* target-reloc.h (scan_relocs): Call scan.local for relocs
[external/binutils.git] / gold / target-reloc.h
1 // target-reloc.h -- target specific relocation support  -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_TARGET_RELOC_H
24 #define GOLD_TARGET_RELOC_H
25
26 #include "elfcpp.h"
27 #include "symtab.h"
28 #include "object.h"
29 #include "reloc.h"
30 #include "reloc-types.h"
31
32 namespace gold
33 {
34
35 // This function implements the generic part of reloc scanning.  The
36 // template parameter Scan must be a class type which provides two
37 // functions: local() and global().  Those functions implement the
38 // machine specific part of scanning.  We do it this way to
39 // avoid making a function call for each relocation, and to avoid
40 // repeating the generic code for each target.
41
42 template<int size, bool big_endian, typename Target_type, int sh_type,
43          typename Scan>
44 inline void
45 scan_relocs(
46     Symbol_table* symtab,
47     Layout* layout,
48     Target_type* target,
49     Sized_relobj_file<size, big_endian>* object,
50     unsigned int data_shndx,
51     const unsigned char* prelocs,
52     size_t reloc_count,
53     Output_section* output_section,
54     bool needs_special_offset_handling,
55     size_t local_count,
56     const unsigned char* plocal_syms)
57 {
58   typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
59   const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
60   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
61   Scan scan;
62
63   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
64     {
65       Reltype reloc(prelocs);
66
67       if (needs_special_offset_handling
68           && !output_section->is_input_address_mapped(object, data_shndx,
69                                                       reloc.get_r_offset()))
70         continue;
71
72       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
73       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
74       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
75
76       if (r_sym < local_count)
77         {
78           gold_assert(plocal_syms != NULL);
79           typename elfcpp::Sym<size, big_endian> lsym(plocal_syms
80                                                       + r_sym * sym_size);
81           unsigned int shndx = lsym.get_st_shndx();
82           bool is_ordinary;
83           shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
84           // If RELOC is a relocation against a local symbol in a
85           // section we are discarding then we can ignore it.  It will
86           // eventually become a reloc against the value zero.
87           //
88           // FIXME: We should issue a warning if this is an
89           // allocated section; is this the best place to do it?
90           // 
91           // FIXME: The old GNU linker would in some cases look
92           // for the linkonce section which caused this section to
93           // be discarded, and, if the other section was the same
94           // size, change the reloc to refer to the other section.
95           // That seems risky and weird to me, and I don't know of
96           // any case where it is actually required.
97           bool is_discarded = (is_ordinary
98                                && shndx != elfcpp::SHN_UNDEF
99                                && !object->is_section_included(shndx)
100                                && !symtab->is_section_folded(object, shndx));
101           scan.local(symtab, layout, target, object, data_shndx,
102                      output_section, reloc, r_type, lsym, is_discarded);
103         }
104       else
105         {
106           Symbol* gsym = object->global_symbol(r_sym);
107           gold_assert(gsym != NULL);
108           if (gsym->is_forwarder())
109             gsym = symtab->resolve_forwards(gsym);
110
111           scan.global(symtab, layout, target, object, data_shndx,
112                       output_section, reloc, r_type, gsym);
113         }
114     }
115 }
116
117 // Behavior for relocations to discarded comdat sections.
118
119 enum Comdat_behavior
120 {
121   CB_UNDETERMINED,   // Not yet determined -- need to look at section name.
122   CB_PRETEND,        // Attempt to map to the corresponding kept section.
123   CB_IGNORE,         // Ignore the relocation.
124   CB_WARNING         // Print a warning.
125 };
126
127 // Decide what the linker should do for relocations that refer to discarded
128 // comdat sections.  This decision is based on the name of the section being
129 // relocated.
130
131 inline Comdat_behavior
132 get_comdat_behavior(const char* name)
133 {
134   if (Layout::is_debug_info_section(name))
135     return CB_PRETEND;
136   if (strcmp(name, ".eh_frame") == 0
137       || strcmp(name, ".gcc_except_table") == 0)
138     return CB_IGNORE;
139   return CB_WARNING;
140 }
141
142 // Give an error for a symbol with non-default visibility which is not
143 // defined locally.
144
145 inline void
146 visibility_error(const Symbol* sym)
147 {
148   const char* v;
149   switch (sym->visibility())
150     {
151     case elfcpp::STV_INTERNAL:
152       v = _("internal");
153       break;
154     case elfcpp::STV_HIDDEN:
155       v = _("hidden");
156       break;
157     case elfcpp::STV_PROTECTED:
158       v = _("protected");
159       break;
160     default:
161       gold_unreachable();
162     }
163   gold_error(_("%s symbol '%s' is not defined locally"),
164              v, sym->name());
165 }
166
167 // Return true if we are should issue an error saying that SYM is an
168 // undefined symbol.  This is called if there is a relocation against
169 // SYM.
170
171 inline bool
172 issue_undefined_symbol_error(const Symbol* sym)
173 {
174   // We only report global symbols.
175   if (sym == NULL)
176     return false;
177
178   // We only report undefined symbols.
179   if (!sym->is_undefined() && !sym->is_placeholder())
180     return false;
181
182   // We don't report weak symbols.
183   if (sym->binding() == elfcpp::STB_WEAK)
184     return false;
185
186   // We don't report symbols defined in discarded sections.
187   if (sym->is_defined_in_discarded_section())
188     return false;
189
190   // If the target defines this symbol, don't report it here.
191   if (parameters->target().is_defined_by_abi(sym))
192     return false;
193
194   // See if we've been told to ignore whether this symbol is
195   // undefined.
196   const char* const u = parameters->options().unresolved_symbols();
197   if (u != NULL)
198     {
199       if (strcmp(u, "ignore-all") == 0)
200         return false;
201       if (strcmp(u, "report-all") == 0)
202         return true;
203       if (strcmp(u, "ignore-in-object-files") == 0 && !sym->in_dyn())
204         return false;
205       if (strcmp(u, "ignore-in-shared-libs") == 0 && !sym->in_reg())
206         return false;
207     }
208
209   // When creating a shared library, only report unresolved symbols if
210   // -z defs was used.
211   if (parameters->options().shared() && !parameters->options().defs())
212     return false;
213
214   // Otherwise issue a warning.
215   return true;
216 }
217
218 // This function implements the generic part of relocation processing.
219 // The template parameter Relocate must be a class type which provides
220 // a single function, relocate(), which implements the machine
221 // specific part of a relocation.
222
223 // SIZE is the ELF size: 32 or 64.  BIG_ENDIAN is the endianness of
224 // the data.  SH_TYPE is the section type: SHT_REL or SHT_RELA.
225 // RELOCATE implements operator() to do a relocation.
226
227 // PRELOCS points to the relocation data.  RELOC_COUNT is the number
228 // of relocs.  OUTPUT_SECTION is the output section.
229 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
230 // mapped to output offsets.
231
232 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
233 // VIEW_SIZE is the size.  These refer to the input section, unless
234 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
235 // the output section.
236
237 // RELOC_SYMBOL_CHANGES is used for -fsplit-stack support.  If it is
238 // not NULL, it is a vector indexed by relocation index.  If that
239 // entry is not NULL, it points to a global symbol which used as the
240 // symbol for the relocation, ignoring the symbol index in the
241 // relocation.
242
243 template<int size, bool big_endian, typename Target_type, int sh_type,
244          typename Relocate>
245 inline void
246 relocate_section(
247     const Relocate_info<size, big_endian>* relinfo,
248     Target_type* target,
249     const unsigned char* prelocs,
250     size_t reloc_count,
251     Output_section* output_section,
252     bool needs_special_offset_handling,
253     unsigned char* view,
254     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
255     section_size_type view_size,
256     const Reloc_symbol_changes* reloc_symbol_changes)
257 {
258   typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
259   const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
260   Relocate relocate;
261
262   Sized_relobj_file<size, big_endian>* object = relinfo->object;
263   unsigned int local_count = object->local_symbol_count();
264
265   Comdat_behavior comdat_behavior = CB_UNDETERMINED;
266
267   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
268     {
269       Reltype reloc(prelocs);
270
271       section_offset_type offset =
272         convert_to_section_size_type(reloc.get_r_offset());
273
274       if (needs_special_offset_handling)
275         {
276           offset = output_section->output_offset(relinfo->object,
277                                                  relinfo->data_shndx,
278                                                  offset);
279           if (offset == -1)
280             continue;
281         }
282
283       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
284       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
285       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
286
287       const Sized_symbol<size>* sym;
288
289       Symbol_value<size> symval;
290       const Symbol_value<size> *psymval;
291       bool is_defined_in_discarded_section;
292       unsigned int shndx;
293       if (r_sym < local_count
294           && (reloc_symbol_changes == NULL
295               || (*reloc_symbol_changes)[i] == NULL))
296         {
297           sym = NULL;
298           psymval = object->local_symbol(r_sym);
299
300           // If the local symbol belongs to a section we are discarding,
301           // and that section is a debug section, try to find the
302           // corresponding kept section and map this symbol to its
303           // counterpart in the kept section.  The symbol must not 
304           // correspond to a section we are folding.
305           bool is_ordinary;
306           shndx = psymval->input_shndx(&is_ordinary);
307           is_defined_in_discarded_section =
308             (is_ordinary
309              && shndx != elfcpp::SHN_UNDEF
310              && !object->is_section_included(shndx)
311              && !relinfo->symtab->is_section_folded(object, shndx));
312         }
313       else
314         {
315           const Symbol* gsym;
316           if (reloc_symbol_changes != NULL
317               && (*reloc_symbol_changes)[i] != NULL)
318             gsym = (*reloc_symbol_changes)[i];
319           else
320             {
321               gsym = object->global_symbol(r_sym);
322               gold_assert(gsym != NULL);
323               if (gsym->is_forwarder())
324                 gsym = relinfo->symtab->resolve_forwards(gsym);
325             }
326
327           sym = static_cast<const Sized_symbol<size>*>(gsym);
328           if (sym->has_symtab_index() && sym->symtab_index() != -1U)
329             symval.set_output_symtab_index(sym->symtab_index());
330           else
331             symval.set_no_output_symtab_entry();
332           symval.set_output_value(sym->value());
333           if (gsym->type() == elfcpp::STT_TLS)
334             symval.set_is_tls_symbol();
335           else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
336             symval.set_is_ifunc_symbol();
337           psymval = &symval;
338
339           is_defined_in_discarded_section =
340             (gsym->is_defined_in_discarded_section()
341              && gsym->is_undefined());
342           shndx = 0;
343         }
344
345       Symbol_value<size> symval2;
346       if (is_defined_in_discarded_section)
347         {
348           if (comdat_behavior == CB_UNDETERMINED)
349             {
350               std::string name = object->section_name(relinfo->data_shndx);
351               comdat_behavior = get_comdat_behavior(name.c_str());
352             }
353           if (comdat_behavior == CB_PRETEND)
354             {
355               // FIXME: This case does not work for global symbols.
356               // We have no place to store the original section index.
357               // Fortunately this does not matter for comdat sections,
358               // only for sections explicitly discarded by a linker
359               // script.
360               bool found;
361               typename elfcpp::Elf_types<size>::Elf_Addr value =
362                 object->map_to_kept_section(shndx, &found);
363               if (found)
364                 symval2.set_output_value(value + psymval->input_value());
365               else
366                 symval2.set_output_value(0);
367             }
368           else
369             {
370               if (comdat_behavior == CB_WARNING)
371                 gold_warning_at_location(relinfo, i, offset,
372                                          _("relocation refers to discarded "
373                                            "section"));
374               symval2.set_output_value(0);
375             }
376           symval2.set_no_output_symtab_entry();
377           psymval = &symval2;
378         }
379
380       if (!relocate.relocate(relinfo, target, output_section, i, reloc,
381                              r_type, sym, psymval, view + offset,
382                              view_address + offset, view_size))
383         continue;
384
385       if (offset < 0 || static_cast<section_size_type>(offset) >= view_size)
386         {
387           gold_error_at_location(relinfo, i, offset,
388                                  _("reloc has bad offset %zu"),
389                                  static_cast<size_t>(offset));
390           continue;
391         }
392
393       if (issue_undefined_symbol_error(sym))
394         gold_undefined_symbol_at_location(sym, relinfo, i, offset);
395       else if (sym != NULL
396                && sym->visibility() != elfcpp::STV_DEFAULT
397                && (sym->is_undefined() || sym->is_from_dynobj()))
398         visibility_error(sym);
399
400       if (sym != NULL && sym->has_warning())
401         relinfo->symtab->issue_warning(sym, relinfo, i, offset);
402     }
403 }
404
405 // Apply an incremental relocation.
406
407 template<int size, bool big_endian, typename Target_type,
408          typename Relocate>
409 void
410 apply_relocation(const Relocate_info<size, big_endian>* relinfo,
411                  Target_type* target,
412                  typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
413                  unsigned int r_type,
414                  typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
415                  const Symbol* gsym,
416                  unsigned char* view,
417                  typename elfcpp::Elf_types<size>::Elf_Addr address,
418                  section_size_type view_size)
419 {
420   // Construct the ELF relocation in a temporary buffer.
421   const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
422   unsigned char relbuf[reloc_size];
423   elfcpp::Rela<size, big_endian> rel(relbuf);
424   elfcpp::Rela_write<size, big_endian> orel(relbuf);
425   orel.put_r_offset(r_offset);
426   orel.put_r_info(elfcpp::elf_r_info<size>(0, r_type));
427   orel.put_r_addend(r_addend);
428
429   // Setup a Symbol_value for the global symbol.
430   const Sized_symbol<size>* sym = static_cast<const Sized_symbol<size>*>(gsym);
431   Symbol_value<size> symval;
432   gold_assert(sym->has_symtab_index() && sym->symtab_index() != -1U);
433   symval.set_output_symtab_index(sym->symtab_index());
434   symval.set_output_value(sym->value());
435   if (gsym->type() == elfcpp::STT_TLS)
436     symval.set_is_tls_symbol();
437   else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
438     symval.set_is_ifunc_symbol();
439
440   Relocate relocate;
441   relocate.relocate(relinfo, target, NULL, -1U, rel, r_type, sym, &symval,
442                     view + r_offset, address + r_offset, view_size);
443 }
444
445 // This class may be used as a typical class for the
446 // Scan_relocatable_reloc parameter to scan_relocatable_relocs.  The
447 // template parameter Classify_reloc must be a class type which
448 // provides a function get_size_for_reloc which returns the number of
449 // bytes to which a reloc applies.  This class is intended to capture
450 // the most typical target behaviour, while still permitting targets
451 // to define their own independent class for Scan_relocatable_reloc.
452
453 template<int sh_type, typename Classify_reloc>
454 class Default_scan_relocatable_relocs
455 {
456  public:
457   // Return the strategy to use for a local symbol which is not a
458   // section symbol, given the relocation type.
459   inline Relocatable_relocs::Reloc_strategy
460   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
461   {
462     // We assume that relocation type 0 is NONE.  Targets which are
463     // different must override.
464     if (r_type == 0 && r_sym == 0)
465       return Relocatable_relocs::RELOC_DISCARD;
466     return Relocatable_relocs::RELOC_COPY;
467   }
468
469   // Return the strategy to use for a local symbol which is a section
470   // symbol, given the relocation type.
471   inline Relocatable_relocs::Reloc_strategy
472   local_section_strategy(unsigned int r_type, Relobj* object)
473   {
474     if (sh_type == elfcpp::SHT_RELA)
475       return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
476     else
477       {
478         Classify_reloc classify;
479         switch (classify.get_size_for_reloc(r_type, object))
480           {
481           case 0:
482             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
483           case 1:
484             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1;
485           case 2:
486             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2;
487           case 4:
488             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
489           case 8:
490             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8;
491           default:
492             gold_unreachable();
493           }
494       }
495   }
496
497   // Return the strategy to use for a global symbol, given the
498   // relocation type, the object, and the symbol index.
499   inline Relocatable_relocs::Reloc_strategy
500   global_strategy(unsigned int, Relobj*, unsigned int)
501   { return Relocatable_relocs::RELOC_COPY; }
502 };
503
504 // Scan relocs during a relocatable link.  This is a default
505 // definition which should work for most targets.
506 // Scan_relocatable_reloc must name a class type which provides three
507 // functions which return a Relocatable_relocs::Reloc_strategy code:
508 // global_strategy, local_non_section_strategy, and
509 // local_section_strategy.  Most targets should be able to use
510 // Default_scan_relocatable_relocs as this class.
511
512 template<int size, bool big_endian, int sh_type,
513          typename Scan_relocatable_reloc>
514 void
515 scan_relocatable_relocs(
516     Symbol_table*,
517     Layout*,
518     Sized_relobj_file<size, big_endian>* object,
519     unsigned int data_shndx,
520     const unsigned char* prelocs,
521     size_t reloc_count,
522     Output_section* output_section,
523     bool needs_special_offset_handling,
524     size_t local_symbol_count,
525     const unsigned char* plocal_syms,
526     Relocatable_relocs* rr)
527 {
528   typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
529   const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
530   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
531   Scan_relocatable_reloc scan;
532
533   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
534     {
535       Reltype reloc(prelocs);
536
537       Relocatable_relocs::Reloc_strategy strategy;
538
539       if (needs_special_offset_handling
540           && !output_section->is_input_address_mapped(object, data_shndx,
541                                                       reloc.get_r_offset()))
542         strategy = Relocatable_relocs::RELOC_DISCARD;
543       else
544         {
545           typename elfcpp::Elf_types<size>::Elf_WXword r_info =
546             reloc.get_r_info();
547           const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
548           const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
549
550           if (r_sym >= local_symbol_count)
551             strategy = scan.global_strategy(r_type, object, r_sym);
552           else
553             {
554               gold_assert(plocal_syms != NULL);
555               typename elfcpp::Sym<size, big_endian> lsym(plocal_syms
556                                                           + r_sym * sym_size);
557               unsigned int shndx = lsym.get_st_shndx();
558               bool is_ordinary;
559               shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
560               if (is_ordinary
561                   && shndx != elfcpp::SHN_UNDEF
562                   && !object->is_section_included(shndx))
563                 {
564                   // RELOC is a relocation against a local symbol
565                   // defined in a section we are discarding.  Discard
566                   // the reloc.  FIXME: Should we issue a warning?
567                   strategy = Relocatable_relocs::RELOC_DISCARD;
568                 }
569               else if (lsym.get_st_type() != elfcpp::STT_SECTION)
570                 strategy = scan.local_non_section_strategy(r_type, object,
571                                                            r_sym);
572               else
573                 {
574                   strategy = scan.local_section_strategy(r_type, object);
575                   if (strategy != Relocatable_relocs::RELOC_DISCARD)
576                     object->output_section(shndx)->set_needs_symtab_index();
577                 }
578
579               if (strategy == Relocatable_relocs::RELOC_COPY)
580                 object->set_must_have_output_symtab_entry(r_sym);
581             }
582         }
583
584       rr->set_next_reloc_strategy(strategy);
585     }
586 }
587
588 // Relocate relocs.  Called for a relocatable link, and for --emit-relocs.
589 // This is a default definition which should work for most targets.
590
591 template<int size, bool big_endian, int sh_type>
592 void
593 relocate_relocs(
594     const Relocate_info<size, big_endian>* relinfo,
595     const unsigned char* prelocs,
596     size_t reloc_count,
597     Output_section* output_section,
598     typename elfcpp::Elf_types<size>::Elf_Addr offset_in_output_section,
599     const Relocatable_relocs* rr,
600     unsigned char* view,
601     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
602     section_size_type view_size,
603     unsigned char* reloc_view,
604     section_size_type reloc_view_size)
605 {
606   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
607   typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
608   typedef typename Reloc_types<sh_type, size, big_endian>::Reloc_write
609     Reltype_write;
610   const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
611   const Address invalid_address = static_cast<Address>(0) - 1;
612
613   Sized_relobj_file<size, big_endian>* const object = relinfo->object;
614   const unsigned int local_count = object->local_symbol_count();
615
616   unsigned char* pwrite = reloc_view;
617
618   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
619     {
620       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
621       if (strategy == Relocatable_relocs::RELOC_DISCARD)
622         continue;
623
624       if (strategy == Relocatable_relocs::RELOC_SPECIAL)
625         {
626           // Target wants to handle this relocation.
627           Sized_target<size, big_endian>* target =
628             parameters->sized_target<size, big_endian>();
629           target->relocate_special_relocatable(relinfo, sh_type, prelocs,
630                                                i, output_section,
631                                                offset_in_output_section,
632                                                view, view_address,
633                                                view_size, pwrite);
634           pwrite += reloc_size;
635           continue;
636         }
637       Reltype reloc(prelocs);
638       Reltype_write reloc_write(pwrite);
639
640       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
641       const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
642       const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
643
644       // Get the new symbol index.
645
646       unsigned int new_symndx;
647       if (r_sym < local_count)
648         {
649           switch (strategy)
650             {
651             case Relocatable_relocs::RELOC_COPY:
652               if (r_sym == 0)
653                 new_symndx = 0;
654               else
655                 {
656                   new_symndx = object->symtab_index(r_sym);
657                   gold_assert(new_symndx != -1U);
658                 }
659               break;
660
661             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
662             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0:
663             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1:
664             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2:
665             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4:
666             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8:
667             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED:
668               {
669                 // We are adjusting a section symbol.  We need to find
670                 // the symbol table index of the section symbol for
671                 // the output section corresponding to input section
672                 // in which this symbol is defined.
673                 gold_assert(r_sym < local_count);
674                 bool is_ordinary;
675                 unsigned int shndx =
676                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
677                 gold_assert(is_ordinary);
678                 Output_section* os = object->output_section(shndx);
679                 gold_assert(os != NULL);
680                 gold_assert(os->needs_symtab_index());
681                 new_symndx = os->symtab_index();
682               }
683               break;
684
685             default:
686               gold_unreachable();
687             }
688         }
689       else
690         {
691           const Symbol* gsym = object->global_symbol(r_sym);
692           gold_assert(gsym != NULL);
693           if (gsym->is_forwarder())
694             gsym = relinfo->symtab->resolve_forwards(gsym);
695
696           gold_assert(gsym->has_symtab_index());
697           new_symndx = gsym->symtab_index();
698         }
699
700       // Get the new offset--the location in the output section where
701       // this relocation should be applied.
702
703       Address offset = reloc.get_r_offset();
704       Address new_offset;
705       if (offset_in_output_section != invalid_address)
706         new_offset = offset + offset_in_output_section;
707       else
708         {
709           section_offset_type sot_offset =
710               convert_types<section_offset_type, Address>(offset);
711           section_offset_type new_sot_offset =
712               output_section->output_offset(object, relinfo->data_shndx,
713                                             sot_offset);
714           gold_assert(new_sot_offset != -1);
715           new_offset = new_sot_offset;
716         }
717
718       // In an object file, r_offset is an offset within the section.
719       // In an executable or dynamic object, generated by
720       // --emit-relocs, r_offset is an absolute address.
721       if (!parameters->options().relocatable())
722         {
723           new_offset += view_address;
724           if (offset_in_output_section != invalid_address)
725             new_offset -= offset_in_output_section;
726         }
727
728       reloc_write.put_r_offset(new_offset);
729       reloc_write.put_r_info(elfcpp::elf_r_info<size>(new_symndx, r_type));
730
731       // Handle the reloc addend based on the strategy.
732
733       if (strategy == Relocatable_relocs::RELOC_COPY)
734         {
735           if (sh_type == elfcpp::SHT_RELA)
736             Reloc_types<sh_type, size, big_endian>::
737               copy_reloc_addend(&reloc_write,
738                                 &reloc);
739         }
740       else
741         {
742           // The relocation uses a section symbol in the input file.
743           // We are adjusting it to use a section symbol in the output
744           // file.  The input section symbol refers to some address in
745           // the input section.  We need the relocation in the output
746           // file to refer to that same address.  This adjustment to
747           // the addend is the same calculation we use for a simple
748           // absolute relocation for the input section symbol.
749
750           const Symbol_value<size>* psymval = object->local_symbol(r_sym);
751
752           unsigned char* padd = view + offset;
753           switch (strategy)
754             {
755             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
756               {
757                 typename elfcpp::Elf_types<size>::Elf_Swxword addend;
758                 addend = Reloc_types<sh_type, size, big_endian>::
759                            get_reloc_addend(&reloc);
760                 addend = psymval->value(object, addend);
761                 Reloc_types<sh_type, size, big_endian>::
762                   set_reloc_addend(&reloc_write, addend);
763               }
764               break;
765
766             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0:
767               break;
768
769             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1:
770               Relocate_functions<size, big_endian>::rel8(padd, object,
771                                                          psymval);
772               break;
773
774             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2:
775               Relocate_functions<size, big_endian>::rel16(padd, object,
776                                                           psymval);
777               break;
778
779             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4:
780               Relocate_functions<size, big_endian>::rel32(padd, object,
781                                                           psymval);
782               break;
783
784             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8:
785               Relocate_functions<size, big_endian>::rel64(padd, object,
786                                                           psymval);
787               break;
788
789             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED:
790               Relocate_functions<size, big_endian>::rel32_unaligned(padd,
791                                                                     object,
792                                                                     psymval);
793               break;
794
795             default:
796               gold_unreachable();
797             }
798         }
799
800       pwrite += reloc_size;
801     }
802
803   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
804               == reloc_view_size);
805 }
806
807 } // End namespace gold.
808
809 #endif // !defined(GOLD_TARGET_RELOC_H)