Avoid some warnings which showed up in 64-bit mode.
[external/binutils.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright 2006, 2007, Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or
9 // modify it under the terms of the GNU Library General Public License
10 // as published by the Free Software Foundation; either version 2, or
11 // (at your option) any later version.
12
13 // In addition to the permissions in the GNU Library General Public
14 // License, the Free Software Foundation gives you unlimited
15 // permission to link the compiled version of this file into
16 // combinations with other programs, and to distribute those
17 // combinations without any restriction coming from the use of this
18 // file.  (The Library Public License restrictions do apply in other
19 // respects; for example, they cover modification of the file, and
20 /// distribution when not linked into a combined executable.)
21
22 // This program is distributed in the hope that it will be useful, but
23 // WITHOUT ANY WARRANTY; without even the implied warranty of
24 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
25 // Library General Public License for more details.
26
27 // You should have received a copy of the GNU Library General Public
28 // License along with this program; if not, write to the Free Software
29 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30 // 02110-1301, USA.
31
32 #include "gold.h"
33
34 #include <cstring>
35
36 #include "elfcpp.h"
37 #include "parameters.h"
38 #include "reloc.h"
39 #include "x86_64.h"
40 #include "object.h"
41 #include "symtab.h"
42 #include "layout.h"
43 #include "output.h"
44 #include "target.h"
45 #include "target-reloc.h"
46 #include "target-select.h"
47 #include "tls.h"
48
49 namespace
50 {
51
52 using namespace gold;
53
54 class Output_data_plt_x86_64;
55
56 // The x86_64 target class.
57 // See the ABI at
58 //   http://www.x86-64.org/documentation/abi.pdf
59 // TLS info comes from
60 //   http://people.redhat.com/drepper/tls.pdf
61 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
62
63 class Target_x86_64 : public Sized_target<64, false>
64 {
65  public:
66   // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
67   // uses only Elf64_Rela relocation entries with explicit addends."
68   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
69
70   Target_x86_64()
71     : Sized_target<64, false>(&x86_64_info),
72       got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
73       copy_relocs_(NULL), dynbss_(NULL), got_mod_index_offset_(-1U)
74   { }
75
76   // Scan the relocations to look for symbol adjustments.
77   void
78   scan_relocs(const General_options& options,
79               Symbol_table* symtab,
80               Layout* layout,
81               Sized_relobj<64, false>* object,
82               unsigned int data_shndx,
83               unsigned int sh_type,
84               const unsigned char* prelocs,
85               size_t reloc_count,
86               Output_section* output_section,
87               bool needs_special_offset_handling,
88               size_t local_symbol_count,
89               const unsigned char* plocal_symbols);
90
91   // Finalize the sections.
92   void
93   do_finalize_sections(Layout*);
94
95   // Return the value to use for a dynamic which requires special
96   // treatment.
97   uint64_t
98   do_dynsym_value(const Symbol*) const;
99
100   // Relocate a section.
101   void
102   relocate_section(const Relocate_info<64, false>*,
103                    unsigned int sh_type,
104                    const unsigned char* prelocs,
105                    size_t reloc_count,
106                    Output_section* output_section,
107                    bool needs_special_offset_handling,
108                    unsigned char* view,
109                    elfcpp::Elf_types<64>::Elf_Addr view_address,
110                    off_t view_size);
111
112   // Return a string used to fill a code section with nops.
113   std::string
114   do_code_fill(off_t length);
115
116   // Return whether SYM is defined by the ABI.
117   bool
118   do_is_defined_by_abi(Symbol* sym) const
119   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
120
121   // Return the size of the GOT section.
122   off_t
123   got_size()
124   {
125     gold_assert(this->got_ != NULL);
126     return this->got_->data_size();
127   }
128
129  private:
130   // The class which scans relocations.
131   struct Scan
132   {
133     inline void
134     local(const General_options& options, Symbol_table* symtab,
135           Layout* layout, Target_x86_64* target,
136           Sized_relobj<64, false>* object,
137           unsigned int data_shndx,
138           Output_section* output_section,
139           const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
140           const elfcpp::Sym<64, false>& lsym);
141
142     inline void
143     global(const General_options& options, Symbol_table* symtab,
144            Layout* layout, Target_x86_64* target,
145            Sized_relobj<64, false>* object,
146            unsigned int data_shndx,
147            Output_section* output_section,
148            const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
149            Symbol* gsym);
150
151     static void
152     unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
153
154     static void
155     unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
156                              Symbol*);
157   };
158
159   // The class which implements relocation.
160   class Relocate
161   {
162    public:
163     Relocate()
164       : skip_call_tls_get_addr_(false)
165     { }
166
167     ~Relocate()
168     {
169       if (this->skip_call_tls_get_addr_)
170         {
171           // FIXME: This needs to specify the location somehow.
172           gold_error(_("missing expected TLS relocation"));
173         }
174     }
175
176     // Do a relocation.  Return false if the caller should not issue
177     // any warnings about this relocation.
178     inline bool
179     relocate(const Relocate_info<64, false>*, Target_x86_64*, size_t relnum,
180              const elfcpp::Rela<64, false>&,
181              unsigned int r_type, const Sized_symbol<64>*,
182              const Symbol_value<64>*,
183              unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
184              off_t);
185
186    private:
187     // Do a TLS relocation.
188     inline void
189     relocate_tls(const Relocate_info<64, false>*, Target_x86_64*,
190                  size_t relnum, const elfcpp::Rela<64, false>&,
191                  unsigned int r_type, const Sized_symbol<64>*,
192                  const Symbol_value<64>*,
193                  unsigned char*, elfcpp::Elf_types<64>::Elf_Addr, off_t);
194
195     // Do a TLS General-Dynamic to Local-Exec transition.
196     inline void
197     tls_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
198                  Output_segment* tls_segment,
199                  const elfcpp::Rela<64, false>&, unsigned int r_type,
200                  elfcpp::Elf_types<64>::Elf_Addr value,
201                  unsigned char* view,
202                  off_t view_size);
203
204     // Do a TLS General-Dynamic to Local-Exec transition.
205     inline void
206     tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
207                  Output_segment* tls_segment,
208                  const elfcpp::Rela<64, false>&, unsigned int r_type,
209                  elfcpp::Elf_types<64>::Elf_Addr value,
210                  unsigned char* view,
211                  off_t view_size);
212
213     // Do a TLS Local-Dynamic to Local-Exec transition.
214     inline void
215     tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
216                  Output_segment* tls_segment,
217                  const elfcpp::Rela<64, false>&, unsigned int r_type,
218                  elfcpp::Elf_types<64>::Elf_Addr value,
219                  unsigned char* view,
220                  off_t view_size);
221
222     // Do a TLS Initial-Exec to Local-Exec transition.
223     static inline void
224     tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
225                  Output_segment* tls_segment,
226                  const elfcpp::Rela<64, false>&, unsigned int r_type,
227                  elfcpp::Elf_types<64>::Elf_Addr value,
228                  unsigned char* view,
229                  off_t view_size);
230
231     // This is set if we should skip the next reloc, which should be a
232     // PLT32 reloc against ___tls_get_addr.
233     bool skip_call_tls_get_addr_;
234   };
235
236   // Adjust TLS relocation type based on the options and whether this
237   // is a local symbol.
238   static tls::Tls_optimization
239   optimize_tls_reloc(bool is_final, int r_type);
240
241   // Get the GOT section, creating it if necessary.
242   Output_data_got<64, false>*
243   got_section(Symbol_table*, Layout*);
244
245   // Get the GOT PLT section.
246   Output_data_space*
247   got_plt_section() const
248   {
249     gold_assert(this->got_plt_ != NULL);
250     return this->got_plt_;
251   }
252
253   // Create a PLT entry for a global symbol.
254   void
255   make_plt_entry(Symbol_table*, Layout*, Symbol*);
256
257   // Create a GOT entry for the TLS module index.
258   unsigned int
259   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
260                       Sized_relobj<64, false>* object);
261
262   // Get the PLT section.
263   Output_data_plt_x86_64*
264   plt_section() const
265   {
266     gold_assert(this->plt_ != NULL);
267     return this->plt_;
268   }
269
270   // Get the dynamic reloc section, creating it if necessary.
271   Reloc_section*
272   rela_dyn_section(Layout*);
273
274   // Return true if the symbol may need a COPY relocation.
275   // References from an executable object to non-function symbols
276   // defined in a dynamic object may need a COPY relocation.
277   bool
278   may_need_copy_reloc(Symbol* gsym)
279   {
280     return (!parameters->output_is_shared()
281             && gsym->is_from_dynobj()
282             && gsym->type() != elfcpp::STT_FUNC);
283   }
284
285   // Copy a relocation against a global symbol.
286   void
287   copy_reloc(const General_options*, Symbol_table*, Layout*,
288              Sized_relobj<64, false>*, unsigned int,
289              Output_section*, Symbol*, const elfcpp::Rela<64, false>&);
290
291   // Information about this specific target which we pass to the
292   // general Target structure.
293   static const Target::Target_info x86_64_info;
294
295   // The GOT section.
296   Output_data_got<64, false>* got_;
297   // The PLT section.
298   Output_data_plt_x86_64* plt_;
299   // The GOT PLT section.
300   Output_data_space* got_plt_;
301   // The dynamic reloc section.
302   Reloc_section* rela_dyn_;
303   // Relocs saved to avoid a COPY reloc.
304   Copy_relocs<64, false>* copy_relocs_;
305   // Space for variables copied with a COPY reloc.
306   Output_data_space* dynbss_;
307   // Offset of the GOT entry for the TLS module index;
308   unsigned int got_mod_index_offset_;
309 };
310
311 const Target::Target_info Target_x86_64::x86_64_info =
312 {
313   64,                   // size
314   false,                // is_big_endian
315   elfcpp::EM_X86_64,    // machine_code
316   false,                // has_make_symbol
317   false,                // has_resolve
318   true,                 // has_code_fill
319   true,                 // is_default_stack_executable
320   "/lib/ld64.so.1",     // program interpreter
321   0x400000,             // default_text_segment_address
322   0x1000,               // abi_pagesize
323   0x1000                // common_pagesize
324 };
325
326 // Get the GOT section, creating it if necessary.
327
328 Output_data_got<64, false>*
329 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
330 {
331   if (this->got_ == NULL)
332     {
333       gold_assert(symtab != NULL && layout != NULL);
334
335       this->got_ = new Output_data_got<64, false>();
336
337       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
338                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
339                                       this->got_);
340
341       // The old GNU linker creates a .got.plt section.  We just
342       // create another set of data in the .got section.  Note that we
343       // always create a PLT if we create a GOT, although the PLT
344       // might be empty.
345       this->got_plt_ = new Output_data_space(8);
346       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
347                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
348                                       this->got_plt_);
349
350       // The first three entries are reserved.
351       this->got_plt_->set_current_data_size(3 * 8);
352
353       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
354       symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
355                                     this->got_plt_,
356                                     0, 0, elfcpp::STT_OBJECT,
357                                     elfcpp::STB_LOCAL,
358                                     elfcpp::STV_HIDDEN, 0,
359                                     false, false);
360     }
361
362   return this->got_;
363 }
364
365 // Get the dynamic reloc section, creating it if necessary.
366
367 Target_x86_64::Reloc_section*
368 Target_x86_64::rela_dyn_section(Layout* layout)
369 {
370   if (this->rela_dyn_ == NULL)
371     {
372       gold_assert(layout != NULL);
373       this->rela_dyn_ = new Reloc_section();
374       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
375                                       elfcpp::SHF_ALLOC, this->rela_dyn_);
376     }
377   return this->rela_dyn_;
378 }
379
380 // A class to handle the PLT data.
381
382 class Output_data_plt_x86_64 : public Output_section_data
383 {
384  public:
385   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
386
387   Output_data_plt_x86_64(Layout*, Output_data_space*);
388
389   // Add an entry to the PLT.
390   void
391   add_entry(Symbol* gsym);
392
393   // Return the .rel.plt section data.
394   const Reloc_section*
395   rel_plt() const
396   { return this->rel_; }
397
398  protected:
399   void
400   do_adjust_output_section(Output_section* os);
401
402  private:
403   // The size of an entry in the PLT.
404   static const int plt_entry_size = 16;
405
406   // The first entry in the PLT.
407   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
408   // procedure linkage table for both programs and shared objects."
409   static unsigned char first_plt_entry[plt_entry_size];
410
411   // Other entries in the PLT for an executable.
412   static unsigned char plt_entry[plt_entry_size];
413
414   // Set the final size.
415   void
416   set_final_data_size()
417   { this->set_data_size((this->count_ + 1) * plt_entry_size); }
418
419   // Write out the PLT data.
420   void
421   do_write(Output_file*);
422
423   // The reloc section.
424   Reloc_section* rel_;
425   // The .got.plt section.
426   Output_data_space* got_plt_;
427   // The number of PLT entries.
428   unsigned int count_;
429 };
430
431 // Create the PLT section.  The ordinary .got section is an argument,
432 // since we need to refer to the start.  We also create our own .got
433 // section just for PLT entries.
434
435 Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
436                                                Output_data_space* got_plt)
437   : Output_section_data(8), got_plt_(got_plt), count_(0)
438 {
439   this->rel_ = new Reloc_section();
440   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
441                                   elfcpp::SHF_ALLOC, this->rel_);
442 }
443
444 void
445 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
446 {
447   // UnixWare sets the entsize of .plt to 4, and so does the old GNU
448   // linker, and so do we.
449   os->set_entsize(4);
450 }
451
452 // Add an entry to the PLT.
453
454 void
455 Output_data_plt_x86_64::add_entry(Symbol* gsym)
456 {
457   gold_assert(!gsym->has_plt_offset());
458
459   // Note that when setting the PLT offset we skip the initial
460   // reserved PLT entry.
461   gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
462
463   ++this->count_;
464
465   off_t got_offset = this->got_plt_->current_data_size();
466
467   // Every PLT entry needs a GOT entry which points back to the PLT
468   // entry (this will be changed by the dynamic linker, normally
469   // lazily when the function is called).
470   this->got_plt_->set_current_data_size(got_offset + 8);
471
472   // Every PLT entry needs a reloc.
473   gsym->set_needs_dynsym_entry();
474   this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
475                          got_offset, 0);
476
477   // Note that we don't need to save the symbol.  The contents of the
478   // PLT are independent of which symbols are used.  The symbols only
479   // appear in the relocations.
480 }
481
482 // The first entry in the PLT for an executable.
483
484 unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
485 {
486   // From AMD64 ABI Draft 0.98, page 76
487   0xff, 0x35,   // pushq contents of memory address
488   0, 0, 0, 0,   // replaced with address of .got + 8
489   0xff, 0x25,   // jmp indirect
490   0, 0, 0, 0,   // replaced with address of .got + 16
491   0x90, 0x90, 0x90, 0x90   // noop (x4)
492 };
493
494 // Subsequent entries in the PLT for an executable.
495
496 unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
497 {
498   // From AMD64 ABI Draft 0.98, page 76
499   0xff, 0x25,   // jmpq indirect
500   0, 0, 0, 0,   // replaced with address of symbol in .got
501   0x68,         // pushq immediate
502   0, 0, 0, 0,   // replaced with offset into relocation table
503   0xe9,         // jmpq relative
504   0, 0, 0, 0    // replaced with offset to start of .plt
505 };
506
507 // Write out the PLT.  This uses the hand-coded instructions above,
508 // and adjusts them as needed.  This is specified by the AMD64 ABI.
509
510 void
511 Output_data_plt_x86_64::do_write(Output_file* of)
512 {
513   const off_t offset = this->offset();
514   const off_t oview_size = this->data_size();
515   unsigned char* const oview = of->get_output_view(offset, oview_size);
516
517   const off_t got_file_offset = this->got_plt_->offset();
518   const off_t got_size = this->got_plt_->data_size();
519   unsigned char* const got_view = of->get_output_view(got_file_offset,
520                                                       got_size);
521
522   unsigned char* pov = oview;
523
524   elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
525   elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
526
527   memcpy(pov, first_plt_entry, plt_entry_size);
528   // We do a jmp relative to the PC at the end of this instruction.
529   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 8
530                                               - (plt_address + 6));
531   elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 16
532                                     - (plt_address + 12));
533   pov += plt_entry_size;
534
535   unsigned char* got_pov = got_view;
536
537   memset(got_pov, 0, 24);
538   got_pov += 24;
539
540   unsigned int plt_offset = plt_entry_size;
541   unsigned int got_offset = 24;
542   const unsigned int count = this->count_;
543   for (unsigned int plt_index = 0;
544        plt_index < count;
545        ++plt_index,
546          pov += plt_entry_size,
547          got_pov += 8,
548          plt_offset += plt_entry_size,
549          got_offset += 8)
550     {
551       // Set and adjust the PLT entry itself.
552       memcpy(pov, plt_entry, plt_entry_size);
553       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
554                                                   (got_address + got_offset
555                                                    - (plt_address + plt_offset
556                                                       + 6)));
557
558       elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
559       elfcpp::Swap<32, false>::writeval(pov + 12,
560                                         - (plt_offset + plt_entry_size));
561
562       // Set the entry in the GOT.
563       elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
564     }
565
566   gold_assert(pov - oview == oview_size);
567   gold_assert(got_pov - got_view == got_size);
568
569   of->write_output_view(offset, oview_size, oview);
570   of->write_output_view(got_file_offset, got_size, got_view);
571 }
572
573 // Create a PLT entry for a global symbol.
574
575 void
576 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
577                               Symbol* gsym)
578 {
579   if (gsym->has_plt_offset())
580     return;
581
582   if (this->plt_ == NULL)
583     {
584       // Create the GOT sections first.
585       this->got_section(symtab, layout);
586
587       this->plt_ = new Output_data_plt_x86_64(layout, this->got_plt_);
588       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
589                                       (elfcpp::SHF_ALLOC
590                                        | elfcpp::SHF_EXECINSTR),
591                                       this->plt_);
592     }
593
594   this->plt_->add_entry(gsym);
595 }
596
597 // Create a GOT entry for the TLS module index.
598
599 unsigned int
600 Target_x86_64::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
601                                    Sized_relobj<64, false>* object)
602 {
603   if (this->got_mod_index_offset_ == -1U)
604     {
605       gold_assert(symtab != NULL && layout != NULL && object != NULL);
606       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
607       Output_data_got<64, false>* got = this->got_section(symtab, layout);
608       unsigned int got_offset = got->add_constant(0);
609       rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
610                           got_offset, 0);
611       got->add_constant(0);
612       this->got_mod_index_offset_ = got_offset;
613     }
614   return this->got_mod_index_offset_;
615 }
616
617 // Handle a relocation against a non-function symbol defined in a
618 // dynamic object.  The traditional way to handle this is to generate
619 // a COPY relocation to copy the variable at runtime from the shared
620 // object into the executable's data segment.  However, this is
621 // undesirable in general, as if the size of the object changes in the
622 // dynamic object, the executable will no longer work correctly.  If
623 // this relocation is in a writable section, then we can create a
624 // dynamic reloc and the dynamic linker will resolve it to the correct
625 // address at runtime.  However, we do not want do that if the
626 // relocation is in a read-only section, as it would prevent the
627 // readonly segment from being shared.  And if we have to eventually
628 // generate a COPY reloc, then any dynamic relocations will be
629 // useless.  So this means that if this is a writable section, we need
630 // to save the relocation until we see whether we have to create a
631 // COPY relocation for this symbol for any other relocation.
632
633 void
634 Target_x86_64::copy_reloc(const General_options* options,
635                           Symbol_table* symtab,
636                           Layout* layout,
637                           Sized_relobj<64, false>* object,
638                           unsigned int data_shndx,
639                           Output_section* output_section,
640                           Symbol* gsym,
641                           const elfcpp::Rela<64, false>& rela)
642 {
643   Sized_symbol<64>* ssym;
644   ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(64) (gsym
645                                                         SELECT_SIZE(64));
646
647   if (!Copy_relocs<64, false>::need_copy_reloc(options, object,
648                                                data_shndx, ssym))
649     {
650       // So far we do not need a COPY reloc.  Save this relocation.
651       // If it turns out that we never need a COPY reloc for this
652       // symbol, then we will emit the relocation.
653       if (this->copy_relocs_ == NULL)
654         this->copy_relocs_ = new Copy_relocs<64, false>();
655       this->copy_relocs_->save(ssym, object, data_shndx, output_section, rela);
656     }
657   else
658     {
659       // Allocate space for this symbol in the .bss section.
660
661       elfcpp::Elf_types<64>::Elf_WXword symsize = ssym->symsize();
662
663       // There is no defined way to determine the required alignment
664       // of the symbol.  We pick the alignment based on the size.  We
665       // set an arbitrary maximum of 256.
666       unsigned int align;
667       for (align = 1; align < 512; align <<= 1)
668         if ((symsize & align) != 0)
669           break;
670
671       if (this->dynbss_ == NULL)
672         {
673           this->dynbss_ = new Output_data_space(align);
674           layout->add_output_section_data(".bss",
675                                           elfcpp::SHT_NOBITS,
676                                           (elfcpp::SHF_ALLOC
677                                            | elfcpp::SHF_WRITE),
678                                           this->dynbss_);
679         }
680
681       Output_data_space* dynbss = this->dynbss_;
682
683       if (align > dynbss->addralign())
684         dynbss->set_space_alignment(align);
685
686       off_t dynbss_size = dynbss->current_data_size();
687       dynbss_size = align_address(dynbss_size, align);
688       off_t offset = dynbss_size;
689       dynbss->set_current_data_size(dynbss_size + symsize);
690
691       symtab->define_with_copy_reloc(this, ssym, dynbss, offset);
692
693       // Add the COPY reloc.
694       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
695       rela_dyn->add_global(ssym, elfcpp::R_X86_64_COPY, dynbss, offset, 0);
696     }
697 }
698
699
700 // Optimize the TLS relocation type based on what we know about the
701 // symbol.  IS_FINAL is true if the final address of this symbol is
702 // known at link time.
703
704 tls::Tls_optimization
705 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
706 {
707   // If we are generating a shared library, then we can't do anything
708   // in the linker.
709   if (parameters->output_is_shared())
710     return tls::TLSOPT_NONE;
711
712   switch (r_type)
713     {
714     case elfcpp::R_X86_64_TLSGD:
715     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
716     case elfcpp::R_X86_64_TLSDESC_CALL:
717       // These are General-Dynamic which permits fully general TLS
718       // access.  Since we know that we are generating an executable,
719       // we can convert this to Initial-Exec.  If we also know that
720       // this is a local symbol, we can further switch to Local-Exec.
721       if (is_final)
722         return tls::TLSOPT_TO_LE;
723       return tls::TLSOPT_TO_IE;
724
725     case elfcpp::R_X86_64_TLSLD:
726       // This is Local-Dynamic, which refers to a local symbol in the
727       // dynamic TLS block.  Since we know that we generating an
728       // executable, we can switch to Local-Exec.
729       return tls::TLSOPT_TO_LE;
730
731     case elfcpp::R_X86_64_DTPOFF32:
732     case elfcpp::R_X86_64_DTPOFF64:
733       // Another Local-Dynamic reloc.
734       return tls::TLSOPT_TO_LE;
735
736     case elfcpp::R_X86_64_GOTTPOFF:
737       // These are Initial-Exec relocs which get the thread offset
738       // from the GOT.  If we know that we are linking against the
739       // local symbol, we can switch to Local-Exec, which links the
740       // thread offset into the instruction.
741       if (is_final)
742         return tls::TLSOPT_TO_LE;
743       return tls::TLSOPT_NONE;
744
745     case elfcpp::R_X86_64_TPOFF32:
746       // When we already have Local-Exec, there is nothing further we
747       // can do.
748       return tls::TLSOPT_NONE;
749
750     default:
751       gold_unreachable();
752     }
753 }
754
755 // Report an unsupported relocation against a local symbol.
756
757 void
758 Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
759                                              unsigned int r_type)
760 {
761   gold_error(_("%s: unsupported reloc %u against local symbol"),
762              object->name().c_str(), r_type);
763 }
764
765 // Scan a relocation for a local symbol.
766
767 inline void
768 Target_x86_64::Scan::local(const General_options&,
769                            Symbol_table* symtab,
770                            Layout* layout,
771                            Target_x86_64* target,
772                            Sized_relobj<64, false>* object,
773                            unsigned int data_shndx,
774                            Output_section* output_section,
775                            const elfcpp::Rela<64, false>& reloc,
776                            unsigned int r_type,
777                            const elfcpp::Sym<64, false>& lsym)
778 {
779   switch (r_type)
780     {
781     case elfcpp::R_X86_64_NONE:
782     case elfcpp::R_386_GNU_VTINHERIT:
783     case elfcpp::R_386_GNU_VTENTRY:
784       break;
785
786     case elfcpp::R_X86_64_64:
787       // If building a shared library (or a position-independent
788       // executable), we need to create a dynamic relocation for
789       // this location. The relocation applied at link time will
790       // apply the link-time value, so we flag the location with
791       // an R_386_RELATIVE relocation so the dynamic loader can
792       // relocate it easily.
793       if (parameters->output_is_position_independent())
794         {
795           unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
796           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
797           rela_dyn->add_local_relative(object, r_sym,
798                                        elfcpp::R_X86_64_RELATIVE,
799                                        output_section, data_shndx,
800                                        reloc.get_r_offset(),
801                                        reloc.get_r_addend());
802         }
803       break;
804
805     case elfcpp::R_X86_64_32:
806     case elfcpp::R_X86_64_32S:
807     case elfcpp::R_X86_64_16:
808     case elfcpp::R_X86_64_8:
809       // If building a shared library (or a position-independent
810       // executable), we need to create a dynamic relocation for
811       // this location. The relocation applied at link time will
812       // apply the link-time value, so we flag the location with
813       // an R_386_RELATIVE relocation so the dynamic loader can
814       // relocate it easily.
815       if (parameters->output_is_position_independent())
816         {
817           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
818           unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
819           rela_dyn->add_local(object, r_sym, r_type, output_section,
820                               data_shndx, reloc.get_r_offset(),
821                               reloc.get_r_addend());
822         }
823       break;
824
825     case elfcpp::R_X86_64_PC64:
826     case elfcpp::R_X86_64_PC32:
827     case elfcpp::R_X86_64_PC16:
828     case elfcpp::R_X86_64_PC8:
829       break;
830
831     case elfcpp::R_X86_64_PLT32:
832       // Since we know this is a local symbol, we can handle this as a
833       // PC32 reloc.
834       break;
835
836     case elfcpp::R_X86_64_GOTPC32:
837     case elfcpp::R_X86_64_GOTOFF64:
838     case elfcpp::R_X86_64_GOTPC64:
839     case elfcpp::R_X86_64_PLTOFF64:
840       // We need a GOT section.
841       target->got_section(symtab, layout);
842       // For PLTOFF64, we'd normally want a PLT section, but since we
843       // know this is a local symbol, no PLT is needed.
844       break;
845
846     case elfcpp::R_X86_64_GOT64:
847     case elfcpp::R_X86_64_GOT32:
848     case elfcpp::R_X86_64_GOTPCREL64:
849     case elfcpp::R_X86_64_GOTPCREL:
850     case elfcpp::R_X86_64_GOTPLT64:
851       {
852         // The symbol requires a GOT entry.
853         Output_data_got<64, false>* got = target->got_section(symtab, layout);
854         unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
855         if (got->add_local(object, r_sym))
856           {
857             // If we are generating a shared object, we need to add a
858             // dynamic relocation for this symbol's GOT entry.
859             if (parameters->output_is_position_independent())
860               {
861                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
862                 // R_X86_64_RELATIVE assumes a 64-bit relocation.
863                 if (r_type != elfcpp::R_X86_64_GOT32)
864                   rela_dyn->add_local_relative(object, r_sym,
865                                                elfcpp::R_X86_64_RELATIVE, got,
866                                                object->local_got_offset(r_sym),
867                                                0);
868                 else
869                   rela_dyn->add_local(object, r_sym, r_type,
870                                       got, object->local_got_offset(r_sym), 0);
871               }
872           }
873         // For GOTPLT64, we'd normally want a PLT section, but since
874         // we know this is a local symbol, no PLT is needed.
875       }
876       break;
877
878     case elfcpp::R_X86_64_COPY:
879     case elfcpp::R_X86_64_GLOB_DAT:
880     case elfcpp::R_X86_64_JUMP_SLOT:
881     case elfcpp::R_X86_64_RELATIVE:
882       // These are outstanding tls relocs, which are unexpected when linking
883     case elfcpp::R_X86_64_TPOFF64:
884     case elfcpp::R_X86_64_DTPMOD64:
885     case elfcpp::R_X86_64_TLSDESC:
886       gold_error(_("%s: unexpected reloc %u in object file"),
887                  object->name().c_str(), r_type);
888       break;
889
890       // These are initial tls relocs, which are expected when linking
891     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
892     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
893     case elfcpp::R_X86_64_TLSDESC_CALL:
894     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
895     case elfcpp::R_X86_64_DTPOFF32:
896     case elfcpp::R_X86_64_DTPOFF64:
897     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
898     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
899       {
900         bool output_is_shared = parameters->output_is_shared();
901         const tls::Tls_optimization optimized_type
902             = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
903         switch (r_type)
904           {
905           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
906             if (optimized_type == tls::TLSOPT_NONE)
907               {
908                 // Create a pair of GOT entries for the module index and
909                 // dtv-relative offset.
910                 Output_data_got<64, false>* got
911                     = target->got_section(symtab, layout);
912                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
913                 got->add_local_tls_with_rela(object, r_sym,
914                                              lsym.get_st_shndx(), true,
915                                              target->rela_dyn_section(layout),
916                                              elfcpp::R_X86_64_DTPMOD64);
917               }
918             else if (optimized_type != tls::TLSOPT_TO_LE)
919               unsupported_reloc_local(object, r_type);
920             break;
921
922           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
923           case elfcpp::R_X86_64_TLSDESC_CALL:
924             // FIXME: If not relaxing to LE, we need to generate
925             // a GOT entry with a R_x86_64_TLSDESC reloc.
926             if (optimized_type != tls::TLSOPT_TO_LE)
927               unsupported_reloc_local(object, r_type);
928             break;
929
930           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
931             if (optimized_type == tls::TLSOPT_NONE)
932               {
933                 // Create a GOT entry for the module index.
934                 target->got_mod_index_entry(symtab, layout, object);
935               }
936             else if (optimized_type != tls::TLSOPT_TO_LE)
937               unsupported_reloc_local(object, r_type);
938             break;
939
940           case elfcpp::R_X86_64_DTPOFF32:
941           case elfcpp::R_X86_64_DTPOFF64:
942             break;
943
944           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
945             layout->set_has_static_tls();
946             if (optimized_type == tls::TLSOPT_NONE)
947               {
948                 // Create a GOT entry for the tp-relative offset.
949                 Output_data_got<64, false>* got
950                     = target->got_section(symtab, layout);
951                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
952                 got->add_local_with_rela(object, r_sym,
953                                          target->rela_dyn_section(layout),
954                                          elfcpp::R_X86_64_TPOFF64);
955               }
956             else if (optimized_type != tls::TLSOPT_TO_LE)
957               unsupported_reloc_local(object, r_type);
958             break;
959
960           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
961             layout->set_has_static_tls();
962             if (output_is_shared)
963               unsupported_reloc_local(object, r_type);
964             break;
965
966           default:
967             gold_unreachable();
968           }
969       }
970       break;
971
972     case elfcpp::R_X86_64_SIZE32:
973     case elfcpp::R_X86_64_SIZE64:
974     default:
975       gold_error(_("%s: unsupported reloc %u against local symbol"),
976                  object->name().c_str(), r_type);
977       break;
978     }
979 }
980
981
982 // Report an unsupported relocation against a global symbol.
983
984 void
985 Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
986                                               unsigned int r_type,
987                                               Symbol* gsym)
988 {
989   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
990              object->name().c_str(), r_type, gsym->demangled_name().c_str());
991 }
992
993 // Scan a relocation for a global symbol.
994
995 inline void
996 Target_x86_64::Scan::global(const General_options& options,
997                             Symbol_table* symtab,
998                             Layout* layout,
999                             Target_x86_64* target,
1000                             Sized_relobj<64, false>* object,
1001                             unsigned int data_shndx,
1002                             Output_section* output_section,
1003                             const elfcpp::Rela<64, false>& reloc,
1004                             unsigned int r_type,
1005                             Symbol* gsym)
1006 {
1007   switch (r_type)
1008     {
1009     case elfcpp::R_X86_64_NONE:
1010     case elfcpp::R_386_GNU_VTINHERIT:
1011     case elfcpp::R_386_GNU_VTENTRY:
1012       break;
1013
1014     case elfcpp::R_X86_64_64:
1015     case elfcpp::R_X86_64_32:
1016     case elfcpp::R_X86_64_32S:
1017     case elfcpp::R_X86_64_16:
1018     case elfcpp::R_X86_64_8:
1019       {
1020         // Make a PLT entry if necessary.
1021         if (gsym->needs_plt_entry())
1022           {
1023             target->make_plt_entry(symtab, layout, gsym);
1024             // Since this is not a PC-relative relocation, we may be
1025             // taking the address of a function. In that case we need to
1026             // set the entry in the dynamic symbol table to the address of
1027             // the PLT entry.
1028             if (gsym->is_from_dynobj())
1029               gsym->set_needs_dynsym_value();
1030           }
1031         // Make a dynamic relocation if necessary.
1032         if (gsym->needs_dynamic_reloc(true, false))
1033           {
1034             if (target->may_need_copy_reloc(gsym))
1035               {
1036                 target->copy_reloc(&options, symtab, layout, object,
1037                                    data_shndx, output_section, gsym, reloc);
1038               }
1039             else if (r_type == elfcpp::R_X86_64_64
1040                      && gsym->can_use_relative_reloc(false))
1041               {
1042                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1043                 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1044                                               output_section, object,
1045                                               data_shndx, reloc.get_r_offset(),
1046                                               reloc.get_r_addend());
1047               }
1048             else
1049               {
1050                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1051                 rela_dyn->add_global(gsym, r_type, output_section, object,
1052                                      data_shndx, reloc.get_r_offset(),
1053                                      reloc.get_r_addend());
1054               }
1055           }
1056       }
1057       break;
1058
1059     case elfcpp::R_X86_64_PC64:
1060     case elfcpp::R_X86_64_PC32:
1061     case elfcpp::R_X86_64_PC16:
1062     case elfcpp::R_X86_64_PC8:
1063       {
1064         // Make a PLT entry if necessary.
1065         if (gsym->needs_plt_entry())
1066           target->make_plt_entry(symtab, layout, gsym);
1067         // Make a dynamic relocation if necessary.
1068         bool is_function_call = (gsym->type() == elfcpp::STT_FUNC);
1069         if (gsym->needs_dynamic_reloc(false, is_function_call))
1070           {
1071             if (target->may_need_copy_reloc(gsym))
1072               {
1073                 target->copy_reloc(&options, symtab, layout, object,
1074                                    data_shndx, output_section, gsym, reloc);
1075               }
1076             else
1077               {
1078                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1079                 rela_dyn->add_global(gsym, r_type, output_section, object,
1080                                      data_shndx, reloc.get_r_offset(),
1081                                      reloc.get_r_addend());
1082               }
1083           }
1084       }
1085       break;
1086
1087     case elfcpp::R_X86_64_GOT64:
1088     case elfcpp::R_X86_64_GOT32:
1089     case elfcpp::R_X86_64_GOTPCREL64:
1090     case elfcpp::R_X86_64_GOTPCREL:
1091     case elfcpp::R_X86_64_GOTPLT64:
1092       {
1093         // The symbol requires a GOT entry.
1094         Output_data_got<64, false>* got = target->got_section(symtab, layout);
1095         if (gsym->final_value_is_known())
1096           got->add_global(gsym);
1097         else
1098           {
1099             // If this symbol is not fully resolved, we need to add a
1100             // dynamic relocation for it.
1101             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1102             if (gsym->is_from_dynobj() || gsym->is_preemptible())
1103               got->add_global_with_rela(gsym, rela_dyn,
1104                                         elfcpp::R_X86_64_GLOB_DAT);
1105             else
1106               {
1107                 if (got->add_global(gsym))
1108                   rela_dyn->add_global_relative(gsym,
1109                                                 elfcpp::R_X86_64_RELATIVE,
1110                                                 got, gsym->got_offset(), 0);
1111               }
1112           }
1113         // For GOTPLT64, we also need a PLT entry (but only if the
1114         // symbol is not fully resolved).
1115         if (r_type == elfcpp::R_X86_64_GOTPLT64
1116             && !gsym->final_value_is_known())
1117           target->make_plt_entry(symtab, layout, gsym);
1118       }
1119       break;
1120
1121     case elfcpp::R_X86_64_PLT32:
1122       // If the symbol is fully resolved, this is just a PC32 reloc.
1123       // Otherwise we need a PLT entry.
1124       if (gsym->final_value_is_known())
1125         break;
1126       // If building a shared library, we can also skip the PLT entry
1127       // if the symbol is defined in the output file and is protected
1128       // or hidden.
1129       if (gsym->is_defined()
1130           && !gsym->is_from_dynobj()
1131           && !gsym->is_preemptible())
1132         break;
1133       target->make_plt_entry(symtab, layout, gsym);
1134       break;
1135
1136     case elfcpp::R_X86_64_GOTPC32:
1137     case elfcpp::R_X86_64_GOTOFF64:
1138     case elfcpp::R_X86_64_GOTPC64:
1139     case elfcpp::R_X86_64_PLTOFF64:
1140       // We need a GOT section.
1141       target->got_section(symtab, layout);
1142       // For PLTOFF64, we also need a PLT entry (but only if the
1143       // symbol is not fully resolved).
1144       if (r_type == elfcpp::R_X86_64_PLTOFF64
1145           && !gsym->final_value_is_known())
1146         target->make_plt_entry(symtab, layout, gsym);
1147       break;
1148
1149     case elfcpp::R_X86_64_COPY:
1150     case elfcpp::R_X86_64_GLOB_DAT:
1151     case elfcpp::R_X86_64_JUMP_SLOT:
1152     case elfcpp::R_X86_64_RELATIVE:
1153       // These are outstanding tls relocs, which are unexpected when linking
1154     case elfcpp::R_X86_64_TPOFF64:
1155     case elfcpp::R_X86_64_DTPMOD64:
1156     case elfcpp::R_X86_64_TLSDESC:
1157       gold_error(_("%s: unexpected reloc %u in object file"),
1158                  object->name().c_str(), r_type);
1159       break;
1160
1161       // These are initial tls relocs, which are expected for global()
1162     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1163     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1164     case elfcpp::R_X86_64_TLSDESC_CALL:
1165     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1166     case elfcpp::R_X86_64_DTPOFF32:
1167     case elfcpp::R_X86_64_DTPOFF64:
1168     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1169     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1170       {
1171         const bool is_final = gsym->final_value_is_known();
1172         const tls::Tls_optimization optimized_type
1173             = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1174         switch (r_type)
1175           {
1176           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
1177             if (optimized_type == tls::TLSOPT_NONE)
1178               {
1179                 // Create a pair of GOT entries for the module index and
1180                 // dtv-relative offset.
1181                 Output_data_got<64, false>* got
1182                     = target->got_section(symtab, layout);
1183                 got->add_global_tls_with_rela(gsym,
1184                                               target->rela_dyn_section(layout),
1185                                               elfcpp::R_X86_64_DTPMOD64,
1186                                               elfcpp::R_X86_64_DTPOFF64);
1187               }
1188             else if (optimized_type == tls::TLSOPT_TO_IE)
1189               {
1190                 // Create a GOT entry for the tp-relative offset.
1191                 Output_data_got<64, false>* got
1192                     = target->got_section(symtab, layout);
1193                 got->add_global_with_rela(gsym,
1194                                           target->rela_dyn_section(layout),
1195                                           elfcpp::R_X86_64_TPOFF64);
1196               }
1197             else if (optimized_type != tls::TLSOPT_TO_LE)
1198               unsupported_reloc_global(object, r_type, gsym);
1199             break;
1200
1201           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1202           case elfcpp::R_X86_64_TLSDESC_CALL:
1203             // FIXME: If not relaxing to LE, we need to generate
1204             // DTPMOD64 and DTPOFF64, or TLSDESC, relocs.
1205             if (optimized_type != tls::TLSOPT_TO_LE)
1206               unsupported_reloc_global(object, r_type, gsym);
1207             break;
1208
1209           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
1210             if (optimized_type == tls::TLSOPT_NONE)
1211               {
1212                 // Create a GOT entry for the module index.
1213                 target->got_mod_index_entry(symtab, layout, object);
1214               }
1215             else if (optimized_type != tls::TLSOPT_TO_LE)
1216               unsupported_reloc_global(object, r_type, gsym);
1217             break;
1218
1219           case elfcpp::R_X86_64_DTPOFF32:
1220           case elfcpp::R_X86_64_DTPOFF64:
1221             break;
1222
1223           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
1224             layout->set_has_static_tls();
1225             if (optimized_type == tls::TLSOPT_NONE)
1226               {
1227                 // Create a GOT entry for the tp-relative offset.
1228                 Output_data_got<64, false>* got
1229                     = target->got_section(symtab, layout);
1230                 got->add_global_with_rela(gsym,
1231                                           target->rela_dyn_section(layout),
1232                                           elfcpp::R_X86_64_TPOFF64);
1233               }
1234             else if (optimized_type != tls::TLSOPT_TO_LE)
1235               unsupported_reloc_global(object, r_type, gsym);
1236             break;
1237
1238           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
1239             layout->set_has_static_tls();
1240             if (parameters->output_is_shared())
1241               unsupported_reloc_local(object, r_type);
1242             break;
1243
1244           default:
1245             gold_unreachable();
1246           }
1247       }
1248       break;
1249
1250     case elfcpp::R_X86_64_SIZE32:
1251     case elfcpp::R_X86_64_SIZE64:
1252     default:
1253       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1254                  object->name().c_str(), r_type,
1255                  gsym->demangled_name().c_str());
1256       break;
1257     }
1258 }
1259
1260 // Scan relocations for a section.
1261
1262 void
1263 Target_x86_64::scan_relocs(const General_options& options,
1264                            Symbol_table* symtab,
1265                            Layout* layout,
1266                            Sized_relobj<64, false>* object,
1267                            unsigned int data_shndx,
1268                            unsigned int sh_type,
1269                            const unsigned char* prelocs,
1270                            size_t reloc_count,
1271                            Output_section* output_section,
1272                            bool needs_special_offset_handling,
1273                            size_t local_symbol_count,
1274                            const unsigned char* plocal_symbols)
1275 {
1276   if (sh_type == elfcpp::SHT_REL)
1277     {
1278       gold_error(_("%s: unsupported REL reloc section"),
1279                  object->name().c_str());
1280       return;
1281     }
1282
1283   gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1284       Target_x86_64::Scan>(
1285     options,
1286     symtab,
1287     layout,
1288     this,
1289     object,
1290     data_shndx,
1291     prelocs,
1292     reloc_count,
1293     output_section,
1294     needs_special_offset_handling,
1295     local_symbol_count,
1296     plocal_symbols);
1297 }
1298
1299 // Finalize the sections.
1300
1301 void
1302 Target_x86_64::do_finalize_sections(Layout* layout)
1303 {
1304   // Fill in some more dynamic tags.
1305   Output_data_dynamic* const odyn = layout->dynamic_data();
1306   if (odyn != NULL)
1307     {
1308       if (this->got_plt_ != NULL)
1309         odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1310
1311       if (this->plt_ != NULL)
1312         {
1313           const Output_data* od = this->plt_->rel_plt();
1314           odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1315           odyn->add_section_address(elfcpp::DT_JMPREL, od);
1316           odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1317         }
1318
1319       if (this->rela_dyn_ != NULL)
1320         {
1321           const Output_data* od = this->rela_dyn_;
1322           odyn->add_section_address(elfcpp::DT_RELA, od);
1323           odyn->add_section_size(elfcpp::DT_RELASZ, od);
1324           odyn->add_constant(elfcpp::DT_RELAENT,
1325                              elfcpp::Elf_sizes<64>::rela_size);
1326         }
1327
1328       if (!parameters->output_is_shared())
1329         {
1330           // The value of the DT_DEBUG tag is filled in by the dynamic
1331           // linker at run time, and used by the debugger.
1332           odyn->add_constant(elfcpp::DT_DEBUG, 0);
1333         }
1334     }
1335
1336   // Emit any relocs we saved in an attempt to avoid generating COPY
1337   // relocs.
1338   if (this->copy_relocs_ == NULL)
1339     return;
1340   if (this->copy_relocs_->any_to_emit())
1341     {
1342       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1343       this->copy_relocs_->emit(rela_dyn);
1344     }
1345   delete this->copy_relocs_;
1346   this->copy_relocs_ = NULL;
1347 }
1348
1349 // Perform a relocation.
1350
1351 inline bool
1352 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1353                                   Target_x86_64* target,
1354                                   size_t relnum,
1355                                   const elfcpp::Rela<64, false>& rela,
1356                                   unsigned int r_type,
1357                                   const Sized_symbol<64>* gsym,
1358                                   const Symbol_value<64>* psymval,
1359                                   unsigned char* view,
1360                                   elfcpp::Elf_types<64>::Elf_Addr address,
1361                                   off_t view_size)
1362 {
1363   if (this->skip_call_tls_get_addr_)
1364     {
1365       if (r_type != elfcpp::R_X86_64_PLT32
1366           || gsym == NULL
1367           || strcmp(gsym->name(), "__tls_get_addr") != 0)
1368         {
1369           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1370                                  _("missing expected TLS relocation"));
1371         }
1372       else
1373         {
1374           this->skip_call_tls_get_addr_ = false;
1375           return false;
1376         }
1377     }
1378
1379   // Pick the value to use for symbols defined in shared objects.
1380   Symbol_value<64> symval;
1381   if (gsym != NULL
1382       && (gsym->is_from_dynobj()
1383           || (parameters->output_is_shared()
1384               && gsym->is_preemptible()))
1385       && gsym->has_plt_offset())
1386     {
1387       symval.set_output_value(target->plt_section()->address()
1388                               + gsym->plt_offset());
1389       psymval = &symval;
1390     }
1391
1392   const Sized_relobj<64, false>* object = relinfo->object;
1393   const elfcpp::Elf_Xword addend = rela.get_r_addend();
1394
1395   // Get the GOT offset if needed.
1396   // The GOT pointer points to the end of the GOT section.
1397   // We need to subtract the size of the GOT section to get
1398   // the actual offset to use in the relocation.
1399   bool have_got_offset = false;
1400   unsigned int got_offset = 0;
1401   switch (r_type)
1402     {
1403     case elfcpp::R_X86_64_GOT32:
1404     case elfcpp::R_X86_64_GOT64:
1405     case elfcpp::R_X86_64_GOTPLT64:
1406     case elfcpp::R_X86_64_GOTPCREL:
1407     case elfcpp::R_X86_64_GOTPCREL64:
1408       if (gsym != NULL)
1409         {
1410           gold_assert(gsym->has_got_offset());
1411           got_offset = gsym->got_offset() - target->got_size();
1412         }
1413       else
1414         {
1415           unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1416           gold_assert(object->local_has_got_offset(r_sym));
1417           got_offset = object->local_got_offset(r_sym) - target->got_size();
1418         }
1419       have_got_offset = true;
1420       break;
1421
1422     default:
1423       break;
1424     }
1425
1426   switch (r_type)
1427     {
1428     case elfcpp::R_X86_64_NONE:
1429     case elfcpp::R_386_GNU_VTINHERIT:
1430     case elfcpp::R_386_GNU_VTENTRY:
1431       break;
1432
1433     case elfcpp::R_X86_64_64:
1434       Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1435       break;
1436
1437     case elfcpp::R_X86_64_PC64:
1438       Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1439                                               address);
1440       break;
1441
1442     case elfcpp::R_X86_64_32:
1443       // FIXME: we need to verify that value + addend fits into 32 bits:
1444       //    uint64_t x = value + addend;
1445       //    x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1446       // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
1447       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1448       break;
1449
1450     case elfcpp::R_X86_64_32S:
1451       // FIXME: we need to verify that value + addend fits into 32 bits:
1452       //    int64_t x = value + addend;   // note this quantity is signed!
1453       //    x == static_cast<int64_t>(static_cast<int32_t>(x))
1454       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1455       break;
1456
1457     case elfcpp::R_X86_64_PC32:
1458       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1459                                               address);
1460       break;
1461
1462     case elfcpp::R_X86_64_16:
1463       Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1464       break;
1465
1466     case elfcpp::R_X86_64_PC16:
1467       Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1468                                               address);
1469       break;
1470
1471     case elfcpp::R_X86_64_8:
1472       Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1473       break;
1474
1475     case elfcpp::R_X86_64_PC8:
1476       Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1477                                              address);
1478       break;
1479
1480     case elfcpp::R_X86_64_PLT32:
1481       gold_assert(gsym == NULL
1482                   || gsym->has_plt_offset()
1483                   || gsym->final_value_is_known());
1484       // Note: while this code looks the same as for R_X86_64_PC32, it
1485       // behaves differently because psymval was set to point to
1486       // the PLT entry, rather than the symbol, in Scan::global().
1487       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1488                                               address);
1489       break;
1490
1491     case elfcpp::R_X86_64_PLTOFF64:
1492       {
1493         gold_assert(gsym);
1494         gold_assert(gsym->has_plt_offset()
1495                     || gsym->final_value_is_known());
1496         elfcpp::Elf_types<64>::Elf_Addr got_address;
1497         got_address = target->got_section(NULL, NULL)->address();
1498         Relocate_functions<64, false>::rela64(view, object, psymval,
1499                                               addend - got_address);
1500       }
1501
1502     case elfcpp::R_X86_64_GOT32:
1503       gold_assert(have_got_offset);
1504       Relocate_functions<64, false>::rela32(view, got_offset, addend);
1505       break;
1506
1507     case elfcpp::R_X86_64_GOTPC32:
1508       {
1509         gold_assert(gsym);
1510         elfcpp::Elf_types<64>::Elf_Addr value;
1511         value = target->got_plt_section()->address();
1512         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1513       }
1514       break;
1515
1516     case elfcpp::R_X86_64_GOT64:
1517       // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1518       // Since we always add a PLT entry, this is equivalent.
1519     case elfcpp::R_X86_64_GOTPLT64:
1520       gold_assert(have_got_offset);
1521       Relocate_functions<64, false>::rela64(view, got_offset, addend);
1522       break;
1523
1524     case elfcpp::R_X86_64_GOTPC64:
1525       {
1526         gold_assert(gsym);
1527         elfcpp::Elf_types<64>::Elf_Addr value;
1528         value = target->got_plt_section()->address();
1529         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1530       }
1531       break;
1532
1533     case elfcpp::R_X86_64_GOTOFF64:
1534       {
1535         elfcpp::Elf_types<64>::Elf_Addr value;
1536         value = (psymval->value(object, 0)
1537                  - target->got_plt_section()->address());
1538         Relocate_functions<64, false>::rela64(view, value, addend);
1539       }
1540       break;
1541
1542     case elfcpp::R_X86_64_GOTPCREL:
1543       {
1544         gold_assert(have_got_offset);
1545         elfcpp::Elf_types<64>::Elf_Addr value;
1546         value = target->got_plt_section()->address() + got_offset;
1547         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1548       }
1549       break;
1550
1551     case elfcpp::R_X86_64_GOTPCREL64:
1552       {
1553         gold_assert(have_got_offset);
1554         elfcpp::Elf_types<64>::Elf_Addr value;
1555         value = target->got_plt_section()->address() + got_offset;
1556         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1557       }
1558       break;
1559
1560     case elfcpp::R_X86_64_COPY:
1561     case elfcpp::R_X86_64_GLOB_DAT:
1562     case elfcpp::R_X86_64_JUMP_SLOT:
1563     case elfcpp::R_X86_64_RELATIVE:
1564       // These are outstanding tls relocs, which are unexpected when linking
1565     case elfcpp::R_X86_64_TPOFF64:
1566     case elfcpp::R_X86_64_DTPMOD64:
1567     case elfcpp::R_X86_64_TLSDESC:
1568       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1569                              _("unexpected reloc %u in object file"),
1570                              r_type);
1571       break;
1572
1573       // These are initial tls relocs, which are expected when linking
1574     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1575     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1576     case elfcpp::R_X86_64_TLSDESC_CALL:
1577     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1578     case elfcpp::R_X86_64_DTPOFF32:
1579     case elfcpp::R_X86_64_DTPOFF64:
1580     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1581     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1582       this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
1583                          view, address, view_size);
1584       break;
1585
1586     case elfcpp::R_X86_64_SIZE32:
1587     case elfcpp::R_X86_64_SIZE64:
1588     default:
1589       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1590                              _("unsupported reloc %u"),
1591                              r_type);
1592       break;
1593     }
1594
1595   return true;
1596 }
1597
1598 // Perform a TLS relocation.
1599
1600 inline void
1601 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1602                                       Target_x86_64* target,
1603                                       size_t relnum,
1604                                       const elfcpp::Rela<64, false>& rela,
1605                                       unsigned int r_type,
1606                                       const Sized_symbol<64>* gsym,
1607                                       const Symbol_value<64>* psymval,
1608                                       unsigned char* view,
1609                                       elfcpp::Elf_types<64>::Elf_Addr address,
1610                                       off_t view_size)
1611 {
1612   Output_segment* tls_segment = relinfo->layout->tls_segment();
1613
1614   const Sized_relobj<64, false>* object = relinfo->object;
1615   const elfcpp::Elf_Xword addend = rela.get_r_addend();
1616
1617   elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1618
1619   const bool is_final = (gsym == NULL
1620                          ? !parameters->output_is_position_independent()
1621                          : gsym->final_value_is_known());
1622   const tls::Tls_optimization optimized_type
1623       = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1624   switch (r_type)
1625     {
1626     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1627     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1628     case elfcpp::R_X86_64_TLSDESC_CALL:
1629       if (optimized_type == tls::TLSOPT_TO_LE)
1630         {
1631           gold_assert(tls_segment != NULL);
1632           this->tls_gd_to_le(relinfo, relnum, tls_segment,
1633                              rela, r_type, value, view,
1634                              view_size);
1635           break;
1636         }
1637       else
1638         {
1639           unsigned int got_offset;
1640           if (gsym != NULL)
1641             {
1642               gold_assert(gsym->has_tls_got_offset(true));
1643               got_offset = gsym->tls_got_offset(true) - target->got_size();
1644             }
1645           else
1646             {
1647               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1648               gold_assert(object->local_has_tls_got_offset(r_sym, true));
1649               got_offset = (object->local_tls_got_offset(r_sym, true)
1650                             - target->got_size());
1651             }
1652           if (optimized_type == tls::TLSOPT_TO_IE)
1653             {
1654               gold_assert(tls_segment != NULL);
1655               this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
1656                                  got_offset, view, view_size);
1657               break;
1658             }
1659           else if (optimized_type == tls::TLSOPT_NONE)
1660             {
1661               // Relocate the field with the offset of the pair of GOT
1662               // entries.
1663               value = target->got_plt_section()->address() + got_offset;
1664               Relocate_functions<64, false>::pcrela32(view, value, addend,
1665                                                       address);
1666               break;
1667             }
1668         }
1669       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1670                              _("unsupported reloc %u"), r_type);
1671       break;
1672
1673     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1674       if (optimized_type == tls::TLSOPT_TO_LE)
1675         {
1676           gold_assert(tls_segment != NULL);
1677           this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
1678                              value, view, view_size);
1679           break;
1680         }
1681       else if (optimized_type == tls::TLSOPT_NONE)
1682         {
1683           // Relocate the field with the offset of the GOT entry for
1684           // the module index.
1685           unsigned int got_offset;
1686           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
1687                         - target->got_size());
1688           value = target->got_plt_section()->address() + got_offset;
1689           Relocate_functions<64, false>::pcrela32(view, value, addend,
1690                                                   address);
1691           break;
1692         }
1693       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1694                              _("unsupported reloc %u"), r_type);
1695       break;
1696
1697     case elfcpp::R_X86_64_DTPOFF32:
1698       gold_assert(tls_segment != NULL);
1699       if (optimized_type == tls::TLSOPT_TO_LE)
1700         value -= tls_segment->memsz();
1701       Relocate_functions<64, false>::rela32(view, value, 0);
1702       break;
1703
1704     case elfcpp::R_X86_64_DTPOFF64:
1705       gold_assert(tls_segment != NULL);
1706       if (optimized_type == tls::TLSOPT_TO_LE)
1707         value -= tls_segment->memsz();
1708       Relocate_functions<64, false>::rela64(view, value, 0);
1709       break;
1710
1711     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1712       if (optimized_type == tls::TLSOPT_TO_LE)
1713         {
1714           gold_assert(tls_segment != NULL);
1715           Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1716                                                 rela, r_type, value, view,
1717                                                 view_size);
1718           break;
1719         }
1720       else if (optimized_type == tls::TLSOPT_NONE)
1721         {
1722           // Relocate the field with the offset of the GOT entry for
1723           // the tp-relative offset of the symbol.
1724           unsigned int got_offset;
1725           if (gsym != NULL)
1726             {
1727               gold_assert(gsym->has_got_offset());
1728               got_offset = gsym->got_offset() - target->got_size();
1729             }
1730           else
1731             {
1732               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1733               gold_assert(object->local_has_got_offset(r_sym));
1734               got_offset = (object->local_got_offset(r_sym)
1735                             - target->got_size());
1736             }
1737           value = target->got_plt_section()->address() + got_offset;
1738           Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1739           break;
1740         }
1741       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1742                              _("unsupported reloc type %u"),
1743                              r_type);
1744       break;
1745
1746     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1747       value -= tls_segment->memsz();
1748       Relocate_functions<64, false>::rela32(view, value, 0);
1749       break;
1750     }
1751 }
1752
1753 // Do a relocation in which we convert a TLS General-Dynamic to an
1754 // Initial-Exec.
1755
1756 inline void
1757 Target_x86_64::Relocate::tls_gd_to_ie(const Relocate_info<64, false>* relinfo,
1758                                       size_t relnum,
1759                                       Output_segment* tls_segment,
1760                                       const elfcpp::Rela<64, false>& rela,
1761                                       unsigned int,
1762                                       elfcpp::Elf_types<64>::Elf_Addr value,
1763                                       unsigned char* view,
1764                                       off_t view_size)
1765 {
1766   // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1767   // .word 0x6666; rex64; call __tls_get_addr
1768   // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
1769
1770   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
1771   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
1772
1773   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1774                  (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
1775   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1776                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
1777
1778   memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
1779
1780   value -= tls_segment->memsz();
1781   Relocate_functions<64, false>::rela32(view + 8, value, 0);
1782
1783   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1784   // We can skip it.
1785   this->skip_call_tls_get_addr_ = true;
1786 }
1787
1788 // Do a relocation in which we convert a TLS General-Dynamic to a
1789 // Local-Exec.
1790
1791 inline void
1792 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
1793                                       size_t relnum,
1794                                       Output_segment* tls_segment,
1795                                       const elfcpp::Rela<64, false>& rela,
1796                                       unsigned int,
1797                                       elfcpp::Elf_types<64>::Elf_Addr value,
1798                                       unsigned char* view,
1799                                       off_t view_size)
1800 {
1801   // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1802   // .word 0x6666; rex64; call __tls_get_addr
1803   // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
1804
1805   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
1806   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
1807
1808   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1809                  (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
1810   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1811                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
1812
1813   memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
1814
1815   value -= tls_segment->memsz();
1816   Relocate_functions<64, false>::rela32(view + 8, value, 0);
1817
1818   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1819   // We can skip it.
1820   this->skip_call_tls_get_addr_ = true;
1821 }
1822
1823 inline void
1824 Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
1825                                       size_t relnum,
1826                                       Output_segment*,
1827                                       const elfcpp::Rela<64, false>& rela,
1828                                       unsigned int,
1829                                       elfcpp::Elf_types<64>::Elf_Addr,
1830                                       unsigned char* view,
1831                                       off_t view_size)
1832 {
1833   // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
1834   // ... leq foo@dtpoff(%rax),%reg
1835   // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
1836
1837   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1838   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
1839
1840   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1841                  view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
1842
1843   tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
1844
1845   memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
1846
1847   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1848   // We can skip it.
1849   this->skip_call_tls_get_addr_ = true;
1850 }
1851
1852 // Do a relocation in which we convert a TLS Initial-Exec to a
1853 // Local-Exec.
1854
1855 inline void
1856 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
1857                                       size_t relnum,
1858                                       Output_segment* tls_segment,
1859                                       const elfcpp::Rela<64, false>& rela,
1860                                       unsigned int,
1861                                       elfcpp::Elf_types<64>::Elf_Addr value,
1862                                       unsigned char* view,
1863                                       off_t view_size)
1864 {
1865   // We need to examine the opcodes to figure out which instruction we
1866   // are looking at.
1867
1868   // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
1869   // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
1870
1871   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1872   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
1873
1874   unsigned char op1 = view[-3];
1875   unsigned char op2 = view[-2];
1876   unsigned char op3 = view[-1];
1877   unsigned char reg = op3 >> 3;
1878
1879   if (op2 == 0x8b)
1880     {
1881       // movq
1882       if (op1 == 0x4c)
1883         view[-3] = 0x49;
1884       view[-2] = 0xc7;
1885       view[-1] = 0xc0 | reg;
1886     }
1887   else if (reg == 4)
1888     {
1889       // Special handling for %rsp.
1890       if (op1 == 0x4c)
1891         view[-3] = 0x49;
1892       view[-2] = 0x81;
1893       view[-1] = 0xc0 | reg;
1894     }
1895   else
1896     {
1897       // addq
1898       if (op1 == 0x4c)
1899         view[-3] = 0x4d;
1900       view[-2] = 0x8d;
1901       view[-1] = 0x80 | reg | (reg << 3);
1902     }
1903
1904   value -= tls_segment->memsz();
1905   Relocate_functions<64, false>::rela32(view, value, 0);
1906 }
1907
1908 // Relocate section data.
1909
1910 void
1911 Target_x86_64::relocate_section(const Relocate_info<64, false>* relinfo,
1912                                 unsigned int sh_type,
1913                                 const unsigned char* prelocs,
1914                                 size_t reloc_count,
1915                                 Output_section* output_section,
1916                                 bool needs_special_offset_handling,
1917                                 unsigned char* view,
1918                                 elfcpp::Elf_types<64>::Elf_Addr address,
1919                                 off_t view_size)
1920 {
1921   gold_assert(sh_type == elfcpp::SHT_RELA);
1922
1923   gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
1924                          Target_x86_64::Relocate>(
1925     relinfo,
1926     this,
1927     prelocs,
1928     reloc_count,
1929     output_section,
1930     needs_special_offset_handling,
1931     view,
1932     address,
1933     view_size);
1934 }
1935
1936 // Return the value to use for a dynamic which requires special
1937 // treatment.  This is how we support equality comparisons of function
1938 // pointers across shared library boundaries, as described in the
1939 // processor specific ABI supplement.
1940
1941 uint64_t
1942 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
1943 {
1944   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1945   return this->plt_section()->address() + gsym->plt_offset();
1946 }
1947
1948 // Return a string used to fill a code section with nops to take up
1949 // the specified length.
1950
1951 std::string
1952 Target_x86_64::do_code_fill(off_t length)
1953 {
1954   if (length >= 16)
1955     {
1956       // Build a jmpq instruction to skip over the bytes.
1957       unsigned char jmp[5];
1958       jmp[0] = 0xe9;
1959       elfcpp::Swap_unaligned<64, false>::writeval(jmp + 1, length - 5);
1960       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1961               + std::string(length - 5, '\0'));
1962     }
1963
1964   // Nop sequences of various lengths.
1965   const char nop1[1] = { 0x90 };                   // nop
1966   const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
1967   const char nop3[3] = { 0x8d, 0x76, 0x00 };       // leal 0(%esi),%esi
1968   const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00};  // leal 0(%esi,1),%esi
1969   const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26,   // nop
1970                          0x00 };                   // leal 0(%esi,1),%esi
1971   const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00,   // leal 0L(%esi),%esi
1972                          0x00, 0x00 };
1973   const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00,   // leal 0L(%esi,1),%esi
1974                          0x00, 0x00, 0x00 };
1975   const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26,   // nop
1976                          0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1977   const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc,   // movl %esi,%esi
1978                          0x27, 0x00, 0x00, 0x00,   // leal 0L(%edi,1),%edi
1979                          0x00 };
1980   const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1981                            0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1982                            0x00, 0x00 };
1983   const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1984                            0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1985                            0x00, 0x00, 0x00 };
1986   const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1987                            0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1988                            0x00, 0x00, 0x00, 0x00 };
1989   const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1990                            0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1991                            0x27, 0x00, 0x00, 0x00,
1992                            0x00 };
1993   const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1994                            0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1995                            0xbc, 0x27, 0x00, 0x00,
1996                            0x00, 0x00 };
1997   const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1998                            0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1999                            0x90, 0x90, 0x90, 0x90,
2000                            0x90, 0x90, 0x90 };
2001
2002   const char* nops[16] = {
2003     NULL,
2004     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
2005     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
2006   };
2007
2008   return std::string(nops[length], length);
2009 }
2010
2011 // The selector for x86_64 object files.
2012
2013 class Target_selector_x86_64 : public Target_selector
2014 {
2015 public:
2016   Target_selector_x86_64()
2017     : Target_selector(elfcpp::EM_X86_64, 64, false)
2018   { }
2019
2020   Target*
2021   recognize(int machine, int osabi, int abiversion);
2022
2023  private:
2024   Target_x86_64* target_;
2025 };
2026
2027 // Recognize an x86_64 object file when we already know that the machine
2028 // number is EM_X86_64.
2029
2030 Target*
2031 Target_selector_x86_64::recognize(int, int, int)
2032 {
2033   if (this->target_ == NULL)
2034     this->target_ = new Target_x86_64();
2035   return this->target_;
2036 }
2037
2038 Target_selector_x86_64 target_selector_x86_64;
2039
2040 } // End anonymous namespace.