223523eb5f7470cbe20c11460ab57436379b02b0
[external/binutils.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright 2006, 2007, Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or
9 // modify it under the terms of the GNU Library General Public License
10 // as published by the Free Software Foundation; either version 2, or
11 // (at your option) any later version.
12
13 // In addition to the permissions in the GNU Library General Public
14 // License, the Free Software Foundation gives you unlimited
15 // permission to link the compiled version of this file into
16 // combinations with other programs, and to distribute those
17 // combinations without any restriction coming from the use of this
18 // file.  (The Library Public License restrictions do apply in other
19 // respects; for example, they cover modification of the file, and
20 /// distribution when not linked into a combined executable.)
21
22 // This program is distributed in the hope that it will be useful, but
23 // WITHOUT ANY WARRANTY; without even the implied warranty of
24 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
25 // Library General Public License for more details.
26
27 // You should have received a copy of the GNU Library General Public
28 // License along with this program; if not, write to the Free Software
29 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30 // 02110-1301, USA.
31
32 #include "gold.h"
33
34 #include <cstring>
35
36 #include "elfcpp.h"
37 #include "parameters.h"
38 #include "reloc.h"
39 #include "x86_64.h"
40 #include "object.h"
41 #include "symtab.h"
42 #include "layout.h"
43 #include "output.h"
44 #include "target.h"
45 #include "target-reloc.h"
46 #include "target-select.h"
47 #include "tls.h"
48
49 namespace
50 {
51
52 using namespace gold;
53
54 class Output_data_plt_x86_64;
55
56 // The x86_64 target class.
57 // See the ABI at
58 //   http://www.x86-64.org/documentation/abi.pdf
59 // TLS info comes from
60 //   http://people.redhat.com/drepper/tls.pdf
61 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
62
63 class Target_x86_64 : public Sized_target<64, false>
64 {
65  public:
66   // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
67   // uses only Elf64_Rela relocation entries with explicit addends."
68   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
69
70   Target_x86_64()
71     : Sized_target<64, false>(&x86_64_info),
72       got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
73       copy_relocs_(NULL), dynbss_(NULL)
74   { }
75
76   // Scan the relocations to look for symbol adjustments.
77   void
78   scan_relocs(const General_options& options,
79               Symbol_table* symtab,
80               Layout* layout,
81               Sized_relobj<64, false>* object,
82               unsigned int data_shndx,
83               unsigned int sh_type,
84               const unsigned char* prelocs,
85               size_t reloc_count,
86               size_t local_symbol_count,
87               const unsigned char* plocal_symbols,
88               Symbol** global_symbols);
89
90   // Finalize the sections.
91   void
92   do_finalize_sections(Layout*);
93
94   // Return the value to use for a dynamic which requires special
95   // treatment.
96   uint64_t
97   do_dynsym_value(const Symbol*) const;
98
99   // Relocate a section.
100   void
101   relocate_section(const Relocate_info<64, false>*,
102                    unsigned int sh_type,
103                    const unsigned char* prelocs,
104                    size_t reloc_count,
105                    unsigned char* view,
106                    elfcpp::Elf_types<64>::Elf_Addr view_address,
107                    off_t view_size);
108
109   // Return a string used to fill a code section with nops.
110   std::string
111   do_code_fill(off_t length);
112
113   // Return the size of the GOT section.
114   off_t
115   got_size()
116   {
117     gold_assert(this->got_ != NULL);
118     return this->got_->data_size();
119   }
120
121  private:
122   // The class which scans relocations.
123   struct Scan
124   {
125     inline void
126     local(const General_options& options, Symbol_table* symtab,
127           Layout* layout, Target_x86_64* target,
128           Sized_relobj<64, false>* object,
129           unsigned int data_shndx,
130           const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
131           const elfcpp::Sym<64, false>& lsym);
132
133     inline void
134     global(const General_options& options, Symbol_table* symtab,
135            Layout* layout, Target_x86_64* target,
136            Sized_relobj<64, false>* object,
137            unsigned int data_shndx,
138            const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
139            Symbol* gsym);
140
141     static void
142     unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
143
144     static void
145     unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
146                              Symbol*);
147   };
148
149   // The class which implements relocation.
150   class Relocate
151   {
152    public:
153     Relocate()
154       : skip_call_tls_get_addr_(false)
155     { }
156
157     ~Relocate()
158     {
159       if (this->skip_call_tls_get_addr_)
160         {
161           // FIXME: This needs to specify the location somehow.
162           gold_error(_("missing expected TLS relocation"));
163         }
164     }
165
166     // Do a relocation.  Return false if the caller should not issue
167     // any warnings about this relocation.
168     inline bool
169     relocate(const Relocate_info<64, false>*, Target_x86_64*, size_t relnum,
170              const elfcpp::Rela<64, false>&,
171              unsigned int r_type, const Sized_symbol<64>*,
172              const Symbol_value<64>*,
173              unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
174              off_t);
175
176    private:
177     // Do a TLS relocation.
178     inline void
179     relocate_tls(const Relocate_info<64, false>*, size_t relnum,
180                  const elfcpp::Rela<64, false>&,
181                  unsigned int r_type, const Sized_symbol<64>*,
182                  const Symbol_value<64>*,
183                  unsigned char*, elfcpp::Elf_types<64>::Elf_Addr, off_t);
184
185     // Do a TLS General-Dynamic to Local-Exec transition.
186     inline void
187     tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
188                  Output_segment* tls_segment,
189                  const elfcpp::Rela<64, false>&, unsigned int r_type,
190                  elfcpp::Elf_types<64>::Elf_Addr value,
191                  unsigned char* view,
192                  off_t view_size);
193
194     // Do a TLS Local-Dynamic to Local-Exec transition.
195     inline void
196     tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
197                  Output_segment* tls_segment,
198                  const elfcpp::Rela<64, false>&, unsigned int r_type,
199                  elfcpp::Elf_types<64>::Elf_Addr value,
200                  unsigned char* view,
201                  off_t view_size);
202
203     // Do a TLS Initial-Exec to Local-Exec transition.
204     static inline void
205     tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
206                  Output_segment* tls_segment,
207                  const elfcpp::Rela<64, false>&, unsigned int r_type,
208                  elfcpp::Elf_types<64>::Elf_Addr value,
209                  unsigned char* view,
210                  off_t view_size);
211
212     // This is set if we should skip the next reloc, which should be a
213     // PLT32 reloc against ___tls_get_addr.
214     bool skip_call_tls_get_addr_;
215   };
216
217   // Adjust TLS relocation type based on the options and whether this
218   // is a local symbol.
219   static tls::Tls_optimization
220   optimize_tls_reloc(bool is_final, int r_type);
221
222   // Get the GOT section, creating it if necessary.
223   Output_data_got<64, false>*
224   got_section(Symbol_table*, Layout*);
225
226   // Get the GOT PLT section.
227   Output_data_space*
228   got_plt_section() const
229   {
230     gold_assert(this->got_plt_ != NULL);
231     return this->got_plt_;
232   }
233
234   // Create a PLT entry for a global symbol.
235   void
236   make_plt_entry(Symbol_table*, Layout*, Symbol*);
237
238   // Get the PLT section.
239   Output_data_plt_x86_64*
240   plt_section() const
241   {
242     gold_assert(this->plt_ != NULL);
243     return this->plt_;
244   }
245
246   // Get the dynamic reloc section, creating it if necessary.
247   Reloc_section*
248   rela_dyn_section(Layout*);
249
250   // Copy a relocation against a global symbol.
251   void
252   copy_reloc(const General_options*, Symbol_table*, Layout*,
253              Sized_relobj<64, false>*, unsigned int,
254              Symbol*, const elfcpp::Rela<64, false>&);
255
256   // Information about this specific target which we pass to the
257   // general Target structure.
258   static const Target::Target_info x86_64_info;
259
260   // The GOT section.
261   Output_data_got<64, false>* got_;
262   // The PLT section.
263   Output_data_plt_x86_64* plt_;
264   // The GOT PLT section.
265   Output_data_space* got_plt_;
266   // The dynamic reloc section.
267   Reloc_section* rela_dyn_;
268   // Relocs saved to avoid a COPY reloc.
269   Copy_relocs<64, false>* copy_relocs_;
270   // Space for variables copied with a COPY reloc.
271   Output_data_space* dynbss_;
272 };
273
274 const Target::Target_info Target_x86_64::x86_64_info =
275 {
276   64,                   // size
277   false,                // is_big_endian
278   elfcpp::EM_X86_64,    // machine_code
279   false,                // has_make_symbol
280   false,                // has_resolve
281   true,                 // has_code_fill
282   true,                 // is_default_stack_executable
283   "/lib/ld64.so.1",     // program interpreter
284   0x400000,             // default_text_segment_address
285   0x1000,               // abi_pagesize
286   0x1000                // common_pagesize
287 };
288
289 // Get the GOT section, creating it if necessary.
290
291 Output_data_got<64, false>*
292 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
293 {
294   if (this->got_ == NULL)
295     {
296       gold_assert(symtab != NULL && layout != NULL);
297
298       this->got_ = new Output_data_got<64, false>();
299
300       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
301                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
302                                       this->got_);
303
304       // The old GNU linker creates a .got.plt section.  We just
305       // create another set of data in the .got section.  Note that we
306       // always create a PLT if we create a GOT, although the PLT
307       // might be empty.
308       this->got_plt_ = new Output_data_space(8);
309       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
310                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
311                                       this->got_plt_);
312
313       // The first three entries are reserved.
314       this->got_plt_->set_space_size(3 * 8);
315
316       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
317       symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
318                                     this->got_plt_,
319                                     0, 0, elfcpp::STT_OBJECT,
320                                     elfcpp::STB_LOCAL,
321                                     elfcpp::STV_HIDDEN, 0,
322                                     false, false);
323     }
324
325   return this->got_;
326 }
327
328 // Get the dynamic reloc section, creating it if necessary.
329
330 Target_x86_64::Reloc_section*
331 Target_x86_64::rela_dyn_section(Layout* layout)
332 {
333   if (this->rela_dyn_ == NULL)
334     {
335       gold_assert(layout != NULL);
336       this->rela_dyn_ = new Reloc_section();
337       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
338                                       elfcpp::SHF_ALLOC, this->rela_dyn_);
339     }
340   return this->rela_dyn_;
341 }
342
343 // A class to handle the PLT data.
344
345 class Output_data_plt_x86_64 : public Output_section_data
346 {
347  public:
348   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
349
350   Output_data_plt_x86_64(Layout*, Output_data_space*);
351
352   // Add an entry to the PLT.
353   void
354   add_entry(Symbol* gsym);
355
356   // Return the .rel.plt section data.
357   const Reloc_section*
358   rel_plt() const
359   { return this->rel_; }
360
361  protected:
362   void
363   do_adjust_output_section(Output_section* os);
364
365  private:
366   // The size of an entry in the PLT.
367   static const int plt_entry_size = 16;
368
369   // The first entry in the PLT.
370   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
371   // procedure linkage table for both programs and shared objects."
372   static unsigned char first_plt_entry[plt_entry_size];
373
374   // Other entries in the PLT for an executable.
375   static unsigned char plt_entry[plt_entry_size];
376
377   // Set the final size.
378   void
379   do_set_address(uint64_t, off_t)
380   { this->set_data_size((this->count_ + 1) * plt_entry_size); }
381
382   // Write out the PLT data.
383   void
384   do_write(Output_file*);
385
386   // The reloc section.
387   Reloc_section* rel_;
388   // The .got.plt section.
389   Output_data_space* got_plt_;
390   // The number of PLT entries.
391   unsigned int count_;
392 };
393
394 // Create the PLT section.  The ordinary .got section is an argument,
395 // since we need to refer to the start.  We also create our own .got
396 // section just for PLT entries.
397
398 Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
399                                                Output_data_space* got_plt)
400   : Output_section_data(8), got_plt_(got_plt), count_(0)
401 {
402   this->rel_ = new Reloc_section();
403   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
404                                   elfcpp::SHF_ALLOC, this->rel_);
405 }
406
407 void
408 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
409 {
410   // UnixWare sets the entsize of .plt to 4, and so does the old GNU
411   // linker, and so do we.
412   os->set_entsize(4);
413 }
414
415 // Add an entry to the PLT.
416
417 void
418 Output_data_plt_x86_64::add_entry(Symbol* gsym)
419 {
420   gold_assert(!gsym->has_plt_offset());
421
422   // Note that when setting the PLT offset we skip the initial
423   // reserved PLT entry.
424   gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
425
426   ++this->count_;
427
428   off_t got_offset = this->got_plt_->data_size();
429
430   // Every PLT entry needs a GOT entry which points back to the PLT
431   // entry (this will be changed by the dynamic linker, normally
432   // lazily when the function is called).
433   this->got_plt_->set_space_size(got_offset + 8);
434
435   // Every PLT entry needs a reloc.
436   gsym->set_needs_dynsym_entry();
437   this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
438                          got_offset, 0);
439
440   // Note that we don't need to save the symbol.  The contents of the
441   // PLT are independent of which symbols are used.  The symbols only
442   // appear in the relocations.
443 }
444
445 // The first entry in the PLT for an executable.
446
447 unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
448 {
449   // From AMD64 ABI Draft 0.98, page 76
450   0xff, 0x35,   // pushq contents of memory address
451   0, 0, 0, 0,   // replaced with address of .got + 4
452   0xff, 0x25,   // jmp indirect
453   0, 0, 0, 0,   // replaced with address of .got + 8
454   0x90, 0x90, 0x90, 0x90   // noop (x4)
455 };
456
457 // Subsequent entries in the PLT for an executable.
458
459 unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
460 {
461   // From AMD64 ABI Draft 0.98, page 76
462   0xff, 0x25,   // jmpq indirect
463   0, 0, 0, 0,   // replaced with address of symbol in .got
464   0x68,         // pushq immediate
465   0, 0, 0, 0,   // replaced with offset into relocation table
466   0xe9,         // jmpq relative
467   0, 0, 0, 0    // replaced with offset to start of .plt
468 };
469
470 // Write out the PLT.  This uses the hand-coded instructions above,
471 // and adjusts them as needed.  This is specified by the AMD64 ABI.
472
473 void
474 Output_data_plt_x86_64::do_write(Output_file* of)
475 {
476   const off_t offset = this->offset();
477   const off_t oview_size = this->data_size();
478   unsigned char* const oview = of->get_output_view(offset, oview_size);
479
480   const off_t got_file_offset = this->got_plt_->offset();
481   const off_t got_size = this->got_plt_->data_size();
482   unsigned char* const got_view = of->get_output_view(got_file_offset,
483                                                       got_size);
484
485   unsigned char* pov = oview;
486
487   elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
488   elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
489
490   memcpy(pov, first_plt_entry, plt_entry_size);
491   if (!parameters->output_is_shared())
492     {
493       // We do a jmp relative to the PC at the end of this instruction.
494       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 8
495                                                   - (plt_address + 6));
496       elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 16
497                                         - (plt_address + 12));
498     }
499   pov += plt_entry_size;
500
501   unsigned char* got_pov = got_view;
502
503   memset(got_pov, 0, 24);
504   got_pov += 24;
505
506   unsigned int plt_offset = plt_entry_size;
507   unsigned int got_offset = 24;
508   const unsigned int count = this->count_;
509   for (unsigned int plt_index = 0;
510        plt_index < count;
511        ++plt_index,
512          pov += plt_entry_size,
513          got_pov += 8,
514          plt_offset += plt_entry_size,
515          got_offset += 8)
516     {
517       // Set and adjust the PLT entry itself.
518       memcpy(pov, plt_entry, plt_entry_size);
519       if (parameters->output_is_shared())
520         // FIXME(csilvers): what's the right thing to write here?
521         elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
522       else
523         elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
524                                                     (got_address + got_offset
525                                                      - (plt_address + plt_offset
526                                                         + 6)));
527
528       elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
529       elfcpp::Swap<32, false>::writeval(pov + 12,
530                                         - (plt_offset + plt_entry_size));
531
532       // Set the entry in the GOT.
533       elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
534     }
535
536   gold_assert(pov - oview == oview_size);
537   gold_assert(got_pov - got_view == got_size);
538
539   of->write_output_view(offset, oview_size, oview);
540   of->write_output_view(got_file_offset, got_size, got_view);
541 }
542
543 // Create a PLT entry for a global symbol.
544
545 void
546 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
547                               Symbol* gsym)
548 {
549   if (gsym->has_plt_offset())
550     return;
551
552   if (this->plt_ == NULL)
553     {
554       // Create the GOT sections first.
555       this->got_section(symtab, layout);
556
557       this->plt_ = new Output_data_plt_x86_64(layout, this->got_plt_);
558       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
559                                       (elfcpp::SHF_ALLOC
560                                        | elfcpp::SHF_EXECINSTR),
561                                       this->plt_);
562     }
563
564   this->plt_->add_entry(gsym);
565 }
566
567 // Handle a relocation against a non-function symbol defined in a
568 // dynamic object.  The traditional way to handle this is to generate
569 // a COPY relocation to copy the variable at runtime from the shared
570 // object into the executable's data segment.  However, this is
571 // undesirable in general, as if the size of the object changes in the
572 // dynamic object, the executable will no longer work correctly.  If
573 // this relocation is in a writable section, then we can create a
574 // dynamic reloc and the dynamic linker will resolve it to the correct
575 // address at runtime.  However, we do not want do that if the
576 // relocation is in a read-only section, as it would prevent the
577 // readonly segment from being shared.  And if we have to eventually
578 // generate a COPY reloc, then any dynamic relocations will be
579 // useless.  So this means that if this is a writable section, we need
580 // to save the relocation until we see whether we have to create a
581 // COPY relocation for this symbol for any other relocation.
582
583 void
584 Target_x86_64::copy_reloc(const General_options* options,
585                           Symbol_table* symtab,
586                           Layout* layout,
587                           Sized_relobj<64, false>* object,
588                           unsigned int data_shndx, Symbol* gsym,
589                           const elfcpp::Rela<64, false>& rela)
590 {
591   Sized_symbol<64>* ssym;
592   ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(64) (gsym
593                                                         SELECT_SIZE(64));
594
595   if (!Copy_relocs<64, false>::need_copy_reloc(options, object,
596                                                data_shndx, ssym))
597     {
598       // So far we do not need a COPY reloc.  Save this relocation.
599       // If it turns out that we never need a COPY reloc for this
600       // symbol, then we will emit the relocation.
601       if (this->copy_relocs_ == NULL)
602         this->copy_relocs_ = new Copy_relocs<64, false>();
603       this->copy_relocs_->save(ssym, object, data_shndx, rela);
604     }
605   else
606     {
607       // Allocate space for this symbol in the .bss section.
608
609       elfcpp::Elf_types<64>::Elf_WXword symsize = ssym->symsize();
610
611       // There is no defined way to determine the required alignment
612       // of the symbol.  We pick the alignment based on the size.  We
613       // set an arbitrary maximum of 256.
614       unsigned int align;
615       for (align = 1; align < 512; align <<= 1)
616         if ((symsize & align) != 0)
617           break;
618
619       if (this->dynbss_ == NULL)
620         {
621           this->dynbss_ = new Output_data_space(align);
622           layout->add_output_section_data(".bss",
623                                           elfcpp::SHT_NOBITS,
624                                           (elfcpp::SHF_ALLOC
625                                            | elfcpp::SHF_WRITE),
626                                           this->dynbss_);
627         }
628
629       Output_data_space* dynbss = this->dynbss_;
630
631       if (align > dynbss->addralign())
632         dynbss->set_space_alignment(align);
633
634       off_t dynbss_size = dynbss->data_size();
635       dynbss_size = align_address(dynbss_size, align);
636       off_t offset = dynbss_size;
637       dynbss->set_space_size(dynbss_size + symsize);
638
639       symtab->define_with_copy_reloc(this, ssym, dynbss, offset);
640
641       // Add the COPY reloc.
642       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
643       rela_dyn->add_global(ssym, elfcpp::R_X86_64_COPY, dynbss, offset, 0);
644     }
645 }
646
647
648 // Optimize the TLS relocation type based on what we know about the
649 // symbol.  IS_FINAL is true if the final address of this symbol is
650 // known at link time.
651
652 tls::Tls_optimization
653 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
654 {
655   // If we are generating a shared library, then we can't do anything
656   // in the linker.
657   if (parameters->output_is_shared())
658     return tls::TLSOPT_NONE;
659
660   switch (r_type)
661     {
662     case elfcpp::R_X86_64_TLSGD:
663     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
664     case elfcpp::R_X86_64_TLSDESC_CALL:
665       // These are General-Dynamic which permits fully general TLS
666       // access.  Since we know that we are generating an executable,
667       // we can convert this to Initial-Exec.  If we also know that
668       // this is a local symbol, we can further switch to Local-Exec.
669       if (is_final)
670         return tls::TLSOPT_TO_LE;
671       return tls::TLSOPT_TO_IE;
672
673     case elfcpp::R_X86_64_TLSLD:
674       // This is Local-Dynamic, which refers to a local symbol in the
675       // dynamic TLS block.  Since we know that we generating an
676       // executable, we can switch to Local-Exec.
677       return tls::TLSOPT_TO_LE;
678
679     case elfcpp::R_X86_64_DTPOFF32:
680     case elfcpp::R_X86_64_DTPOFF64:
681       // Another Local-Dynamic reloc.
682       return tls::TLSOPT_TO_LE;
683
684     case elfcpp::R_X86_64_GOTTPOFF:
685       // These are Initial-Exec relocs which get the thread offset
686       // from the GOT.  If we know that we are linking against the
687       // local symbol, we can switch to Local-Exec, which links the
688       // thread offset into the instruction.
689       if (is_final)
690         return tls::TLSOPT_TO_LE;
691       return tls::TLSOPT_NONE;
692
693     case elfcpp::R_X86_64_TPOFF32:
694       // When we already have Local-Exec, there is nothing further we
695       // can do.
696       return tls::TLSOPT_NONE;
697
698     default:
699       gold_unreachable();
700     }
701 }
702
703 // Report an unsupported relocation against a local symbol.
704
705 void
706 Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
707                                              unsigned int r_type)
708 {
709   gold_error(_("%s: unsupported reloc %u against local symbol"),
710              object->name().c_str(), r_type);
711 }
712
713 // Scan a relocation for a local symbol.
714
715 inline void
716 Target_x86_64::Scan::local(const General_options&,
717                            Symbol_table* symtab,
718                            Layout* layout,
719                            Target_x86_64* target,
720                            Sized_relobj<64, false>* object,
721                            unsigned int data_shndx,
722                            const elfcpp::Rela<64, false>& reloc,
723                            unsigned int r_type,
724                            const elfcpp::Sym<64, false>&)
725 {
726   switch (r_type)
727     {
728     case elfcpp::R_X86_64_NONE:
729     case elfcpp::R_386_GNU_VTINHERIT:
730     case elfcpp::R_386_GNU_VTENTRY:
731       break;
732
733     case elfcpp::R_X86_64_64:
734     case elfcpp::R_X86_64_32:
735     case elfcpp::R_X86_64_32S:
736     case elfcpp::R_X86_64_16:
737     case elfcpp::R_X86_64_8:
738       // If building a shared library (or a position-independent
739       // executable), we need to create a dynamic relocation for
740       // this location. The relocation applied at link time will
741       // apply the link-time value, so we flag the location with
742       // an R_386_RELATIVE relocation so the dynamic loader can
743       // relocate it easily.
744       if (parameters->output_is_position_independent())
745         {
746           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
747           if (r_type == elfcpp::R_X86_64_64)
748             rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
749                                 data_shndx, reloc.get_r_offset(), 0);
750           else
751             {
752               unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
753               rela_dyn->add_local(object, r_sym, r_type, data_shndx,
754                                   reloc.get_r_offset(),
755                                   reloc.get_r_addend());
756             }
757         }
758       break;
759
760     case elfcpp::R_X86_64_PC64:
761     case elfcpp::R_X86_64_PC32:
762     case elfcpp::R_X86_64_PC16:
763     case elfcpp::R_X86_64_PC8:
764       break;
765
766     case elfcpp::R_X86_64_PLT32:
767       // Since we know this is a local symbol, we can handle this as a
768       // PC32 reloc.
769       break;
770
771     case elfcpp::R_X86_64_GOTPC32:
772     case elfcpp::R_X86_64_GOTOFF64:
773     case elfcpp::R_X86_64_GOTPC64:
774     case elfcpp::R_X86_64_PLTOFF64:
775       // We need a GOT section.
776       target->got_section(symtab, layout);
777       // For PLTOFF64, we'd normally want a PLT section, but since we
778       // know this is a local symbol, no PLT is needed.
779       break;
780
781     case elfcpp::R_X86_64_GOT64:
782     case elfcpp::R_X86_64_GOT32:
783     case elfcpp::R_X86_64_GOTPCREL64:
784     case elfcpp::R_X86_64_GOTPCREL:
785     case elfcpp::R_X86_64_GOTPLT64:
786       {
787         // The symbol requires a GOT entry.
788         Output_data_got<64, false>* got = target->got_section(symtab, layout);
789         unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
790         if (got->add_local(object, r_sym))
791           {
792             // If we are generating a shared object, we need to add a
793             // dynamic RELATIVE relocation for this symbol.
794             if (parameters->output_is_position_independent())
795               {
796                 // FIXME: R_X86_64_RELATIVE assumes a 64-bit relocation.
797                 gold_assert(r_type != elfcpp::R_X86_64_GOT32);
798
799                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
800                 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
801                                     data_shndx, reloc.get_r_offset(), 0);
802               }
803           }
804         // For GOTPLT64, we'd normally want a PLT section, but since
805         // we know this is a local symbol, no PLT is needed.
806       }
807       break;
808
809     case elfcpp::R_X86_64_COPY:
810     case elfcpp::R_X86_64_GLOB_DAT:
811     case elfcpp::R_X86_64_JUMP_SLOT:
812     case elfcpp::R_X86_64_RELATIVE:
813       // These are outstanding tls relocs, which are unexpected when linking
814     case elfcpp::R_X86_64_TPOFF64:
815     case elfcpp::R_X86_64_DTPMOD64:
816     case elfcpp::R_X86_64_TLSDESC:
817       gold_error(_("%s: unexpected reloc %u in object file"),
818                  object->name().c_str(), r_type);
819       break;
820
821       // These are initial tls relocs, which are expected when linking
822     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
823     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
824     case elfcpp::R_X86_64_TLSDESC_CALL:
825     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
826     case elfcpp::R_X86_64_DTPOFF32:
827     case elfcpp::R_X86_64_DTPOFF64:
828     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
829     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
830       {
831         bool output_is_shared = parameters->output_is_shared();
832         const tls::Tls_optimization optimized_type
833             = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
834         switch (r_type)
835           {
836           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
837           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
838           case elfcpp::R_X86_64_TLSDESC_CALL:
839             // FIXME: If not relaxing to LE, we need to generate
840             // DTPMOD64 and DTPOFF64 relocs.
841             if (optimized_type != tls::TLSOPT_TO_LE)
842               unsupported_reloc_local(object, r_type);
843             break;
844
845           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
846           case elfcpp::R_X86_64_DTPOFF32:
847           case elfcpp::R_X86_64_DTPOFF64:
848             // FIXME: If not relaxing to LE, we need to generate a
849             // DTPMOD64 reloc.
850             if (optimized_type != tls::TLSOPT_TO_LE)
851               unsupported_reloc_local(object, r_type);
852             break;
853
854           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
855             // FIXME: If not relaxing to LE, we need to generate a
856             // TPOFF64 reloc.
857             if (optimized_type != tls::TLSOPT_TO_LE)
858               unsupported_reloc_local(object, r_type);
859             break;
860
861           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
862             // FIXME: If generating a shared object, we need to copy
863             // this relocation into the object.
864             gold_assert(!output_is_shared);
865             break;
866
867           default:
868             gold_unreachable();
869           }
870       }
871       break;
872
873     case elfcpp::R_X86_64_SIZE32:
874     case elfcpp::R_X86_64_SIZE64:
875     default:
876       gold_error(_("%s: unsupported reloc %u against local symbol"),
877                  object->name().c_str(), r_type);
878       break;
879     }
880 }
881
882
883 // Report an unsupported relocation against a global symbol.
884
885 void
886 Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
887                                               unsigned int r_type,
888                                               Symbol* gsym)
889 {
890   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
891              object->name().c_str(), r_type, gsym->name());
892 }
893
894 // Scan a relocation for a global symbol.
895
896 inline void
897 Target_x86_64::Scan::global(const General_options& options,
898                             Symbol_table* symtab,
899                             Layout* layout,
900                             Target_x86_64* target,
901                             Sized_relobj<64, false>* object,
902                             unsigned int data_shndx,
903                             const elfcpp::Rela<64, false>& reloc,
904                             unsigned int r_type,
905                             Symbol* gsym)
906 {
907   switch (r_type)
908     {
909     case elfcpp::R_X86_64_NONE:
910     case elfcpp::R_386_GNU_VTINHERIT:
911     case elfcpp::R_386_GNU_VTENTRY:
912       break;
913
914     case elfcpp::R_X86_64_64:
915     case elfcpp::R_X86_64_PC64:
916     case elfcpp::R_X86_64_32:
917     case elfcpp::R_X86_64_32S:
918     case elfcpp::R_X86_64_PC32:
919     case elfcpp::R_X86_64_16:
920     case elfcpp::R_X86_64_PC16:
921     case elfcpp::R_X86_64_8:
922     case elfcpp::R_X86_64_PC8:
923       {
924         bool is_pcrel = (r_type == elfcpp::R_X86_64_PC64
925                          || r_type == elfcpp::R_X86_64_PC32
926                          || r_type == elfcpp::R_X86_64_PC16
927                          || r_type == elfcpp::R_X86_64_PC8);
928
929         if (gsym->is_from_dynobj()
930             || (parameters->output_is_shared()
931                 && gsym->is_preemptible()))
932           {
933             // (a) This symbol is defined in a dynamic object.  If it is a
934             // function, we make a PLT entry.  Otherwise we need to
935             // either generate a COPY reloc or copy this reloc.
936             // (b) We are building a shared object and this symbol is
937             // preemptible. If it is a function, we make a PLT entry.
938             // Otherwise, we copy the reloc.
939             if (gsym->type() == elfcpp::STT_FUNC)
940               {
941                 target->make_plt_entry(symtab, layout, gsym);
942
943                 // If this is not a PC relative reference, then we may
944                 // be taking the address of the function.  In that case
945                 // we need to set the entry in the dynamic symbol table
946                 // to the address of the PLT entry. We will also need to
947                 // create a dynamic relocation.
948                 if (!is_pcrel)
949                   {
950                     if (gsym->is_from_dynobj())
951                       gsym->set_needs_dynsym_value();
952                     if (parameters->output_is_position_independent())
953                       {
954                         Reloc_section* rela_dyn =
955                           target->rela_dyn_section(layout);
956                         rela_dyn->add_global(gsym, r_type, object, data_shndx, 
957                                             reloc.get_r_offset(),
958                                             reloc.get_r_addend());
959                       }
960                   }
961               }
962             else if (parameters->output_is_shared())
963               {
964                 // We do not make COPY relocs in shared objects.
965                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
966                 rela_dyn->add_global(gsym, r_type, object, data_shndx, 
967                                      reloc.get_r_offset(),
968                                      reloc.get_r_addend());
969               }
970             else
971               target->copy_reloc(&options, symtab, layout, object, data_shndx,
972                                  gsym, reloc);
973           }
974         else if (!is_pcrel && parameters->output_is_position_independent())
975           {
976             // This is not a PC-relative reference, so we need to generate
977             // a dynamic relocation. At this point, we know the symbol
978             // is not preemptible, so we can use the RELATIVE relocation.
979             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
980             if (r_type == elfcpp::R_X86_64_64)
981               rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
982                                   data_shndx,
983                                   reloc.get_r_offset(), 0);
984             else
985               rela_dyn->add_global(gsym, r_type, object, data_shndx, 
986                                    reloc.get_r_offset(),
987                                    reloc.get_r_addend());
988           }
989         }
990       break;
991
992     case elfcpp::R_X86_64_GOT64:
993     case elfcpp::R_X86_64_GOT32:
994     case elfcpp::R_X86_64_GOTPCREL64:
995     case elfcpp::R_X86_64_GOTPCREL:
996     case elfcpp::R_X86_64_GOTPLT64:
997       {
998         // The symbol requires a GOT entry.
999         Output_data_got<64, false>* got = target->got_section(symtab, layout);
1000         if (got->add_global(gsym))
1001           {
1002             // If this symbol is not fully resolved, we need to add a
1003             // dynamic relocation for it.
1004             if (!gsym->final_value_is_known())
1005               {
1006                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1007                 rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT, got,
1008                                      gsym->got_offset(), 0);
1009               }
1010           }
1011         // For GOTPLT64, we also need a PLT entry (but only if the
1012         // symbol is not fully resolved).
1013         if (r_type == elfcpp::R_X86_64_GOTPLT64
1014             && !gsym->final_value_is_known())
1015           target->make_plt_entry(symtab, layout, gsym);
1016       }
1017       break;
1018
1019     case elfcpp::R_X86_64_PLT32:
1020       // If the symbol is fully resolved, this is just a PC32 reloc.
1021       // Otherwise we need a PLT entry.
1022       if (gsym->final_value_is_known())
1023         break;
1024       // If building a shared library, we can also skip the PLT entry
1025       // if the symbol is defined in the output file and is protected
1026       // or hidden.
1027       if (gsym->is_defined()
1028           && !gsym->is_from_dynobj()
1029           && !gsym->is_preemptible())
1030         break;
1031       target->make_plt_entry(symtab, layout, gsym);
1032       break;
1033
1034     case elfcpp::R_X86_64_GOTPC32:
1035     case elfcpp::R_X86_64_GOTOFF64:
1036     case elfcpp::R_X86_64_GOTPC64:
1037     case elfcpp::R_X86_64_PLTOFF64:
1038       // We need a GOT section.
1039       target->got_section(symtab, layout);
1040       // For PLTOFF64, we also need a PLT entry (but only if the
1041       // symbol is not fully resolved).
1042       if (r_type == elfcpp::R_X86_64_PLTOFF64
1043           && !gsym->final_value_is_known())
1044         target->make_plt_entry(symtab, layout, gsym);
1045       break;
1046
1047     case elfcpp::R_X86_64_COPY:
1048     case elfcpp::R_X86_64_GLOB_DAT:
1049     case elfcpp::R_X86_64_JUMP_SLOT:
1050     case elfcpp::R_X86_64_RELATIVE:
1051       // These are outstanding tls relocs, which are unexpected when linking
1052     case elfcpp::R_X86_64_TPOFF64:
1053     case elfcpp::R_X86_64_DTPMOD64:
1054     case elfcpp::R_X86_64_TLSDESC:
1055       gold_error(_("%s: unexpected reloc %u in object file"),
1056                  object->name().c_str(), r_type);
1057       break;
1058
1059       // These are initial tls relocs, which are expected for global()
1060     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1061     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1062     case elfcpp::R_X86_64_TLSDESC_CALL:
1063     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1064     case elfcpp::R_X86_64_DTPOFF32:
1065     case elfcpp::R_X86_64_DTPOFF64:
1066     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1067     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1068       {
1069         const bool is_final = gsym->final_value_is_known();
1070         const tls::Tls_optimization optimized_type
1071             = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1072         switch (r_type)
1073           {
1074           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
1075           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1076           case elfcpp::R_X86_64_TLSDESC_CALL:
1077             // FIXME: If not relaxing to LE, we need to generate
1078             // DTPMOD64 and DTPOFF64, or TLSDESC, relocs.
1079             if (optimized_type != tls::TLSOPT_TO_LE)
1080               unsupported_reloc_global(object, r_type, gsym);
1081             break;
1082
1083           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
1084           case elfcpp::R_X86_64_DTPOFF32:
1085           case elfcpp::R_X86_64_DTPOFF64:
1086             // FIXME: If not relaxing to LE, we need to generate a
1087             // DTPMOD64 reloc.
1088             if (optimized_type != tls::TLSOPT_TO_LE)
1089               unsupported_reloc_global(object, r_type, gsym);
1090             break;
1091
1092           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
1093             // FIXME: If not relaxing to LE, we need to generate a
1094             // TPOFF64 reloc.
1095             if (optimized_type != tls::TLSOPT_TO_LE)
1096               unsupported_reloc_global(object, r_type, gsym);
1097             break;
1098
1099           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
1100             // FIXME: If generating a shared object, we need to copy
1101             // this relocation into the object.
1102             gold_assert(is_final);
1103             break;
1104
1105           default:
1106             gold_unreachable();
1107           }
1108       }
1109       break;
1110
1111     case elfcpp::R_X86_64_SIZE32:
1112     case elfcpp::R_X86_64_SIZE64:
1113     default:
1114       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1115                  object->name().c_str(), r_type, gsym->name());
1116       break;
1117     }
1118 }
1119
1120 // Scan relocations for a section.
1121
1122 void
1123 Target_x86_64::scan_relocs(const General_options& options,
1124                            Symbol_table* symtab,
1125                            Layout* layout,
1126                            Sized_relobj<64, false>* object,
1127                            unsigned int data_shndx,
1128                            unsigned int sh_type,
1129                            const unsigned char* prelocs,
1130                            size_t reloc_count,
1131                            size_t local_symbol_count,
1132                            const unsigned char* plocal_symbols,
1133                            Symbol** global_symbols)
1134 {
1135   if (sh_type == elfcpp::SHT_REL)
1136     {
1137       gold_error(_("%s: unsupported REL reloc section"),
1138                  object->name().c_str());
1139       return;
1140     }
1141
1142   gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1143       Target_x86_64::Scan>(
1144     options,
1145     symtab,
1146     layout,
1147     this,
1148     object,
1149     data_shndx,
1150     prelocs,
1151     reloc_count,
1152     local_symbol_count,
1153     plocal_symbols,
1154     global_symbols);
1155 }
1156
1157 // Finalize the sections.
1158
1159 void
1160 Target_x86_64::do_finalize_sections(Layout* layout)
1161 {
1162   // Fill in some more dynamic tags.
1163   Output_data_dynamic* const odyn = layout->dynamic_data();
1164   if (odyn != NULL)
1165     {
1166       if (this->got_plt_ != NULL)
1167         odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1168
1169       if (this->plt_ != NULL)
1170         {
1171           const Output_data* od = this->plt_->rel_plt();
1172           odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1173           odyn->add_section_address(elfcpp::DT_JMPREL, od);
1174           odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1175         }
1176
1177       if (this->rela_dyn_ != NULL)
1178         {
1179           const Output_data* od = this->rela_dyn_;
1180           odyn->add_section_address(elfcpp::DT_RELA, od);
1181           odyn->add_section_size(elfcpp::DT_RELASZ, od);
1182           odyn->add_constant(elfcpp::DT_RELAENT,
1183                              elfcpp::Elf_sizes<64>::rela_size);
1184         }
1185
1186       if (!parameters->output_is_shared())
1187         {
1188           // The value of the DT_DEBUG tag is filled in by the dynamic
1189           // linker at run time, and used by the debugger.
1190           odyn->add_constant(elfcpp::DT_DEBUG, 0);
1191         }
1192     }
1193
1194   // Emit any relocs we saved in an attempt to avoid generating COPY
1195   // relocs.
1196   if (this->copy_relocs_ == NULL)
1197     return;
1198   if (this->copy_relocs_->any_to_emit())
1199     {
1200       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1201       this->copy_relocs_->emit(rela_dyn);
1202     }
1203   delete this->copy_relocs_;
1204   this->copy_relocs_ = NULL;
1205 }
1206
1207 // Perform a relocation.
1208
1209 inline bool
1210 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1211                                   Target_x86_64* target,
1212                                   size_t relnum,
1213                                   const elfcpp::Rela<64, false>& rela,
1214                                   unsigned int r_type,
1215                                   const Sized_symbol<64>* gsym,
1216                                   const Symbol_value<64>* psymval,
1217                                   unsigned char* view,
1218                                   elfcpp::Elf_types<64>::Elf_Addr address,
1219                                   off_t view_size)
1220 {
1221   if (this->skip_call_tls_get_addr_)
1222     {
1223       if (r_type != elfcpp::R_X86_64_PLT32
1224           || gsym == NULL
1225           || strcmp(gsym->name(), "__tls_get_addr") != 0)
1226         {
1227           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1228                                  _("missing expected TLS relocation"));
1229         }
1230       else
1231         {
1232           this->skip_call_tls_get_addr_ = false;
1233           return false;
1234         }
1235     }
1236
1237   // Pick the value to use for symbols defined in shared objects.
1238   Symbol_value<64> symval;
1239   if (gsym != NULL
1240       && (gsym->is_from_dynobj()
1241           || (parameters->output_is_shared()
1242               && gsym->is_preemptible()))
1243       && gsym->has_plt_offset())
1244     {
1245       symval.set_output_value(target->plt_section()->address()
1246                               + gsym->plt_offset());
1247       psymval = &symval;
1248     }
1249
1250   const Sized_relobj<64, false>* object = relinfo->object;
1251   const elfcpp::Elf_Xword addend = rela.get_r_addend();
1252
1253   // Get the GOT offset if needed.
1254   // The GOT pointer points to the end of the GOT section.
1255   // We need to subtract the size of the GOT section to get
1256   // the actual offset to use in the relocation.
1257   bool have_got_offset = false;
1258   unsigned int got_offset = 0;
1259   switch (r_type)
1260     {
1261     case elfcpp::R_X86_64_GOT32:
1262     case elfcpp::R_X86_64_GOT64:
1263     case elfcpp::R_X86_64_GOTPLT64:
1264     case elfcpp::R_X86_64_GOTPCREL:
1265     case elfcpp::R_X86_64_GOTPCREL64:
1266       if (gsym != NULL)
1267         {
1268           gold_assert(gsym->has_got_offset());
1269           got_offset = gsym->got_offset() - target->got_size();
1270         }
1271       else
1272         {
1273           unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1274           got_offset = object->local_got_offset(r_sym) - target->got_size();
1275         }
1276       have_got_offset = true;
1277       break;
1278
1279     default:
1280       break;
1281     }
1282
1283   switch (r_type)
1284     {
1285     case elfcpp::R_X86_64_NONE:
1286     case elfcpp::R_386_GNU_VTINHERIT:
1287     case elfcpp::R_386_GNU_VTENTRY:
1288       break;
1289
1290     case elfcpp::R_X86_64_64:
1291       Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1292       break;
1293
1294     case elfcpp::R_X86_64_PC64:
1295       Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1296                                               address);
1297       break;
1298
1299     case elfcpp::R_X86_64_32:
1300       // FIXME: we need to verify that value + addend fits into 32 bits:
1301       //    uint64_t x = value + addend;
1302       //    x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1303       // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
1304       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1305       break;
1306
1307     case elfcpp::R_X86_64_32S:
1308       // FIXME: we need to verify that value + addend fits into 32 bits:
1309       //    int64_t x = value + addend;   // note this quantity is signed!
1310       //    x == static_cast<int64_t>(static_cast<int32_t>(x))
1311       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1312       break;
1313
1314     case elfcpp::R_X86_64_PC32:
1315       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1316                                               address);
1317       break;
1318
1319     case elfcpp::R_X86_64_16:
1320       Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1321       break;
1322
1323     case elfcpp::R_X86_64_PC16:
1324       Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1325                                               address);
1326       break;
1327
1328     case elfcpp::R_X86_64_8:
1329       Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1330       break;
1331
1332     case elfcpp::R_X86_64_PC8:
1333       Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1334                                              address);
1335       break;
1336
1337     case elfcpp::R_X86_64_PLT32:
1338       gold_assert(gsym == NULL
1339                   || gsym->has_plt_offset()
1340                   || gsym->final_value_is_known());
1341       // Note: while this code looks the same as for R_X86_64_PC32, it
1342       // behaves differently because psymval was set to point to
1343       // the PLT entry, rather than the symbol, in Scan::global().
1344       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1345                                               address);
1346       break;
1347
1348     case elfcpp::R_X86_64_PLTOFF64:
1349       {
1350         gold_assert(gsym);
1351         gold_assert(gsym->has_plt_offset()
1352                     || gsym->final_value_is_known());
1353         elfcpp::Elf_types<64>::Elf_Addr got_address;
1354         got_address = target->got_section(NULL, NULL)->address();
1355         Relocate_functions<64, false>::rela64(view, object, psymval,
1356                                               addend - got_address);
1357       }
1358
1359     case elfcpp::R_X86_64_GOT32:
1360       gold_assert(have_got_offset);
1361       Relocate_functions<64, false>::rela32(view, got_offset, addend);
1362       break;
1363
1364     case elfcpp::R_X86_64_GOTPC32:
1365       {
1366         gold_assert(gsym);
1367         elfcpp::Elf_types<64>::Elf_Addr value;
1368         value = target->got_plt_section()->address();
1369         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1370       }
1371       break;
1372
1373     case elfcpp::R_X86_64_GOT64:
1374       // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1375       // Since we always add a PLT entry, this is equivalent.
1376     case elfcpp::R_X86_64_GOTPLT64:
1377       gold_assert(have_got_offset);
1378       Relocate_functions<64, false>::rela64(view, got_offset, addend);
1379       break;
1380
1381     case elfcpp::R_X86_64_GOTPC64:
1382       {
1383         gold_assert(gsym);
1384         elfcpp::Elf_types<64>::Elf_Addr value;
1385         value = target->got_plt_section()->address();
1386         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1387       }
1388       break;
1389
1390     case elfcpp::R_X86_64_GOTOFF64:
1391       {
1392         elfcpp::Elf_types<64>::Elf_Addr value;
1393         value = (psymval->value(object, 0)
1394                  - target->got_plt_section()->address());
1395         Relocate_functions<64, false>::rela64(view, value, addend);
1396       }
1397       break;
1398
1399     case elfcpp::R_X86_64_GOTPCREL:
1400       {
1401         gold_assert(have_got_offset);
1402         elfcpp::Elf_types<64>::Elf_Addr value;
1403         value = target->got_plt_section()->address() + got_offset;
1404         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1405       }
1406       break;
1407
1408     case elfcpp::R_X86_64_GOTPCREL64:
1409       {
1410         gold_assert(have_got_offset);
1411         elfcpp::Elf_types<64>::Elf_Addr value;
1412         value = target->got_plt_section()->address() + got_offset;
1413         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1414       }
1415       break;
1416
1417     case elfcpp::R_X86_64_COPY:
1418     case elfcpp::R_X86_64_GLOB_DAT:
1419     case elfcpp::R_X86_64_JUMP_SLOT:
1420     case elfcpp::R_X86_64_RELATIVE:
1421       // These are outstanding tls relocs, which are unexpected when linking
1422     case elfcpp::R_X86_64_TPOFF64:
1423     case elfcpp::R_X86_64_DTPMOD64:
1424     case elfcpp::R_X86_64_TLSDESC:
1425       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1426                              _("unexpected reloc %u in object file"),
1427                              r_type);
1428       break;
1429
1430       // These are initial tls relocs, which are expected when linking
1431     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1432     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1433     case elfcpp::R_X86_64_TLSDESC_CALL:
1434     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1435     case elfcpp::R_X86_64_DTPOFF32:
1436     case elfcpp::R_X86_64_DTPOFF64:
1437     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1438     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1439       this->relocate_tls(relinfo, relnum, rela, r_type, gsym, psymval, view,
1440                          address, view_size);
1441       break;
1442
1443     case elfcpp::R_X86_64_SIZE32:
1444     case elfcpp::R_X86_64_SIZE64:
1445     default:
1446       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1447                              _("unsupported reloc %u"),
1448                              r_type);
1449       break;
1450     }
1451
1452   return true;
1453 }
1454
1455 // Perform a TLS relocation.
1456
1457 inline void
1458 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1459                                       size_t relnum,
1460                                       const elfcpp::Rela<64, false>& rela,
1461                                       unsigned int r_type,
1462                                       const Sized_symbol<64>* gsym,
1463                                       const Symbol_value<64>* psymval,
1464                                       unsigned char* view,
1465                                       elfcpp::Elf_types<64>::Elf_Addr,
1466                                       off_t view_size)
1467 {
1468   Output_segment* tls_segment = relinfo->layout->tls_segment();
1469   if (tls_segment == NULL)
1470     {
1471       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1472                              _("TLS reloc but no TLS segment"));
1473       return;
1474     }
1475
1476   elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1477
1478   const bool is_final = (gsym == NULL
1479                          ? !parameters->output_is_position_independent()
1480                          : gsym->final_value_is_known());
1481   const tls::Tls_optimization optimized_type
1482       = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1483   switch (r_type)
1484     {
1485     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1486     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1487     case elfcpp::R_X86_64_TLSDESC_CALL:
1488       if (optimized_type == tls::TLSOPT_TO_LE)
1489         {
1490           this->tls_gd_to_le(relinfo, relnum, tls_segment,
1491                              rela, r_type, value, view,
1492                              view_size);
1493           break;
1494         }
1495       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1496                              _("unsupported reloc %u"), r_type);
1497       break;
1498
1499     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1500       if (optimized_type == tls::TLSOPT_TO_LE)
1501         {
1502           this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
1503                              value, view, view_size);
1504           break;
1505         }
1506       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1507                              _("unsupported reloc %u"), r_type);
1508       break;
1509
1510     case elfcpp::R_X86_64_DTPOFF32:
1511       if (optimized_type == tls::TLSOPT_TO_LE)
1512         value = value - (tls_segment->vaddr() + tls_segment->memsz());
1513       else
1514         value = value - tls_segment->vaddr();
1515       Relocate_functions<64, false>::rel32(view, value);
1516       break;
1517
1518     case elfcpp::R_X86_64_DTPOFF64:
1519       if (optimized_type == tls::TLSOPT_TO_LE)
1520         value = value - (tls_segment->vaddr() + tls_segment->memsz());
1521       else
1522         value = value - tls_segment->vaddr();
1523       Relocate_functions<64, false>::rel64(view, value);
1524       break;
1525
1526     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1527       if (optimized_type == tls::TLSOPT_TO_LE)
1528         {
1529           Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1530                                                 rela, r_type, value, view,
1531                                                 view_size);
1532           break;
1533         }
1534       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1535                              _("unsupported reloc type %u"),
1536                              r_type);
1537       break;
1538
1539     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1540       value = value - (tls_segment->vaddr() + tls_segment->memsz());
1541       Relocate_functions<64, false>::rel32(view, value);
1542       break;
1543     }
1544 }
1545
1546 // Do a relocation in which we convert a TLS General-Dynamic to a
1547 // Local-Exec.
1548
1549 inline void
1550 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
1551                                       size_t relnum,
1552                                       Output_segment* tls_segment,
1553                                       const elfcpp::Rela<64, false>& rela,
1554                                       unsigned int,
1555                                       elfcpp::Elf_types<64>::Elf_Addr value,
1556                                       unsigned char* view,
1557                                       off_t view_size)
1558 {
1559   // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1560   // .word 0x6666; rex64; call __tls_get_addr
1561   // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
1562
1563   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
1564   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
1565
1566   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1567                  (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
1568   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1569                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
1570
1571   memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
1572
1573   value = value - (tls_segment->vaddr() + tls_segment->memsz());
1574   Relocate_functions<64, false>::rela32(view + 8, value, 0);
1575
1576   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1577   // We can skip it.
1578   this->skip_call_tls_get_addr_ = true;
1579 }
1580
1581 inline void
1582 Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
1583                                       size_t relnum,
1584                                       Output_segment*,
1585                                       const elfcpp::Rela<64, false>& rela,
1586                                       unsigned int,
1587                                       elfcpp::Elf_types<64>::Elf_Addr,
1588                                       unsigned char* view,
1589                                       off_t view_size)
1590 {
1591   // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
1592   // ... leq foo@dtpoff(%rax),%reg
1593   // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
1594
1595   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1596   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
1597
1598   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1599                  view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
1600
1601   tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
1602
1603   memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
1604
1605   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1606   // We can skip it.
1607   this->skip_call_tls_get_addr_ = true;
1608 }
1609
1610 // Do a relocation in which we convert a TLS Initial-Exec to a
1611 // Local-Exec.
1612
1613 inline void
1614 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
1615                                       size_t relnum,
1616                                       Output_segment* tls_segment,
1617                                       const elfcpp::Rela<64, false>& rela,
1618                                       unsigned int,
1619                                       elfcpp::Elf_types<64>::Elf_Addr value,
1620                                       unsigned char* view,
1621                                       off_t view_size)
1622 {
1623   // We need to examine the opcodes to figure out which instruction we
1624   // are looking at.
1625
1626   // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
1627   // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
1628
1629   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1630   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
1631
1632   unsigned char op1 = view[-3];
1633   unsigned char op2 = view[-2];
1634   unsigned char op3 = view[-1];
1635   unsigned char reg = op3 >> 3;
1636
1637   if (op2 == 0x8b)
1638     {
1639       // movq
1640       if (op1 == 0x4c)
1641         view[-3] = 0x49;
1642       view[-2] = 0xc7;
1643       view[-1] = 0xc0 | reg;
1644     }
1645   else if (reg == 4)
1646     {
1647       // Special handling for %rsp.
1648       if (op1 == 0x4c)
1649         view[-3] = 0x49;
1650       view[-2] = 0x81;
1651       view[-1] = 0xc0 | reg;
1652     }
1653   else
1654     {
1655       // addq
1656       if (op1 == 0x4c)
1657         view[-3] = 0x4d;
1658       view[-2] = 0x8d;
1659       view[-1] = 0x80 | reg | (reg << 3);
1660     }
1661
1662   value = value - (tls_segment->vaddr() + tls_segment->memsz());
1663   Relocate_functions<64, false>::rela32(view, value, 0);
1664 }
1665
1666 // Relocate section data.
1667
1668 void
1669 Target_x86_64::relocate_section(const Relocate_info<64, false>* relinfo,
1670                                 unsigned int sh_type,
1671                                 const unsigned char* prelocs,
1672                                 size_t reloc_count,
1673                                 unsigned char* view,
1674                                 elfcpp::Elf_types<64>::Elf_Addr address,
1675                                 off_t view_size)
1676 {
1677   gold_assert(sh_type == elfcpp::SHT_RELA);
1678
1679   gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
1680                          Target_x86_64::Relocate>(
1681     relinfo,
1682     this,
1683     prelocs,
1684     reloc_count,
1685     view,
1686     address,
1687     view_size);
1688 }
1689
1690 // Return the value to use for a dynamic which requires special
1691 // treatment.  This is how we support equality comparisons of function
1692 // pointers across shared library boundaries, as described in the
1693 // processor specific ABI supplement.
1694
1695 uint64_t
1696 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
1697 {
1698   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1699   return this->plt_section()->address() + gsym->plt_offset();
1700 }
1701
1702 // Return a string used to fill a code section with nops to take up
1703 // the specified length.
1704
1705 std::string
1706 Target_x86_64::do_code_fill(off_t length)
1707 {
1708   if (length >= 16)
1709     {
1710       // Build a jmpq instruction to skip over the bytes.
1711       unsigned char jmp[5];
1712       jmp[0] = 0xe9;
1713       elfcpp::Swap_unaligned<64, false>::writeval(jmp + 1, length - 5);
1714       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1715               + std::string(length - 5, '\0'));
1716     }
1717
1718   // Nop sequences of various lengths.
1719   const char nop1[1] = { 0x90 };                   // nop
1720   const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
1721   const char nop3[3] = { 0x8d, 0x76, 0x00 };       // leal 0(%esi),%esi
1722   const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00};  // leal 0(%esi,1),%esi
1723   const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26,   // nop
1724                          0x00 };                   // leal 0(%esi,1),%esi
1725   const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00,   // leal 0L(%esi),%esi
1726                          0x00, 0x00 };
1727   const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00,   // leal 0L(%esi,1),%esi
1728                          0x00, 0x00, 0x00 };
1729   const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26,   // nop
1730                          0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1731   const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc,   // movl %esi,%esi
1732                          0x27, 0x00, 0x00, 0x00,   // leal 0L(%edi,1),%edi
1733                          0x00 };
1734   const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1735                            0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1736                            0x00, 0x00 };
1737   const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1738                            0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1739                            0x00, 0x00, 0x00 };
1740   const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1741                            0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1742                            0x00, 0x00, 0x00, 0x00 };
1743   const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1744                            0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1745                            0x27, 0x00, 0x00, 0x00,
1746                            0x00 };
1747   const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1748                            0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1749                            0xbc, 0x27, 0x00, 0x00,
1750                            0x00, 0x00 };
1751   const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1752                            0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1753                            0x90, 0x90, 0x90, 0x90,
1754                            0x90, 0x90, 0x90 };
1755
1756   const char* nops[16] = {
1757     NULL,
1758     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1759     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1760   };
1761
1762   return std::string(nops[length], length);
1763 }
1764
1765 // The selector for x86_64 object files.
1766
1767 class Target_selector_x86_64 : public Target_selector
1768 {
1769 public:
1770   Target_selector_x86_64()
1771     : Target_selector(elfcpp::EM_X86_64, 64, false)
1772   { }
1773
1774   Target*
1775   recognize(int machine, int osabi, int abiversion);
1776
1777  private:
1778   Target_x86_64* target_;
1779 };
1780
1781 // Recognize an x86_64 object file when we already know that the machine
1782 // number is EM_X86_64.
1783
1784 Target*
1785 Target_selector_x86_64::recognize(int, int, int)
1786 {
1787   if (this->target_ == NULL)
1788     this->target_ = new Target_x86_64();
1789   return this->target_;
1790 }
1791
1792 Target_selector_x86_64 target_selector_x86_64;
1793
1794 } // End anonymous namespace.