Make linker-created symbols relocatable where appropriate.
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol.  This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55                     elfcpp::STT type, elfcpp::STB binding,
56                     elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83   this->is_protected_ = false;
84 }
85
86 // Return the demangled version of the symbol's name, but only
87 // if the --demangle flag was set.
88
89 static std::string
90 demangle(const char* name)
91 {
92   if (!parameters->options().do_demangle())
93     return name;
94
95   // cplus_demangle allocates memory for the result it returns,
96   // and returns NULL if the name is already demangled.
97   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
98   if (demangled_name == NULL)
99     return name;
100
101   std::string retval(demangled_name);
102   free(demangled_name);
103   return retval;
104 }
105
106 std::string
107 Symbol::demangled_name() const
108 {
109   return demangle(this->name());
110 }
111
112 // Initialize the fields in the base class Symbol for SYM in OBJECT.
113
114 template<int size, bool big_endian>
115 void
116 Symbol::init_base_object(const char* name, const char* version, Object* object,
117                          const elfcpp::Sym<size, big_endian>& sym,
118                          unsigned int st_shndx, bool is_ordinary)
119 {
120   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
121                     sym.get_st_visibility(), sym.get_st_nonvis());
122   this->u_.from_object.object = object;
123   this->u_.from_object.shndx = st_shndx;
124   this->is_ordinary_shndx_ = is_ordinary;
125   this->source_ = FROM_OBJECT;
126   this->in_reg_ = !object->is_dynamic();
127   this->in_dyn_ = object->is_dynamic();
128   this->in_real_elf_ = object->pluginobj() == NULL;
129 }
130
131 // Initialize the fields in the base class Symbol for a symbol defined
132 // in an Output_data.
133
134 void
135 Symbol::init_base_output_data(const char* name, const char* version,
136                               Output_data* od, elfcpp::STT type,
137                               elfcpp::STB binding, elfcpp::STV visibility,
138                               unsigned char nonvis, bool offset_is_from_end,
139                               bool is_predefined)
140 {
141   this->init_fields(name, version, type, binding, visibility, nonvis);
142   this->u_.in_output_data.output_data = od;
143   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
144   this->source_ = IN_OUTPUT_DATA;
145   this->in_reg_ = true;
146   this->in_real_elf_ = true;
147   this->is_predefined_ = is_predefined;
148 }
149
150 // Initialize the fields in the base class Symbol for a symbol defined
151 // in an Output_segment.
152
153 void
154 Symbol::init_base_output_segment(const char* name, const char* version,
155                                  Output_segment* os, elfcpp::STT type,
156                                  elfcpp::STB binding, elfcpp::STV visibility,
157                                  unsigned char nonvis,
158                                  Segment_offset_base offset_base,
159                                  bool is_predefined)
160 {
161   this->init_fields(name, version, type, binding, visibility, nonvis);
162   this->u_.in_output_segment.output_segment = os;
163   this->u_.in_output_segment.offset_base = offset_base;
164   this->source_ = IN_OUTPUT_SEGMENT;
165   this->in_reg_ = true;
166   this->in_real_elf_ = true;
167   this->is_predefined_ = is_predefined;
168 }
169
170 // Initialize the fields in the base class Symbol for a symbol defined
171 // as a constant.
172
173 void
174 Symbol::init_base_constant(const char* name, const char* version,
175                            elfcpp::STT type, elfcpp::STB binding,
176                            elfcpp::STV visibility, unsigned char nonvis,
177                            bool is_predefined)
178 {
179   this->init_fields(name, version, type, binding, visibility, nonvis);
180   this->source_ = IS_CONSTANT;
181   this->in_reg_ = true;
182   this->in_real_elf_ = true;
183   this->is_predefined_ = is_predefined;
184 }
185
186 // Initialize the fields in the base class Symbol for an undefined
187 // symbol.
188
189 void
190 Symbol::init_base_undefined(const char* name, const char* version,
191                             elfcpp::STT type, elfcpp::STB binding,
192                             elfcpp::STV visibility, unsigned char nonvis)
193 {
194   this->init_fields(name, version, type, binding, visibility, nonvis);
195   this->dynsym_index_ = -1U;
196   this->source_ = IS_UNDEFINED;
197   this->in_reg_ = true;
198   this->in_real_elf_ = true;
199 }
200
201 // Allocate a common symbol in the base.
202
203 void
204 Symbol::allocate_base_common(Output_data* od)
205 {
206   gold_assert(this->is_common());
207   this->source_ = IN_OUTPUT_DATA;
208   this->u_.in_output_data.output_data = od;
209   this->u_.in_output_data.offset_is_from_end = false;
210 }
211
212 // Initialize the fields in Sized_symbol for SYM in OBJECT.
213
214 template<int size>
215 template<bool big_endian>
216 void
217 Sized_symbol<size>::init_object(const char* name, const char* version,
218                                 Object* object,
219                                 const elfcpp::Sym<size, big_endian>& sym,
220                                 unsigned int st_shndx, bool is_ordinary)
221 {
222   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
223   this->value_ = sym.get_st_value();
224   this->symsize_ = sym.get_st_size();
225 }
226
227 // Initialize the fields in Sized_symbol for a symbol defined in an
228 // Output_data.
229
230 template<int size>
231 void
232 Sized_symbol<size>::init_output_data(const char* name, const char* version,
233                                      Output_data* od, Value_type value,
234                                      Size_type symsize, elfcpp::STT type,
235                                      elfcpp::STB binding,
236                                      elfcpp::STV visibility,
237                                      unsigned char nonvis,
238                                      bool offset_is_from_end,
239                                      bool is_predefined)
240 {
241   this->init_base_output_data(name, version, od, type, binding, visibility,
242                               nonvis, offset_is_from_end, is_predefined);
243   this->value_ = value;
244   this->symsize_ = symsize;
245 }
246
247 // Initialize the fields in Sized_symbol for a symbol defined in an
248 // Output_segment.
249
250 template<int size>
251 void
252 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
253                                         Output_segment* os, Value_type value,
254                                         Size_type symsize, elfcpp::STT type,
255                                         elfcpp::STB binding,
256                                         elfcpp::STV visibility,
257                                         unsigned char nonvis,
258                                         Segment_offset_base offset_base,
259                                         bool is_predefined)
260 {
261   this->init_base_output_segment(name, version, os, type, binding, visibility,
262                                  nonvis, offset_base, is_predefined);
263   this->value_ = value;
264   this->symsize_ = symsize;
265 }
266
267 // Initialize the fields in Sized_symbol for a symbol defined as a
268 // constant.
269
270 template<int size>
271 void
272 Sized_symbol<size>::init_constant(const char* name, const char* version,
273                                   Value_type value, Size_type symsize,
274                                   elfcpp::STT type, elfcpp::STB binding,
275                                   elfcpp::STV visibility, unsigned char nonvis,
276                                   bool is_predefined)
277 {
278   this->init_base_constant(name, version, type, binding, visibility, nonvis,
279                            is_predefined);
280   this->value_ = value;
281   this->symsize_ = symsize;
282 }
283
284 // Initialize the fields in Sized_symbol for an undefined symbol.
285
286 template<int size>
287 void
288 Sized_symbol<size>::init_undefined(const char* name, const char* version,
289                                    Value_type value, elfcpp::STT type,
290                                    elfcpp::STB binding, elfcpp::STV visibility,
291                                    unsigned char nonvis)
292 {
293   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
294   this->value_ = value;
295   this->symsize_ = 0;
296 }
297
298 // Return an allocated string holding the symbol's name as
299 // name@version.  This is used for relocatable links.
300
301 std::string
302 Symbol::versioned_name() const
303 {
304   gold_assert(this->version_ != NULL);
305   std::string ret = this->name_;
306   ret.push_back('@');
307   if (this->is_def_)
308     ret.push_back('@');
309   ret += this->version_;
310   return ret;
311 }
312
313 // Return true if SHNDX represents a common symbol.
314
315 bool
316 Symbol::is_common_shndx(unsigned int shndx)
317 {
318   return (shndx == elfcpp::SHN_COMMON
319           || shndx == parameters->target().small_common_shndx()
320           || shndx == parameters->target().large_common_shndx());
321 }
322
323 // Allocate a common symbol.
324
325 template<int size>
326 void
327 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
328 {
329   this->allocate_base_common(od);
330   this->value_ = value;
331 }
332
333 // The ""'s around str ensure str is a string literal, so sizeof works.
334 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
335
336 // Return true if this symbol should be added to the dynamic symbol
337 // table.
338
339 bool
340 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
341 {
342   // If the symbol is only present on plugin files, the plugin decided we
343   // don't need it.
344   if (!this->in_real_elf())
345     return false;
346
347   // If the symbol is used by a dynamic relocation, we need to add it.
348   if (this->needs_dynsym_entry())
349     return true;
350
351   // If this symbol's section is not added, the symbol need not be added. 
352   // The section may have been GCed.  Note that export_dynamic is being 
353   // overridden here.  This should not be done for shared objects.
354   if (parameters->options().gc_sections() 
355       && !parameters->options().shared()
356       && this->source() == Symbol::FROM_OBJECT
357       && !this->object()->is_dynamic())
358     {
359       Relobj* relobj = static_cast<Relobj*>(this->object());
360       bool is_ordinary;
361       unsigned int shndx = this->shndx(&is_ordinary);
362       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
363           && !relobj->is_section_included(shndx)
364           && !symtab->is_section_folded(relobj, shndx))
365         return false;
366     }
367
368   // If the symbol was forced dynamic in a --dynamic-list file
369   // or an --export-dynamic-symbol option, add it.
370   if (!this->is_from_dynobj()
371       && (parameters->options().in_dynamic_list(this->name())
372           || parameters->options().is_export_dynamic_symbol(this->name())))
373     {
374       if (!this->is_forced_local())
375         return true;
376       gold_warning(_("Cannot export local symbol '%s'"),
377                    this->demangled_name().c_str());
378       return false;
379     }
380
381   // If the symbol was forced local in a version script, do not add it.
382   if (this->is_forced_local())
383     return false;
384
385   // If dynamic-list-data was specified, add any STT_OBJECT.
386   if (parameters->options().dynamic_list_data()
387       && !this->is_from_dynobj()
388       && this->type() == elfcpp::STT_OBJECT)
389     return true;
390
391   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
392   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
393   if ((parameters->options().dynamic_list_cpp_new()
394        || parameters->options().dynamic_list_cpp_typeinfo())
395       && !this->is_from_dynobj())
396     {
397       // TODO(csilvers): We could probably figure out if we're an operator
398       //                 new/delete or typeinfo without the need to demangle.
399       char* demangled_name = cplus_demangle(this->name(),
400                                             DMGL_ANSI | DMGL_PARAMS);
401       if (demangled_name == NULL)
402         {
403           // Not a C++ symbol, so it can't satisfy these flags
404         }
405       else if (parameters->options().dynamic_list_cpp_new()
406                && (strprefix(demangled_name, "operator new")
407                    || strprefix(demangled_name, "operator delete")))
408         {
409           free(demangled_name);
410           return true;
411         }
412       else if (parameters->options().dynamic_list_cpp_typeinfo()
413                && (strprefix(demangled_name, "typeinfo name for")
414                    || strprefix(demangled_name, "typeinfo for")))
415         {
416           free(demangled_name);
417           return true;
418         }
419       else
420         free(demangled_name);
421     }
422
423   // If exporting all symbols or building a shared library,
424   // or the symbol should be globally unique (GNU_UNIQUE),
425   // and the symbol is defined in a regular object and is
426   // externally visible, we need to add it.
427   if ((parameters->options().export_dynamic()
428        || parameters->options().shared()
429        || (parameters->options().gnu_unique()
430            && this->binding() == elfcpp::STB_GNU_UNIQUE))
431       && !this->is_from_dynobj()
432       && !this->is_undefined()
433       && this->is_externally_visible())
434     return true;
435
436   return false;
437 }
438
439 // Return true if the final value of this symbol is known at link
440 // time.
441
442 bool
443 Symbol::final_value_is_known() const
444 {
445   // If we are not generating an executable, then no final values are
446   // known, since they will change at runtime, with the exception of
447   // TLS symbols in a position-independent executable.
448   if ((parameters->options().output_is_position_independent()
449        || parameters->options().relocatable())
450       && !(this->type() == elfcpp::STT_TLS
451            && parameters->options().pie()))
452     return false;
453
454   // If the symbol is not from an object file, and is not undefined,
455   // then it is defined, and known.
456   if (this->source_ != FROM_OBJECT)
457     {
458       if (this->source_ != IS_UNDEFINED)
459         return true;
460     }
461   else
462     {
463       // If the symbol is from a dynamic object, then the final value
464       // is not known.
465       if (this->object()->is_dynamic())
466         return false;
467
468       // If the symbol is not undefined (it is defined or common),
469       // then the final value is known.
470       if (!this->is_undefined())
471         return true;
472     }
473
474   // If the symbol is undefined, then whether the final value is known
475   // depends on whether we are doing a static link.  If we are doing a
476   // dynamic link, then the final value could be filled in at runtime.
477   // This could reasonably be the case for a weak undefined symbol.
478   return parameters->doing_static_link();
479 }
480
481 // Return the output section where this symbol is defined.
482
483 Output_section*
484 Symbol::output_section() const
485 {
486   switch (this->source_)
487     {
488     case FROM_OBJECT:
489       {
490         unsigned int shndx = this->u_.from_object.shndx;
491         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
492           {
493             gold_assert(!this->u_.from_object.object->is_dynamic());
494             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
495             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
496             return relobj->output_section(shndx);
497           }
498         return NULL;
499       }
500
501     case IN_OUTPUT_DATA:
502       return this->u_.in_output_data.output_data->output_section();
503
504     case IN_OUTPUT_SEGMENT:
505     case IS_CONSTANT:
506     case IS_UNDEFINED:
507       return NULL;
508
509     default:
510       gold_unreachable();
511     }
512 }
513
514 // Set the symbol's output section.  This is used for symbols defined
515 // in scripts.  This should only be called after the symbol table has
516 // been finalized.
517
518 void
519 Symbol::set_output_section(Output_section* os)
520 {
521   switch (this->source_)
522     {
523     case FROM_OBJECT:
524     case IN_OUTPUT_DATA:
525       gold_assert(this->output_section() == os);
526       break;
527     case IS_CONSTANT:
528       this->source_ = IN_OUTPUT_DATA;
529       this->u_.in_output_data.output_data = os;
530       this->u_.in_output_data.offset_is_from_end = false;
531       break;
532     case IN_OUTPUT_SEGMENT:
533     case IS_UNDEFINED:
534     default:
535       gold_unreachable();
536     }
537 }
538
539 // Set the symbol's output segment.  This is used for pre-defined
540 // symbols whose segments aren't known until after layout is done
541 // (e.g., __ehdr_start).
542
543 void
544 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
545 {
546   gold_assert(this->is_predefined_);
547   this->source_ = IN_OUTPUT_SEGMENT;
548   this->u_.in_output_segment.output_segment = os;
549   this->u_.in_output_segment.offset_base = base;
550 }
551
552 // Set the symbol to undefined.  This is used for pre-defined
553 // symbols whose segments aren't known until after layout is done
554 // (e.g., __ehdr_start).
555
556 void
557 Symbol::set_undefined()
558 {
559   this->source_ = IS_UNDEFINED;
560   this->is_predefined_ = false;
561 }
562
563 // Class Symbol_table.
564
565 Symbol_table::Symbol_table(unsigned int count,
566                            const Version_script_info& version_script)
567   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
568     forwarders_(), commons_(), tls_commons_(), small_commons_(),
569     large_commons_(), forced_locals_(), warnings_(),
570     version_script_(version_script), gc_(NULL), icf_(NULL),
571     target_symbols_()
572 {
573   namepool_.reserve(count);
574 }
575
576 Symbol_table::~Symbol_table()
577 {
578 }
579
580 // The symbol table key equality function.  This is called with
581 // Stringpool keys.
582
583 inline bool
584 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
585                                           const Symbol_table_key& k2) const
586 {
587   return k1.first == k2.first && k1.second == k2.second;
588 }
589
590 bool
591 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
592 {
593   return (parameters->options().icf_enabled()
594           && this->icf_->is_section_folded(obj, shndx));
595 }
596
597 // For symbols that have been listed with a -u or --export-dynamic-symbol
598 // option, add them to the work list to avoid gc'ing them.
599
600 void 
601 Symbol_table::gc_mark_undef_symbols(Layout* layout)
602 {
603   for (options::String_set::const_iterator p =
604          parameters->options().undefined_begin();
605        p != parameters->options().undefined_end();
606        ++p)
607     {
608       const char* name = p->c_str();
609       Symbol* sym = this->lookup(name);
610       gold_assert(sym != NULL);
611       if (sym->source() == Symbol::FROM_OBJECT 
612           && !sym->object()->is_dynamic())
613         {
614           this->gc_mark_symbol(sym);
615         }
616     }
617
618   for (options::String_set::const_iterator p =
619          parameters->options().export_dynamic_symbol_begin();
620        p != parameters->options().export_dynamic_symbol_end();
621        ++p)
622     {
623       const char* name = p->c_str();
624       Symbol* sym = this->lookup(name);
625       // It's not an error if a symbol named by --export-dynamic-symbol
626       // is undefined.
627       if (sym != NULL
628           && sym->source() == Symbol::FROM_OBJECT 
629           && !sym->object()->is_dynamic())
630         {
631           this->gc_mark_symbol(sym);
632         }
633     }
634
635   for (Script_options::referenced_const_iterator p =
636          layout->script_options()->referenced_begin();
637        p != layout->script_options()->referenced_end();
638        ++p)
639     {
640       Symbol* sym = this->lookup(p->c_str());
641       gold_assert(sym != NULL);
642       if (sym->source() == Symbol::FROM_OBJECT
643           && !sym->object()->is_dynamic())
644         {
645           this->gc_mark_symbol(sym);
646         }
647     }
648 }
649
650 void
651 Symbol_table::gc_mark_symbol(Symbol* sym)
652 {
653   // Add the object and section to the work list.
654   bool is_ordinary;
655   unsigned int shndx = sym->shndx(&is_ordinary);
656   if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
657     {
658       gold_assert(this->gc_!= NULL);
659       Relobj* relobj = static_cast<Relobj*>(sym->object());
660       this->gc_->worklist().push_back(Section_id(relobj, shndx));
661     }
662   parameters->target().gc_mark_symbol(this, sym);
663 }
664
665 // When doing garbage collection, keep symbols that have been seen in
666 // dynamic objects.
667 inline void 
668 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
669 {
670   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
671       && !sym->object()->is_dynamic())
672     this->gc_mark_symbol(sym);
673 }
674
675 // Make TO a symbol which forwards to FROM.
676
677 void
678 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
679 {
680   gold_assert(from != to);
681   gold_assert(!from->is_forwarder() && !to->is_forwarder());
682   this->forwarders_[from] = to;
683   from->set_forwarder();
684 }
685
686 // Resolve the forwards from FROM, returning the real symbol.
687
688 Symbol*
689 Symbol_table::resolve_forwards(const Symbol* from) const
690 {
691   gold_assert(from->is_forwarder());
692   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
693     this->forwarders_.find(from);
694   gold_assert(p != this->forwarders_.end());
695   return p->second;
696 }
697
698 // Look up a symbol by name.
699
700 Symbol*
701 Symbol_table::lookup(const char* name, const char* version) const
702 {
703   Stringpool::Key name_key;
704   name = this->namepool_.find(name, &name_key);
705   if (name == NULL)
706     return NULL;
707
708   Stringpool::Key version_key = 0;
709   if (version != NULL)
710     {
711       version = this->namepool_.find(version, &version_key);
712       if (version == NULL)
713         return NULL;
714     }
715
716   Symbol_table_key key(name_key, version_key);
717   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
718   if (p == this->table_.end())
719     return NULL;
720   return p->second;
721 }
722
723 // Resolve a Symbol with another Symbol.  This is only used in the
724 // unusual case where there are references to both an unversioned
725 // symbol and a symbol with a version, and we then discover that that
726 // version is the default version.  Because this is unusual, we do
727 // this the slow way, by converting back to an ELF symbol.
728
729 template<int size, bool big_endian>
730 void
731 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
732 {
733   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
734   elfcpp::Sym_write<size, big_endian> esym(buf);
735   // We don't bother to set the st_name or the st_shndx field.
736   esym.put_st_value(from->value());
737   esym.put_st_size(from->symsize());
738   esym.put_st_info(from->binding(), from->type());
739   esym.put_st_other(from->visibility(), from->nonvis());
740   bool is_ordinary;
741   unsigned int shndx = from->shndx(&is_ordinary);
742   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
743                 from->version(), true);
744   if (from->in_reg())
745     to->set_in_reg();
746   if (from->in_dyn())
747     to->set_in_dyn();
748   if (parameters->options().gc_sections())
749     this->gc_mark_dyn_syms(to);
750 }
751
752 // Record that a symbol is forced to be local by a version script or
753 // by visibility.
754
755 void
756 Symbol_table::force_local(Symbol* sym)
757 {
758   if (!sym->is_defined() && !sym->is_common())
759     return;
760   if (sym->is_forced_local())
761     {
762       // We already got this one.
763       return;
764     }
765   sym->set_is_forced_local();
766   this->forced_locals_.push_back(sym);
767 }
768
769 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
770 // is only called for undefined symbols, when at least one --wrap
771 // option was used.
772
773 const char*
774 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
775 {
776   // For some targets, we need to ignore a specific character when
777   // wrapping, and add it back later.
778   char prefix = '\0';
779   if (name[0] == parameters->target().wrap_char())
780     {
781       prefix = name[0];
782       ++name;
783     }
784
785   if (parameters->options().is_wrap(name))
786     {
787       // Turn NAME into __wrap_NAME.
788       std::string s;
789       if (prefix != '\0')
790         s += prefix;
791       s += "__wrap_";
792       s += name;
793
794       // This will give us both the old and new name in NAMEPOOL_, but
795       // that is OK.  Only the versions we need will wind up in the
796       // real string table in the output file.
797       return this->namepool_.add(s.c_str(), true, name_key);
798     }
799
800   const char* const real_prefix = "__real_";
801   const size_t real_prefix_length = strlen(real_prefix);
802   if (strncmp(name, real_prefix, real_prefix_length) == 0
803       && parameters->options().is_wrap(name + real_prefix_length))
804     {
805       // Turn __real_NAME into NAME.
806       std::string s;
807       if (prefix != '\0')
808         s += prefix;
809       s += name + real_prefix_length;
810       return this->namepool_.add(s.c_str(), true, name_key);
811     }
812
813   return name;
814 }
815
816 // This is called when we see a symbol NAME/VERSION, and the symbol
817 // already exists in the symbol table, and VERSION is marked as being
818 // the default version.  SYM is the NAME/VERSION symbol we just added.
819 // DEFAULT_IS_NEW is true if this is the first time we have seen the
820 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
821
822 template<int size, bool big_endian>
823 void
824 Symbol_table::define_default_version(Sized_symbol<size>* sym,
825                                      bool default_is_new,
826                                      Symbol_table_type::iterator pdef)
827 {
828   if (default_is_new)
829     {
830       // This is the first time we have seen NAME/NULL.  Make
831       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
832       // version.
833       pdef->second = sym;
834       sym->set_is_default();
835     }
836   else if (pdef->second == sym)
837     {
838       // NAME/NULL already points to NAME/VERSION.  Don't mark the
839       // symbol as the default if it is not already the default.
840     }
841   else
842     {
843       // This is the unfortunate case where we already have entries
844       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
845       // NAME/VERSION where VERSION is the default version.  We have
846       // already resolved this new symbol with the existing
847       // NAME/VERSION symbol.
848
849       // It's possible that NAME/NULL and NAME/VERSION are both
850       // defined in regular objects.  This can only happen if one
851       // object file defines foo and another defines foo@@ver.  This
852       // is somewhat obscure, but we call it a multiple definition
853       // error.
854
855       // It's possible that NAME/NULL actually has a version, in which
856       // case it won't be the same as VERSION.  This happens with
857       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
858       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
859       // then see an unadorned t2_2 in an object file and give it
860       // version VER1 from the version script.  This looks like a
861       // default definition for VER1, so it looks like we should merge
862       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
863       // not obvious that this is an error, either.  So we just punt.
864
865       // If one of the symbols has non-default visibility, and the
866       // other is defined in a shared object, then they are different
867       // symbols.
868
869       // If the two symbols are from different shared objects,
870       // they are different symbols.
871
872       // Otherwise, we just resolve the symbols as though they were
873       // the same.
874
875       if (pdef->second->version() != NULL)
876         gold_assert(pdef->second->version() != sym->version());
877       else if (sym->visibility() != elfcpp::STV_DEFAULT
878                && pdef->second->is_from_dynobj())
879         ;
880       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
881                && sym->is_from_dynobj())
882         ;
883       else if (pdef->second->is_from_dynobj()
884                && sym->is_from_dynobj()
885                && pdef->second->is_defined()
886                && pdef->second->object() != sym->object())
887         ;
888       else
889         {
890           const Sized_symbol<size>* symdef;
891           symdef = this->get_sized_symbol<size>(pdef->second);
892           Symbol_table::resolve<size, big_endian>(sym, symdef);
893           this->make_forwarder(pdef->second, sym);
894           pdef->second = sym;
895           sym->set_is_default();
896         }
897     }
898 }
899
900 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
901 // name and VERSION is the version; both are canonicalized.  DEF is
902 // whether this is the default version.  ST_SHNDX is the symbol's
903 // section index; IS_ORDINARY is whether this is a normal section
904 // rather than a special code.
905
906 // If IS_DEFAULT_VERSION is true, then this is the definition of a
907 // default version of a symbol.  That means that any lookup of
908 // NAME/NULL and any lookup of NAME/VERSION should always return the
909 // same symbol.  This is obvious for references, but in particular we
910 // want to do this for definitions: overriding NAME/NULL should also
911 // override NAME/VERSION.  If we don't do that, it would be very hard
912 // to override functions in a shared library which uses versioning.
913
914 // We implement this by simply making both entries in the hash table
915 // point to the same Symbol structure.  That is easy enough if this is
916 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
917 // that we have seen both already, in which case they will both have
918 // independent entries in the symbol table.  We can't simply change
919 // the symbol table entry, because we have pointers to the entries
920 // attached to the object files.  So we mark the entry attached to the
921 // object file as a forwarder, and record it in the forwarders_ map.
922 // Note that entries in the hash table will never be marked as
923 // forwarders.
924 //
925 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
926 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
927 // for a special section code.  ST_SHNDX may be modified if the symbol
928 // is defined in a section being discarded.
929
930 template<int size, bool big_endian>
931 Sized_symbol<size>*
932 Symbol_table::add_from_object(Object* object,
933                               const char* name,
934                               Stringpool::Key name_key,
935                               const char* version,
936                               Stringpool::Key version_key,
937                               bool is_default_version,
938                               const elfcpp::Sym<size, big_endian>& sym,
939                               unsigned int st_shndx,
940                               bool is_ordinary,
941                               unsigned int orig_st_shndx)
942 {
943   // Print a message if this symbol is being traced.
944   if (parameters->options().is_trace_symbol(name))
945     {
946       if (orig_st_shndx == elfcpp::SHN_UNDEF)
947         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
948       else
949         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
950     }
951
952   // For an undefined symbol, we may need to adjust the name using
953   // --wrap.
954   if (orig_st_shndx == elfcpp::SHN_UNDEF
955       && parameters->options().any_wrap())
956     {
957       const char* wrap_name = this->wrap_symbol(name, &name_key);
958       if (wrap_name != name)
959         {
960           // If we see a reference to malloc with version GLIBC_2.0,
961           // and we turn it into a reference to __wrap_malloc, then we
962           // discard the version number.  Otherwise the user would be
963           // required to specify the correct version for
964           // __wrap_malloc.
965           version = NULL;
966           version_key = 0;
967           name = wrap_name;
968         }
969     }
970
971   Symbol* const snull = NULL;
972   std::pair<typename Symbol_table_type::iterator, bool> ins =
973     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
974                                        snull));
975
976   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
977     std::make_pair(this->table_.end(), false);
978   if (is_default_version)
979     {
980       const Stringpool::Key vnull_key = 0;
981       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
982                                                                      vnull_key),
983                                                       snull));
984     }
985
986   // ins.first: an iterator, which is a pointer to a pair.
987   // ins.first->first: the key (a pair of name and version).
988   // ins.first->second: the value (Symbol*).
989   // ins.second: true if new entry was inserted, false if not.
990
991   Sized_symbol<size>* ret;
992   bool was_undefined;
993   bool was_common;
994   if (!ins.second)
995     {
996       // We already have an entry for NAME/VERSION.
997       ret = this->get_sized_symbol<size>(ins.first->second);
998       gold_assert(ret != NULL);
999
1000       was_undefined = ret->is_undefined();
1001       // Commons from plugins are just placeholders.
1002       was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1003
1004       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1005                     version, is_default_version);
1006       if (parameters->options().gc_sections())
1007         this->gc_mark_dyn_syms(ret);
1008
1009       if (is_default_version)
1010         this->define_default_version<size, big_endian>(ret, insdefault.second,
1011                                                        insdefault.first);
1012       else
1013         {
1014           bool dummy;
1015           if (version != NULL
1016               && ret->source() == Symbol::FROM_OBJECT
1017               && ret->object() == object
1018               && is_ordinary
1019               && ret->shndx(&dummy) == st_shndx
1020               && ret->is_default())
1021             {
1022               // We have seen NAME/VERSION already, and marked it as the
1023               // default version, but now we see a definition for
1024               // NAME/VERSION that is not the default version. This can
1025               // happen when the assembler generates two symbols for
1026               // a symbol as a result of a ".symver foo,foo@VER"
1027               // directive. We see the first unversioned symbol and
1028               // we may mark it as the default version (from a
1029               // version script); then we see the second versioned
1030               // symbol and we need to override the first.
1031               // In any other case, the two symbols should have generated
1032               // a multiple definition error.
1033               // (See PR gold/18703.)
1034               ret->set_is_not_default();
1035               const Stringpool::Key vnull_key = 0;
1036               this->table_.erase(std::make_pair(name_key, vnull_key));
1037             }
1038         }
1039     }
1040   else
1041     {
1042       // This is the first time we have seen NAME/VERSION.
1043       gold_assert(ins.first->second == NULL);
1044
1045       if (is_default_version && !insdefault.second)
1046         {
1047           // We already have an entry for NAME/NULL.  If we override
1048           // it, then change it to NAME/VERSION.
1049           ret = this->get_sized_symbol<size>(insdefault.first->second);
1050
1051           was_undefined = ret->is_undefined();
1052           // Commons from plugins are just placeholders.
1053           was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1054
1055           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1056                         version, is_default_version);
1057           if (parameters->options().gc_sections())
1058             this->gc_mark_dyn_syms(ret);
1059           ins.first->second = ret;
1060         }
1061       else
1062         {
1063           was_undefined = false;
1064           was_common = false;
1065
1066           Sized_target<size, big_endian>* target =
1067             parameters->sized_target<size, big_endian>();
1068           if (!target->has_make_symbol())
1069             ret = new Sized_symbol<size>();
1070           else
1071             {
1072               ret = target->make_symbol(name, sym.get_st_type(), object,
1073                                         st_shndx, sym.get_st_value());
1074               if (ret == NULL)
1075                 {
1076                   // This means that we don't want a symbol table
1077                   // entry after all.
1078                   if (!is_default_version)
1079                     this->table_.erase(ins.first);
1080                   else
1081                     {
1082                       this->table_.erase(insdefault.first);
1083                       // Inserting INSDEFAULT invalidated INS.
1084                       this->table_.erase(std::make_pair(name_key,
1085                                                         version_key));
1086                     }
1087                   return NULL;
1088                 }
1089             }
1090
1091           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1092
1093           ins.first->second = ret;
1094           if (is_default_version)
1095             {
1096               // This is the first time we have seen NAME/NULL.  Point
1097               // it at the new entry for NAME/VERSION.
1098               gold_assert(insdefault.second);
1099               insdefault.first->second = ret;
1100             }
1101         }
1102
1103       if (is_default_version)
1104         ret->set_is_default();
1105     }
1106
1107   // Record every time we see a new undefined symbol, to speed up
1108   // archive groups.
1109   if (!was_undefined && ret->is_undefined())
1110     {
1111       ++this->saw_undefined_;
1112       if (parameters->options().has_plugins())
1113         parameters->options().plugins()->new_undefined_symbol(ret);
1114     }
1115
1116   // Keep track of common symbols, to speed up common symbol
1117   // allocation.  Don't record commons from plugin objects;
1118   // we need to wait until we see the real symbol in the
1119   // replacement file.
1120   if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1121     {
1122       if (ret->type() == elfcpp::STT_TLS)
1123         this->tls_commons_.push_back(ret);
1124       else if (!is_ordinary
1125                && st_shndx == parameters->target().small_common_shndx())
1126         this->small_commons_.push_back(ret);
1127       else if (!is_ordinary
1128                && st_shndx == parameters->target().large_common_shndx())
1129         this->large_commons_.push_back(ret);
1130       else
1131         this->commons_.push_back(ret);
1132     }
1133
1134   // If we're not doing a relocatable link, then any symbol with
1135   // hidden or internal visibility is local.
1136   if ((ret->visibility() == elfcpp::STV_HIDDEN
1137        || ret->visibility() == elfcpp::STV_INTERNAL)
1138       && (ret->binding() == elfcpp::STB_GLOBAL
1139           || ret->binding() == elfcpp::STB_GNU_UNIQUE
1140           || ret->binding() == elfcpp::STB_WEAK)
1141       && !parameters->options().relocatable())
1142     this->force_local(ret);
1143
1144   return ret;
1145 }
1146
1147 // Add all the symbols in a relocatable object to the hash table.
1148
1149 template<int size, bool big_endian>
1150 void
1151 Symbol_table::add_from_relobj(
1152     Sized_relobj_file<size, big_endian>* relobj,
1153     const unsigned char* syms,
1154     size_t count,
1155     size_t symndx_offset,
1156     const char* sym_names,
1157     size_t sym_name_size,
1158     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1159     size_t* defined)
1160 {
1161   *defined = 0;
1162
1163   gold_assert(size == parameters->target().get_size());
1164
1165   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1166
1167   const bool just_symbols = relobj->just_symbols();
1168
1169   const unsigned char* p = syms;
1170   for (size_t i = 0; i < count; ++i, p += sym_size)
1171     {
1172       (*sympointers)[i] = NULL;
1173
1174       elfcpp::Sym<size, big_endian> sym(p);
1175
1176       unsigned int st_name = sym.get_st_name();
1177       if (st_name >= sym_name_size)
1178         {
1179           relobj->error(_("bad global symbol name offset %u at %zu"),
1180                         st_name, i);
1181           continue;
1182         }
1183
1184       const char* name = sym_names + st_name;
1185
1186       if (!parameters->options().relocatable()
1187           && strcmp (name, "__gnu_lto_slim") == 0)
1188         gold_info(_("%s: plugin needed to handle lto object"),
1189                   relobj->name().c_str());
1190
1191       bool is_ordinary;
1192       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1193                                                        sym.get_st_shndx(),
1194                                                        &is_ordinary);
1195       unsigned int orig_st_shndx = st_shndx;
1196       if (!is_ordinary)
1197         orig_st_shndx = elfcpp::SHN_UNDEF;
1198
1199       if (st_shndx != elfcpp::SHN_UNDEF)
1200         ++*defined;
1201
1202       // A symbol defined in a section which we are not including must
1203       // be treated as an undefined symbol.
1204       bool is_defined_in_discarded_section = false;
1205       if (st_shndx != elfcpp::SHN_UNDEF
1206           && is_ordinary
1207           && !relobj->is_section_included(st_shndx)
1208           && !this->is_section_folded(relobj, st_shndx))
1209         {
1210           st_shndx = elfcpp::SHN_UNDEF;
1211           is_defined_in_discarded_section = true;
1212         }
1213
1214       // In an object file, an '@' in the name separates the symbol
1215       // name from the version name.  If there are two '@' characters,
1216       // this is the default version.
1217       const char* ver = strchr(name, '@');
1218       Stringpool::Key ver_key = 0;
1219       int namelen = 0;
1220       // IS_DEFAULT_VERSION: is the version default?
1221       // IS_FORCED_LOCAL: is the symbol forced local?
1222       bool is_default_version = false;
1223       bool is_forced_local = false;
1224
1225       // FIXME: For incremental links, we don't store version information,
1226       // so we need to ignore version symbols for now.
1227       if (parameters->incremental_update() && ver != NULL)
1228         {
1229           namelen = ver - name;
1230           ver = NULL;
1231         }
1232
1233       if (ver != NULL)
1234         {
1235           // The symbol name is of the form foo@VERSION or foo@@VERSION
1236           namelen = ver - name;
1237           ++ver;
1238           if (*ver == '@')
1239             {
1240               is_default_version = true;
1241               ++ver;
1242             }
1243           ver = this->namepool_.add(ver, true, &ver_key);
1244         }
1245       // We don't want to assign a version to an undefined symbol,
1246       // even if it is listed in the version script.  FIXME: What
1247       // about a common symbol?
1248       else
1249         {
1250           namelen = strlen(name);
1251           if (!this->version_script_.empty()
1252               && st_shndx != elfcpp::SHN_UNDEF)
1253             {
1254               // The symbol name did not have a version, but the
1255               // version script may assign a version anyway.
1256               std::string version;
1257               bool is_global;
1258               if (this->version_script_.get_symbol_version(name, &version,
1259                                                            &is_global))
1260                 {
1261                   if (!is_global)
1262                     is_forced_local = true;
1263                   else if (!version.empty())
1264                     {
1265                       ver = this->namepool_.add_with_length(version.c_str(),
1266                                                             version.length(),
1267                                                             true,
1268                                                             &ver_key);
1269                       is_default_version = true;
1270                     }
1271                 }
1272             }
1273         }
1274
1275       elfcpp::Sym<size, big_endian>* psym = &sym;
1276       unsigned char symbuf[sym_size];
1277       elfcpp::Sym<size, big_endian> sym2(symbuf);
1278       if (just_symbols)
1279         {
1280           memcpy(symbuf, p, sym_size);
1281           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1282           if (orig_st_shndx != elfcpp::SHN_UNDEF
1283               && is_ordinary
1284               && relobj->e_type() == elfcpp::ET_REL)
1285             {
1286               // Symbol values in relocatable object files are section
1287               // relative.  This is normally what we want, but since here
1288               // we are converting the symbol to absolute we need to add
1289               // the section address.  The section address in an object
1290               // file is normally zero, but people can use a linker
1291               // script to change it.
1292               sw.put_st_value(sym.get_st_value()
1293                               + relobj->section_address(orig_st_shndx));
1294             }
1295           st_shndx = elfcpp::SHN_ABS;
1296           is_ordinary = false;
1297           psym = &sym2;
1298         }
1299
1300       // Fix up visibility if object has no-export set.
1301       if (relobj->no_export()
1302           && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1303         {
1304           // We may have copied symbol already above.
1305           if (psym != &sym2)
1306             {
1307               memcpy(symbuf, p, sym_size);
1308               psym = &sym2;
1309             }
1310
1311           elfcpp::STV visibility = sym2.get_st_visibility();
1312           if (visibility == elfcpp::STV_DEFAULT
1313               || visibility == elfcpp::STV_PROTECTED)
1314             {
1315               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1316               unsigned char nonvis = sym2.get_st_nonvis();
1317               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1318             }
1319         }
1320
1321       Stringpool::Key name_key;
1322       name = this->namepool_.add_with_length(name, namelen, true,
1323                                              &name_key);
1324
1325       Sized_symbol<size>* res;
1326       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1327                                   is_default_version, *psym, st_shndx,
1328                                   is_ordinary, orig_st_shndx);
1329
1330       if (res == NULL)
1331         continue;
1332       
1333       if (is_forced_local)
1334         this->force_local(res);
1335
1336       // Do not treat this symbol as garbage if this symbol will be
1337       // exported to the dynamic symbol table.  This is true when
1338       // building a shared library or using --export-dynamic and
1339       // the symbol is externally visible.
1340       if (parameters->options().gc_sections()
1341           && res->is_externally_visible()
1342           && !res->is_from_dynobj()
1343           && (parameters->options().shared()
1344               || parameters->options().export_dynamic()
1345               || parameters->options().in_dynamic_list(res->name())))
1346         this->gc_mark_symbol(res);
1347
1348       if (is_defined_in_discarded_section)
1349         res->set_is_defined_in_discarded_section();
1350
1351       (*sympointers)[i] = res;
1352     }
1353 }
1354
1355 // Add a symbol from a plugin-claimed file.
1356
1357 template<int size, bool big_endian>
1358 Symbol*
1359 Symbol_table::add_from_pluginobj(
1360     Sized_pluginobj<size, big_endian>* obj,
1361     const char* name,
1362     const char* ver,
1363     elfcpp::Sym<size, big_endian>* sym)
1364 {
1365   unsigned int st_shndx = sym->get_st_shndx();
1366   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1367
1368   Stringpool::Key ver_key = 0;
1369   bool is_default_version = false;
1370   bool is_forced_local = false;
1371
1372   if (ver != NULL)
1373     {
1374       ver = this->namepool_.add(ver, true, &ver_key);
1375     }
1376   // We don't want to assign a version to an undefined symbol,
1377   // even if it is listed in the version script.  FIXME: What
1378   // about a common symbol?
1379   else
1380     {
1381       if (!this->version_script_.empty()
1382           && st_shndx != elfcpp::SHN_UNDEF)
1383         {
1384           // The symbol name did not have a version, but the
1385           // version script may assign a version anyway.
1386           std::string version;
1387           bool is_global;
1388           if (this->version_script_.get_symbol_version(name, &version,
1389                                                        &is_global))
1390             {
1391               if (!is_global)
1392                 is_forced_local = true;
1393               else if (!version.empty())
1394                 {
1395                   ver = this->namepool_.add_with_length(version.c_str(),
1396                                                         version.length(),
1397                                                         true,
1398                                                         &ver_key);
1399                   is_default_version = true;
1400                 }
1401             }
1402         }
1403     }
1404
1405   Stringpool::Key name_key;
1406   name = this->namepool_.add(name, true, &name_key);
1407
1408   Sized_symbol<size>* res;
1409   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1410                               is_default_version, *sym, st_shndx,
1411                               is_ordinary, st_shndx);
1412
1413   if (res == NULL)
1414     return NULL;
1415
1416   if (is_forced_local)
1417     this->force_local(res);
1418
1419   return res;
1420 }
1421
1422 // Add all the symbols in a dynamic object to the hash table.
1423
1424 template<int size, bool big_endian>
1425 void
1426 Symbol_table::add_from_dynobj(
1427     Sized_dynobj<size, big_endian>* dynobj,
1428     const unsigned char* syms,
1429     size_t count,
1430     const char* sym_names,
1431     size_t sym_name_size,
1432     const unsigned char* versym,
1433     size_t versym_size,
1434     const std::vector<const char*>* version_map,
1435     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1436     size_t* defined)
1437 {
1438   *defined = 0;
1439
1440   gold_assert(size == parameters->target().get_size());
1441
1442   if (dynobj->just_symbols())
1443     {
1444       gold_error(_("--just-symbols does not make sense with a shared object"));
1445       return;
1446     }
1447
1448   // FIXME: For incremental links, we don't store version information,
1449   // so we need to ignore version symbols for now.
1450   if (parameters->incremental_update())
1451     versym = NULL;
1452
1453   if (versym != NULL && versym_size / 2 < count)
1454     {
1455       dynobj->error(_("too few symbol versions"));
1456       return;
1457     }
1458
1459   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1460
1461   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1462   // weak aliases.  This is necessary because if the dynamic object
1463   // provides the same variable under two names, one of which is a
1464   // weak definition, and the regular object refers to the weak
1465   // definition, we have to put both the weak definition and the
1466   // strong definition into the dynamic symbol table.  Given a weak
1467   // definition, the only way that we can find the corresponding
1468   // strong definition, if any, is to search the symbol table.
1469   std::vector<Sized_symbol<size>*> object_symbols;
1470
1471   const unsigned char* p = syms;
1472   const unsigned char* vs = versym;
1473   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1474     {
1475       elfcpp::Sym<size, big_endian> sym(p);
1476
1477       if (sympointers != NULL)
1478         (*sympointers)[i] = NULL;
1479
1480       // Ignore symbols with local binding or that have
1481       // internal or hidden visibility.
1482       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1483           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1484           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1485         continue;
1486
1487       // A protected symbol in a shared library must be treated as a
1488       // normal symbol when viewed from outside the shared library.
1489       // Implement this by overriding the visibility here.
1490       // Likewise, an IFUNC symbol in a shared library must be treated
1491       // as a normal FUNC symbol.
1492       elfcpp::Sym<size, big_endian>* psym = &sym;
1493       unsigned char symbuf[sym_size];
1494       elfcpp::Sym<size, big_endian> sym2(symbuf);
1495       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1496           || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1497         {
1498           memcpy(symbuf, p, sym_size);
1499           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1500           if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1501             sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1502           if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1503             sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1504           psym = &sym2;
1505         }
1506
1507       unsigned int st_name = psym->get_st_name();
1508       if (st_name >= sym_name_size)
1509         {
1510           dynobj->error(_("bad symbol name offset %u at %zu"),
1511                         st_name, i);
1512           continue;
1513         }
1514
1515       const char* name = sym_names + st_name;
1516
1517       bool is_ordinary;
1518       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1519                                                        &is_ordinary);
1520
1521       if (st_shndx != elfcpp::SHN_UNDEF)
1522         ++*defined;
1523
1524       Sized_symbol<size>* res;
1525
1526       if (versym == NULL)
1527         {
1528           Stringpool::Key name_key;
1529           name = this->namepool_.add(name, true, &name_key);
1530           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1531                                       false, *psym, st_shndx, is_ordinary,
1532                                       st_shndx);
1533         }
1534       else
1535         {
1536           // Read the version information.
1537
1538           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1539
1540           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1541           v &= elfcpp::VERSYM_VERSION;
1542
1543           // The Sun documentation says that V can be VER_NDX_LOCAL,
1544           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1545           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1546           // The old GNU linker will happily generate VER_NDX_LOCAL
1547           // for an undefined symbol.  I don't know what the Sun
1548           // linker will generate.
1549
1550           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1551               && st_shndx != elfcpp::SHN_UNDEF)
1552             {
1553               // This symbol should not be visible outside the object.
1554               continue;
1555             }
1556
1557           // At this point we are definitely going to add this symbol.
1558           Stringpool::Key name_key;
1559           name = this->namepool_.add(name, true, &name_key);
1560
1561           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1562               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1563             {
1564               // This symbol does not have a version.
1565               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1566                                           false, *psym, st_shndx, is_ordinary,
1567                                           st_shndx);
1568             }
1569           else
1570             {
1571               if (v >= version_map->size())
1572                 {
1573                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1574                                 i, v);
1575                   continue;
1576                 }
1577
1578               const char* version = (*version_map)[v];
1579               if (version == NULL)
1580                 {
1581                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1582                                 i, v);
1583                   continue;
1584                 }
1585
1586               Stringpool::Key version_key;
1587               version = this->namepool_.add(version, true, &version_key);
1588
1589               // If this is an absolute symbol, and the version name
1590               // and symbol name are the same, then this is the
1591               // version definition symbol.  These symbols exist to
1592               // support using -u to pull in particular versions.  We
1593               // do not want to record a version for them.
1594               if (st_shndx == elfcpp::SHN_ABS
1595                   && !is_ordinary
1596                   && name_key == version_key)
1597                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1598                                             false, *psym, st_shndx, is_ordinary,
1599                                             st_shndx);
1600               else
1601                 {
1602                   const bool is_default_version =
1603                     !hidden && st_shndx != elfcpp::SHN_UNDEF;
1604                   res = this->add_from_object(dynobj, name, name_key, version,
1605                                               version_key, is_default_version,
1606                                               *psym, st_shndx,
1607                                               is_ordinary, st_shndx);
1608                 }
1609             }
1610         }
1611
1612       if (res == NULL)
1613         continue;
1614
1615       // Note that it is possible that RES was overridden by an
1616       // earlier object, in which case it can't be aliased here.
1617       if (st_shndx != elfcpp::SHN_UNDEF
1618           && is_ordinary
1619           && psym->get_st_type() == elfcpp::STT_OBJECT
1620           && res->source() == Symbol::FROM_OBJECT
1621           && res->object() == dynobj)
1622         object_symbols.push_back(res);
1623
1624       // If the symbol has protected visibility in the dynobj,
1625       // mark it as such if it was not overridden.
1626       if (res->source() == Symbol::FROM_OBJECT
1627           && res->object() == dynobj
1628           && sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1629         res->set_is_protected();
1630
1631       if (sympointers != NULL)
1632         (*sympointers)[i] = res;
1633     }
1634
1635   this->record_weak_aliases(&object_symbols);
1636 }
1637
1638 // Add a symbol from a incremental object file.
1639
1640 template<int size, bool big_endian>
1641 Sized_symbol<size>*
1642 Symbol_table::add_from_incrobj(
1643     Object* obj,
1644     const char* name,
1645     const char* ver,
1646     elfcpp::Sym<size, big_endian>* sym)
1647 {
1648   unsigned int st_shndx = sym->get_st_shndx();
1649   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1650
1651   Stringpool::Key ver_key = 0;
1652   bool is_default_version = false;
1653
1654   Stringpool::Key name_key;
1655   name = this->namepool_.add(name, true, &name_key);
1656
1657   Sized_symbol<size>* res;
1658   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1659                               is_default_version, *sym, st_shndx,
1660                               is_ordinary, st_shndx);
1661
1662   return res;
1663 }
1664
1665 // This is used to sort weak aliases.  We sort them first by section
1666 // index, then by offset, then by weak ahead of strong.
1667
1668 template<int size>
1669 class Weak_alias_sorter
1670 {
1671  public:
1672   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1673 };
1674
1675 template<int size>
1676 bool
1677 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1678                                     const Sized_symbol<size>* s2) const
1679 {
1680   bool is_ordinary;
1681   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1682   gold_assert(is_ordinary);
1683   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1684   gold_assert(is_ordinary);
1685   if (s1_shndx != s2_shndx)
1686     return s1_shndx < s2_shndx;
1687
1688   if (s1->value() != s2->value())
1689     return s1->value() < s2->value();
1690   if (s1->binding() != s2->binding())
1691     {
1692       if (s1->binding() == elfcpp::STB_WEAK)
1693         return true;
1694       if (s2->binding() == elfcpp::STB_WEAK)
1695         return false;
1696     }
1697   return std::string(s1->name()) < std::string(s2->name());
1698 }
1699
1700 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1701 // for any weak aliases, and record them so that if we add the weak
1702 // alias to the dynamic symbol table, we also add the corresponding
1703 // strong symbol.
1704
1705 template<int size>
1706 void
1707 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1708 {
1709   // Sort the vector by section index, then by offset, then by weak
1710   // ahead of strong.
1711   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1712
1713   // Walk through the vector.  For each weak definition, record
1714   // aliases.
1715   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1716          symbols->begin();
1717        p != symbols->end();
1718        ++p)
1719     {
1720       if ((*p)->binding() != elfcpp::STB_WEAK)
1721         continue;
1722
1723       // Build a circular list of weak aliases.  Each symbol points to
1724       // the next one in the circular list.
1725
1726       Sized_symbol<size>* from_sym = *p;
1727       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1728       for (q = p + 1; q != symbols->end(); ++q)
1729         {
1730           bool dummy;
1731           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1732               || (*q)->value() != from_sym->value())
1733             break;
1734
1735           this->weak_aliases_[from_sym] = *q;
1736           from_sym->set_has_alias();
1737           from_sym = *q;
1738         }
1739
1740       if (from_sym != *p)
1741         {
1742           this->weak_aliases_[from_sym] = *p;
1743           from_sym->set_has_alias();
1744         }
1745
1746       p = q - 1;
1747     }
1748 }
1749
1750 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1751 // true, then only create the symbol if there is a reference to it.
1752 // If this does not return NULL, it sets *POLDSYM to the existing
1753 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1754 // resolve the newly created symbol to the old one.  This
1755 // canonicalizes *PNAME and *PVERSION.
1756
1757 template<int size, bool big_endian>
1758 Sized_symbol<size>*
1759 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1760                                     bool only_if_ref,
1761                                     Sized_symbol<size>** poldsym,
1762                                     bool* resolve_oldsym)
1763 {
1764   *resolve_oldsym = false;
1765   *poldsym = NULL;
1766
1767   // If the caller didn't give us a version, see if we get one from
1768   // the version script.
1769   std::string v;
1770   bool is_default_version = false;
1771   if (*pversion == NULL)
1772     {
1773       bool is_global;
1774       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1775         {
1776           if (is_global && !v.empty())
1777             {
1778               *pversion = v.c_str();
1779               // If we get the version from a version script, then we
1780               // are also the default version.
1781               is_default_version = true;
1782             }
1783         }
1784     }
1785
1786   Symbol* oldsym;
1787   Sized_symbol<size>* sym;
1788
1789   bool add_to_table = false;
1790   typename Symbol_table_type::iterator add_loc = this->table_.end();
1791   bool add_def_to_table = false;
1792   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1793
1794   if (only_if_ref)
1795     {
1796       oldsym = this->lookup(*pname, *pversion);
1797       if (oldsym == NULL && is_default_version)
1798         oldsym = this->lookup(*pname, NULL);
1799       if (oldsym == NULL || !oldsym->is_undefined())
1800         return NULL;
1801
1802       *pname = oldsym->name();
1803       if (is_default_version)
1804         *pversion = this->namepool_.add(*pversion, true, NULL);
1805       else
1806         *pversion = oldsym->version();
1807     }
1808   else
1809     {
1810       // Canonicalize NAME and VERSION.
1811       Stringpool::Key name_key;
1812       *pname = this->namepool_.add(*pname, true, &name_key);
1813
1814       Stringpool::Key version_key = 0;
1815       if (*pversion != NULL)
1816         *pversion = this->namepool_.add(*pversion, true, &version_key);
1817
1818       Symbol* const snull = NULL;
1819       std::pair<typename Symbol_table_type::iterator, bool> ins =
1820         this->table_.insert(std::make_pair(std::make_pair(name_key,
1821                                                           version_key),
1822                                            snull));
1823
1824       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1825         std::make_pair(this->table_.end(), false);
1826       if (is_default_version)
1827         {
1828           const Stringpool::Key vnull = 0;
1829           insdefault =
1830             this->table_.insert(std::make_pair(std::make_pair(name_key,
1831                                                               vnull),
1832                                                snull));
1833         }
1834
1835       if (!ins.second)
1836         {
1837           // We already have a symbol table entry for NAME/VERSION.
1838           oldsym = ins.first->second;
1839           gold_assert(oldsym != NULL);
1840
1841           if (is_default_version)
1842             {
1843               Sized_symbol<size>* soldsym =
1844                 this->get_sized_symbol<size>(oldsym);
1845               this->define_default_version<size, big_endian>(soldsym,
1846                                                              insdefault.second,
1847                                                              insdefault.first);
1848             }
1849         }
1850       else
1851         {
1852           // We haven't seen this symbol before.
1853           gold_assert(ins.first->second == NULL);
1854
1855           add_to_table = true;
1856           add_loc = ins.first;
1857
1858           if (is_default_version && !insdefault.second)
1859             {
1860               // We are adding NAME/VERSION, and it is the default
1861               // version.  We already have an entry for NAME/NULL.
1862               oldsym = insdefault.first->second;
1863               *resolve_oldsym = true;
1864             }
1865           else
1866             {
1867               oldsym = NULL;
1868
1869               if (is_default_version)
1870                 {
1871                   add_def_to_table = true;
1872                   add_def_loc = insdefault.first;
1873                 }
1874             }
1875         }
1876     }
1877
1878   const Target& target = parameters->target();
1879   if (!target.has_make_symbol())
1880     sym = new Sized_symbol<size>();
1881   else
1882     {
1883       Sized_target<size, big_endian>* sized_target =
1884         parameters->sized_target<size, big_endian>();
1885       sym = sized_target->make_symbol(*pname, elfcpp::STT_NOTYPE,
1886                                       NULL, elfcpp::SHN_UNDEF, 0);
1887       if (sym == NULL)
1888         return NULL;
1889     }
1890
1891   if (add_to_table)
1892     add_loc->second = sym;
1893   else
1894     gold_assert(oldsym != NULL);
1895
1896   if (add_def_to_table)
1897     add_def_loc->second = sym;
1898
1899   *poldsym = this->get_sized_symbol<size>(oldsym);
1900
1901   return sym;
1902 }
1903
1904 // Define a symbol based on an Output_data.
1905
1906 Symbol*
1907 Symbol_table::define_in_output_data(const char* name,
1908                                     const char* version,
1909                                     Defined defined,
1910                                     Output_data* od,
1911                                     uint64_t value,
1912                                     uint64_t symsize,
1913                                     elfcpp::STT type,
1914                                     elfcpp::STB binding,
1915                                     elfcpp::STV visibility,
1916                                     unsigned char nonvis,
1917                                     bool offset_is_from_end,
1918                                     bool only_if_ref)
1919 {
1920   if (parameters->target().get_size() == 32)
1921     {
1922 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1923       return this->do_define_in_output_data<32>(name, version, defined, od,
1924                                                 value, symsize, type, binding,
1925                                                 visibility, nonvis,
1926                                                 offset_is_from_end,
1927                                                 only_if_ref);
1928 #else
1929       gold_unreachable();
1930 #endif
1931     }
1932   else if (parameters->target().get_size() == 64)
1933     {
1934 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1935       return this->do_define_in_output_data<64>(name, version, defined, od,
1936                                                 value, symsize, type, binding,
1937                                                 visibility, nonvis,
1938                                                 offset_is_from_end,
1939                                                 only_if_ref);
1940 #else
1941       gold_unreachable();
1942 #endif
1943     }
1944   else
1945     gold_unreachable();
1946 }
1947
1948 // Define a symbol in an Output_data, sized version.
1949
1950 template<int size>
1951 Sized_symbol<size>*
1952 Symbol_table::do_define_in_output_data(
1953     const char* name,
1954     const char* version,
1955     Defined defined,
1956     Output_data* od,
1957     typename elfcpp::Elf_types<size>::Elf_Addr value,
1958     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1959     elfcpp::STT type,
1960     elfcpp::STB binding,
1961     elfcpp::STV visibility,
1962     unsigned char nonvis,
1963     bool offset_is_from_end,
1964     bool only_if_ref)
1965 {
1966   Sized_symbol<size>* sym;
1967   Sized_symbol<size>* oldsym;
1968   bool resolve_oldsym;
1969
1970   if (parameters->target().is_big_endian())
1971     {
1972 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1973       sym = this->define_special_symbol<size, true>(&name, &version,
1974                                                     only_if_ref, &oldsym,
1975                                                     &resolve_oldsym);
1976 #else
1977       gold_unreachable();
1978 #endif
1979     }
1980   else
1981     {
1982 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1983       sym = this->define_special_symbol<size, false>(&name, &version,
1984                                                      only_if_ref, &oldsym,
1985                                                      &resolve_oldsym);
1986 #else
1987       gold_unreachable();
1988 #endif
1989     }
1990
1991   if (sym == NULL)
1992     return NULL;
1993
1994   sym->init_output_data(name, version, od, value, symsize, type, binding,
1995                         visibility, nonvis, offset_is_from_end,
1996                         defined == PREDEFINED);
1997
1998   if (oldsym == NULL)
1999     {
2000       if (binding == elfcpp::STB_LOCAL
2001           || this->version_script_.symbol_is_local(name))
2002         this->force_local(sym);
2003       else if (version != NULL)
2004         sym->set_is_default();
2005       return sym;
2006     }
2007
2008   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2009     this->override_with_special(oldsym, sym);
2010
2011   if (resolve_oldsym)
2012     return sym;
2013   else
2014     {
2015       if (defined == PREDEFINED
2016           && (binding == elfcpp::STB_LOCAL
2017               || this->version_script_.symbol_is_local(name)))
2018         this->force_local(oldsym);
2019       delete sym;
2020       return oldsym;
2021     }
2022 }
2023
2024 // Define a symbol based on an Output_segment.
2025
2026 Symbol*
2027 Symbol_table::define_in_output_segment(const char* name,
2028                                        const char* version,
2029                                        Defined defined,
2030                                        Output_segment* os,
2031                                        uint64_t value,
2032                                        uint64_t symsize,
2033                                        elfcpp::STT type,
2034                                        elfcpp::STB binding,
2035                                        elfcpp::STV visibility,
2036                                        unsigned char nonvis,
2037                                        Symbol::Segment_offset_base offset_base,
2038                                        bool only_if_ref)
2039 {
2040   if (parameters->target().get_size() == 32)
2041     {
2042 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2043       return this->do_define_in_output_segment<32>(name, version, defined, os,
2044                                                    value, symsize, type,
2045                                                    binding, visibility, nonvis,
2046                                                    offset_base, only_if_ref);
2047 #else
2048       gold_unreachable();
2049 #endif
2050     }
2051   else if (parameters->target().get_size() == 64)
2052     {
2053 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2054       return this->do_define_in_output_segment<64>(name, version, defined, os,
2055                                                    value, symsize, type,
2056                                                    binding, visibility, nonvis,
2057                                                    offset_base, only_if_ref);
2058 #else
2059       gold_unreachable();
2060 #endif
2061     }
2062   else
2063     gold_unreachable();
2064 }
2065
2066 // Define a symbol in an Output_segment, sized version.
2067
2068 template<int size>
2069 Sized_symbol<size>*
2070 Symbol_table::do_define_in_output_segment(
2071     const char* name,
2072     const char* version,
2073     Defined defined,
2074     Output_segment* os,
2075     typename elfcpp::Elf_types<size>::Elf_Addr value,
2076     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2077     elfcpp::STT type,
2078     elfcpp::STB binding,
2079     elfcpp::STV visibility,
2080     unsigned char nonvis,
2081     Symbol::Segment_offset_base offset_base,
2082     bool only_if_ref)
2083 {
2084   Sized_symbol<size>* sym;
2085   Sized_symbol<size>* oldsym;
2086   bool resolve_oldsym;
2087
2088   if (parameters->target().is_big_endian())
2089     {
2090 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2091       sym = this->define_special_symbol<size, true>(&name, &version,
2092                                                     only_if_ref, &oldsym,
2093                                                     &resolve_oldsym);
2094 #else
2095       gold_unreachable();
2096 #endif
2097     }
2098   else
2099     {
2100 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2101       sym = this->define_special_symbol<size, false>(&name, &version,
2102                                                      only_if_ref, &oldsym,
2103                                                      &resolve_oldsym);
2104 #else
2105       gold_unreachable();
2106 #endif
2107     }
2108
2109   if (sym == NULL)
2110     return NULL;
2111
2112   sym->init_output_segment(name, version, os, value, symsize, type, binding,
2113                            visibility, nonvis, offset_base,
2114                            defined == PREDEFINED);
2115
2116   if (oldsym == NULL)
2117     {
2118       if (binding == elfcpp::STB_LOCAL
2119           || this->version_script_.symbol_is_local(name))
2120         this->force_local(sym);
2121       else if (version != NULL)
2122         sym->set_is_default();
2123       return sym;
2124     }
2125
2126   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2127     this->override_with_special(oldsym, sym);
2128
2129   if (resolve_oldsym)
2130     return sym;
2131   else
2132     {
2133       if (binding == elfcpp::STB_LOCAL
2134           || this->version_script_.symbol_is_local(name))
2135         this->force_local(oldsym);
2136       delete sym;
2137       return oldsym;
2138     }
2139 }
2140
2141 // Define a special symbol with a constant value.  It is a multiple
2142 // definition error if this symbol is already defined.
2143
2144 Symbol*
2145 Symbol_table::define_as_constant(const char* name,
2146                                  const char* version,
2147                                  Defined defined,
2148                                  uint64_t value,
2149                                  uint64_t symsize,
2150                                  elfcpp::STT type,
2151                                  elfcpp::STB binding,
2152                                  elfcpp::STV visibility,
2153                                  unsigned char nonvis,
2154                                  bool only_if_ref,
2155                                  bool force_override)
2156 {
2157   if (parameters->target().get_size() == 32)
2158     {
2159 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2160       return this->do_define_as_constant<32>(name, version, defined, value,
2161                                              symsize, type, binding,
2162                                              visibility, nonvis, only_if_ref,
2163                                              force_override);
2164 #else
2165       gold_unreachable();
2166 #endif
2167     }
2168   else if (parameters->target().get_size() == 64)
2169     {
2170 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2171       return this->do_define_as_constant<64>(name, version, defined, value,
2172                                              symsize, type, binding,
2173                                              visibility, nonvis, only_if_ref,
2174                                              force_override);
2175 #else
2176       gold_unreachable();
2177 #endif
2178     }
2179   else
2180     gold_unreachable();
2181 }
2182
2183 // Define a symbol as a constant, sized version.
2184
2185 template<int size>
2186 Sized_symbol<size>*
2187 Symbol_table::do_define_as_constant(
2188     const char* name,
2189     const char* version,
2190     Defined defined,
2191     typename elfcpp::Elf_types<size>::Elf_Addr value,
2192     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2193     elfcpp::STT type,
2194     elfcpp::STB binding,
2195     elfcpp::STV visibility,
2196     unsigned char nonvis,
2197     bool only_if_ref,
2198     bool force_override)
2199 {
2200   Sized_symbol<size>* sym;
2201   Sized_symbol<size>* oldsym;
2202   bool resolve_oldsym;
2203
2204   if (parameters->target().is_big_endian())
2205     {
2206 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2207       sym = this->define_special_symbol<size, true>(&name, &version,
2208                                                     only_if_ref, &oldsym,
2209                                                     &resolve_oldsym);
2210 #else
2211       gold_unreachable();
2212 #endif
2213     }
2214   else
2215     {
2216 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2217       sym = this->define_special_symbol<size, false>(&name, &version,
2218                                                      only_if_ref, &oldsym,
2219                                                      &resolve_oldsym);
2220 #else
2221       gold_unreachable();
2222 #endif
2223     }
2224
2225   if (sym == NULL)
2226     return NULL;
2227
2228   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2229                      nonvis, defined == PREDEFINED);
2230
2231   if (oldsym == NULL)
2232     {
2233       // Version symbols are absolute symbols with name == version.
2234       // We don't want to force them to be local.
2235       if ((version == NULL
2236            || name != version
2237            || value != 0)
2238           && (binding == elfcpp::STB_LOCAL
2239               || this->version_script_.symbol_is_local(name)))
2240         this->force_local(sym);
2241       else if (version != NULL
2242                && (name != version || value != 0))
2243         sym->set_is_default();
2244       return sym;
2245     }
2246
2247   if (force_override
2248       || Symbol_table::should_override_with_special(oldsym, type, defined))
2249     this->override_with_special(oldsym, sym);
2250
2251   if (resolve_oldsym)
2252     return sym;
2253   else
2254     {
2255       if (binding == elfcpp::STB_LOCAL
2256           || this->version_script_.symbol_is_local(name))
2257         this->force_local(oldsym);
2258       delete sym;
2259       return oldsym;
2260     }
2261 }
2262
2263 // Define a set of symbols in output sections.
2264
2265 void
2266 Symbol_table::define_symbols(const Layout* layout, int count,
2267                              const Define_symbol_in_section* p,
2268                              bool only_if_ref)
2269 {
2270   for (int i = 0; i < count; ++i, ++p)
2271     {
2272       Output_section* os = layout->find_output_section(p->output_section);
2273       if (os != NULL)
2274         this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2275                                     p->size, p->type, p->binding,
2276                                     p->visibility, p->nonvis,
2277                                     p->offset_is_from_end,
2278                                     only_if_ref || p->only_if_ref);
2279       else
2280         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2281                                  p->type, p->binding, p->visibility, p->nonvis,
2282                                  only_if_ref || p->only_if_ref,
2283                                  false);
2284     }
2285 }
2286
2287 // Define a set of symbols in output segments.
2288
2289 void
2290 Symbol_table::define_symbols(const Layout* layout, int count,
2291                              const Define_symbol_in_segment* p,
2292                              bool only_if_ref)
2293 {
2294   for (int i = 0; i < count; ++i, ++p)
2295     {
2296       Output_segment* os = layout->find_output_segment(p->segment_type,
2297                                                        p->segment_flags_set,
2298                                                        p->segment_flags_clear);
2299       if (os != NULL)
2300         this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2301                                        p->size, p->type, p->binding,
2302                                        p->visibility, p->nonvis,
2303                                        p->offset_base,
2304                                        only_if_ref || p->only_if_ref);
2305       else
2306         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2307                                  p->type, p->binding, p->visibility, p->nonvis,
2308                                  only_if_ref || p->only_if_ref,
2309                                  false);
2310     }
2311 }
2312
2313 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2314 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2315 // the offset within POSD.
2316
2317 template<int size>
2318 void
2319 Symbol_table::define_with_copy_reloc(
2320     Sized_symbol<size>* csym,
2321     Output_data* posd,
2322     typename elfcpp::Elf_types<size>::Elf_Addr value)
2323 {
2324   gold_assert(csym->is_from_dynobj());
2325   gold_assert(!csym->is_copied_from_dynobj());
2326   Object* object = csym->object();
2327   gold_assert(object->is_dynamic());
2328   Dynobj* dynobj = static_cast<Dynobj*>(object);
2329
2330   // Our copied variable has to override any variable in a shared
2331   // library.
2332   elfcpp::STB binding = csym->binding();
2333   if (binding == elfcpp::STB_WEAK)
2334     binding = elfcpp::STB_GLOBAL;
2335
2336   this->define_in_output_data(csym->name(), csym->version(), COPY,
2337                               posd, value, csym->symsize(),
2338                               csym->type(), binding,
2339                               csym->visibility(), csym->nonvis(),
2340                               false, false);
2341
2342   csym->set_is_copied_from_dynobj();
2343   csym->set_needs_dynsym_entry();
2344
2345   this->copied_symbol_dynobjs_[csym] = dynobj;
2346
2347   // We have now defined all aliases, but we have not entered them all
2348   // in the copied_symbol_dynobjs_ map.
2349   if (csym->has_alias())
2350     {
2351       Symbol* sym = csym;
2352       while (true)
2353         {
2354           sym = this->weak_aliases_[sym];
2355           if (sym == csym)
2356             break;
2357           gold_assert(sym->output_data() == posd);
2358
2359           sym->set_is_copied_from_dynobj();
2360           this->copied_symbol_dynobjs_[sym] = dynobj;
2361         }
2362     }
2363 }
2364
2365 // SYM is defined using a COPY reloc.  Return the dynamic object where
2366 // the original definition was found.
2367
2368 Dynobj*
2369 Symbol_table::get_copy_source(const Symbol* sym) const
2370 {
2371   gold_assert(sym->is_copied_from_dynobj());
2372   Copied_symbol_dynobjs::const_iterator p =
2373     this->copied_symbol_dynobjs_.find(sym);
2374   gold_assert(p != this->copied_symbol_dynobjs_.end());
2375   return p->second;
2376 }
2377
2378 // Add any undefined symbols named on the command line.
2379
2380 void
2381 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2382 {
2383   if (parameters->options().any_undefined()
2384       || layout->script_options()->any_unreferenced())
2385     {
2386       if (parameters->target().get_size() == 32)
2387         {
2388 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2389           this->do_add_undefined_symbols_from_command_line<32>(layout);
2390 #else
2391           gold_unreachable();
2392 #endif
2393         }
2394       else if (parameters->target().get_size() == 64)
2395         {
2396 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2397           this->do_add_undefined_symbols_from_command_line<64>(layout);
2398 #else
2399           gold_unreachable();
2400 #endif
2401         }
2402       else
2403         gold_unreachable();
2404     }
2405 }
2406
2407 template<int size>
2408 void
2409 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2410 {
2411   for (options::String_set::const_iterator p =
2412          parameters->options().undefined_begin();
2413        p != parameters->options().undefined_end();
2414        ++p)
2415     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2416
2417   for (options::String_set::const_iterator p =
2418          parameters->options().export_dynamic_symbol_begin();
2419        p != parameters->options().export_dynamic_symbol_end();
2420        ++p)
2421     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2422
2423   for (Script_options::referenced_const_iterator p =
2424          layout->script_options()->referenced_begin();
2425        p != layout->script_options()->referenced_end();
2426        ++p)
2427     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2428 }
2429
2430 template<int size>
2431 void
2432 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2433 {
2434   if (this->lookup(name) != NULL)
2435     return;
2436
2437   const char* version = NULL;
2438
2439   Sized_symbol<size>* sym;
2440   Sized_symbol<size>* oldsym;
2441   bool resolve_oldsym;
2442   if (parameters->target().is_big_endian())
2443     {
2444 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2445       sym = this->define_special_symbol<size, true>(&name, &version,
2446                                                     false, &oldsym,
2447                                                     &resolve_oldsym);
2448 #else
2449       gold_unreachable();
2450 #endif
2451     }
2452   else
2453     {
2454 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2455       sym = this->define_special_symbol<size, false>(&name, &version,
2456                                                      false, &oldsym,
2457                                                      &resolve_oldsym);
2458 #else
2459       gold_unreachable();
2460 #endif
2461     }
2462
2463   gold_assert(oldsym == NULL);
2464
2465   sym->init_undefined(name, version, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2466                       elfcpp::STV_DEFAULT, 0);
2467   ++this->saw_undefined_;
2468 }
2469
2470 // Set the dynamic symbol indexes.  INDEX is the index of the first
2471 // global dynamic symbol.  Pointers to the symbols are stored into the
2472 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2473 // updated dynamic symbol index.
2474
2475 unsigned int
2476 Symbol_table::set_dynsym_indexes(unsigned int index,
2477                                  std::vector<Symbol*>* syms,
2478                                  Stringpool* dynpool,
2479                                  Versions* versions)
2480 {
2481   std::vector<Symbol*> as_needed_sym;
2482
2483   // Allow a target to set dynsym indexes.
2484   if (parameters->target().has_custom_set_dynsym_indexes())
2485     {
2486       std::vector<Symbol*> dyn_symbols;
2487       for (Symbol_table_type::iterator p = this->table_.begin();
2488            p != this->table_.end();
2489            ++p)
2490         {
2491           Symbol* sym = p->second;
2492           if (!sym->should_add_dynsym_entry(this))
2493             sym->set_dynsym_index(-1U);
2494           else
2495             dyn_symbols.push_back(sym);
2496         }
2497
2498       return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2499                                                      dynpool, versions, this);
2500     }
2501
2502   for (Symbol_table_type::iterator p = this->table_.begin();
2503        p != this->table_.end();
2504        ++p)
2505     {
2506       Symbol* sym = p->second;
2507
2508       // Note that SYM may already have a dynamic symbol index, since
2509       // some symbols appear more than once in the symbol table, with
2510       // and without a version.
2511
2512       if (!sym->should_add_dynsym_entry(this))
2513         sym->set_dynsym_index(-1U);
2514       else if (!sym->has_dynsym_index())
2515         {
2516           sym->set_dynsym_index(index);
2517           ++index;
2518           syms->push_back(sym);
2519           dynpool->add(sym->name(), false, NULL);
2520
2521           // If the symbol is defined in a dynamic object and is
2522           // referenced strongly in a regular object, then mark the
2523           // dynamic object as needed.  This is used to implement
2524           // --as-needed.
2525           if (sym->is_from_dynobj()
2526               && sym->in_reg()
2527               && !sym->is_undef_binding_weak())
2528             sym->object()->set_is_needed();
2529
2530           // Record any version information, except those from
2531           // as-needed libraries not seen to be needed.  Note that the
2532           // is_needed state for such libraries can change in this loop.
2533           if (sym->version() != NULL)
2534             {
2535               if (!sym->is_from_dynobj()
2536                   || !sym->object()->as_needed()
2537                   || sym->object()->is_needed())
2538                 versions->record_version(this, dynpool, sym);
2539               else
2540                 as_needed_sym.push_back(sym);
2541             }
2542         }
2543     }
2544
2545   // Process version information for symbols from as-needed libraries.
2546   for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2547        p != as_needed_sym.end();
2548        ++p)
2549     {
2550       Symbol* sym = *p;
2551
2552       if (sym->object()->is_needed())
2553         versions->record_version(this, dynpool, sym);
2554       else
2555         sym->clear_version();
2556     }
2557
2558   // Finish up the versions.  In some cases this may add new dynamic
2559   // symbols.
2560   index = versions->finalize(this, index, syms);
2561
2562   // Process target-specific symbols.
2563   for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2564        p != this->target_symbols_.end();
2565        ++p)
2566     {
2567       (*p)->set_dynsym_index(index);
2568       ++index;
2569       syms->push_back(*p);
2570       dynpool->add((*p)->name(), false, NULL);
2571     }
2572
2573   return index;
2574 }
2575
2576 // Set the final values for all the symbols.  The index of the first
2577 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2578 // file offset OFF.  Add their names to POOL.  Return the new file
2579 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2580
2581 off_t
2582 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2583                        size_t dyncount, Stringpool* pool,
2584                        unsigned int* plocal_symcount)
2585 {
2586   off_t ret;
2587
2588   gold_assert(*plocal_symcount != 0);
2589   this->first_global_index_ = *plocal_symcount;
2590
2591   this->dynamic_offset_ = dynoff;
2592   this->first_dynamic_global_index_ = dyn_global_index;
2593   this->dynamic_count_ = dyncount;
2594
2595   if (parameters->target().get_size() == 32)
2596     {
2597 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2598       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2599 #else
2600       gold_unreachable();
2601 #endif
2602     }
2603   else if (parameters->target().get_size() == 64)
2604     {
2605 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2606       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2607 #else
2608       gold_unreachable();
2609 #endif
2610     }
2611   else
2612     gold_unreachable();
2613
2614   // Now that we have the final symbol table, we can reliably note
2615   // which symbols should get warnings.
2616   this->warnings_.note_warnings(this);
2617
2618   return ret;
2619 }
2620
2621 // SYM is going into the symbol table at *PINDEX.  Add the name to
2622 // POOL, update *PINDEX and *POFF.
2623
2624 template<int size>
2625 void
2626 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2627                                   unsigned int* pindex, off_t* poff)
2628 {
2629   sym->set_symtab_index(*pindex);
2630   if (sym->version() == NULL || !parameters->options().relocatable())
2631     pool->add(sym->name(), false, NULL);
2632   else
2633     pool->add(sym->versioned_name(), true, NULL);
2634   ++*pindex;
2635   *poff += elfcpp::Elf_sizes<size>::sym_size;
2636 }
2637
2638 // Set the final value for all the symbols.  This is called after
2639 // Layout::finalize, so all the output sections have their final
2640 // address.
2641
2642 template<int size>
2643 off_t
2644 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2645                              unsigned int* plocal_symcount)
2646 {
2647   off = align_address(off, size >> 3);
2648   this->offset_ = off;
2649
2650   unsigned int index = *plocal_symcount;
2651   const unsigned int orig_index = index;
2652
2653   // First do all the symbols which have been forced to be local, as
2654   // they must appear before all global symbols.
2655   for (Forced_locals::iterator p = this->forced_locals_.begin();
2656        p != this->forced_locals_.end();
2657        ++p)
2658     {
2659       Symbol* sym = *p;
2660       gold_assert(sym->is_forced_local());
2661       if (this->sized_finalize_symbol<size>(sym))
2662         {
2663           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2664           ++*plocal_symcount;
2665         }
2666     }
2667
2668   // Now do all the remaining symbols.
2669   for (Symbol_table_type::iterator p = this->table_.begin();
2670        p != this->table_.end();
2671        ++p)
2672     {
2673       Symbol* sym = p->second;
2674       if (this->sized_finalize_symbol<size>(sym))
2675         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2676     }
2677
2678   // Now do target-specific symbols.
2679   for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2680        p != this->target_symbols_.end();
2681        ++p)
2682     {
2683       this->add_to_final_symtab<size>(*p, pool, &index, &off);
2684     }
2685
2686   this->output_count_ = index - orig_index;
2687
2688   return off;
2689 }
2690
2691 // Compute the final value of SYM and store status in location PSTATUS.
2692 // During relaxation, this may be called multiple times for a symbol to
2693 // compute its would-be final value in each relaxation pass.
2694
2695 template<int size>
2696 typename Sized_symbol<size>::Value_type
2697 Symbol_table::compute_final_value(
2698     const Sized_symbol<size>* sym,
2699     Compute_final_value_status* pstatus) const
2700 {
2701   typedef typename Sized_symbol<size>::Value_type Value_type;
2702   Value_type value;
2703
2704   switch (sym->source())
2705     {
2706     case Symbol::FROM_OBJECT:
2707       {
2708         bool is_ordinary;
2709         unsigned int shndx = sym->shndx(&is_ordinary);
2710
2711         if (!is_ordinary
2712             && shndx != elfcpp::SHN_ABS
2713             && !Symbol::is_common_shndx(shndx))
2714           {
2715             *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2716             return 0;
2717           }
2718
2719         Object* symobj = sym->object();
2720         if (symobj->is_dynamic())
2721           {
2722             value = 0;
2723             shndx = elfcpp::SHN_UNDEF;
2724           }
2725         else if (symobj->pluginobj() != NULL)
2726           {
2727             value = 0;
2728             shndx = elfcpp::SHN_UNDEF;
2729           }
2730         else if (shndx == elfcpp::SHN_UNDEF)
2731           value = 0;
2732         else if (!is_ordinary
2733                  && (shndx == elfcpp::SHN_ABS
2734                      || Symbol::is_common_shndx(shndx)))
2735           value = sym->value();
2736         else
2737           {
2738             Relobj* relobj = static_cast<Relobj*>(symobj);
2739             Output_section* os = relobj->output_section(shndx);
2740
2741             if (this->is_section_folded(relobj, shndx))
2742               {
2743                 gold_assert(os == NULL);
2744                 // Get the os of the section it is folded onto.
2745                 Section_id folded = this->icf_->get_folded_section(relobj,
2746                                                                    shndx);
2747                 gold_assert(folded.first != NULL);
2748                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2749                 unsigned folded_shndx = folded.second;
2750
2751                 os = folded_obj->output_section(folded_shndx);  
2752                 gold_assert(os != NULL);
2753
2754                 // Replace (relobj, shndx) with canonical ICF input section.
2755                 shndx = folded_shndx;
2756                 relobj = folded_obj;
2757               }
2758
2759             uint64_t secoff64 = relobj->output_section_offset(shndx);
2760             if (os == NULL)
2761               {
2762                 bool static_or_reloc = (parameters->doing_static_link() ||
2763                                         parameters->options().relocatable());
2764                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2765
2766                 *pstatus = CFVS_NO_OUTPUT_SECTION;
2767                 return 0;
2768               }
2769
2770             if (secoff64 == -1ULL)
2771               {
2772                 // The section needs special handling (e.g., a merge section).
2773
2774                 value = os->output_address(relobj, shndx, sym->value());
2775               }
2776             else
2777               {
2778                 Value_type secoff =
2779                   convert_types<Value_type, uint64_t>(secoff64);
2780                 if (sym->type() == elfcpp::STT_TLS)
2781                   value = sym->value() + os->tls_offset() + secoff;
2782                 else
2783                   value = sym->value() + os->address() + secoff;
2784               }
2785           }
2786       }
2787       break;
2788
2789     case Symbol::IN_OUTPUT_DATA:
2790       {
2791         Output_data* od = sym->output_data();
2792         value = sym->value();
2793         if (sym->type() != elfcpp::STT_TLS)
2794           value += od->address();
2795         else
2796           {
2797             Output_section* os = od->output_section();
2798             gold_assert(os != NULL);
2799             value += os->tls_offset() + (od->address() - os->address());
2800           }
2801         if (sym->offset_is_from_end())
2802           value += od->data_size();
2803       }
2804       break;
2805
2806     case Symbol::IN_OUTPUT_SEGMENT:
2807       {
2808         Output_segment* os = sym->output_segment();
2809         value = sym->value();
2810         if (sym->type() != elfcpp::STT_TLS)
2811           value += os->vaddr();
2812         switch (sym->offset_base())
2813           {
2814           case Symbol::SEGMENT_START:
2815             break;
2816           case Symbol::SEGMENT_END:
2817             value += os->memsz();
2818             break;
2819           case Symbol::SEGMENT_BSS:
2820             value += os->filesz();
2821             break;
2822           default:
2823             gold_unreachable();
2824           }
2825       }
2826       break;
2827
2828     case Symbol::IS_CONSTANT:
2829       value = sym->value();
2830       break;
2831
2832     case Symbol::IS_UNDEFINED:
2833       value = 0;
2834       break;
2835
2836     default:
2837       gold_unreachable();
2838     }
2839
2840   *pstatus = CFVS_OK;
2841   return value;
2842 }
2843
2844 // Finalize the symbol SYM.  This returns true if the symbol should be
2845 // added to the symbol table, false otherwise.
2846
2847 template<int size>
2848 bool
2849 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2850 {
2851   typedef typename Sized_symbol<size>::Value_type Value_type;
2852
2853   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2854
2855   // The default version of a symbol may appear twice in the symbol
2856   // table.  We only need to finalize it once.
2857   if (sym->has_symtab_index())
2858     return false;
2859
2860   if (!sym->in_reg())
2861     {
2862       gold_assert(!sym->has_symtab_index());
2863       sym->set_symtab_index(-1U);
2864       gold_assert(sym->dynsym_index() == -1U);
2865       return false;
2866     }
2867
2868   // If the symbol is only present on plugin files, the plugin decided we
2869   // don't need it.
2870   if (!sym->in_real_elf())
2871     {
2872       gold_assert(!sym->has_symtab_index());
2873       sym->set_symtab_index(-1U);
2874       return false;
2875     }
2876
2877   // Compute final symbol value.
2878   Compute_final_value_status status;
2879   Value_type value = this->compute_final_value(sym, &status);
2880
2881   switch (status)
2882     {
2883     case CFVS_OK:
2884       break;
2885     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2886       {
2887         bool is_ordinary;
2888         unsigned int shndx = sym->shndx(&is_ordinary);
2889         gold_error(_("%s: unsupported symbol section 0x%x"),
2890                    sym->demangled_name().c_str(), shndx);
2891       }
2892       break;
2893     case CFVS_NO_OUTPUT_SECTION:
2894       sym->set_symtab_index(-1U);
2895       return false;
2896     default:
2897       gold_unreachable();
2898     }
2899
2900   sym->set_value(value);
2901
2902   if (parameters->options().strip_all()
2903       || !parameters->options().should_retain_symbol(sym->name()))
2904     {
2905       sym->set_symtab_index(-1U);
2906       return false;
2907     }
2908
2909   return true;
2910 }
2911
2912 // Write out the global symbols.
2913
2914 void
2915 Symbol_table::write_globals(const Stringpool* sympool,
2916                             const Stringpool* dynpool,
2917                             Output_symtab_xindex* symtab_xindex,
2918                             Output_symtab_xindex* dynsym_xindex,
2919                             Output_file* of) const
2920 {
2921   switch (parameters->size_and_endianness())
2922     {
2923 #ifdef HAVE_TARGET_32_LITTLE
2924     case Parameters::TARGET_32_LITTLE:
2925       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2926                                            dynsym_xindex, of);
2927       break;
2928 #endif
2929 #ifdef HAVE_TARGET_32_BIG
2930     case Parameters::TARGET_32_BIG:
2931       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2932                                           dynsym_xindex, of);
2933       break;
2934 #endif
2935 #ifdef HAVE_TARGET_64_LITTLE
2936     case Parameters::TARGET_64_LITTLE:
2937       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2938                                            dynsym_xindex, of);
2939       break;
2940 #endif
2941 #ifdef HAVE_TARGET_64_BIG
2942     case Parameters::TARGET_64_BIG:
2943       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2944                                           dynsym_xindex, of);
2945       break;
2946 #endif
2947     default:
2948       gold_unreachable();
2949     }
2950 }
2951
2952 // Write out the global symbols.
2953
2954 template<int size, bool big_endian>
2955 void
2956 Symbol_table::sized_write_globals(const Stringpool* sympool,
2957                                   const Stringpool* dynpool,
2958                                   Output_symtab_xindex* symtab_xindex,
2959                                   Output_symtab_xindex* dynsym_xindex,
2960                                   Output_file* of) const
2961 {
2962   const Target& target = parameters->target();
2963
2964   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2965
2966   const unsigned int output_count = this->output_count_;
2967   const section_size_type oview_size = output_count * sym_size;
2968   const unsigned int first_global_index = this->first_global_index_;
2969   unsigned char* psyms;
2970   if (this->offset_ == 0 || output_count == 0)
2971     psyms = NULL;
2972   else
2973     psyms = of->get_output_view(this->offset_, oview_size);
2974
2975   const unsigned int dynamic_count = this->dynamic_count_;
2976   const section_size_type dynamic_size = dynamic_count * sym_size;
2977   const unsigned int first_dynamic_global_index =
2978     this->first_dynamic_global_index_;
2979   unsigned char* dynamic_view;
2980   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2981     dynamic_view = NULL;
2982   else
2983     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2984
2985   for (Symbol_table_type::const_iterator p = this->table_.begin();
2986        p != this->table_.end();
2987        ++p)
2988     {
2989       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2990
2991       // Possibly warn about unresolved symbols in shared libraries.
2992       this->warn_about_undefined_dynobj_symbol(sym);
2993
2994       unsigned int sym_index = sym->symtab_index();
2995       unsigned int dynsym_index;
2996       if (dynamic_view == NULL)
2997         dynsym_index = -1U;
2998       else
2999         dynsym_index = sym->dynsym_index();
3000
3001       if (sym_index == -1U && dynsym_index == -1U)
3002         {
3003           // This symbol is not included in the output file.
3004           continue;
3005         }
3006
3007       unsigned int shndx;
3008       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
3009       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
3010       elfcpp::STB binding = sym->binding();
3011
3012       // If --weak-unresolved-symbols is set, change binding of unresolved
3013       // global symbols to STB_WEAK.
3014       if (parameters->options().weak_unresolved_symbols()
3015           && binding == elfcpp::STB_GLOBAL
3016           && sym->is_undefined())
3017         binding = elfcpp::STB_WEAK;
3018
3019       // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
3020       if (binding == elfcpp::STB_GNU_UNIQUE
3021           && !parameters->options().gnu_unique())
3022         binding = elfcpp::STB_GLOBAL;
3023
3024       switch (sym->source())
3025         {
3026         case Symbol::FROM_OBJECT:
3027           {
3028             bool is_ordinary;
3029             unsigned int in_shndx = sym->shndx(&is_ordinary);
3030
3031             if (!is_ordinary
3032                 && in_shndx != elfcpp::SHN_ABS
3033                 && !Symbol::is_common_shndx(in_shndx))
3034               {
3035                 gold_error(_("%s: unsupported symbol section 0x%x"),
3036                            sym->demangled_name().c_str(), in_shndx);
3037                 shndx = in_shndx;
3038               }
3039             else
3040               {
3041                 Object* symobj = sym->object();
3042                 if (symobj->is_dynamic())
3043                   {
3044                     if (sym->needs_dynsym_value())
3045                       dynsym_value = target.dynsym_value(sym);
3046                     shndx = elfcpp::SHN_UNDEF;
3047                     if (sym->is_undef_binding_weak())
3048                       binding = elfcpp::STB_WEAK;
3049                     else
3050                       binding = elfcpp::STB_GLOBAL;
3051                   }
3052                 else if (symobj->pluginobj() != NULL)
3053                   shndx = elfcpp::SHN_UNDEF;
3054                 else if (in_shndx == elfcpp::SHN_UNDEF
3055                          || (!is_ordinary
3056                              && (in_shndx == elfcpp::SHN_ABS
3057                                  || Symbol::is_common_shndx(in_shndx))))
3058                   shndx = in_shndx;
3059                 else
3060                   {
3061                     Relobj* relobj = static_cast<Relobj*>(symobj);
3062                     Output_section* os = relobj->output_section(in_shndx);
3063                     if (this->is_section_folded(relobj, in_shndx))
3064                       {
3065                         // This global symbol must be written out even though
3066                         // it is folded.
3067                         // Get the os of the section it is folded onto.
3068                         Section_id folded =
3069                              this->icf_->get_folded_section(relobj, in_shndx);
3070                         gold_assert(folded.first !=NULL);
3071                         Relobj* folded_obj = 
3072                           reinterpret_cast<Relobj*>(folded.first);
3073                         os = folded_obj->output_section(folded.second);  
3074                         gold_assert(os != NULL);
3075                       }
3076                     gold_assert(os != NULL);
3077                     shndx = os->out_shndx();
3078
3079                     if (shndx >= elfcpp::SHN_LORESERVE)
3080                       {
3081                         if (sym_index != -1U)
3082                           symtab_xindex->add(sym_index, shndx);
3083                         if (dynsym_index != -1U)
3084                           dynsym_xindex->add(dynsym_index, shndx);
3085                         shndx = elfcpp::SHN_XINDEX;
3086                       }
3087
3088                     // In object files symbol values are section
3089                     // relative.
3090                     if (parameters->options().relocatable())
3091                       sym_value -= os->address();
3092                   }
3093               }
3094           }
3095           break;
3096
3097         case Symbol::IN_OUTPUT_DATA:
3098           {
3099             Output_data* od = sym->output_data();
3100
3101             shndx = od->out_shndx();
3102             if (shndx >= elfcpp::SHN_LORESERVE)
3103               {
3104                 if (sym_index != -1U)
3105                   symtab_xindex->add(sym_index, shndx);
3106                 if (dynsym_index != -1U)
3107                   dynsym_xindex->add(dynsym_index, shndx);
3108                 shndx = elfcpp::SHN_XINDEX;
3109               }
3110
3111             // In object files symbol values are section
3112             // relative.
3113             if (parameters->options().relocatable())
3114               {
3115                 Output_section* os = od->output_section();
3116                 gold_assert(os != NULL);
3117                 sym_value -= os->address();
3118               }
3119           }
3120           break;
3121
3122         case Symbol::IN_OUTPUT_SEGMENT:
3123           {
3124             Output_segment* oseg = sym->output_segment();
3125             Output_section* osect = oseg->first_section();
3126             if (osect == NULL)
3127               shndx = elfcpp::SHN_ABS;
3128             else
3129               shndx = osect->out_shndx();
3130           }
3131           break;
3132
3133         case Symbol::IS_CONSTANT:
3134           shndx = elfcpp::SHN_ABS;
3135           break;
3136
3137         case Symbol::IS_UNDEFINED:
3138           shndx = elfcpp::SHN_UNDEF;
3139           break;
3140
3141         default:
3142           gold_unreachable();
3143         }
3144
3145       if (sym_index != -1U)
3146         {
3147           sym_index -= first_global_index;
3148           gold_assert(sym_index < output_count);
3149           unsigned char* ps = psyms + (sym_index * sym_size);
3150           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3151                                                      binding, sympool, ps);
3152         }
3153
3154       if (dynsym_index != -1U)
3155         {
3156           dynsym_index -= first_dynamic_global_index;
3157           gold_assert(dynsym_index < dynamic_count);
3158           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3159           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3160                                                      binding, dynpool, pd);
3161           // Allow a target to adjust dynamic symbol value.
3162           parameters->target().adjust_dyn_symbol(sym, pd);
3163         }
3164     }
3165
3166   // Write the target-specific symbols.
3167   for (std::vector<Symbol*>::const_iterator p = this->target_symbols_.begin();
3168        p != this->target_symbols_.end();
3169        ++p)
3170     {
3171       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(*p);
3172
3173       unsigned int sym_index = sym->symtab_index();
3174       unsigned int dynsym_index;
3175       if (dynamic_view == NULL)
3176         dynsym_index = -1U;
3177       else
3178         dynsym_index = sym->dynsym_index();
3179
3180       unsigned int shndx;
3181       switch (sym->source())
3182         {
3183         case Symbol::IS_CONSTANT:
3184           shndx = elfcpp::SHN_ABS;
3185           break;
3186         case Symbol::IS_UNDEFINED:
3187           shndx = elfcpp::SHN_UNDEF;
3188           break;
3189         default:
3190           gold_unreachable();
3191         }
3192
3193       if (sym_index != -1U)
3194         {
3195           sym_index -= first_global_index;
3196           gold_assert(sym_index < output_count);
3197           unsigned char* ps = psyms + (sym_index * sym_size);
3198           this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3199                                                      sym->binding(), sympool,
3200                                                      ps);
3201         }
3202
3203       if (dynsym_index != -1U)
3204         {
3205           dynsym_index -= first_dynamic_global_index;
3206           gold_assert(dynsym_index < dynamic_count);
3207           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3208           this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3209                                                      sym->binding(), dynpool,
3210                                                      pd);
3211         }
3212     }
3213
3214   of->write_output_view(this->offset_, oview_size, psyms);
3215   if (dynamic_view != NULL)
3216     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3217 }
3218
3219 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
3220 // strtab holding the name.
3221
3222 template<int size, bool big_endian>
3223 void
3224 Symbol_table::sized_write_symbol(
3225     Sized_symbol<size>* sym,
3226     typename elfcpp::Elf_types<size>::Elf_Addr value,
3227     unsigned int shndx,
3228     elfcpp::STB binding,
3229     const Stringpool* pool,
3230     unsigned char* p) const
3231 {
3232   elfcpp::Sym_write<size, big_endian> osym(p);
3233   if (sym->version() == NULL || !parameters->options().relocatable())
3234     osym.put_st_name(pool->get_offset(sym->name()));
3235   else
3236     osym.put_st_name(pool->get_offset(sym->versioned_name()));
3237   osym.put_st_value(value);
3238   // Use a symbol size of zero for undefined symbols from shared libraries.
3239   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3240     osym.put_st_size(0);
3241   else
3242     osym.put_st_size(sym->symsize());
3243   elfcpp::STT type = sym->type();
3244   gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3245   // A version script may have overridden the default binding.
3246   if (sym->is_forced_local())
3247     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3248   else
3249     osym.put_st_info(elfcpp::elf_st_info(binding, type));
3250   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3251   osym.put_st_shndx(shndx);
3252 }
3253
3254 // Check for unresolved symbols in shared libraries.  This is
3255 // controlled by the --allow-shlib-undefined option.
3256
3257 // We only warn about libraries for which we have seen all the
3258 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
3259 // which were not seen in this link.  If we didn't see a DT_NEEDED
3260 // entry, we aren't going to be able to reliably report whether the
3261 // symbol is undefined.
3262
3263 // We also don't warn about libraries found in a system library
3264 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3265 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
3266 // can have undefined references satisfied by ld-linux.so.
3267
3268 inline void
3269 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3270 {
3271   bool dummy;
3272   if (sym->source() == Symbol::FROM_OBJECT
3273       && sym->object()->is_dynamic()
3274       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3275       && sym->binding() != elfcpp::STB_WEAK
3276       && !parameters->options().allow_shlib_undefined()
3277       && !parameters->target().is_defined_by_abi(sym)
3278       && !sym->object()->is_in_system_directory())
3279     {
3280       // A very ugly cast.
3281       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3282       if (!dynobj->has_unknown_needed_entries())
3283         gold_undefined_symbol(sym);
3284     }
3285 }
3286
3287 // Write out a section symbol.  Return the update offset.
3288
3289 void
3290 Symbol_table::write_section_symbol(const Output_section* os,
3291                                    Output_symtab_xindex* symtab_xindex,
3292                                    Output_file* of,
3293                                    off_t offset) const
3294 {
3295   switch (parameters->size_and_endianness())
3296     {
3297 #ifdef HAVE_TARGET_32_LITTLE
3298     case Parameters::TARGET_32_LITTLE:
3299       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3300                                                   offset);
3301       break;
3302 #endif
3303 #ifdef HAVE_TARGET_32_BIG
3304     case Parameters::TARGET_32_BIG:
3305       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3306                                                  offset);
3307       break;
3308 #endif
3309 #ifdef HAVE_TARGET_64_LITTLE
3310     case Parameters::TARGET_64_LITTLE:
3311       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3312                                                   offset);
3313       break;
3314 #endif
3315 #ifdef HAVE_TARGET_64_BIG
3316     case Parameters::TARGET_64_BIG:
3317       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3318                                                  offset);
3319       break;
3320 #endif
3321     default:
3322       gold_unreachable();
3323     }
3324 }
3325
3326 // Write out a section symbol, specialized for size and endianness.
3327
3328 template<int size, bool big_endian>
3329 void
3330 Symbol_table::sized_write_section_symbol(const Output_section* os,
3331                                          Output_symtab_xindex* symtab_xindex,
3332                                          Output_file* of,
3333                                          off_t offset) const
3334 {
3335   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3336
3337   unsigned char* pov = of->get_output_view(offset, sym_size);
3338
3339   elfcpp::Sym_write<size, big_endian> osym(pov);
3340   osym.put_st_name(0);
3341   if (parameters->options().relocatable())
3342     osym.put_st_value(0);
3343   else
3344     osym.put_st_value(os->address());
3345   osym.put_st_size(0);
3346   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3347                                        elfcpp::STT_SECTION));
3348   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3349
3350   unsigned int shndx = os->out_shndx();
3351   if (shndx >= elfcpp::SHN_LORESERVE)
3352     {
3353       symtab_xindex->add(os->symtab_index(), shndx);
3354       shndx = elfcpp::SHN_XINDEX;
3355     }
3356   osym.put_st_shndx(shndx);
3357
3358   of->write_output_view(offset, sym_size, pov);
3359 }
3360
3361 // Print statistical information to stderr.  This is used for --stats.
3362
3363 void
3364 Symbol_table::print_stats() const
3365 {
3366 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3367   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3368           program_name, this->table_.size(), this->table_.bucket_count());
3369 #else
3370   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3371           program_name, this->table_.size());
3372 #endif
3373   this->namepool_.print_stats("symbol table stringpool");
3374 }
3375
3376 // We check for ODR violations by looking for symbols with the same
3377 // name for which the debugging information reports that they were
3378 // defined in disjoint source locations.  When comparing the source
3379 // location, we consider instances with the same base filename to be
3380 // the same.  This is because different object files/shared libraries
3381 // can include the same header file using different paths, and
3382 // different optimization settings can make the line number appear to
3383 // be a couple lines off, and we don't want to report an ODR violation
3384 // in those cases.
3385
3386 // This struct is used to compare line information, as returned by
3387 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3388 // operator used with std::sort.
3389
3390 struct Odr_violation_compare
3391 {
3392   bool
3393   operator()(const std::string& s1, const std::string& s2) const
3394   {
3395     // Inputs should be of the form "dirname/filename:linenum" where
3396     // "dirname/" is optional.  We want to compare just the filename:linenum.
3397
3398     // Find the last '/' in each string.
3399     std::string::size_type s1begin = s1.rfind('/');
3400     std::string::size_type s2begin = s2.rfind('/');
3401     // If there was no '/' in a string, start at the beginning.
3402     if (s1begin == std::string::npos)
3403       s1begin = 0;
3404     if (s2begin == std::string::npos)
3405       s2begin = 0;
3406     return s1.compare(s1begin, std::string::npos,
3407                       s2, s2begin, std::string::npos) < 0;
3408   }
3409 };
3410
3411 // Returns all of the lines attached to LOC, not just the one the
3412 // instruction actually came from.
3413 std::vector<std::string>
3414 Symbol_table::linenos_from_loc(const Task* task,
3415                                const Symbol_location& loc)
3416 {
3417   // We need to lock the object in order to read it.  This
3418   // means that we have to run in a singleton Task.  If we
3419   // want to run this in a general Task for better
3420   // performance, we will need one Task for object, plus
3421   // appropriate locking to ensure that we don't conflict with
3422   // other uses of the object.  Also note, one_addr2line is not
3423   // currently thread-safe.
3424   Task_lock_obj<Object> tl(task, loc.object);
3425
3426   std::vector<std::string> result;
3427   Symbol_location code_loc = loc;
3428   parameters->target().function_location(&code_loc);
3429   // 16 is the size of the object-cache that one_addr2line should use.
3430   std::string canonical_result = Dwarf_line_info::one_addr2line(
3431       code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3432   if (!canonical_result.empty())
3433     result.push_back(canonical_result);
3434   return result;
3435 }
3436
3437 // OutputIterator that records if it was ever assigned to.  This
3438 // allows it to be used with std::set_intersection() to check for
3439 // intersection rather than computing the intersection.
3440 struct Check_intersection
3441 {
3442   Check_intersection()
3443     : value_(false)
3444   {}
3445
3446   bool had_intersection() const
3447   { return this->value_; }
3448
3449   Check_intersection& operator++()
3450   { return *this; }
3451
3452   Check_intersection& operator*()
3453   { return *this; }
3454
3455   template<typename T>
3456   Check_intersection& operator=(const T&)
3457   {
3458     this->value_ = true;
3459     return *this;
3460   }
3461
3462  private:
3463   bool value_;
3464 };
3465
3466 // Check candidate_odr_violations_ to find symbols with the same name
3467 // but apparently different definitions (different source-file/line-no
3468 // for each line assigned to the first instruction).
3469
3470 void
3471 Symbol_table::detect_odr_violations(const Task* task,
3472                                     const char* output_file_name) const
3473 {
3474   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3475        it != candidate_odr_violations_.end();
3476        ++it)
3477     {
3478       const char* const symbol_name = it->first;
3479
3480       std::string first_object_name;
3481       std::vector<std::string> first_object_linenos;
3482
3483       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3484           locs = it->second.begin();
3485       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3486           locs_end = it->second.end();
3487       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3488         {
3489           // Save the line numbers from the first definition to
3490           // compare to the other definitions.  Ideally, we'd compare
3491           // every definition to every other, but we don't want to
3492           // take O(N^2) time to do this.  This shortcut may cause
3493           // false negatives that appear or disappear depending on the
3494           // link order, but it won't cause false positives.
3495           first_object_name = locs->object->name();
3496           first_object_linenos = this->linenos_from_loc(task, *locs);
3497         }
3498       if (first_object_linenos.empty())
3499         continue;
3500
3501       // Sort by Odr_violation_compare to make std::set_intersection work.
3502       std::string first_object_canonical_result = first_object_linenos.back();
3503       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3504                 Odr_violation_compare());
3505
3506       for (; locs != locs_end; ++locs)
3507         {
3508           std::vector<std::string> linenos =
3509               this->linenos_from_loc(task, *locs);
3510           // linenos will be empty if we couldn't parse the debug info.
3511           if (linenos.empty())
3512             continue;
3513           // Sort by Odr_violation_compare to make std::set_intersection work.
3514           gold_assert(!linenos.empty());
3515           std::string second_object_canonical_result = linenos.back();
3516           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3517
3518           Check_intersection intersection_result =
3519               std::set_intersection(first_object_linenos.begin(),
3520                                     first_object_linenos.end(),
3521                                     linenos.begin(),
3522                                     linenos.end(),
3523                                     Check_intersection(),
3524                                     Odr_violation_compare());
3525           if (!intersection_result.had_intersection())
3526             {
3527               gold_warning(_("while linking %s: symbol '%s' defined in "
3528                              "multiple places (possible ODR violation):"),
3529                            output_file_name, demangle(symbol_name).c_str());
3530               // This only prints one location from each definition,
3531               // which may not be the location we expect to intersect
3532               // with another definition.  We could print the whole
3533               // set of locations, but that seems too verbose.
3534               fprintf(stderr, _("  %s from %s\n"),
3535                       first_object_canonical_result.c_str(),
3536                       first_object_name.c_str());
3537               fprintf(stderr, _("  %s from %s\n"),
3538                       second_object_canonical_result.c_str(),
3539                       locs->object->name().c_str());
3540               // Only print one broken pair, to avoid needing to
3541               // compare against a list of the disjoint definition
3542               // locations we've found so far.  (If we kept comparing
3543               // against just the first one, we'd get a lot of
3544               // redundant complaints about the second definition
3545               // location.)
3546               break;
3547             }
3548         }
3549     }
3550   // We only call one_addr2line() in this function, so we can clear its cache.
3551   Dwarf_line_info::clear_addr2line_cache();
3552 }
3553
3554 // Warnings functions.
3555
3556 // Add a new warning.
3557
3558 void
3559 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3560                       const std::string& warning)
3561 {
3562   name = symtab->canonicalize_name(name);
3563   this->warnings_[name].set(obj, warning);
3564 }
3565
3566 // Look through the warnings and mark the symbols for which we should
3567 // warn.  This is called during Layout::finalize when we know the
3568 // sources for all the symbols.
3569
3570 void
3571 Warnings::note_warnings(Symbol_table* symtab)
3572 {
3573   for (Warning_table::iterator p = this->warnings_.begin();
3574        p != this->warnings_.end();
3575        ++p)
3576     {
3577       Symbol* sym = symtab->lookup(p->first, NULL);
3578       if (sym != NULL
3579           && sym->source() == Symbol::FROM_OBJECT
3580           && sym->object() == p->second.object)
3581         sym->set_has_warning();
3582     }
3583 }
3584
3585 // Issue a warning.  This is called when we see a relocation against a
3586 // symbol for which has a warning.
3587
3588 template<int size, bool big_endian>
3589 void
3590 Warnings::issue_warning(const Symbol* sym,
3591                         const Relocate_info<size, big_endian>* relinfo,
3592                         size_t relnum, off_t reloffset) const
3593 {
3594   gold_assert(sym->has_warning());
3595
3596   // We don't want to issue a warning for a relocation against the
3597   // symbol in the same object file in which the symbol is defined.
3598   if (sym->object() == relinfo->object)
3599     return;
3600
3601   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3602   gold_assert(p != this->warnings_.end());
3603   gold_warning_at_location(relinfo, relnum, reloffset,
3604                            "%s", p->second.text.c_str());
3605 }
3606
3607 // Instantiate the templates we need.  We could use the configure
3608 // script to restrict this to only the ones needed for implemented
3609 // targets.
3610
3611 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3612 template
3613 void
3614 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3615 #endif
3616
3617 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3618 template
3619 void
3620 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3621 #endif
3622
3623 #ifdef HAVE_TARGET_32_LITTLE
3624 template
3625 void
3626 Symbol_table::add_from_relobj<32, false>(
3627     Sized_relobj_file<32, false>* relobj,
3628     const unsigned char* syms,
3629     size_t count,
3630     size_t symndx_offset,
3631     const char* sym_names,
3632     size_t sym_name_size,
3633     Sized_relobj_file<32, false>::Symbols* sympointers,
3634     size_t* defined);
3635 #endif
3636
3637 #ifdef HAVE_TARGET_32_BIG
3638 template
3639 void
3640 Symbol_table::add_from_relobj<32, true>(
3641     Sized_relobj_file<32, true>* relobj,
3642     const unsigned char* syms,
3643     size_t count,
3644     size_t symndx_offset,
3645     const char* sym_names,
3646     size_t sym_name_size,
3647     Sized_relobj_file<32, true>::Symbols* sympointers,
3648     size_t* defined);
3649 #endif
3650
3651 #ifdef HAVE_TARGET_64_LITTLE
3652 template
3653 void
3654 Symbol_table::add_from_relobj<64, false>(
3655     Sized_relobj_file<64, false>* relobj,
3656     const unsigned char* syms,
3657     size_t count,
3658     size_t symndx_offset,
3659     const char* sym_names,
3660     size_t sym_name_size,
3661     Sized_relobj_file<64, false>::Symbols* sympointers,
3662     size_t* defined);
3663 #endif
3664
3665 #ifdef HAVE_TARGET_64_BIG
3666 template
3667 void
3668 Symbol_table::add_from_relobj<64, true>(
3669     Sized_relobj_file<64, true>* relobj,
3670     const unsigned char* syms,
3671     size_t count,
3672     size_t symndx_offset,
3673     const char* sym_names,
3674     size_t sym_name_size,
3675     Sized_relobj_file<64, true>::Symbols* sympointers,
3676     size_t* defined);
3677 #endif
3678
3679 #ifdef HAVE_TARGET_32_LITTLE
3680 template
3681 Symbol*
3682 Symbol_table::add_from_pluginobj<32, false>(
3683     Sized_pluginobj<32, false>* obj,
3684     const char* name,
3685     const char* ver,
3686     elfcpp::Sym<32, false>* sym);
3687 #endif
3688
3689 #ifdef HAVE_TARGET_32_BIG
3690 template
3691 Symbol*
3692 Symbol_table::add_from_pluginobj<32, true>(
3693     Sized_pluginobj<32, true>* obj,
3694     const char* name,
3695     const char* ver,
3696     elfcpp::Sym<32, true>* sym);
3697 #endif
3698
3699 #ifdef HAVE_TARGET_64_LITTLE
3700 template
3701 Symbol*
3702 Symbol_table::add_from_pluginobj<64, false>(
3703     Sized_pluginobj<64, false>* obj,
3704     const char* name,
3705     const char* ver,
3706     elfcpp::Sym<64, false>* sym);
3707 #endif
3708
3709 #ifdef HAVE_TARGET_64_BIG
3710 template
3711 Symbol*
3712 Symbol_table::add_from_pluginobj<64, true>(
3713     Sized_pluginobj<64, true>* obj,
3714     const char* name,
3715     const char* ver,
3716     elfcpp::Sym<64, true>* sym);
3717 #endif
3718
3719 #ifdef HAVE_TARGET_32_LITTLE
3720 template
3721 void
3722 Symbol_table::add_from_dynobj<32, false>(
3723     Sized_dynobj<32, false>* dynobj,
3724     const unsigned char* syms,
3725     size_t count,
3726     const char* sym_names,
3727     size_t sym_name_size,
3728     const unsigned char* versym,
3729     size_t versym_size,
3730     const std::vector<const char*>* version_map,
3731     Sized_relobj_file<32, false>::Symbols* sympointers,
3732     size_t* defined);
3733 #endif
3734
3735 #ifdef HAVE_TARGET_32_BIG
3736 template
3737 void
3738 Symbol_table::add_from_dynobj<32, true>(
3739     Sized_dynobj<32, true>* dynobj,
3740     const unsigned char* syms,
3741     size_t count,
3742     const char* sym_names,
3743     size_t sym_name_size,
3744     const unsigned char* versym,
3745     size_t versym_size,
3746     const std::vector<const char*>* version_map,
3747     Sized_relobj_file<32, true>::Symbols* sympointers,
3748     size_t* defined);
3749 #endif
3750
3751 #ifdef HAVE_TARGET_64_LITTLE
3752 template
3753 void
3754 Symbol_table::add_from_dynobj<64, false>(
3755     Sized_dynobj<64, false>* dynobj,
3756     const unsigned char* syms,
3757     size_t count,
3758     const char* sym_names,
3759     size_t sym_name_size,
3760     const unsigned char* versym,
3761     size_t versym_size,
3762     const std::vector<const char*>* version_map,
3763     Sized_relobj_file<64, false>::Symbols* sympointers,
3764     size_t* defined);
3765 #endif
3766
3767 #ifdef HAVE_TARGET_64_BIG
3768 template
3769 void
3770 Symbol_table::add_from_dynobj<64, true>(
3771     Sized_dynobj<64, true>* dynobj,
3772     const unsigned char* syms,
3773     size_t count,
3774     const char* sym_names,
3775     size_t sym_name_size,
3776     const unsigned char* versym,
3777     size_t versym_size,
3778     const std::vector<const char*>* version_map,
3779     Sized_relobj_file<64, true>::Symbols* sympointers,
3780     size_t* defined);
3781 #endif
3782
3783 #ifdef HAVE_TARGET_32_LITTLE
3784 template
3785 Sized_symbol<32>*
3786 Symbol_table::add_from_incrobj(
3787     Object* obj,
3788     const char* name,
3789     const char* ver,
3790     elfcpp::Sym<32, false>* sym);
3791 #endif
3792
3793 #ifdef HAVE_TARGET_32_BIG
3794 template
3795 Sized_symbol<32>*
3796 Symbol_table::add_from_incrobj(
3797     Object* obj,
3798     const char* name,
3799     const char* ver,
3800     elfcpp::Sym<32, true>* sym);
3801 #endif
3802
3803 #ifdef HAVE_TARGET_64_LITTLE
3804 template
3805 Sized_symbol<64>*
3806 Symbol_table::add_from_incrobj(
3807     Object* obj,
3808     const char* name,
3809     const char* ver,
3810     elfcpp::Sym<64, false>* sym);
3811 #endif
3812
3813 #ifdef HAVE_TARGET_64_BIG
3814 template
3815 Sized_symbol<64>*
3816 Symbol_table::add_from_incrobj(
3817     Object* obj,
3818     const char* name,
3819     const char* ver,
3820     elfcpp::Sym<64, true>* sym);
3821 #endif
3822
3823 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3824 template
3825 void
3826 Symbol_table::define_with_copy_reloc<32>(
3827     Sized_symbol<32>* sym,
3828     Output_data* posd,
3829     elfcpp::Elf_types<32>::Elf_Addr value);
3830 #endif
3831
3832 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3833 template
3834 void
3835 Symbol_table::define_with_copy_reloc<64>(
3836     Sized_symbol<64>* sym,
3837     Output_data* posd,
3838     elfcpp::Elf_types<64>::Elf_Addr value);
3839 #endif
3840
3841 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3842 template
3843 void
3844 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3845                                    Output_data* od, Value_type value,
3846                                    Size_type symsize, elfcpp::STT type,
3847                                    elfcpp::STB binding,
3848                                    elfcpp::STV visibility,
3849                                    unsigned char nonvis,
3850                                    bool offset_is_from_end,
3851                                    bool is_predefined);
3852
3853 template
3854 void
3855 Sized_symbol<32>::init_constant(const char* name, const char* version,
3856                                 Value_type value, Size_type symsize,
3857                                 elfcpp::STT type, elfcpp::STB binding,
3858                                 elfcpp::STV visibility, unsigned char nonvis,
3859                                 bool is_predefined);
3860
3861 template
3862 void
3863 Sized_symbol<32>::init_undefined(const char* name, const char* version,
3864                                  Value_type value, elfcpp::STT type,
3865                                  elfcpp::STB binding, elfcpp::STV visibility,
3866                                  unsigned char nonvis);
3867 #endif
3868
3869 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3870 template
3871 void
3872 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3873                                    Output_data* od, Value_type value,
3874                                    Size_type symsize, elfcpp::STT type,
3875                                    elfcpp::STB binding,
3876                                    elfcpp::STV visibility,
3877                                    unsigned char nonvis,
3878                                    bool offset_is_from_end,
3879                                    bool is_predefined);
3880
3881 template
3882 void
3883 Sized_symbol<64>::init_constant(const char* name, const char* version,
3884                                 Value_type value, Size_type symsize,
3885                                 elfcpp::STT type, elfcpp::STB binding,
3886                                 elfcpp::STV visibility, unsigned char nonvis,
3887                                 bool is_predefined);
3888
3889 template
3890 void
3891 Sized_symbol<64>::init_undefined(const char* name, const char* version,
3892                                  Value_type value, elfcpp::STT type,
3893                                  elfcpp::STB binding, elfcpp::STV visibility,
3894                                  unsigned char nonvis);
3895 #endif
3896
3897 #ifdef HAVE_TARGET_32_LITTLE
3898 template
3899 void
3900 Warnings::issue_warning<32, false>(const Symbol* sym,
3901                                    const Relocate_info<32, false>* relinfo,
3902                                    size_t relnum, off_t reloffset) const;
3903 #endif
3904
3905 #ifdef HAVE_TARGET_32_BIG
3906 template
3907 void
3908 Warnings::issue_warning<32, true>(const Symbol* sym,
3909                                   const Relocate_info<32, true>* relinfo,
3910                                   size_t relnum, off_t reloffset) const;
3911 #endif
3912
3913 #ifdef HAVE_TARGET_64_LITTLE
3914 template
3915 void
3916 Warnings::issue_warning<64, false>(const Symbol* sym,
3917                                    const Relocate_info<64, false>* relinfo,
3918                                    size_t relnum, off_t reloffset) const;
3919 #endif
3920
3921 #ifdef HAVE_TARGET_64_BIG
3922 template
3923 void
3924 Warnings::issue_warning<64, true>(const Symbol* sym,
3925                                   const Relocate_info<64, true>* relinfo,
3926                                   size_t relnum, off_t reloffset) const;
3927 #endif
3928
3929 } // End namespace gold.