list Tom Tromey as GDB Global Maintainer
[external/binutils.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "dwarf.h"
29 #include "parameters.h"
30 #include "reloc.h"
31 #include "x86_64.h"
32 #include "object.h"
33 #include "symtab.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "copy-relocs.h"
37 #include "target.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
40 #include "tls.h"
41 #include "freebsd.h"
42 #include "nacl.h"
43 #include "gc.h"
44 #include "icf.h"
45
46 namespace
47 {
48
49 using namespace gold;
50
51 // A class to handle the .got.plt section.
52
53 class Output_data_got_plt_x86_64 : public Output_section_data_build
54 {
55  public:
56   Output_data_got_plt_x86_64(Layout* layout)
57     : Output_section_data_build(8),
58       layout_(layout)
59   { }
60
61   Output_data_got_plt_x86_64(Layout* layout, off_t data_size)
62     : Output_section_data_build(data_size, 8),
63       layout_(layout)
64   { }
65
66  protected:
67   // Write out the PLT data.
68   void
69   do_write(Output_file*);
70
71   // Write to a map file.
72   void
73   do_print_to_mapfile(Mapfile* mapfile) const
74   { mapfile->print_output_data(this, "** GOT PLT"); }
75
76  private:
77   // A pointer to the Layout class, so that we can find the .dynamic
78   // section when we write out the GOT PLT section.
79   Layout* layout_;
80 };
81
82 // A class to handle the PLT data.
83 // This is an abstract base class that handles most of the linker details
84 // but does not know the actual contents of PLT entries.  The derived
85 // classes below fill in those details.
86
87 template<int size>
88 class Output_data_plt_x86_64 : public Output_section_data
89 {
90  public:
91   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
92
93   Output_data_plt_x86_64(Layout* layout, uint64_t addralign,
94                          Output_data_got<64, false>* got,
95                          Output_data_got_plt_x86_64* got_plt,
96                          Output_data_space* got_irelative)
97     : Output_section_data(addralign), tlsdesc_rel_(NULL),
98       irelative_rel_(NULL), got_(got), got_plt_(got_plt),
99       got_irelative_(got_irelative), count_(0), irelative_count_(0),
100       tlsdesc_got_offset_(-1U), free_list_()
101   { this->init(layout); }
102
103   Output_data_plt_x86_64(Layout* layout, uint64_t plt_entry_size,
104                          Output_data_got<64, false>* got,
105                          Output_data_got_plt_x86_64* got_plt,
106                          Output_data_space* got_irelative,
107                          unsigned int plt_count)
108     : Output_section_data((plt_count + 1) * plt_entry_size,
109                           plt_entry_size, false),
110       tlsdesc_rel_(NULL), irelative_rel_(NULL), got_(got),
111       got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
112       irelative_count_(0), tlsdesc_got_offset_(-1U), free_list_()
113   {
114     this->init(layout);
115
116     // Initialize the free list and reserve the first entry.
117     this->free_list_.init((plt_count + 1) * plt_entry_size, false);
118     this->free_list_.remove(0, plt_entry_size);
119   }
120
121   // Initialize the PLT section.
122   void
123   init(Layout* layout);
124
125   // Add an entry to the PLT.
126   void
127   add_entry(Symbol_table*, Layout*, Symbol* gsym);
128
129   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
130   unsigned int
131   add_local_ifunc_entry(Symbol_table* symtab, Layout*,
132                         Sized_relobj_file<size, false>* relobj,
133                         unsigned int local_sym_index);
134
135   // Add the relocation for a PLT entry.
136   void
137   add_relocation(Symbol_table*, Layout*, Symbol* gsym,
138                  unsigned int got_offset);
139
140   // Add the reserved TLSDESC_PLT entry to the PLT.
141   void
142   reserve_tlsdesc_entry(unsigned int got_offset)
143   { this->tlsdesc_got_offset_ = got_offset; }
144
145   // Return true if a TLSDESC_PLT entry has been reserved.
146   bool
147   has_tlsdesc_entry() const
148   { return this->tlsdesc_got_offset_ != -1U; }
149
150   // Return the GOT offset for the reserved TLSDESC_PLT entry.
151   unsigned int
152   get_tlsdesc_got_offset() const
153   { return this->tlsdesc_got_offset_; }
154
155   // Return the offset of the reserved TLSDESC_PLT entry.
156   unsigned int
157   get_tlsdesc_plt_offset() const
158   {
159     return ((this->count_ + this->irelative_count_ + 1)
160             * this->get_plt_entry_size());
161   }
162
163   // Return the .rela.plt section data.
164   Reloc_section*
165   rela_plt()
166   { return this->rel_; }
167
168   // Return where the TLSDESC relocations should go.
169   Reloc_section*
170   rela_tlsdesc(Layout*);
171
172   // Return where the IRELATIVE relocations should go in the PLT
173   // relocations.
174   Reloc_section*
175   rela_irelative(Symbol_table*, Layout*);
176
177   // Return whether we created a section for IRELATIVE relocations.
178   bool
179   has_irelative_section() const
180   { return this->irelative_rel_ != NULL; }
181
182   // Get count of regular PLT entries.
183   unsigned int
184   regular_count() const
185   { return this->count_; }
186
187   // Return the total number of PLT entries.
188   unsigned int
189   entry_count() const
190   { return this->count_ + this->irelative_count_; }
191
192   // Return the offset of the first non-reserved PLT entry.
193   unsigned int
194   first_plt_entry_offset()
195   { return this->get_plt_entry_size(); }
196
197   // Return the size of a PLT entry.
198   unsigned int
199   get_plt_entry_size() const
200   { return this->do_get_plt_entry_size(); }
201
202   // Reserve a slot in the PLT for an existing symbol in an incremental update.
203   void
204   reserve_slot(unsigned int plt_index)
205   {
206     this->free_list_.remove((plt_index + 1) * this->get_plt_entry_size(),
207                             (plt_index + 2) * this->get_plt_entry_size());
208   }
209
210   // Return the PLT address to use for a global symbol.
211   uint64_t
212   address_for_global(const Symbol* sym)
213   { return do_address_for_global(sym); }
214
215   // Return the PLT address to use for a local symbol.
216   uint64_t
217   address_for_local(const Relobj* obj, unsigned int symndx)
218   { return do_address_for_local(obj, symndx); }
219
220   // Add .eh_frame information for the PLT.
221   void
222   add_eh_frame(Layout* layout)
223   { this->do_add_eh_frame(layout); }
224
225  protected:
226   Output_data_got<64, false>*
227   got() const
228   { return this->got_; }
229
230   Output_data_got_plt_x86_64*
231   got_plt() const
232   { return this->got_plt_; }
233
234   Output_data_space*
235   got_irelative() const
236   { return this->got_irelative_; }
237
238   // Fill in the first PLT entry.
239   void
240   fill_first_plt_entry(unsigned char* pov,
241                        typename elfcpp::Elf_types<size>::Elf_Addr got_address,
242                        typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
243   { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
244
245   // Fill in a normal PLT entry.  Returns the offset into the entry that
246   // should be the initial GOT slot value.
247   unsigned int
248   fill_plt_entry(unsigned char* pov,
249                  typename elfcpp::Elf_types<size>::Elf_Addr got_address,
250                  typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
251                  unsigned int got_offset,
252                  unsigned int plt_offset,
253                  unsigned int plt_index)
254   {
255     return this->do_fill_plt_entry(pov, got_address, plt_address,
256                                    got_offset, plt_offset, plt_index);
257   }
258
259   // Fill in the reserved TLSDESC PLT entry.
260   void
261   fill_tlsdesc_entry(unsigned char* pov,
262                      typename elfcpp::Elf_types<size>::Elf_Addr got_address,
263                      typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
264                      typename elfcpp::Elf_types<size>::Elf_Addr got_base,
265                      unsigned int tlsdesc_got_offset,
266                      unsigned int plt_offset)
267   {
268     this->do_fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
269                                 tlsdesc_got_offset, plt_offset);
270   }
271
272   virtual unsigned int
273   do_get_plt_entry_size() const = 0;
274
275   virtual void
276   do_fill_first_plt_entry(unsigned char* pov,
277                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
278                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr)
279     = 0;
280
281   virtual unsigned int
282   do_fill_plt_entry(unsigned char* pov,
283                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
284                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
285                     unsigned int got_offset,
286                     unsigned int plt_offset,
287                     unsigned int plt_index) = 0;
288
289   virtual void
290   do_fill_tlsdesc_entry(unsigned char* pov,
291                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
292                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
293                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
294                         unsigned int tlsdesc_got_offset,
295                         unsigned int plt_offset) = 0;
296
297   // Return the PLT address to use for a global symbol.
298   virtual uint64_t
299   do_address_for_global(const Symbol* sym);
300
301   // Return the PLT address to use for a local symbol.
302   virtual uint64_t
303   do_address_for_local(const Relobj* obj, unsigned int symndx);
304
305   virtual void
306   do_add_eh_frame(Layout* layout) = 0;
307
308   void
309   do_adjust_output_section(Output_section* os);
310
311   // Write to a map file.
312   void
313   do_print_to_mapfile(Mapfile* mapfile) const
314   { mapfile->print_output_data(this, _("** PLT")); }
315
316   // The CIE of the .eh_frame unwind information for the PLT.
317   static const int plt_eh_frame_cie_size = 16;
318   static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
319
320  private:
321   // Set the final size.
322   void
323   set_final_data_size();
324
325   // Write out the PLT data.
326   void
327   do_write(Output_file*);
328
329   // The reloc section.
330   Reloc_section* rel_;
331   // The TLSDESC relocs, if necessary.  These must follow the regular
332   // PLT relocs.
333   Reloc_section* tlsdesc_rel_;
334   // The IRELATIVE relocs, if necessary.  These must follow the
335   // regular PLT relocations and the TLSDESC relocations.
336   Reloc_section* irelative_rel_;
337   // The .got section.
338   Output_data_got<64, false>* got_;
339   // The .got.plt section.
340   Output_data_got_plt_x86_64* got_plt_;
341   // The part of the .got.plt section used for IRELATIVE relocs.
342   Output_data_space* got_irelative_;
343   // The number of PLT entries.
344   unsigned int count_;
345   // Number of PLT entries with R_X86_64_IRELATIVE relocs.  These
346   // follow the regular PLT entries.
347   unsigned int irelative_count_;
348   // Offset of the reserved TLSDESC_GOT entry when needed.
349   unsigned int tlsdesc_got_offset_;
350   // List of available regions within the section, for incremental
351   // update links.
352   Free_list free_list_;
353 };
354
355 template<int size>
356 class Output_data_plt_x86_64_standard : public Output_data_plt_x86_64<size>
357 {
358  public:
359   Output_data_plt_x86_64_standard(Layout* layout,
360                                   Output_data_got<64, false>* got,
361                                   Output_data_got_plt_x86_64* got_plt,
362                                   Output_data_space* got_irelative)
363     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
364                                    got, got_plt, got_irelative)
365   { }
366
367   Output_data_plt_x86_64_standard(Layout* layout,
368                                   Output_data_got<64, false>* got,
369                                   Output_data_got_plt_x86_64* got_plt,
370                                   Output_data_space* got_irelative,
371                                   unsigned int plt_count)
372     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
373                                    got, got_plt, got_irelative,
374                                    plt_count)
375   { }
376
377  protected:
378   virtual unsigned int
379   do_get_plt_entry_size() const
380   { return plt_entry_size; }
381
382   virtual void
383   do_add_eh_frame(Layout* layout)
384   {
385     layout->add_eh_frame_for_plt(this,
386                                  this->plt_eh_frame_cie,
387                                  this->plt_eh_frame_cie_size,
388                                  plt_eh_frame_fde,
389                                  plt_eh_frame_fde_size);
390   }
391
392   virtual void
393   do_fill_first_plt_entry(unsigned char* pov,
394                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
395                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
396
397   virtual unsigned int
398   do_fill_plt_entry(unsigned char* pov,
399                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
400                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
401                     unsigned int got_offset,
402                     unsigned int plt_offset,
403                     unsigned int plt_index);
404
405   virtual void
406   do_fill_tlsdesc_entry(unsigned char* pov,
407                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
408                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
409                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
410                         unsigned int tlsdesc_got_offset,
411                         unsigned int plt_offset);
412
413  private:
414   // The size of an entry in the PLT.
415   static const int plt_entry_size = 16;
416
417   // The first entry in the PLT.
418   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
419   // procedure linkage table for both programs and shared objects."
420   static const unsigned char first_plt_entry[plt_entry_size];
421
422   // Other entries in the PLT for an executable.
423   static const unsigned char plt_entry[plt_entry_size];
424
425   // The reserved TLSDESC entry in the PLT for an executable.
426   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
427
428   // The .eh_frame unwind information for the PLT.
429   static const int plt_eh_frame_fde_size = 32;
430   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
431 };
432
433 class Output_data_plt_x86_64_bnd : public Output_data_plt_x86_64<64>
434 {
435  public:
436   Output_data_plt_x86_64_bnd(Layout* layout,
437                              Output_data_got<64, false>* got,
438                              Output_data_got_plt_x86_64* got_plt,
439                              Output_data_space* got_irelative)
440     : Output_data_plt_x86_64<64>(layout, plt_entry_size,
441                                  got, got_plt, got_irelative),
442       aplt_offset_(0)
443   { }
444
445   Output_data_plt_x86_64_bnd(Layout* layout,
446                              Output_data_got<64, false>* got,
447                              Output_data_got_plt_x86_64* got_plt,
448                              Output_data_space* got_irelative,
449                              unsigned int plt_count)
450     : Output_data_plt_x86_64<64>(layout, plt_entry_size,
451                                  got, got_plt, got_irelative,
452                                  plt_count),
453       aplt_offset_(0)
454   { }
455
456  protected:
457   virtual unsigned int
458   do_get_plt_entry_size() const
459   { return plt_entry_size; }
460
461   // Return the PLT address to use for a global symbol.
462   uint64_t
463   do_address_for_global(const Symbol*);
464
465   // Return the PLT address to use for a local symbol.
466   uint64_t
467   do_address_for_local(const Relobj*, unsigned int symndx);
468
469   virtual void
470   do_add_eh_frame(Layout* layout)
471   {
472     layout->add_eh_frame_for_plt(this,
473                                  this->plt_eh_frame_cie,
474                                  this->plt_eh_frame_cie_size,
475                                  plt_eh_frame_fde,
476                                  plt_eh_frame_fde_size);
477   }
478
479   virtual void
480   do_fill_first_plt_entry(unsigned char* pov,
481                           elfcpp::Elf_types<64>::Elf_Addr got_addr,
482                           elfcpp::Elf_types<64>::Elf_Addr plt_addr);
483
484   virtual unsigned int
485   do_fill_plt_entry(unsigned char* pov,
486                     elfcpp::Elf_types<64>::Elf_Addr got_address,
487                     elfcpp::Elf_types<64>::Elf_Addr plt_address,
488                     unsigned int got_offset,
489                     unsigned int plt_offset,
490                     unsigned int plt_index);
491
492   virtual void
493   do_fill_tlsdesc_entry(unsigned char* pov,
494                         elfcpp::Elf_types<64>::Elf_Addr got_address,
495                         elfcpp::Elf_types<64>::Elf_Addr plt_address,
496                         elfcpp::Elf_types<64>::Elf_Addr got_base,
497                         unsigned int tlsdesc_got_offset,
498                         unsigned int plt_offset);
499
500   void
501   fill_aplt_entry(unsigned char* pov,
502                   elfcpp::Elf_types<64>::Elf_Addr got_address,
503                   elfcpp::Elf_types<64>::Elf_Addr plt_address,
504                   unsigned int got_offset,
505                   unsigned int plt_offset,
506                   unsigned int plt_index);
507
508  private:
509   // Set the final size.
510   void
511   set_final_data_size();
512
513   // Write out the BND PLT data.
514   void
515   do_write(Output_file*);
516
517   // Offset of the Additional PLT (if using -z bndplt).
518   unsigned int aplt_offset_;
519
520   // The size of an entry in the PLT.
521   static const int plt_entry_size = 16;
522
523   // The size of an entry in the additional PLT.
524   static const int aplt_entry_size = 8;
525
526   // The first entry in the PLT.
527   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
528   // procedure linkage table for both programs and shared objects."
529   static const unsigned char first_plt_entry[plt_entry_size];
530
531   // Other entries in the PLT for an executable.
532   static const unsigned char plt_entry[plt_entry_size];
533
534   // Entries in the additional PLT.
535   static const unsigned char aplt_entry[aplt_entry_size];
536
537   // The reserved TLSDESC entry in the PLT for an executable.
538   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
539
540   // The .eh_frame unwind information for the PLT.
541   static const int plt_eh_frame_fde_size = 32;
542   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
543 };
544
545 // We use this PLT when Indirect Branch Tracking (IBT) is enabled.
546
547 template <int size>
548 class Output_data_plt_x86_64_ibt : public Output_data_plt_x86_64<size>
549 {
550  public:
551   Output_data_plt_x86_64_ibt(Layout* layout,
552                              Output_data_got<64, false>* got,
553                              Output_data_got_plt_x86_64* got_plt,
554                              Output_data_space* got_irelative)
555     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
556                                    got, got_plt, got_irelative),
557       aplt_offset_(0)
558   { }
559
560   Output_data_plt_x86_64_ibt(Layout* layout,
561                              Output_data_got<64, false>* got,
562                              Output_data_got_plt_x86_64* got_plt,
563                              Output_data_space* got_irelative,
564                              unsigned int plt_count)
565     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
566                                    got, got_plt, got_irelative,
567                                    plt_count),
568       aplt_offset_(0)
569   { }
570
571  protected:
572   virtual unsigned int
573   do_get_plt_entry_size() const
574   { return plt_entry_size; }
575
576   // Return the PLT address to use for a global symbol.
577   uint64_t
578   do_address_for_global(const Symbol*);
579
580   // Return the PLT address to use for a local symbol.
581   uint64_t
582   do_address_for_local(const Relobj*, unsigned int symndx);
583
584   virtual void
585   do_add_eh_frame(Layout* layout)
586   {
587     layout->add_eh_frame_for_plt(this,
588                                  this->plt_eh_frame_cie,
589                                  this->plt_eh_frame_cie_size,
590                                  plt_eh_frame_fde,
591                                  plt_eh_frame_fde_size);
592   }
593
594   virtual void
595   do_fill_first_plt_entry(unsigned char* pov,
596                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
597                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
598
599   virtual unsigned int
600   do_fill_plt_entry(unsigned char* pov,
601                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
602                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
603                     unsigned int got_offset,
604                     unsigned int plt_offset,
605                     unsigned int plt_index);
606
607   virtual void
608   do_fill_tlsdesc_entry(unsigned char* pov,
609                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
610                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
611                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
612                         unsigned int tlsdesc_got_offset,
613                         unsigned int plt_offset);
614
615   void
616   fill_aplt_entry(unsigned char* pov,
617                   typename elfcpp::Elf_types<size>::Elf_Addr got_address,
618                   typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
619                   unsigned int got_offset,
620                   unsigned int plt_offset,
621                   unsigned int plt_index);
622
623  private:
624   // Set the final size.
625   void
626   set_final_data_size();
627
628   // Write out the BND PLT data.
629   void
630   do_write(Output_file*);
631
632   // Offset of the Additional PLT (if using -z bndplt).
633   unsigned int aplt_offset_;
634
635   // The size of an entry in the PLT.
636   static const int plt_entry_size = 16;
637
638   // The size of an entry in the additional PLT.
639   static const int aplt_entry_size = 16;
640
641   // The first entry in the PLT.
642   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
643   // procedure linkage table for both programs and shared objects."
644   static const unsigned char first_plt_entry[plt_entry_size];
645
646   // Other entries in the PLT for an executable.
647   static const unsigned char plt_entry[plt_entry_size];
648
649   // Entries in the additional PLT.
650   static const unsigned char aplt_entry[aplt_entry_size];
651
652   // The reserved TLSDESC entry in the PLT for an executable.
653   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
654
655   // The .eh_frame unwind information for the PLT.
656   static const int plt_eh_frame_fde_size = 32;
657   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
658 };
659
660 template<int size>
661 class Lazy_view
662 {
663  public:
664   Lazy_view(Sized_relobj_file<size, false>* object, unsigned int data_shndx)
665     : object_(object), data_shndx_(data_shndx), view_(NULL), view_size_(0)
666   { }
667
668   inline unsigned char
669   operator[](size_t offset)
670   {
671     if (this->view_ == NULL)
672       this->view_ = this->object_->section_contents(this->data_shndx_,
673                                                     &this->view_size_,
674                                                     true);
675     if (offset >= this->view_size_)
676       return 0;
677     return this->view_[offset];
678   }
679
680  private:
681   Sized_relobj_file<size, false>* object_;
682   unsigned int data_shndx_;
683   const unsigned char* view_;
684   section_size_type view_size_;
685 };
686
687 // The x86_64 target class.
688 // See the ABI at
689 //   http://www.x86-64.org/documentation/abi.pdf
690 // TLS info comes from
691 //   http://people.redhat.com/drepper/tls.pdf
692 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
693
694 template<int size>
695 class Target_x86_64 : public Sized_target<size, false>
696 {
697  public:
698   // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
699   // uses only Elf64_Rela relocation entries with explicit addends."
700   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
701
702   Target_x86_64(const Target::Target_info* info = &x86_64_info)
703     : Sized_target<size, false>(info),
704       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
705       got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
706       rela_irelative_(NULL), copy_relocs_(elfcpp::R_X86_64_COPY),
707       got_mod_index_offset_(-1U), tlsdesc_reloc_info_(),
708       tls_base_symbol_defined_(false), isa_1_used_(0), isa_1_needed_(0),
709       feature_1_(0), object_feature_1_(0), seen_first_object_(false)
710   { }
711
712   // Hook for a new output section.
713   void
714   do_new_output_section(Output_section*) const;
715
716   // Scan the relocations to look for symbol adjustments.
717   void
718   gc_process_relocs(Symbol_table* symtab,
719                     Layout* layout,
720                     Sized_relobj_file<size, false>* object,
721                     unsigned int data_shndx,
722                     unsigned int sh_type,
723                     const unsigned char* prelocs,
724                     size_t reloc_count,
725                     Output_section* output_section,
726                     bool needs_special_offset_handling,
727                     size_t local_symbol_count,
728                     const unsigned char* plocal_symbols);
729
730   // Scan the relocations to look for symbol adjustments.
731   void
732   scan_relocs(Symbol_table* symtab,
733               Layout* layout,
734               Sized_relobj_file<size, false>* object,
735               unsigned int data_shndx,
736               unsigned int sh_type,
737               const unsigned char* prelocs,
738               size_t reloc_count,
739               Output_section* output_section,
740               bool needs_special_offset_handling,
741               size_t local_symbol_count,
742               const unsigned char* plocal_symbols);
743
744   // Finalize the sections.
745   void
746   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
747
748   // Return the value to use for a dynamic which requires special
749   // treatment.
750   uint64_t
751   do_dynsym_value(const Symbol*) const;
752
753   // Relocate a section.
754   void
755   relocate_section(const Relocate_info<size, false>*,
756                    unsigned int sh_type,
757                    const unsigned char* prelocs,
758                    size_t reloc_count,
759                    Output_section* output_section,
760                    bool needs_special_offset_handling,
761                    unsigned char* view,
762                    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
763                    section_size_type view_size,
764                    const Reloc_symbol_changes*);
765
766   // Scan the relocs during a relocatable link.
767   void
768   scan_relocatable_relocs(Symbol_table* symtab,
769                           Layout* layout,
770                           Sized_relobj_file<size, false>* object,
771                           unsigned int data_shndx,
772                           unsigned int sh_type,
773                           const unsigned char* prelocs,
774                           size_t reloc_count,
775                           Output_section* output_section,
776                           bool needs_special_offset_handling,
777                           size_t local_symbol_count,
778                           const unsigned char* plocal_symbols,
779                           Relocatable_relocs*);
780
781   // Scan the relocs for --emit-relocs.
782   void
783   emit_relocs_scan(Symbol_table* symtab,
784                    Layout* layout,
785                    Sized_relobj_file<size, false>* object,
786                    unsigned int data_shndx,
787                    unsigned int sh_type,
788                    const unsigned char* prelocs,
789                    size_t reloc_count,
790                    Output_section* output_section,
791                    bool needs_special_offset_handling,
792                    size_t local_symbol_count,
793                    const unsigned char* plocal_syms,
794                    Relocatable_relocs* rr);
795
796   // Emit relocations for a section.
797   void
798   relocate_relocs(
799       const Relocate_info<size, false>*,
800       unsigned int sh_type,
801       const unsigned char* prelocs,
802       size_t reloc_count,
803       Output_section* output_section,
804       typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
805       unsigned char* view,
806       typename elfcpp::Elf_types<size>::Elf_Addr view_address,
807       section_size_type view_size,
808       unsigned char* reloc_view,
809       section_size_type reloc_view_size);
810
811   // Return a string used to fill a code section with nops.
812   std::string
813   do_code_fill(section_size_type length) const;
814
815   // Return whether SYM is defined by the ABI.
816   bool
817   do_is_defined_by_abi(const Symbol* sym) const
818   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
819
820   // Return the symbol index to use for a target specific relocation.
821   // The only target specific relocation is R_X86_64_TLSDESC for a
822   // local symbol, which is an absolute reloc.
823   unsigned int
824   do_reloc_symbol_index(void*, unsigned int r_type) const
825   {
826     gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
827     return 0;
828   }
829
830   // Return the addend to use for a target specific relocation.
831   uint64_t
832   do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
833
834   // Return the PLT section.
835   uint64_t
836   do_plt_address_for_global(const Symbol* gsym) const
837   { return this->plt_section()->address_for_global(gsym); }
838
839   uint64_t
840   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
841   { return this->plt_section()->address_for_local(relobj, symndx); }
842
843   // This function should be defined in targets that can use relocation
844   // types to determine (implemented in local_reloc_may_be_function_pointer
845   // and global_reloc_may_be_function_pointer)
846   // if a function's pointer is taken.  ICF uses this in safe mode to only
847   // fold those functions whose pointer is defintely not taken.  For x86_64
848   // pie binaries, safe ICF cannot be done by looking at only relocation
849   // types, and for certain cases (e.g. R_X86_64_PC32), the instruction
850   // opcode is checked as well to distinguish a function call from taking
851   // a function's pointer.
852   bool
853   do_can_check_for_function_pointers() const
854   { return true; }
855
856   // Return the base for a DW_EH_PE_datarel encoding.
857   uint64_t
858   do_ehframe_datarel_base() const;
859
860   // Adjust -fsplit-stack code which calls non-split-stack code.
861   void
862   do_calls_non_split(Relobj* object, unsigned int shndx,
863                      section_offset_type fnoffset, section_size_type fnsize,
864                      const unsigned char* prelocs, size_t reloc_count,
865                      unsigned char* view, section_size_type view_size,
866                      std::string* from, std::string* to) const;
867
868   // Return the size of the GOT section.
869   section_size_type
870   got_size() const
871   {
872     gold_assert(this->got_ != NULL);
873     return this->got_->data_size();
874   }
875
876   // Return the number of entries in the GOT.
877   unsigned int
878   got_entry_count() const
879   {
880     if (this->got_ == NULL)
881       return 0;
882     return this->got_size() / 8;
883   }
884
885   // Return the number of entries in the PLT.
886   unsigned int
887   plt_entry_count() const;
888
889   // Return the offset of the first non-reserved PLT entry.
890   unsigned int
891   first_plt_entry_offset() const;
892
893   // Return the size of each PLT entry.
894   unsigned int
895   plt_entry_size() const;
896
897   // Return the size of each GOT entry.
898   unsigned int
899   got_entry_size() const
900   { return 8; };
901
902   // Create the GOT section for an incremental update.
903   Output_data_got_base*
904   init_got_plt_for_update(Symbol_table* symtab,
905                           Layout* layout,
906                           unsigned int got_count,
907                           unsigned int plt_count);
908
909   // Reserve a GOT entry for a local symbol, and regenerate any
910   // necessary dynamic relocations.
911   void
912   reserve_local_got_entry(unsigned int got_index,
913                           Sized_relobj<size, false>* obj,
914                           unsigned int r_sym,
915                           unsigned int got_type);
916
917   // Reserve a GOT entry for a global symbol, and regenerate any
918   // necessary dynamic relocations.
919   void
920   reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
921                            unsigned int got_type);
922
923   // Register an existing PLT entry for a global symbol.
924   void
925   register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
926                             Symbol* gsym);
927
928   // Force a COPY relocation for a given symbol.
929   void
930   emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
931
932   // Apply an incremental relocation.
933   void
934   apply_relocation(const Relocate_info<size, false>* relinfo,
935                    typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
936                    unsigned int r_type,
937                    typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
938                    const Symbol* gsym,
939                    unsigned char* view,
940                    typename elfcpp::Elf_types<size>::Elf_Addr address,
941                    section_size_type view_size);
942
943   // Add a new reloc argument, returning the index in the vector.
944   size_t
945   add_tlsdesc_info(Sized_relobj_file<size, false>* object, unsigned int r_sym)
946   {
947     this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
948     return this->tlsdesc_reloc_info_.size() - 1;
949   }
950
951   Output_data_plt_x86_64<size>*
952   make_data_plt(Layout* layout,
953                 Output_data_got<64, false>* got,
954                 Output_data_got_plt_x86_64* got_plt,
955                 Output_data_space* got_irelative)
956   {
957     return this->do_make_data_plt(layout, got, got_plt, got_irelative);
958   }
959
960   Output_data_plt_x86_64<size>*
961   make_data_plt(Layout* layout,
962                 Output_data_got<64, false>* got,
963                 Output_data_got_plt_x86_64* got_plt,
964                 Output_data_space* got_irelative,
965                 unsigned int plt_count)
966   {
967     return this->do_make_data_plt(layout, got, got_plt, got_irelative,
968                                   plt_count);
969   }
970
971   virtual Output_data_plt_x86_64<size>*
972   do_make_data_plt(Layout* layout,
973                    Output_data_got<64, false>* got,
974                    Output_data_got_plt_x86_64* got_plt,
975                    Output_data_space* got_irelative);
976
977   virtual Output_data_plt_x86_64<size>*
978   do_make_data_plt(Layout* layout,
979                    Output_data_got<64, false>* got,
980                    Output_data_got_plt_x86_64* got_plt,
981                    Output_data_space* got_irelative,
982                    unsigned int plt_count);
983
984  private:
985   // The class which scans relocations.
986   class Scan
987   {
988   public:
989     Scan()
990       : issued_non_pic_error_(false)
991     { }
992
993     static inline int
994     get_reference_flags(unsigned int r_type);
995
996     inline void
997     local(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
998           Sized_relobj_file<size, false>* object,
999           unsigned int data_shndx,
1000           Output_section* output_section,
1001           const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
1002           const elfcpp::Sym<size, false>& lsym,
1003           bool is_discarded);
1004
1005     inline void
1006     global(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
1007            Sized_relobj_file<size, false>* object,
1008            unsigned int data_shndx,
1009            Output_section* output_section,
1010            const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
1011            Symbol* gsym);
1012
1013     inline bool
1014     local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
1015                                         Target_x86_64* target,
1016                                         Sized_relobj_file<size, false>* object,
1017                                         unsigned int data_shndx,
1018                                         Output_section* output_section,
1019                                         const elfcpp::Rela<size, false>& reloc,
1020                                         unsigned int r_type,
1021                                         const elfcpp::Sym<size, false>& lsym);
1022
1023     inline bool
1024     global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
1025                                          Target_x86_64* target,
1026                                          Sized_relobj_file<size, false>* object,
1027                                          unsigned int data_shndx,
1028                                          Output_section* output_section,
1029                                          const elfcpp::Rela<size, false>& reloc,
1030                                          unsigned int r_type,
1031                                          Symbol* gsym);
1032
1033   private:
1034     static void
1035     unsupported_reloc_local(Sized_relobj_file<size, false>*,
1036                             unsigned int r_type);
1037
1038     static void
1039     unsupported_reloc_global(Sized_relobj_file<size, false>*,
1040                              unsigned int r_type, Symbol*);
1041
1042     void
1043     check_non_pic(Relobj*, unsigned int r_type, Symbol*);
1044
1045     inline bool
1046     possible_function_pointer_reloc(Sized_relobj_file<size, false>* src_obj,
1047                                     unsigned int src_indx,
1048                                     unsigned int r_offset,
1049                                     unsigned int r_type);
1050
1051     bool
1052     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, false>*,
1053                               unsigned int r_type);
1054
1055     // Whether we have issued an error about a non-PIC compilation.
1056     bool issued_non_pic_error_;
1057   };
1058
1059   // The class which implements relocation.
1060   class Relocate
1061   {
1062    public:
1063     Relocate()
1064       : skip_call_tls_get_addr_(false)
1065     { }
1066
1067     ~Relocate()
1068     {
1069       if (this->skip_call_tls_get_addr_)
1070         {
1071           // FIXME: This needs to specify the location somehow.
1072           gold_error(_("missing expected TLS relocation"));
1073         }
1074     }
1075
1076     // Do a relocation.  Return false if the caller should not issue
1077     // any warnings about this relocation.
1078     inline bool
1079     relocate(const Relocate_info<size, false>*, unsigned int,
1080              Target_x86_64*, Output_section*, size_t, const unsigned char*,
1081              const Sized_symbol<size>*, const Symbol_value<size>*,
1082              unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1083              section_size_type);
1084
1085    private:
1086     // Do a TLS relocation.
1087     inline void
1088     relocate_tls(const Relocate_info<size, false>*, Target_x86_64*,
1089                  size_t relnum, const elfcpp::Rela<size, false>&,
1090                  unsigned int r_type, const Sized_symbol<size>*,
1091                  const Symbol_value<size>*,
1092                  unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1093                  section_size_type);
1094
1095     // Do a TLS General-Dynamic to Initial-Exec transition.
1096     inline void
1097     tls_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
1098                  const elfcpp::Rela<size, false>&, unsigned int r_type,
1099                  typename elfcpp::Elf_types<size>::Elf_Addr value,
1100                  unsigned char* view,
1101                  typename elfcpp::Elf_types<size>::Elf_Addr,
1102                  section_size_type view_size);
1103
1104     // Do a TLS General-Dynamic to Local-Exec transition.
1105     inline void
1106     tls_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
1107                  Output_segment* tls_segment,
1108                  const elfcpp::Rela<size, false>&, unsigned int r_type,
1109                  typename elfcpp::Elf_types<size>::Elf_Addr value,
1110                  unsigned char* view,
1111                  section_size_type view_size);
1112
1113     // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
1114     inline void
1115     tls_desc_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
1116                       const elfcpp::Rela<size, false>&, unsigned int r_type,
1117                       typename elfcpp::Elf_types<size>::Elf_Addr value,
1118                       unsigned char* view,
1119                       typename elfcpp::Elf_types<size>::Elf_Addr,
1120                       section_size_type view_size);
1121
1122     // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
1123     inline void
1124     tls_desc_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
1125                       Output_segment* tls_segment,
1126                       const elfcpp::Rela<size, false>&, unsigned int r_type,
1127                       typename elfcpp::Elf_types<size>::Elf_Addr value,
1128                       unsigned char* view,
1129                       section_size_type view_size);
1130
1131     // Do a TLS Local-Dynamic to Local-Exec transition.
1132     inline void
1133     tls_ld_to_le(const Relocate_info<size, false>*, size_t relnum,
1134                  Output_segment* tls_segment,
1135                  const elfcpp::Rela<size, false>&, unsigned int r_type,
1136                  typename elfcpp::Elf_types<size>::Elf_Addr value,
1137                  unsigned char* view,
1138                  section_size_type view_size);
1139
1140     // Do a TLS Initial-Exec to Local-Exec transition.
1141     static inline void
1142     tls_ie_to_le(const Relocate_info<size, false>*, size_t relnum,
1143                  Output_segment* tls_segment,
1144                  const elfcpp::Rela<size, false>&, unsigned int r_type,
1145                  typename elfcpp::Elf_types<size>::Elf_Addr value,
1146                  unsigned char* view,
1147                  section_size_type view_size);
1148
1149     // This is set if we should skip the next reloc, which should be a
1150     // PLT32 reloc against ___tls_get_addr.
1151     bool skip_call_tls_get_addr_;
1152   };
1153
1154   // Check if relocation against this symbol is a candidate for
1155   // conversion from
1156   // mov foo@GOTPCREL(%rip), %reg
1157   // to lea foo(%rip), %reg.
1158   template<class View_type>
1159   static inline bool
1160   can_convert_mov_to_lea(const Symbol* gsym, unsigned int r_type,
1161                          size_t r_offset, View_type* view)
1162   {
1163     gold_assert(gsym != NULL);
1164     // We cannot do the conversion unless it's one of these relocations.
1165     if (r_type != elfcpp::R_X86_64_GOTPCREL
1166         && r_type != elfcpp::R_X86_64_GOTPCRELX
1167         && r_type != elfcpp::R_X86_64_REX_GOTPCRELX)
1168       return false;
1169     // We cannot convert references to IFUNC symbols, or to symbols that
1170     // are not local to the current module.
1171     // We can't do predefined symbols because they may become undefined
1172     // (e.g., __ehdr_start when the headers aren't mapped to a segment).
1173     if (gsym->type() == elfcpp::STT_GNU_IFUNC
1174         || gsym->is_undefined()
1175         || gsym->is_predefined()
1176         || gsym->is_from_dynobj()
1177         || gsym->is_preemptible())
1178       return false;
1179     // If we are building a shared object and the symbol is protected, we may
1180     // need to go through the GOT.
1181     if (parameters->options().shared()
1182         && gsym->visibility() == elfcpp::STV_PROTECTED)
1183       return false;
1184     // We cannot convert references to the _DYNAMIC symbol.
1185     if (strcmp(gsym->name(), "_DYNAMIC") == 0)
1186       return false;
1187     // Check for a MOV opcode.
1188     return (*view)[r_offset - 2] == 0x8b;
1189   }
1190
1191   // Convert
1192   // callq *foo@GOTPCRELX(%rip) to
1193   // addr32 callq foo
1194   // and jmpq *foo@GOTPCRELX(%rip) to
1195   // jmpq foo
1196   // nop
1197   template<class View_type>
1198   static inline bool
1199   can_convert_callq_to_direct(const Symbol* gsym, unsigned int r_type,
1200                               size_t r_offset, View_type* view)
1201   {
1202     gold_assert(gsym != NULL);
1203     // We cannot do the conversion unless it's a GOTPCRELX relocation.
1204     if (r_type != elfcpp::R_X86_64_GOTPCRELX)
1205       return false;
1206     // We cannot convert references to IFUNC symbols, or to symbols that
1207     // are not local to the current module.
1208     if (gsym->type() == elfcpp::STT_GNU_IFUNC
1209         || gsym->is_undefined ()
1210         || gsym->is_from_dynobj()
1211         || gsym->is_preemptible())
1212       return false;
1213     // Check for a CALLQ or JMPQ opcode.
1214     return ((*view)[r_offset - 2] == 0xff
1215             && ((*view)[r_offset - 1] == 0x15
1216                 || (*view)[r_offset - 1] == 0x25));
1217   }
1218
1219   // Adjust TLS relocation type based on the options and whether this
1220   // is a local symbol.
1221   static tls::Tls_optimization
1222   optimize_tls_reloc(bool is_final, int r_type);
1223
1224   // Get the GOT section, creating it if necessary.
1225   Output_data_got<64, false>*
1226   got_section(Symbol_table*, Layout*);
1227
1228   // Get the GOT PLT section.
1229   Output_data_got_plt_x86_64*
1230   got_plt_section() const
1231   {
1232     gold_assert(this->got_plt_ != NULL);
1233     return this->got_plt_;
1234   }
1235
1236   // Get the GOT section for TLSDESC entries.
1237   Output_data_got<64, false>*
1238   got_tlsdesc_section() const
1239   {
1240     gold_assert(this->got_tlsdesc_ != NULL);
1241     return this->got_tlsdesc_;
1242   }
1243
1244   // Create the PLT section.
1245   void
1246   make_plt_section(Symbol_table* symtab, Layout* layout);
1247
1248   // Create a PLT entry for a global symbol.
1249   void
1250   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1251
1252   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
1253   void
1254   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1255                              Sized_relobj_file<size, false>* relobj,
1256                              unsigned int local_sym_index);
1257
1258   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
1259   void
1260   define_tls_base_symbol(Symbol_table*, Layout*);
1261
1262   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
1263   void
1264   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
1265
1266   // Create a GOT entry for the TLS module index.
1267   unsigned int
1268   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1269                       Sized_relobj_file<size, false>* object);
1270
1271   // Get the PLT section.
1272   Output_data_plt_x86_64<size>*
1273   plt_section() const
1274   {
1275     gold_assert(this->plt_ != NULL);
1276     return this->plt_;
1277   }
1278
1279   // Get the dynamic reloc section, creating it if necessary.
1280   Reloc_section*
1281   rela_dyn_section(Layout*);
1282
1283   // Get the section to use for TLSDESC relocations.
1284   Reloc_section*
1285   rela_tlsdesc_section(Layout*) const;
1286
1287   // Get the section to use for IRELATIVE relocations.
1288   Reloc_section*
1289   rela_irelative_section(Layout*);
1290
1291   // Add a potential copy relocation.
1292   void
1293   copy_reloc(Symbol_table* symtab, Layout* layout,
1294              Sized_relobj_file<size, false>* object,
1295              unsigned int shndx, Output_section* output_section,
1296              Symbol* sym, const elfcpp::Rela<size, false>& reloc)
1297   {
1298     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1299     this->copy_relocs_.copy_reloc(symtab, layout,
1300                                   symtab->get_sized_symbol<size>(sym),
1301                                   object, shndx, output_section,
1302                                   r_type, reloc.get_r_offset(),
1303                                   reloc.get_r_addend(),
1304                                   this->rela_dyn_section(layout));
1305   }
1306
1307   // Record a target-specific program property in the .note.gnu.property
1308   // section.
1309   void
1310   record_gnu_property(int, int, size_t, const unsigned char*, const Object*);
1311
1312   // Merge the target-specific program properties from the current object.
1313   void
1314   merge_gnu_properties(const Object*);
1315
1316   // Finalize the target-specific program properties and add them back to
1317   // the layout.
1318   void
1319   do_finalize_gnu_properties(Layout*) const;
1320
1321   // Information about this specific target which we pass to the
1322   // general Target structure.
1323   static const Target::Target_info x86_64_info;
1324
1325   // The types of GOT entries needed for this platform.
1326   // These values are exposed to the ABI in an incremental link.
1327   // Do not renumber existing values without changing the version
1328   // number of the .gnu_incremental_inputs section.
1329   enum Got_type
1330   {
1331     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
1332     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
1333     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
1334     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
1335   };
1336
1337   // This type is used as the argument to the target specific
1338   // relocation routines.  The only target specific reloc is
1339   // R_X86_64_TLSDESC against a local symbol.
1340   struct Tlsdesc_info
1341   {
1342     Tlsdesc_info(Sized_relobj_file<size, false>* a_object, unsigned int a_r_sym)
1343       : object(a_object), r_sym(a_r_sym)
1344     { }
1345
1346     // The object in which the local symbol is defined.
1347     Sized_relobj_file<size, false>* object;
1348     // The local symbol index in the object.
1349     unsigned int r_sym;
1350   };
1351
1352   // The GOT section.
1353   Output_data_got<64, false>* got_;
1354   // The PLT section.
1355   Output_data_plt_x86_64<size>* plt_;
1356   // The GOT PLT section.
1357   Output_data_got_plt_x86_64* got_plt_;
1358   // The GOT section for IRELATIVE relocations.
1359   Output_data_space* got_irelative_;
1360   // The GOT section for TLSDESC relocations.
1361   Output_data_got<64, false>* got_tlsdesc_;
1362   // The _GLOBAL_OFFSET_TABLE_ symbol.
1363   Symbol* global_offset_table_;
1364   // The dynamic reloc section.
1365   Reloc_section* rela_dyn_;
1366   // The section to use for IRELATIVE relocs.
1367   Reloc_section* rela_irelative_;
1368   // Relocs saved to avoid a COPY reloc.
1369   Copy_relocs<elfcpp::SHT_RELA, size, false> copy_relocs_;
1370   // Offset of the GOT entry for the TLS module index.
1371   unsigned int got_mod_index_offset_;
1372   // We handle R_X86_64_TLSDESC against a local symbol as a target
1373   // specific relocation.  Here we store the object and local symbol
1374   // index for the relocation.
1375   std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
1376   // True if the _TLS_MODULE_BASE_ symbol has been defined.
1377   bool tls_base_symbol_defined_;
1378   // Target-specific program properties, from .note.gnu.property section.
1379   // Each bit represents a specific feature.
1380   uint32_t isa_1_used_;
1381   uint32_t isa_1_needed_;
1382   uint32_t feature_1_;
1383   // Target-specific properties from the current object.
1384   // These bits get ANDed into FEATURE_1_ after all properties for the object
1385   // have been processed.
1386   uint32_t object_feature_1_;
1387   // Whether we have seen our first object, for use in initializing FEATURE_1_.
1388   bool seen_first_object_;
1389 };
1390
1391 template<>
1392 const Target::Target_info Target_x86_64<64>::x86_64_info =
1393 {
1394   64,                   // size
1395   false,                // is_big_endian
1396   elfcpp::EM_X86_64,    // machine_code
1397   false,                // has_make_symbol
1398   false,                // has_resolve
1399   true,                 // has_code_fill
1400   true,                 // is_default_stack_executable
1401   true,                 // can_icf_inline_merge_sections
1402   '\0',                 // wrap_char
1403   "/lib/ld64.so.1",     // program interpreter
1404   0x400000,             // default_text_segment_address
1405   0x1000,               // abi_pagesize (overridable by -z max-page-size)
1406   0x1000,               // common_pagesize (overridable by -z common-page-size)
1407   false,                // isolate_execinstr
1408   0,                    // rosegment_gap
1409   elfcpp::SHN_UNDEF,    // small_common_shndx
1410   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
1411   0,                    // small_common_section_flags
1412   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
1413   NULL,                 // attributes_section
1414   NULL,                 // attributes_vendor
1415   "_start",             // entry_symbol_name
1416   32,                   // hash_entry_size
1417   elfcpp::SHT_X86_64_UNWIND,    // unwind_section_type
1418 };
1419
1420 template<>
1421 const Target::Target_info Target_x86_64<32>::x86_64_info =
1422 {
1423   32,                   // size
1424   false,                // is_big_endian
1425   elfcpp::EM_X86_64,    // machine_code
1426   false,                // has_make_symbol
1427   false,                // has_resolve
1428   true,                 // has_code_fill
1429   true,                 // is_default_stack_executable
1430   true,                 // can_icf_inline_merge_sections
1431   '\0',                 // wrap_char
1432   "/libx32/ldx32.so.1", // program interpreter
1433   0x400000,             // default_text_segment_address
1434   0x1000,               // abi_pagesize (overridable by -z max-page-size)
1435   0x1000,               // common_pagesize (overridable by -z common-page-size)
1436   false,                // isolate_execinstr
1437   0,                    // rosegment_gap
1438   elfcpp::SHN_UNDEF,    // small_common_shndx
1439   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
1440   0,                    // small_common_section_flags
1441   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
1442   NULL,                 // attributes_section
1443   NULL,                 // attributes_vendor
1444   "_start",             // entry_symbol_name
1445   32,                   // hash_entry_size
1446   elfcpp::SHT_X86_64_UNWIND,    // unwind_section_type
1447 };
1448
1449 // This is called when a new output section is created.  This is where
1450 // we handle the SHF_X86_64_LARGE.
1451
1452 template<int size>
1453 void
1454 Target_x86_64<size>::do_new_output_section(Output_section* os) const
1455 {
1456   if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
1457     os->set_is_large_section();
1458 }
1459
1460 // Get the GOT section, creating it if necessary.
1461
1462 template<int size>
1463 Output_data_got<64, false>*
1464 Target_x86_64<size>::got_section(Symbol_table* symtab, Layout* layout)
1465 {
1466   if (this->got_ == NULL)
1467     {
1468       gold_assert(symtab != NULL && layout != NULL);
1469
1470       // When using -z now, we can treat .got.plt as a relro section.
1471       // Without -z now, it is modified after program startup by lazy
1472       // PLT relocations.
1473       bool is_got_plt_relro = parameters->options().now();
1474       Output_section_order got_order = (is_got_plt_relro
1475                                         ? ORDER_RELRO
1476                                         : ORDER_RELRO_LAST);
1477       Output_section_order got_plt_order = (is_got_plt_relro
1478                                             ? ORDER_RELRO
1479                                             : ORDER_NON_RELRO_FIRST);
1480
1481       this->got_ = new Output_data_got<64, false>();
1482
1483       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1484                                       (elfcpp::SHF_ALLOC
1485                                        | elfcpp::SHF_WRITE),
1486                                       this->got_, got_order, true);
1487
1488       this->got_plt_ = new Output_data_got_plt_x86_64(layout);
1489       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1490                                       (elfcpp::SHF_ALLOC
1491                                        | elfcpp::SHF_WRITE),
1492                                       this->got_plt_, got_plt_order,
1493                                       is_got_plt_relro);
1494
1495       // The first three entries are reserved.
1496       this->got_plt_->set_current_data_size(3 * 8);
1497
1498       if (!is_got_plt_relro)
1499         {
1500           // Those bytes can go into the relro segment.
1501           layout->increase_relro(3 * 8);
1502         }
1503
1504       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1505       this->global_offset_table_ =
1506         symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1507                                       Symbol_table::PREDEFINED,
1508                                       this->got_plt_,
1509                                       0, 0, elfcpp::STT_OBJECT,
1510                                       elfcpp::STB_LOCAL,
1511                                       elfcpp::STV_HIDDEN, 0,
1512                                       false, false);
1513
1514       // If there are any IRELATIVE relocations, they get GOT entries
1515       // in .got.plt after the jump slot entries.
1516       this->got_irelative_ = new Output_data_space(8, "** GOT IRELATIVE PLT");
1517       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1518                                       (elfcpp::SHF_ALLOC
1519                                        | elfcpp::SHF_WRITE),
1520                                       this->got_irelative_,
1521                                       got_plt_order, is_got_plt_relro);
1522
1523       // If there are any TLSDESC relocations, they get GOT entries in
1524       // .got.plt after the jump slot and IRELATIVE entries.
1525       this->got_tlsdesc_ = new Output_data_got<64, false>();
1526       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1527                                       (elfcpp::SHF_ALLOC
1528                                        | elfcpp::SHF_WRITE),
1529                                       this->got_tlsdesc_,
1530                                       got_plt_order, is_got_plt_relro);
1531     }
1532
1533   return this->got_;
1534 }
1535
1536 // Get the dynamic reloc section, creating it if necessary.
1537
1538 template<int size>
1539 typename Target_x86_64<size>::Reloc_section*
1540 Target_x86_64<size>::rela_dyn_section(Layout* layout)
1541 {
1542   if (this->rela_dyn_ == NULL)
1543     {
1544       gold_assert(layout != NULL);
1545       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1546       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1547                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
1548                                       ORDER_DYNAMIC_RELOCS, false);
1549     }
1550   return this->rela_dyn_;
1551 }
1552
1553 // Get the section to use for IRELATIVE relocs, creating it if
1554 // necessary.  These go in .rela.dyn, but only after all other dynamic
1555 // relocations.  They need to follow the other dynamic relocations so
1556 // that they can refer to global variables initialized by those
1557 // relocs.
1558
1559 template<int size>
1560 typename Target_x86_64<size>::Reloc_section*
1561 Target_x86_64<size>::rela_irelative_section(Layout* layout)
1562 {
1563   if (this->rela_irelative_ == NULL)
1564     {
1565       // Make sure we have already created the dynamic reloc section.
1566       this->rela_dyn_section(layout);
1567       this->rela_irelative_ = new Reloc_section(false);
1568       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1569                                       elfcpp::SHF_ALLOC, this->rela_irelative_,
1570                                       ORDER_DYNAMIC_RELOCS, false);
1571       gold_assert(this->rela_dyn_->output_section()
1572                   == this->rela_irelative_->output_section());
1573     }
1574   return this->rela_irelative_;
1575 }
1576
1577 // Record a target-specific program property from the .note.gnu.property
1578 // section.
1579 template<int size>
1580 void
1581 Target_x86_64<size>::record_gnu_property(
1582     int, int pr_type,
1583     size_t pr_datasz, const unsigned char* pr_data,
1584     const Object* object)
1585 {
1586   uint32_t val = 0;
1587
1588   switch (pr_type)
1589     {
1590     case elfcpp::GNU_PROPERTY_X86_ISA_1_USED:
1591     case elfcpp::GNU_PROPERTY_X86_ISA_1_NEEDED:
1592     case elfcpp::GNU_PROPERTY_X86_FEATURE_1_AND:
1593       if (pr_datasz != 4)
1594         {
1595           gold_warning(_("%s: corrupt .note.gnu.property section "
1596                          "(pr_datasz for property %d is not 4)"),
1597                        object->name().c_str(), pr_type);
1598           return;
1599         }
1600       val = elfcpp::Swap<32, false>::readval(pr_data);
1601       break;
1602     default:
1603       gold_warning(_("%s: unknown program property type 0x%x "
1604                      "in .note.gnu.property section"),
1605                    object->name().c_str(), pr_type);
1606       break;
1607     }
1608
1609   switch (pr_type)
1610     {
1611     case elfcpp::GNU_PROPERTY_X86_ISA_1_USED:
1612       this->isa_1_used_ |= val;
1613       break;
1614     case elfcpp::GNU_PROPERTY_X86_ISA_1_NEEDED:
1615       this->isa_1_needed_ |= val;
1616       break;
1617     case elfcpp::GNU_PROPERTY_X86_FEATURE_1_AND:
1618       // If we see multiple feature props in one object, OR them together.
1619       this->object_feature_1_ |= val;
1620       break;
1621     }
1622 }
1623
1624 // Merge the target-specific program properties from the current object.
1625 template<int size>
1626 void
1627 Target_x86_64<size>::merge_gnu_properties(const Object*)
1628 {
1629   if (this->seen_first_object_)
1630     this->feature_1_ &= this->object_feature_1_;
1631   else
1632     {
1633       this->feature_1_ = this->object_feature_1_;
1634       this->seen_first_object_ = true;
1635     }
1636   this->object_feature_1_ = 0;
1637 }
1638
1639 static inline void
1640 add_property(Layout* layout, unsigned int pr_type, uint32_t val)
1641 {
1642   unsigned char buf[4];
1643   elfcpp::Swap<32, false>::writeval(buf, val);
1644   layout->add_gnu_property(elfcpp::NT_GNU_PROPERTY_TYPE_0, pr_type, 4, buf);
1645 }
1646
1647 // Finalize the target-specific program properties and add them back to
1648 // the layout.
1649 template<int size>
1650 void
1651 Target_x86_64<size>::do_finalize_gnu_properties(Layout* layout) const
1652 {
1653   if (this->isa_1_used_ != 0)
1654     add_property(layout, elfcpp::GNU_PROPERTY_X86_ISA_1_USED,
1655                  this->isa_1_used_);
1656   if (this->isa_1_needed_ != 0)
1657     add_property(layout, elfcpp::GNU_PROPERTY_X86_ISA_1_NEEDED,
1658                  this->isa_1_needed_);
1659   if (this->feature_1_ != 0)
1660     add_property(layout, elfcpp::GNU_PROPERTY_X86_FEATURE_1_AND,
1661                  this->feature_1_);
1662 }
1663
1664 // Write the first three reserved words of the .got.plt section.
1665 // The remainder of the section is written while writing the PLT
1666 // in Output_data_plt_i386::do_write.
1667
1668 void
1669 Output_data_got_plt_x86_64::do_write(Output_file* of)
1670 {
1671   // The first entry in the GOT is the address of the .dynamic section
1672   // aka the PT_DYNAMIC segment.  The next two entries are reserved.
1673   // We saved space for them when we created the section in
1674   // Target_x86_64::got_section.
1675   const off_t got_file_offset = this->offset();
1676   gold_assert(this->data_size() >= 24);
1677   unsigned char* const got_view = of->get_output_view(got_file_offset, 24);
1678   Output_section* dynamic = this->layout_->dynamic_section();
1679   uint64_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1680   elfcpp::Swap<64, false>::writeval(got_view, dynamic_addr);
1681   memset(got_view + 8, 0, 16);
1682   of->write_output_view(got_file_offset, 24, got_view);
1683 }
1684
1685 // Initialize the PLT section.
1686
1687 template<int size>
1688 void
1689 Output_data_plt_x86_64<size>::init(Layout* layout)
1690 {
1691   this->rel_ = new Reloc_section(false);
1692   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1693                                   elfcpp::SHF_ALLOC, this->rel_,
1694                                   ORDER_DYNAMIC_PLT_RELOCS, false);
1695 }
1696
1697 template<int size>
1698 void
1699 Output_data_plt_x86_64<size>::do_adjust_output_section(Output_section* os)
1700 {
1701   os->set_entsize(this->get_plt_entry_size());
1702 }
1703
1704 // Add an entry to the PLT.
1705
1706 template<int size>
1707 void
1708 Output_data_plt_x86_64<size>::add_entry(Symbol_table* symtab, Layout* layout,
1709                                         Symbol* gsym)
1710 {
1711   gold_assert(!gsym->has_plt_offset());
1712
1713   unsigned int plt_index;
1714   off_t plt_offset;
1715   section_offset_type got_offset;
1716
1717   unsigned int* pcount;
1718   unsigned int offset;
1719   unsigned int reserved;
1720   Output_section_data_build* got;
1721   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1722       && gsym->can_use_relative_reloc(false))
1723     {
1724       pcount = &this->irelative_count_;
1725       offset = 0;
1726       reserved = 0;
1727       got = this->got_irelative_;
1728     }
1729   else
1730     {
1731       pcount = &this->count_;
1732       offset = 1;
1733       reserved = 3;
1734       got = this->got_plt_;
1735     }
1736
1737   if (!this->is_data_size_valid())
1738     {
1739       // Note that when setting the PLT offset for a non-IRELATIVE
1740       // entry we skip the initial reserved PLT entry.
1741       plt_index = *pcount + offset;
1742       plt_offset = plt_index * this->get_plt_entry_size();
1743
1744       ++*pcount;
1745
1746       got_offset = (plt_index - offset + reserved) * 8;
1747       gold_assert(got_offset == got->current_data_size());
1748
1749       // Every PLT entry needs a GOT entry which points back to the PLT
1750       // entry (this will be changed by the dynamic linker, normally
1751       // lazily when the function is called).
1752       got->set_current_data_size(got_offset + 8);
1753     }
1754   else
1755     {
1756       // FIXME: This is probably not correct for IRELATIVE relocs.
1757
1758       // For incremental updates, find an available slot.
1759       plt_offset = this->free_list_.allocate(this->get_plt_entry_size(),
1760                                              this->get_plt_entry_size(), 0);
1761       if (plt_offset == -1)
1762         gold_fallback(_("out of patch space (PLT);"
1763                         " relink with --incremental-full"));
1764
1765       // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
1766       // can be calculated from the PLT index, adjusting for the three
1767       // reserved entries at the beginning of the GOT.
1768       plt_index = plt_offset / this->get_plt_entry_size() - 1;
1769       got_offset = (plt_index - offset + reserved) * 8;
1770     }
1771
1772   gsym->set_plt_offset(plt_offset);
1773
1774   // Every PLT entry needs a reloc.
1775   this->add_relocation(symtab, layout, gsym, got_offset);
1776
1777   // Note that we don't need to save the symbol.  The contents of the
1778   // PLT are independent of which symbols are used.  The symbols only
1779   // appear in the relocations.
1780 }
1781
1782 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
1783 // the PLT offset.
1784
1785 template<int size>
1786 unsigned int
1787 Output_data_plt_x86_64<size>::add_local_ifunc_entry(
1788     Symbol_table* symtab,
1789     Layout* layout,
1790     Sized_relobj_file<size, false>* relobj,
1791     unsigned int local_sym_index)
1792 {
1793   unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
1794   ++this->irelative_count_;
1795
1796   section_offset_type got_offset = this->got_irelative_->current_data_size();
1797
1798   // Every PLT entry needs a GOT entry which points back to the PLT
1799   // entry.
1800   this->got_irelative_->set_current_data_size(got_offset + 8);
1801
1802   // Every PLT entry needs a reloc.
1803   Reloc_section* rela = this->rela_irelative(symtab, layout);
1804   rela->add_symbolless_local_addend(relobj, local_sym_index,
1805                                     elfcpp::R_X86_64_IRELATIVE,
1806                                     this->got_irelative_, got_offset, 0);
1807
1808   return plt_offset;
1809 }
1810
1811 // Add the relocation for a PLT entry.
1812
1813 template<int size>
1814 void
1815 Output_data_plt_x86_64<size>::add_relocation(Symbol_table* symtab,
1816                                              Layout* layout,
1817                                              Symbol* gsym,
1818                                              unsigned int got_offset)
1819 {
1820   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1821       && gsym->can_use_relative_reloc(false))
1822     {
1823       Reloc_section* rela = this->rela_irelative(symtab, layout);
1824       rela->add_symbolless_global_addend(gsym, elfcpp::R_X86_64_IRELATIVE,
1825                                          this->got_irelative_, got_offset, 0);
1826     }
1827   else
1828     {
1829       gsym->set_needs_dynsym_entry();
1830       this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
1831                              got_offset, 0);
1832     }
1833 }
1834
1835 // Return where the TLSDESC relocations should go, creating it if
1836 // necessary.  These follow the JUMP_SLOT relocations.
1837
1838 template<int size>
1839 typename Output_data_plt_x86_64<size>::Reloc_section*
1840 Output_data_plt_x86_64<size>::rela_tlsdesc(Layout* layout)
1841 {
1842   if (this->tlsdesc_rel_ == NULL)
1843     {
1844       this->tlsdesc_rel_ = new Reloc_section(false);
1845       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1846                                       elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
1847                                       ORDER_DYNAMIC_PLT_RELOCS, false);
1848       gold_assert(this->tlsdesc_rel_->output_section()
1849                   == this->rel_->output_section());
1850     }
1851   return this->tlsdesc_rel_;
1852 }
1853
1854 // Return where the IRELATIVE relocations should go in the PLT.  These
1855 // follow the JUMP_SLOT and the TLSDESC relocations.
1856
1857 template<int size>
1858 typename Output_data_plt_x86_64<size>::Reloc_section*
1859 Output_data_plt_x86_64<size>::rela_irelative(Symbol_table* symtab,
1860                                              Layout* layout)
1861 {
1862   if (this->irelative_rel_ == NULL)
1863     {
1864       // Make sure we have a place for the TLSDESC relocations, in
1865       // case we see any later on.
1866       this->rela_tlsdesc(layout);
1867       this->irelative_rel_ = new Reloc_section(false);
1868       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1869                                       elfcpp::SHF_ALLOC, this->irelative_rel_,
1870                                       ORDER_DYNAMIC_PLT_RELOCS, false);
1871       gold_assert(this->irelative_rel_->output_section()
1872                   == this->rel_->output_section());
1873
1874       if (parameters->doing_static_link())
1875         {
1876           // A statically linked executable will only have a .rela.plt
1877           // section to hold R_X86_64_IRELATIVE relocs for
1878           // STT_GNU_IFUNC symbols.  The library will use these
1879           // symbols to locate the IRELATIVE relocs at program startup
1880           // time.
1881           symtab->define_in_output_data("__rela_iplt_start", NULL,
1882                                         Symbol_table::PREDEFINED,
1883                                         this->irelative_rel_, 0, 0,
1884                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1885                                         elfcpp::STV_HIDDEN, 0, false, true);
1886           symtab->define_in_output_data("__rela_iplt_end", NULL,
1887                                         Symbol_table::PREDEFINED,
1888                                         this->irelative_rel_, 0, 0,
1889                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1890                                         elfcpp::STV_HIDDEN, 0, true, true);
1891         }
1892     }
1893   return this->irelative_rel_;
1894 }
1895
1896 // Return the PLT address to use for a global symbol.
1897
1898 template<int size>
1899 uint64_t
1900 Output_data_plt_x86_64<size>::do_address_for_global(const Symbol* gsym)
1901 {
1902   uint64_t offset = 0;
1903   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1904       && gsym->can_use_relative_reloc(false))
1905     offset = (this->count_ + 1) * this->get_plt_entry_size();
1906   return this->address() + offset + gsym->plt_offset();
1907 }
1908
1909 // Return the PLT address to use for a local symbol.  These are always
1910 // IRELATIVE relocs.
1911
1912 template<int size>
1913 uint64_t
1914 Output_data_plt_x86_64<size>::do_address_for_local(const Relobj* object,
1915                                                    unsigned int r_sym)
1916 {
1917   return (this->address()
1918           + (this->count_ + 1) * this->get_plt_entry_size()
1919           + object->local_plt_offset(r_sym));
1920 }
1921
1922 // Set the final size.
1923 template<int size>
1924 void
1925 Output_data_plt_x86_64<size>::set_final_data_size()
1926 {
1927   // Number of regular and IFUNC PLT entries, plus the first entry.
1928   unsigned int count = this->count_ + this->irelative_count_ + 1;
1929   // Count the TLSDESC entry, if present.
1930   if (this->has_tlsdesc_entry())
1931     ++count;
1932   this->set_data_size(count * this->get_plt_entry_size());
1933 }
1934
1935 // The first entry in the PLT for an executable.
1936
1937 template<int size>
1938 const unsigned char
1939 Output_data_plt_x86_64_standard<size>::first_plt_entry[plt_entry_size] =
1940 {
1941   // From AMD64 ABI Draft 0.98, page 76
1942   0xff, 0x35,   // pushq contents of memory address
1943   0, 0, 0, 0,   // replaced with address of .got + 8
1944   0xff, 0x25,   // jmp indirect
1945   0, 0, 0, 0,   // replaced with address of .got + 16
1946   0x90, 0x90, 0x90, 0x90   // noop (x4)
1947 };
1948
1949 template<int size>
1950 void
1951 Output_data_plt_x86_64_standard<size>::do_fill_first_plt_entry(
1952     unsigned char* pov,
1953     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1954     typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
1955 {
1956   memcpy(pov, first_plt_entry, plt_entry_size);
1957   // We do a jmp relative to the PC at the end of this instruction.
1958   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1959                                               (got_address + 8
1960                                                - (plt_address + 6)));
1961   elfcpp::Swap<32, false>::writeval(pov + 8,
1962                                     (got_address + 16
1963                                      - (plt_address + 12)));
1964 }
1965
1966 // Subsequent entries in the PLT for an executable.
1967
1968 template<int size>
1969 const unsigned char
1970 Output_data_plt_x86_64_standard<size>::plt_entry[plt_entry_size] =
1971 {
1972   // From AMD64 ABI Draft 0.98, page 76
1973   0xff, 0x25,   // jmpq indirect
1974   0, 0, 0, 0,   // replaced with address of symbol in .got
1975   0x68,         // pushq immediate
1976   0, 0, 0, 0,   // replaced with offset into relocation table
1977   0xe9,         // jmpq relative
1978   0, 0, 0, 0    // replaced with offset to start of .plt
1979 };
1980
1981 template<int size>
1982 unsigned int
1983 Output_data_plt_x86_64_standard<size>::do_fill_plt_entry(
1984     unsigned char* pov,
1985     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1986     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1987     unsigned int got_offset,
1988     unsigned int plt_offset,
1989     unsigned int plt_index)
1990 {
1991   // Check PC-relative offset overflow in PLT entry.
1992   uint64_t plt_got_pcrel_offset = (got_address + got_offset
1993                                    - (plt_address + plt_offset + 6));
1994   if (Bits<32>::has_overflow(plt_got_pcrel_offset))
1995     gold_error(_("PC-relative offset overflow in PLT entry %d"),
1996                plt_index + 1);
1997
1998   memcpy(pov, plt_entry, plt_entry_size);
1999   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
2000                                               plt_got_pcrel_offset);
2001
2002   elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
2003   elfcpp::Swap<32, false>::writeval(pov + 12,
2004                                     - (plt_offset + plt_entry_size));
2005
2006   return 6;
2007 }
2008
2009 // The reserved TLSDESC entry in the PLT for an executable.
2010
2011 template<int size>
2012 const unsigned char
2013 Output_data_plt_x86_64_standard<size>::tlsdesc_plt_entry[plt_entry_size] =
2014 {
2015   // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
2016   // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
2017   0xff, 0x35,   // pushq x(%rip)
2018   0, 0, 0, 0,   // replaced with address of linkmap GOT entry (at PLTGOT + 8)
2019   0xff, 0x25,   // jmpq *y(%rip)
2020   0, 0, 0, 0,   // replaced with offset of reserved TLSDESC_GOT entry
2021   0x0f, 0x1f,   // nop
2022   0x40, 0
2023 };
2024
2025 template<int size>
2026 void
2027 Output_data_plt_x86_64_standard<size>::do_fill_tlsdesc_entry(
2028     unsigned char* pov,
2029     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
2030     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
2031     typename elfcpp::Elf_types<size>::Elf_Addr got_base,
2032     unsigned int tlsdesc_got_offset,
2033     unsigned int plt_offset)
2034 {
2035   memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
2036   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
2037                                               (got_address + 8
2038                                                - (plt_address + plt_offset
2039                                                   + 6)));
2040   elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
2041                                               (got_base
2042                                                + tlsdesc_got_offset
2043                                                - (plt_address + plt_offset
2044                                                   + 12)));
2045 }
2046
2047 // Return the APLT address to use for a global symbol (for -z bndplt).
2048
2049 uint64_t
2050 Output_data_plt_x86_64_bnd::do_address_for_global(const Symbol* gsym)
2051 {
2052   uint64_t offset = this->aplt_offset_;
2053   // Convert the PLT offset into an APLT offset.
2054   unsigned int plt_offset = gsym->plt_offset();
2055   if (gsym->type() == elfcpp::STT_GNU_IFUNC
2056       && gsym->can_use_relative_reloc(false))
2057     offset += this->regular_count() * aplt_entry_size;
2058   else
2059     plt_offset -= plt_entry_size;
2060   plt_offset = plt_offset / (plt_entry_size / aplt_entry_size);
2061   return this->address() + offset + plt_offset;
2062 }
2063
2064 // Return the PLT address to use for a local symbol.  These are always
2065 // IRELATIVE relocs.
2066
2067 uint64_t
2068 Output_data_plt_x86_64_bnd::do_address_for_local(const Relobj* object,
2069                                                  unsigned int r_sym)
2070 {
2071   // Convert the PLT offset into an APLT offset.
2072   unsigned int plt_offset = ((object->local_plt_offset(r_sym) - plt_entry_size)
2073                              / (plt_entry_size / aplt_entry_size));
2074   return (this->address()
2075           + this->aplt_offset_
2076           + this->regular_count() * aplt_entry_size
2077           + plt_offset);
2078 }
2079
2080 // Set the final size.
2081 void
2082 Output_data_plt_x86_64_bnd::set_final_data_size()
2083 {
2084   // Number of regular and IFUNC PLT entries.
2085   unsigned int count = this->entry_count();
2086   // Count the first entry and the TLSDESC entry, if present.
2087   unsigned int extra = this->has_tlsdesc_entry() ? 2 : 1;
2088   unsigned int plt_size = (count + extra) * plt_entry_size;
2089   // Offset of the APLT.
2090   this->aplt_offset_ = plt_size;
2091   // Size of the APLT.
2092   plt_size += count * aplt_entry_size;
2093   this->set_data_size(plt_size);
2094 }
2095
2096 // The first entry in the BND PLT.
2097
2098 const unsigned char
2099 Output_data_plt_x86_64_bnd::first_plt_entry[plt_entry_size] =
2100 {
2101   // From AMD64 ABI Draft 0.98, page 76
2102   0xff, 0x35,           // pushq contents of memory address
2103   0, 0, 0, 0,           // replaced with address of .got + 8
2104   0xf2, 0xff, 0x25,     // bnd jmp indirect
2105   0, 0, 0, 0,           // replaced with address of .got + 16
2106   0x0f, 0x1f, 0x00      // nop
2107 };
2108
2109 void
2110 Output_data_plt_x86_64_bnd::do_fill_first_plt_entry(
2111     unsigned char* pov,
2112     elfcpp::Elf_types<64>::Elf_Addr got_address,
2113     elfcpp::Elf_types<64>::Elf_Addr plt_address)
2114 {
2115   memcpy(pov, first_plt_entry, plt_entry_size);
2116   // We do a jmp relative to the PC at the end of this instruction.
2117   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
2118                                               (got_address + 8
2119                                                - (plt_address + 6)));
2120   elfcpp::Swap<32, false>::writeval(pov + 9,
2121                                     (got_address + 16
2122                                      - (plt_address + 13)));
2123 }
2124
2125 // Subsequent entries in the BND PLT.
2126
2127 const unsigned char
2128 Output_data_plt_x86_64_bnd::plt_entry[plt_entry_size] =
2129 {
2130   // From AMD64 ABI Draft 0.99.8, page 139
2131   0x68,                         // pushq immediate
2132   0, 0, 0, 0,                   // replaced with offset into relocation table
2133   0xf2, 0xe9,                   // bnd jmpq relative
2134   0, 0, 0, 0,                   // replaced with offset to start of .plt
2135   0x0f, 0x1f, 0x44, 0, 0        // nop
2136 };
2137
2138 // Entries in the BND Additional PLT.
2139
2140 const unsigned char
2141 Output_data_plt_x86_64_bnd::aplt_entry[aplt_entry_size] =
2142 {
2143   // From AMD64 ABI Draft 0.99.8, page 139
2144   0xf2, 0xff, 0x25,     // bnd jmpq indirect
2145   0, 0, 0, 0,           // replaced with address of symbol in .got
2146   0x90,                 // nop
2147 };
2148
2149 unsigned int
2150 Output_data_plt_x86_64_bnd::do_fill_plt_entry(
2151     unsigned char* pov,
2152     elfcpp::Elf_types<64>::Elf_Addr,
2153     elfcpp::Elf_types<64>::Elf_Addr,
2154     unsigned int,
2155     unsigned int plt_offset,
2156     unsigned int plt_index)
2157 {
2158   memcpy(pov, plt_entry, plt_entry_size);
2159   elfcpp::Swap_unaligned<32, false>::writeval(pov + 1, plt_index);
2160   elfcpp::Swap<32, false>::writeval(pov + 7, -(plt_offset + 11));
2161   return 0;
2162 }
2163
2164 void
2165 Output_data_plt_x86_64_bnd::fill_aplt_entry(
2166     unsigned char* pov,
2167     elfcpp::Elf_types<64>::Elf_Addr got_address,
2168     elfcpp::Elf_types<64>::Elf_Addr plt_address,
2169     unsigned int got_offset,
2170     unsigned int plt_offset,
2171     unsigned int plt_index)
2172 {
2173   // Check PC-relative offset overflow in PLT entry.
2174   uint64_t plt_got_pcrel_offset = (got_address + got_offset
2175                                    - (plt_address + plt_offset + 7));
2176   if (Bits<32>::has_overflow(plt_got_pcrel_offset))
2177     gold_error(_("PC-relative offset overflow in APLT entry %d"),
2178                plt_index + 1);
2179
2180   memcpy(pov, aplt_entry, aplt_entry_size);
2181   elfcpp::Swap_unaligned<32, false>::writeval(pov + 3, plt_got_pcrel_offset);
2182 }
2183
2184 // The reserved TLSDESC entry in the PLT for an executable.
2185
2186 const unsigned char
2187 Output_data_plt_x86_64_bnd::tlsdesc_plt_entry[plt_entry_size] =
2188 {
2189   // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
2190   // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
2191   0xff, 0x35,           // pushq x(%rip)
2192   0, 0, 0, 0,           // replaced with address of linkmap GOT entry (at PLTGOT + 8)
2193   0xf2, 0xff, 0x25,     // jmpq *y(%rip)
2194   0, 0, 0, 0,           // replaced with offset of reserved TLSDESC_GOT entry
2195   0x0f, 0x1f, 0         // nop
2196 };
2197
2198 void
2199 Output_data_plt_x86_64_bnd::do_fill_tlsdesc_entry(
2200     unsigned char* pov,
2201     elfcpp::Elf_types<64>::Elf_Addr got_address,
2202     elfcpp::Elf_types<64>::Elf_Addr plt_address,
2203     elfcpp::Elf_types<64>::Elf_Addr got_base,
2204     unsigned int tlsdesc_got_offset,
2205     unsigned int plt_offset)
2206 {
2207   memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
2208   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
2209                                               (got_address + 8
2210                                                - (plt_address + plt_offset
2211                                                   + 6)));
2212   elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
2213                                               (got_base
2214                                                + tlsdesc_got_offset
2215                                                - (plt_address + plt_offset
2216                                                   + 13)));
2217 }
2218
2219 // Return the APLT address to use for a global symbol (for IBT).
2220
2221 template<int size>
2222 uint64_t
2223 Output_data_plt_x86_64_ibt<size>::do_address_for_global(const Symbol* gsym)
2224 {
2225   uint64_t offset = this->aplt_offset_;
2226   // Convert the PLT offset into an APLT offset.
2227   unsigned int plt_offset = gsym->plt_offset();
2228   if (gsym->type() == elfcpp::STT_GNU_IFUNC
2229       && gsym->can_use_relative_reloc(false))
2230     offset += this->regular_count() * aplt_entry_size;
2231   else
2232     plt_offset -= plt_entry_size;
2233   plt_offset = plt_offset / (plt_entry_size / aplt_entry_size);
2234   return this->address() + offset + plt_offset;
2235 }
2236
2237 // Return the PLT address to use for a local symbol.  These are always
2238 // IRELATIVE relocs.
2239
2240 template<int size>
2241 uint64_t
2242 Output_data_plt_x86_64_ibt<size>::do_address_for_local(const Relobj* object,
2243                                                  unsigned int r_sym)
2244 {
2245   // Convert the PLT offset into an APLT offset.
2246   unsigned int plt_offset = ((object->local_plt_offset(r_sym) - plt_entry_size)
2247                              / (plt_entry_size / aplt_entry_size));
2248   return (this->address()
2249           + this->aplt_offset_
2250           + this->regular_count() * aplt_entry_size
2251           + plt_offset);
2252 }
2253
2254 // Set the final size.
2255
2256 template<int size>
2257 void
2258 Output_data_plt_x86_64_ibt<size>::set_final_data_size()
2259 {
2260   // Number of regular and IFUNC PLT entries.
2261   unsigned int count = this->entry_count();
2262   // Count the first entry and the TLSDESC entry, if present.
2263   unsigned int extra = this->has_tlsdesc_entry() ? 2 : 1;
2264   unsigned int plt_size = (count + extra) * plt_entry_size;
2265   // Offset of the APLT.
2266   this->aplt_offset_ = plt_size;
2267   // Size of the APLT.
2268   plt_size += count * aplt_entry_size;
2269   this->set_data_size(plt_size);
2270 }
2271
2272 // The first entry in the IBT PLT.
2273
2274 template<>
2275 const unsigned char
2276 Output_data_plt_x86_64_ibt<32>::first_plt_entry[plt_entry_size] =
2277 {
2278   // MPX isn't supported for x32, so we don't need the BND prefix.
2279   // From AMD64 ABI Draft 0.98, page 76
2280   0xff, 0x35,            // pushq contents of memory address
2281   0, 0, 0, 0,            // replaced with address of .got + 8
2282   0xff, 0x25,            // jmp indirect
2283   0, 0, 0, 0,            // replaced with address of .got + 16
2284   0x90, 0x90, 0x90, 0x90 // noop (x4)
2285 };
2286
2287 template<>
2288 const unsigned char
2289 Output_data_plt_x86_64_ibt<64>::first_plt_entry[plt_entry_size] =
2290 {
2291   // Use the BND prefix so that IBT is compatible with MPX.
2292   0xff, 0x35,           // pushq contents of memory address
2293   0, 0, 0, 0,           // replaced with address of .got + 8
2294   0xf2, 0xff, 0x25,     // bnd jmp indirect
2295   0, 0, 0, 0,           // replaced with address of .got + 16
2296   0x0f, 0x1f, 0x00      // nop
2297 };
2298
2299 template<int size>
2300 void
2301 Output_data_plt_x86_64_ibt<size>::do_fill_first_plt_entry(
2302     unsigned char* pov,
2303     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
2304     typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
2305 {
2306   // Offsets to the addresses needing relocation.
2307   const unsigned int roff1 = 2;
2308   const unsigned int roff2 = (size == 32) ? 8 : 9;
2309
2310   memcpy(pov, first_plt_entry, plt_entry_size);
2311   // We do a jmp relative to the PC at the end of this instruction.
2312   elfcpp::Swap_unaligned<32, false>::writeval(pov + roff1,
2313                                               (got_address + 8
2314                                                - (plt_address + roff1 + 4)));
2315   elfcpp::Swap<32, false>::writeval(pov + roff2,
2316                                     (got_address + 16
2317                                      - (plt_address + roff2 + 4)));
2318 }
2319
2320 // Subsequent entries in the IBT PLT.
2321
2322 template<>
2323 const unsigned char
2324 Output_data_plt_x86_64_ibt<32>::plt_entry[plt_entry_size] =
2325 {
2326   // From AMD64 ABI Draft 1.0-rc1, Chapter 13.
2327   0xf3, 0x0f, 0x1e, 0xfa,       // endbr64
2328   0x68,                         // pushq immediate
2329   0, 0, 0, 0,                   // replaced with offset into relocation table
2330   0xe9,                         // jmpq relative
2331   0, 0, 0, 0,                   // replaced with offset to start of .plt
2332   0x90, 0x90                    // nop
2333 };
2334
2335 template<>
2336 const unsigned char
2337 Output_data_plt_x86_64_ibt<64>::plt_entry[plt_entry_size] =
2338 {
2339   // From AMD64 ABI Draft 1.0-rc1, Chapter 13.
2340   0xf3, 0x0f, 0x1e, 0xfa,       // endbr64
2341   0x68,                         // pushq immediate
2342   0, 0, 0, 0,                   // replaced with offset into relocation table
2343   0xf2, 0xe9,                   // bnd jmpq relative
2344   0, 0, 0, 0,                   // replaced with offset to start of .plt
2345   0x90                          // nop
2346 };
2347
2348 // Entries in the IBT Additional PLT.
2349
2350 template<>
2351 const unsigned char
2352 Output_data_plt_x86_64_ibt<32>::aplt_entry[aplt_entry_size] =
2353 {
2354   // From AMD64 ABI Draft 1.0-rc1, Chapter 13.
2355   0xf3, 0x0f, 0x1e, 0xfa,       // endbr64
2356   0xff, 0x25,                   // jmpq indirect
2357   0, 0, 0, 0,                   // replaced with address of symbol in .got
2358   0x0f, 0x1f, 0x04, 0x00,       // nop
2359   0x90, 0x90                    // nop
2360 };
2361
2362 template<>
2363 const unsigned char
2364 Output_data_plt_x86_64_ibt<64>::aplt_entry[aplt_entry_size] =
2365 {
2366   // From AMD64 ABI Draft 1.0-rc1, Chapter 13.
2367   0xf3, 0x0f, 0x1e, 0xfa,       // endbr64
2368   0xf2, 0xff, 0x25,             // bnd jmpq indirect
2369   0, 0, 0, 0,                   // replaced with address of symbol in .got
2370   0x0f, 0x1f, 0x04, 0x00,       // nop
2371   0x90,                         // nop
2372 };
2373
2374 template<int size>
2375 unsigned int
2376 Output_data_plt_x86_64_ibt<size>::do_fill_plt_entry(
2377     unsigned char* pov,
2378     typename elfcpp::Elf_types<size>::Elf_Addr,
2379     typename elfcpp::Elf_types<size>::Elf_Addr,
2380     unsigned int,
2381     unsigned int plt_offset,
2382     unsigned int plt_index)
2383 {
2384   // Offsets to the addresses needing relocation.
2385   const unsigned int roff1 = 5;
2386   const unsigned int roff2 = (size == 32) ? 10 : 11;
2387
2388   memcpy(pov, plt_entry, plt_entry_size);
2389   elfcpp::Swap_unaligned<32, false>::writeval(pov + roff1, plt_index);
2390   elfcpp::Swap<32, false>::writeval(pov + roff2, -(plt_offset + roff2 + 4));
2391   return 0;
2392 }
2393
2394 template<int size>
2395 void
2396 Output_data_plt_x86_64_ibt<size>::fill_aplt_entry(
2397     unsigned char* pov,
2398     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
2399     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
2400     unsigned int got_offset,
2401     unsigned int plt_offset,
2402     unsigned int plt_index)
2403 {
2404   // Offset to the address needing relocation.
2405   const unsigned int roff = (size == 32) ? 6 : 7;
2406
2407   // Check PC-relative offset overflow in PLT entry.
2408   uint64_t plt_got_pcrel_offset = (got_address + got_offset
2409                                    - (plt_address + plt_offset + roff + 4));
2410   if (Bits<32>::has_overflow(plt_got_pcrel_offset))
2411     gold_error(_("PC-relative offset overflow in APLT entry %d"),
2412                plt_index + 1);
2413
2414   memcpy(pov, aplt_entry, aplt_entry_size);
2415   elfcpp::Swap_unaligned<32, false>::writeval(pov + roff, plt_got_pcrel_offset);
2416 }
2417
2418 // The reserved TLSDESC entry in the IBT PLT for an executable.
2419
2420 template<int size>
2421 const unsigned char
2422 Output_data_plt_x86_64_ibt<size>::tlsdesc_plt_entry[plt_entry_size] =
2423 {
2424   // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
2425   // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
2426   0xff, 0x35,           // pushq x(%rip)
2427   0, 0, 0, 0,           // replaced with address of linkmap GOT entry (at PLTGOT + 8)
2428   0xf2, 0xff, 0x25,     // jmpq *y(%rip)
2429   0, 0, 0, 0,           // replaced with offset of reserved TLSDESC_GOT entry
2430   0x0f, 0x1f, 0         // nop
2431 };
2432
2433 template<int size>
2434 void
2435 Output_data_plt_x86_64_ibt<size>::do_fill_tlsdesc_entry(
2436     unsigned char* pov,
2437     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
2438     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
2439     typename elfcpp::Elf_types<size>::Elf_Addr got_base,
2440     unsigned int tlsdesc_got_offset,
2441     unsigned int plt_offset)
2442 {
2443   memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
2444   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
2445                                               (got_address + 8
2446                                                - (plt_address + plt_offset
2447                                                   + 6)));
2448   elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
2449                                               (got_base
2450                                                + tlsdesc_got_offset
2451                                                - (plt_address + plt_offset
2452                                                   + 13)));
2453 }
2454
2455 // The .eh_frame unwind information for the PLT.
2456
2457 template<int size>
2458 const unsigned char
2459 Output_data_plt_x86_64<size>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
2460 {
2461   1,                            // CIE version.
2462   'z',                          // Augmentation: augmentation size included.
2463   'R',                          // Augmentation: FDE encoding included.
2464   '\0',                         // End of augmentation string.
2465   1,                            // Code alignment factor.
2466   0x78,                         // Data alignment factor.
2467   16,                           // Return address column.
2468   1,                            // Augmentation size.
2469   (elfcpp::DW_EH_PE_pcrel       // FDE encoding.
2470    | elfcpp::DW_EH_PE_sdata4),
2471   elfcpp::DW_CFA_def_cfa, 7, 8, // DW_CFA_def_cfa: r7 (rsp) ofs 8.
2472   elfcpp::DW_CFA_offset + 16, 1,// DW_CFA_offset: r16 (rip) at cfa-8.
2473   elfcpp::DW_CFA_nop,           // Align to 16 bytes.
2474   elfcpp::DW_CFA_nop
2475 };
2476
2477 template<int size>
2478 const unsigned char
2479 Output_data_plt_x86_64_standard<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
2480 {
2481   0, 0, 0, 0,                           // Replaced with offset to .plt.
2482   0, 0, 0, 0,                           // Replaced with size of .plt.
2483   0,                                    // Augmentation size.
2484   elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
2485   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
2486   elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
2487   elfcpp::DW_CFA_advance_loc + 10,      // Advance 10 to __PLT__ + 16.
2488   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
2489   11,                                   // Block length.
2490   elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
2491   elfcpp::DW_OP_breg16, 0,              // Push %rip.
2492   elfcpp::DW_OP_lit15,                  // Push 0xf.
2493   elfcpp::DW_OP_and,                    // & (%rip & 0xf).
2494   elfcpp::DW_OP_lit11,                  // Push 0xb.
2495   elfcpp::DW_OP_ge,                     // >= ((%rip & 0xf) >= 0xb)
2496   elfcpp::DW_OP_lit3,                   // Push 3.
2497   elfcpp::DW_OP_shl,                    // << (((%rip & 0xf) >= 0xb) << 3)
2498   elfcpp::DW_OP_plus,                   // + ((((%rip&0xf)>=0xb)<<3)+%rsp+8
2499   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
2500   elfcpp::DW_CFA_nop,
2501   elfcpp::DW_CFA_nop,
2502   elfcpp::DW_CFA_nop
2503 };
2504
2505 // The .eh_frame unwind information for the BND PLT.
2506 const unsigned char
2507 Output_data_plt_x86_64_bnd::plt_eh_frame_fde[plt_eh_frame_fde_size] =
2508 {
2509   0, 0, 0, 0,                           // Replaced with offset to .plt.
2510   0, 0, 0, 0,                           // Replaced with size of .plt.
2511   0,                                    // Augmentation size.
2512   elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
2513   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
2514   elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
2515   elfcpp::DW_CFA_advance_loc + 10,      // Advance 10 to __PLT__ + 16.
2516   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
2517   11,                                   // Block length.
2518   elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
2519   elfcpp::DW_OP_breg16, 0,              // Push %rip.
2520   elfcpp::DW_OP_lit15,                  // Push 0xf.
2521   elfcpp::DW_OP_and,                    // & (%rip & 0xf).
2522   elfcpp::DW_OP_lit5,                   // Push 5.
2523   elfcpp::DW_OP_ge,                     // >= ((%rip & 0xf) >= 5)
2524   elfcpp::DW_OP_lit3,                   // Push 3.
2525   elfcpp::DW_OP_shl,                    // << (((%rip & 0xf) >= 5) << 3)
2526   elfcpp::DW_OP_plus,                   // + ((((%rip&0xf)>=5)<<3)+%rsp+8
2527   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
2528   elfcpp::DW_CFA_nop,
2529   elfcpp::DW_CFA_nop,
2530   elfcpp::DW_CFA_nop
2531 };
2532
2533 // The .eh_frame unwind information for the BND PLT.
2534 template<int size>
2535 const unsigned char
2536 Output_data_plt_x86_64_ibt<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
2537 {
2538   0, 0, 0, 0,                           // Replaced with offset to .plt.
2539   0, 0, 0, 0,                           // Replaced with size of .plt.
2540   0,                                    // Augmentation size.
2541   elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
2542   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
2543   elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
2544   elfcpp::DW_CFA_advance_loc + 10,      // Advance 10 to __PLT__ + 16.
2545   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
2546   11,                                   // Block length.
2547   elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
2548   elfcpp::DW_OP_breg16, 0,              // Push %rip.
2549   elfcpp::DW_OP_lit15,                  // Push 0xf.
2550   elfcpp::DW_OP_and,                    // & (%rip & 0xf).
2551   elfcpp::DW_OP_lit9,                   // Push 9.
2552   elfcpp::DW_OP_ge,                     // >= ((%rip & 0xf) >= 9)
2553   elfcpp::DW_OP_lit3,                   // Push 3.
2554   elfcpp::DW_OP_shl,                    // << (((%rip & 0xf) >= 9) << 3)
2555   elfcpp::DW_OP_plus,                   // + ((((%rip&0xf)>=9)<<3)+%rsp+8
2556   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
2557   elfcpp::DW_CFA_nop,
2558   elfcpp::DW_CFA_nop,
2559   elfcpp::DW_CFA_nop
2560 };
2561
2562 // Write out the PLT.  This uses the hand-coded instructions above,
2563 // and adjusts them as needed.  This is specified by the AMD64 ABI.
2564
2565 template<int size>
2566 void
2567 Output_data_plt_x86_64<size>::do_write(Output_file* of)
2568 {
2569   const off_t offset = this->offset();
2570   const section_size_type oview_size =
2571     convert_to_section_size_type(this->data_size());
2572   unsigned char* const oview = of->get_output_view(offset, oview_size);
2573
2574   const off_t got_file_offset = this->got_plt_->offset();
2575   gold_assert(parameters->incremental_update()
2576               || (got_file_offset + this->got_plt_->data_size()
2577                   == this->got_irelative_->offset()));
2578   const section_size_type got_size =
2579     convert_to_section_size_type(this->got_plt_->data_size()
2580                                  + this->got_irelative_->data_size());
2581   unsigned char* const got_view = of->get_output_view(got_file_offset,
2582                                                       got_size);
2583
2584   unsigned char* pov = oview;
2585
2586   // The base address of the .plt section.
2587   typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
2588   // The base address of the .got section.
2589   typename elfcpp::Elf_types<size>::Elf_Addr got_base = this->got_->address();
2590   // The base address of the PLT portion of the .got section,
2591   // which is where the GOT pointer will point, and where the
2592   // three reserved GOT entries are located.
2593   typename elfcpp::Elf_types<size>::Elf_Addr got_address
2594     = this->got_plt_->address();
2595
2596   this->fill_first_plt_entry(pov, got_address, plt_address);
2597   pov += this->get_plt_entry_size();
2598
2599   // The first three entries in the GOT are reserved, and are written
2600   // by Output_data_got_plt_x86_64::do_write.
2601   unsigned char* got_pov = got_view + 24;
2602
2603   unsigned int plt_offset = this->get_plt_entry_size();
2604   unsigned int got_offset = 24;
2605   const unsigned int count = this->count_ + this->irelative_count_;
2606   for (unsigned int plt_index = 0;
2607        plt_index < count;
2608        ++plt_index,
2609          pov += this->get_plt_entry_size(),
2610          got_pov += 8,
2611          plt_offset += this->get_plt_entry_size(),
2612          got_offset += 8)
2613     {
2614       // Set and adjust the PLT entry itself.
2615       unsigned int lazy_offset = this->fill_plt_entry(pov,
2616                                                       got_address, plt_address,
2617                                                       got_offset, plt_offset,
2618                                                       plt_index);
2619
2620       // Set the entry in the GOT.
2621       elfcpp::Swap<64, false>::writeval(got_pov,
2622                                         plt_address + plt_offset + lazy_offset);
2623     }
2624
2625   if (this->has_tlsdesc_entry())
2626     {
2627       // Set and adjust the reserved TLSDESC PLT entry.
2628       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
2629       this->fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
2630                                tlsdesc_got_offset, plt_offset);
2631       pov += this->get_plt_entry_size();
2632     }
2633
2634   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
2635   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
2636
2637   of->write_output_view(offset, oview_size, oview);
2638   of->write_output_view(got_file_offset, got_size, got_view);
2639 }
2640
2641 // Write out the BND PLT.
2642
2643 void
2644 Output_data_plt_x86_64_bnd::do_write(Output_file* of)
2645 {
2646   const off_t offset = this->offset();
2647   const section_size_type oview_size =
2648     convert_to_section_size_type(this->data_size());
2649   unsigned char* const oview = of->get_output_view(offset, oview_size);
2650
2651   Output_data_got<64, false>* got = this->got();
2652   Output_data_got_plt_x86_64* got_plt = this->got_plt();
2653   Output_data_space* got_irelative = this->got_irelative();
2654
2655   const off_t got_file_offset = got_plt->offset();
2656   gold_assert(parameters->incremental_update()
2657               || (got_file_offset + got_plt->data_size()
2658                   == got_irelative->offset()));
2659   const section_size_type got_size =
2660     convert_to_section_size_type(got_plt->data_size()
2661                                  + got_irelative->data_size());
2662   unsigned char* const got_view = of->get_output_view(got_file_offset,
2663                                                       got_size);
2664
2665   unsigned char* pov = oview;
2666
2667   // The base address of the .plt section.
2668   elfcpp::Elf_types<64>::Elf_Addr plt_address = this->address();
2669   // The base address of the .got section.
2670   elfcpp::Elf_types<64>::Elf_Addr got_base = got->address();
2671   // The base address of the PLT portion of the .got section,
2672   // which is where the GOT pointer will point, and where the
2673   // three reserved GOT entries are located.
2674   elfcpp::Elf_types<64>::Elf_Addr got_address = got_plt->address();
2675
2676   this->fill_first_plt_entry(pov, got_address, plt_address);
2677   pov += plt_entry_size;
2678
2679   // The first three entries in the GOT are reserved, and are written
2680   // by Output_data_got_plt_x86_64::do_write.
2681   unsigned char* got_pov = got_view + 24;
2682
2683   unsigned int plt_offset = plt_entry_size;
2684   unsigned int got_offset = 24;
2685   const unsigned int count = this->entry_count();
2686   for (unsigned int plt_index = 0;
2687        plt_index < count;
2688        ++plt_index,
2689          pov += plt_entry_size,
2690          got_pov += 8,
2691          plt_offset += plt_entry_size,
2692          got_offset += 8)
2693     {
2694       // Set and adjust the PLT entry itself.
2695       unsigned int lazy_offset = this->fill_plt_entry(pov,
2696                                                       got_address, plt_address,
2697                                                       got_offset, plt_offset,
2698                                                       plt_index);
2699
2700       // Set the entry in the GOT.
2701       elfcpp::Swap<64, false>::writeval(got_pov,
2702                                         plt_address + plt_offset + lazy_offset);
2703     }
2704
2705   if (this->has_tlsdesc_entry())
2706     {
2707       // Set and adjust the reserved TLSDESC PLT entry.
2708       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
2709       this->fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
2710                                tlsdesc_got_offset, plt_offset);
2711       pov += this->get_plt_entry_size();
2712     }
2713
2714   // Write the additional PLT.
2715   got_offset = 24;
2716   for (unsigned int plt_index = 0;
2717        plt_index < count;
2718        ++plt_index,
2719          pov += aplt_entry_size,
2720          plt_offset += aplt_entry_size,
2721          got_offset += 8)
2722     {
2723       // Set and adjust the APLT entry.
2724       this->fill_aplt_entry(pov, got_address, plt_address, got_offset,
2725                             plt_offset, plt_index);
2726     }
2727
2728   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
2729   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
2730
2731   of->write_output_view(offset, oview_size, oview);
2732   of->write_output_view(got_file_offset, got_size, got_view);
2733 }
2734
2735 // Write out the IBT PLT.
2736
2737 template<int size>
2738 void
2739 Output_data_plt_x86_64_ibt<size>::do_write(Output_file* of)
2740 {
2741   const off_t offset = this->offset();
2742   const section_size_type oview_size =
2743     convert_to_section_size_type(this->data_size());
2744   unsigned char* const oview = of->get_output_view(offset, oview_size);
2745
2746   Output_data_got<64, false>* got = this->got();
2747   Output_data_got_plt_x86_64* got_plt = this->got_plt();
2748   Output_data_space* got_irelative = this->got_irelative();
2749
2750   const off_t got_file_offset = got_plt->offset();
2751   gold_assert(parameters->incremental_update()
2752               || (got_file_offset + got_plt->data_size()
2753                   == got_irelative->offset()));
2754   const section_size_type got_size =
2755     convert_to_section_size_type(got_plt->data_size()
2756                                  + got_irelative->data_size());
2757   unsigned char* const got_view = of->get_output_view(got_file_offset,
2758                                                       got_size);
2759
2760   unsigned char* pov = oview;
2761
2762   // The base address of the .plt section.
2763   elfcpp::Elf_types<64>::Elf_Addr plt_address = this->address();
2764   // The base address of the .got section.
2765   elfcpp::Elf_types<64>::Elf_Addr got_base = got->address();
2766   // The base address of the PLT portion of the .got section,
2767   // which is where the GOT pointer will point, and where the
2768   // three reserved GOT entries are located.
2769   elfcpp::Elf_types<64>::Elf_Addr got_address = got_plt->address();
2770
2771   this->fill_first_plt_entry(pov, got_address, plt_address);
2772   pov += plt_entry_size;
2773
2774   // The first three entries in the GOT are reserved, and are written
2775   // by Output_data_got_plt_x86_64::do_write.
2776   unsigned char* got_pov = got_view + 24;
2777
2778   unsigned int plt_offset = plt_entry_size;
2779   unsigned int got_offset = 24;
2780   const unsigned int count = this->entry_count();
2781   for (unsigned int plt_index = 0;
2782        plt_index < count;
2783        ++plt_index,
2784          pov += plt_entry_size,
2785          got_pov += 8,
2786          plt_offset += plt_entry_size,
2787          got_offset += 8)
2788     {
2789       // Set and adjust the PLT entry itself.
2790       unsigned int lazy_offset = this->fill_plt_entry(pov,
2791                                                       got_address, plt_address,
2792                                                       got_offset, plt_offset,
2793                                                       plt_index);
2794
2795       // Set the entry in the GOT.
2796       elfcpp::Swap<64, false>::writeval(got_pov,
2797                                         plt_address + plt_offset + lazy_offset);
2798     }
2799
2800   if (this->has_tlsdesc_entry())
2801     {
2802       // Set and adjust the reserved TLSDESC PLT entry.
2803       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
2804       this->fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
2805                                tlsdesc_got_offset, plt_offset);
2806       pov += this->get_plt_entry_size();
2807     }
2808
2809   // Write the additional PLT.
2810   got_offset = 24;
2811   for (unsigned int plt_index = 0;
2812        plt_index < count;
2813        ++plt_index,
2814          pov += aplt_entry_size,
2815          plt_offset += aplt_entry_size,
2816          got_offset += 8)
2817     {
2818       // Set and adjust the APLT entry.
2819       this->fill_aplt_entry(pov, got_address, plt_address, got_offset,
2820                             plt_offset, plt_index);
2821     }
2822
2823   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
2824   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
2825
2826   of->write_output_view(offset, oview_size, oview);
2827   of->write_output_view(got_file_offset, got_size, got_view);
2828 }
2829
2830 // Create the PLT section.
2831
2832 template<int size>
2833 void
2834 Target_x86_64<size>::make_plt_section(Symbol_table* symtab, Layout* layout)
2835 {
2836   if (this->plt_ == NULL)
2837     {
2838       // Create the GOT sections first.
2839       this->got_section(symtab, layout);
2840
2841       this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
2842                                        this->got_irelative_);
2843
2844       // Add unwind information if requested.
2845       if (parameters->options().ld_generated_unwind_info())
2846         this->plt_->add_eh_frame(layout);
2847
2848       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
2849                                       (elfcpp::SHF_ALLOC
2850                                        | elfcpp::SHF_EXECINSTR),
2851                                       this->plt_, ORDER_PLT, false);
2852
2853       // Make the sh_info field of .rela.plt point to .plt.
2854       Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
2855       rela_plt_os->set_info_section(this->plt_->output_section());
2856     }
2857 }
2858
2859 template<>
2860 Output_data_plt_x86_64<32>*
2861 Target_x86_64<32>::do_make_data_plt(Layout* layout,
2862                                     Output_data_got<64, false>* got,
2863                                     Output_data_got_plt_x86_64* got_plt,
2864                                     Output_data_space* got_irelative)
2865 {
2866   if (this->feature_1_ & elfcpp::GNU_PROPERTY_X86_FEATURE_1_IBT)
2867     return new Output_data_plt_x86_64_ibt<32>(layout, got, got_plt,
2868                                               got_irelative);
2869   return new Output_data_plt_x86_64_standard<32>(layout, got, got_plt,
2870                                                  got_irelative);
2871 }
2872
2873 template<>
2874 Output_data_plt_x86_64<64>*
2875 Target_x86_64<64>::do_make_data_plt(Layout* layout,
2876                                     Output_data_got<64, false>* got,
2877                                     Output_data_got_plt_x86_64* got_plt,
2878                                     Output_data_space* got_irelative)
2879 {
2880   if (this->feature_1_ & elfcpp::GNU_PROPERTY_X86_FEATURE_1_IBT)
2881     return new Output_data_plt_x86_64_ibt<64>(layout, got, got_plt,
2882                                               got_irelative);
2883   else if (parameters->options().bndplt())
2884     return new Output_data_plt_x86_64_bnd(layout, got, got_plt,
2885                                           got_irelative);
2886   else
2887     return new Output_data_plt_x86_64_standard<64>(layout, got, got_plt,
2888                                                    got_irelative);
2889 }
2890
2891 template<>
2892 Output_data_plt_x86_64<32>*
2893 Target_x86_64<32>::do_make_data_plt(Layout* layout,
2894                                     Output_data_got<64, false>* got,
2895                                     Output_data_got_plt_x86_64* got_plt,
2896                                     Output_data_space* got_irelative,
2897                                     unsigned int plt_count)
2898 {
2899   if (this->feature_1_ & elfcpp::GNU_PROPERTY_X86_FEATURE_1_IBT)
2900     return new Output_data_plt_x86_64_ibt<32>(layout, got, got_plt,
2901                                               got_irelative, plt_count);
2902   return new Output_data_plt_x86_64_standard<32>(layout, got, got_plt,
2903                                                  got_irelative, plt_count);
2904 }
2905
2906 template<>
2907 Output_data_plt_x86_64<64>*
2908 Target_x86_64<64>::do_make_data_plt(Layout* layout,
2909                                     Output_data_got<64, false>* got,
2910                                     Output_data_got_plt_x86_64* got_plt,
2911                                     Output_data_space* got_irelative,
2912                                     unsigned int plt_count)
2913 {
2914   if (this->feature_1_ & elfcpp::GNU_PROPERTY_X86_FEATURE_1_IBT)
2915     return new Output_data_plt_x86_64_ibt<64>(layout, got, got_plt,
2916                                               got_irelative, plt_count);
2917   else if (parameters->options().bndplt())
2918     return new Output_data_plt_x86_64_bnd(layout, got, got_plt,
2919                                           got_irelative, plt_count);
2920   else
2921     return new Output_data_plt_x86_64_standard<64>(layout, got, got_plt,
2922                                                    got_irelative,
2923                                                    plt_count);
2924 }
2925
2926 // Return the section for TLSDESC relocations.
2927
2928 template<int size>
2929 typename Target_x86_64<size>::Reloc_section*
2930 Target_x86_64<size>::rela_tlsdesc_section(Layout* layout) const
2931 {
2932   return this->plt_section()->rela_tlsdesc(layout);
2933 }
2934
2935 // Create a PLT entry for a global symbol.
2936
2937 template<int size>
2938 void
2939 Target_x86_64<size>::make_plt_entry(Symbol_table* symtab, Layout* layout,
2940                                     Symbol* gsym)
2941 {
2942   if (gsym->has_plt_offset())
2943     return;
2944
2945   if (this->plt_ == NULL)
2946     this->make_plt_section(symtab, layout);
2947
2948   this->plt_->add_entry(symtab, layout, gsym);
2949 }
2950
2951 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
2952
2953 template<int size>
2954 void
2955 Target_x86_64<size>::make_local_ifunc_plt_entry(
2956     Symbol_table* symtab, Layout* layout,
2957     Sized_relobj_file<size, false>* relobj,
2958     unsigned int local_sym_index)
2959 {
2960   if (relobj->local_has_plt_offset(local_sym_index))
2961     return;
2962   if (this->plt_ == NULL)
2963     this->make_plt_section(symtab, layout);
2964   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
2965                                                               relobj,
2966                                                               local_sym_index);
2967   relobj->set_local_plt_offset(local_sym_index, plt_offset);
2968 }
2969
2970 // Return the number of entries in the PLT.
2971
2972 template<int size>
2973 unsigned int
2974 Target_x86_64<size>::plt_entry_count() const
2975 {
2976   if (this->plt_ == NULL)
2977     return 0;
2978   return this->plt_->entry_count();
2979 }
2980
2981 // Return the offset of the first non-reserved PLT entry.
2982
2983 template<int size>
2984 unsigned int
2985 Target_x86_64<size>::first_plt_entry_offset() const
2986 {
2987   if (this->plt_ == NULL)
2988     return 0;
2989   return this->plt_->first_plt_entry_offset();
2990 }
2991
2992 // Return the size of each PLT entry.
2993
2994 template<int size>
2995 unsigned int
2996 Target_x86_64<size>::plt_entry_size() const
2997 {
2998   if (this->plt_ == NULL)
2999     return 0;
3000   return this->plt_->get_plt_entry_size();
3001 }
3002
3003 // Create the GOT and PLT sections for an incremental update.
3004
3005 template<int size>
3006 Output_data_got_base*
3007 Target_x86_64<size>::init_got_plt_for_update(Symbol_table* symtab,
3008                                        Layout* layout,
3009                                        unsigned int got_count,
3010                                        unsigned int plt_count)
3011 {
3012   gold_assert(this->got_ == NULL);
3013
3014   this->got_ = new Output_data_got<64, false>(got_count * 8);
3015   layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3016                                   (elfcpp::SHF_ALLOC
3017                                    | elfcpp::SHF_WRITE),
3018                                   this->got_, ORDER_RELRO_LAST,
3019                                   true);
3020
3021   // Add the three reserved entries.
3022   this->got_plt_ = new Output_data_got_plt_x86_64(layout, (plt_count + 3) * 8);
3023   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3024                                   (elfcpp::SHF_ALLOC
3025                                    | elfcpp::SHF_WRITE),
3026                                   this->got_plt_, ORDER_NON_RELRO_FIRST,
3027                                   false);
3028
3029   // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
3030   this->global_offset_table_ =
3031     symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
3032                                   Symbol_table::PREDEFINED,
3033                                   this->got_plt_,
3034                                   0, 0, elfcpp::STT_OBJECT,
3035                                   elfcpp::STB_LOCAL,
3036                                   elfcpp::STV_HIDDEN, 0,
3037                                   false, false);
3038
3039   // If there are any TLSDESC relocations, they get GOT entries in
3040   // .got.plt after the jump slot entries.
3041   // FIXME: Get the count for TLSDESC entries.
3042   this->got_tlsdesc_ = new Output_data_got<64, false>(0);
3043   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3044                                   elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3045                                   this->got_tlsdesc_,
3046                                   ORDER_NON_RELRO_FIRST, false);
3047
3048   // If there are any IRELATIVE relocations, they get GOT entries in
3049   // .got.plt after the jump slot and TLSDESC entries.
3050   this->got_irelative_ = new Output_data_space(0, 8, "** GOT IRELATIVE PLT");
3051   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3052                                   elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3053                                   this->got_irelative_,
3054                                   ORDER_NON_RELRO_FIRST, false);
3055
3056   // Create the PLT section.
3057   this->plt_ = this->make_data_plt(layout, this->got_,
3058                                    this->got_plt_,
3059                                    this->got_irelative_,
3060                                    plt_count);
3061
3062   // Add unwind information if requested.
3063   if (parameters->options().ld_generated_unwind_info())
3064     this->plt_->add_eh_frame(layout);
3065
3066   layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
3067                                   elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
3068                                   this->plt_, ORDER_PLT, false);
3069
3070   // Make the sh_info field of .rela.plt point to .plt.
3071   Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
3072   rela_plt_os->set_info_section(this->plt_->output_section());
3073
3074   // Create the rela_dyn section.
3075   this->rela_dyn_section(layout);
3076
3077   return this->got_;
3078 }
3079
3080 // Reserve a GOT entry for a local symbol, and regenerate any
3081 // necessary dynamic relocations.
3082
3083 template<int size>
3084 void
3085 Target_x86_64<size>::reserve_local_got_entry(
3086     unsigned int got_index,
3087     Sized_relobj<size, false>* obj,
3088     unsigned int r_sym,
3089     unsigned int got_type)
3090 {
3091   unsigned int got_offset = got_index * 8;
3092   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
3093
3094   this->got_->reserve_local(got_index, obj, r_sym, got_type);
3095   switch (got_type)
3096     {
3097     case GOT_TYPE_STANDARD:
3098       if (parameters->options().output_is_position_independent())
3099         rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_X86_64_RELATIVE,
3100                                      this->got_, got_offset, 0, false);
3101       break;
3102     case GOT_TYPE_TLS_OFFSET:
3103       rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_TPOFF64,
3104                           this->got_, got_offset, 0);
3105       break;
3106     case GOT_TYPE_TLS_PAIR:
3107       this->got_->reserve_slot(got_index + 1);
3108       rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_DTPMOD64,
3109                           this->got_, got_offset, 0);
3110       break;
3111     case GOT_TYPE_TLS_DESC:
3112       gold_fatal(_("TLS_DESC not yet supported for incremental linking"));
3113       // this->got_->reserve_slot(got_index + 1);
3114       // rela_dyn->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
3115       //                               this->got_, got_offset, 0);
3116       break;
3117     default:
3118       gold_unreachable();
3119     }
3120 }
3121
3122 // Reserve a GOT entry for a global symbol, and regenerate any
3123 // necessary dynamic relocations.
3124
3125 template<int size>
3126 void
3127 Target_x86_64<size>::reserve_global_got_entry(unsigned int got_index,
3128                                               Symbol* gsym,
3129                                               unsigned int got_type)
3130 {
3131   unsigned int got_offset = got_index * 8;
3132   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
3133
3134   this->got_->reserve_global(got_index, gsym, got_type);
3135   switch (got_type)
3136     {
3137     case GOT_TYPE_STANDARD:
3138       if (!gsym->final_value_is_known())
3139         {
3140           if (gsym->is_from_dynobj()
3141               || gsym->is_undefined()
3142               || gsym->is_preemptible()
3143               || gsym->type() == elfcpp::STT_GNU_IFUNC)
3144             rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT,
3145                                  this->got_, got_offset, 0);
3146           else
3147             rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
3148                                           this->got_, got_offset, 0, false);
3149         }
3150       break;
3151     case GOT_TYPE_TLS_OFFSET:
3152       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TPOFF64,
3153                                     this->got_, got_offset, 0, false);
3154       break;
3155     case GOT_TYPE_TLS_PAIR:
3156       this->got_->reserve_slot(got_index + 1);
3157       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPMOD64,
3158                                     this->got_, got_offset, 0, false);
3159       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPOFF64,
3160                                     this->got_, got_offset + 8, 0, false);
3161       break;
3162     case GOT_TYPE_TLS_DESC:
3163       this->got_->reserve_slot(got_index + 1);
3164       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TLSDESC,
3165                                     this->got_, got_offset, 0, false);
3166       break;
3167     default:
3168       gold_unreachable();
3169     }
3170 }
3171
3172 // Register an existing PLT entry for a global symbol.
3173
3174 template<int size>
3175 void
3176 Target_x86_64<size>::register_global_plt_entry(Symbol_table* symtab,
3177                                                Layout* layout,
3178                                                unsigned int plt_index,
3179                                                Symbol* gsym)
3180 {
3181   gold_assert(this->plt_ != NULL);
3182   gold_assert(!gsym->has_plt_offset());
3183
3184   this->plt_->reserve_slot(plt_index);
3185
3186   gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
3187
3188   unsigned int got_offset = (plt_index + 3) * 8;
3189   this->plt_->add_relocation(symtab, layout, gsym, got_offset);
3190 }
3191
3192 // Force a COPY relocation for a given symbol.
3193
3194 template<int size>
3195 void
3196 Target_x86_64<size>::emit_copy_reloc(
3197     Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
3198 {
3199   this->copy_relocs_.emit_copy_reloc(symtab,
3200                                      symtab->get_sized_symbol<size>(sym),
3201                                      os,
3202                                      offset,
3203                                      this->rela_dyn_section(NULL));
3204 }
3205
3206 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
3207
3208 template<int size>
3209 void
3210 Target_x86_64<size>::define_tls_base_symbol(Symbol_table* symtab,
3211                                             Layout* layout)
3212 {
3213   if (this->tls_base_symbol_defined_)
3214     return;
3215
3216   Output_segment* tls_segment = layout->tls_segment();
3217   if (tls_segment != NULL)
3218     {
3219       bool is_exec = parameters->options().output_is_executable();
3220       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
3221                                        Symbol_table::PREDEFINED,
3222                                        tls_segment, 0, 0,
3223                                        elfcpp::STT_TLS,
3224                                        elfcpp::STB_LOCAL,
3225                                        elfcpp::STV_HIDDEN, 0,
3226                                        (is_exec
3227                                         ? Symbol::SEGMENT_END
3228                                         : Symbol::SEGMENT_START),
3229                                        true);
3230     }
3231   this->tls_base_symbol_defined_ = true;
3232 }
3233
3234 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
3235
3236 template<int size>
3237 void
3238 Target_x86_64<size>::reserve_tlsdesc_entries(Symbol_table* symtab,
3239                                              Layout* layout)
3240 {
3241   if (this->plt_ == NULL)
3242     this->make_plt_section(symtab, layout);
3243
3244   if (!this->plt_->has_tlsdesc_entry())
3245     {
3246       // Allocate the TLSDESC_GOT entry.
3247       Output_data_got<64, false>* got = this->got_section(symtab, layout);
3248       unsigned int got_offset = got->add_constant(0);
3249
3250       // Allocate the TLSDESC_PLT entry.
3251       this->plt_->reserve_tlsdesc_entry(got_offset);
3252     }
3253 }
3254
3255 // Create a GOT entry for the TLS module index.
3256
3257 template<int size>
3258 unsigned int
3259 Target_x86_64<size>::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
3260                                          Sized_relobj_file<size, false>* object)
3261 {
3262   if (this->got_mod_index_offset_ == -1U)
3263     {
3264       gold_assert(symtab != NULL && layout != NULL && object != NULL);
3265       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
3266       Output_data_got<64, false>* got = this->got_section(symtab, layout);
3267       unsigned int got_offset = got->add_constant(0);
3268       rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
3269                           got_offset, 0);
3270       got->add_constant(0);
3271       this->got_mod_index_offset_ = got_offset;
3272     }
3273   return this->got_mod_index_offset_;
3274 }
3275
3276 // Optimize the TLS relocation type based on what we know about the
3277 // symbol.  IS_FINAL is true if the final address of this symbol is
3278 // known at link time.
3279
3280 template<int size>
3281 tls::Tls_optimization
3282 Target_x86_64<size>::optimize_tls_reloc(bool is_final, int r_type)
3283 {
3284   // If we are generating a shared library, then we can't do anything
3285   // in the linker.
3286   if (parameters->options().shared())
3287     return tls::TLSOPT_NONE;
3288
3289   switch (r_type)
3290     {
3291     case elfcpp::R_X86_64_TLSGD:
3292     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
3293     case elfcpp::R_X86_64_TLSDESC_CALL:
3294       // These are General-Dynamic which permits fully general TLS
3295       // access.  Since we know that we are generating an executable,
3296       // we can convert this to Initial-Exec.  If we also know that
3297       // this is a local symbol, we can further switch to Local-Exec.
3298       if (is_final)
3299         return tls::TLSOPT_TO_LE;
3300       return tls::TLSOPT_TO_IE;
3301
3302     case elfcpp::R_X86_64_TLSLD:
3303       // This is Local-Dynamic, which refers to a local symbol in the
3304       // dynamic TLS block.  Since we know that we generating an
3305       // executable, we can switch to Local-Exec.
3306       return tls::TLSOPT_TO_LE;
3307
3308     case elfcpp::R_X86_64_DTPOFF32:
3309     case elfcpp::R_X86_64_DTPOFF64:
3310       // Another Local-Dynamic reloc.
3311       return tls::TLSOPT_TO_LE;
3312
3313     case elfcpp::R_X86_64_GOTTPOFF:
3314       // These are Initial-Exec relocs which get the thread offset
3315       // from the GOT.  If we know that we are linking against the
3316       // local symbol, we can switch to Local-Exec, which links the
3317       // thread offset into the instruction.
3318       if (is_final)
3319         return tls::TLSOPT_TO_LE;
3320       return tls::TLSOPT_NONE;
3321
3322     case elfcpp::R_X86_64_TPOFF32:
3323       // When we already have Local-Exec, there is nothing further we
3324       // can do.
3325       return tls::TLSOPT_NONE;
3326
3327     default:
3328       gold_unreachable();
3329     }
3330 }
3331
3332 // Get the Reference_flags for a particular relocation.
3333
3334 template<int size>
3335 int
3336 Target_x86_64<size>::Scan::get_reference_flags(unsigned int r_type)
3337 {
3338   switch (r_type)
3339     {
3340     case elfcpp::R_X86_64_NONE:
3341     case elfcpp::R_X86_64_GNU_VTINHERIT:
3342     case elfcpp::R_X86_64_GNU_VTENTRY:
3343     case elfcpp::R_X86_64_GOTPC32:
3344     case elfcpp::R_X86_64_GOTPC64:
3345       // No symbol reference.
3346       return 0;
3347
3348     case elfcpp::R_X86_64_64:
3349     case elfcpp::R_X86_64_32:
3350     case elfcpp::R_X86_64_32S:
3351     case elfcpp::R_X86_64_16:
3352     case elfcpp::R_X86_64_8:
3353       return Symbol::ABSOLUTE_REF;
3354
3355     case elfcpp::R_X86_64_PC64:
3356     case elfcpp::R_X86_64_PC32:
3357     case elfcpp::R_X86_64_PC32_BND:
3358     case elfcpp::R_X86_64_PC16:
3359     case elfcpp::R_X86_64_PC8:
3360     case elfcpp::R_X86_64_GOTOFF64:
3361       return Symbol::RELATIVE_REF;
3362
3363     case elfcpp::R_X86_64_PLT32:
3364     case elfcpp::R_X86_64_PLT32_BND:
3365     case elfcpp::R_X86_64_PLTOFF64:
3366       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
3367
3368     case elfcpp::R_X86_64_GOT64:
3369     case elfcpp::R_X86_64_GOT32:
3370     case elfcpp::R_X86_64_GOTPCREL64:
3371     case elfcpp::R_X86_64_GOTPCREL:
3372     case elfcpp::R_X86_64_GOTPCRELX:
3373     case elfcpp::R_X86_64_REX_GOTPCRELX:
3374     case elfcpp::R_X86_64_GOTPLT64:
3375       // Absolute in GOT.
3376       return Symbol::ABSOLUTE_REF;
3377
3378     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3379     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3380     case elfcpp::R_X86_64_TLSDESC_CALL:
3381     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3382     case elfcpp::R_X86_64_DTPOFF32:
3383     case elfcpp::R_X86_64_DTPOFF64:
3384     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3385     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3386       return Symbol::TLS_REF;
3387
3388     case elfcpp::R_X86_64_COPY:
3389     case elfcpp::R_X86_64_GLOB_DAT:
3390     case elfcpp::R_X86_64_JUMP_SLOT:
3391     case elfcpp::R_X86_64_RELATIVE:
3392     case elfcpp::R_X86_64_IRELATIVE:
3393     case elfcpp::R_X86_64_TPOFF64:
3394     case elfcpp::R_X86_64_DTPMOD64:
3395     case elfcpp::R_X86_64_TLSDESC:
3396     case elfcpp::R_X86_64_SIZE32:
3397     case elfcpp::R_X86_64_SIZE64:
3398     default:
3399       // Not expected.  We will give an error later.
3400       return 0;
3401     }
3402 }
3403
3404 // Report an unsupported relocation against a local symbol.
3405
3406 template<int size>
3407 void
3408 Target_x86_64<size>::Scan::unsupported_reloc_local(
3409      Sized_relobj_file<size, false>* object,
3410      unsigned int r_type)
3411 {
3412   gold_error(_("%s: unsupported reloc %u against local symbol"),
3413              object->name().c_str(), r_type);
3414 }
3415
3416 // We are about to emit a dynamic relocation of type R_TYPE.  If the
3417 // dynamic linker does not support it, issue an error.  The GNU linker
3418 // only issues a non-PIC error for an allocated read-only section.
3419 // Here we know the section is allocated, but we don't know that it is
3420 // read-only.  But we check for all the relocation types which the
3421 // glibc dynamic linker supports, so it seems appropriate to issue an
3422 // error even if the section is not read-only.  If GSYM is not NULL,
3423 // it is the symbol the relocation is against; if it is NULL, the
3424 // relocation is against a local symbol.
3425
3426 template<int size>
3427 void
3428 Target_x86_64<size>::Scan::check_non_pic(Relobj* object, unsigned int r_type,
3429                                          Symbol* gsym)
3430 {
3431   switch (r_type)
3432     {
3433       // These are the relocation types supported by glibc for x86_64
3434       // which should always work.
3435     case elfcpp::R_X86_64_RELATIVE:
3436     case elfcpp::R_X86_64_IRELATIVE:
3437     case elfcpp::R_X86_64_GLOB_DAT:
3438     case elfcpp::R_X86_64_JUMP_SLOT:
3439     case elfcpp::R_X86_64_DTPMOD64:
3440     case elfcpp::R_X86_64_DTPOFF64:
3441     case elfcpp::R_X86_64_TPOFF64:
3442     case elfcpp::R_X86_64_64:
3443     case elfcpp::R_X86_64_COPY:
3444       return;
3445
3446       // glibc supports these reloc types, but they can overflow.
3447     case elfcpp::R_X86_64_PC32:
3448     case elfcpp::R_X86_64_PC32_BND:
3449       // A PC relative reference is OK against a local symbol or if
3450       // the symbol is defined locally.
3451       if (gsym == NULL
3452           || (!gsym->is_from_dynobj()
3453               && !gsym->is_undefined()
3454               && !gsym->is_preemptible()))
3455         return;
3456       // Fall through.
3457     case elfcpp::R_X86_64_32:
3458       // R_X86_64_32 is OK for x32.
3459       if (size == 32 && r_type == elfcpp::R_X86_64_32)
3460         return;
3461       if (this->issued_non_pic_error_)
3462         return;
3463       gold_assert(parameters->options().output_is_position_independent());
3464       if (gsym == NULL)
3465         object->error(_("requires dynamic R_X86_64_32 reloc which may "
3466                         "overflow at runtime; recompile with -fPIC"));
3467       else
3468         {
3469           const char *r_name;
3470           switch (r_type)
3471             {
3472             case elfcpp::R_X86_64_32:
3473               r_name = "R_X86_64_32";
3474               break;
3475             case elfcpp::R_X86_64_PC32:
3476               r_name = "R_X86_64_PC32";
3477               break;
3478             case elfcpp::R_X86_64_PC32_BND:
3479               r_name = "R_X86_64_PC32_BND";
3480               break;
3481             default:
3482               gold_unreachable();
3483               break;
3484             }
3485           object->error(_("requires dynamic %s reloc against '%s' "
3486                           "which may overflow at runtime; recompile "
3487                           "with -fPIC"),
3488                         r_name, gsym->name());
3489         }
3490       this->issued_non_pic_error_ = true;
3491       return;
3492
3493     default:
3494       // This prevents us from issuing more than one error per reloc
3495       // section.  But we can still wind up issuing more than one
3496       // error per object file.
3497       if (this->issued_non_pic_error_)
3498         return;
3499       gold_assert(parameters->options().output_is_position_independent());
3500       object->error(_("requires unsupported dynamic reloc %u; "
3501                       "recompile with -fPIC"),
3502                     r_type);
3503       this->issued_non_pic_error_ = true;
3504       return;
3505
3506     case elfcpp::R_X86_64_NONE:
3507       gold_unreachable();
3508     }
3509 }
3510
3511 // Return whether we need to make a PLT entry for a relocation of the
3512 // given type against a STT_GNU_IFUNC symbol.
3513
3514 template<int size>
3515 bool
3516 Target_x86_64<size>::Scan::reloc_needs_plt_for_ifunc(
3517      Sized_relobj_file<size, false>* object,
3518      unsigned int r_type)
3519 {
3520   int flags = Scan::get_reference_flags(r_type);
3521   if (flags & Symbol::TLS_REF)
3522     gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
3523                object->name().c_str(), r_type);
3524   return flags != 0;
3525 }
3526
3527 // Scan a relocation for a local symbol.
3528
3529 template<int size>
3530 inline void
3531 Target_x86_64<size>::Scan::local(Symbol_table* symtab,
3532                                  Layout* layout,
3533                                  Target_x86_64<size>* target,
3534                                  Sized_relobj_file<size, false>* object,
3535                                  unsigned int data_shndx,
3536                                  Output_section* output_section,
3537                                  const elfcpp::Rela<size, false>& reloc,
3538                                  unsigned int r_type,
3539                                  const elfcpp::Sym<size, false>& lsym,
3540                                  bool is_discarded)
3541 {
3542   if (is_discarded)
3543     return;
3544
3545   // A local STT_GNU_IFUNC symbol may require a PLT entry.
3546   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
3547   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
3548     {
3549       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3550       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
3551     }
3552
3553   switch (r_type)
3554     {
3555     case elfcpp::R_X86_64_NONE:
3556     case elfcpp::R_X86_64_GNU_VTINHERIT:
3557     case elfcpp::R_X86_64_GNU_VTENTRY:
3558       break;
3559
3560     case elfcpp::R_X86_64_64:
3561       // If building a shared library (or a position-independent
3562       // executable), we need to create a dynamic relocation for this
3563       // location.  The relocation applied at link time will apply the
3564       // link-time value, so we flag the location with an
3565       // R_X86_64_RELATIVE relocation so the dynamic loader can
3566       // relocate it easily.
3567       if (parameters->options().output_is_position_independent())
3568         {
3569           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3570           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3571           rela_dyn->add_local_relative(object, r_sym,
3572                                        (size == 32
3573                                         ? elfcpp::R_X86_64_RELATIVE64
3574                                         : elfcpp::R_X86_64_RELATIVE),
3575                                        output_section, data_shndx,
3576                                        reloc.get_r_offset(),
3577                                        reloc.get_r_addend(), is_ifunc);
3578         }
3579       break;
3580
3581     case elfcpp::R_X86_64_32:
3582     case elfcpp::R_X86_64_32S:
3583     case elfcpp::R_X86_64_16:
3584     case elfcpp::R_X86_64_8:
3585       // If building a shared library (or a position-independent
3586       // executable), we need to create a dynamic relocation for this
3587       // location.  We can't use an R_X86_64_RELATIVE relocation
3588       // because that is always a 64-bit relocation.
3589       if (parameters->options().output_is_position_independent())
3590         {
3591           // Use R_X86_64_RELATIVE relocation for R_X86_64_32 under x32.
3592           if (size == 32 && r_type == elfcpp::R_X86_64_32)
3593             {
3594               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3595               Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3596               rela_dyn->add_local_relative(object, r_sym,
3597                                            elfcpp::R_X86_64_RELATIVE,
3598                                            output_section, data_shndx,
3599                                            reloc.get_r_offset(),
3600                                            reloc.get_r_addend(), is_ifunc);
3601               break;
3602             }
3603
3604           this->check_non_pic(object, r_type, NULL);
3605
3606           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3607           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3608           if (lsym.get_st_type() != elfcpp::STT_SECTION)
3609             rela_dyn->add_local(object, r_sym, r_type, output_section,
3610                                 data_shndx, reloc.get_r_offset(),
3611                                 reloc.get_r_addend());
3612           else
3613             {
3614               gold_assert(lsym.get_st_value() == 0);
3615               unsigned int shndx = lsym.get_st_shndx();
3616               bool is_ordinary;
3617               shndx = object->adjust_sym_shndx(r_sym, shndx,
3618                                                &is_ordinary);
3619               if (!is_ordinary)
3620                 object->error(_("section symbol %u has bad shndx %u"),
3621                               r_sym, shndx);
3622               else
3623                 rela_dyn->add_local_section(object, shndx,
3624                                             r_type, output_section,
3625                                             data_shndx, reloc.get_r_offset(),
3626                                             reloc.get_r_addend());
3627             }
3628         }
3629       break;
3630
3631     case elfcpp::R_X86_64_PC64:
3632     case elfcpp::R_X86_64_PC32:
3633     case elfcpp::R_X86_64_PC32_BND:
3634     case elfcpp::R_X86_64_PC16:
3635     case elfcpp::R_X86_64_PC8:
3636       break;
3637
3638     case elfcpp::R_X86_64_PLT32:
3639     case elfcpp::R_X86_64_PLT32_BND:
3640       // Since we know this is a local symbol, we can handle this as a
3641       // PC32 reloc.
3642       break;
3643
3644     case elfcpp::R_X86_64_GOTPC32:
3645     case elfcpp::R_X86_64_GOTOFF64:
3646     case elfcpp::R_X86_64_GOTPC64:
3647     case elfcpp::R_X86_64_PLTOFF64:
3648       // We need a GOT section.
3649       target->got_section(symtab, layout);
3650       // For PLTOFF64, we'd normally want a PLT section, but since we
3651       // know this is a local symbol, no PLT is needed.
3652       break;
3653
3654     case elfcpp::R_X86_64_GOT64:
3655     case elfcpp::R_X86_64_GOT32:
3656     case elfcpp::R_X86_64_GOTPCREL64:
3657     case elfcpp::R_X86_64_GOTPCREL:
3658     case elfcpp::R_X86_64_GOTPCRELX:
3659     case elfcpp::R_X86_64_REX_GOTPCRELX:
3660     case elfcpp::R_X86_64_GOTPLT64:
3661       {
3662         // The symbol requires a GOT section.
3663         Output_data_got<64, false>* got = target->got_section(symtab, layout);
3664
3665         // If the relocation symbol isn't IFUNC,
3666         // and is local, then we will convert
3667         // mov foo@GOTPCREL(%rip), %reg
3668         // to lea foo(%rip), %reg.
3669         // in Relocate::relocate.
3670         if (!parameters->incremental()
3671             && (r_type == elfcpp::R_X86_64_GOTPCREL
3672                 || r_type == elfcpp::R_X86_64_GOTPCRELX
3673                 || r_type == elfcpp::R_X86_64_REX_GOTPCRELX)
3674             && reloc.get_r_offset() >= 2
3675             && !is_ifunc)
3676           {
3677             section_size_type stype;
3678             const unsigned char* view = object->section_contents(data_shndx,
3679                                                                  &stype, true);
3680             if (view[reloc.get_r_offset() - 2] == 0x8b)
3681               break;
3682           }
3683
3684         // The symbol requires a GOT entry.
3685         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3686
3687         // For a STT_GNU_IFUNC symbol we want the PLT offset.  That
3688         // lets function pointers compare correctly with shared
3689         // libraries.  Otherwise we would need an IRELATIVE reloc.
3690         bool is_new;
3691         if (is_ifunc)
3692           is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
3693         else
3694           is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
3695         if (is_new)
3696           {
3697             // If we are generating a shared object, we need to add a
3698             // dynamic relocation for this symbol's GOT entry.
3699             if (parameters->options().output_is_position_independent())
3700               {
3701                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3702                 // R_X86_64_RELATIVE assumes a 64-bit relocation.
3703                 if (r_type != elfcpp::R_X86_64_GOT32)
3704                   {
3705                     unsigned int got_offset =
3706                       object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
3707                     rela_dyn->add_local_relative(object, r_sym,
3708                                                  elfcpp::R_X86_64_RELATIVE,
3709                                                  got, got_offset, 0, is_ifunc);
3710                   }
3711                 else
3712                   {
3713                     this->check_non_pic(object, r_type, NULL);
3714
3715                     gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
3716                     rela_dyn->add_local(
3717                         object, r_sym, r_type, got,
3718                         object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
3719                   }
3720               }
3721           }
3722         // For GOTPLT64, we'd normally want a PLT section, but since
3723         // we know this is a local symbol, no PLT is needed.
3724       }
3725       break;
3726
3727     case elfcpp::R_X86_64_COPY:
3728     case elfcpp::R_X86_64_GLOB_DAT:
3729     case elfcpp::R_X86_64_JUMP_SLOT:
3730     case elfcpp::R_X86_64_RELATIVE:
3731     case elfcpp::R_X86_64_IRELATIVE:
3732       // These are outstanding tls relocs, which are unexpected when linking
3733     case elfcpp::R_X86_64_TPOFF64:
3734     case elfcpp::R_X86_64_DTPMOD64:
3735     case elfcpp::R_X86_64_TLSDESC:
3736       gold_error(_("%s: unexpected reloc %u in object file"),
3737                  object->name().c_str(), r_type);
3738       break;
3739
3740       // These are initial tls relocs, which are expected when linking
3741     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3742     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3743     case elfcpp::R_X86_64_TLSDESC_CALL:
3744     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3745     case elfcpp::R_X86_64_DTPOFF32:
3746     case elfcpp::R_X86_64_DTPOFF64:
3747     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3748     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3749       {
3750         bool output_is_shared = parameters->options().shared();
3751         const tls::Tls_optimization optimized_type
3752             = Target_x86_64<size>::optimize_tls_reloc(!output_is_shared,
3753                                                       r_type);
3754         switch (r_type)
3755           {
3756           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
3757             if (optimized_type == tls::TLSOPT_NONE)
3758               {
3759                 // Create a pair of GOT entries for the module index and
3760                 // dtv-relative offset.
3761                 Output_data_got<64, false>* got
3762                     = target->got_section(symtab, layout);
3763                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3764                 unsigned int shndx = lsym.get_st_shndx();
3765                 bool is_ordinary;
3766                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
3767                 if (!is_ordinary)
3768                   object->error(_("local symbol %u has bad shndx %u"),
3769                               r_sym, shndx);
3770                 else
3771                   got->add_local_pair_with_rel(object, r_sym,
3772                                                shndx,
3773                                                GOT_TYPE_TLS_PAIR,
3774                                                target->rela_dyn_section(layout),
3775                                                elfcpp::R_X86_64_DTPMOD64);
3776               }
3777             else if (optimized_type != tls::TLSOPT_TO_LE)
3778               unsupported_reloc_local(object, r_type);
3779             break;
3780
3781           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
3782             target->define_tls_base_symbol(symtab, layout);
3783             if (optimized_type == tls::TLSOPT_NONE)
3784               {
3785                 // Create reserved PLT and GOT entries for the resolver.
3786                 target->reserve_tlsdesc_entries(symtab, layout);
3787
3788                 // Generate a double GOT entry with an
3789                 // R_X86_64_TLSDESC reloc.  The R_X86_64_TLSDESC reloc
3790                 // is resolved lazily, so the GOT entry needs to be in
3791                 // an area in .got.plt, not .got.  Call got_section to
3792                 // make sure the section has been created.
3793                 target->got_section(symtab, layout);
3794                 Output_data_got<64, false>* got = target->got_tlsdesc_section();
3795                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3796                 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
3797                   {
3798                     unsigned int got_offset = got->add_constant(0);
3799                     got->add_constant(0);
3800                     object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
3801                                                  got_offset);
3802                     Reloc_section* rt = target->rela_tlsdesc_section(layout);
3803                     // We store the arguments we need in a vector, and
3804                     // use the index into the vector as the parameter
3805                     // to pass to the target specific routines.
3806                     uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
3807                     void* arg = reinterpret_cast<void*>(intarg);
3808                     rt->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
3809                                             got, got_offset, 0);
3810                   }
3811               }
3812             else if (optimized_type != tls::TLSOPT_TO_LE)
3813               unsupported_reloc_local(object, r_type);
3814             break;
3815
3816           case elfcpp::R_X86_64_TLSDESC_CALL:
3817             break;
3818
3819           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
3820             if (optimized_type == tls::TLSOPT_NONE)
3821               {
3822                 // Create a GOT entry for the module index.
3823                 target->got_mod_index_entry(symtab, layout, object);
3824               }
3825             else if (optimized_type != tls::TLSOPT_TO_LE)
3826               unsupported_reloc_local(object, r_type);
3827             break;
3828
3829           case elfcpp::R_X86_64_DTPOFF32:
3830           case elfcpp::R_X86_64_DTPOFF64:
3831             break;
3832
3833           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
3834             layout->set_has_static_tls();
3835             if (optimized_type == tls::TLSOPT_NONE)
3836               {
3837                 // Create a GOT entry for the tp-relative offset.
3838                 Output_data_got<64, false>* got
3839                     = target->got_section(symtab, layout);
3840                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3841                 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
3842                                         target->rela_dyn_section(layout),
3843                                         elfcpp::R_X86_64_TPOFF64);
3844               }
3845             else if (optimized_type != tls::TLSOPT_TO_LE)
3846               unsupported_reloc_local(object, r_type);
3847             break;
3848
3849           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
3850             layout->set_has_static_tls();
3851             if (output_is_shared)
3852               unsupported_reloc_local(object, r_type);
3853             break;
3854
3855           default:
3856             gold_unreachable();
3857           }
3858       }
3859       break;
3860
3861     case elfcpp::R_X86_64_SIZE32:
3862     case elfcpp::R_X86_64_SIZE64:
3863     default:
3864       gold_error(_("%s: unsupported reloc %u against local symbol"),
3865                  object->name().c_str(), r_type);
3866       break;
3867     }
3868 }
3869
3870
3871 // Report an unsupported relocation against a global symbol.
3872
3873 template<int size>
3874 void
3875 Target_x86_64<size>::Scan::unsupported_reloc_global(
3876     Sized_relobj_file<size, false>* object,
3877     unsigned int r_type,
3878     Symbol* gsym)
3879 {
3880   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3881              object->name().c_str(), r_type, gsym->demangled_name().c_str());
3882 }
3883
3884 // Returns true if this relocation type could be that of a function pointer.
3885 template<int size>
3886 inline bool
3887 Target_x86_64<size>::Scan::possible_function_pointer_reloc(
3888     Sized_relobj_file<size, false>* src_obj,
3889     unsigned int src_indx,
3890     unsigned int r_offset,
3891     unsigned int r_type)
3892 {
3893   switch (r_type)
3894     {
3895     case elfcpp::R_X86_64_64:
3896     case elfcpp::R_X86_64_32:
3897     case elfcpp::R_X86_64_32S:
3898     case elfcpp::R_X86_64_16:
3899     case elfcpp::R_X86_64_8:
3900     case elfcpp::R_X86_64_GOT64:
3901     case elfcpp::R_X86_64_GOT32:
3902     case elfcpp::R_X86_64_GOTPCREL64:
3903     case elfcpp::R_X86_64_GOTPCREL:
3904     case elfcpp::R_X86_64_GOTPCRELX:
3905     case elfcpp::R_X86_64_REX_GOTPCRELX:
3906     case elfcpp::R_X86_64_GOTPLT64:
3907       {
3908         return true;
3909       }
3910     case elfcpp::R_X86_64_PC32:
3911       {
3912         // This relocation may be used both for function calls and
3913         // for taking address of a function. We distinguish between
3914         // them by checking the opcodes.
3915         uint64_t sh_flags = src_obj->section_flags(src_indx);
3916         bool is_executable = (sh_flags & elfcpp::SHF_EXECINSTR) != 0;
3917         if (is_executable)
3918           {
3919             section_size_type stype;
3920             const unsigned char* view = src_obj->section_contents(src_indx,
3921                                                                   &stype,
3922                                                                   true);
3923
3924             // call
3925             if (r_offset >= 1
3926                 && view[r_offset - 1] == 0xe8)
3927               return false;
3928
3929             // jmp
3930             if (r_offset >= 1
3931                 && view[r_offset - 1] == 0xe9)
3932               return false;
3933
3934             // jo/jno/jb/jnb/je/jne/jna/ja/js/jns/jp/jnp/jl/jge/jle/jg
3935             if (r_offset >= 2
3936                 && view[r_offset - 2] == 0x0f
3937                 && view[r_offset - 1] >= 0x80
3938                 && view[r_offset - 1] <= 0x8f)
3939               return false;
3940           }
3941
3942         // Be conservative and treat all others as function pointers.
3943         return true;
3944       }
3945     }
3946   return false;
3947 }
3948
3949 // For safe ICF, scan a relocation for a local symbol to check if it
3950 // corresponds to a function pointer being taken.  In that case mark
3951 // the function whose pointer was taken as not foldable.
3952
3953 template<int size>
3954 inline bool
3955 Target_x86_64<size>::Scan::local_reloc_may_be_function_pointer(
3956   Symbol_table* ,
3957   Layout* ,
3958   Target_x86_64<size>* ,
3959   Sized_relobj_file<size, false>* src_obj,
3960   unsigned int src_indx,
3961   Output_section* ,
3962   const elfcpp::Rela<size, false>& reloc,
3963   unsigned int r_type,
3964   const elfcpp::Sym<size, false>&)
3965 {
3966   // When building a shared library, do not fold any local symbols as it is
3967   // not possible to distinguish pointer taken versus a call by looking at
3968   // the relocation types.
3969   if (parameters->options().shared())
3970     return true;
3971
3972   return possible_function_pointer_reloc(src_obj, src_indx,
3973                                          reloc.get_r_offset(), r_type);
3974 }
3975
3976 // For safe ICF, scan a relocation for a global symbol to check if it
3977 // corresponds to a function pointer being taken.  In that case mark
3978 // the function whose pointer was taken as not foldable.
3979
3980 template<int size>
3981 inline bool
3982 Target_x86_64<size>::Scan::global_reloc_may_be_function_pointer(
3983   Symbol_table*,
3984   Layout* ,
3985   Target_x86_64<size>* ,
3986   Sized_relobj_file<size, false>* src_obj,
3987   unsigned int src_indx,
3988   Output_section* ,
3989   const elfcpp::Rela<size, false>& reloc,
3990   unsigned int r_type,
3991   Symbol* gsym)
3992 {
3993   // When building a shared library, do not fold symbols whose visibility
3994   // is hidden, internal or protected.
3995   if (parameters->options().shared()
3996       && (gsym->visibility() == elfcpp::STV_INTERNAL
3997           || gsym->visibility() == elfcpp::STV_PROTECTED
3998           || gsym->visibility() == elfcpp::STV_HIDDEN))
3999     return true;
4000
4001   return possible_function_pointer_reloc(src_obj, src_indx,
4002                                          reloc.get_r_offset(), r_type);
4003 }
4004
4005 // Scan a relocation for a global symbol.
4006
4007 template<int size>
4008 inline void
4009 Target_x86_64<size>::Scan::global(Symbol_table* symtab,
4010                             Layout* layout,
4011                             Target_x86_64<size>* target,
4012                             Sized_relobj_file<size, false>* object,
4013                             unsigned int data_shndx,
4014                             Output_section* output_section,
4015                             const elfcpp::Rela<size, false>& reloc,
4016                             unsigned int r_type,
4017                             Symbol* gsym)
4018 {
4019   // A STT_GNU_IFUNC symbol may require a PLT entry.
4020   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4021       && this->reloc_needs_plt_for_ifunc(object, r_type))
4022     target->make_plt_entry(symtab, layout, gsym);
4023
4024   switch (r_type)
4025     {
4026     case elfcpp::R_X86_64_NONE:
4027     case elfcpp::R_X86_64_GNU_VTINHERIT:
4028     case elfcpp::R_X86_64_GNU_VTENTRY:
4029       break;
4030
4031     case elfcpp::R_X86_64_64:
4032     case elfcpp::R_X86_64_32:
4033     case elfcpp::R_X86_64_32S:
4034     case elfcpp::R_X86_64_16:
4035     case elfcpp::R_X86_64_8:
4036       {
4037         // Make a PLT entry if necessary.
4038         if (gsym->needs_plt_entry())
4039           {
4040             target->make_plt_entry(symtab, layout, gsym);
4041             // Since this is not a PC-relative relocation, we may be
4042             // taking the address of a function. In that case we need to
4043             // set the entry in the dynamic symbol table to the address of
4044             // the PLT entry.
4045             if (gsym->is_from_dynobj() && !parameters->options().shared())
4046               gsym->set_needs_dynsym_value();
4047           }
4048         // Make a dynamic relocation if necessary.
4049         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
4050           {
4051             if (!parameters->options().output_is_position_independent()
4052                 && gsym->may_need_copy_reloc())
4053               {
4054                 target->copy_reloc(symtab, layout, object,
4055                                    data_shndx, output_section, gsym, reloc);
4056               }
4057             else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
4058                       || (size == 32 && r_type == elfcpp::R_X86_64_32))
4059                      && gsym->type() == elfcpp::STT_GNU_IFUNC
4060                      && gsym->can_use_relative_reloc(false)
4061                      && !gsym->is_from_dynobj()
4062                      && !gsym->is_undefined()
4063                      && !gsym->is_preemptible())
4064               {
4065                 // Use an IRELATIVE reloc for a locally defined
4066                 // STT_GNU_IFUNC symbol.  This makes a function
4067                 // address in a PIE executable match the address in a
4068                 // shared library that it links against.
4069                 Reloc_section* rela_dyn =
4070                   target->rela_irelative_section(layout);
4071                 unsigned int r_type = elfcpp::R_X86_64_IRELATIVE;
4072                 rela_dyn->add_symbolless_global_addend(gsym, r_type,
4073                                                        output_section, object,
4074                                                        data_shndx,
4075                                                        reloc.get_r_offset(),
4076                                                        reloc.get_r_addend());
4077               }
4078             else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
4079                       || (size == 32 && r_type == elfcpp::R_X86_64_32))
4080                      && gsym->can_use_relative_reloc(false))
4081               {
4082                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4083                 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
4084                                               output_section, object,
4085                                               data_shndx,
4086                                               reloc.get_r_offset(),
4087                                               reloc.get_r_addend(), false);
4088               }
4089             else
4090               {
4091                 this->check_non_pic(object, r_type, gsym);
4092                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4093                 rela_dyn->add_global(gsym, r_type, output_section, object,
4094                                      data_shndx, reloc.get_r_offset(),
4095                                      reloc.get_r_addend());
4096               }
4097           }
4098       }
4099       break;
4100
4101     case elfcpp::R_X86_64_PC64:
4102     case elfcpp::R_X86_64_PC32:
4103     case elfcpp::R_X86_64_PC32_BND:
4104     case elfcpp::R_X86_64_PC16:
4105     case elfcpp::R_X86_64_PC8:
4106       {
4107         // Make a PLT entry if necessary.
4108         if (gsym->needs_plt_entry())
4109           target->make_plt_entry(symtab, layout, gsym);
4110         // Make a dynamic relocation if necessary.
4111         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
4112           {
4113             if (parameters->options().output_is_executable()
4114                 && gsym->may_need_copy_reloc())
4115               {
4116                 target->copy_reloc(symtab, layout, object,
4117                                    data_shndx, output_section, gsym, reloc);
4118               }
4119             else
4120               {
4121                 this->check_non_pic(object, r_type, gsym);
4122                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4123                 rela_dyn->add_global(gsym, r_type, output_section, object,
4124                                      data_shndx, reloc.get_r_offset(),
4125                                      reloc.get_r_addend());
4126               }
4127           }
4128       }
4129       break;
4130
4131     case elfcpp::R_X86_64_GOT64:
4132     case elfcpp::R_X86_64_GOT32:
4133     case elfcpp::R_X86_64_GOTPCREL64:
4134     case elfcpp::R_X86_64_GOTPCREL:
4135     case elfcpp::R_X86_64_GOTPCRELX:
4136     case elfcpp::R_X86_64_REX_GOTPCRELX:
4137     case elfcpp::R_X86_64_GOTPLT64:
4138       {
4139         // The symbol requires a GOT entry.
4140         Output_data_got<64, false>* got = target->got_section(symtab, layout);
4141
4142         // If we convert this from
4143         // mov foo@GOTPCREL(%rip), %reg
4144         // to lea foo(%rip), %reg.
4145         // OR
4146         // if we convert
4147         // (callq|jmpq) *foo@GOTPCRELX(%rip) to
4148         // (callq|jmpq) foo
4149         // in Relocate::relocate, then there is nothing to do here.
4150         // We cannot make these optimizations in incremental linking mode,
4151         // because we look at the opcode to decide whether or not to make
4152         // change, and during an incremental update, the change may have
4153         // already been applied.
4154
4155         Lazy_view<size> view(object, data_shndx);
4156         size_t r_offset = reloc.get_r_offset();
4157         if (!parameters->incremental()
4158             && r_offset >= 2
4159             && Target_x86_64<size>::can_convert_mov_to_lea(gsym, r_type,
4160                                                            r_offset, &view))
4161           break;
4162
4163         if (!parameters->incremental()
4164             && r_offset >= 2
4165             && Target_x86_64<size>::can_convert_callq_to_direct(gsym, r_type,
4166                                                                 r_offset,
4167                                                                 &view))
4168           break;
4169
4170         if (gsym->final_value_is_known())
4171           {
4172             // For a STT_GNU_IFUNC symbol we want the PLT address.
4173             if (gsym->type() == elfcpp::STT_GNU_IFUNC)
4174               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
4175             else
4176               got->add_global(gsym, GOT_TYPE_STANDARD);
4177           }
4178         else
4179           {
4180             // If this symbol is not fully resolved, we need to add a
4181             // dynamic relocation for it.
4182             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4183
4184             // Use a GLOB_DAT rather than a RELATIVE reloc if:
4185             //
4186             // 1) The symbol may be defined in some other module.
4187             //
4188             // 2) We are building a shared library and this is a
4189             // protected symbol; using GLOB_DAT means that the dynamic
4190             // linker can use the address of the PLT in the main
4191             // executable when appropriate so that function address
4192             // comparisons work.
4193             //
4194             // 3) This is a STT_GNU_IFUNC symbol in position dependent
4195             // code, again so that function address comparisons work.
4196             if (gsym->is_from_dynobj()
4197                 || gsym->is_undefined()
4198                 || gsym->is_preemptible()
4199                 || (gsym->visibility() == elfcpp::STV_PROTECTED
4200                     && parameters->options().shared())
4201                 || (gsym->type() == elfcpp::STT_GNU_IFUNC
4202                     && parameters->options().output_is_position_independent()))
4203               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
4204                                        elfcpp::R_X86_64_GLOB_DAT);
4205             else
4206               {
4207                 // For a STT_GNU_IFUNC symbol we want to write the PLT
4208                 // offset into the GOT, so that function pointer
4209                 // comparisons work correctly.
4210                 bool is_new;
4211                 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
4212                   is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
4213                 else
4214                   {
4215                     is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
4216                     // Tell the dynamic linker to use the PLT address
4217                     // when resolving relocations.
4218                     if (gsym->is_from_dynobj()
4219                         && !parameters->options().shared())
4220                       gsym->set_needs_dynsym_value();
4221                   }
4222                 if (is_new)
4223                   {
4224                     unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
4225                     rela_dyn->add_global_relative(gsym,
4226                                                   elfcpp::R_X86_64_RELATIVE,
4227                                                   got, got_off, 0, false);
4228                   }
4229               }
4230           }
4231       }
4232       break;
4233
4234     case elfcpp::R_X86_64_PLT32:
4235     case elfcpp::R_X86_64_PLT32_BND:
4236       // If the symbol is fully resolved, this is just a PC32 reloc.
4237       // Otherwise we need a PLT entry.
4238       if (gsym->final_value_is_known())
4239         break;
4240       // If building a shared library, we can also skip the PLT entry
4241       // if the symbol is defined in the output file and is protected
4242       // or hidden.
4243       if (gsym->is_defined()
4244           && !gsym->is_from_dynobj()
4245           && !gsym->is_preemptible())
4246         break;
4247       target->make_plt_entry(symtab, layout, gsym);
4248       break;
4249
4250     case elfcpp::R_X86_64_GOTPC32:
4251     case elfcpp::R_X86_64_GOTOFF64:
4252     case elfcpp::R_X86_64_GOTPC64:
4253     case elfcpp::R_X86_64_PLTOFF64:
4254       // We need a GOT section.
4255       target->got_section(symtab, layout);
4256       // For PLTOFF64, we also need a PLT entry (but only if the
4257       // symbol is not fully resolved).
4258       if (r_type == elfcpp::R_X86_64_PLTOFF64
4259           && !gsym->final_value_is_known())
4260         target->make_plt_entry(symtab, layout, gsym);
4261       break;
4262
4263     case elfcpp::R_X86_64_COPY:
4264     case elfcpp::R_X86_64_GLOB_DAT:
4265     case elfcpp::R_X86_64_JUMP_SLOT:
4266     case elfcpp::R_X86_64_RELATIVE:
4267     case elfcpp::R_X86_64_IRELATIVE:
4268       // These are outstanding tls relocs, which are unexpected when linking
4269     case elfcpp::R_X86_64_TPOFF64:
4270     case elfcpp::R_X86_64_DTPMOD64:
4271     case elfcpp::R_X86_64_TLSDESC:
4272       gold_error(_("%s: unexpected reloc %u in object file"),
4273                  object->name().c_str(), r_type);
4274       break;
4275
4276       // These are initial tls relocs, which are expected for global()
4277     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
4278     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
4279     case elfcpp::R_X86_64_TLSDESC_CALL:
4280     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
4281     case elfcpp::R_X86_64_DTPOFF32:
4282     case elfcpp::R_X86_64_DTPOFF64:
4283     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
4284     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
4285       {
4286         // For the Initial-Exec model, we can treat undef symbols as final
4287         // when building an executable.
4288         const bool is_final = (gsym->final_value_is_known() ||
4289                                (r_type == elfcpp::R_X86_64_GOTTPOFF &&
4290                                 gsym->is_undefined() &&
4291                                 parameters->options().output_is_executable()));
4292         const tls::Tls_optimization optimized_type
4293             = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
4294         switch (r_type)
4295           {
4296           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
4297             if (optimized_type == tls::TLSOPT_NONE)
4298               {
4299                 // Create a pair of GOT entries for the module index and
4300                 // dtv-relative offset.
4301                 Output_data_got<64, false>* got
4302                     = target->got_section(symtab, layout);
4303                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
4304                                               target->rela_dyn_section(layout),
4305                                               elfcpp::R_X86_64_DTPMOD64,
4306                                               elfcpp::R_X86_64_DTPOFF64);
4307               }
4308             else if (optimized_type == tls::TLSOPT_TO_IE)
4309               {
4310                 // Create a GOT entry for the tp-relative offset.
4311                 Output_data_got<64, false>* got
4312                     = target->got_section(symtab, layout);
4313                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
4314                                          target->rela_dyn_section(layout),
4315                                          elfcpp::R_X86_64_TPOFF64);
4316               }
4317             else if (optimized_type != tls::TLSOPT_TO_LE)
4318               unsupported_reloc_global(object, r_type, gsym);
4319             break;
4320
4321           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
4322             target->define_tls_base_symbol(symtab, layout);
4323             if (optimized_type == tls::TLSOPT_NONE)
4324               {
4325                 // Create reserved PLT and GOT entries for the resolver.
4326                 target->reserve_tlsdesc_entries(symtab, layout);
4327
4328                 // Create a double GOT entry with an R_X86_64_TLSDESC
4329                 // reloc.  The R_X86_64_TLSDESC reloc is resolved
4330                 // lazily, so the GOT entry needs to be in an area in
4331                 // .got.plt, not .got.  Call got_section to make sure
4332                 // the section has been created.
4333                 target->got_section(symtab, layout);
4334                 Output_data_got<64, false>* got = target->got_tlsdesc_section();
4335                 Reloc_section* rt = target->rela_tlsdesc_section(layout);
4336                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
4337                                               elfcpp::R_X86_64_TLSDESC, 0);
4338               }
4339             else if (optimized_type == tls::TLSOPT_TO_IE)
4340               {
4341                 // Create a GOT entry for the tp-relative offset.
4342                 Output_data_got<64, false>* got
4343                     = target->got_section(symtab, layout);
4344                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
4345                                          target->rela_dyn_section(layout),
4346                                          elfcpp::R_X86_64_TPOFF64);
4347               }
4348             else if (optimized_type != tls::TLSOPT_TO_LE)
4349               unsupported_reloc_global(object, r_type, gsym);
4350             break;
4351
4352           case elfcpp::R_X86_64_TLSDESC_CALL:
4353             break;
4354
4355           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
4356             if (optimized_type == tls::TLSOPT_NONE)
4357               {
4358                 // Create a GOT entry for the module index.
4359                 target->got_mod_index_entry(symtab, layout, object);
4360               }
4361             else if (optimized_type != tls::TLSOPT_TO_LE)
4362               unsupported_reloc_global(object, r_type, gsym);
4363             break;
4364
4365           case elfcpp::R_X86_64_DTPOFF32:
4366           case elfcpp::R_X86_64_DTPOFF64:
4367             break;
4368
4369           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
4370             layout->set_has_static_tls();
4371             if (optimized_type == tls::TLSOPT_NONE)
4372               {
4373                 // Create a GOT entry for the tp-relative offset.
4374                 Output_data_got<64, false>* got
4375                     = target->got_section(symtab, layout);
4376                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
4377                                          target->rela_dyn_section(layout),
4378                                          elfcpp::R_X86_64_TPOFF64);
4379               }
4380             else if (optimized_type != tls::TLSOPT_TO_LE)
4381               unsupported_reloc_global(object, r_type, gsym);
4382             break;
4383
4384           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
4385             layout->set_has_static_tls();
4386             if (parameters->options().shared())
4387               unsupported_reloc_global(object, r_type, gsym);
4388             break;
4389
4390           default:
4391             gold_unreachable();
4392           }
4393       }
4394       break;
4395
4396     case elfcpp::R_X86_64_SIZE32:
4397     case elfcpp::R_X86_64_SIZE64:
4398     default:
4399       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
4400                  object->name().c_str(), r_type,
4401                  gsym->demangled_name().c_str());
4402       break;
4403     }
4404 }
4405
4406 template<int size>
4407 void
4408 Target_x86_64<size>::gc_process_relocs(Symbol_table* symtab,
4409                                        Layout* layout,
4410                                        Sized_relobj_file<size, false>* object,
4411                                        unsigned int data_shndx,
4412                                        unsigned int sh_type,
4413                                        const unsigned char* prelocs,
4414                                        size_t reloc_count,
4415                                        Output_section* output_section,
4416                                        bool needs_special_offset_handling,
4417                                        size_t local_symbol_count,
4418                                        const unsigned char* plocal_symbols)
4419 {
4420   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
4421       Classify_reloc;
4422
4423   if (sh_type == elfcpp::SHT_REL)
4424     {
4425       return;
4426     }
4427
4428    gold::gc_process_relocs<size, false, Target_x86_64<size>, Scan,
4429                            Classify_reloc>(
4430     symtab,
4431     layout,
4432     this,
4433     object,
4434     data_shndx,
4435     prelocs,
4436     reloc_count,
4437     output_section,
4438     needs_special_offset_handling,
4439     local_symbol_count,
4440     plocal_symbols);
4441
4442 }
4443 // Scan relocations for a section.
4444
4445 template<int size>
4446 void
4447 Target_x86_64<size>::scan_relocs(Symbol_table* symtab,
4448                                  Layout* layout,
4449                                  Sized_relobj_file<size, false>* object,
4450                                  unsigned int data_shndx,
4451                                  unsigned int sh_type,
4452                                  const unsigned char* prelocs,
4453                                  size_t reloc_count,
4454                                  Output_section* output_section,
4455                                  bool needs_special_offset_handling,
4456                                  size_t local_symbol_count,
4457                                  const unsigned char* plocal_symbols)
4458 {
4459   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
4460       Classify_reloc;
4461
4462   if (sh_type == elfcpp::SHT_REL)
4463     {
4464       gold_error(_("%s: unsupported REL reloc section"),
4465                  object->name().c_str());
4466       return;
4467     }
4468
4469   gold::scan_relocs<size, false, Target_x86_64<size>, Scan, Classify_reloc>(
4470     symtab,
4471     layout,
4472     this,
4473     object,
4474     data_shndx,
4475     prelocs,
4476     reloc_count,
4477     output_section,
4478     needs_special_offset_handling,
4479     local_symbol_count,
4480     plocal_symbols);
4481 }
4482
4483 // Finalize the sections.
4484
4485 template<int size>
4486 void
4487 Target_x86_64<size>::do_finalize_sections(
4488     Layout* layout,
4489     const Input_objects*,
4490     Symbol_table* symtab)
4491 {
4492   const Reloc_section* rel_plt = (this->plt_ == NULL
4493                                   ? NULL
4494                                   : this->plt_->rela_plt());
4495   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
4496                                   this->rela_dyn_, true, false);
4497
4498   // Fill in some more dynamic tags.
4499   Output_data_dynamic* const odyn = layout->dynamic_data();
4500   if (odyn != NULL)
4501     {
4502       if (this->plt_ != NULL
4503           && this->plt_->output_section() != NULL
4504           && this->plt_->has_tlsdesc_entry())
4505         {
4506           unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
4507           unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
4508           this->got_->finalize_data_size();
4509           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
4510                                         this->plt_, plt_offset);
4511           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
4512                                         this->got_, got_offset);
4513         }
4514     }
4515
4516   // Emit any relocs we saved in an attempt to avoid generating COPY
4517   // relocs.
4518   if (this->copy_relocs_.any_saved_relocs())
4519     this->copy_relocs_.emit(this->rela_dyn_section(layout));
4520
4521   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
4522   // the .got.plt section.
4523   Symbol* sym = this->global_offset_table_;
4524   if (sym != NULL)
4525     {
4526       uint64_t data_size = this->got_plt_->current_data_size();
4527       symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
4528     }
4529
4530   if (parameters->doing_static_link()
4531       && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
4532     {
4533       // If linking statically, make sure that the __rela_iplt symbols
4534       // were defined if necessary, even if we didn't create a PLT.
4535       static const Define_symbol_in_segment syms[] =
4536         {
4537           {
4538             "__rela_iplt_start",        // name
4539             elfcpp::PT_LOAD,            // segment_type
4540             elfcpp::PF_W,               // segment_flags_set
4541             elfcpp::PF(0),              // segment_flags_clear
4542             0,                          // value
4543             0,                          // size
4544             elfcpp::STT_NOTYPE,         // type
4545             elfcpp::STB_GLOBAL,         // binding
4546             elfcpp::STV_HIDDEN,         // visibility
4547             0,                          // nonvis
4548             Symbol::SEGMENT_START,      // offset_from_base
4549             true                        // only_if_ref
4550           },
4551           {
4552             "__rela_iplt_end",          // name
4553             elfcpp::PT_LOAD,            // segment_type
4554             elfcpp::PF_W,               // segment_flags_set
4555             elfcpp::PF(0),              // segment_flags_clear
4556             0,                          // value
4557             0,                          // size
4558             elfcpp::STT_NOTYPE,         // type
4559             elfcpp::STB_GLOBAL,         // binding
4560             elfcpp::STV_HIDDEN,         // visibility
4561             0,                          // nonvis
4562             Symbol::SEGMENT_START,      // offset_from_base
4563             true                        // only_if_ref
4564           }
4565         };
4566
4567       symtab->define_symbols(layout, 2, syms,
4568                              layout->script_options()->saw_sections_clause());
4569     }
4570 }
4571
4572 // For x32, we need to handle PC-relative relocations using full 64-bit
4573 // arithmetic, so that we can detect relocation overflows properly.
4574 // This class overrides the pcrela32_check methods from the defaults in
4575 // Relocate_functions in reloc.h.
4576
4577 template<int size>
4578 class X86_64_relocate_functions : public Relocate_functions<size, false>
4579 {
4580  public:
4581   typedef Relocate_functions<size, false> Base;
4582
4583   // Do a simple PC relative relocation with the addend in the
4584   // relocation.
4585   static inline typename Base::Reloc_status
4586   pcrela32_check(unsigned char* view,
4587                  typename elfcpp::Elf_types<64>::Elf_Addr value,
4588                  typename elfcpp::Elf_types<64>::Elf_Swxword addend,
4589                  typename elfcpp::Elf_types<64>::Elf_Addr address)
4590   {
4591     typedef typename elfcpp::Swap<32, false>::Valtype Valtype;
4592     Valtype* wv = reinterpret_cast<Valtype*>(view);
4593     value = value + addend - address;
4594     elfcpp::Swap<32, false>::writeval(wv, value);
4595     return (Bits<32>::has_overflow(value)
4596             ? Base::RELOC_OVERFLOW : Base::RELOC_OK);
4597   }
4598
4599   // Do a simple PC relative relocation with a Symbol_value with the
4600   // addend in the relocation.
4601   static inline typename Base::Reloc_status
4602   pcrela32_check(unsigned char* view,
4603                  const Sized_relobj_file<size, false>* object,
4604                  const Symbol_value<size>* psymval,
4605                  typename elfcpp::Elf_types<64>::Elf_Swxword addend,
4606                  typename elfcpp::Elf_types<64>::Elf_Addr address)
4607   {
4608     typedef typename elfcpp::Swap<32, false>::Valtype Valtype;
4609     Valtype* wv = reinterpret_cast<Valtype*>(view);
4610     typename elfcpp::Elf_types<64>::Elf_Addr value;
4611     if (addend >= 0)
4612       value = psymval->value(object, addend);
4613     else
4614       {
4615         // For negative addends, get the symbol value without
4616         // the addend, then add the addend using 64-bit arithmetic.
4617         value = psymval->value(object, 0);
4618         value += addend;
4619       }
4620     value -= address;
4621     elfcpp::Swap<32, false>::writeval(wv, value);
4622     return (Bits<32>::has_overflow(value)
4623             ? Base::RELOC_OVERFLOW : Base::RELOC_OK);
4624   }
4625 };
4626
4627 // Perform a relocation.
4628
4629 template<int size>
4630 inline bool
4631 Target_x86_64<size>::Relocate::relocate(
4632     const Relocate_info<size, false>* relinfo,
4633     unsigned int,
4634     Target_x86_64<size>* target,
4635     Output_section*,
4636     size_t relnum,
4637     const unsigned char* preloc,
4638     const Sized_symbol<size>* gsym,
4639     const Symbol_value<size>* psymval,
4640     unsigned char* view,
4641     typename elfcpp::Elf_types<size>::Elf_Addr address,
4642     section_size_type view_size)
4643 {
4644   typedef X86_64_relocate_functions<size> Reloc_funcs;
4645   const elfcpp::Rela<size, false> rela(preloc);
4646   unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
4647
4648   if (this->skip_call_tls_get_addr_)
4649     {
4650       if ((r_type != elfcpp::R_X86_64_PLT32
4651            && r_type != elfcpp::R_X86_64_GOTPCREL
4652            && r_type != elfcpp::R_X86_64_GOTPCRELX
4653            && r_type != elfcpp::R_X86_64_PLT32_BND
4654            && r_type != elfcpp::R_X86_64_PC32_BND
4655            && r_type != elfcpp::R_X86_64_PC32)
4656           || gsym == NULL
4657           || strcmp(gsym->name(), "__tls_get_addr") != 0)
4658         {
4659           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4660                                  _("missing expected TLS relocation"));
4661           this->skip_call_tls_get_addr_ = false;
4662         }
4663       else
4664         {
4665           this->skip_call_tls_get_addr_ = false;
4666           return false;
4667         }
4668     }
4669
4670   if (view == NULL)
4671     return true;
4672
4673   const Sized_relobj_file<size, false>* object = relinfo->object;
4674
4675   // Pick the value to use for symbols defined in the PLT.
4676   Symbol_value<size> symval;
4677   if (gsym != NULL
4678       && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
4679     {
4680       symval.set_output_value(target->plt_address_for_global(gsym));
4681       psymval = &symval;
4682     }
4683   else if (gsym == NULL && psymval->is_ifunc_symbol())
4684     {
4685       unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4686       if (object->local_has_plt_offset(r_sym))
4687         {
4688           symval.set_output_value(target->plt_address_for_local(object, r_sym));
4689           psymval = &symval;
4690         }
4691     }
4692
4693   const elfcpp::Elf_Xword addend = rela.get_r_addend();
4694
4695   // Get the GOT offset if needed.
4696   // The GOT pointer points to the end of the GOT section.
4697   // We need to subtract the size of the GOT section to get
4698   // the actual offset to use in the relocation.
4699   bool have_got_offset = false;
4700   // Since the actual offset is always negative, we use signed int to
4701   // support 64-bit GOT relocations.
4702   int got_offset = 0;
4703   switch (r_type)
4704     {
4705     case elfcpp::R_X86_64_GOT32:
4706     case elfcpp::R_X86_64_GOT64:
4707     case elfcpp::R_X86_64_GOTPLT64:
4708     case elfcpp::R_X86_64_GOTPCREL64:
4709       if (gsym != NULL)
4710         {
4711           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
4712           got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
4713         }
4714       else
4715         {
4716           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4717           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
4718           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
4719                         - target->got_size());
4720         }
4721       have_got_offset = true;
4722       break;
4723
4724     default:
4725       break;
4726     }
4727
4728   typename Reloc_funcs::Reloc_status rstatus = Reloc_funcs::RELOC_OK;
4729
4730   switch (r_type)
4731     {
4732     case elfcpp::R_X86_64_NONE:
4733     case elfcpp::R_X86_64_GNU_VTINHERIT:
4734     case elfcpp::R_X86_64_GNU_VTENTRY:
4735       break;
4736
4737     case elfcpp::R_X86_64_64:
4738       Reloc_funcs::rela64(view, object, psymval, addend);
4739       break;
4740
4741     case elfcpp::R_X86_64_PC64:
4742       Reloc_funcs::pcrela64(view, object, psymval, addend,
4743                                               address);
4744       break;
4745
4746     case elfcpp::R_X86_64_32:
4747       rstatus = Reloc_funcs::rela32_check(view, object, psymval, addend,
4748                                           Reloc_funcs::CHECK_UNSIGNED);
4749       break;
4750
4751     case elfcpp::R_X86_64_32S:
4752       rstatus = Reloc_funcs::rela32_check(view, object, psymval, addend,
4753                                           Reloc_funcs::CHECK_SIGNED);
4754       break;
4755
4756     case elfcpp::R_X86_64_PC32:
4757     case elfcpp::R_X86_64_PC32_BND:
4758       rstatus = Reloc_funcs::pcrela32_check(view, object, psymval, addend,
4759                                             address);
4760       break;
4761
4762     case elfcpp::R_X86_64_16:
4763       Reloc_funcs::rela16(view, object, psymval, addend);
4764       break;
4765
4766     case elfcpp::R_X86_64_PC16:
4767       Reloc_funcs::pcrela16(view, object, psymval, addend, address);
4768       break;
4769
4770     case elfcpp::R_X86_64_8:
4771       Reloc_funcs::rela8(view, object, psymval, addend);
4772       break;
4773
4774     case elfcpp::R_X86_64_PC8:
4775       Reloc_funcs::pcrela8(view, object, psymval, addend, address);
4776       break;
4777
4778     case elfcpp::R_X86_64_PLT32:
4779     case elfcpp::R_X86_64_PLT32_BND:
4780       gold_assert(gsym == NULL
4781                   || gsym->has_plt_offset()
4782                   || gsym->final_value_is_known()
4783                   || (gsym->is_defined()
4784                       && !gsym->is_from_dynobj()
4785                       && !gsym->is_preemptible()));
4786       // Note: while this code looks the same as for R_X86_64_PC32, it
4787       // behaves differently because psymval was set to point to
4788       // the PLT entry, rather than the symbol, in Scan::global().
4789       rstatus = Reloc_funcs::pcrela32_check(view, object, psymval, addend,
4790                                             address);
4791       break;
4792
4793     case elfcpp::R_X86_64_PLTOFF64:
4794       {
4795         gold_assert(gsym);
4796         gold_assert(gsym->has_plt_offset()
4797                     || gsym->final_value_is_known());
4798         typename elfcpp::Elf_types<size>::Elf_Addr got_address;
4799         // This is the address of GLOBAL_OFFSET_TABLE.
4800         got_address = target->got_plt_section()->address();
4801         Reloc_funcs::rela64(view, object, psymval, addend - got_address);
4802       }
4803       break;
4804
4805     case elfcpp::R_X86_64_GOT32:
4806       gold_assert(have_got_offset);
4807       Reloc_funcs::rela32(view, got_offset, addend);
4808       break;
4809
4810     case elfcpp::R_X86_64_GOTPC32:
4811       {
4812         gold_assert(gsym);
4813         typename elfcpp::Elf_types<size>::Elf_Addr value;
4814         value = target->got_plt_section()->address();
4815         Reloc_funcs::pcrela32_check(view, value, addend, address);
4816       }
4817       break;
4818
4819     case elfcpp::R_X86_64_GOT64:
4820     case elfcpp::R_X86_64_GOTPLT64:
4821       // R_X86_64_GOTPLT64 is obsolete and treated the same as
4822       // GOT64.
4823       gold_assert(have_got_offset);
4824       Reloc_funcs::rela64(view, got_offset, addend);
4825       break;
4826
4827     case elfcpp::R_X86_64_GOTPC64:
4828       {
4829         gold_assert(gsym);
4830         typename elfcpp::Elf_types<size>::Elf_Addr value;
4831         value = target->got_plt_section()->address();
4832         Reloc_funcs::pcrela64(view, value, addend, address);
4833       }
4834       break;
4835
4836     case elfcpp::R_X86_64_GOTOFF64:
4837       {
4838         typename elfcpp::Elf_types<size>::Elf_Addr value;
4839         value = (psymval->value(object, 0)
4840                  - target->got_plt_section()->address());
4841         Reloc_funcs::rela64(view, value, addend);
4842       }
4843       break;
4844
4845     case elfcpp::R_X86_64_GOTPCREL:
4846     case elfcpp::R_X86_64_GOTPCRELX:
4847     case elfcpp::R_X86_64_REX_GOTPCRELX:
4848       {
4849       // Convert
4850       // mov foo@GOTPCREL(%rip), %reg
4851       // to lea foo(%rip), %reg.
4852       // if possible.
4853       if (!parameters->incremental()
4854           && ((gsym == NULL
4855                && rela.get_r_offset() >= 2
4856                && view[-2] == 0x8b
4857                && !psymval->is_ifunc_symbol())
4858               || (gsym != NULL
4859                   && rela.get_r_offset() >= 2
4860                   && Target_x86_64<size>::can_convert_mov_to_lea(gsym, r_type,
4861                                                                  0, &view))))
4862         {
4863           view[-2] = 0x8d;
4864           Reloc_funcs::pcrela32(view, object, psymval, addend, address);
4865         }
4866       // Convert
4867       // callq *foo@GOTPCRELX(%rip) to
4868       // addr32 callq foo
4869       // and jmpq *foo@GOTPCRELX(%rip) to
4870       // jmpq foo
4871       // nop
4872       else if (!parameters->incremental()
4873                && gsym != NULL
4874                && rela.get_r_offset() >= 2
4875                && Target_x86_64<size>::can_convert_callq_to_direct(gsym,
4876                                                                    r_type,
4877                                                                    0, &view))
4878         {
4879           if (view[-1] == 0x15)
4880             {
4881               // Convert callq *foo@GOTPCRELX(%rip) to addr32 callq.
4882               // Opcode of addr32 is 0x67 and opcode of direct callq is 0xe8.
4883               view[-2] = 0x67;
4884               view[-1] = 0xe8;
4885               // Convert GOTPCRELX to 32-bit pc relative reloc.
4886               Reloc_funcs::pcrela32(view, object, psymval, addend, address);
4887             }
4888           else
4889             {
4890               // Convert jmpq *foo@GOTPCRELX(%rip) to
4891               // jmpq foo
4892               // nop
4893               // The opcode of direct jmpq is 0xe9.
4894               view[-2] = 0xe9;
4895               // The opcode of nop is 0x90.
4896               view[3] = 0x90;
4897               // Convert GOTPCRELX to 32-bit pc relative reloc.  jmpq is rip
4898               // relative and since the instruction following the jmpq is now
4899               // the nop, offset the address by 1 byte.  The start of the
4900               // relocation also moves ahead by 1 byte.
4901               Reloc_funcs::pcrela32(&view[-1], object, psymval, addend,
4902                                     address - 1);
4903             }
4904         }
4905       else
4906         {
4907           if (gsym != NULL)
4908             {
4909               gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
4910               got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
4911                             - target->got_size());
4912             }
4913           else
4914             {
4915               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4916               gold_assert(object->local_has_got_offset(r_sym,
4917                                                        GOT_TYPE_STANDARD));
4918               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
4919                             - target->got_size());
4920             }
4921           typename elfcpp::Elf_types<size>::Elf_Addr value;
4922           value = target->got_plt_section()->address() + got_offset;
4923           Reloc_funcs::pcrela32_check(view, value, addend, address);
4924         }
4925       }
4926       break;
4927
4928     case elfcpp::R_X86_64_GOTPCREL64:
4929       {
4930         gold_assert(have_got_offset);
4931         typename elfcpp::Elf_types<size>::Elf_Addr value;
4932         value = target->got_plt_section()->address() + got_offset;
4933         Reloc_funcs::pcrela64(view, value, addend, address);
4934       }
4935       break;
4936
4937     case elfcpp::R_X86_64_COPY:
4938     case elfcpp::R_X86_64_GLOB_DAT:
4939     case elfcpp::R_X86_64_JUMP_SLOT:
4940     case elfcpp::R_X86_64_RELATIVE:
4941     case elfcpp::R_X86_64_IRELATIVE:
4942       // These are outstanding tls relocs, which are unexpected when linking
4943     case elfcpp::R_X86_64_TPOFF64:
4944     case elfcpp::R_X86_64_DTPMOD64:
4945     case elfcpp::R_X86_64_TLSDESC:
4946       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4947                              _("unexpected reloc %u in object file"),
4948                              r_type);
4949       break;
4950
4951       // These are initial tls relocs, which are expected when linking
4952     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
4953     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
4954     case elfcpp::R_X86_64_TLSDESC_CALL:
4955     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
4956     case elfcpp::R_X86_64_DTPOFF32:
4957     case elfcpp::R_X86_64_DTPOFF64:
4958     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
4959     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
4960       this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
4961                          view, address, view_size);
4962       break;
4963
4964     case elfcpp::R_X86_64_SIZE32:
4965     case elfcpp::R_X86_64_SIZE64:
4966     default:
4967       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4968                              _("unsupported reloc %u"),
4969                              r_type);
4970       break;
4971     }
4972
4973   if (rstatus == Reloc_funcs::RELOC_OVERFLOW)
4974     {
4975       if (gsym == NULL)
4976         {
4977           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4978           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4979                                  _("relocation overflow: "
4980                                    "reference to local symbol %u in %s"),
4981                                  r_sym, object->name().c_str());
4982         }
4983       else if (gsym->is_defined() && gsym->source() == Symbol::FROM_OBJECT)
4984         {
4985           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4986                                  _("relocation overflow: "
4987                                    "reference to '%s' defined in %s"),
4988                                  gsym->name(),
4989                                  gsym->object()->name().c_str());
4990         }
4991       else
4992         {
4993           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4994                                  _("relocation overflow: reference to '%s'"),
4995                                  gsym->name());
4996         }
4997     }
4998
4999   return true;
5000 }
5001
5002 // Perform a TLS relocation.
5003
5004 template<int size>
5005 inline void
5006 Target_x86_64<size>::Relocate::relocate_tls(
5007     const Relocate_info<size, false>* relinfo,
5008     Target_x86_64<size>* target,
5009     size_t relnum,
5010     const elfcpp::Rela<size, false>& rela,
5011     unsigned int r_type,
5012     const Sized_symbol<size>* gsym,
5013     const Symbol_value<size>* psymval,
5014     unsigned char* view,
5015     typename elfcpp::Elf_types<size>::Elf_Addr address,
5016     section_size_type view_size)
5017 {
5018   Output_segment* tls_segment = relinfo->layout->tls_segment();
5019
5020   const Sized_relobj_file<size, false>* object = relinfo->object;
5021   const elfcpp::Elf_Xword addend = rela.get_r_addend();
5022   elfcpp::Shdr<size, false> data_shdr(relinfo->data_shdr);
5023   bool is_executable = (data_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0;
5024
5025   typename elfcpp::Elf_types<size>::Elf_Addr value = psymval->value(relinfo->object, 0);
5026
5027   const bool is_final = (gsym == NULL
5028                          ? !parameters->options().shared()
5029                          : gsym->final_value_is_known());
5030   tls::Tls_optimization optimized_type
5031       = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
5032   switch (r_type)
5033     {
5034     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
5035       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
5036         {
5037           // If this code sequence is used in a non-executable section,
5038           // we will not optimize the R_X86_64_DTPOFF32/64 relocation,
5039           // on the assumption that it's being used by itself in a debug
5040           // section.  Therefore, in the unlikely event that the code
5041           // sequence appears in a non-executable section, we simply
5042           // leave it unoptimized.
5043           optimized_type = tls::TLSOPT_NONE;
5044         }
5045       if (optimized_type == tls::TLSOPT_TO_LE)
5046         {
5047           if (tls_segment == NULL)
5048             {
5049               gold_assert(parameters->errors()->error_count() > 0
5050                           || issue_undefined_symbol_error(gsym));
5051               return;
5052             }
5053           this->tls_gd_to_le(relinfo, relnum, tls_segment,
5054                              rela, r_type, value, view,
5055                              view_size);
5056           break;
5057         }
5058       else
5059         {
5060           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
5061                                    ? GOT_TYPE_TLS_OFFSET
5062                                    : GOT_TYPE_TLS_PAIR);
5063           unsigned int got_offset;
5064           if (gsym != NULL)
5065             {
5066               gold_assert(gsym->has_got_offset(got_type));
5067               got_offset = gsym->got_offset(got_type) - target->got_size();
5068             }
5069           else
5070             {
5071               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5072               gold_assert(object->local_has_got_offset(r_sym, got_type));
5073               got_offset = (object->local_got_offset(r_sym, got_type)
5074                             - target->got_size());
5075             }
5076           if (optimized_type == tls::TLSOPT_TO_IE)
5077             {
5078               value = target->got_plt_section()->address() + got_offset;
5079               this->tls_gd_to_ie(relinfo, relnum, rela, r_type,
5080                                  value, view, address, view_size);
5081               break;
5082             }
5083           else if (optimized_type == tls::TLSOPT_NONE)
5084             {
5085               // Relocate the field with the offset of the pair of GOT
5086               // entries.
5087               value = target->got_plt_section()->address() + got_offset;
5088               Relocate_functions<size, false>::pcrela32(view, value, addend,
5089                                                         address);
5090               break;
5091             }
5092         }
5093       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5094                              _("unsupported reloc %u"), r_type);
5095       break;
5096
5097     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
5098     case elfcpp::R_X86_64_TLSDESC_CALL:
5099       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
5100         {
5101           // See above comment for R_X86_64_TLSGD.
5102           optimized_type = tls::TLSOPT_NONE;
5103         }
5104       if (optimized_type == tls::TLSOPT_TO_LE)
5105         {
5106           if (tls_segment == NULL)
5107             {
5108               gold_assert(parameters->errors()->error_count() > 0
5109                           || issue_undefined_symbol_error(gsym));
5110               return;
5111             }
5112           this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
5113                                   rela, r_type, value, view,
5114                                   view_size);
5115           break;
5116         }
5117       else
5118         {
5119           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
5120                                    ? GOT_TYPE_TLS_OFFSET
5121                                    : GOT_TYPE_TLS_DESC);
5122           unsigned int got_offset = 0;
5123           if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC
5124               && optimized_type == tls::TLSOPT_NONE)
5125             {
5126               // We created GOT entries in the .got.tlsdesc portion of
5127               // the .got.plt section, but the offset stored in the
5128               // symbol is the offset within .got.tlsdesc.
5129               got_offset = (target->got_size()
5130                             + target->got_plt_section()->data_size());
5131             }
5132           if (gsym != NULL)
5133             {
5134               gold_assert(gsym->has_got_offset(got_type));
5135               got_offset += gsym->got_offset(got_type) - target->got_size();
5136             }
5137           else
5138             {
5139               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5140               gold_assert(object->local_has_got_offset(r_sym, got_type));
5141               got_offset += (object->local_got_offset(r_sym, got_type)
5142                              - target->got_size());
5143             }
5144           if (optimized_type == tls::TLSOPT_TO_IE)
5145             {
5146               value = target->got_plt_section()->address() + got_offset;
5147               this->tls_desc_gd_to_ie(relinfo, relnum,
5148                                       rela, r_type, value, view, address,
5149                                       view_size);
5150               break;
5151             }
5152           else if (optimized_type == tls::TLSOPT_NONE)
5153             {
5154               if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
5155                 {
5156                   // Relocate the field with the offset of the pair of GOT
5157                   // entries.
5158                   value = target->got_plt_section()->address() + got_offset;
5159                   Relocate_functions<size, false>::pcrela32(view, value, addend,
5160                                                             address);
5161                 }
5162               break;
5163             }
5164         }
5165       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5166                              _("unsupported reloc %u"), r_type);
5167       break;
5168
5169     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
5170       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
5171         {
5172           // See above comment for R_X86_64_TLSGD.
5173           optimized_type = tls::TLSOPT_NONE;
5174         }
5175       if (optimized_type == tls::TLSOPT_TO_LE)
5176         {
5177           if (tls_segment == NULL)
5178             {
5179               gold_assert(parameters->errors()->error_count() > 0
5180                           || issue_undefined_symbol_error(gsym));
5181               return;
5182             }
5183           this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
5184                              value, view, view_size);
5185           break;
5186         }
5187       else if (optimized_type == tls::TLSOPT_NONE)
5188         {
5189           // Relocate the field with the offset of the GOT entry for
5190           // the module index.
5191           unsigned int got_offset;
5192           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
5193                         - target->got_size());
5194           value = target->got_plt_section()->address() + got_offset;
5195           Relocate_functions<size, false>::pcrela32(view, value, addend,
5196                                                     address);
5197           break;
5198         }
5199       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5200                              _("unsupported reloc %u"), r_type);
5201       break;
5202
5203     case elfcpp::R_X86_64_DTPOFF32:
5204       // This relocation type is used in debugging information.
5205       // In that case we need to not optimize the value.  If the
5206       // section is not executable, then we assume we should not
5207       // optimize this reloc.  See comments above for R_X86_64_TLSGD,
5208       // R_X86_64_GOTPC32_TLSDESC, R_X86_64_TLSDESC_CALL, and
5209       // R_X86_64_TLSLD.
5210       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
5211         {
5212           if (tls_segment == NULL)
5213             {
5214               gold_assert(parameters->errors()->error_count() > 0
5215                           || issue_undefined_symbol_error(gsym));
5216               return;
5217             }
5218           value -= tls_segment->memsz();
5219         }
5220       Relocate_functions<size, false>::rela32(view, value, addend);
5221       break;
5222
5223     case elfcpp::R_X86_64_DTPOFF64:
5224       // See R_X86_64_DTPOFF32, just above, for why we check for is_executable.
5225       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
5226         {
5227           if (tls_segment == NULL)
5228             {
5229               gold_assert(parameters->errors()->error_count() > 0
5230                           || issue_undefined_symbol_error(gsym));
5231               return;
5232             }
5233           value -= tls_segment->memsz();
5234         }
5235       Relocate_functions<size, false>::rela64(view, value, addend);
5236       break;
5237
5238     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
5239       if (gsym != NULL
5240           && gsym->is_undefined()
5241           && parameters->options().output_is_executable())
5242         {
5243           Target_x86_64<size>::Relocate::tls_ie_to_le(relinfo, relnum,
5244                                                       NULL, rela,
5245                                                       r_type, value, view,
5246                                                       view_size);
5247           break;
5248         }
5249       else if (optimized_type == tls::TLSOPT_TO_LE)
5250         {
5251           if (tls_segment == NULL)
5252             {
5253               gold_assert(parameters->errors()->error_count() > 0
5254                           || issue_undefined_symbol_error(gsym));
5255               return;
5256             }
5257           Target_x86_64<size>::Relocate::tls_ie_to_le(relinfo, relnum,
5258                                                       tls_segment, rela,
5259                                                       r_type, value, view,
5260                                                       view_size);
5261           break;
5262         }
5263       else if (optimized_type == tls::TLSOPT_NONE)
5264         {
5265           // Relocate the field with the offset of the GOT entry for
5266           // the tp-relative offset of the symbol.
5267           unsigned int got_offset;
5268           if (gsym != NULL)
5269             {
5270               gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
5271               got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
5272                             - target->got_size());
5273             }
5274           else
5275             {
5276               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5277               gold_assert(object->local_has_got_offset(r_sym,
5278                                                        GOT_TYPE_TLS_OFFSET));
5279               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
5280                             - target->got_size());
5281             }
5282           value = target->got_plt_section()->address() + got_offset;
5283           Relocate_functions<size, false>::pcrela32(view, value, addend,
5284                                                     address);
5285           break;
5286         }
5287       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5288                              _("unsupported reloc type %u"),
5289                              r_type);
5290       break;
5291
5292     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
5293       if (tls_segment == NULL)
5294         {
5295           gold_assert(parameters->errors()->error_count() > 0
5296                       || issue_undefined_symbol_error(gsym));
5297           return;
5298         }
5299       value -= tls_segment->memsz();
5300       Relocate_functions<size, false>::rela32(view, value, addend);
5301       break;
5302     }
5303 }
5304
5305 // Do a relocation in which we convert a TLS General-Dynamic to an
5306 // Initial-Exec.
5307
5308 template<int size>
5309 inline void
5310 Target_x86_64<size>::Relocate::tls_gd_to_ie(
5311     const Relocate_info<size, false>* relinfo,
5312     size_t relnum,
5313     const elfcpp::Rela<size, false>& rela,
5314     unsigned int,
5315     typename elfcpp::Elf_types<size>::Elf_Addr value,
5316     unsigned char* view,
5317     typename elfcpp::Elf_types<size>::Elf_Addr address,
5318     section_size_type view_size)
5319 {
5320   // For SIZE == 64:
5321   //    .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
5322   //    .word 0x6666; rex64; call __tls_get_addr@PLT
5323   //    ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
5324   //    .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
5325   //    .word 0x66; rex64; call *__tls_get_addr@GOTPCREL(%rip)
5326   //    ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
5327   // For SIZE == 32:
5328   //    leaq foo@tlsgd(%rip),%rdi;
5329   //    .word 0x6666; rex64; call __tls_get_addr@PLT
5330   //    ==> movl %fs:0,%eax; addq x@gottpoff(%rip),%rax
5331   //    leaq foo@tlsgd(%rip),%rdi;
5332   //    .word 0x66; rex64; call *__tls_get_addr@GOTPCREL(%rip)
5333   //    ==> movl %fs:0,%eax; addq x@gottpoff(%rip),%rax
5334
5335   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
5336   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5337                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0
5338                   || memcmp(view + 4, "\x66\x48\xff", 3) == 0));
5339
5340   if (size == 64)
5341     {
5342       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
5343                        -4);
5344       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5345                      (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
5346       memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
5347              16);
5348     }
5349   else
5350     {
5351       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
5352                        -3);
5353       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5354                      (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
5355       memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
5356              15);
5357     }
5358
5359   const elfcpp::Elf_Xword addend = rela.get_r_addend();
5360   Relocate_functions<size, false>::pcrela32(view + 8, value, addend - 8,
5361                                             address);
5362
5363   // The next reloc should be a PLT32 reloc against __tls_get_addr.
5364   // We can skip it.
5365   this->skip_call_tls_get_addr_ = true;
5366 }
5367
5368 // Do a relocation in which we convert a TLS General-Dynamic to a
5369 // Local-Exec.
5370
5371 template<int size>
5372 inline void
5373 Target_x86_64<size>::Relocate::tls_gd_to_le(
5374     const Relocate_info<size, false>* relinfo,
5375     size_t relnum,
5376     Output_segment* tls_segment,
5377     const elfcpp::Rela<size, false>& rela,
5378     unsigned int,
5379     typename elfcpp::Elf_types<size>::Elf_Addr value,
5380     unsigned char* view,
5381     section_size_type view_size)
5382 {
5383   // For SIZE == 64:
5384   //    .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
5385   //    .word 0x6666; rex64; call __tls_get_addr@PLT
5386   //    ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
5387   //    .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
5388   //    .word 0x66; rex64; call *__tls_get_addr@GOTPCREL(%rip)
5389   //    ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
5390   // For SIZE == 32:
5391   //    leaq foo@tlsgd(%rip),%rdi;
5392   //    .word 0x6666; rex64; call __tls_get_addr@PLT
5393   //    ==> movl %fs:0,%eax; leaq x@tpoff(%rax),%rax
5394   //    leaq foo@tlsgd(%rip),%rdi;
5395   //    .word 0x66; rex64; call *__tls_get_addr@GOTPCREL(%rip)
5396   //    ==> movl %fs:0,%eax; leaq x@tpoff(%rax),%rax
5397
5398   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
5399   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5400                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0
5401                   || memcmp(view + 4, "\x66\x48\xff", 3) == 0));
5402
5403   if (size == 64)
5404     {
5405       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
5406                        -4);
5407       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5408                      (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
5409       memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
5410              16);
5411     }
5412   else
5413     {
5414       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
5415                        -3);
5416       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5417                      (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
5418
5419       memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
5420              15);
5421     }
5422
5423   value -= tls_segment->memsz();
5424   Relocate_functions<size, false>::rela32(view + 8, value, 0);
5425
5426   // The next reloc should be a PLT32 reloc against __tls_get_addr.
5427   // We can skip it.
5428   this->skip_call_tls_get_addr_ = true;
5429 }
5430
5431 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
5432
5433 template<int size>
5434 inline void
5435 Target_x86_64<size>::Relocate::tls_desc_gd_to_ie(
5436     const Relocate_info<size, false>* relinfo,
5437     size_t relnum,
5438     const elfcpp::Rela<size, false>& rela,
5439     unsigned int r_type,
5440     typename elfcpp::Elf_types<size>::Elf_Addr value,
5441     unsigned char* view,
5442     typename elfcpp::Elf_types<size>::Elf_Addr address,
5443     section_size_type view_size)
5444 {
5445   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
5446     {
5447       // leaq foo@tlsdesc(%rip), %rax
5448       // ==> movq foo@gottpoff(%rip), %rax
5449       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
5450       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
5451       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5452                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
5453       view[-2] = 0x8b;
5454       const elfcpp::Elf_Xword addend = rela.get_r_addend();
5455       Relocate_functions<size, false>::pcrela32(view, value, addend, address);
5456     }
5457   else
5458     {
5459       // call *foo@tlscall(%rax)
5460       // ==> nop; nop
5461       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
5462       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
5463       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5464                      view[0] == 0xff && view[1] == 0x10);
5465       view[0] = 0x66;
5466       view[1] = 0x90;
5467     }
5468 }
5469
5470 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
5471
5472 template<int size>
5473 inline void
5474 Target_x86_64<size>::Relocate::tls_desc_gd_to_le(
5475     const Relocate_info<size, false>* relinfo,
5476     size_t relnum,
5477     Output_segment* tls_segment,
5478     const elfcpp::Rela<size, false>& rela,
5479     unsigned int r_type,
5480     typename elfcpp::Elf_types<size>::Elf_Addr value,
5481     unsigned char* view,
5482     section_size_type view_size)
5483 {
5484   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
5485     {
5486       // leaq foo@tlsdesc(%rip), %rax
5487       // ==> movq foo@tpoff, %rax
5488       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
5489       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
5490       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5491                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
5492       view[-2] = 0xc7;
5493       view[-1] = 0xc0;
5494       value -= tls_segment->memsz();
5495       Relocate_functions<size, false>::rela32(view, value, 0);
5496     }
5497   else
5498     {
5499       // call *foo@tlscall(%rax)
5500       // ==> nop; nop
5501       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
5502       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
5503       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5504                      view[0] == 0xff && view[1] == 0x10);
5505       view[0] = 0x66;
5506       view[1] = 0x90;
5507     }
5508 }
5509
5510 template<int size>
5511 inline void
5512 Target_x86_64<size>::Relocate::tls_ld_to_le(
5513     const Relocate_info<size, false>* relinfo,
5514     size_t relnum,
5515     Output_segment*,
5516     const elfcpp::Rela<size, false>& rela,
5517     unsigned int,
5518     typename elfcpp::Elf_types<size>::Elf_Addr,
5519     unsigned char* view,
5520     section_size_type view_size)
5521 {
5522   // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
5523   // For SIZE == 64:
5524   // ... leq foo@dtpoff(%rax),%reg
5525   // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
5526   // For SIZE == 32:
5527   // ... leq foo@dtpoff(%rax),%reg
5528   // ==> nopl 0x0(%rax); movl %fs:0,%eax ... leaq x@tpoff(%rax),%rdx
5529   // leaq foo@tlsld(%rip),%rdi; call *__tls_get_addr@GOTPCREL(%rip)
5530   // For SIZE == 64:
5531   // ... leq foo@dtpoff(%rax),%reg
5532   // ==> .word 0x6666; .byte 0x6666; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
5533   // For SIZE == 32:
5534   // ... leq foo@dtpoff(%rax),%reg
5535   // ==> nopw 0x0(%rax); movl %fs:0,%eax ... leaq x@tpoff(%rax),%rdx
5536
5537   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
5538   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
5539
5540   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5541                  view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
5542
5543   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5544                  view[4] == 0xe8 || view[4] == 0xff);
5545
5546   if (view[4] == 0xe8)
5547     {
5548       if (size == 64)
5549         memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
5550       else
5551         memcpy(view - 3, "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0\0", 12);
5552     }
5553   else
5554     {
5555       if (size == 64)
5556         memcpy(view - 3, "\x66\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0",
5557                13);
5558       else
5559         memcpy(view - 3, "\x66\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0\0",
5560                13);
5561     }
5562
5563   // The next reloc should be a PLT32 reloc against __tls_get_addr.
5564   // We can skip it.
5565   this->skip_call_tls_get_addr_ = true;
5566 }
5567
5568 // Do a relocation in which we convert a TLS Initial-Exec to a
5569 // Local-Exec.
5570
5571 template<int size>
5572 inline void
5573 Target_x86_64<size>::Relocate::tls_ie_to_le(
5574     const Relocate_info<size, false>* relinfo,
5575     size_t relnum,
5576     Output_segment* tls_segment,
5577     const elfcpp::Rela<size, false>& rela,
5578     unsigned int,
5579     typename elfcpp::Elf_types<size>::Elf_Addr value,
5580     unsigned char* view,
5581     section_size_type view_size)
5582 {
5583   // We need to examine the opcodes to figure out which instruction we
5584   // are looking at.
5585
5586   // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
5587   // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
5588
5589   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
5590   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
5591
5592   unsigned char op1 = view[-3];
5593   unsigned char op2 = view[-2];
5594   unsigned char op3 = view[-1];
5595   unsigned char reg = op3 >> 3;
5596
5597   if (op2 == 0x8b)
5598     {
5599       // movq
5600       if (op1 == 0x4c)
5601         view[-3] = 0x49;
5602       else if (size == 32 && op1 == 0x44)
5603         view[-3] = 0x41;
5604       view[-2] = 0xc7;
5605       view[-1] = 0xc0 | reg;
5606     }
5607   else if (reg == 4)
5608     {
5609       // Special handling for %rsp.
5610       if (op1 == 0x4c)
5611         view[-3] = 0x49;
5612       else if (size == 32 && op1 == 0x44)
5613         view[-3] = 0x41;
5614       view[-2] = 0x81;
5615       view[-1] = 0xc0 | reg;
5616     }
5617   else
5618     {
5619       // addq
5620       if (op1 == 0x4c)
5621         view[-3] = 0x4d;
5622       else if (size == 32 && op1 == 0x44)
5623         view[-3] = 0x45;
5624       view[-2] = 0x8d;
5625       view[-1] = 0x80 | reg | (reg << 3);
5626     }
5627
5628   if (tls_segment != NULL)
5629     value -= tls_segment->memsz();
5630   Relocate_functions<size, false>::rela32(view, value, 0);
5631 }
5632
5633 // Relocate section data.
5634
5635 template<int size>
5636 void
5637 Target_x86_64<size>::relocate_section(
5638     const Relocate_info<size, false>* relinfo,
5639     unsigned int sh_type,
5640     const unsigned char* prelocs,
5641     size_t reloc_count,
5642     Output_section* output_section,
5643     bool needs_special_offset_handling,
5644     unsigned char* view,
5645     typename elfcpp::Elf_types<size>::Elf_Addr address,
5646     section_size_type view_size,
5647     const Reloc_symbol_changes* reloc_symbol_changes)
5648 {
5649   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
5650       Classify_reloc;
5651
5652   gold_assert(sh_type == elfcpp::SHT_RELA);
5653
5654   gold::relocate_section<size, false, Target_x86_64<size>, Relocate,
5655                          gold::Default_comdat_behavior, Classify_reloc>(
5656     relinfo,
5657     this,
5658     prelocs,
5659     reloc_count,
5660     output_section,
5661     needs_special_offset_handling,
5662     view,
5663     address,
5664     view_size,
5665     reloc_symbol_changes);
5666 }
5667
5668 // Apply an incremental relocation.  Incremental relocations always refer
5669 // to global symbols.
5670
5671 template<int size>
5672 void
5673 Target_x86_64<size>::apply_relocation(
5674     const Relocate_info<size, false>* relinfo,
5675     typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
5676     unsigned int r_type,
5677     typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
5678     const Symbol* gsym,
5679     unsigned char* view,
5680     typename elfcpp::Elf_types<size>::Elf_Addr address,
5681     section_size_type view_size)
5682 {
5683   gold::apply_relocation<size, false, Target_x86_64<size>,
5684                          typename Target_x86_64<size>::Relocate>(
5685     relinfo,
5686     this,
5687     r_offset,
5688     r_type,
5689     r_addend,
5690     gsym,
5691     view,
5692     address,
5693     view_size);
5694 }
5695
5696 // Scan the relocs during a relocatable link.
5697
5698 template<int size>
5699 void
5700 Target_x86_64<size>::scan_relocatable_relocs(
5701     Symbol_table* symtab,
5702     Layout* layout,
5703     Sized_relobj_file<size, false>* object,
5704     unsigned int data_shndx,
5705     unsigned int sh_type,
5706     const unsigned char* prelocs,
5707     size_t reloc_count,
5708     Output_section* output_section,
5709     bool needs_special_offset_handling,
5710     size_t local_symbol_count,
5711     const unsigned char* plocal_symbols,
5712     Relocatable_relocs* rr)
5713 {
5714   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
5715       Classify_reloc;
5716   typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
5717       Scan_relocatable_relocs;
5718
5719   gold_assert(sh_type == elfcpp::SHT_RELA);
5720
5721   gold::scan_relocatable_relocs<size, false, Scan_relocatable_relocs>(
5722     symtab,
5723     layout,
5724     object,
5725     data_shndx,
5726     prelocs,
5727     reloc_count,
5728     output_section,
5729     needs_special_offset_handling,
5730     local_symbol_count,
5731     plocal_symbols,
5732     rr);
5733 }
5734
5735 // Scan the relocs for --emit-relocs.
5736
5737 template<int size>
5738 void
5739 Target_x86_64<size>::emit_relocs_scan(
5740     Symbol_table* symtab,
5741     Layout* layout,
5742     Sized_relobj_file<size, false>* object,
5743     unsigned int data_shndx,
5744     unsigned int sh_type,
5745     const unsigned char* prelocs,
5746     size_t reloc_count,
5747     Output_section* output_section,
5748     bool needs_special_offset_handling,
5749     size_t local_symbol_count,
5750     const unsigned char* plocal_syms,
5751     Relocatable_relocs* rr)
5752 {
5753   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
5754       Classify_reloc;
5755   typedef gold::Default_emit_relocs_strategy<Classify_reloc>
5756       Emit_relocs_strategy;
5757
5758   gold_assert(sh_type == elfcpp::SHT_RELA);
5759
5760   gold::scan_relocatable_relocs<size, false, Emit_relocs_strategy>(
5761     symtab,
5762     layout,
5763     object,
5764     data_shndx,
5765     prelocs,
5766     reloc_count,
5767     output_section,
5768     needs_special_offset_handling,
5769     local_symbol_count,
5770     plocal_syms,
5771     rr);
5772 }
5773
5774 // Relocate a section during a relocatable link.
5775
5776 template<int size>
5777 void
5778 Target_x86_64<size>::relocate_relocs(
5779     const Relocate_info<size, false>* relinfo,
5780     unsigned int sh_type,
5781     const unsigned char* prelocs,
5782     size_t reloc_count,
5783     Output_section* output_section,
5784     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
5785     unsigned char* view,
5786     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
5787     section_size_type view_size,
5788     unsigned char* reloc_view,
5789     section_size_type reloc_view_size)
5790 {
5791   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
5792       Classify_reloc;
5793
5794   gold_assert(sh_type == elfcpp::SHT_RELA);
5795
5796   gold::relocate_relocs<size, false, Classify_reloc>(
5797     relinfo,
5798     prelocs,
5799     reloc_count,
5800     output_section,
5801     offset_in_output_section,
5802     view,
5803     view_address,
5804     view_size,
5805     reloc_view,
5806     reloc_view_size);
5807 }
5808
5809 // Return the value to use for a dynamic which requires special
5810 // treatment.  This is how we support equality comparisons of function
5811 // pointers across shared library boundaries, as described in the
5812 // processor specific ABI supplement.
5813
5814 template<int size>
5815 uint64_t
5816 Target_x86_64<size>::do_dynsym_value(const Symbol* gsym) const
5817 {
5818   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
5819   return this->plt_address_for_global(gsym);
5820 }
5821
5822 // Return a string used to fill a code section with nops to take up
5823 // the specified length.
5824
5825 template<int size>
5826 std::string
5827 Target_x86_64<size>::do_code_fill(section_size_type length) const
5828 {
5829   if (length >= 16)
5830     {
5831       // Build a jmpq instruction to skip over the bytes.
5832       unsigned char jmp[5];
5833       jmp[0] = 0xe9;
5834       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
5835       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
5836               + std::string(length - 5, static_cast<char>(0x90)));
5837     }
5838
5839   // Nop sequences of various lengths.
5840   const char nop1[1] = { '\x90' };                 // nop
5841   const char nop2[2] = { '\x66', '\x90' };         // xchg %ax %ax
5842   const char nop3[3] = { '\x0f', '\x1f', '\x00' }; // nop (%rax)
5843   const char nop4[4] = { '\x0f', '\x1f', '\x40',   // nop 0(%rax)
5844                          '\x00'};
5845   const char nop5[5] = { '\x0f', '\x1f', '\x44',   // nop 0(%rax,%rax,1)
5846                          '\x00', '\x00' };
5847   const char nop6[6] = { '\x66', '\x0f', '\x1f',   // nopw 0(%rax,%rax,1)
5848                          '\x44', '\x00', '\x00' };
5849   const char nop7[7] = { '\x0f', '\x1f', '\x80',   // nopl 0L(%rax)
5850                          '\x00', '\x00', '\x00',
5851                          '\x00' };
5852   const char nop8[8] = { '\x0f', '\x1f', '\x84',   // nopl 0L(%rax,%rax,1)
5853                          '\x00', '\x00', '\x00',
5854                          '\x00', '\x00' };
5855   const char nop9[9] = { '\x66', '\x0f', '\x1f',   // nopw 0L(%rax,%rax,1)
5856                          '\x84', '\x00', '\x00',
5857                          '\x00', '\x00', '\x00' };
5858   const char nop10[10] = { '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
5859                            '\x1f', '\x84', '\x00',
5860                            '\x00', '\x00', '\x00',
5861                            '\x00' };
5862   const char nop11[11] = { '\x66', '\x66', '\x2e', // data16
5863                            '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
5864                            '\x00', '\x00', '\x00',
5865                            '\x00', '\x00' };
5866   const char nop12[12] = { '\x66', '\x66', '\x66', // data16; data16
5867                            '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
5868                            '\x84', '\x00', '\x00',
5869                            '\x00', '\x00', '\x00' };
5870   const char nop13[13] = { '\x66', '\x66', '\x66', // data16; data16; data16
5871                            '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
5872                            '\x1f', '\x84', '\x00',
5873                            '\x00', '\x00', '\x00',
5874                            '\x00' };
5875   const char nop14[14] = { '\x66', '\x66', '\x66', // data16; data16; data16
5876                            '\x66', '\x66', '\x2e', // data16
5877                            '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
5878                            '\x00', '\x00', '\x00',
5879                            '\x00', '\x00' };
5880   const char nop15[15] = { '\x66', '\x66', '\x66', // data16; data16; data16
5881                            '\x66', '\x66', '\x66', // data16; data16
5882                            '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
5883                            '\x84', '\x00', '\x00',
5884                            '\x00', '\x00', '\x00' };
5885
5886   const char* nops[16] = {
5887     NULL,
5888     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
5889     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
5890   };
5891
5892   return std::string(nops[length], length);
5893 }
5894
5895 // Return the addend to use for a target specific relocation.  The
5896 // only target specific relocation is R_X86_64_TLSDESC for a local
5897 // symbol.  We want to set the addend is the offset of the local
5898 // symbol in the TLS segment.
5899
5900 template<int size>
5901 uint64_t
5902 Target_x86_64<size>::do_reloc_addend(void* arg, unsigned int r_type,
5903                                      uint64_t) const
5904 {
5905   gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
5906   uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
5907   gold_assert(intarg < this->tlsdesc_reloc_info_.size());
5908   const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
5909   const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
5910   gold_assert(psymval->is_tls_symbol());
5911   // The value of a TLS symbol is the offset in the TLS segment.
5912   return psymval->value(ti.object, 0);
5913 }
5914
5915 // Return the value to use for the base of a DW_EH_PE_datarel offset
5916 // in an FDE.  Solaris and SVR4 use DW_EH_PE_datarel because their
5917 // assembler can not write out the difference between two labels in
5918 // different sections, so instead of using a pc-relative value they
5919 // use an offset from the GOT.
5920
5921 template<int size>
5922 uint64_t
5923 Target_x86_64<size>::do_ehframe_datarel_base() const
5924 {
5925   gold_assert(this->global_offset_table_ != NULL);
5926   Symbol* sym = this->global_offset_table_;
5927   Sized_symbol<size>* ssym = static_cast<Sized_symbol<size>*>(sym);
5928   return ssym->value();
5929 }
5930
5931 // FNOFFSET in section SHNDX in OBJECT is the start of a function
5932 // compiled with -fsplit-stack.  The function calls non-split-stack
5933 // code.  We have to change the function so that it always ensures
5934 // that it has enough stack space to run some random function.
5935
5936 static const unsigned char cmp_insn_32[] = { 0x64, 0x3b, 0x24, 0x25 };
5937 static const unsigned char lea_r10_insn_32[] = { 0x44, 0x8d, 0x94, 0x24 };
5938 static const unsigned char lea_r11_insn_32[] = { 0x44, 0x8d, 0x9c, 0x24 };
5939
5940 static const unsigned char cmp_insn_64[] = { 0x64, 0x48, 0x3b, 0x24, 0x25 };
5941 static const unsigned char lea_r10_insn_64[] = { 0x4c, 0x8d, 0x94, 0x24 };
5942 static const unsigned char lea_r11_insn_64[] = { 0x4c, 0x8d, 0x9c, 0x24 };
5943
5944 template<int size>
5945 void
5946 Target_x86_64<size>::do_calls_non_split(Relobj* object, unsigned int shndx,
5947                                         section_offset_type fnoffset,
5948                                         section_size_type fnsize,
5949                                         const unsigned char*,
5950                                         size_t,
5951                                         unsigned char* view,
5952                                         section_size_type view_size,
5953                                         std::string* from,
5954                                         std::string* to) const
5955 {
5956   const char* const cmp_insn = reinterpret_cast<const char*>
5957       (size == 32 ? cmp_insn_32 : cmp_insn_64);
5958   const char* const lea_r10_insn = reinterpret_cast<const char*>
5959       (size == 32 ? lea_r10_insn_32 : lea_r10_insn_64);
5960   const char* const lea_r11_insn = reinterpret_cast<const char*>
5961       (size == 32 ? lea_r11_insn_32 : lea_r11_insn_64);
5962
5963   const size_t cmp_insn_len =
5964       (size == 32 ? sizeof(cmp_insn_32) : sizeof(cmp_insn_64));
5965   const size_t lea_r10_insn_len =
5966       (size == 32 ? sizeof(lea_r10_insn_32) : sizeof(lea_r10_insn_64));
5967   const size_t lea_r11_insn_len =
5968       (size == 32 ? sizeof(lea_r11_insn_32) : sizeof(lea_r11_insn_64));
5969   const size_t nop_len = (size == 32 ? 7 : 8);
5970
5971   // The function starts with a comparison of the stack pointer and a
5972   // field in the TCB.  This is followed by a jump.
5973
5974   // cmp %fs:NN,%rsp
5975   if (this->match_view(view, view_size, fnoffset, cmp_insn, cmp_insn_len)
5976       && fnsize > nop_len + 1)
5977     {
5978       // We will call __morestack if the carry flag is set after this
5979       // comparison.  We turn the comparison into an stc instruction
5980       // and some nops.
5981       view[fnoffset] = '\xf9';
5982       this->set_view_to_nop(view, view_size, fnoffset + 1, nop_len);
5983     }
5984   // lea NN(%rsp),%r10
5985   // lea NN(%rsp),%r11
5986   else if ((this->match_view(view, view_size, fnoffset,
5987                              lea_r10_insn, lea_r10_insn_len)
5988             || this->match_view(view, view_size, fnoffset,
5989                                 lea_r11_insn, lea_r11_insn_len))
5990            && fnsize > 8)
5991     {
5992       // This is loading an offset from the stack pointer for a
5993       // comparison.  The offset is negative, so we decrease the
5994       // offset by the amount of space we need for the stack.  This
5995       // means we will avoid calling __morestack if there happens to
5996       // be plenty of space on the stack already.
5997       unsigned char* pval = view + fnoffset + 4;
5998       uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
5999       val -= parameters->options().split_stack_adjust_size();
6000       elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
6001     }
6002   else
6003     {
6004       if (!object->has_no_split_stack())
6005         object->error(_("failed to match split-stack sequence at "
6006                         "section %u offset %0zx"),
6007                       shndx, static_cast<size_t>(fnoffset));
6008       return;
6009     }
6010
6011   // We have to change the function so that it calls
6012   // __morestack_non_split instead of __morestack.  The former will
6013   // allocate additional stack space.
6014   *from = "__morestack";
6015   *to = "__morestack_non_split";
6016 }
6017
6018 // The selector for x86_64 object files.  Note this is never instantiated
6019 // directly.  It's only used in Target_selector_x86_64_nacl, below.
6020
6021 template<int size>
6022 class Target_selector_x86_64 : public Target_selector_freebsd
6023 {
6024 public:
6025   Target_selector_x86_64()
6026     : Target_selector_freebsd(elfcpp::EM_X86_64, size, false,
6027                               (size == 64
6028                                ? "elf64-x86-64" : "elf32-x86-64"),
6029                               (size == 64
6030                                ? "elf64-x86-64-freebsd"
6031                                : "elf32-x86-64-freebsd"),
6032                               (size == 64 ? "elf_x86_64" : "elf32_x86_64"))
6033   { }
6034
6035   Target*
6036   do_instantiate_target()
6037   { return new Target_x86_64<size>(); }
6038
6039 };
6040
6041 // NaCl variant.  It uses different PLT contents.
6042
6043 template<int size>
6044 class Output_data_plt_x86_64_nacl : public Output_data_plt_x86_64<size>
6045 {
6046  public:
6047   Output_data_plt_x86_64_nacl(Layout* layout,
6048                               Output_data_got<64, false>* got,
6049                               Output_data_got_plt_x86_64* got_plt,
6050                               Output_data_space* got_irelative)
6051     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
6052                                    got, got_plt, got_irelative)
6053   { }
6054
6055   Output_data_plt_x86_64_nacl(Layout* layout,
6056                               Output_data_got<64, false>* got,
6057                               Output_data_got_plt_x86_64* got_plt,
6058                               Output_data_space* got_irelative,
6059                               unsigned int plt_count)
6060     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
6061                                    got, got_plt, got_irelative,
6062                                    plt_count)
6063   { }
6064
6065  protected:
6066   virtual unsigned int
6067   do_get_plt_entry_size() const
6068   { return plt_entry_size; }
6069
6070   virtual void
6071   do_add_eh_frame(Layout* layout)
6072   {
6073     layout->add_eh_frame_for_plt(this,
6074                                  this->plt_eh_frame_cie,
6075                                  this->plt_eh_frame_cie_size,
6076                                  plt_eh_frame_fde,
6077                                  plt_eh_frame_fde_size);
6078   }
6079
6080   virtual void
6081   do_fill_first_plt_entry(unsigned char* pov,
6082                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
6083                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
6084
6085   virtual unsigned int
6086   do_fill_plt_entry(unsigned char* pov,
6087                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
6088                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
6089                     unsigned int got_offset,
6090                     unsigned int plt_offset,
6091                     unsigned int plt_index);
6092
6093   virtual void
6094   do_fill_tlsdesc_entry(unsigned char* pov,
6095                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
6096                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
6097                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
6098                         unsigned int tlsdesc_got_offset,
6099                         unsigned int plt_offset);
6100
6101  private:
6102   // The size of an entry in the PLT.
6103   static const int plt_entry_size = 64;
6104
6105   // The first entry in the PLT.
6106   static const unsigned char first_plt_entry[plt_entry_size];
6107
6108   // Other entries in the PLT for an executable.
6109   static const unsigned char plt_entry[plt_entry_size];
6110
6111   // The reserved TLSDESC entry in the PLT for an executable.
6112   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
6113
6114   // The .eh_frame unwind information for the PLT.
6115   static const int plt_eh_frame_fde_size = 32;
6116   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
6117 };
6118
6119 template<int size>
6120 class Target_x86_64_nacl : public Target_x86_64<size>
6121 {
6122  public:
6123   Target_x86_64_nacl()
6124     : Target_x86_64<size>(&x86_64_nacl_info)
6125   { }
6126
6127   virtual Output_data_plt_x86_64<size>*
6128   do_make_data_plt(Layout* layout,
6129                    Output_data_got<64, false>* got,
6130                    Output_data_got_plt_x86_64* got_plt,
6131                    Output_data_space* got_irelative)
6132   {
6133     return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
6134                                                  got_irelative);
6135   }
6136
6137   virtual Output_data_plt_x86_64<size>*
6138   do_make_data_plt(Layout* layout,
6139                    Output_data_got<64, false>* got,
6140                    Output_data_got_plt_x86_64* got_plt,
6141                    Output_data_space* got_irelative,
6142                    unsigned int plt_count)
6143   {
6144     return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
6145                                                  got_irelative,
6146                                                  plt_count);
6147   }
6148
6149   virtual std::string
6150   do_code_fill(section_size_type length) const;
6151
6152  private:
6153   static const Target::Target_info x86_64_nacl_info;
6154 };
6155
6156 template<>
6157 const Target::Target_info Target_x86_64_nacl<64>::x86_64_nacl_info =
6158 {
6159   64,                   // size
6160   false,                // is_big_endian
6161   elfcpp::EM_X86_64,    // machine_code
6162   false,                // has_make_symbol
6163   false,                // has_resolve
6164   true,                 // has_code_fill
6165   true,                 // is_default_stack_executable
6166   true,                 // can_icf_inline_merge_sections
6167   '\0',                 // wrap_char
6168   "/lib64/ld-nacl-x86-64.so.1", // dynamic_linker
6169   0x20000,              // default_text_segment_address
6170   0x10000,              // abi_pagesize (overridable by -z max-page-size)
6171   0x10000,              // common_pagesize (overridable by -z common-page-size)
6172   true,                 // isolate_execinstr
6173   0x10000000,           // rosegment_gap
6174   elfcpp::SHN_UNDEF,    // small_common_shndx
6175   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
6176   0,                    // small_common_section_flags
6177   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
6178   NULL,                 // attributes_section
6179   NULL,                 // attributes_vendor
6180   "_start",             // entry_symbol_name
6181   32,                   // hash_entry_size
6182   elfcpp::SHT_X86_64_UNWIND,    // unwind_section_type
6183 };
6184
6185 template<>
6186 const Target::Target_info Target_x86_64_nacl<32>::x86_64_nacl_info =
6187 {
6188   32,                   // size
6189   false,                // is_big_endian
6190   elfcpp::EM_X86_64,    // machine_code
6191   false,                // has_make_symbol
6192   false,                // has_resolve
6193   true,                 // has_code_fill
6194   true,                 // is_default_stack_executable
6195   true,                 // can_icf_inline_merge_sections
6196   '\0',                 // wrap_char
6197   "/lib/ld-nacl-x86-64.so.1", // dynamic_linker
6198   0x20000,              // default_text_segment_address
6199   0x10000,              // abi_pagesize (overridable by -z max-page-size)
6200   0x10000,              // common_pagesize (overridable by -z common-page-size)
6201   true,                 // isolate_execinstr
6202   0x10000000,           // rosegment_gap
6203   elfcpp::SHN_UNDEF,    // small_common_shndx
6204   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
6205   0,                    // small_common_section_flags
6206   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
6207   NULL,                 // attributes_section
6208   NULL,                 // attributes_vendor
6209   "_start",             // entry_symbol_name
6210   32,                   // hash_entry_size
6211   elfcpp::SHT_X86_64_UNWIND,    // unwind_section_type
6212 };
6213
6214 #define NACLMASK        0xe0            // 32-byte alignment mask.
6215
6216 // The first entry in the PLT.
6217
6218 template<int size>
6219 const unsigned char
6220 Output_data_plt_x86_64_nacl<size>::first_plt_entry[plt_entry_size] =
6221 {
6222   0xff, 0x35,                         // pushq contents of memory address
6223   0, 0, 0, 0,                         // replaced with address of .got + 8
6224   0x4c, 0x8b, 0x1d,                   // mov GOT+16(%rip), %r11
6225   0, 0, 0, 0,                         // replaced with address of .got + 16
6226   0x41, 0x83, 0xe3, NACLMASK,         // and $-32, %r11d
6227   0x4d, 0x01, 0xfb,                   // add %r15, %r11
6228   0x41, 0xff, 0xe3,                   // jmpq *%r11
6229
6230   // 9-byte nop sequence to pad out to the next 32-byte boundary.
6231   0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw 0x0(%rax,%rax,1)
6232
6233   // 32 bytes of nop to pad out to the standard size
6234   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
6235   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
6236   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
6237   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
6238   0x66,                                  // excess data32 prefix
6239   0x90                                   // nop
6240 };
6241
6242 template<int size>
6243 void
6244 Output_data_plt_x86_64_nacl<size>::do_fill_first_plt_entry(
6245     unsigned char* pov,
6246     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
6247     typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
6248 {
6249   memcpy(pov, first_plt_entry, plt_entry_size);
6250   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
6251                                               (got_address + 8
6252                                                - (plt_address + 2 + 4)));
6253   elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
6254                                               (got_address + 16
6255                                                - (plt_address + 9 + 4)));
6256 }
6257
6258 // Subsequent entries in the PLT.
6259
6260 template<int size>
6261 const unsigned char
6262 Output_data_plt_x86_64_nacl<size>::plt_entry[plt_entry_size] =
6263 {
6264   0x4c, 0x8b, 0x1d,              // mov name@GOTPCREL(%rip),%r11
6265   0, 0, 0, 0,                    // replaced with address of symbol in .got
6266   0x41, 0x83, 0xe3, NACLMASK,    // and $-32, %r11d
6267   0x4d, 0x01, 0xfb,              // add %r15, %r11
6268   0x41, 0xff, 0xe3,              // jmpq *%r11
6269
6270   // 15-byte nop sequence to pad out to the next 32-byte boundary.
6271   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
6272   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
6273
6274   // Lazy GOT entries point here (32-byte aligned).
6275   0x68,                       // pushq immediate
6276   0, 0, 0, 0,                 // replaced with index into relocation table
6277   0xe9,                       // jmp relative
6278   0, 0, 0, 0,                 // replaced with offset to start of .plt0
6279
6280   // 22 bytes of nop to pad out to the standard size.
6281   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
6282   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
6283   0x0f, 0x1f, 0x80, 0, 0, 0, 0,          // nopl 0x0(%rax)
6284 };
6285
6286 template<int size>
6287 unsigned int
6288 Output_data_plt_x86_64_nacl<size>::do_fill_plt_entry(
6289     unsigned char* pov,
6290     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
6291     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
6292     unsigned int got_offset,
6293     unsigned int plt_offset,
6294     unsigned int plt_index)
6295 {
6296   memcpy(pov, plt_entry, plt_entry_size);
6297   elfcpp::Swap_unaligned<32, false>::writeval(pov + 3,
6298                                               (got_address + got_offset
6299                                                - (plt_address + plt_offset
6300                                                   + 3 + 4)));
6301
6302   elfcpp::Swap_unaligned<32, false>::writeval(pov + 33, plt_index);
6303   elfcpp::Swap_unaligned<32, false>::writeval(pov + 38,
6304                                               - (plt_offset + 38 + 4));
6305
6306   return 32;
6307 }
6308
6309 // The reserved TLSDESC entry in the PLT.
6310
6311 template<int size>
6312 const unsigned char
6313 Output_data_plt_x86_64_nacl<size>::tlsdesc_plt_entry[plt_entry_size] =
6314 {
6315   0xff, 0x35,                   // pushq x(%rip)
6316   0, 0, 0, 0,   // replaced with address of linkmap GOT entry (at PLTGOT + 8)
6317   0x4c, 0x8b, 0x1d,             // mov y(%rip),%r11
6318   0, 0, 0, 0,   // replaced with offset of reserved TLSDESC_GOT entry
6319   0x41, 0x83, 0xe3, NACLMASK,   // and $-32, %r11d
6320   0x4d, 0x01, 0xfb,             // add %r15, %r11
6321   0x41, 0xff, 0xe3,             // jmpq *%r11
6322
6323   // 41 bytes of nop to pad out to the standard size.
6324   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
6325   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
6326   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
6327   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
6328   0x66, 0x66,                            // excess data32 prefixes
6329   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
6330 };
6331
6332 template<int size>
6333 void
6334 Output_data_plt_x86_64_nacl<size>::do_fill_tlsdesc_entry(
6335     unsigned char* pov,
6336     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
6337     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
6338     typename elfcpp::Elf_types<size>::Elf_Addr got_base,
6339     unsigned int tlsdesc_got_offset,
6340     unsigned int plt_offset)
6341 {
6342   memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
6343   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
6344                                               (got_address + 8
6345                                                - (plt_address + plt_offset
6346                                                   + 2 + 4)));
6347   elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
6348                                               (got_base
6349                                                + tlsdesc_got_offset
6350                                                - (plt_address + plt_offset
6351                                                   + 9 + 4)));
6352 }
6353
6354 // The .eh_frame unwind information for the PLT.
6355
6356 template<int size>
6357 const unsigned char
6358 Output_data_plt_x86_64_nacl<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
6359 {
6360   0, 0, 0, 0,                           // Replaced with offset to .plt.
6361   0, 0, 0, 0,                           // Replaced with size of .plt.
6362   0,                                    // Augmentation size.
6363   elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
6364   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
6365   elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
6366   elfcpp::DW_CFA_advance_loc + 58,      // Advance 58 to __PLT__ + 64.
6367   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
6368   13,                                   // Block length.
6369   elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
6370   elfcpp::DW_OP_breg16, 0,              // Push %rip.
6371   elfcpp::DW_OP_const1u, 63,            // Push 0x3f.
6372   elfcpp::DW_OP_and,                    // & (%rip & 0x3f).
6373   elfcpp::DW_OP_const1u, 37,            // Push 0x25.
6374   elfcpp::DW_OP_ge,                     // >= ((%rip & 0x3f) >= 0x25)
6375   elfcpp::DW_OP_lit3,                   // Push 3.
6376   elfcpp::DW_OP_shl,                    // << (((%rip & 0x3f) >= 0x25) << 3)
6377   elfcpp::DW_OP_plus,                   // + ((((%rip&0x3f)>=0x25)<<3)+%rsp+8
6378   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
6379   elfcpp::DW_CFA_nop
6380 };
6381
6382 // Return a string used to fill a code section with nops.
6383 // For NaCl, long NOPs are only valid if they do not cross
6384 // bundle alignment boundaries, so keep it simple with one-byte NOPs.
6385 template<int size>
6386 std::string
6387 Target_x86_64_nacl<size>::do_code_fill(section_size_type length) const
6388 {
6389   return std::string(length, static_cast<char>(0x90));
6390 }
6391
6392 // The selector for x86_64-nacl object files.
6393
6394 template<int size>
6395 class Target_selector_x86_64_nacl
6396   : public Target_selector_nacl<Target_selector_x86_64<size>,
6397                                 Target_x86_64_nacl<size> >
6398 {
6399  public:
6400   Target_selector_x86_64_nacl()
6401     : Target_selector_nacl<Target_selector_x86_64<size>,
6402                            Target_x86_64_nacl<size> >("x86-64",
6403                                                       size == 64
6404                                                       ? "elf64-x86-64-nacl"
6405                                                       : "elf32-x86-64-nacl",
6406                                                       size == 64
6407                                                       ? "elf_x86_64_nacl"
6408                                                       : "elf32_x86_64_nacl")
6409   { }
6410 };
6411
6412 Target_selector_x86_64_nacl<64> target_selector_x86_64;
6413 Target_selector_x86_64_nacl<32> target_selector_x32;
6414
6415 } // End anonymous namespace.