stack_executable
4809   true,                 // can_icf_inline_merge_sections
4810   '\0',                 // wrap_char
4811   "/lib64/ld-nacl-x86-64.so.1", // dynamic_linker
4812   0x20000,              // default_text_segment_address
4813   0x10000,              // abi_pagesize (overridable by -z max-page-size)
4814   0x10000,              // common_pagesize (overridable by -z common-page-size)
4815   true,                 // isolate_execinstr
4816   0x10000000,           // rosegment_gap
4817   elfcpp::SHN_UNDEF,    // small_common_shndx
4818   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
4819   0,                    // small_common_section_flags
4820   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
4821   NULL,                 // attributes_section
4822   NULL,                 // attributes_vendor
4823   "_start",             // entry_symbol_name
4824   32,                   // hash_entry_size
4825 };
4826
4827 template<>
4828 const Target::Target_info Target_x86_64_nacl<32>::x86_64_nacl_info =
4829 {
4830   32,                   // size
4831   false,                // is_big_endian
4832   elfcpp::EM_X86_64,    // machine_code
4833   false,                // has_make_symbol
4834   false,                // has_resolve
4835   true,                 // has_code_fill
4836   true,                 // is_default_stack_executable
4837   true,                 // can_icf_inline_merge_sections
4838   '\0',                 // wrap_char
4839   "/lib/ld-nacl-x86-64.so.1", // dynamic_linker
4840   0x20000,              // default_text_segment_address
4841   0x10000,              // abi_pagesize (overridable by -z max-page-size)
4842   0x10000,              // common_pagesize (overridable by -z common-page-size)
4843   true,                 // isolate_execinstr
4844   0x10000000,           // rosegment_gap
4845   elfcpp::SHN_UNDEF,    // small_common_shndx
4846   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
4847   0,                    // small_common_section_flags
4848   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
4849   NULL,                 // attributes_section
4850   NULL,                 // attributes_vendor
4851   "_start",             // entry_symbol_name
4852   32,                   // hash_entry_size
4853 };
4854
4855 #define NACLMASK        0xe0            // 32-byte alignment mask.
4856
4857 // The first entry in the PLT.
4858
4859 template<int size>
4860 const unsigned char
4861 Output_data_plt_x86_64_nacl<size>::first_plt_entry[plt_entry_size] =
4862 {
4863   0xff, 0x35,                         // pushq contents of memory address
4864   0, 0, 0, 0,                         // replaced with address of .got + 8
4865   0x4c, 0x8b, 0x1d,                   // mov GOT+16(%rip), %r11
4866   0, 0, 0, 0,                         // replaced with address of .got + 16
4867   0x41, 0x83, 0xe3, NACLMASK,         // and $-32, %r11d
4868   0x4d, 0x01, 0xfb,                   // add %r15, %r11
4869   0x41, 0xff, 0xe3,                   // jmpq *%r11
4870
4871   // 9-byte nop sequence to pad out to the next 32-byte boundary.
4872   0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw 0x0(%rax,%rax,1)
4873
4874   // 32 bytes of nop to pad out to the standard size
4875   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4876   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4877   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4878   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4879   0x66,                                  // excess data32 prefix
4880   0x90                                   // nop
4881 };
4882
4883 template<int size>
4884 void
4885 Output_data_plt_x86_64_nacl<size>::do_fill_first_plt_entry(
4886     unsigned char* pov,
4887     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4888     typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
4889 {
4890   memcpy(pov, first_plt_entry, plt_entry_size);
4891   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
4892                                               (got_address + 8
4893                                                - (plt_address + 2 + 4)));
4894   elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
4895                                               (got_address + 16
4896                                                - (plt_address + 9 + 4)));
4897 }
4898
4899 // Subsequent entries in the PLT.
4900
4901 template<int size>
4902 const unsigned char
4903 Output_data_plt_x86_64_nacl<size>::plt_entry[plt_entry_size] =
4904 {
4905   0x4c, 0x8b, 0x1d,              // mov name@GOTPCREL(%rip),%r11
4906   0, 0, 0, 0,                    // replaced with address of symbol in .got
4907   0x41, 0x83, 0xe3, NACLMASK,    // and $-32, %r11d
4908   0x4d, 0x01, 0xfb,              // add %r15, %r11
4909   0x41, 0xff, 0xe3,              // jmpq *%r11
4910
4911   // 15-byte nop sequence to pad out to the next 32-byte boundary.
4912   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4913   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4914
4915   // Lazy GOT entries point here (32-byte aligned).
4916   0x68,                       // pushq immediate
4917   0, 0, 0, 0,                 // replaced with index into relocation table
4918   0xe9,                       // jmp relative
4919   0, 0, 0, 0,                 // replaced with offset to start of .plt0
4920
4921   // 22 bytes of nop to pad out to the standard size.
4922   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4923   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4924   0x0f, 0x1f, 0x80, 0, 0, 0, 0,          // nopl 0x0(%rax)
4925 };
4926
4927 template<int size>
4928 unsigned int
4929 Output_data_plt_x86_64_nacl<size>::do_fill_plt_entry(
4930     unsigned char* pov,
4931     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4932     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4933     unsigned int got_offset,
4934     unsigned int plt_offset,
4935     unsigned int plt_index)
4936 {
4937   memcpy(pov, plt_entry, plt_entry_size);
4938   elfcpp::Swap_unaligned<32, false>::writeval(pov + 3,
4939                                               (got_address + got_offset
4940                                                - (plt_address + plt_offset
4941                                                   + 3 + 4)));
4942
4943   elfcpp::Swap_unaligned<32, false>::writeval(pov + 33, plt_index);
4944   elfcpp::Swap_unaligned<32, false>::writeval(pov + 38,
4945                                               - (plt_offset + 38 + 4));
4946
4947   return 32;
4948 }
4949
4950 // The reserved TLSDESC entry in the PLT.
4951
4952 template<int size>
4953 const unsigned char
4954 Output_data_plt_x86_64_nacl<size>::tlsdesc_plt_entry[plt_entry_size] =
4955 {
4956   0xff, 0x35,                   // pushq x(%rip)
4957   0, 0, 0, 0,   // replaced with address of linkmap GOT entry (at PLTGOT + 8)
4958   0x4c, 0x8b, 0x1d,             // mov y(%rip),%r11
4959   0, 0, 0, 0,   // replaced with offset of reserved TLSDESC_GOT entry
4960   0x41, 0x83, 0xe3, NACLMASK,   // and $-32, %r11d
4961   0x4d, 0x01, 0xfb,             // add %r15, %r11
4962   0x41, 0xff, 0xe3,             // jmpq *%r11
4963
4964   // 41 bytes of nop to pad out to the standard size.
4965   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4966   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4967   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4968   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4969   0x66, 0x66,                            // excess data32 prefixes
4970   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4971 };
4972
4973 template<int size>
4974 void
4975 Output_data_plt_x86_64_nacl<size>::do_fill_tlsdesc_entry(
4976     unsigned char* pov,
4977     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4978     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4979     typename elfcpp::Elf_types<size>::Elf_Addr got_base,
4980     unsigned int tlsdesc_got_offset,
4981     unsigned int plt_offset)
4982 {
4983   memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
4984   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
4985                                               (got_address + 8
4986                                                - (plt_address + plt_offset
4987                                                   + 2 + 4)));
4988   elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
4989                                               (got_base
4990                                                + tlsdesc_got_offset
4991                                                - (plt_address + plt_offset
4992                                                   + 9 + 4)));
4993 }
4994
4995 // The .eh_frame unwind information for the PLT.
4996
4997 template<int size>
4998 const unsigned char
4999 Output_data_plt_x86_64_nacl<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
5000 {
5001   0, 0, 0, 0,                           // Replaced with offset to .plt.
5002   0, 0, 0, 0,                           // Replaced with size of .plt.
5003   0,                                    // Augmentation size.
5004   elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
5005   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
5006   elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
5007   elfcpp::DW_CFA_advance_loc + 58,      // Advance 58 to __PLT__ + 64.
5008   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
5009   13,                                   // Block length.
5010   elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
5011   elfcpp::DW_OP_breg16, 0,              // Push %rip.
5012   elfcpp::DW_OP_const1u, 63,            // Push 0x3f.
5013   elfcpp::DW_OP_and,                    // & (%rip & 0x3f).
5014   elfcpp::DW_OP_const1u, 37,            // Push 0x25.
5015   elfcpp::DW_OP_ge,                     // >= ((%rip & 0x3f) >= 0x25)
5016   elfcpp::DW_OP_lit3,                   // Push 3.
5017   elfcpp::DW_OP_shl,                    // << (((%rip & 0x3f) >= 0x25) << 3)
5018   elfcpp::DW_OP_plus,                   // + ((((%rip&0x3f)>=0x25)<<3)+%rsp+8
5019   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
5020   elfcpp::DW_CFA_nop
5021 };
5022
5023 // Return a string used to fill a code section with nops.
5024 // For NaCl, long NOPs are only valid if they do not cross
5025 // bundle alignment boundaries, so keep it simple with one-byte NOPs.
5026 template<int size>
5027 std::string
5028 Target_x86_64_nacl<size>::do_code_fill(section_size_type length) const
5029 {
5030   return std::string(length, static_cast<char>(0x90));
5031 }
5032
5033 // The selector for x86_64-nacl object files.
5034
5035 template<int size>
5036 class Target_selector_x86_64_nacl
5037   : public Target_selector_nacl<Target_selector_x86_64<size>,
5038                                 Target_x86_64_nacl<size> >
5039 {
5040  public:
5041   Target_selector_x86_64_nacl()
5042     : Target_selector_nacl<Target_selector_x86_64<size>,
5043                            Target_x86_64_nacl<size> >("x86-64",
5044                                                       size == 64
5045                                                       ? "elf64-x86-64-nacl"
5046                                                       : "elf32-x86-64-nacl",
5047                                                       size == 64
5048                                                       ? "elf_x86_64_nacl"
5049                                                       : "elf32_x86_64_nacl")
5050   { }
5051 };
5052
5053 Target_selector_x86_64_nacl<64> target_selector_x86_64;
5054 Target_selector_x86_64_nacl<32> target_selector_x32;
5055
5056 } // End anonymous namespace.