gdb: Extend the comments in c-exp.y
[external/binutils.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table   -*- C++ -*-
2
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 //   The symbol table.
25
26 #ifndef GOLD_SYMTAB_H
27 #define GOLD_SYMTAB_H
28
29 #include <string>
30 #include <utility>
31 #include <vector>
32
33 #include "elfcpp.h"
34 #include "parameters.h"
35 #include "stringpool.h"
36 #include "object.h"
37
38 namespace gold
39 {
40
41 class Mapfile;
42 class Object;
43 class Relobj;
44 template<int size, bool big_endian>
45 class Sized_relobj_file;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
48 class Dynobj;
49 template<int size, bool big_endian>
50 class Sized_dynobj;
51 template<int size, bool big_endian>
52 class Sized_incrobj;
53 class Versions;
54 class Version_script_info;
55 class Input_objects;
56 class Output_data;
57 class Output_section;
58 class Output_segment;
59 class Output_file;
60 class Output_symtab_xindex;
61 class Garbage_collection;
62 class Icf;
63
64 // The base class of an entry in the symbol table.  The symbol table
65 // can have a lot of entries, so we don't want this class too big.
66 // Size dependent fields can be found in the template class
67 // Sized_symbol.  Targets may support their own derived classes.
68
69 class Symbol
70 {
71  public:
72   // Because we want the class to be small, we don't use any virtual
73   // functions.  But because symbols can be defined in different
74   // places, we need to classify them.  This enum is the different
75   // sources of symbols we support.
76   enum Source
77   {
78     // Symbol defined in a relocatable or dynamic input file--this is
79     // the most common case.
80     FROM_OBJECT,
81     // Symbol defined in an Output_data, a special section created by
82     // the target.
83     IN_OUTPUT_DATA,
84     // Symbol defined in an Output_segment, with no associated
85     // section.
86     IN_OUTPUT_SEGMENT,
87     // Symbol value is constant.
88     IS_CONSTANT,
89     // Symbol is undefined.
90     IS_UNDEFINED
91   };
92
93   // When the source is IN_OUTPUT_SEGMENT, we need to describe what
94   // the offset means.
95   enum Segment_offset_base
96   {
97     // From the start of the segment.
98     SEGMENT_START,
99     // From the end of the segment.
100     SEGMENT_END,
101     // From the filesz of the segment--i.e., after the loaded bytes
102     // but before the bytes which are allocated but zeroed.
103     SEGMENT_BSS
104   };
105
106   // Return the symbol name.
107   const char*
108   name() const
109   { return this->name_; }
110
111   // Return the (ANSI) demangled version of the name, if
112   // parameters.demangle() is true.  Otherwise, return the name.  This
113   // is intended to be used only for logging errors, so it's not
114   // super-efficient.
115   std::string
116   demangled_name() const;
117
118   // Return the symbol version.  This will return NULL for an
119   // unversioned symbol.
120   const char*
121   version() const
122   { return this->version_; }
123
124   void
125   clear_version()
126   { this->version_ = NULL; }
127
128   // Return whether this version is the default for this symbol name
129   // (eg, "foo@@V2" is a default version; "foo@V1" is not).  Only
130   // meaningful for versioned symbols.
131   bool
132   is_default() const
133   {
134     gold_assert(this->version_ != NULL);
135     return this->is_def_;
136   }
137
138   // Set that this version is the default for this symbol name.
139   void
140   set_is_default()
141   { this->is_def_ = true; }
142
143   // Set that this version is not the default for this symbol name.
144   void
145   set_is_not_default()
146   { this->is_def_ = false; }
147
148   // Return the symbol's name as name@version (or name@@version).
149   std::string
150   versioned_name() const;
151
152   // Return the symbol source.
153   Source
154   source() const
155   { return this->source_; }
156
157   // Return the object with which this symbol is associated.
158   Object*
159   object() const
160   {
161     gold_assert(this->source_ == FROM_OBJECT);
162     return this->u1_.object;
163   }
164
165   // Return the index of the section in the input relocatable or
166   // dynamic object file.
167   unsigned int
168   shndx(bool* is_ordinary) const
169   {
170     gold_assert(this->source_ == FROM_OBJECT);
171     *is_ordinary = this->is_ordinary_shndx_;
172     return this->u2_.shndx;
173   }
174
175   // Return the output data section with which this symbol is
176   // associated, if the symbol was specially defined with respect to
177   // an output data section.
178   Output_data*
179   output_data() const
180   {
181     gold_assert(this->source_ == IN_OUTPUT_DATA);
182     return this->u1_.output_data;
183   }
184
185   // If this symbol was defined with respect to an output data
186   // section, return whether the value is an offset from end.
187   bool
188   offset_is_from_end() const
189   {
190     gold_assert(this->source_ == IN_OUTPUT_DATA);
191     return this->u2_.offset_is_from_end;
192   }
193
194   // Return the output segment with which this symbol is associated,
195   // if the symbol was specially defined with respect to an output
196   // segment.
197   Output_segment*
198   output_segment() const
199   {
200     gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
201     return this->u1_.output_segment;
202   }
203
204   // If this symbol was defined with respect to an output segment,
205   // return the offset base.
206   Segment_offset_base
207   offset_base() const
208   {
209     gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
210     return this->u2_.offset_base;
211   }
212
213   // Return the symbol binding.
214   elfcpp::STB
215   binding() const
216   { return this->binding_; }
217
218   // Return the symbol type.
219   elfcpp::STT
220   type() const
221   { return this->type_; }
222
223   // Set the symbol type.
224   void
225   set_type(elfcpp::STT type)
226   { this->type_ = type; }
227
228   // Return true for function symbol.
229   bool
230   is_func() const
231   {
232     return (this->type_ == elfcpp::STT_FUNC
233             || this->type_ == elfcpp::STT_GNU_IFUNC);
234   }
235
236   // Return the symbol visibility.
237   elfcpp::STV
238   visibility() const
239   { return this->visibility_; }
240
241   // Set the visibility.
242   void
243   set_visibility(elfcpp::STV visibility)
244   { this->visibility_ = visibility; }
245
246   // Override symbol visibility.
247   void
248   override_visibility(elfcpp::STV);
249
250   // Set whether the symbol was originally a weak undef or a regular undef
251   // when resolved by a dynamic def or by a special symbol.
252   inline void
253   set_undef_binding(elfcpp::STB bind)
254   {
255     if (!this->undef_binding_set_ || this->undef_binding_weak_)
256       {
257         this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
258         this->undef_binding_set_ = true;
259       }
260   }
261
262   // Return TRUE if a weak undef was resolved by a dynamic def or
263   // by a special symbol.
264   inline bool
265   is_undef_binding_weak() const
266   { return this->undef_binding_weak_; }
267
268   // Return the non-visibility part of the st_other field.
269   unsigned char
270   nonvis() const
271   { return this->nonvis_; }
272
273   // Set the non-visibility part of the st_other field.
274   void
275   set_nonvis(unsigned int nonvis)
276   { this->nonvis_ = nonvis; }
277
278   // Return whether this symbol is a forwarder.  This will never be
279   // true of a symbol found in the hash table, but may be true of
280   // symbol pointers attached to object files.
281   bool
282   is_forwarder() const
283   { return this->is_forwarder_; }
284
285   // Mark this symbol as a forwarder.
286   void
287   set_forwarder()
288   { this->is_forwarder_ = true; }
289
290   // Return whether this symbol has an alias in the weak aliases table
291   // in Symbol_table.
292   bool
293   has_alias() const
294   { return this->has_alias_; }
295
296   // Mark this symbol as having an alias.
297   void
298   set_has_alias()
299   { this->has_alias_ = true; }
300
301   // Return whether this symbol needs an entry in the dynamic symbol
302   // table.
303   bool
304   needs_dynsym_entry() const
305   {
306     return (this->needs_dynsym_entry_
307             || (this->in_reg()
308                 && this->in_dyn()
309                 && this->is_externally_visible()));
310   }
311
312   // Mark this symbol as needing an entry in the dynamic symbol table.
313   void
314   set_needs_dynsym_entry()
315   { this->needs_dynsym_entry_ = true; }
316
317   // Return whether this symbol should be added to the dynamic symbol
318   // table.
319   bool
320   should_add_dynsym_entry(Symbol_table*) const;
321
322   // Return whether this symbol has been seen in a regular object.
323   bool
324   in_reg() const
325   { return this->in_reg_; }
326
327   // Mark this symbol as having been seen in a regular object.
328   void
329   set_in_reg()
330   { this->in_reg_ = true; }
331
332   // Forget this symbol was seen in a regular object.
333   void
334   clear_in_reg()
335   { this->in_reg_ = false; }
336
337   // Return whether this symbol has been seen in a dynamic object.
338   bool
339   in_dyn() const
340   { return this->in_dyn_; }
341
342   // Mark this symbol as having been seen in a dynamic object.
343   void
344   set_in_dyn()
345   { this->in_dyn_ = true; }
346
347   // Return whether this symbol is defined in a dynamic object.
348   bool
349   from_dyn() const
350   { return this->source_ == FROM_OBJECT && this->object()->is_dynamic(); }
351
352   // Return whether this symbol has been seen in a real ELF object.
353   // (IN_REG will return TRUE if the symbol has been seen in either
354   // a real ELF object or an object claimed by a plugin.)
355   bool
356   in_real_elf() const
357   { return this->in_real_elf_; }
358
359   // Mark this symbol as having been seen in a real ELF object.
360   void
361   set_in_real_elf()
362   { this->in_real_elf_ = true; }
363
364   // Return whether this symbol was defined in a section that was
365   // discarded from the link.  This is used to control some error
366   // reporting.
367   bool
368   is_defined_in_discarded_section() const
369   { return this->is_defined_in_discarded_section_; }
370
371   // Mark this symbol as having been defined in a discarded section.
372   void
373   set_is_defined_in_discarded_section()
374   { this->is_defined_in_discarded_section_ = true; }
375
376   // Return the index of this symbol in the output file symbol table.
377   // A value of -1U means that this symbol is not going into the
378   // output file.  This starts out as zero, and is set to a non-zero
379   // value by Symbol_table::finalize.  It is an error to ask for the
380   // symbol table index before it has been set.
381   unsigned int
382   symtab_index() const
383   {
384     gold_assert(this->symtab_index_ != 0);
385     return this->symtab_index_;
386   }
387
388   // Set the index of the symbol in the output file symbol table.
389   void
390   set_symtab_index(unsigned int index)
391   {
392     gold_assert(index != 0);
393     this->symtab_index_ = index;
394   }
395
396   // Return whether this symbol already has an index in the output
397   // file symbol table.
398   bool
399   has_symtab_index() const
400   { return this->symtab_index_ != 0; }
401
402   // Return the index of this symbol in the dynamic symbol table.  A
403   // value of -1U means that this symbol is not going into the dynamic
404   // symbol table.  This starts out as zero, and is set to a non-zero
405   // during Layout::finalize.  It is an error to ask for the dynamic
406   // symbol table index before it has been set.
407   unsigned int
408   dynsym_index() const
409   {
410     gold_assert(this->dynsym_index_ != 0);
411     return this->dynsym_index_;
412   }
413
414   // Set the index of the symbol in the dynamic symbol table.
415   void
416   set_dynsym_index(unsigned int index)
417   {
418     gold_assert(index != 0);
419     this->dynsym_index_ = index;
420   }
421
422   // Return whether this symbol already has an index in the dynamic
423   // symbol table.
424   bool
425   has_dynsym_index() const
426   { return this->dynsym_index_ != 0; }
427
428   // Return whether this symbol has an entry in the GOT section.
429   // For a TLS symbol, this GOT entry will hold its tp-relative offset.
430   bool
431   has_got_offset(unsigned int got_type) const
432   { return this->got_offsets_.get_offset(got_type) != -1U; }
433
434   // Return the offset into the GOT section of this symbol.
435   unsigned int
436   got_offset(unsigned int got_type) const
437   {
438     unsigned int got_offset = this->got_offsets_.get_offset(got_type);
439     gold_assert(got_offset != -1U);
440     return got_offset;
441   }
442
443   // Set the GOT offset of this symbol.
444   void
445   set_got_offset(unsigned int got_type, unsigned int got_offset)
446   { this->got_offsets_.set_offset(got_type, got_offset); }
447
448   // Return the GOT offset list.
449   const Got_offset_list*
450   got_offset_list() const
451   { return this->got_offsets_.get_list(); }
452
453   // Return whether this symbol has an entry in the PLT section.
454   bool
455   has_plt_offset() const
456   { return this->plt_offset_ != -1U; }
457
458   // Return the offset into the PLT section of this symbol.
459   unsigned int
460   plt_offset() const
461   {
462     gold_assert(this->has_plt_offset());
463     return this->plt_offset_;
464   }
465
466   // Set the PLT offset of this symbol.
467   void
468   set_plt_offset(unsigned int plt_offset)
469   {
470     gold_assert(plt_offset != -1U);
471     this->plt_offset_ = plt_offset;
472   }
473
474   // Return whether this dynamic symbol needs a special value in the
475   // dynamic symbol table.
476   bool
477   needs_dynsym_value() const
478   { return this->needs_dynsym_value_; }
479
480   // Set that this dynamic symbol needs a special value in the dynamic
481   // symbol table.
482   void
483   set_needs_dynsym_value()
484   {
485     gold_assert(this->object()->is_dynamic());
486     this->needs_dynsym_value_ = true;
487   }
488
489   // Return true if the final value of this symbol is known at link
490   // time.
491   bool
492   final_value_is_known() const;
493
494   // Return true if SHNDX represents a common symbol.  This depends on
495   // the target.
496   static bool
497   is_common_shndx(unsigned int shndx);
498
499   // Return whether this is a defined symbol (not undefined or
500   // common).
501   bool
502   is_defined() const
503   {
504     bool is_ordinary;
505     if (this->source_ != FROM_OBJECT)
506       return this->source_ != IS_UNDEFINED;
507     unsigned int shndx = this->shndx(&is_ordinary);
508     return (is_ordinary
509             ? shndx != elfcpp::SHN_UNDEF
510             : !Symbol::is_common_shndx(shndx));
511   }
512
513   // Return true if this symbol is from a dynamic object.
514   bool
515   is_from_dynobj() const
516   {
517     return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
518   }
519
520   // Return whether this is a placeholder symbol from a plugin object.
521   bool
522   is_placeholder() const
523   {
524     return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
525   }
526
527   // Return whether this is an undefined symbol.
528   bool
529   is_undefined() const
530   {
531     bool is_ordinary;
532     return ((this->source_ == FROM_OBJECT
533              && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
534              && is_ordinary)
535             || this->source_ == IS_UNDEFINED);
536   }
537
538   // Return whether this is a weak undefined symbol.
539   bool
540   is_weak_undefined() const
541   {
542     return (this->is_undefined()
543             && (this->binding() == elfcpp::STB_WEAK
544                 || this->is_undef_binding_weak()
545                 || parameters->options().weak_unresolved_symbols()));
546   }
547
548   // Return whether this is a strong undefined symbol.
549   bool
550   is_strong_undefined() const
551   {
552     return (this->is_undefined()
553             && this->binding() != elfcpp::STB_WEAK
554             && !this->is_undef_binding_weak()
555             && !parameters->options().weak_unresolved_symbols());
556   }
557
558   // Return whether this is an absolute symbol.
559   bool
560   is_absolute() const
561   {
562     bool is_ordinary;
563     return ((this->source_ == FROM_OBJECT
564              && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
565              && !is_ordinary)
566             || this->source_ == IS_CONSTANT);
567   }
568
569   // Return whether this is a common symbol.
570   bool
571   is_common() const
572   {
573     if (this->source_ != FROM_OBJECT)
574       return false;
575     bool is_ordinary;
576     unsigned int shndx = this->shndx(&is_ordinary);
577     return !is_ordinary && Symbol::is_common_shndx(shndx);
578   }
579
580   // Return whether this symbol can be seen outside this object.
581   bool
582   is_externally_visible() const
583   {
584     return ((this->visibility_ == elfcpp::STV_DEFAULT
585              || this->visibility_ == elfcpp::STV_PROTECTED)
586             && !this->is_forced_local_);
587   }
588
589   // Return true if this symbol can be preempted by a definition in
590   // another link unit.
591   bool
592   is_preemptible() const
593   {
594     // It doesn't make sense to ask whether a symbol defined in
595     // another object is preemptible.
596     gold_assert(!this->is_from_dynobj());
597
598     // It doesn't make sense to ask whether an undefined symbol
599     // is preemptible.
600     gold_assert(!this->is_undefined());
601
602     // If a symbol does not have default visibility, it can not be
603     // seen outside this link unit and therefore is not preemptible.
604     if (this->visibility_ != elfcpp::STV_DEFAULT)
605       return false;
606
607     // If this symbol has been forced to be a local symbol by a
608     // version script, then it is not visible outside this link unit
609     // and is not preemptible.
610     if (this->is_forced_local_)
611       return false;
612
613     // If we are not producing a shared library, then nothing is
614     // preemptible.
615     if (!parameters->options().shared())
616       return false;
617
618     // If the symbol was named in a --dynamic-list script, it is preemptible.
619     if (parameters->options().in_dynamic_list(this->name()))
620       return true;
621
622     // If the user used -Bsymbolic, then nothing (else) is preemptible.
623     if (parameters->options().Bsymbolic())
624       return false;
625
626     // If the user used -Bsymbolic-functions, then functions are not
627     // preemptible.  We explicitly check for not being STT_OBJECT,
628     // rather than for being STT_FUNC, because that is what the GNU
629     // linker does.
630     if (this->type() != elfcpp::STT_OBJECT
631         && parameters->options().Bsymbolic_functions())
632       return false;
633
634     // Otherwise the symbol is preemptible.
635     return true;
636   }
637
638   // Return true if this symbol is a function that needs a PLT entry.
639   bool
640   needs_plt_entry() const
641   {
642     // An undefined symbol from an executable does not need a PLT entry.
643     if (this->is_undefined() && !parameters->options().shared())
644       return false;
645
646     // An STT_GNU_IFUNC symbol always needs a PLT entry, even when
647     // doing a static link.
648     if (this->type() == elfcpp::STT_GNU_IFUNC)
649       return true;
650
651     // We only need a PLT entry for a function.
652     if (!this->is_func())
653       return false;
654
655     // If we're doing a static link or a -pie link, we don't create
656     // PLT entries.
657     if (parameters->doing_static_link()
658         || parameters->options().pie())
659       return false;
660
661     // We need a PLT entry if the function is defined in a dynamic
662     // object, or is undefined when building a shared object, or if it
663     // is subject to pre-emption.
664     return (this->is_from_dynobj()
665             || this->is_undefined()
666             || this->is_preemptible());
667   }
668
669   // When determining whether a reference to a symbol needs a dynamic
670   // relocation, we need to know several things about the reference.
671   // These flags may be or'ed together.  0 means that the symbol
672   // isn't referenced at all.
673   enum Reference_flags
674   {
675     // A reference to the symbol's absolute address.  This includes
676     // references that cause an absolute address to be stored in the GOT.
677     ABSOLUTE_REF = 1,
678     // A reference that calculates the offset of the symbol from some
679     // anchor point, such as the PC or GOT.
680     RELATIVE_REF = 2,
681     // A TLS-related reference.
682     TLS_REF = 4,
683     // A reference that can always be treated as a function call.
684     FUNCTION_CALL = 8,
685     // When set, says that dynamic relocations are needed even if a
686     // symbol has a plt entry.
687     FUNC_DESC_ABI = 16,
688   };
689
690   // Given a direct absolute or pc-relative static relocation against
691   // the global symbol, this function returns whether a dynamic relocation
692   // is needed.
693
694   bool
695   needs_dynamic_reloc(int flags) const
696   {
697     // No dynamic relocations in a static link!
698     if (parameters->doing_static_link())
699       return false;
700
701     // A reference to an undefined symbol from an executable should be
702     // statically resolved to 0, and does not need a dynamic relocation.
703     // This matches gnu ld behavior.
704     if (this->is_undefined() && !parameters->options().shared())
705       return false;
706
707     // A reference to an absolute symbol does not need a dynamic relocation.
708     if (this->is_absolute())
709       return false;
710
711     // An absolute reference within a position-independent output file
712     // will need a dynamic relocation.
713     if ((flags & ABSOLUTE_REF)
714         && parameters->options().output_is_position_independent())
715       return true;
716
717     // A function call that can branch to a local PLT entry does not need
718     // a dynamic relocation.
719     if ((flags & FUNCTION_CALL) && this->has_plt_offset())
720       return false;
721
722     // A reference to any PLT entry in a non-position-independent executable
723     // does not need a dynamic relocation.
724     if (!(flags & FUNC_DESC_ABI)
725         && !parameters->options().output_is_position_independent()
726         && this->has_plt_offset())
727       return false;
728
729     // A reference to a symbol defined in a dynamic object or to a
730     // symbol that is preemptible will need a dynamic relocation.
731     if (this->is_from_dynobj()
732         || this->is_undefined()
733         || this->is_preemptible())
734       return true;
735
736     // For all other cases, return FALSE.
737     return false;
738   }
739
740   // Whether we should use the PLT offset associated with a symbol for
741   // a relocation.  FLAGS is a set of Reference_flags.
742
743   bool
744   use_plt_offset(int flags) const
745   {
746     // If the symbol doesn't have a PLT offset, then naturally we
747     // don't want to use it.
748     if (!this->has_plt_offset())
749       return false;
750
751     // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
752     if (this->type() == elfcpp::STT_GNU_IFUNC)
753       return true;
754
755     // If we are going to generate a dynamic relocation, then we will
756     // wind up using that, so no need to use the PLT entry.
757     if (this->needs_dynamic_reloc(flags))
758       return false;
759
760     // If the symbol is from a dynamic object, we need to use the PLT
761     // entry.
762     if (this->is_from_dynobj())
763       return true;
764
765     // If we are generating a shared object, and this symbol is
766     // undefined or preemptible, we need to use the PLT entry.
767     if (parameters->options().shared()
768         && (this->is_undefined() || this->is_preemptible()))
769       return true;
770
771     // If this is a call to a weak undefined symbol, we need to use
772     // the PLT entry; the symbol may be defined by a library loaded
773     // at runtime.
774     if ((flags & FUNCTION_CALL) && this->is_weak_undefined())
775       return true;
776
777     // Otherwise we can use the regular definition.
778     return false;
779   }
780
781   // Given a direct absolute static relocation against
782   // the global symbol, where a dynamic relocation is needed, this
783   // function returns whether a relative dynamic relocation can be used.
784   // The caller must determine separately whether the static relocation
785   // is compatible with a relative relocation.
786
787   bool
788   can_use_relative_reloc(bool is_function_call) const
789   {
790     // A function call that can branch to a local PLT entry can
791     // use a RELATIVE relocation.
792     if (is_function_call && this->has_plt_offset())
793       return true;
794
795     // A reference to a symbol defined in a dynamic object or to a
796     // symbol that is preemptible can not use a RELATIVE relocation.
797     if (this->is_from_dynobj()
798         || this->is_undefined()
799         || this->is_preemptible())
800       return false;
801
802     // For all other cases, return TRUE.
803     return true;
804   }
805
806   // Return the output section where this symbol is defined.  Return
807   // NULL if the symbol has an absolute value.
808   Output_section*
809   output_section() const;
810
811   // Set the symbol's output section.  This is used for symbols
812   // defined in scripts.  This should only be called after the symbol
813   // table has been finalized.
814   void
815   set_output_section(Output_section*);
816
817   // Set the symbol's output segment.  This is used for pre-defined
818   // symbols whose segments aren't known until after layout is done
819   // (e.g., __ehdr_start).
820   void
821   set_output_segment(Output_segment*, Segment_offset_base);
822
823   // Set the symbol to undefined.  This is used for pre-defined
824   // symbols whose segments aren't known until after layout is done
825   // (e.g., __ehdr_start).
826   void
827   set_undefined();
828
829   // Return whether there should be a warning for references to this
830   // symbol.
831   bool
832   has_warning() const
833   { return this->has_warning_; }
834
835   // Mark this symbol as having a warning.
836   void
837   set_has_warning()
838   { this->has_warning_ = true; }
839
840   // Return whether this symbol is defined by a COPY reloc from a
841   // dynamic object.
842   bool
843   is_copied_from_dynobj() const
844   { return this->is_copied_from_dynobj_; }
845
846   // Mark this symbol as defined by a COPY reloc.
847   void
848   set_is_copied_from_dynobj()
849   { this->is_copied_from_dynobj_ = true; }
850
851   // Return whether this symbol is forced to visibility STB_LOCAL
852   // by a "local:" entry in a version script.
853   bool
854   is_forced_local() const
855   { return this->is_forced_local_; }
856
857   // Mark this symbol as forced to STB_LOCAL visibility.
858   void
859   set_is_forced_local()
860   { this->is_forced_local_ = true; }
861
862   // Return true if this may need a COPY relocation.
863   // References from an executable object to non-function symbols
864   // defined in a dynamic object may need a COPY relocation.
865   bool
866   may_need_copy_reloc() const
867   {
868     return (parameters->options().copyreloc()
869             && this->is_from_dynobj()
870             && !this->is_func());
871   }
872
873   // Return true if this symbol was predefined by the linker.
874   bool
875   is_predefined() const
876   { return this->is_predefined_; }
877
878   // Return true if this is a C++ vtable symbol.
879   bool
880   is_cxx_vtable() const
881   { return is_prefix_of("_ZTV", this->name_); }
882
883   // Return true if this symbol is protected in a shared object.
884   // This is not the same as checking if visibility() == elfcpp::STV_PROTECTED,
885   // because the visibility_ field reflects the symbol's visibility from
886   // outside the shared object.
887   bool
888   is_protected() const
889   { return this->is_protected_; }
890
891   // Mark this symbol as protected in a shared object.
892   void
893   set_is_protected()
894   { this->is_protected_ = true; }
895
896   // Return state of PowerPC64 ELFv2 specific flag.
897   bool
898   non_zero_localentry() const
899   { return this->non_zero_localentry_; }
900
901   // Set PowerPC64 ELFv2 specific flag.
902   void
903   set_non_zero_localentry()
904   { this->non_zero_localentry_ = true; }
905
906   // Completely override existing symbol.  Everything bar name_,
907   // version_, and is_forced_local_ flag are copied.  version_ is
908   // cleared if from->version_ is clear.  Returns true if this symbol
909   // should be forced local.
910   bool
911   clone(const Symbol* from);
912
913  protected:
914   // Instances of this class should always be created at a specific
915   // size.
916   Symbol()
917   { memset(static_cast<void*>(this), 0, sizeof *this); }
918
919   // Initialize the general fields.
920   void
921   init_fields(const char* name, const char* version,
922               elfcpp::STT type, elfcpp::STB binding,
923               elfcpp::STV visibility, unsigned char nonvis);
924
925   // Initialize fields from an ELF symbol in OBJECT.  ST_SHNDX is the
926   // section index, IS_ORDINARY is whether it is a normal section
927   // index rather than a special code.
928   template<int size, bool big_endian>
929   void
930   init_base_object(const char* name, const char* version, Object* object,
931                    const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
932                    bool is_ordinary);
933
934   // Initialize fields for an Output_data.
935   void
936   init_base_output_data(const char* name, const char* version, Output_data*,
937                         elfcpp::STT, elfcpp::STB, elfcpp::STV,
938                         unsigned char nonvis, bool offset_is_from_end,
939                         bool is_predefined);
940
941   // Initialize fields for an Output_segment.
942   void
943   init_base_output_segment(const char* name, const char* version,
944                            Output_segment* os, elfcpp::STT type,
945                            elfcpp::STB binding, elfcpp::STV visibility,
946                            unsigned char nonvis,
947                            Segment_offset_base offset_base,
948                            bool is_predefined);
949
950   // Initialize fields for a constant.
951   void
952   init_base_constant(const char* name, const char* version, elfcpp::STT type,
953                      elfcpp::STB binding, elfcpp::STV visibility,
954                      unsigned char nonvis, bool is_predefined);
955
956   // Initialize fields for an undefined symbol.
957   void
958   init_base_undefined(const char* name, const char* version, elfcpp::STT type,
959                       elfcpp::STB binding, elfcpp::STV visibility,
960                       unsigned char nonvis);
961
962   // Override existing symbol.
963   template<int size, bool big_endian>
964   void
965   override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
966                 bool is_ordinary, Object* object, const char* version);
967
968   // Override existing symbol with a special symbol.
969   void
970   override_base_with_special(const Symbol* from);
971
972   // Override symbol version.
973   void
974   override_version(const char* version);
975
976   // Allocate a common symbol by giving it a location in the output
977   // file.
978   void
979   allocate_base_common(Output_data*);
980
981  private:
982   Symbol(const Symbol&);
983   Symbol& operator=(const Symbol&);
984
985   // Symbol name (expected to point into a Stringpool).
986   const char* name_;
987   // Symbol version (expected to point into a Stringpool).  This may
988   // be NULL.
989   const char* version_;
990
991   union
992   {
993     // This is used if SOURCE_ == FROM_OBJECT.
994     // Object in which symbol is defined, or in which it was first
995     // seen.
996     Object* object;
997
998     // This is used if SOURCE_ == IN_OUTPUT_DATA.
999     // Output_data in which symbol is defined.  Before
1000     // Layout::finalize the symbol's value is an offset within the
1001     // Output_data.
1002     Output_data* output_data;
1003
1004     // This is used if SOURCE_ == IN_OUTPUT_SEGMENT.
1005     // Output_segment in which the symbol is defined.  Before
1006     // Layout::finalize the symbol's value is an offset.
1007     Output_segment* output_segment;
1008   } u1_;
1009
1010   union
1011   {
1012     // This is used if SOURCE_ == FROM_OBJECT.
1013     // Section number in object in which symbol is defined.
1014     unsigned int shndx;
1015
1016     // This is used if SOURCE_ == IN_OUTPUT_DATA.
1017     // True if the offset is from the end, false if the offset is
1018     // from the beginning.
1019     bool offset_is_from_end;
1020
1021     // This is used if SOURCE_ == IN_OUTPUT_SEGMENT.
1022     // The base to use for the offset before Layout::finalize.
1023     Segment_offset_base offset_base;
1024   } u2_;
1025
1026   // The index of this symbol in the output file.  If the symbol is
1027   // not going into the output file, this value is -1U.  This field
1028   // starts as always holding zero.  It is set to a non-zero value by
1029   // Symbol_table::finalize.
1030   unsigned int symtab_index_;
1031
1032   // The index of this symbol in the dynamic symbol table.  If the
1033   // symbol is not going into the dynamic symbol table, this value is
1034   // -1U.  This field starts as always holding zero.  It is set to a
1035   // non-zero value during Layout::finalize.
1036   unsigned int dynsym_index_;
1037
1038   // If this symbol has an entry in the PLT section, then this is the
1039   // offset from the start of the PLT section.  This is -1U if there
1040   // is no PLT entry.
1041   unsigned int plt_offset_;
1042
1043   // The GOT section entries for this symbol.  A symbol may have more
1044   // than one GOT offset (e.g., when mixing modules compiled with two
1045   // different TLS models), but will usually have at most one.
1046   Got_offset_list got_offsets_;
1047
1048   // Symbol type (bits 0 to 3).
1049   elfcpp::STT type_ : 4;
1050   // Symbol binding (bits 4 to 7).
1051   elfcpp::STB binding_ : 4;
1052   // Symbol visibility (bits 8 to 9).
1053   elfcpp::STV visibility_ : 2;
1054   // Rest of symbol st_other field (bits 10 to 15).
1055   unsigned int nonvis_ : 6;
1056   // The type of symbol (bits 16 to 18).
1057   Source source_ : 3;
1058   // True if this is the default version of the symbol (bit 19).
1059   bool is_def_ : 1;
1060   // True if this symbol really forwards to another symbol.  This is
1061   // used when we discover after the fact that two different entries
1062   // in the hash table really refer to the same symbol.  This will
1063   // never be set for a symbol found in the hash table, but may be set
1064   // for a symbol found in the list of symbols attached to an Object.
1065   // It forwards to the symbol found in the forwarders_ map of
1066   // Symbol_table (bit 20).
1067   bool is_forwarder_ : 1;
1068   // True if the symbol has an alias in the weak_aliases table in
1069   // Symbol_table (bit 21).
1070   bool has_alias_ : 1;
1071   // True if this symbol needs to be in the dynamic symbol table (bit
1072   // 22).
1073   bool needs_dynsym_entry_ : 1;
1074   // True if we've seen this symbol in a regular object (bit 23).
1075   bool in_reg_ : 1;
1076   // True if we've seen this symbol in a dynamic object (bit 24).
1077   bool in_dyn_ : 1;
1078   // True if this is a dynamic symbol which needs a special value in
1079   // the dynamic symbol table (bit 25).
1080   bool needs_dynsym_value_ : 1;
1081   // True if there is a warning for this symbol (bit 26).
1082   bool has_warning_ : 1;
1083   // True if we are using a COPY reloc for this symbol, so that the
1084   // real definition lives in a dynamic object (bit 27).
1085   bool is_copied_from_dynobj_ : 1;
1086   // True if this symbol was forced to local visibility by a version
1087   // script (bit 28).
1088   bool is_forced_local_ : 1;
1089   // True if the field u2_.shndx is an ordinary section
1090   // index, not one of the special codes from SHN_LORESERVE to
1091   // SHN_HIRESERVE (bit 29).
1092   bool is_ordinary_shndx_ : 1;
1093   // True if we've seen this symbol in a "real" ELF object (bit 30).
1094   // If the symbol has been seen in a relocatable, non-IR, object file,
1095   // it's known to be referenced from outside the IR.  A reference from
1096   // a dynamic object doesn't count as a "real" ELF, and we'll simply
1097   // mark the symbol as "visible" from outside the IR.  The compiler
1098   // can use this distinction to guide its handling of COMDAT symbols.
1099   bool in_real_elf_ : 1;
1100   // True if this symbol is defined in a section which was discarded
1101   // (bit 31).
1102   bool is_defined_in_discarded_section_ : 1;
1103   // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
1104   bool undef_binding_set_ : 1;
1105   // True if this symbol was a weak undef resolved by a dynamic def
1106   // or by a special symbol (bit 33).
1107   bool undef_binding_weak_ : 1;
1108   // True if this symbol is a predefined linker symbol (bit 34).
1109   bool is_predefined_ : 1;
1110   // True if this symbol has protected visibility in a shared object (bit 35).
1111   // The visibility_ field will be STV_DEFAULT in this case because we
1112   // must treat it as such from outside the shared object.
1113   bool is_protected_  : 1;
1114   // Used by PowerPC64 ELFv2 to track st_other localentry (bit 36).
1115   bool non_zero_localentry_ : 1;
1116 };
1117
1118 // The parts of a symbol which are size specific.  Using a template
1119 // derived class like this helps us use less space on a 32-bit system.
1120
1121 template<int size>
1122 class Sized_symbol : public Symbol
1123 {
1124  public:
1125   typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
1126   typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
1127
1128   Sized_symbol()
1129   { }
1130
1131   // Initialize fields from an ELF symbol in OBJECT.  ST_SHNDX is the
1132   // section index, IS_ORDINARY is whether it is a normal section
1133   // index rather than a special code.
1134   template<bool big_endian>
1135   void
1136   init_object(const char* name, const char* version, Object* object,
1137               const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1138               bool is_ordinary);
1139
1140   // Initialize fields for an Output_data.
1141   void
1142   init_output_data(const char* name, const char* version, Output_data*,
1143                    Value_type value, Size_type symsize, elfcpp::STT,
1144                    elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1145                    bool offset_is_from_end, bool is_predefined);
1146
1147   // Initialize fields for an Output_segment.
1148   void
1149   init_output_segment(const char* name, const char* version, Output_segment*,
1150                       Value_type value, Size_type symsize, elfcpp::STT,
1151                       elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1152                       Segment_offset_base offset_base, bool is_predefined);
1153
1154   // Initialize fields for a constant.
1155   void
1156   init_constant(const char* name, const char* version, Value_type value,
1157                 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
1158                 unsigned char nonvis, bool is_predefined);
1159
1160   // Initialize fields for an undefined symbol.
1161   void
1162   init_undefined(const char* name, const char* version, Value_type value,
1163                  elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1164
1165   // Override existing symbol.
1166   template<bool big_endian>
1167   void
1168   override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1169            bool is_ordinary, Object* object, const char* version);
1170
1171   // Override existing symbol with a special symbol.
1172   void
1173   override_with_special(const Sized_symbol<size>*);
1174
1175   // Return the symbol's value.
1176   Value_type
1177   value() const
1178   { return this->value_; }
1179
1180   // Return the symbol's size (we can't call this 'size' because that
1181   // is a template parameter).
1182   Size_type
1183   symsize() const
1184   { return this->symsize_; }
1185
1186   // Set the symbol size.  This is used when resolving common symbols.
1187   void
1188   set_symsize(Size_type symsize)
1189   { this->symsize_ = symsize; }
1190
1191   // Set the symbol value.  This is called when we store the final
1192   // values of the symbols into the symbol table.
1193   void
1194   set_value(Value_type value)
1195   { this->value_ = value; }
1196
1197   // Allocate a common symbol by giving it a location in the output
1198   // file.
1199   void
1200   allocate_common(Output_data*, Value_type value);
1201
1202   // Completely override existing symbol.  Everything bar name_,
1203   // version_, and is_forced_local_ flag are copied.  version_ is
1204   // cleared if from->version_ is clear.  Returns true if this symbol
1205   // should be forced local.
1206   bool
1207   clone(const Sized_symbol<size>* from);
1208
1209  private:
1210   Sized_symbol(const Sized_symbol&);
1211   Sized_symbol& operator=(const Sized_symbol&);
1212
1213   // Symbol value.  Before Layout::finalize this is the offset in the
1214   // input section.  This is set to the final value during
1215   // Layout::finalize.
1216   Value_type value_;
1217   // Symbol size.
1218   Size_type symsize_;
1219 };
1220
1221 // A struct describing a symbol defined by the linker, where the value
1222 // of the symbol is defined based on an output section.  This is used
1223 // for symbols defined by the linker, like "_init_array_start".
1224
1225 struct Define_symbol_in_section
1226 {
1227   // The symbol name.
1228   const char* name;
1229   // The name of the output section with which this symbol should be
1230   // associated.  If there is no output section with that name, the
1231   // symbol will be defined as zero.
1232   const char* output_section;
1233   // The offset of the symbol within the output section.  This is an
1234   // offset from the start of the output section, unless start_at_end
1235   // is true, in which case this is an offset from the end of the
1236   // output section.
1237   uint64_t value;
1238   // The size of the symbol.
1239   uint64_t size;
1240   // The symbol type.
1241   elfcpp::STT type;
1242   // The symbol binding.
1243   elfcpp::STB binding;
1244   // The symbol visibility.
1245   elfcpp::STV visibility;
1246   // The rest of the st_other field.
1247   unsigned char nonvis;
1248   // If true, the value field is an offset from the end of the output
1249   // section.
1250   bool offset_is_from_end;
1251   // If true, this symbol is defined only if we see a reference to it.
1252   bool only_if_ref;
1253 };
1254
1255 // A struct describing a symbol defined by the linker, where the value
1256 // of the symbol is defined based on a segment.  This is used for
1257 // symbols defined by the linker, like "_end".  We describe the
1258 // segment with which the symbol should be associated by its
1259 // characteristics.  If no segment meets these characteristics, the
1260 // symbol will be defined as zero.  If there is more than one segment
1261 // which meets these characteristics, we will use the first one.
1262
1263 struct Define_symbol_in_segment
1264 {
1265   // The symbol name.
1266   const char* name;
1267   // The segment type where the symbol should be defined, typically
1268   // PT_LOAD.
1269   elfcpp::PT segment_type;
1270   // Bitmask of segment flags which must be set.
1271   elfcpp::PF segment_flags_set;
1272   // Bitmask of segment flags which must be clear.
1273   elfcpp::PF segment_flags_clear;
1274   // The offset of the symbol within the segment.  The offset is
1275   // calculated from the position set by offset_base.
1276   uint64_t value;
1277   // The size of the symbol.
1278   uint64_t size;
1279   // The symbol type.
1280   elfcpp::STT type;
1281   // The symbol binding.
1282   elfcpp::STB binding;
1283   // The symbol visibility.
1284   elfcpp::STV visibility;
1285   // The rest of the st_other field.
1286   unsigned char nonvis;
1287   // The base from which we compute the offset.
1288   Symbol::Segment_offset_base offset_base;
1289   // If true, this symbol is defined only if we see a reference to it.
1290   bool only_if_ref;
1291 };
1292
1293 // Specify an object/section/offset location.  Used by ODR code.
1294
1295 struct Symbol_location
1296 {
1297   // Object where the symbol is defined.
1298   Object* object;
1299   // Section-in-object where the symbol is defined.
1300   unsigned int shndx;
1301   // For relocatable objects, offset-in-section where the symbol is defined.
1302   // For dynamic objects, address where the symbol is defined.
1303   off_t offset;
1304   bool operator==(const Symbol_location& that) const
1305   {
1306     return (this->object == that.object
1307             && this->shndx == that.shndx
1308             && this->offset == that.offset);
1309   }
1310 };
1311
1312 // A map from symbol name (as a pointer into the namepool) to all
1313 // the locations the symbols is (weakly) defined (and certain other
1314 // conditions are met).  This map will be used later to detect
1315 // possible One Definition Rule (ODR) violations.
1316 struct Symbol_location_hash
1317 {
1318   size_t operator()(const Symbol_location& loc) const
1319   { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1320 };
1321
1322 // This class manages warnings.  Warnings are a GNU extension.  When
1323 // we see a section named .gnu.warning.SYM in an object file, and if
1324 // we wind using the definition of SYM from that object file, then we
1325 // will issue a warning for any relocation against SYM from a
1326 // different object file.  The text of the warning is the contents of
1327 // the section.  This is not precisely the definition used by the old
1328 // GNU linker; the old GNU linker treated an occurrence of
1329 // .gnu.warning.SYM as defining a warning symbol.  A warning symbol
1330 // would trigger a warning on any reference.  However, it was
1331 // inconsistent in that a warning in a dynamic object only triggered
1332 // if there was no definition in a regular object.  This linker is
1333 // different in that we only issue a warning if we use the symbol
1334 // definition from the same object file as the warning section.
1335
1336 class Warnings
1337 {
1338  public:
1339   Warnings()
1340     : warnings_()
1341   { }
1342
1343   // Add a warning for symbol NAME in object OBJ.  WARNING is the text
1344   // of the warning.
1345   void
1346   add_warning(Symbol_table* symtab, const char* name, Object* obj,
1347               const std::string& warning);
1348
1349   // For each symbol for which we should give a warning, make a note
1350   // on the symbol.
1351   void
1352   note_warnings(Symbol_table* symtab);
1353
1354   // Issue a warning for a reference to SYM at RELINFO's location.
1355   template<int size, bool big_endian>
1356   void
1357   issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1358                 size_t relnum, off_t reloffset) const;
1359
1360  private:
1361   Warnings(const Warnings&);
1362   Warnings& operator=(const Warnings&);
1363
1364   // What we need to know to get the warning text.
1365   struct Warning_location
1366   {
1367     // The object the warning is in.
1368     Object* object;
1369     // The warning text.
1370     std::string text;
1371
1372     Warning_location()
1373       : object(NULL), text()
1374     { }
1375
1376     void
1377     set(Object* o, const std::string& t)
1378     {
1379       this->object = o;
1380       this->text = t;
1381     }
1382   };
1383
1384   // A mapping from warning symbol names (canonicalized in
1385   // Symbol_table's namepool_ field) to warning information.
1386   typedef Unordered_map<const char*, Warning_location> Warning_table;
1387
1388   Warning_table warnings_;
1389 };
1390
1391 // The main linker symbol table.
1392
1393 class Symbol_table
1394 {
1395  public:
1396   // The different places where a symbol definition can come from.
1397   enum Defined
1398   {
1399     // Defined in an object file--the normal case.
1400     OBJECT,
1401     // Defined for a COPY reloc.
1402     COPY,
1403     // Defined on the command line using --defsym.
1404     DEFSYM,
1405     // Defined (so to speak) on the command line using -u.
1406     UNDEFINED,
1407     // Defined in a linker script.
1408     SCRIPT,
1409     // Predefined by the linker.
1410     PREDEFINED,
1411     // Defined by the linker during an incremental base link, but not
1412     // a predefined symbol (e.g., common, defined in script).
1413     INCREMENTAL_BASE,
1414   };
1415
1416   // The order in which we sort common symbols.
1417   enum Sort_commons_order
1418   {
1419     SORT_COMMONS_BY_SIZE_DESCENDING,
1420     SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1421     SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1422   };
1423
1424   // COUNT is an estimate of how many symbols will be inserted in the
1425   // symbol table.  It's ok to put 0 if you don't know; a correct
1426   // guess will just save some CPU by reducing hashtable resizes.
1427   Symbol_table(unsigned int count, const Version_script_info& version_script);
1428
1429   ~Symbol_table();
1430
1431   void
1432   set_icf(Icf* icf)
1433   { this->icf_ = icf;}
1434
1435   Icf*
1436   icf() const
1437   { return this->icf_; }
1438  
1439   // Returns true if ICF determined that this is a duplicate section. 
1440   bool
1441   is_section_folded(Relobj* obj, unsigned int shndx) const;
1442
1443   void
1444   set_gc(Garbage_collection* gc)
1445   { this->gc_ = gc; }
1446
1447   Garbage_collection*
1448   gc() const
1449   { return this->gc_; }
1450
1451   // During garbage collection, this keeps undefined symbols.
1452   void
1453   gc_mark_undef_symbols(Layout*);
1454
1455   // This tells garbage collection that this symbol is referenced.
1456   void
1457   gc_mark_symbol(Symbol* sym);
1458
1459   // During garbage collection, this keeps sections that correspond to 
1460   // symbols seen in dynamic objects.
1461   inline void
1462   gc_mark_dyn_syms(Symbol* sym);
1463
1464   // Add COUNT external symbols from the relocatable object RELOBJ to
1465   // the symbol table.  SYMS is the symbols, SYMNDX_OFFSET is the
1466   // offset in the symbol table of the first symbol, SYM_NAMES is
1467   // their names, SYM_NAME_SIZE is the size of SYM_NAMES.  This sets
1468   // SYMPOINTERS to point to the symbols in the symbol table.  It sets
1469   // *DEFINED to the number of defined symbols.
1470   template<int size, bool big_endian>
1471   void
1472   add_from_relobj(Sized_relobj_file<size, big_endian>* relobj,
1473                   const unsigned char* syms, size_t count,
1474                   size_t symndx_offset, const char* sym_names,
1475                   size_t sym_name_size,
1476                   typename Sized_relobj_file<size, big_endian>::Symbols*,
1477                   size_t* defined);
1478
1479   // Add one external symbol from the plugin object OBJ to the symbol table.
1480   // Returns a pointer to the resolved symbol in the symbol table.
1481   template<int size, bool big_endian>
1482   Symbol*
1483   add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1484                      const char* name, const char* ver,
1485                      elfcpp::Sym<size, big_endian>* sym);
1486
1487   // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1488   // symbol table.  SYMS is the symbols.  SYM_NAMES is their names.
1489   // SYM_NAME_SIZE is the size of SYM_NAMES.  The other parameters are
1490   // symbol version data.
1491   template<int size, bool big_endian>
1492   void
1493   add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1494                   const unsigned char* syms, size_t count,
1495                   const char* sym_names, size_t sym_name_size,
1496                   const unsigned char* versym, size_t versym_size,
1497                   const std::vector<const char*>*,
1498                   typename Sized_relobj_file<size, big_endian>::Symbols*,
1499                   size_t* defined);
1500
1501   // Add one external symbol from the incremental object OBJ to the symbol
1502   // table.  Returns a pointer to the resolved symbol in the symbol table.
1503   template<int size, bool big_endian>
1504   Sized_symbol<size>*
1505   add_from_incrobj(Object* obj, const char* name,
1506                    const char* ver, elfcpp::Sym<size, big_endian>* sym);
1507
1508   // Define a special symbol based on an Output_data.  It is a
1509   // multiple definition error if this symbol is already defined.
1510   Symbol*
1511   define_in_output_data(const char* name, const char* version, Defined,
1512                         Output_data*, uint64_t value, uint64_t symsize,
1513                         elfcpp::STT type, elfcpp::STB binding,
1514                         elfcpp::STV visibility, unsigned char nonvis,
1515                         bool offset_is_from_end, bool only_if_ref);
1516
1517   // Define a special symbol based on an Output_segment.  It is a
1518   // multiple definition error if this symbol is already defined.
1519   Symbol*
1520   define_in_output_segment(const char* name, const char* version, Defined,
1521                            Output_segment*, uint64_t value, uint64_t symsize,
1522                            elfcpp::STT type, elfcpp::STB binding,
1523                            elfcpp::STV visibility, unsigned char nonvis,
1524                            Symbol::Segment_offset_base, bool only_if_ref);
1525
1526   // Define a special symbol with a constant value.  It is a multiple
1527   // definition error if this symbol is already defined.
1528   Symbol*
1529   define_as_constant(const char* name, const char* version, Defined,
1530                      uint64_t value, uint64_t symsize, elfcpp::STT type,
1531                      elfcpp::STB binding, elfcpp::STV visibility,
1532                      unsigned char nonvis, bool only_if_ref,
1533                      bool force_override);
1534
1535   // Define a set of symbols in output sections.  If ONLY_IF_REF is
1536   // true, only define them if they are referenced.
1537   void
1538   define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1539                  bool only_if_ref);
1540
1541   // Define a set of symbols in output segments.  If ONLY_IF_REF is
1542   // true, only defined them if they are referenced.
1543   void
1544   define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1545                  bool only_if_ref);
1546
1547   // Add a target-specific global symbol.
1548   // (Used by SPARC backend to add STT_SPARC_REGISTER symbols.)
1549   void
1550   add_target_global_symbol(Symbol* sym)
1551   { this->target_symbols_.push_back(sym); }
1552
1553   // Define SYM using a COPY reloc.  POSD is the Output_data where the
1554   // symbol should be defined--typically a .dyn.bss section.  VALUE is
1555   // the offset within POSD.
1556   template<int size>
1557   void
1558   define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1559                          typename elfcpp::Elf_types<size>::Elf_Addr);
1560
1561   // Look up a symbol.
1562   Symbol*
1563   lookup(const char*, const char* version = NULL) const;
1564
1565   // Return the real symbol associated with the forwarder symbol FROM.
1566   Symbol*
1567   resolve_forwards(const Symbol* from) const;
1568
1569   // Return the sized version of a symbol in this table.
1570   template<int size>
1571   Sized_symbol<size>*
1572   get_sized_symbol(Symbol*) const;
1573
1574   template<int size>
1575   const Sized_symbol<size>*
1576   get_sized_symbol(const Symbol*) const;
1577
1578   // Return the count of undefined symbols seen.
1579   size_t
1580   saw_undefined() const
1581   { return this->saw_undefined_; }
1582
1583   // Allocate the common symbols
1584   void
1585   allocate_commons(Layout*, Mapfile*);
1586
1587   // Add a warning for symbol NAME in object OBJ.  WARNING is the text
1588   // of the warning.
1589   void
1590   add_warning(const char* name, Object* obj, const std::string& warning)
1591   { this->warnings_.add_warning(this, name, obj, warning); }
1592
1593   // Canonicalize a symbol name for use in the hash table.
1594   const char*
1595   canonicalize_name(const char* name)
1596   { return this->namepool_.add(name, true, NULL); }
1597
1598   // Possibly issue a warning for a reference to SYM at LOCATION which
1599   // is in OBJ.
1600   template<int size, bool big_endian>
1601   void
1602   issue_warning(const Symbol* sym,
1603                 const Relocate_info<size, big_endian>* relinfo,
1604                 size_t relnum, off_t reloffset) const
1605   { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1606
1607   // Check candidate_odr_violations_ to find symbols with the same name
1608   // but apparently different definitions (different source-file/line-no).
1609   void
1610   detect_odr_violations(const Task*, const char* output_file_name) const;
1611
1612   // Add any undefined symbols named on the command line to the symbol
1613   // table.
1614   void
1615   add_undefined_symbols_from_command_line(Layout*);
1616
1617   // SYM is defined using a COPY reloc.  Return the dynamic object
1618   // where the original definition was found.
1619   Dynobj*
1620   get_copy_source(const Symbol* sym) const;
1621
1622   // Set the dynamic symbol indexes.  INDEX is the index of the first
1623   // global dynamic symbol.  Return the count of forced-local symbols in
1624   // *PFORCED_LOCAL_COUNT.  Pointers to the symbols are stored into
1625   // the vector.  The names are stored into the Stringpool.  This
1626   // returns an updated dynamic symbol index.
1627   unsigned int
1628   set_dynsym_indexes(unsigned int index, unsigned int* pforced_local_count,
1629                      std::vector<Symbol*>*, Stringpool*, Versions*);
1630
1631   // Finalize the symbol table after we have set the final addresses
1632   // of all the input sections.  This sets the final symbol indexes,
1633   // values and adds the names to *POOL.  *PLOCAL_SYMCOUNT is the
1634   // index of the first global symbol.  OFF is the file offset of the
1635   // global symbol table, DYNOFF is the offset of the globals in the
1636   // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1637   // global dynamic symbol, and DYNCOUNT is the number of global
1638   // dynamic symbols.  This records the parameters, and returns the
1639   // new file offset.  It updates *PLOCAL_SYMCOUNT if it created any
1640   // local symbols.
1641   off_t
1642   finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1643            Stringpool* pool, unsigned int* plocal_symcount);
1644
1645   // Set the final file offset of the symbol table.
1646   void
1647   set_file_offset(off_t off)
1648   { this->offset_ = off; }
1649
1650   // Status code of Symbol_table::compute_final_value.
1651   enum Compute_final_value_status
1652   {
1653     // No error.
1654     CFVS_OK,
1655     // Unsupported symbol section.
1656     CFVS_UNSUPPORTED_SYMBOL_SECTION,
1657     // No output section.
1658     CFVS_NO_OUTPUT_SECTION
1659   };
1660
1661   // Compute the final value of SYM and store status in location PSTATUS.
1662   // During relaxation, this may be called multiple times for a symbol to 
1663   // compute its would-be final value in each relaxation pass.
1664
1665   template<int size>
1666   typename Sized_symbol<size>::Value_type
1667   compute_final_value(const Sized_symbol<size>* sym,
1668                       Compute_final_value_status* pstatus) const;
1669
1670   // Return the index of the first global symbol.
1671   unsigned int
1672   first_global_index() const
1673   { return this->first_global_index_; }
1674
1675   // Return the total number of symbols in the symbol table.
1676   unsigned int
1677   output_count() const
1678   { return this->output_count_; }
1679
1680   // Write out the global symbols.
1681   void
1682   write_globals(const Stringpool*, const Stringpool*,
1683                 Output_symtab_xindex*, Output_symtab_xindex*,
1684                 Output_file*) const;
1685
1686   // Write out a section symbol.  Return the updated offset.
1687   void
1688   write_section_symbol(const Output_section*, Output_symtab_xindex*,
1689                        Output_file*, off_t) const;
1690
1691   // Loop over all symbols, applying the function F to each.
1692   template<int size, typename F>
1693   void
1694   for_all_symbols(F f) const
1695   {
1696     for (Symbol_table_type::const_iterator p = this->table_.begin();
1697          p != this->table_.end();
1698          ++p)
1699       {
1700         Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1701         f(sym);
1702       }
1703   }
1704
1705   // Dump statistical information to stderr.
1706   void
1707   print_stats() const;
1708
1709   // Return the version script information.
1710   const Version_script_info&
1711   version_script() const
1712   { return version_script_; }
1713
1714   // Completely override existing symbol.
1715   template<int size>
1716   void
1717   clone(Sized_symbol<size>* to, const Sized_symbol<size>* from)
1718   {
1719     if (to->clone(from))
1720       this->force_local(to);
1721   }
1722
1723  private:
1724   Symbol_table(const Symbol_table&);
1725   Symbol_table& operator=(const Symbol_table&);
1726
1727   // The type of the list of common symbols.
1728   typedef std::vector<Symbol*> Commons_type;
1729
1730   // The type of the symbol hash table.
1731
1732   typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1733
1734   // The hash function.  The key values are Stringpool keys.
1735   struct Symbol_table_hash
1736   {
1737     inline size_t
1738     operator()(const Symbol_table_key& key) const
1739     {
1740       return key.first ^ key.second;
1741     }
1742   };
1743
1744   struct Symbol_table_eq
1745   {
1746     bool
1747     operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1748   };
1749
1750   typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1751                         Symbol_table_eq> Symbol_table_type;
1752
1753   typedef Unordered_map<const char*,
1754                         Unordered_set<Symbol_location, Symbol_location_hash> >
1755   Odr_map;
1756
1757   // Make FROM a forwarder symbol to TO.
1758   void
1759   make_forwarder(Symbol* from, Symbol* to);
1760
1761   // Add a symbol.
1762   template<int size, bool big_endian>
1763   Sized_symbol<size>*
1764   add_from_object(Object*, const char* name, Stringpool::Key name_key,
1765                   const char* version, Stringpool::Key version_key,
1766                   bool def, const elfcpp::Sym<size, big_endian>& sym,
1767                   unsigned int st_shndx, bool is_ordinary,
1768                   unsigned int orig_st_shndx);
1769
1770   // Define a default symbol.
1771   template<int size, bool big_endian>
1772   void
1773   define_default_version(Sized_symbol<size>*, bool,
1774                          Symbol_table_type::iterator);
1775
1776   // Resolve symbols.
1777   template<int size, bool big_endian>
1778   void
1779   resolve(Sized_symbol<size>* to,
1780           const elfcpp::Sym<size, big_endian>& sym,
1781           unsigned int st_shndx, bool is_ordinary,
1782           unsigned int orig_st_shndx,
1783           Object*, const char* version,
1784           bool is_default_version);
1785
1786   template<int size, bool big_endian>
1787   void
1788   resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1789
1790   // Record that a symbol is forced to be local by a version script or
1791   // by visibility.
1792   void
1793   force_local(Symbol*);
1794
1795   // Adjust NAME and *NAME_KEY for wrapping.
1796   const char*
1797   wrap_symbol(const char* name, Stringpool::Key* name_key);
1798
1799   // Whether we should override a symbol, based on flags in
1800   // resolve.cc.
1801   static bool
1802   should_override(const Symbol*, unsigned int, elfcpp::STT, Defined,
1803                   Object*, bool*, bool*, bool);
1804
1805   // Report a problem in symbol resolution.
1806   static void
1807   report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1808                          Defined, Object* object);
1809
1810   // Override a symbol.
1811   template<int size, bool big_endian>
1812   void
1813   override(Sized_symbol<size>* tosym,
1814            const elfcpp::Sym<size, big_endian>& fromsym,
1815            unsigned int st_shndx, bool is_ordinary,
1816            Object* object, const char* version);
1817
1818   // Whether we should override a symbol with a special symbol which
1819   // is automatically defined by the linker.
1820   static bool
1821   should_override_with_special(const Symbol*, elfcpp::STT, Defined);
1822
1823   // Override a symbol with a special symbol.
1824   template<int size>
1825   void
1826   override_with_special(Sized_symbol<size>* tosym,
1827                         const Sized_symbol<size>* fromsym);
1828
1829   // Record all weak alias sets for a dynamic object.
1830   template<int size>
1831   void
1832   record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1833
1834   // Define a special symbol.
1835   template<int size, bool big_endian>
1836   Sized_symbol<size>*
1837   define_special_symbol(const char** pname, const char** pversion,
1838                         bool only_if_ref, elfcpp::STV visibility,
1839                         Sized_symbol<size>** poldsym,
1840                         bool* resolve_oldsym, bool is_forced_local);
1841
1842   // Define a symbol in an Output_data, sized version.
1843   template<int size>
1844   Sized_symbol<size>*
1845   do_define_in_output_data(const char* name, const char* version, Defined,
1846                            Output_data*,
1847                            typename elfcpp::Elf_types<size>::Elf_Addr value,
1848                            typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1849                            elfcpp::STT type, elfcpp::STB binding,
1850                            elfcpp::STV visibility, unsigned char nonvis,
1851                            bool offset_is_from_end, bool only_if_ref);
1852
1853   // Define a symbol in an Output_segment, sized version.
1854   template<int size>
1855   Sized_symbol<size>*
1856   do_define_in_output_segment(
1857     const char* name, const char* version, Defined, Output_segment* os,
1858     typename elfcpp::Elf_types<size>::Elf_Addr value,
1859     typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1860     elfcpp::STT type, elfcpp::STB binding,
1861     elfcpp::STV visibility, unsigned char nonvis,
1862     Symbol::Segment_offset_base offset_base, bool only_if_ref);
1863
1864   // Define a symbol as a constant, sized version.
1865   template<int size>
1866   Sized_symbol<size>*
1867   do_define_as_constant(
1868     const char* name, const char* version, Defined,
1869     typename elfcpp::Elf_types<size>::Elf_Addr value,
1870     typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1871     elfcpp::STT type, elfcpp::STB binding,
1872     elfcpp::STV visibility, unsigned char nonvis,
1873     bool only_if_ref, bool force_override);
1874
1875   // Add any undefined symbols named on the command line to the symbol
1876   // table, sized version.
1877   template<int size>
1878   void
1879   do_add_undefined_symbols_from_command_line(Layout*);
1880
1881   // Add one undefined symbol.
1882   template<int size>
1883   void
1884   add_undefined_symbol_from_command_line(const char* name);
1885
1886   // Types of common symbols.
1887
1888   enum Commons_section_type
1889   {
1890     COMMONS_NORMAL,
1891     COMMONS_TLS,
1892     COMMONS_SMALL,
1893     COMMONS_LARGE
1894   };
1895
1896   // Allocate the common symbols, sized version.
1897   template<int size>
1898   void
1899   do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1900
1901   // Allocate the common symbols from one list.
1902   template<int size>
1903   void
1904   do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1905                            Mapfile*, Sort_commons_order);
1906
1907   // Returns all of the lines attached to LOC, not just the one the
1908   // instruction actually came from.  This helps the ODR checker avoid
1909   // false positives.
1910   static std::vector<std::string>
1911   linenos_from_loc(const Task* task, const Symbol_location& loc);
1912
1913   // Implement detect_odr_violations.
1914   template<int size, bool big_endian>
1915   void
1916   sized_detect_odr_violations() const;
1917
1918   // Finalize symbols specialized for size.
1919   template<int size>
1920   off_t
1921   sized_finalize(off_t, Stringpool*, unsigned int*);
1922
1923   // Finalize a symbol.  Return whether it should be added to the
1924   // symbol table.
1925   template<int size>
1926   bool
1927   sized_finalize_symbol(Symbol*);
1928
1929   // Add a symbol the final symtab by setting its index.
1930   template<int size>
1931   void
1932   add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1933
1934   // Write globals specialized for size and endianness.
1935   template<int size, bool big_endian>
1936   void
1937   sized_write_globals(const Stringpool*, const Stringpool*,
1938                       Output_symtab_xindex*, Output_symtab_xindex*,
1939                       Output_file*) const;
1940
1941   // Write out a symbol to P.
1942   template<int size, bool big_endian>
1943   void
1944   sized_write_symbol(Sized_symbol<size>*,
1945                      typename elfcpp::Elf_types<size>::Elf_Addr value,
1946                      unsigned int shndx, elfcpp::STB,
1947                      const Stringpool*, unsigned char* p) const;
1948
1949   // Possibly warn about an undefined symbol from a dynamic object.
1950   void
1951   warn_about_undefined_dynobj_symbol(Symbol*) const;
1952
1953   // Write out a section symbol, specialized for size and endianness.
1954   template<int size, bool big_endian>
1955   void
1956   sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1957                              Output_file*, off_t) const;
1958
1959   // The type of the list of symbols which have been forced local.
1960   typedef std::vector<Symbol*> Forced_locals;
1961
1962   // A map from symbols with COPY relocs to the dynamic objects where
1963   // they are defined.
1964   typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1965
1966   // We increment this every time we see a new undefined symbol, for
1967   // use in archive groups.
1968   size_t saw_undefined_;
1969   // The index of the first global symbol in the output file.
1970   unsigned int first_global_index_;
1971   // The file offset within the output symtab section where we should
1972   // write the table.
1973   off_t offset_;
1974   // The number of global symbols we want to write out.
1975   unsigned int output_count_;
1976   // The file offset of the global dynamic symbols, or 0 if none.
1977   off_t dynamic_offset_;
1978   // The index of the first global dynamic symbol (including
1979   // forced-local symbols).
1980   unsigned int first_dynamic_global_index_;
1981   // The number of global dynamic symbols (including forced-local symbols),
1982   // or 0 if none.
1983   unsigned int dynamic_count_;
1984   // The symbol hash table.
1985   Symbol_table_type table_;
1986   // A pool of symbol names.  This is used for all global symbols.
1987   // Entries in the hash table point into this pool.
1988   Stringpool namepool_;
1989   // Forwarding symbols.
1990   Unordered_map<const Symbol*, Symbol*> forwarders_;
1991   // Weak aliases.  A symbol in this list points to the next alias.
1992   // The aliases point to each other in a circular list.
1993   Unordered_map<Symbol*, Symbol*> weak_aliases_;
1994   // We don't expect there to be very many common symbols, so we keep
1995   // a list of them.  When we find a common symbol we add it to this
1996   // list.  It is possible that by the time we process the list the
1997   // symbol is no longer a common symbol.  It may also have become a
1998   // forwarder.
1999   Commons_type commons_;
2000   // This is like the commons_ field, except that it holds TLS common
2001   // symbols.
2002   Commons_type tls_commons_;
2003   // This is for small common symbols.
2004   Commons_type small_commons_;
2005   // This is for large common symbols.
2006   Commons_type large_commons_;
2007   // A list of symbols which have been forced to be local.  We don't
2008   // expect there to be very many of them, so we keep a list of them
2009   // rather than walking the whole table to find them.
2010   Forced_locals forced_locals_;
2011   // Manage symbol warnings.
2012   Warnings warnings_;
2013   // Manage potential One Definition Rule (ODR) violations.
2014   Odr_map candidate_odr_violations_;
2015
2016   // When we emit a COPY reloc for a symbol, we define it in an
2017   // Output_data.  When it's time to emit version information for it,
2018   // we need to know the dynamic object in which we found the original
2019   // definition.  This maps symbols with COPY relocs to the dynamic
2020   // object where they were defined.
2021   Copied_symbol_dynobjs copied_symbol_dynobjs_;
2022   // Information parsed from the version script, if any.
2023   const Version_script_info& version_script_;
2024   Garbage_collection* gc_;
2025   Icf* icf_;
2026   // Target-specific symbols, if any.
2027   std::vector<Symbol*> target_symbols_;
2028 };
2029
2030 // We inline get_sized_symbol for efficiency.
2031
2032 template<int size>
2033 Sized_symbol<size>*
2034 Symbol_table::get_sized_symbol(Symbol* sym) const
2035 {
2036   gold_assert(size == parameters->target().get_size());
2037   return static_cast<Sized_symbol<size>*>(sym);
2038 }
2039
2040 template<int size>
2041 const Sized_symbol<size>*
2042 Symbol_table::get_sized_symbol(const Symbol* sym) const
2043 {
2044   gold_assert(size == parameters->target().get_size());
2045   return static_cast<const Sized_symbol<size>*>(sym);
2046 }
2047
2048 } // End namespace gold.
2049
2050 #endif // !defined(GOLD_SYMTAB_H)