From Cary Coutant: Fix handling of RELATIVE RELA relocs.
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <stdint.h>
26 #include <set>
27 #include <string>
28 #include <utility>
29 #include "demangle.h"
30
31 #include "object.h"
32 #include "dwarf_reader.h"
33 #include "dynobj.h"
34 #include "output.h"
35 #include "target.h"
36 #include "workqueue.h"
37 #include "symtab.h"
38
39 namespace gold
40 {
41
42 // Class Symbol.
43
44 // Initialize fields in Symbol.  This initializes everything except u_
45 // and source_.
46
47 void
48 Symbol::init_fields(const char* name, const char* version,
49                     elfcpp::STT type, elfcpp::STB binding,
50                     elfcpp::STV visibility, unsigned char nonvis)
51 {
52   this->name_ = name;
53   this->version_ = version;
54   this->symtab_index_ = 0;
55   this->dynsym_index_ = 0;
56   this->got_offset_ = 0;
57   this->plt_offset_ = 0;
58   this->type_ = type;
59   this->binding_ = binding;
60   this->visibility_ = visibility;
61   this->nonvis_ = nonvis;
62   this->is_target_special_ = false;
63   this->is_def_ = false;
64   this->is_forwarder_ = false;
65   this->has_alias_ = false;
66   this->needs_dynsym_entry_ = false;
67   this->in_reg_ = false;
68   this->in_dyn_ = false;
69   this->has_got_offset_ = false;
70   this->has_plt_offset_ = false;
71   this->has_warning_ = false;
72   this->is_copied_from_dynobj_ = false;
73 }
74
75 // Return the demangled version of the symbol's name, but only
76 // if the --demangle flag was set.
77
78 static std::string
79 demangle(const char* name)
80 {
81   if (!parameters->demangle())
82     return name;
83
84   // cplus_demangle allocates memory for the result it returns,
85   // and returns NULL if the name is already demangled.
86   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
87   if (demangled_name == NULL)
88     return name;
89
90   std::string retval(demangled_name);
91   free(demangled_name);
92   return retval;
93 }
94
95 std::string
96 Symbol::demangled_name() const
97 {
98   return demangle(this->name());
99 }
100
101 // Initialize the fields in the base class Symbol for SYM in OBJECT.
102
103 template<int size, bool big_endian>
104 void
105 Symbol::init_base(const char* name, const char* version, Object* object,
106                   const elfcpp::Sym<size, big_endian>& sym)
107 {
108   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
109                     sym.get_st_visibility(), sym.get_st_nonvis());
110   this->u_.from_object.object = object;
111   // FIXME: Handle SHN_XINDEX.
112   this->u_.from_object.shndx = sym.get_st_shndx();
113   this->source_ = FROM_OBJECT;
114   this->in_reg_ = !object->is_dynamic();
115   this->in_dyn_ = object->is_dynamic();
116 }
117
118 // Initialize the fields in the base class Symbol for a symbol defined
119 // in an Output_data.
120
121 void
122 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
123                   elfcpp::STB binding, elfcpp::STV visibility,
124                   unsigned char nonvis, bool offset_is_from_end)
125 {
126   this->init_fields(name, NULL, type, binding, visibility, nonvis);
127   this->u_.in_output_data.output_data = od;
128   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
129   this->source_ = IN_OUTPUT_DATA;
130   this->in_reg_ = true;
131 }
132
133 // Initialize the fields in the base class Symbol for a symbol defined
134 // in an Output_segment.
135
136 void
137 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
138                   elfcpp::STB binding, elfcpp::STV visibility,
139                   unsigned char nonvis, Segment_offset_base offset_base)
140 {
141   this->init_fields(name, NULL, type, binding, visibility, nonvis);
142   this->u_.in_output_segment.output_segment = os;
143   this->u_.in_output_segment.offset_base = offset_base;
144   this->source_ = IN_OUTPUT_SEGMENT;
145   this->in_reg_ = true;
146 }
147
148 // Initialize the fields in the base class Symbol for a symbol defined
149 // as a constant.
150
151 void
152 Symbol::init_base(const char* name, elfcpp::STT type,
153                   elfcpp::STB binding, elfcpp::STV visibility,
154                   unsigned char nonvis)
155 {
156   this->init_fields(name, NULL, type, binding, visibility, nonvis);
157   this->source_ = CONSTANT;
158   this->in_reg_ = true;
159 }
160
161 // Allocate a common symbol in the base.
162
163 void
164 Symbol::allocate_base_common(Output_data* od)
165 {
166   gold_assert(this->is_common());
167   this->source_ = IN_OUTPUT_DATA;
168   this->u_.in_output_data.output_data = od;
169   this->u_.in_output_data.offset_is_from_end = false;
170 }
171
172 // Initialize the fields in Sized_symbol for SYM in OBJECT.
173
174 template<int size>
175 template<bool big_endian>
176 void
177 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
178                          const elfcpp::Sym<size, big_endian>& sym)
179 {
180   this->init_base(name, version, object, sym);
181   this->value_ = sym.get_st_value();
182   this->symsize_ = sym.get_st_size();
183 }
184
185 // Initialize the fields in Sized_symbol for a symbol defined in an
186 // Output_data.
187
188 template<int size>
189 void
190 Sized_symbol<size>::init(const char* name, Output_data* od,
191                          Value_type value, Size_type symsize,
192                          elfcpp::STT type, elfcpp::STB binding,
193                          elfcpp::STV visibility, unsigned char nonvis,
194                          bool offset_is_from_end)
195 {
196   this->init_base(name, od, type, binding, visibility, nonvis,
197                   offset_is_from_end);
198   this->value_ = value;
199   this->symsize_ = symsize;
200 }
201
202 // Initialize the fields in Sized_symbol for a symbol defined in an
203 // Output_segment.
204
205 template<int size>
206 void
207 Sized_symbol<size>::init(const char* name, Output_segment* os,
208                          Value_type value, Size_type symsize,
209                          elfcpp::STT type, elfcpp::STB binding,
210                          elfcpp::STV visibility, unsigned char nonvis,
211                          Segment_offset_base offset_base)
212 {
213   this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
214   this->value_ = value;
215   this->symsize_ = symsize;
216 }
217
218 // Initialize the fields in Sized_symbol for a symbol defined as a
219 // constant.
220
221 template<int size>
222 void
223 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
224                          elfcpp::STT type, elfcpp::STB binding,
225                          elfcpp::STV visibility, unsigned char nonvis)
226 {
227   this->init_base(name, type, binding, visibility, nonvis);
228   this->value_ = value;
229   this->symsize_ = symsize;
230 }
231
232 // Allocate a common symbol.
233
234 template<int size>
235 void
236 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
237 {
238   this->allocate_base_common(od);
239   this->value_ = value;
240 }
241
242 // Return true if this symbol should be added to the dynamic symbol
243 // table.
244
245 inline bool
246 Symbol::should_add_dynsym_entry() const
247 {
248   // If the symbol is used by a dynamic relocation, we need to add it.
249   if (this->needs_dynsym_entry())
250     return true;
251
252   // If exporting all symbols or building a shared library,
253   // and the symbol is defined in a regular object and is
254   // externally visible, we need to add it.
255   if ((parameters->export_dynamic() || parameters->output_is_shared())
256       && !this->is_from_dynobj()
257       && this->is_externally_visible())
258     return true;
259
260   return false;
261 }
262
263 // Return true if the final value of this symbol is known at link
264 // time.
265
266 bool
267 Symbol::final_value_is_known() const
268 {
269   // If we are not generating an executable, then no final values are
270   // known, since they will change at runtime.
271   if (!parameters->output_is_executable())
272     return false;
273
274   // If the symbol is not from an object file, then it is defined, and
275   // known.
276   if (this->source_ != FROM_OBJECT)
277     return true;
278
279   // If the symbol is from a dynamic object, then the final value is
280   // not known.
281   if (this->object()->is_dynamic())
282     return false;
283
284   // If the symbol is not undefined (it is defined or common), then
285   // the final value is known.
286   if (!this->is_undefined())
287     return true;
288
289   // If the symbol is undefined, then whether the final value is known
290   // depends on whether we are doing a static link.  If we are doing a
291   // dynamic link, then the final value could be filled in at runtime.
292   // This could reasonably be the case for a weak undefined symbol.
293   return parameters->doing_static_link();
294 }
295
296 // Class Symbol_table.
297
298 Symbol_table::Symbol_table()
299   : saw_undefined_(0), offset_(0), table_(), namepool_(),
300     forwarders_(), commons_(), warnings_()
301 {
302 }
303
304 Symbol_table::~Symbol_table()
305 {
306 }
307
308 // The hash function.  The key values are Stringpool keys.
309
310 inline size_t
311 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
312 {
313   return key.first ^ key.second;
314 }
315
316 // The symbol table key equality function.  This is called with
317 // Stringpool keys.
318
319 inline bool
320 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
321                                           const Symbol_table_key& k2) const
322 {
323   return k1.first == k2.first && k1.second == k2.second;
324 }
325
326 // Make TO a symbol which forwards to FROM.
327
328 void
329 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
330 {
331   gold_assert(from != to);
332   gold_assert(!from->is_forwarder() && !to->is_forwarder());
333   this->forwarders_[from] = to;
334   from->set_forwarder();
335 }
336
337 // Resolve the forwards from FROM, returning the real symbol.
338
339 Symbol*
340 Symbol_table::resolve_forwards(const Symbol* from) const
341 {
342   gold_assert(from->is_forwarder());
343   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
344     this->forwarders_.find(from);
345   gold_assert(p != this->forwarders_.end());
346   return p->second;
347 }
348
349 // Look up a symbol by name.
350
351 Symbol*
352 Symbol_table::lookup(const char* name, const char* version) const
353 {
354   Stringpool::Key name_key;
355   name = this->namepool_.find(name, &name_key);
356   if (name == NULL)
357     return NULL;
358
359   Stringpool::Key version_key = 0;
360   if (version != NULL)
361     {
362       version = this->namepool_.find(version, &version_key);
363       if (version == NULL)
364         return NULL;
365     }
366
367   Symbol_table_key key(name_key, version_key);
368   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
369   if (p == this->table_.end())
370     return NULL;
371   return p->second;
372 }
373
374 // Resolve a Symbol with another Symbol.  This is only used in the
375 // unusual case where there are references to both an unversioned
376 // symbol and a symbol with a version, and we then discover that that
377 // version is the default version.  Because this is unusual, we do
378 // this the slow way, by converting back to an ELF symbol.
379
380 template<int size, bool big_endian>
381 void
382 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
383                       const char* version ACCEPT_SIZE_ENDIAN)
384 {
385   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
386   elfcpp::Sym_write<size, big_endian> esym(buf);
387   // We don't bother to set the st_name field.
388   esym.put_st_value(from->value());
389   esym.put_st_size(from->symsize());
390   esym.put_st_info(from->binding(), from->type());
391   esym.put_st_other(from->visibility(), from->nonvis());
392   esym.put_st_shndx(from->shndx());
393   this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
394   if (from->in_reg())
395     to->set_in_reg();
396   if (from->in_dyn())
397     to->set_in_dyn();
398 }
399
400 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
401 // name and VERSION is the version; both are canonicalized.  DEF is
402 // whether this is the default version.
403
404 // If DEF is true, then this is the definition of a default version of
405 // a symbol.  That means that any lookup of NAME/NULL and any lookup
406 // of NAME/VERSION should always return the same symbol.  This is
407 // obvious for references, but in particular we want to do this for
408 // definitions: overriding NAME/NULL should also override
409 // NAME/VERSION.  If we don't do that, it would be very hard to
410 // override functions in a shared library which uses versioning.
411
412 // We implement this by simply making both entries in the hash table
413 // point to the same Symbol structure.  That is easy enough if this is
414 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
415 // that we have seen both already, in which case they will both have
416 // independent entries in the symbol table.  We can't simply change
417 // the symbol table entry, because we have pointers to the entries
418 // attached to the object files.  So we mark the entry attached to the
419 // object file as a forwarder, and record it in the forwarders_ map.
420 // Note that entries in the hash table will never be marked as
421 // forwarders.
422 //
423 // SYM and ORIG_SYM are almost always the same.  ORIG_SYM is the
424 // symbol exactly as it existed in the input file.  SYM is usually
425 // that as well, but can be modified, for instance if we determine
426 // it's in a to-be-discarded section.
427
428 template<int size, bool big_endian>
429 Sized_symbol<size>*
430 Symbol_table::add_from_object(Object* object,
431                               const char *name,
432                               Stringpool::Key name_key,
433                               const char *version,
434                               Stringpool::Key version_key,
435                               bool def,
436                               const elfcpp::Sym<size, big_endian>& sym,
437                               const elfcpp::Sym<size, big_endian>& orig_sym)
438 {
439   Symbol* const snull = NULL;
440   std::pair<typename Symbol_table_type::iterator, bool> ins =
441     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
442                                        snull));
443
444   std::pair<typename Symbol_table_type::iterator, bool> insdef =
445     std::make_pair(this->table_.end(), false);
446   if (def)
447     {
448       const Stringpool::Key vnull_key = 0;
449       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
450                                                                  vnull_key),
451                                                   snull));
452     }
453
454   // ins.first: an iterator, which is a pointer to a pair.
455   // ins.first->first: the key (a pair of name and version).
456   // ins.first->second: the value (Symbol*).
457   // ins.second: true if new entry was inserted, false if not.
458
459   Sized_symbol<size>* ret;
460   bool was_undefined;
461   bool was_common;
462   if (!ins.second)
463     {
464       // We already have an entry for NAME/VERSION.
465       ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
466                                                            SELECT_SIZE(size));
467       gold_assert(ret != NULL);
468
469       was_undefined = ret->is_undefined();
470       was_common = ret->is_common();
471
472       this->resolve(ret, sym, orig_sym, object, version);
473
474       if (def)
475         {
476           if (insdef.second)
477             {
478               // This is the first time we have seen NAME/NULL.  Make
479               // NAME/NULL point to NAME/VERSION.
480               insdef.first->second = ret;
481             }
482           else if (insdef.first->second != ret)
483             {
484               // This is the unfortunate case where we already have
485               // entries for both NAME/VERSION and NAME/NULL.
486               const Sized_symbol<size>* sym2;
487               sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
488                 insdef.first->second
489                 SELECT_SIZE(size));
490               Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
491                 ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian));
492               this->make_forwarder(insdef.first->second, ret);
493               insdef.first->second = ret;
494             }
495         }
496     }
497   else
498     {
499       // This is the first time we have seen NAME/VERSION.
500       gold_assert(ins.first->second == NULL);
501
502       was_undefined = false;
503       was_common = false;
504
505       if (def && !insdef.second)
506         {
507           // We already have an entry for NAME/NULL.  If we override
508           // it, then change it to NAME/VERSION.
509           ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
510               insdef.first->second
511               SELECT_SIZE(size));
512           this->resolve(ret, sym, orig_sym, object, version);
513           ins.first->second = ret;
514         }
515       else
516         {
517           Sized_target<size, big_endian>* target =
518             object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
519                 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
520           if (!target->has_make_symbol())
521             ret = new Sized_symbol<size>();
522           else
523             {
524               ret = target->make_symbol();
525               if (ret == NULL)
526                 {
527                   // This means that we don't want a symbol table
528                   // entry after all.
529                   if (!def)
530                     this->table_.erase(ins.first);
531                   else
532                     {
533                       this->table_.erase(insdef.first);
534                       // Inserting insdef invalidated ins.
535                       this->table_.erase(std::make_pair(name_key,
536                                                         version_key));
537                     }
538                   return NULL;
539                 }
540             }
541
542           ret->init(name, version, object, sym);
543
544           ins.first->second = ret;
545           if (def)
546             {
547               // This is the first time we have seen NAME/NULL.  Point
548               // it at the new entry for NAME/VERSION.
549               gold_assert(insdef.second);
550               insdef.first->second = ret;
551             }
552         }
553     }
554
555   // Record every time we see a new undefined symbol, to speed up
556   // archive groups.
557   if (!was_undefined && ret->is_undefined())
558     ++this->saw_undefined_;
559
560   // Keep track of common symbols, to speed up common symbol
561   // allocation.
562   if (!was_common && ret->is_common())
563     this->commons_.push_back(ret);
564
565   return ret;
566 }
567
568 // Add all the symbols in a relocatable object to the hash table.
569
570 template<int size, bool big_endian>
571 void
572 Symbol_table::add_from_relobj(
573     Sized_relobj<size, big_endian>* relobj,
574     const unsigned char* syms,
575     size_t count,
576     const char* sym_names,
577     size_t sym_name_size,
578     typename Sized_relobj<size, big_endian>::Symbols* sympointers)
579 {
580   gold_assert(size == relobj->target()->get_size());
581   gold_assert(size == parameters->get_size());
582
583   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
584
585   const unsigned char* p = syms;
586   for (size_t i = 0; i < count; ++i, p += sym_size)
587     {
588       elfcpp::Sym<size, big_endian> sym(p);
589       elfcpp::Sym<size, big_endian>* psym = &sym;
590
591       unsigned int st_name = psym->get_st_name();
592       if (st_name >= sym_name_size)
593         {
594           relobj->error(_("bad global symbol name offset %u at %zu"),
595                         st_name, i);
596           continue;
597         }
598
599       const char* name = sym_names + st_name;
600
601       // A symbol defined in a section which we are not including must
602       // be treated as an undefined symbol.
603       unsigned char symbuf[sym_size];
604       elfcpp::Sym<size, big_endian> sym2(symbuf);
605       unsigned int st_shndx = psym->get_st_shndx();
606       if (st_shndx != elfcpp::SHN_UNDEF
607           && st_shndx < elfcpp::SHN_LORESERVE
608           && !relobj->is_section_included(st_shndx))
609         {
610           memcpy(symbuf, p, sym_size);
611           elfcpp::Sym_write<size, big_endian> sw(symbuf);
612           sw.put_st_shndx(elfcpp::SHN_UNDEF);
613           psym = &sym2;
614         }
615
616       // In an object file, an '@' in the name separates the symbol
617       // name from the version name.  If there are two '@' characters,
618       // this is the default version.
619       const char* ver = strchr(name, '@');
620
621       Sized_symbol<size>* res;
622       if (ver == NULL)
623         {
624           Stringpool::Key name_key;
625           name = this->namepool_.add(name, true, &name_key);
626           res = this->add_from_object(relobj, name, name_key, NULL, 0,
627                                       false, *psym, sym);
628         }
629       else
630         {
631           Stringpool::Key name_key;
632           name = this->namepool_.add_prefix(name, ver - name, &name_key);
633
634           bool def = false;
635           ++ver;
636           if (*ver == '@')
637             {
638               def = true;
639               ++ver;
640             }
641
642           Stringpool::Key ver_key;
643           ver = this->namepool_.add(ver, true, &ver_key);
644
645           res = this->add_from_object(relobj, name, name_key, ver, ver_key,
646                                       def, *psym, sym);
647         }
648
649       (*sympointers)[i] = res;
650     }
651 }
652
653 // Add all the symbols in a dynamic object to the hash table.
654
655 template<int size, bool big_endian>
656 void
657 Symbol_table::add_from_dynobj(
658     Sized_dynobj<size, big_endian>* dynobj,
659     const unsigned char* syms,
660     size_t count,
661     const char* sym_names,
662     size_t sym_name_size,
663     const unsigned char* versym,
664     size_t versym_size,
665     const std::vector<const char*>* version_map)
666 {
667   gold_assert(size == dynobj->target()->get_size());
668   gold_assert(size == parameters->get_size());
669
670   if (versym != NULL && versym_size / 2 < count)
671     {
672       dynobj->error(_("too few symbol versions"));
673       return;
674     }
675
676   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
677
678   // We keep a list of all STT_OBJECT symbols, so that we can resolve
679   // weak aliases.  This is necessary because if the dynamic object
680   // provides the same variable under two names, one of which is a
681   // weak definition, and the regular object refers to the weak
682   // definition, we have to put both the weak definition and the
683   // strong definition into the dynamic symbol table.  Given a weak
684   // definition, the only way that we can find the corresponding
685   // strong definition, if any, is to search the symbol table.
686   std::vector<Sized_symbol<size>*> object_symbols;
687
688   const unsigned char* p = syms;
689   const unsigned char* vs = versym;
690   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
691     {
692       elfcpp::Sym<size, big_endian> sym(p);
693
694       // Ignore symbols with local binding.
695       if (sym.get_st_bind() == elfcpp::STB_LOCAL)
696         continue;
697
698       unsigned int st_name = sym.get_st_name();
699       if (st_name >= sym_name_size)
700         {
701           dynobj->error(_("bad symbol name offset %u at %zu"),
702                         st_name, i);
703           continue;
704         }
705
706       const char* name = sym_names + st_name;
707
708       Sized_symbol<size>* res;
709
710       if (versym == NULL)
711         {
712           Stringpool::Key name_key;
713           name = this->namepool_.add(name, true, &name_key);
714           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
715                                       false, sym, sym);
716         }
717       else
718         {
719           // Read the version information.
720
721           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
722
723           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
724           v &= elfcpp::VERSYM_VERSION;
725
726           // The Sun documentation says that V can be VER_NDX_LOCAL,
727           // or VER_NDX_GLOBAL, or a version index.  The meaning of
728           // VER_NDX_LOCAL is defined as "Symbol has local scope."
729           // The old GNU linker will happily generate VER_NDX_LOCAL
730           // for an undefined symbol.  I don't know what the Sun
731           // linker will generate.
732
733           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
734               && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
735             {
736               // This symbol should not be visible outside the object.
737               continue;
738             }
739
740           // At this point we are definitely going to add this symbol.
741           Stringpool::Key name_key;
742           name = this->namepool_.add(name, true, &name_key);
743
744           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
745               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
746             {
747               // This symbol does not have a version.
748               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
749                                           false, sym, sym);
750             }
751           else
752             {
753               if (v >= version_map->size())
754                 {
755                   dynobj->error(_("versym for symbol %zu out of range: %u"),
756                                 i, v);
757                   continue;
758                 }
759
760               const char* version = (*version_map)[v];
761               if (version == NULL)
762                 {
763                   dynobj->error(_("versym for symbol %zu has no name: %u"),
764                                 i, v);
765                   continue;
766                 }
767
768               Stringpool::Key version_key;
769               version = this->namepool_.add(version, true, &version_key);
770
771               // If this is an absolute symbol, and the version name
772               // and symbol name are the same, then this is the
773               // version definition symbol.  These symbols exist to
774               // support using -u to pull in particular versions.  We
775               // do not want to record a version for them.
776               if (sym.get_st_shndx() == elfcpp::SHN_ABS
777                   && name_key == version_key)
778                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
779                                             false, sym, sym);
780               else
781                 {
782                   const bool def = (!hidden
783                                     && (sym.get_st_shndx()
784                                         != elfcpp::SHN_UNDEF));
785                   res = this->add_from_object(dynobj, name, name_key, version,
786                                               version_key, def, sym, sym);
787                 }
788             }
789         }
790
791       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
792           && sym.get_st_type() == elfcpp::STT_OBJECT)
793         object_symbols.push_back(res);
794     }
795
796   this->record_weak_aliases(&object_symbols);
797 }
798
799 // This is used to sort weak aliases.  We sort them first by section
800 // index, then by offset, then by weak ahead of strong.
801
802 template<int size>
803 class Weak_alias_sorter
804 {
805  public:
806   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
807 };
808
809 template<int size>
810 bool
811 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
812                                     const Sized_symbol<size>* s2) const
813 {
814   if (s1->shndx() != s2->shndx())
815     return s1->shndx() < s2->shndx();
816   if (s1->value() != s2->value())
817     return s1->value() < s2->value();
818   if (s1->binding() != s2->binding())
819     {
820       if (s1->binding() == elfcpp::STB_WEAK)
821         return true;
822       if (s2->binding() == elfcpp::STB_WEAK)
823         return false;
824     }
825   return std::string(s1->name()) < std::string(s2->name());
826 }
827
828 // SYMBOLS is a list of object symbols from a dynamic object.  Look
829 // for any weak aliases, and record them so that if we add the weak
830 // alias to the dynamic symbol table, we also add the corresponding
831 // strong symbol.
832
833 template<int size>
834 void
835 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
836 {
837   // Sort the vector by section index, then by offset, then by weak
838   // ahead of strong.
839   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
840
841   // Walk through the vector.  For each weak definition, record
842   // aliases.
843   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
844          symbols->begin();
845        p != symbols->end();
846        ++p)
847     {
848       if ((*p)->binding() != elfcpp::STB_WEAK)
849         continue;
850
851       // Build a circular list of weak aliases.  Each symbol points to
852       // the next one in the circular list.
853
854       Sized_symbol<size>* from_sym = *p;
855       typename std::vector<Sized_symbol<size>*>::const_iterator q;
856       for (q = p + 1; q != symbols->end(); ++q)
857         {
858           if ((*q)->shndx() != from_sym->shndx()
859               || (*q)->value() != from_sym->value())
860             break;
861
862           this->weak_aliases_[from_sym] = *q;
863           from_sym->set_has_alias();
864           from_sym = *q;
865         }
866
867       if (from_sym != *p)
868         {
869           this->weak_aliases_[from_sym] = *p;
870           from_sym->set_has_alias();
871         }
872
873       p = q - 1;
874     }
875 }
876
877 // Create and return a specially defined symbol.  If ONLY_IF_REF is
878 // true, then only create the symbol if there is a reference to it.
879 // If this does not return NULL, it sets *POLDSYM to the existing
880 // symbol if there is one.  This canonicalizes *PNAME and *PVERSION.
881
882 template<int size, bool big_endian>
883 Sized_symbol<size>*
884 Symbol_table::define_special_symbol(const Target* target, const char** pname,
885                                     const char** pversion, bool only_if_ref,
886                                     Sized_symbol<size>** poldsym
887                                     ACCEPT_SIZE_ENDIAN)
888 {
889   Symbol* oldsym;
890   Sized_symbol<size>* sym;
891   bool add_to_table = false;
892   typename Symbol_table_type::iterator add_loc = this->table_.end();
893
894   if (only_if_ref)
895     {
896       oldsym = this->lookup(*pname, *pversion);
897       if (oldsym == NULL || !oldsym->is_undefined())
898         return NULL;
899
900       *pname = oldsym->name();
901       *pversion = oldsym->version();
902     }
903   else
904     {
905       // Canonicalize NAME and VERSION.
906       Stringpool::Key name_key;
907       *pname = this->namepool_.add(*pname, true, &name_key);
908
909       Stringpool::Key version_key = 0;
910       if (*pversion != NULL)
911         *pversion = this->namepool_.add(*pversion, true, &version_key);
912
913       Symbol* const snull = NULL;
914       std::pair<typename Symbol_table_type::iterator, bool> ins =
915         this->table_.insert(std::make_pair(std::make_pair(name_key,
916                                                           version_key),
917                                            snull));
918
919       if (!ins.second)
920         {
921           // We already have a symbol table entry for NAME/VERSION.
922           oldsym = ins.first->second;
923           gold_assert(oldsym != NULL);
924         }
925       else
926         {
927           // We haven't seen this symbol before.
928           gold_assert(ins.first->second == NULL);
929           add_to_table = true;
930           add_loc = ins.first;
931           oldsym = NULL;
932         }
933     }
934
935   if (!target->has_make_symbol())
936     sym = new Sized_symbol<size>();
937   else
938     {
939       gold_assert(target->get_size() == size);
940       gold_assert(target->is_big_endian() ? big_endian : !big_endian);
941       typedef Sized_target<size, big_endian> My_target;
942       const My_target* sized_target =
943           static_cast<const My_target*>(target);
944       sym = sized_target->make_symbol();
945       if (sym == NULL)
946         return NULL;
947     }
948
949   if (add_to_table)
950     add_loc->second = sym;
951   else
952     gold_assert(oldsym != NULL);
953
954   *poldsym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
955                                                             SELECT_SIZE(size));
956
957   return sym;
958 }
959
960 // Define a symbol based on an Output_data.
961
962 Symbol*
963 Symbol_table::define_in_output_data(const Target* target, const char* name,
964                                     const char* version, Output_data* od,
965                                     uint64_t value, uint64_t symsize,
966                                     elfcpp::STT type, elfcpp::STB binding,
967                                     elfcpp::STV visibility,
968                                     unsigned char nonvis,
969                                     bool offset_is_from_end,
970                                     bool only_if_ref)
971 {
972   if (parameters->get_size() == 32)
973     {
974 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
975       return this->do_define_in_output_data<32>(target, name, version, od,
976                                                 value, symsize, type, binding,
977                                                 visibility, nonvis,
978                                                 offset_is_from_end,
979                                                 only_if_ref);
980 #else
981       gold_unreachable();
982 #endif
983     }
984   else if (parameters->get_size() == 64)
985     {
986 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
987       return this->do_define_in_output_data<64>(target, name, version, od,
988                                                 value, symsize, type, binding,
989                                                 visibility, nonvis,
990                                                 offset_is_from_end,
991                                                 only_if_ref);
992 #else
993       gold_unreachable();
994 #endif
995     }
996   else
997     gold_unreachable();
998 }
999
1000 // Define a symbol in an Output_data, sized version.
1001
1002 template<int size>
1003 Sized_symbol<size>*
1004 Symbol_table::do_define_in_output_data(
1005     const Target* target,
1006     const char* name,
1007     const char* version,
1008     Output_data* od,
1009     typename elfcpp::Elf_types<size>::Elf_Addr value,
1010     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1011     elfcpp::STT type,
1012     elfcpp::STB binding,
1013     elfcpp::STV visibility,
1014     unsigned char nonvis,
1015     bool offset_is_from_end,
1016     bool only_if_ref)
1017 {
1018   Sized_symbol<size>* sym;
1019   Sized_symbol<size>* oldsym;
1020
1021   if (parameters->is_big_endian())
1022     {
1023 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1024       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1025           target, &name, &version, only_if_ref, &oldsym
1026           SELECT_SIZE_ENDIAN(size, true));
1027 #else
1028       gold_unreachable();
1029 #endif
1030     }
1031   else
1032     {
1033 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1034       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1035           target, &name, &version, only_if_ref, &oldsym
1036           SELECT_SIZE_ENDIAN(size, false));
1037 #else
1038       gold_unreachable();
1039 #endif
1040     }
1041
1042   if (sym == NULL)
1043     return NULL;
1044
1045   gold_assert(version == NULL || oldsym != NULL);
1046   sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1047             offset_is_from_end);
1048
1049   if (oldsym != NULL
1050       && Symbol_table::should_override_with_special(oldsym))
1051     this->override_with_special(oldsym, sym);
1052
1053   return sym;
1054 }
1055
1056 // Define a symbol based on an Output_segment.
1057
1058 Symbol*
1059 Symbol_table::define_in_output_segment(const Target* target, const char* name,
1060                                        const char* version, Output_segment* os,
1061                                        uint64_t value, uint64_t symsize,
1062                                        elfcpp::STT type, elfcpp::STB binding,
1063                                        elfcpp::STV visibility,
1064                                        unsigned char nonvis,
1065                                        Symbol::Segment_offset_base offset_base,
1066                                        bool only_if_ref)
1067 {
1068   if (parameters->get_size() == 32)
1069     {
1070 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1071       return this->do_define_in_output_segment<32>(target, name, version, os,
1072                                                    value, symsize, type,
1073                                                    binding, visibility, nonvis,
1074                                                    offset_base, only_if_ref);
1075 #else
1076       gold_unreachable();
1077 #endif
1078     }
1079   else if (parameters->get_size() == 64)
1080     {
1081 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1082       return this->do_define_in_output_segment<64>(target, name, version, os,
1083                                                    value, symsize, type,
1084                                                    binding, visibility, nonvis,
1085                                                    offset_base, only_if_ref);
1086 #else
1087       gold_unreachable();
1088 #endif
1089     }
1090   else
1091     gold_unreachable();
1092 }
1093
1094 // Define a symbol in an Output_segment, sized version.
1095
1096 template<int size>
1097 Sized_symbol<size>*
1098 Symbol_table::do_define_in_output_segment(
1099     const Target* target,
1100     const char* name,
1101     const char* version,
1102     Output_segment* os,
1103     typename elfcpp::Elf_types<size>::Elf_Addr value,
1104     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1105     elfcpp::STT type,
1106     elfcpp::STB binding,
1107     elfcpp::STV visibility,
1108     unsigned char nonvis,
1109     Symbol::Segment_offset_base offset_base,
1110     bool only_if_ref)
1111 {
1112   Sized_symbol<size>* sym;
1113   Sized_symbol<size>* oldsym;
1114
1115   if (parameters->is_big_endian())
1116     {
1117 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1118       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1119           target, &name, &version, only_if_ref, &oldsym
1120           SELECT_SIZE_ENDIAN(size, true));
1121 #else
1122       gold_unreachable();
1123 #endif
1124     }
1125   else
1126     {
1127 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1128       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1129           target, &name, &version, only_if_ref, &oldsym
1130           SELECT_SIZE_ENDIAN(size, false));
1131 #else
1132       gold_unreachable();
1133 #endif
1134     }
1135
1136   if (sym == NULL)
1137     return NULL;
1138
1139   gold_assert(version == NULL || oldsym != NULL);
1140   sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1141             offset_base);
1142
1143   if (oldsym != NULL
1144       && Symbol_table::should_override_with_special(oldsym))
1145     this->override_with_special(oldsym, sym);
1146
1147   return sym;
1148 }
1149
1150 // Define a special symbol with a constant value.  It is a multiple
1151 // definition error if this symbol is already defined.
1152
1153 Symbol*
1154 Symbol_table::define_as_constant(const Target* target, const char* name,
1155                                  const char* version, uint64_t value,
1156                                  uint64_t symsize, elfcpp::STT type,
1157                                  elfcpp::STB binding, elfcpp::STV visibility,
1158                                  unsigned char nonvis, bool only_if_ref)
1159 {
1160   if (parameters->get_size() == 32)
1161     {
1162 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1163       return this->do_define_as_constant<32>(target, name, version, value,
1164                                              symsize, type, binding,
1165                                              visibility, nonvis, only_if_ref);
1166 #else
1167       gold_unreachable();
1168 #endif
1169     }
1170   else if (parameters->get_size() == 64)
1171     {
1172 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1173       return this->do_define_as_constant<64>(target, name, version, value,
1174                                              symsize, type, binding,
1175                                              visibility, nonvis, only_if_ref);
1176 #else
1177       gold_unreachable();
1178 #endif
1179     }
1180   else
1181     gold_unreachable();
1182 }
1183
1184 // Define a symbol as a constant, sized version.
1185
1186 template<int size>
1187 Sized_symbol<size>*
1188 Symbol_table::do_define_as_constant(
1189     const Target* target,
1190     const char* name,
1191     const char* version,
1192     typename elfcpp::Elf_types<size>::Elf_Addr value,
1193     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1194     elfcpp::STT type,
1195     elfcpp::STB binding,
1196     elfcpp::STV visibility,
1197     unsigned char nonvis,
1198     bool only_if_ref)
1199 {
1200   Sized_symbol<size>* sym;
1201   Sized_symbol<size>* oldsym;
1202
1203   if (parameters->is_big_endian())
1204     {
1205 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1206       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1207           target, &name, &version, only_if_ref, &oldsym
1208           SELECT_SIZE_ENDIAN(size, true));
1209 #else
1210       gold_unreachable();
1211 #endif
1212     }
1213   else
1214     {
1215 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1216       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1217           target, &name, &version, only_if_ref, &oldsym
1218           SELECT_SIZE_ENDIAN(size, false));
1219 #else
1220       gold_unreachable();
1221 #endif
1222     }
1223
1224   if (sym == NULL)
1225     return NULL;
1226
1227   gold_assert(version == NULL || oldsym != NULL);
1228   sym->init(name, value, symsize, type, binding, visibility, nonvis);
1229
1230   if (oldsym != NULL
1231       && Symbol_table::should_override_with_special(oldsym))
1232     this->override_with_special(oldsym, sym);
1233
1234   return sym;
1235 }
1236
1237 // Define a set of symbols in output sections.
1238
1239 void
1240 Symbol_table::define_symbols(const Layout* layout, const Target* target,
1241                              int count, const Define_symbol_in_section* p)
1242 {
1243   for (int i = 0; i < count; ++i, ++p)
1244     {
1245       Output_section* os = layout->find_output_section(p->output_section);
1246       if (os != NULL)
1247         this->define_in_output_data(target, p->name, NULL, os, p->value,
1248                                     p->size, p->type, p->binding,
1249                                     p->visibility, p->nonvis,
1250                                     p->offset_is_from_end, p->only_if_ref);
1251       else
1252         this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1253                                  p->binding, p->visibility, p->nonvis,
1254                                  p->only_if_ref);
1255     }
1256 }
1257
1258 // Define a set of symbols in output segments.
1259
1260 void
1261 Symbol_table::define_symbols(const Layout* layout, const Target* target,
1262                              int count, const Define_symbol_in_segment* p)
1263 {
1264   for (int i = 0; i < count; ++i, ++p)
1265     {
1266       Output_segment* os = layout->find_output_segment(p->segment_type,
1267                                                        p->segment_flags_set,
1268                                                        p->segment_flags_clear);
1269       if (os != NULL)
1270         this->define_in_output_segment(target, p->name, NULL, os, p->value,
1271                                        p->size, p->type, p->binding,
1272                                        p->visibility, p->nonvis,
1273                                        p->offset_base, p->only_if_ref);
1274       else
1275         this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1276                                  p->binding, p->visibility, p->nonvis,
1277                                  p->only_if_ref);
1278     }
1279 }
1280
1281 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
1282 // symbol should be defined--typically a .dyn.bss section.  VALUE is
1283 // the offset within POSD.
1284
1285 template<int size>
1286 void
1287 Symbol_table::define_with_copy_reloc(const Target* target,
1288                                      Sized_symbol<size>* csym,
1289                                      Output_data* posd, uint64_t value)
1290 {
1291   gold_assert(csym->is_from_dynobj());
1292   gold_assert(!csym->is_copied_from_dynobj());
1293   Object* object = csym->object();
1294   gold_assert(object->is_dynamic());
1295   Dynobj* dynobj = static_cast<Dynobj*>(object);
1296
1297   // Our copied variable has to override any variable in a shared
1298   // library.
1299   elfcpp::STB binding = csym->binding();
1300   if (binding == elfcpp::STB_WEAK)
1301     binding = elfcpp::STB_GLOBAL;
1302
1303   this->define_in_output_data(target, csym->name(), csym->version(),
1304                               posd, value, csym->symsize(),
1305                               csym->type(), binding,
1306                               csym->visibility(), csym->nonvis(),
1307                               false, false);
1308
1309   csym->set_is_copied_from_dynobj();
1310   csym->set_needs_dynsym_entry();
1311
1312   this->copied_symbol_dynobjs_[csym] = dynobj;
1313
1314   // We have now defined all aliases, but we have not entered them all
1315   // in the copied_symbol_dynobjs_ map.
1316   if (csym->has_alias())
1317     {
1318       Symbol* sym = csym;
1319       while (true)
1320         {
1321           sym = this->weak_aliases_[sym];
1322           if (sym == csym)
1323             break;
1324           gold_assert(sym->output_data() == posd);
1325
1326           sym->set_is_copied_from_dynobj();
1327           this->copied_symbol_dynobjs_[sym] = dynobj;
1328         }
1329     }
1330 }
1331
1332 // SYM is defined using a COPY reloc.  Return the dynamic object where
1333 // the original definition was found.
1334
1335 Dynobj*
1336 Symbol_table::get_copy_source(const Symbol* sym) const
1337 {
1338   gold_assert(sym->is_copied_from_dynobj());
1339   Copied_symbol_dynobjs::const_iterator p =
1340     this->copied_symbol_dynobjs_.find(sym);
1341   gold_assert(p != this->copied_symbol_dynobjs_.end());
1342   return p->second;
1343 }
1344
1345 // Set the dynamic symbol indexes.  INDEX is the index of the first
1346 // global dynamic symbol.  Pointers to the symbols are stored into the
1347 // vector SYMS.  The names are added to DYNPOOL.  This returns an
1348 // updated dynamic symbol index.
1349
1350 unsigned int
1351 Symbol_table::set_dynsym_indexes(const Target* target,
1352                                  unsigned int index,
1353                                  std::vector<Symbol*>* syms,
1354                                  Stringpool* dynpool,
1355                                  Versions* versions)
1356 {
1357   for (Symbol_table_type::iterator p = this->table_.begin();
1358        p != this->table_.end();
1359        ++p)
1360     {
1361       Symbol* sym = p->second;
1362
1363       // Note that SYM may already have a dynamic symbol index, since
1364       // some symbols appear more than once in the symbol table, with
1365       // and without a version.
1366
1367       if (!sym->should_add_dynsym_entry())
1368         sym->set_dynsym_index(-1U);
1369       else if (!sym->has_dynsym_index())
1370         {
1371           sym->set_dynsym_index(index);
1372           ++index;
1373           syms->push_back(sym);
1374           dynpool->add(sym->name(), false, NULL);
1375
1376           // Record any version information.
1377           if (sym->version() != NULL)
1378             versions->record_version(this, dynpool, sym);
1379         }
1380     }
1381
1382   // Finish up the versions.  In some cases this may add new dynamic
1383   // symbols.
1384   index = versions->finalize(target, this, index, syms);
1385
1386   return index;
1387 }
1388
1389 // Set the final values for all the symbols.  The index of the first
1390 // global symbol in the output file is INDEX.  Record the file offset
1391 // OFF.  Add their names to POOL.  Return the new file offset.
1392
1393 off_t
1394 Symbol_table::finalize(unsigned int index, off_t off, off_t dynoff,
1395                        size_t dyn_global_index, size_t dyncount,
1396                        Stringpool* pool)
1397 {
1398   off_t ret;
1399
1400   gold_assert(index != 0);
1401   this->first_global_index_ = index;
1402
1403   this->dynamic_offset_ = dynoff;
1404   this->first_dynamic_global_index_ = dyn_global_index;
1405   this->dynamic_count_ = dyncount;
1406
1407   if (parameters->get_size() == 32)
1408     {
1409 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1410       ret = this->sized_finalize<32>(index, off, pool);
1411 #else
1412       gold_unreachable();
1413 #endif
1414     }
1415   else if (parameters->get_size() == 64)
1416     {
1417 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1418       ret = this->sized_finalize<64>(index, off, pool);
1419 #else
1420       gold_unreachable();
1421 #endif
1422     }
1423   else
1424     gold_unreachable();
1425
1426   // Now that we have the final symbol table, we can reliably note
1427   // which symbols should get warnings.
1428   this->warnings_.note_warnings(this);
1429
1430   return ret;
1431 }
1432
1433 // Set the final value for all the symbols.  This is called after
1434 // Layout::finalize, so all the output sections have their final
1435 // address.
1436
1437 template<int size>
1438 off_t
1439 Symbol_table::sized_finalize(unsigned index, off_t off, Stringpool* pool)
1440 {
1441   off = align_address(off, size >> 3);
1442   this->offset_ = off;
1443
1444   size_t orig_index = index;
1445
1446   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1447   for (Symbol_table_type::iterator p = this->table_.begin();
1448        p != this->table_.end();
1449        ++p)
1450     {
1451       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1452
1453       // FIXME: Here we need to decide which symbols should go into
1454       // the output file, based on --strip.
1455
1456       // The default version of a symbol may appear twice in the
1457       // symbol table.  We only need to finalize it once.
1458       if (sym->has_symtab_index())
1459         continue;
1460
1461       if (!sym->in_reg())
1462         {
1463           gold_assert(!sym->has_symtab_index());
1464           sym->set_symtab_index(-1U);
1465           gold_assert(sym->dynsym_index() == -1U);
1466           continue;
1467         }
1468
1469       typename Sized_symbol<size>::Value_type value;
1470
1471       switch (sym->source())
1472         {
1473         case Symbol::FROM_OBJECT:
1474           {
1475             unsigned int shndx = sym->shndx();
1476
1477             // FIXME: We need some target specific support here.
1478             if (shndx >= elfcpp::SHN_LORESERVE
1479                 && shndx != elfcpp::SHN_ABS)
1480               {
1481                 gold_error(_("%s: unsupported symbol section 0x%x"),
1482                            sym->demangled_name().c_str(), shndx);
1483                 shndx = elfcpp::SHN_UNDEF;
1484               }
1485
1486             Object* symobj = sym->object();
1487             if (symobj->is_dynamic())
1488               {
1489                 value = 0;
1490                 shndx = elfcpp::SHN_UNDEF;
1491               }
1492             else if (shndx == elfcpp::SHN_UNDEF)
1493               value = 0;
1494             else if (shndx == elfcpp::SHN_ABS)
1495               value = sym->value();
1496             else
1497               {
1498                 Relobj* relobj = static_cast<Relobj*>(symobj);
1499                 off_t secoff;
1500                 Output_section* os = relobj->output_section(shndx, &secoff);
1501
1502                 if (os == NULL)
1503                   {
1504                     sym->set_symtab_index(-1U);
1505                     gold_assert(sym->dynsym_index() == -1U);
1506                     continue;
1507                   }
1508
1509                 if (sym->type() == elfcpp::STT_TLS)
1510                   value = sym->value() + os->tls_offset() + secoff;
1511                 else
1512                   value = sym->value() + os->address() + secoff;
1513               }
1514           }
1515           break;
1516
1517         case Symbol::IN_OUTPUT_DATA:
1518           {
1519             Output_data* od = sym->output_data();
1520             value = sym->value() + od->address();
1521             if (sym->offset_is_from_end())
1522               value += od->data_size();
1523           }
1524           break;
1525
1526         case Symbol::IN_OUTPUT_SEGMENT:
1527           {
1528             Output_segment* os = sym->output_segment();
1529             value = sym->value() + os->vaddr();
1530             switch (sym->offset_base())
1531               {
1532               case Symbol::SEGMENT_START:
1533                 break;
1534               case Symbol::SEGMENT_END:
1535                 value += os->memsz();
1536                 break;
1537               case Symbol::SEGMENT_BSS:
1538                 value += os->filesz();
1539                 break;
1540               default:
1541                 gold_unreachable();
1542               }
1543           }
1544           break;
1545
1546         case Symbol::CONSTANT:
1547           value = sym->value();
1548           break;
1549
1550         default:
1551           gold_unreachable();
1552         }
1553
1554       sym->set_value(value);
1555
1556       if (parameters->strip_all())
1557         sym->set_symtab_index(-1U);
1558       else
1559         {
1560           sym->set_symtab_index(index);
1561           pool->add(sym->name(), false, NULL);
1562           ++index;
1563           off += sym_size;
1564         }
1565     }
1566
1567   this->output_count_ = index - orig_index;
1568
1569   return off;
1570 }
1571
1572 // Write out the global symbols.
1573
1574 void
1575 Symbol_table::write_globals(const Input_objects* input_objects,
1576                             const Stringpool* sympool,
1577                             const Stringpool* dynpool, Output_file* of) const
1578 {
1579   if (parameters->get_size() == 32)
1580     {
1581       if (parameters->is_big_endian())
1582         {
1583 #ifdef HAVE_TARGET_32_BIG
1584           this->sized_write_globals<32, true>(input_objects, sympool,
1585                                               dynpool, of);
1586 #else
1587           gold_unreachable();
1588 #endif
1589         }
1590       else
1591         {
1592 #ifdef HAVE_TARGET_32_LITTLE
1593           this->sized_write_globals<32, false>(input_objects, sympool,
1594                                                dynpool, of);
1595 #else
1596           gold_unreachable();
1597 #endif
1598         }
1599     }
1600   else if (parameters->get_size() == 64)
1601     {
1602       if (parameters->is_big_endian())
1603         {
1604 #ifdef HAVE_TARGET_64_BIG
1605           this->sized_write_globals<64, true>(input_objects, sympool,
1606                                               dynpool, of);
1607 #else
1608           gold_unreachable();
1609 #endif
1610         }
1611       else
1612         {
1613 #ifdef HAVE_TARGET_64_LITTLE
1614           this->sized_write_globals<64, false>(input_objects, sympool,
1615                                                dynpool, of);
1616 #else
1617           gold_unreachable();
1618 #endif
1619         }
1620     }
1621   else
1622     gold_unreachable();
1623 }
1624
1625 // Write out the global symbols.
1626
1627 template<int size, bool big_endian>
1628 void
1629 Symbol_table::sized_write_globals(const Input_objects* input_objects,
1630                                   const Stringpool* sympool,
1631                                   const Stringpool* dynpool,
1632                                   Output_file* of) const
1633 {
1634   const Target* const target = input_objects->target();
1635
1636   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1637   unsigned int index = this->first_global_index_;
1638   const off_t oview_size = this->output_count_ * sym_size;
1639   unsigned char* const psyms = of->get_output_view(this->offset_, oview_size);
1640
1641   unsigned int dynamic_count = this->dynamic_count_;
1642   off_t dynamic_size = dynamic_count * sym_size;
1643   unsigned int first_dynamic_global_index = this->first_dynamic_global_index_;
1644   unsigned char* dynamic_view;
1645   if (this->dynamic_offset_ == 0)
1646     dynamic_view = NULL;
1647   else
1648     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1649
1650   unsigned char* ps = psyms;
1651   for (Symbol_table_type::const_iterator p = this->table_.begin();
1652        p != this->table_.end();
1653        ++p)
1654     {
1655       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1656
1657       // Possibly warn about unresolved symbols in shared libraries.
1658       this->warn_about_undefined_dynobj_symbol(input_objects, sym);
1659
1660       unsigned int sym_index = sym->symtab_index();
1661       unsigned int dynsym_index;
1662       if (dynamic_view == NULL)
1663         dynsym_index = -1U;
1664       else
1665         dynsym_index = sym->dynsym_index();
1666
1667       if (sym_index == -1U && dynsym_index == -1U)
1668         {
1669           // This symbol is not included in the output file.
1670           continue;
1671         }
1672
1673       if (sym_index == index)
1674         ++index;
1675       else if (sym_index != -1U)
1676         {
1677           // We have already seen this symbol, because it has a
1678           // default version.
1679           gold_assert(sym_index < index);
1680           if (dynsym_index == -1U)
1681             continue;
1682           sym_index = -1U;
1683         }
1684
1685       unsigned int shndx;
1686       typename elfcpp::Elf_types<32>::Elf_Addr value = sym->value();
1687       switch (sym->source())
1688         {
1689         case Symbol::FROM_OBJECT:
1690           {
1691             unsigned int in_shndx = sym->shndx();
1692
1693             // FIXME: We need some target specific support here.
1694             if (in_shndx >= elfcpp::SHN_LORESERVE
1695                 && in_shndx != elfcpp::SHN_ABS)
1696               {
1697                 gold_error(_("%s: unsupported symbol section 0x%x"),
1698                            sym->demangled_name().c_str(), in_shndx);
1699                 shndx = in_shndx;
1700               }
1701             else
1702               {
1703                 Object* symobj = sym->object();
1704                 if (symobj->is_dynamic())
1705                   {
1706                     if (sym->needs_dynsym_value())
1707                       value = target->dynsym_value(sym);
1708                     shndx = elfcpp::SHN_UNDEF;
1709                   }
1710                 else if (in_shndx == elfcpp::SHN_UNDEF
1711                          || in_shndx == elfcpp::SHN_ABS)
1712                   shndx = in_shndx;
1713                 else
1714                   {
1715                     Relobj* relobj = static_cast<Relobj*>(symobj);
1716                     off_t secoff;
1717                     Output_section* os = relobj->output_section(in_shndx,
1718                                                                 &secoff);
1719                     gold_assert(os != NULL);
1720                     shndx = os->out_shndx();
1721                   }
1722               }
1723           }
1724           break;
1725
1726         case Symbol::IN_OUTPUT_DATA:
1727           shndx = sym->output_data()->out_shndx();
1728           break;
1729
1730         case Symbol::IN_OUTPUT_SEGMENT:
1731           shndx = elfcpp::SHN_ABS;
1732           break;
1733
1734         case Symbol::CONSTANT:
1735           shndx = elfcpp::SHN_ABS;
1736           break;
1737
1738         default:
1739           gold_unreachable();
1740         }
1741
1742       if (sym_index != -1U)
1743         {
1744           this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1745               sym, sym->value(), shndx, sympool, ps
1746               SELECT_SIZE_ENDIAN(size, big_endian));
1747           ps += sym_size;
1748         }
1749
1750       if (dynsym_index != -1U)
1751         {
1752           dynsym_index -= first_dynamic_global_index;
1753           gold_assert(dynsym_index < dynamic_count);
1754           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1755           this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1756               sym, value, shndx, dynpool, pd
1757               SELECT_SIZE_ENDIAN(size, big_endian));
1758         }
1759     }
1760
1761   gold_assert(ps - psyms == oview_size);
1762
1763   of->write_output_view(this->offset_, oview_size, psyms);
1764   if (dynamic_view != NULL)
1765     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1766 }
1767
1768 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
1769 // strtab holding the name.
1770
1771 template<int size, bool big_endian>
1772 void
1773 Symbol_table::sized_write_symbol(
1774     Sized_symbol<size>* sym,
1775     typename elfcpp::Elf_types<size>::Elf_Addr value,
1776     unsigned int shndx,
1777     const Stringpool* pool,
1778     unsigned char* p
1779     ACCEPT_SIZE_ENDIAN) const
1780 {
1781   elfcpp::Sym_write<size, big_endian> osym(p);
1782   osym.put_st_name(pool->get_offset(sym->name()));
1783   osym.put_st_value(value);
1784   osym.put_st_size(sym->symsize());
1785   osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1786   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1787   osym.put_st_shndx(shndx);
1788 }
1789
1790 // Check for unresolved symbols in shared libraries.  This is
1791 // controlled by the --allow-shlib-undefined option.
1792
1793 // We only warn about libraries for which we have seen all the
1794 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
1795 // which were not seen in this link.  If we didn't see a DT_NEEDED
1796 // entry, we aren't going to be able to reliably report whether the
1797 // symbol is undefined.
1798
1799 // We also don't warn about libraries found in the system library
1800 // directory (the directory were we find libc.so); we assume that
1801 // those libraries are OK.  This heuristic avoids problems in
1802 // GNU/Linux, in which -ldl can have undefined references satisfied by
1803 // ld-linux.so.
1804
1805 inline void
1806 Symbol_table::warn_about_undefined_dynobj_symbol(
1807     const Input_objects* input_objects,
1808     Symbol* sym) const
1809 {
1810   if (sym->source() == Symbol::FROM_OBJECT
1811       && sym->object()->is_dynamic()
1812       && sym->shndx() == elfcpp::SHN_UNDEF
1813       && sym->binding() != elfcpp::STB_WEAK
1814       && !parameters->allow_shlib_undefined()
1815       && !input_objects->target()->is_defined_by_abi(sym)
1816       && !input_objects->found_in_system_library_directory(sym->object()))
1817     {
1818       // A very ugly cast.
1819       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
1820       if (!dynobj->has_unknown_needed_entries())
1821         gold_error(_("%s: undefined reference to '%s'"),
1822                    sym->object()->name().c_str(),
1823                    sym->demangled_name().c_str());
1824     }
1825 }
1826
1827 // Write out a section symbol.  Return the update offset.
1828
1829 void
1830 Symbol_table::write_section_symbol(const Output_section *os,
1831                                    Output_file* of,
1832                                    off_t offset) const
1833 {
1834   if (parameters->get_size() == 32)
1835     {
1836       if (parameters->is_big_endian())
1837         {
1838 #ifdef HAVE_TARGET_32_BIG
1839           this->sized_write_section_symbol<32, true>(os, of, offset);
1840 #else
1841           gold_unreachable();
1842 #endif
1843         }
1844       else
1845         {
1846 #ifdef HAVE_TARGET_32_LITTLE
1847           this->sized_write_section_symbol<32, false>(os, of, offset);
1848 #else
1849           gold_unreachable();
1850 #endif
1851         }
1852     }
1853   else if (parameters->get_size() == 64)
1854     {
1855       if (parameters->is_big_endian())
1856         {
1857 #ifdef HAVE_TARGET_64_BIG
1858           this->sized_write_section_symbol<64, true>(os, of, offset);
1859 #else
1860           gold_unreachable();
1861 #endif
1862         }
1863       else
1864         {
1865 #ifdef HAVE_TARGET_64_LITTLE
1866           this->sized_write_section_symbol<64, false>(os, of, offset);
1867 #else
1868           gold_unreachable();
1869 #endif
1870         }
1871     }
1872   else
1873     gold_unreachable();
1874 }
1875
1876 // Write out a section symbol, specialized for size and endianness.
1877
1878 template<int size, bool big_endian>
1879 void
1880 Symbol_table::sized_write_section_symbol(const Output_section* os,
1881                                          Output_file* of,
1882                                          off_t offset) const
1883 {
1884   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1885
1886   unsigned char* pov = of->get_output_view(offset, sym_size);
1887
1888   elfcpp::Sym_write<size, big_endian> osym(pov);
1889   osym.put_st_name(0);
1890   osym.put_st_value(os->address());
1891   osym.put_st_size(0);
1892   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
1893                                        elfcpp::STT_SECTION));
1894   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
1895   osym.put_st_shndx(os->out_shndx());
1896
1897   of->write_output_view(offset, sym_size, pov);
1898 }
1899
1900 // Print statistical information to stderr.  This is used for --stats.
1901
1902 void
1903 Symbol_table::print_stats() const
1904 {
1905 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
1906   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
1907           program_name, this->table_.size(), this->table_.bucket_count());
1908 #else
1909   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
1910           program_name, this->table_.size());
1911 #endif
1912   this->namepool_.print_stats("symbol table stringpool");
1913 }
1914
1915 // We check for ODR violations by looking for symbols with the same
1916 // name for which the debugging information reports that they were
1917 // defined in different source locations.  When comparing the source
1918 // location, we consider instances with the same base filename and
1919 // line number to be the same.  This is because different object
1920 // files/shared libraries can include the same header file using
1921 // different paths, and we don't want to report an ODR violation in
1922 // that case.
1923
1924 // This struct is used to compare line information, as returned by
1925 // Dwarf_line_info::one_addr2line.  It implements a < comparison
1926 // operator used with std::set.
1927
1928 struct Odr_violation_compare
1929 {
1930   bool
1931   operator()(const std::string& s1, const std::string& s2) const
1932   {
1933     std::string::size_type pos1 = s1.rfind('/');
1934     std::string::size_type pos2 = s2.rfind('/');
1935     if (pos1 == std::string::npos
1936         || pos2 == std::string::npos)
1937       return s1 < s2;
1938     return s1.compare(pos1, std::string::npos,
1939                       s2, pos2, std::string::npos) < 0;
1940   }
1941 };
1942
1943 // Check candidate_odr_violations_ to find symbols with the same name
1944 // but apparently different definitions (different source-file/line-no).
1945
1946 void
1947 Symbol_table::detect_odr_violations(const char* output_file_name) const
1948 {
1949   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
1950        it != candidate_odr_violations_.end();
1951        ++it)
1952     {
1953       const char* symbol_name = it->first;
1954       // We use a sorted set so the output is deterministic.
1955       std::set<std::string, Odr_violation_compare> line_nums;
1956
1957       for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
1958                locs = it->second.begin();
1959            locs != it->second.end();
1960            ++locs)
1961         {
1962           // We need to lock the object in order to read it.  This
1963           // means that we can not run inside a Task.  If we want to
1964           // run this in a Task for better performance, we will need
1965           // one Task for object, plus appropriate locking to ensure
1966           // that we don't conflict with other uses of the object.
1967           locs->object->lock();
1968           std::string lineno = Dwarf_line_info::one_addr2line(
1969               locs->object, locs->shndx, locs->offset);
1970           locs->object->unlock();
1971           if (!lineno.empty())
1972             line_nums.insert(lineno);
1973         }
1974
1975       if (line_nums.size() > 1)
1976         {
1977           gold_warning(_("while linking %s: symbol '%s' defined in multiple "
1978                          "places (possible ODR violation):"),
1979                        output_file_name, demangle(symbol_name).c_str());
1980           for (std::set<std::string>::const_iterator it2 = line_nums.begin();
1981                it2 != line_nums.end();
1982                ++it2)
1983             fprintf(stderr, "  %s\n", it2->c_str());
1984         }
1985     }
1986 }
1987
1988 // Warnings functions.
1989
1990 // Add a new warning.
1991
1992 void
1993 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
1994                       unsigned int shndx)
1995 {
1996   name = symtab->canonicalize_name(name);
1997   this->warnings_[name].set(obj, shndx);
1998 }
1999
2000 // Look through the warnings and mark the symbols for which we should
2001 // warn.  This is called during Layout::finalize when we know the
2002 // sources for all the symbols.
2003
2004 void
2005 Warnings::note_warnings(Symbol_table* symtab)
2006 {
2007   for (Warning_table::iterator p = this->warnings_.begin();
2008        p != this->warnings_.end();
2009        ++p)
2010     {
2011       Symbol* sym = symtab->lookup(p->first, NULL);
2012       if (sym != NULL
2013           && sym->source() == Symbol::FROM_OBJECT
2014           && sym->object() == p->second.object)
2015         {
2016           sym->set_has_warning();
2017
2018           // Read the section contents to get the warning text.  It
2019           // would be nicer if we only did this if we have to actually
2020           // issue a warning.  Unfortunately, warnings are issued as
2021           // we relocate sections.  That means that we can not lock
2022           // the object then, as we might try to issue the same
2023           // warning multiple times simultaneously.
2024           {
2025             Task_locker_obj<Object> tl(*p->second.object);
2026             const unsigned char* c;
2027             off_t len;
2028             c = p->second.object->section_contents(p->second.shndx, &len,
2029                                                    false);
2030             p->second.set_text(reinterpret_cast<const char*>(c), len);
2031           }
2032         }
2033     }
2034 }
2035
2036 // Issue a warning.  This is called when we see a relocation against a
2037 // symbol for which has a warning.
2038
2039 template<int size, bool big_endian>
2040 void
2041 Warnings::issue_warning(const Symbol* sym,
2042                         const Relocate_info<size, big_endian>* relinfo,
2043                         size_t relnum, off_t reloffset) const
2044 {
2045   gold_assert(sym->has_warning());
2046   Warning_table::const_iterator p = this->warnings_.find(sym->name());
2047   gold_assert(p != this->warnings_.end());
2048   gold_warning_at_location(relinfo, relnum, reloffset,
2049                            "%s", p->second.text.c_str());
2050 }
2051
2052 // Instantiate the templates we need.  We could use the configure
2053 // script to restrict this to only the ones needed for implemented
2054 // targets.
2055
2056 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2057 template
2058 void
2059 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2060 #endif
2061
2062 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2063 template
2064 void
2065 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2066 #endif
2067
2068 #ifdef HAVE_TARGET_32_LITTLE
2069 template
2070 void
2071 Symbol_table::add_from_relobj<32, false>(
2072     Sized_relobj<32, false>* relobj,
2073     const unsigned char* syms,
2074     size_t count,
2075     const char* sym_names,
2076     size_t sym_name_size,
2077     Sized_relobj<32, true>::Symbols* sympointers);
2078 #endif
2079
2080 #ifdef HAVE_TARGET_32_BIG
2081 template
2082 void
2083 Symbol_table::add_from_relobj<32, true>(
2084     Sized_relobj<32, true>* relobj,
2085     const unsigned char* syms,
2086     size_t count,
2087     const char* sym_names,
2088     size_t sym_name_size,
2089     Sized_relobj<32, false>::Symbols* sympointers);
2090 #endif
2091
2092 #ifdef HAVE_TARGET_64_LITTLE
2093 template
2094 void
2095 Symbol_table::add_from_relobj<64, false>(
2096     Sized_relobj<64, false>* relobj,
2097     const unsigned char* syms,
2098     size_t count,
2099     const char* sym_names,
2100     size_t sym_name_size,
2101     Sized_relobj<64, true>::Symbols* sympointers);
2102 #endif
2103
2104 #ifdef HAVE_TARGET_64_BIG
2105 template
2106 void
2107 Symbol_table::add_from_relobj<64, true>(
2108     Sized_relobj<64, true>* relobj,
2109     const unsigned char* syms,
2110     size_t count,
2111     const char* sym_names,
2112     size_t sym_name_size,
2113     Sized_relobj<64, false>::Symbols* sympointers);
2114 #endif
2115
2116 #ifdef HAVE_TARGET_32_LITTLE
2117 template
2118 void
2119 Symbol_table::add_from_dynobj<32, false>(
2120     Sized_dynobj<32, false>* dynobj,
2121     const unsigned char* syms,
2122     size_t count,
2123     const char* sym_names,
2124     size_t sym_name_size,
2125     const unsigned char* versym,
2126     size_t versym_size,
2127     const std::vector<const char*>* version_map);
2128 #endif
2129
2130 #ifdef HAVE_TARGET_32_BIG
2131 template
2132 void
2133 Symbol_table::add_from_dynobj<32, true>(
2134     Sized_dynobj<32, true>* dynobj,
2135     const unsigned char* syms,
2136     size_t count,
2137     const char* sym_names,
2138     size_t sym_name_size,
2139     const unsigned char* versym,
2140     size_t versym_size,
2141     const std::vector<const char*>* version_map);
2142 #endif
2143
2144 #ifdef HAVE_TARGET_64_LITTLE
2145 template
2146 void
2147 Symbol_table::add_from_dynobj<64, false>(
2148     Sized_dynobj<64, false>* dynobj,
2149     const unsigned char* syms,
2150     size_t count,
2151     const char* sym_names,
2152     size_t sym_name_size,
2153     const unsigned char* versym,
2154     size_t versym_size,
2155     const std::vector<const char*>* version_map);
2156 #endif
2157
2158 #ifdef HAVE_TARGET_64_BIG
2159 template
2160 void
2161 Symbol_table::add_from_dynobj<64, true>(
2162     Sized_dynobj<64, true>* dynobj,
2163     const unsigned char* syms,
2164     size_t count,
2165     const char* sym_names,
2166     size_t sym_name_size,
2167     const unsigned char* versym,
2168     size_t versym_size,
2169     const std::vector<const char*>* version_map);
2170 #endif
2171
2172 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2173 template
2174 void
2175 Symbol_table::define_with_copy_reloc<32>(const Target* target,
2176                                          Sized_symbol<32>* sym,
2177                                          Output_data* posd, uint64_t value);
2178 #endif
2179
2180 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2181 template
2182 void
2183 Symbol_table::define_with_copy_reloc<64>(const Target* target,
2184                                          Sized_symbol<64>* sym,
2185                                          Output_data* posd, uint64_t value);
2186 #endif
2187
2188 #ifdef HAVE_TARGET_32_LITTLE
2189 template
2190 void
2191 Warnings::issue_warning<32, false>(const Symbol* sym,
2192                                    const Relocate_info<32, false>* relinfo,
2193                                    size_t relnum, off_t reloffset) const;
2194 #endif
2195
2196 #ifdef HAVE_TARGET_32_BIG
2197 template
2198 void
2199 Warnings::issue_warning<32, true>(const Symbol* sym,
2200                                   const Relocate_info<32, true>* relinfo,
2201                                   size_t relnum, off_t reloffset) const;
2202 #endif
2203
2204 #ifdef HAVE_TARGET_64_LITTLE
2205 template
2206 void
2207 Warnings::issue_warning<64, false>(const Symbol* sym,
2208                                    const Relocate_info<64, false>* relinfo,
2209                                    size_t relnum, off_t reloffset) const;
2210 #endif
2211
2212 #ifdef HAVE_TARGET_64_BIG
2213 template
2214 void
2215 Warnings::issue_warning<64, true>(const Symbol* sym,
2216                                   const Relocate_info<64, true>* relinfo,
2217                                   size_t relnum, off_t reloffset) const;
2218 #endif
2219
2220 } // End namespace gold.