1 // symtab.h -- the gold symbol table -*- C++ -*-
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
34 #include "parameters.h"
35 #include "stringpool.h"
44 template<int size, bool big_endian>
45 class Sized_relobj_file;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
49 template<int size, bool big_endian>
51 template<int size, bool big_endian>
54 class Version_script_info;
60 class Output_symtab_xindex;
61 class Garbage_collection;
64 // The base class of an entry in the symbol table. The symbol table
65 // can have a lot of entries, so we don't want this class too big.
66 // Size dependent fields can be found in the template class
67 // Sized_symbol. Targets may support their own derived classes.
72 // Because we want the class to be small, we don't use any virtual
73 // functions. But because symbols can be defined in different
74 // places, we need to classify them. This enum is the different
75 // sources of symbols we support.
78 // Symbol defined in a relocatable or dynamic input file--this is
79 // the most common case.
81 // Symbol defined in an Output_data, a special section created by
84 // Symbol defined in an Output_segment, with no associated
87 // Symbol value is constant.
89 // Symbol is undefined.
93 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
95 enum Segment_offset_base
97 // From the start of the segment.
99 // From the end of the segment.
101 // From the filesz of the segment--i.e., after the loaded bytes
102 // but before the bytes which are allocated but zeroed.
106 // Return the symbol name.
109 { return this->name_; }
111 // Return the (ANSI) demangled version of the name, if
112 // parameters.demangle() is true. Otherwise, return the name. This
113 // is intended to be used only for logging errors, so it's not
116 demangled_name() const;
118 // Return the symbol version. This will return NULL for an
119 // unversioned symbol.
122 { return this->version_; }
126 { this->version_ = NULL; }
128 // Return whether this version is the default for this symbol name
129 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
130 // meaningful for versioned symbols.
134 gold_assert(this->version_ != NULL);
135 return this->is_def_;
138 // Set that this version is the default for this symbol name.
141 { this->is_def_ = true; }
143 // Return the symbol's name as name@version (or name@@version).
145 versioned_name() const;
147 // Return the symbol source.
150 { return this->source_; }
152 // Return the object with which this symbol is associated.
156 gold_assert(this->source_ == FROM_OBJECT);
157 return this->u_.from_object.object;
160 // Return the index of the section in the input relocatable or
161 // dynamic object file.
163 shndx(bool* is_ordinary) const
165 gold_assert(this->source_ == FROM_OBJECT);
166 *is_ordinary = this->is_ordinary_shndx_;
167 return this->u_.from_object.shndx;
170 // Return the output data section with which this symbol is
171 // associated, if the symbol was specially defined with respect to
172 // an output data section.
176 gold_assert(this->source_ == IN_OUTPUT_DATA);
177 return this->u_.in_output_data.output_data;
180 // If this symbol was defined with respect to an output data
181 // section, return whether the value is an offset from end.
183 offset_is_from_end() const
185 gold_assert(this->source_ == IN_OUTPUT_DATA);
186 return this->u_.in_output_data.offset_is_from_end;
189 // Return the output segment with which this symbol is associated,
190 // if the symbol was specially defined with respect to an output
193 output_segment() const
195 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
196 return this->u_.in_output_segment.output_segment;
199 // If this symbol was defined with respect to an output segment,
200 // return the offset base.
204 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
205 return this->u_.in_output_segment.offset_base;
208 // Return the symbol binding.
211 { return this->binding_; }
213 // Return the symbol type.
216 { return this->type_; }
218 // Return true for function symbol.
222 return (this->type_ == elfcpp::STT_FUNC
223 || this->type_ == elfcpp::STT_GNU_IFUNC);
226 // Return the symbol visibility.
229 { return this->visibility_; }
231 // Set the visibility.
233 set_visibility(elfcpp::STV visibility)
234 { this->visibility_ = visibility; }
236 // Override symbol visibility.
238 override_visibility(elfcpp::STV);
240 // Set whether the symbol was originally a weak undef or a regular undef
241 // when resolved by a dynamic def.
243 set_undef_binding(elfcpp::STB bind)
245 if (!this->undef_binding_set_ || this->undef_binding_weak_)
247 this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
248 this->undef_binding_set_ = true;
252 // Return TRUE if a weak undef was resolved by a dynamic def.
254 is_undef_binding_weak() const
255 { return this->undef_binding_weak_; }
257 // Return the non-visibility part of the st_other field.
260 { return this->nonvis_; }
262 // Return whether this symbol is a forwarder. This will never be
263 // true of a symbol found in the hash table, but may be true of
264 // symbol pointers attached to object files.
267 { return this->is_forwarder_; }
269 // Mark this symbol as a forwarder.
272 { this->is_forwarder_ = true; }
274 // Return whether this symbol has an alias in the weak aliases table
278 { return this->has_alias_; }
280 // Mark this symbol as having an alias.
283 { this->has_alias_ = true; }
285 // Return whether this symbol needs an entry in the dynamic symbol
288 needs_dynsym_entry() const
290 return (this->needs_dynsym_entry_
293 && this->is_externally_visible()));
296 // Mark this symbol as needing an entry in the dynamic symbol table.
298 set_needs_dynsym_entry()
299 { this->needs_dynsym_entry_ = true; }
301 // Return whether this symbol should be added to the dynamic symbol
304 should_add_dynsym_entry(Symbol_table*) const;
306 // Return whether this symbol has been seen in a regular object.
309 { return this->in_reg_; }
311 // Mark this symbol as having been seen in a regular object.
314 { this->in_reg_ = true; }
316 // Return whether this symbol has been seen in a dynamic object.
319 { return this->in_dyn_; }
321 // Mark this symbol as having been seen in a dynamic object.
324 { this->in_dyn_ = true; }
326 // Return whether this symbol has been seen in a real ELF object.
327 // (IN_REG will return TRUE if the symbol has been seen in either
328 // a real ELF object or an object claimed by a plugin.)
331 { return this->in_real_elf_; }
333 // Mark this symbol as having been seen in a real ELF object.
336 { this->in_real_elf_ = true; }
338 // Return whether this symbol was defined in a section that was
339 // discarded from the link. This is used to control some error
342 is_defined_in_discarded_section() const
343 { return this->is_defined_in_discarded_section_; }
345 // Mark this symbol as having been defined in a discarded section.
347 set_is_defined_in_discarded_section()
348 { this->is_defined_in_discarded_section_ = true; }
350 // Return the index of this symbol in the output file symbol table.
351 // A value of -1U means that this symbol is not going into the
352 // output file. This starts out as zero, and is set to a non-zero
353 // value by Symbol_table::finalize. It is an error to ask for the
354 // symbol table index before it has been set.
358 gold_assert(this->symtab_index_ != 0);
359 return this->symtab_index_;
362 // Set the index of the symbol in the output file symbol table.
364 set_symtab_index(unsigned int index)
366 gold_assert(index != 0);
367 this->symtab_index_ = index;
370 // Return whether this symbol already has an index in the output
371 // file symbol table.
373 has_symtab_index() const
374 { return this->symtab_index_ != 0; }
376 // Return the index of this symbol in the dynamic symbol table. A
377 // value of -1U means that this symbol is not going into the dynamic
378 // symbol table. This starts out as zero, and is set to a non-zero
379 // during Layout::finalize. It is an error to ask for the dynamic
380 // symbol table index before it has been set.
384 gold_assert(this->dynsym_index_ != 0);
385 return this->dynsym_index_;
388 // Set the index of the symbol in the dynamic symbol table.
390 set_dynsym_index(unsigned int index)
392 gold_assert(index != 0);
393 this->dynsym_index_ = index;
396 // Return whether this symbol already has an index in the dynamic
399 has_dynsym_index() const
400 { return this->dynsym_index_ != 0; }
402 // Return whether this symbol has an entry in the GOT section.
403 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
405 has_got_offset(unsigned int got_type) const
406 { return this->got_offsets_.get_offset(got_type) != -1U; }
408 // Return the offset into the GOT section of this symbol.
410 got_offset(unsigned int got_type) const
412 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
413 gold_assert(got_offset != -1U);
417 // Set the GOT offset of this symbol.
419 set_got_offset(unsigned int got_type, unsigned int got_offset)
420 { this->got_offsets_.set_offset(got_type, got_offset); }
422 // Return the GOT offset list.
423 const Got_offset_list*
424 got_offset_list() const
425 { return this->got_offsets_.get_list(); }
427 // Return whether this symbol has an entry in the PLT section.
429 has_plt_offset() const
430 { return this->plt_offset_ != -1U; }
432 // Return the offset into the PLT section of this symbol.
436 gold_assert(this->has_plt_offset());
437 return this->plt_offset_;
440 // Set the PLT offset of this symbol.
442 set_plt_offset(unsigned int plt_offset)
444 gold_assert(plt_offset != -1U);
445 this->plt_offset_ = plt_offset;
448 // Return whether this dynamic symbol needs a special value in the
449 // dynamic symbol table.
451 needs_dynsym_value() const
452 { return this->needs_dynsym_value_; }
454 // Set that this dynamic symbol needs a special value in the dynamic
457 set_needs_dynsym_value()
459 gold_assert(this->object()->is_dynamic());
460 this->needs_dynsym_value_ = true;
463 // Return true if the final value of this symbol is known at link
466 final_value_is_known() const;
468 // Return true if SHNDX represents a common symbol. This depends on
471 is_common_shndx(unsigned int shndx);
473 // Return whether this is a defined symbol (not undefined or
479 if (this->source_ != FROM_OBJECT)
480 return this->source_ != IS_UNDEFINED;
481 unsigned int shndx = this->shndx(&is_ordinary);
483 ? shndx != elfcpp::SHN_UNDEF
484 : !Symbol::is_common_shndx(shndx));
487 // Return true if this symbol is from a dynamic object.
489 is_from_dynobj() const
491 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
494 // Return whether this is a placeholder symbol from a plugin object.
496 is_placeholder() const
498 return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
501 // Return whether this is an undefined symbol.
506 return ((this->source_ == FROM_OBJECT
507 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
509 || this->source_ == IS_UNDEFINED);
512 // Return whether this is a weak undefined symbol.
514 is_weak_undefined() const
515 { return this->is_undefined() && this->binding() == elfcpp::STB_WEAK; }
517 // Return whether this is an absolute symbol.
522 return ((this->source_ == FROM_OBJECT
523 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
525 || this->source_ == IS_CONSTANT);
528 // Return whether this is a common symbol.
532 if (this->source_ != FROM_OBJECT)
534 if (this->type_ == elfcpp::STT_COMMON)
537 unsigned int shndx = this->shndx(&is_ordinary);
538 return !is_ordinary && Symbol::is_common_shndx(shndx);
541 // Return whether this symbol can be seen outside this object.
543 is_externally_visible() const
545 return ((this->visibility_ == elfcpp::STV_DEFAULT
546 || this->visibility_ == elfcpp::STV_PROTECTED)
547 && !this->is_forced_local_);
550 // Return true if this symbol can be preempted by a definition in
551 // another link unit.
553 is_preemptible() const
555 // It doesn't make sense to ask whether a symbol defined in
556 // another object is preemptible.
557 gold_assert(!this->is_from_dynobj());
559 // It doesn't make sense to ask whether an undefined symbol
561 gold_assert(!this->is_undefined());
563 // If a symbol does not have default visibility, it can not be
564 // seen outside this link unit and therefore is not preemptible.
565 if (this->visibility_ != elfcpp::STV_DEFAULT)
568 // If this symbol has been forced to be a local symbol by a
569 // version script, then it is not visible outside this link unit
570 // and is not preemptible.
571 if (this->is_forced_local_)
574 // If we are not producing a shared library, then nothing is
576 if (!parameters->options().shared())
579 // If the user used -Bsymbolic, then nothing is preemptible.
580 if (parameters->options().Bsymbolic())
583 // If the user used -Bsymbolic-functions, then functions are not
584 // preemptible. We explicitly check for not being STT_OBJECT,
585 // rather than for being STT_FUNC, because that is what the GNU
587 if (this->type() != elfcpp::STT_OBJECT
588 && parameters->options().Bsymbolic_functions())
591 // Otherwise the symbol is preemptible.
595 // Return true if this symbol is a function that needs a PLT entry.
597 needs_plt_entry() const
599 // An undefined symbol from an executable does not need a PLT entry.
600 if (this->is_undefined() && !parameters->options().shared())
603 // An STT_GNU_IFUNC symbol always needs a PLT entry, even when
604 // doing a static link.
605 if (this->type() == elfcpp::STT_GNU_IFUNC)
608 // We only need a PLT entry for a function.
609 if (!this->is_func())
612 // If we're doing a static link or a -pie link, we don't create
614 if (parameters->doing_static_link()
615 || parameters->options().pie())
618 // We need a PLT entry if the function is defined in a dynamic
619 // object, or is undefined when building a shared object, or if it
620 // is subject to pre-emption.
621 return (this->is_from_dynobj()
622 || this->is_undefined()
623 || this->is_preemptible());
626 // When determining whether a reference to a symbol needs a dynamic
627 // relocation, we need to know several things about the reference.
628 // These flags may be or'ed together. 0 means that the symbol
629 // isn't referenced at all.
632 // A reference to the symbol's absolute address. This includes
633 // references that cause an absolute address to be stored in the GOT.
635 // A reference that calculates the offset of the symbol from some
636 // anchor point, such as the PC or GOT.
638 // A TLS-related reference.
640 // A reference that can always be treated as a function call.
644 // Given a direct absolute or pc-relative static relocation against
645 // the global symbol, this function returns whether a dynamic relocation
649 needs_dynamic_reloc(int flags) const
651 // No dynamic relocations in a static link!
652 if (parameters->doing_static_link())
655 // A reference to an undefined symbol from an executable should be
656 // statically resolved to 0, and does not need a dynamic relocation.
657 // This matches gnu ld behavior.
658 if (this->is_undefined() && !parameters->options().shared())
661 // A reference to an absolute symbol does not need a dynamic relocation.
662 if (this->is_absolute())
665 // An absolute reference within a position-independent output file
666 // will need a dynamic relocation.
667 if ((flags & ABSOLUTE_REF)
668 && parameters->options().output_is_position_independent())
671 // A function call that can branch to a local PLT entry does not need
672 // a dynamic relocation.
673 if ((flags & FUNCTION_CALL) && this->has_plt_offset())
676 // A reference to any PLT entry in a non-position-independent executable
677 // does not need a dynamic relocation.
678 if (!parameters->options().output_is_position_independent()
679 && this->has_plt_offset())
682 // A reference to a symbol defined in a dynamic object or to a
683 // symbol that is preemptible will need a dynamic relocation.
684 if (this->is_from_dynobj()
685 || this->is_undefined()
686 || this->is_preemptible())
689 // For all other cases, return FALSE.
693 // Whether we should use the PLT offset associated with a symbol for
694 // a relocation. FLAGS is a set of Reference_flags.
697 use_plt_offset(int flags) const
699 // If the symbol doesn't have a PLT offset, then naturally we
700 // don't want to use it.
701 if (!this->has_plt_offset())
704 // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
705 if (this->type() == elfcpp::STT_GNU_IFUNC)
708 // If we are going to generate a dynamic relocation, then we will
709 // wind up using that, so no need to use the PLT entry.
710 if (this->needs_dynamic_reloc(flags))
713 // If the symbol is from a dynamic object, we need to use the PLT
715 if (this->is_from_dynobj())
718 // If we are generating a shared object, and this symbol is
719 // undefined or preemptible, we need to use the PLT entry.
720 if (parameters->options().shared()
721 && (this->is_undefined() || this->is_preemptible()))
724 // If this is a call to a weak undefined symbol, we need to use
725 // the PLT entry; the symbol may be defined by a library loaded
727 if ((flags & FUNCTION_CALL) && this->is_weak_undefined())
730 // Otherwise we can use the regular definition.
734 // Given a direct absolute static relocation against
735 // the global symbol, where a dynamic relocation is needed, this
736 // function returns whether a relative dynamic relocation can be used.
737 // The caller must determine separately whether the static relocation
738 // is compatible with a relative relocation.
741 can_use_relative_reloc(bool is_function_call) const
743 // A function call that can branch to a local PLT entry can
744 // use a RELATIVE relocation.
745 if (is_function_call && this->has_plt_offset())
748 // A reference to a symbol defined in a dynamic object or to a
749 // symbol that is preemptible can not use a RELATIVE relocation.
750 if (this->is_from_dynobj()
751 || this->is_undefined()
752 || this->is_preemptible())
755 // For all other cases, return TRUE.
759 // Return the output section where this symbol is defined. Return
760 // NULL if the symbol has an absolute value.
762 output_section() const;
764 // Set the symbol's output section. This is used for symbols
765 // defined in scripts. This should only be called after the symbol
766 // table has been finalized.
768 set_output_section(Output_section*);
770 // Return whether there should be a warning for references to this
774 { return this->has_warning_; }
776 // Mark this symbol as having a warning.
779 { this->has_warning_ = true; }
781 // Return whether this symbol is defined by a COPY reloc from a
784 is_copied_from_dynobj() const
785 { return this->is_copied_from_dynobj_; }
787 // Mark this symbol as defined by a COPY reloc.
789 set_is_copied_from_dynobj()
790 { this->is_copied_from_dynobj_ = true; }
792 // Return whether this symbol is forced to visibility STB_LOCAL
793 // by a "local:" entry in a version script.
795 is_forced_local() const
796 { return this->is_forced_local_; }
798 // Mark this symbol as forced to STB_LOCAL visibility.
800 set_is_forced_local()
801 { this->is_forced_local_ = true; }
803 // Return true if this may need a COPY relocation.
804 // References from an executable object to non-function symbols
805 // defined in a dynamic object may need a COPY relocation.
807 may_need_copy_reloc() const
809 return (!parameters->options().output_is_position_independent()
810 && parameters->options().copyreloc()
811 && this->is_from_dynobj()
812 && !this->is_func());
815 // Return true if this symbol was predefined by the linker.
817 is_predefined() const
818 { return this->is_predefined_; }
821 // Instances of this class should always be created at a specific
824 { memset(this, 0, sizeof *this); }
826 // Initialize the general fields.
828 init_fields(const char* name, const char* version,
829 elfcpp::STT type, elfcpp::STB binding,
830 elfcpp::STV visibility, unsigned char nonvis);
832 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
833 // section index, IS_ORDINARY is whether it is a normal section
834 // index rather than a special code.
835 template<int size, bool big_endian>
837 init_base_object(const char* name, const char* version, Object* object,
838 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
841 // Initialize fields for an Output_data.
843 init_base_output_data(const char* name, const char* version, Output_data*,
844 elfcpp::STT, elfcpp::STB, elfcpp::STV,
845 unsigned char nonvis, bool offset_is_from_end,
848 // Initialize fields for an Output_segment.
850 init_base_output_segment(const char* name, const char* version,
851 Output_segment* os, elfcpp::STT type,
852 elfcpp::STB binding, elfcpp::STV visibility,
853 unsigned char nonvis,
854 Segment_offset_base offset_base,
857 // Initialize fields for a constant.
859 init_base_constant(const char* name, const char* version, elfcpp::STT type,
860 elfcpp::STB binding, elfcpp::STV visibility,
861 unsigned char nonvis, bool is_predefined);
863 // Initialize fields for an undefined symbol.
865 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
866 elfcpp::STB binding, elfcpp::STV visibility,
867 unsigned char nonvis);
869 // Override existing symbol.
870 template<int size, bool big_endian>
872 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
873 bool is_ordinary, Object* object, const char* version);
875 // Override existing symbol with a special symbol.
877 override_base_with_special(const Symbol* from);
879 // Override symbol version.
881 override_version(const char* version);
883 // Allocate a common symbol by giving it a location in the output
886 allocate_base_common(Output_data*);
889 Symbol(const Symbol&);
890 Symbol& operator=(const Symbol&);
892 // Symbol name (expected to point into a Stringpool).
894 // Symbol version (expected to point into a Stringpool). This may
896 const char* version_;
900 // This struct is used if SOURCE_ == FROM_OBJECT.
903 // Object in which symbol is defined, or in which it was first
906 // Section number in object_ in which symbol is defined.
910 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
913 // Output_data in which symbol is defined. Before
914 // Layout::finalize the symbol's value is an offset within the
916 Output_data* output_data;
917 // True if the offset is from the end, false if the offset is
918 // from the beginning.
919 bool offset_is_from_end;
922 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
925 // Output_segment in which the symbol is defined. Before
926 // Layout::finalize the symbol's value is an offset.
927 Output_segment* output_segment;
928 // The base to use for the offset before Layout::finalize.
929 Segment_offset_base offset_base;
933 // The index of this symbol in the output file. If the symbol is
934 // not going into the output file, this value is -1U. This field
935 // starts as always holding zero. It is set to a non-zero value by
936 // Symbol_table::finalize.
937 unsigned int symtab_index_;
939 // The index of this symbol in the dynamic symbol table. If the
940 // symbol is not going into the dynamic symbol table, this value is
941 // -1U. This field starts as always holding zero. It is set to a
942 // non-zero value during Layout::finalize.
943 unsigned int dynsym_index_;
945 // The GOT section entries for this symbol. A symbol may have more
946 // than one GOT offset (e.g., when mixing modules compiled with two
947 // different TLS models), but will usually have at most one.
948 Got_offset_list got_offsets_;
950 // If this symbol has an entry in the PLT section, then this is the
951 // offset from the start of the PLT section. This is -1U if there
953 unsigned int plt_offset_;
955 // Symbol type (bits 0 to 3).
956 elfcpp::STT type_ : 4;
957 // Symbol binding (bits 4 to 7).
958 elfcpp::STB binding_ : 4;
959 // Symbol visibility (bits 8 to 9).
960 elfcpp::STV visibility_ : 2;
961 // Rest of symbol st_other field (bits 10 to 15).
962 unsigned int nonvis_ : 6;
963 // The type of symbol (bits 16 to 18).
965 // True if this is the default version of the symbol (bit 19).
967 // True if this symbol really forwards to another symbol. This is
968 // used when we discover after the fact that two different entries
969 // in the hash table really refer to the same symbol. This will
970 // never be set for a symbol found in the hash table, but may be set
971 // for a symbol found in the list of symbols attached to an Object.
972 // It forwards to the symbol found in the forwarders_ map of
973 // Symbol_table (bit 20).
974 bool is_forwarder_ : 1;
975 // True if the symbol has an alias in the weak_aliases table in
976 // Symbol_table (bit 21).
978 // True if this symbol needs to be in the dynamic symbol table (bit
980 bool needs_dynsym_entry_ : 1;
981 // True if we've seen this symbol in a regular object (bit 23).
983 // True if we've seen this symbol in a dynamic object (bit 24).
985 // True if this is a dynamic symbol which needs a special value in
986 // the dynamic symbol table (bit 25).
987 bool needs_dynsym_value_ : 1;
988 // True if there is a warning for this symbol (bit 26).
989 bool has_warning_ : 1;
990 // True if we are using a COPY reloc for this symbol, so that the
991 // real definition lives in a dynamic object (bit 27).
992 bool is_copied_from_dynobj_ : 1;
993 // True if this symbol was forced to local visibility by a version
995 bool is_forced_local_ : 1;
996 // True if the field u_.from_object.shndx is an ordinary section
997 // index, not one of the special codes from SHN_LORESERVE to
998 // SHN_HIRESERVE (bit 29).
999 bool is_ordinary_shndx_ : 1;
1000 // True if we've seen this symbol in a "real" ELF object (bit 30).
1001 // If the symbol has been seen in a relocatable, non-IR, object file,
1002 // it's known to be referenced from outside the IR. A reference from
1003 // a dynamic object doesn't count as a "real" ELF, and we'll simply
1004 // mark the symbol as "visible" from outside the IR. The compiler
1005 // can use this distinction to guide its handling of COMDAT symbols.
1006 bool in_real_elf_ : 1;
1007 // True if this symbol is defined in a section which was discarded
1009 bool is_defined_in_discarded_section_ : 1;
1010 // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
1011 bool undef_binding_set_ : 1;
1012 // True if this symbol was a weak undef resolved by a dynamic def
1014 bool undef_binding_weak_ : 1;
1015 // True if this symbol is a predefined linker symbol (bit 34).
1016 bool is_predefined_ : 1;
1019 // The parts of a symbol which are size specific. Using a template
1020 // derived class like this helps us use less space on a 32-bit system.
1023 class Sized_symbol : public Symbol
1026 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
1027 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
1032 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
1033 // section index, IS_ORDINARY is whether it is a normal section
1034 // index rather than a special code.
1035 template<bool big_endian>
1037 init_object(const char* name, const char* version, Object* object,
1038 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1041 // Initialize fields for an Output_data.
1043 init_output_data(const char* name, const char* version, Output_data*,
1044 Value_type value, Size_type symsize, elfcpp::STT,
1045 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1046 bool offset_is_from_end, bool is_predefined);
1048 // Initialize fields for an Output_segment.
1050 init_output_segment(const char* name, const char* version, Output_segment*,
1051 Value_type value, Size_type symsize, elfcpp::STT,
1052 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1053 Segment_offset_base offset_base, bool is_predefined);
1055 // Initialize fields for a constant.
1057 init_constant(const char* name, const char* version, Value_type value,
1058 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
1059 unsigned char nonvis, bool is_predefined);
1061 // Initialize fields for an undefined symbol.
1063 init_undefined(const char* name, const char* version, elfcpp::STT,
1064 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1066 // Override existing symbol.
1067 template<bool big_endian>
1069 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1070 bool is_ordinary, Object* object, const char* version);
1072 // Override existing symbol with a special symbol.
1074 override_with_special(const Sized_symbol<size>*);
1076 // Return the symbol's value.
1079 { return this->value_; }
1081 // Return the symbol's size (we can't call this 'size' because that
1082 // is a template parameter).
1085 { return this->symsize_; }
1087 // Set the symbol size. This is used when resolving common symbols.
1089 set_symsize(Size_type symsize)
1090 { this->symsize_ = symsize; }
1092 // Set the symbol value. This is called when we store the final
1093 // values of the symbols into the symbol table.
1095 set_value(Value_type value)
1096 { this->value_ = value; }
1098 // Allocate a common symbol by giving it a location in the output
1101 allocate_common(Output_data*, Value_type value);
1104 Sized_symbol(const Sized_symbol&);
1105 Sized_symbol& operator=(const Sized_symbol&);
1107 // Symbol value. Before Layout::finalize this is the offset in the
1108 // input section. This is set to the final value during
1109 // Layout::finalize.
1115 // A struct describing a symbol defined by the linker, where the value
1116 // of the symbol is defined based on an output section. This is used
1117 // for symbols defined by the linker, like "_init_array_start".
1119 struct Define_symbol_in_section
1123 // The name of the output section with which this symbol should be
1124 // associated. If there is no output section with that name, the
1125 // symbol will be defined as zero.
1126 const char* output_section;
1127 // The offset of the symbol within the output section. This is an
1128 // offset from the start of the output section, unless start_at_end
1129 // is true, in which case this is an offset from the end of the
1132 // The size of the symbol.
1136 // The symbol binding.
1137 elfcpp::STB binding;
1138 // The symbol visibility.
1139 elfcpp::STV visibility;
1140 // The rest of the st_other field.
1141 unsigned char nonvis;
1142 // If true, the value field is an offset from the end of the output
1144 bool offset_is_from_end;
1145 // If true, this symbol is defined only if we see a reference to it.
1149 // A struct describing a symbol defined by the linker, where the value
1150 // of the symbol is defined based on a segment. This is used for
1151 // symbols defined by the linker, like "_end". We describe the
1152 // segment with which the symbol should be associated by its
1153 // characteristics. If no segment meets these characteristics, the
1154 // symbol will be defined as zero. If there is more than one segment
1155 // which meets these characteristics, we will use the first one.
1157 struct Define_symbol_in_segment
1161 // The segment type where the symbol should be defined, typically
1163 elfcpp::PT segment_type;
1164 // Bitmask of segment flags which must be set.
1165 elfcpp::PF segment_flags_set;
1166 // Bitmask of segment flags which must be clear.
1167 elfcpp::PF segment_flags_clear;
1168 // The offset of the symbol within the segment. The offset is
1169 // calculated from the position set by offset_base.
1171 // The size of the symbol.
1175 // The symbol binding.
1176 elfcpp::STB binding;
1177 // The symbol visibility.
1178 elfcpp::STV visibility;
1179 // The rest of the st_other field.
1180 unsigned char nonvis;
1181 // The base from which we compute the offset.
1182 Symbol::Segment_offset_base offset_base;
1183 // If true, this symbol is defined only if we see a reference to it.
1187 // Specify an object/section/offset location. Used by ODR code.
1189 struct Symbol_location
1191 // Object where the symbol is defined.
1193 // Section-in-object where the symbol is defined.
1195 // For relocatable objects, offset-in-section where the symbol is defined.
1196 // For dynamic objects, address where the symbol is defined.
1198 bool operator==(const Symbol_location& that) const
1200 return (this->object == that.object
1201 && this->shndx == that.shndx
1202 && this->offset == that.offset);
1206 // This class manages warnings. Warnings are a GNU extension. When
1207 // we see a section named .gnu.warning.SYM in an object file, and if
1208 // we wind using the definition of SYM from that object file, then we
1209 // will issue a warning for any relocation against SYM from a
1210 // different object file. The text of the warning is the contents of
1211 // the section. This is not precisely the definition used by the old
1212 // GNU linker; the old GNU linker treated an occurrence of
1213 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1214 // would trigger a warning on any reference. However, it was
1215 // inconsistent in that a warning in a dynamic object only triggered
1216 // if there was no definition in a regular object. This linker is
1217 // different in that we only issue a warning if we use the symbol
1218 // definition from the same object file as the warning section.
1227 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1230 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1231 const std::string& warning);
1233 // For each symbol for which we should give a warning, make a note
1236 note_warnings(Symbol_table* symtab);
1238 // Issue a warning for a reference to SYM at RELINFO's location.
1239 template<int size, bool big_endian>
1241 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1242 size_t relnum, off_t reloffset) const;
1245 Warnings(const Warnings&);
1246 Warnings& operator=(const Warnings&);
1248 // What we need to know to get the warning text.
1249 struct Warning_location
1251 // The object the warning is in.
1253 // The warning text.
1257 : object(NULL), text()
1261 set(Object* o, const std::string& t)
1268 // A mapping from warning symbol names (canonicalized in
1269 // Symbol_table's namepool_ field) to warning information.
1270 typedef Unordered_map<const char*, Warning_location> Warning_table;
1272 Warning_table warnings_;
1275 // The main linker symbol table.
1280 // The different places where a symbol definition can come from.
1283 // Defined in an object file--the normal case.
1285 // Defined for a COPY reloc.
1287 // Defined on the command line using --defsym.
1289 // Defined (so to speak) on the command line using -u.
1291 // Defined in a linker script.
1293 // Predefined by the linker.
1295 // Defined by the linker during an incremental base link, but not
1296 // a predefined symbol (e.g., common, defined in script).
1300 // The order in which we sort common symbols.
1301 enum Sort_commons_order
1303 SORT_COMMONS_BY_SIZE_DESCENDING,
1304 SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1305 SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1308 // COUNT is an estimate of how many symbols will be inserted in the
1309 // symbol table. It's ok to put 0 if you don't know; a correct
1310 // guess will just save some CPU by reducing hashtable resizes.
1311 Symbol_table(unsigned int count, const Version_script_info& version_script);
1317 { this->icf_ = icf;}
1321 { return this->icf_; }
1323 // Returns true if ICF determined that this is a duplicate section.
1325 is_section_folded(Object* obj, unsigned int shndx) const;
1328 set_gc(Garbage_collection* gc)
1333 { return this->gc_; }
1335 // During garbage collection, this keeps undefined symbols.
1337 gc_mark_undef_symbols(Layout*);
1339 // This tells garbage collection that this symbol is referenced.
1341 gc_mark_symbol(Symbol* sym);
1343 // During garbage collection, this keeps sections that correspond to
1344 // symbols seen in dynamic objects.
1346 gc_mark_dyn_syms(Symbol* sym);
1348 // Add COUNT external symbols from the relocatable object RELOBJ to
1349 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1350 // offset in the symbol table of the first symbol, SYM_NAMES is
1351 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1352 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1353 // *DEFINED to the number of defined symbols.
1354 template<int size, bool big_endian>
1356 add_from_relobj(Sized_relobj_file<size, big_endian>* relobj,
1357 const unsigned char* syms, size_t count,
1358 size_t symndx_offset, const char* sym_names,
1359 size_t sym_name_size,
1360 typename Sized_relobj_file<size, big_endian>::Symbols*,
1363 // Add one external symbol from the plugin object OBJ to the symbol table.
1364 // Returns a pointer to the resolved symbol in the symbol table.
1365 template<int size, bool big_endian>
1367 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1368 const char* name, const char* ver,
1369 elfcpp::Sym<size, big_endian>* sym);
1371 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1372 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1373 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1374 // symbol version data.
1375 template<int size, bool big_endian>
1377 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1378 const unsigned char* syms, size_t count,
1379 const char* sym_names, size_t sym_name_size,
1380 const unsigned char* versym, size_t versym_size,
1381 const std::vector<const char*>*,
1382 typename Sized_relobj_file<size, big_endian>::Symbols*,
1385 // Add one external symbol from the incremental object OBJ to the symbol
1386 // table. Returns a pointer to the resolved symbol in the symbol table.
1387 template<int size, bool big_endian>
1389 add_from_incrobj(Object* obj, const char* name,
1390 const char* ver, elfcpp::Sym<size, big_endian>* sym);
1392 // Define a special symbol based on an Output_data. It is a
1393 // multiple definition error if this symbol is already defined.
1395 define_in_output_data(const char* name, const char* version, Defined,
1396 Output_data*, uint64_t value, uint64_t symsize,
1397 elfcpp::STT type, elfcpp::STB binding,
1398 elfcpp::STV visibility, unsigned char nonvis,
1399 bool offset_is_from_end, bool only_if_ref);
1401 // Define a special symbol based on an Output_segment. It is a
1402 // multiple definition error if this symbol is already defined.
1404 define_in_output_segment(const char* name, const char* version, Defined,
1405 Output_segment*, uint64_t value, uint64_t symsize,
1406 elfcpp::STT type, elfcpp::STB binding,
1407 elfcpp::STV visibility, unsigned char nonvis,
1408 Symbol::Segment_offset_base, bool only_if_ref);
1410 // Define a special symbol with a constant value. It is a multiple
1411 // definition error if this symbol is already defined.
1413 define_as_constant(const char* name, const char* version, Defined,
1414 uint64_t value, uint64_t symsize, elfcpp::STT type,
1415 elfcpp::STB binding, elfcpp::STV visibility,
1416 unsigned char nonvis, bool only_if_ref,
1417 bool force_override);
1419 // Define a set of symbols in output sections. If ONLY_IF_REF is
1420 // true, only define them if they are referenced.
1422 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1425 // Define a set of symbols in output segments. If ONLY_IF_REF is
1426 // true, only defined them if they are referenced.
1428 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1431 // Define SYM using a COPY reloc. POSD is the Output_data where the
1432 // symbol should be defined--typically a .dyn.bss section. VALUE is
1433 // the offset within POSD.
1436 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1437 typename elfcpp::Elf_types<size>::Elf_Addr);
1439 // Look up a symbol.
1441 lookup(const char*, const char* version = NULL) const;
1443 // Return the real symbol associated with the forwarder symbol FROM.
1445 resolve_forwards(const Symbol* from) const;
1447 // Return the sized version of a symbol in this table.
1450 get_sized_symbol(Symbol*) const;
1453 const Sized_symbol<size>*
1454 get_sized_symbol(const Symbol*) const;
1456 // Return the count of undefined symbols seen.
1458 saw_undefined() const
1459 { return this->saw_undefined_; }
1461 // Allocate the common symbols
1463 allocate_commons(Layout*, Mapfile*);
1465 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1468 add_warning(const char* name, Object* obj, const std::string& warning)
1469 { this->warnings_.add_warning(this, name, obj, warning); }
1471 // Canonicalize a symbol name for use in the hash table.
1473 canonicalize_name(const char* name)
1474 { return this->namepool_.add(name, true, NULL); }
1476 // Possibly issue a warning for a reference to SYM at LOCATION which
1478 template<int size, bool big_endian>
1480 issue_warning(const Symbol* sym,
1481 const Relocate_info<size, big_endian>* relinfo,
1482 size_t relnum, off_t reloffset) const
1483 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1485 // Check candidate_odr_violations_ to find symbols with the same name
1486 // but apparently different definitions (different source-file/line-no).
1488 detect_odr_violations(const Task*, const char* output_file_name) const;
1490 // Add any undefined symbols named on the command line to the symbol
1493 add_undefined_symbols_from_command_line(Layout*);
1495 // SYM is defined using a COPY reloc. Return the dynamic object
1496 // where the original definition was found.
1498 get_copy_source(const Symbol* sym) const;
1500 // Set the dynamic symbol indexes. INDEX is the index of the first
1501 // global dynamic symbol. Pointers to the symbols are stored into
1502 // the vector. The names are stored into the Stringpool. This
1503 // returns an updated dynamic symbol index.
1505 set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1506 Stringpool*, Versions*);
1508 // Finalize the symbol table after we have set the final addresses
1509 // of all the input sections. This sets the final symbol indexes,
1510 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1511 // index of the first global symbol. OFF is the file offset of the
1512 // global symbol table, DYNOFF is the offset of the globals in the
1513 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1514 // global dynamic symbol, and DYNCOUNT is the number of global
1515 // dynamic symbols. This records the parameters, and returns the
1516 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1519 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1520 Stringpool* pool, unsigned int* plocal_symcount);
1522 // Set the final file offset of the symbol table.
1524 set_file_offset(off_t off)
1525 { this->offset_ = off; }
1527 // Status code of Symbol_table::compute_final_value.
1528 enum Compute_final_value_status
1532 // Unsupported symbol section.
1533 CFVS_UNSUPPORTED_SYMBOL_SECTION,
1534 // No output section.
1535 CFVS_NO_OUTPUT_SECTION
1538 // Compute the final value of SYM and store status in location PSTATUS.
1539 // During relaxation, this may be called multiple times for a symbol to
1540 // compute its would-be final value in each relaxation pass.
1543 typename Sized_symbol<size>::Value_type
1544 compute_final_value(const Sized_symbol<size>* sym,
1545 Compute_final_value_status* pstatus) const;
1547 // Return the index of the first global symbol.
1549 first_global_index() const
1550 { return this->first_global_index_; }
1552 // Return the total number of symbols in the symbol table.
1554 output_count() const
1555 { return this->output_count_; }
1557 // Write out the global symbols.
1559 write_globals(const Stringpool*, const Stringpool*,
1560 Output_symtab_xindex*, Output_symtab_xindex*,
1561 Output_file*) const;
1563 // Write out a section symbol. Return the updated offset.
1565 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1566 Output_file*, off_t) const;
1568 // Loop over all symbols, applying the function F to each.
1569 template<int size, typename F>
1571 for_all_symbols(F f) const
1573 for (Symbol_table_type::const_iterator p = this->table_.begin();
1574 p != this->table_.end();
1577 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1582 // Dump statistical information to stderr.
1584 print_stats() const;
1586 // Return the version script information.
1587 const Version_script_info&
1588 version_script() const
1589 { return version_script_; }
1592 Symbol_table(const Symbol_table&);
1593 Symbol_table& operator=(const Symbol_table&);
1595 // The type of the list of common symbols.
1596 typedef std::vector<Symbol*> Commons_type;
1598 // The type of the symbol hash table.
1600 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1602 // The hash function. The key values are Stringpool keys.
1603 struct Symbol_table_hash
1606 operator()(const Symbol_table_key& key) const
1608 return key.first ^ key.second;
1612 struct Symbol_table_eq
1615 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1618 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1619 Symbol_table_eq> Symbol_table_type;
1621 // A map from symbol name (as a pointer into the namepool) to all
1622 // the locations the symbols is (weakly) defined (and certain other
1623 // conditions are met). This map will be used later to detect
1624 // possible One Definition Rule (ODR) violations.
1625 struct Symbol_location_hash
1627 size_t operator()(const Symbol_location& loc) const
1628 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1631 typedef Unordered_map<const char*,
1632 Unordered_set<Symbol_location, Symbol_location_hash> >
1635 // Make FROM a forwarder symbol to TO.
1637 make_forwarder(Symbol* from, Symbol* to);
1640 template<int size, bool big_endian>
1642 add_from_object(Object*, const char* name, Stringpool::Key name_key,
1643 const char* version, Stringpool::Key version_key,
1644 bool def, const elfcpp::Sym<size, big_endian>& sym,
1645 unsigned int st_shndx, bool is_ordinary,
1646 unsigned int orig_st_shndx);
1648 // Define a default symbol.
1649 template<int size, bool big_endian>
1651 define_default_version(Sized_symbol<size>*, bool,
1652 Symbol_table_type::iterator);
1655 template<int size, bool big_endian>
1657 resolve(Sized_symbol<size>* to,
1658 const elfcpp::Sym<size, big_endian>& sym,
1659 unsigned int st_shndx, bool is_ordinary,
1660 unsigned int orig_st_shndx,
1661 Object*, const char* version);
1663 template<int size, bool big_endian>
1665 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1667 // Record that a symbol is forced to be local by a version script or
1670 force_local(Symbol*);
1672 // Adjust NAME and *NAME_KEY for wrapping.
1674 wrap_symbol(const char* name, Stringpool::Key* name_key);
1676 // Whether we should override a symbol, based on flags in
1679 should_override(const Symbol*, unsigned int, elfcpp::STT, Defined,
1680 Object*, bool*, bool*);
1682 // Report a problem in symbol resolution.
1684 report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1685 Defined, Object* object);
1687 // Override a symbol.
1688 template<int size, bool big_endian>
1690 override(Sized_symbol<size>* tosym,
1691 const elfcpp::Sym<size, big_endian>& fromsym,
1692 unsigned int st_shndx, bool is_ordinary,
1693 Object* object, const char* version);
1695 // Whether we should override a symbol with a special symbol which
1696 // is automatically defined by the linker.
1698 should_override_with_special(const Symbol*, elfcpp::STT, Defined);
1700 // Override a symbol with a special symbol.
1703 override_with_special(Sized_symbol<size>* tosym,
1704 const Sized_symbol<size>* fromsym);
1706 // Record all weak alias sets for a dynamic object.
1709 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1711 // Define a special symbol.
1712 template<int size, bool big_endian>
1714 define_special_symbol(const char** pname, const char** pversion,
1715 bool only_if_ref, Sized_symbol<size>** poldsym,
1716 bool* resolve_oldsym);
1718 // Define a symbol in an Output_data, sized version.
1721 do_define_in_output_data(const char* name, const char* version, Defined,
1723 typename elfcpp::Elf_types<size>::Elf_Addr value,
1724 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1725 elfcpp::STT type, elfcpp::STB binding,
1726 elfcpp::STV visibility, unsigned char nonvis,
1727 bool offset_is_from_end, bool only_if_ref);
1729 // Define a symbol in an Output_segment, sized version.
1732 do_define_in_output_segment(
1733 const char* name, const char* version, Defined, Output_segment* os,
1734 typename elfcpp::Elf_types<size>::Elf_Addr value,
1735 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1736 elfcpp::STT type, elfcpp::STB binding,
1737 elfcpp::STV visibility, unsigned char nonvis,
1738 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1740 // Define a symbol as a constant, sized version.
1743 do_define_as_constant(
1744 const char* name, const char* version, Defined,
1745 typename elfcpp::Elf_types<size>::Elf_Addr value,
1746 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1747 elfcpp::STT type, elfcpp::STB binding,
1748 elfcpp::STV visibility, unsigned char nonvis,
1749 bool only_if_ref, bool force_override);
1751 // Add any undefined symbols named on the command line to the symbol
1752 // table, sized version.
1755 do_add_undefined_symbols_from_command_line(Layout*);
1757 // Add one undefined symbol.
1760 add_undefined_symbol_from_command_line(const char* name);
1762 // Types of common symbols.
1764 enum Commons_section_type
1772 // Allocate the common symbols, sized version.
1775 do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1777 // Allocate the common symbols from one list.
1780 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1781 Mapfile*, Sort_commons_order);
1783 // Returns all of the lines attached to LOC, not just the one the
1784 // instruction actually came from. This helps the ODR checker avoid
1786 static std::vector<std::string>
1787 linenos_from_loc(const Task* task, const Symbol_location& loc);
1789 // Implement detect_odr_violations.
1790 template<int size, bool big_endian>
1792 sized_detect_odr_violations() const;
1794 // Finalize symbols specialized for size.
1797 sized_finalize(off_t, Stringpool*, unsigned int*);
1799 // Finalize a symbol. Return whether it should be added to the
1803 sized_finalize_symbol(Symbol*);
1805 // Add a symbol the final symtab by setting its index.
1808 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1810 // Write globals specialized for size and endianness.
1811 template<int size, bool big_endian>
1813 sized_write_globals(const Stringpool*, const Stringpool*,
1814 Output_symtab_xindex*, Output_symtab_xindex*,
1815 Output_file*) const;
1817 // Write out a symbol to P.
1818 template<int size, bool big_endian>
1820 sized_write_symbol(Sized_symbol<size>*,
1821 typename elfcpp::Elf_types<size>::Elf_Addr value,
1822 unsigned int shndx, elfcpp::STB,
1823 const Stringpool*, unsigned char* p) const;
1825 // Possibly warn about an undefined symbol from a dynamic object.
1827 warn_about_undefined_dynobj_symbol(Symbol*) const;
1829 // Write out a section symbol, specialized for size and endianness.
1830 template<int size, bool big_endian>
1832 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1833 Output_file*, off_t) const;
1835 // The type of the list of symbols which have been forced local.
1836 typedef std::vector<Symbol*> Forced_locals;
1838 // A map from symbols with COPY relocs to the dynamic objects where
1839 // they are defined.
1840 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1842 // We increment this every time we see a new undefined symbol, for
1843 // use in archive groups.
1844 size_t saw_undefined_;
1845 // The index of the first global symbol in the output file.
1846 unsigned int first_global_index_;
1847 // The file offset within the output symtab section where we should
1850 // The number of global symbols we want to write out.
1851 unsigned int output_count_;
1852 // The file offset of the global dynamic symbols, or 0 if none.
1853 off_t dynamic_offset_;
1854 // The index of the first global dynamic symbol.
1855 unsigned int first_dynamic_global_index_;
1856 // The number of global dynamic symbols, or 0 if none.
1857 unsigned int dynamic_count_;
1858 // The symbol hash table.
1859 Symbol_table_type table_;
1860 // A pool of symbol names. This is used for all global symbols.
1861 // Entries in the hash table point into this pool.
1862 Stringpool namepool_;
1863 // Forwarding symbols.
1864 Unordered_map<const Symbol*, Symbol*> forwarders_;
1865 // Weak aliases. A symbol in this list points to the next alias.
1866 // The aliases point to each other in a circular list.
1867 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1868 // We don't expect there to be very many common symbols, so we keep
1869 // a list of them. When we find a common symbol we add it to this
1870 // list. It is possible that by the time we process the list the
1871 // symbol is no longer a common symbol. It may also have become a
1873 Commons_type commons_;
1874 // This is like the commons_ field, except that it holds TLS common
1876 Commons_type tls_commons_;
1877 // This is for small common symbols.
1878 Commons_type small_commons_;
1879 // This is for large common symbols.
1880 Commons_type large_commons_;
1881 // A list of symbols which have been forced to be local. We don't
1882 // expect there to be very many of them, so we keep a list of them
1883 // rather than walking the whole table to find them.
1884 Forced_locals forced_locals_;
1885 // Manage symbol warnings.
1887 // Manage potential One Definition Rule (ODR) violations.
1888 Odr_map candidate_odr_violations_;
1890 // When we emit a COPY reloc for a symbol, we define it in an
1891 // Output_data. When it's time to emit version information for it,
1892 // we need to know the dynamic object in which we found the original
1893 // definition. This maps symbols with COPY relocs to the dynamic
1894 // object where they were defined.
1895 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1896 // Information parsed from the version script, if any.
1897 const Version_script_info& version_script_;
1898 Garbage_collection* gc_;
1902 // We inline get_sized_symbol for efficiency.
1906 Symbol_table::get_sized_symbol(Symbol* sym) const
1908 gold_assert(size == parameters->target().get_size());
1909 return static_cast<Sized_symbol<size>*>(sym);
1913 const Sized_symbol<size>*
1914 Symbol_table::get_sized_symbol(const Symbol* sym) const
1916 gold_assert(size == parameters->target().get_size());
1917 return static_cast<const Sized_symbol<size>*>(sym);
1920 } // End namespace gold.
1922 #endif // !defined(GOLD_SYMTAB_H)