From Craig Silverstein: Quote the symbol name in the ODR violation
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <stdint.h>
26 #include <set>
27 #include <string>
28 #include <utility>
29 #include "demangle.h"
30
31 #include "object.h"
32 #include "dwarf_reader.h"
33 #include "dynobj.h"
34 #include "output.h"
35 #include "target.h"
36 #include "workqueue.h"
37 #include "symtab.h"
38
39 namespace gold
40 {
41
42 // Class Symbol.
43
44 // Initialize fields in Symbol.  This initializes everything except u_
45 // and source_.
46
47 void
48 Symbol::init_fields(const char* name, const char* version,
49                     elfcpp::STT type, elfcpp::STB binding,
50                     elfcpp::STV visibility, unsigned char nonvis)
51 {
52   this->name_ = name;
53   this->version_ = version;
54   this->symtab_index_ = 0;
55   this->dynsym_index_ = 0;
56   this->got_offset_ = 0;
57   this->plt_offset_ = 0;
58   this->type_ = type;
59   this->binding_ = binding;
60   this->visibility_ = visibility;
61   this->nonvis_ = nonvis;
62   this->is_target_special_ = false;
63   this->is_def_ = false;
64   this->is_forwarder_ = false;
65   this->has_alias_ = false;
66   this->needs_dynsym_entry_ = false;
67   this->in_reg_ = false;
68   this->in_dyn_ = false;
69   this->has_got_offset_ = false;
70   this->has_plt_offset_ = false;
71   this->has_warning_ = false;
72   this->is_copied_from_dynobj_ = false;
73   this->needs_value_in_got_ = false;
74 }
75
76 // Return the demangled version of the symbol's name, but only
77 // if the --demangle flag was set.
78
79 static std::string
80 demangle(const char* name)
81 {
82   if (!parameters->demangle())
83     return name;
84
85   // cplus_demangle allocates memory for the result it returns,
86   // and returns NULL if the name is already demangled.
87   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
88   if (demangled_name == NULL)
89     return name;
90
91   std::string retval(demangled_name);
92   free(demangled_name);
93   return retval;
94 }
95
96 std::string
97 Symbol::demangled_name() const
98 {
99   return demangle(this->name());
100 }
101
102 // Initialize the fields in the base class Symbol for SYM in OBJECT.
103
104 template<int size, bool big_endian>
105 void
106 Symbol::init_base(const char* name, const char* version, Object* object,
107                   const elfcpp::Sym<size, big_endian>& sym)
108 {
109   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
110                     sym.get_st_visibility(), sym.get_st_nonvis());
111   this->u_.from_object.object = object;
112   // FIXME: Handle SHN_XINDEX.
113   this->u_.from_object.shndx = sym.get_st_shndx();
114   this->source_ = FROM_OBJECT;
115   this->in_reg_ = !object->is_dynamic();
116   this->in_dyn_ = object->is_dynamic();
117 }
118
119 // Initialize the fields in the base class Symbol for a symbol defined
120 // in an Output_data.
121
122 void
123 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
124                   elfcpp::STB binding, elfcpp::STV visibility,
125                   unsigned char nonvis, bool offset_is_from_end)
126 {
127   this->init_fields(name, NULL, type, binding, visibility, nonvis);
128   this->u_.in_output_data.output_data = od;
129   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
130   this->source_ = IN_OUTPUT_DATA;
131   this->in_reg_ = true;
132 }
133
134 // Initialize the fields in the base class Symbol for a symbol defined
135 // in an Output_segment.
136
137 void
138 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
139                   elfcpp::STB binding, elfcpp::STV visibility,
140                   unsigned char nonvis, Segment_offset_base offset_base)
141 {
142   this->init_fields(name, NULL, type, binding, visibility, nonvis);
143   this->u_.in_output_segment.output_segment = os;
144   this->u_.in_output_segment.offset_base = offset_base;
145   this->source_ = IN_OUTPUT_SEGMENT;
146   this->in_reg_ = true;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // as a constant.
151
152 void
153 Symbol::init_base(const char* name, elfcpp::STT type,
154                   elfcpp::STB binding, elfcpp::STV visibility,
155                   unsigned char nonvis)
156 {
157   this->init_fields(name, NULL, type, binding, visibility, nonvis);
158   this->source_ = CONSTANT;
159   this->in_reg_ = true;
160 }
161
162 // Initialize the fields in Sized_symbol for SYM in OBJECT.
163
164 template<int size>
165 template<bool big_endian>
166 void
167 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
168                          const elfcpp::Sym<size, big_endian>& sym)
169 {
170   this->init_base(name, version, object, sym);
171   this->value_ = sym.get_st_value();
172   this->symsize_ = sym.get_st_size();
173 }
174
175 // Initialize the fields in Sized_symbol for a symbol defined in an
176 // Output_data.
177
178 template<int size>
179 void
180 Sized_symbol<size>::init(const char* name, Output_data* od,
181                          Value_type value, Size_type symsize,
182                          elfcpp::STT type, elfcpp::STB binding,
183                          elfcpp::STV visibility, unsigned char nonvis,
184                          bool offset_is_from_end)
185 {
186   this->init_base(name, od, type, binding, visibility, nonvis,
187                   offset_is_from_end);
188   this->value_ = value;
189   this->symsize_ = symsize;
190 }
191
192 // Initialize the fields in Sized_symbol for a symbol defined in an
193 // Output_segment.
194
195 template<int size>
196 void
197 Sized_symbol<size>::init(const char* name, Output_segment* os,
198                          Value_type value, Size_type symsize,
199                          elfcpp::STT type, elfcpp::STB binding,
200                          elfcpp::STV visibility, unsigned char nonvis,
201                          Segment_offset_base offset_base)
202 {
203   this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
204   this->value_ = value;
205   this->symsize_ = symsize;
206 }
207
208 // Initialize the fields in Sized_symbol for a symbol defined as a
209 // constant.
210
211 template<int size>
212 void
213 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
214                          elfcpp::STT type, elfcpp::STB binding,
215                          elfcpp::STV visibility, unsigned char nonvis)
216 {
217   this->init_base(name, type, binding, visibility, nonvis);
218   this->value_ = value;
219   this->symsize_ = symsize;
220 }
221
222 // Return true if this symbol should be added to the dynamic symbol
223 // table.
224
225 inline bool
226 Symbol::should_add_dynsym_entry() const
227 {
228   // If the symbol is used by a dynamic relocation, we need to add it.
229   if (this->needs_dynsym_entry())
230     return true;
231
232   // If exporting all symbols or building a shared library,
233   // and the symbol is defined in a regular object and is
234   // externally visible, we need to add it.
235   if ((parameters->export_dynamic() || parameters->output_is_shared())
236       && !this->is_from_dynobj()
237       && this->is_externally_visible())
238     return true;
239
240   return false;
241 }
242
243 // Return true if the final value of this symbol is known at link
244 // time.
245
246 bool
247 Symbol::final_value_is_known() const
248 {
249   // If we are not generating an executable, then no final values are
250   // known, since they will change at runtime.
251   if (!parameters->output_is_executable())
252     return false;
253
254   // If the symbol is not from an object file, then it is defined, and
255   // known.
256   if (this->source_ != FROM_OBJECT)
257     return true;
258
259   // If the symbol is from a dynamic object, then the final value is
260   // not known.
261   if (this->object()->is_dynamic())
262     return false;
263
264   // If the symbol is not undefined (it is defined or common), then
265   // the final value is known.
266   if (!this->is_undefined())
267     return true;
268
269   // If the symbol is undefined, then whether the final value is known
270   // depends on whether we are doing a static link.  If we are doing a
271   // dynamic link, then the final value could be filled in at runtime.
272   // This could reasonably be the case for a weak undefined symbol.
273   return parameters->doing_static_link();
274 }
275
276 // Class Symbol_table.
277
278 Symbol_table::Symbol_table()
279   : saw_undefined_(0), offset_(0), table_(), namepool_(),
280     forwarders_(), commons_(), warnings_()
281 {
282 }
283
284 Symbol_table::~Symbol_table()
285 {
286 }
287
288 // The hash function.  The key is always canonicalized, so we use a
289 // simple combination of the pointers.
290
291 size_t
292 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
293 {
294   return key.first ^ key.second;
295 }
296
297 // The symbol table key equality function.  This is only called with
298 // canonicalized name and version strings, so we can use pointer
299 // comparison.
300
301 bool
302 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
303                                           const Symbol_table_key& k2) const
304 {
305   return k1.first == k2.first && k1.second == k2.second;
306 }
307
308 // Make TO a symbol which forwards to FROM.
309
310 void
311 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
312 {
313   gold_assert(from != to);
314   gold_assert(!from->is_forwarder() && !to->is_forwarder());
315   this->forwarders_[from] = to;
316   from->set_forwarder();
317 }
318
319 // Resolve the forwards from FROM, returning the real symbol.
320
321 Symbol*
322 Symbol_table::resolve_forwards(const Symbol* from) const
323 {
324   gold_assert(from->is_forwarder());
325   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
326     this->forwarders_.find(from);
327   gold_assert(p != this->forwarders_.end());
328   return p->second;
329 }
330
331 // Look up a symbol by name.
332
333 Symbol*
334 Symbol_table::lookup(const char* name, const char* version) const
335 {
336   Stringpool::Key name_key;
337   name = this->namepool_.find(name, &name_key);
338   if (name == NULL)
339     return NULL;
340
341   Stringpool::Key version_key = 0;
342   if (version != NULL)
343     {
344       version = this->namepool_.find(version, &version_key);
345       if (version == NULL)
346         return NULL;
347     }
348
349   Symbol_table_key key(name_key, version_key);
350   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
351   if (p == this->table_.end())
352     return NULL;
353   return p->second;
354 }
355
356 // Resolve a Symbol with another Symbol.  This is only used in the
357 // unusual case where there are references to both an unversioned
358 // symbol and a symbol with a version, and we then discover that that
359 // version is the default version.  Because this is unusual, we do
360 // this the slow way, by converting back to an ELF symbol.
361
362 template<int size, bool big_endian>
363 void
364 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
365                       const char* version ACCEPT_SIZE_ENDIAN)
366 {
367   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
368   elfcpp::Sym_write<size, big_endian> esym(buf);
369   // We don't bother to set the st_name field.
370   esym.put_st_value(from->value());
371   esym.put_st_size(from->symsize());
372   esym.put_st_info(from->binding(), from->type());
373   esym.put_st_other(from->visibility(), from->nonvis());
374   esym.put_st_shndx(from->shndx());
375   this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
376   if (from->in_reg())
377     to->set_in_reg();
378   if (from->in_dyn())
379     to->set_in_dyn();
380 }
381
382 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
383 // name and VERSION is the version; both are canonicalized.  DEF is
384 // whether this is the default version.
385
386 // If DEF is true, then this is the definition of a default version of
387 // a symbol.  That means that any lookup of NAME/NULL and any lookup
388 // of NAME/VERSION should always return the same symbol.  This is
389 // obvious for references, but in particular we want to do this for
390 // definitions: overriding NAME/NULL should also override
391 // NAME/VERSION.  If we don't do that, it would be very hard to
392 // override functions in a shared library which uses versioning.
393
394 // We implement this by simply making both entries in the hash table
395 // point to the same Symbol structure.  That is easy enough if this is
396 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
397 // that we have seen both already, in which case they will both have
398 // independent entries in the symbol table.  We can't simply change
399 // the symbol table entry, because we have pointers to the entries
400 // attached to the object files.  So we mark the entry attached to the
401 // object file as a forwarder, and record it in the forwarders_ map.
402 // Note that entries in the hash table will never be marked as
403 // forwarders.
404 //
405 // SYM and ORIG_SYM are almost always the same.  ORIG_SYM is the
406 // symbol exactly as it existed in the input file.  SYM is usually
407 // that as well, but can be modified, for instance if we determine
408 // it's in a to-be-discarded section.
409
410 template<int size, bool big_endian>
411 Sized_symbol<size>*
412 Symbol_table::add_from_object(Object* object,
413                               const char *name,
414                               Stringpool::Key name_key,
415                               const char *version,
416                               Stringpool::Key version_key,
417                               bool def,
418                               const elfcpp::Sym<size, big_endian>& sym,
419                               const elfcpp::Sym<size, big_endian>& orig_sym)
420 {
421   Symbol* const snull = NULL;
422   std::pair<typename Symbol_table_type::iterator, bool> ins =
423     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
424                                        snull));
425
426   std::pair<typename Symbol_table_type::iterator, bool> insdef =
427     std::make_pair(this->table_.end(), false);
428   if (def)
429     {
430       const Stringpool::Key vnull_key = 0;
431       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
432                                                                  vnull_key),
433                                                   snull));
434     }
435
436   // ins.first: an iterator, which is a pointer to a pair.
437   // ins.first->first: the key (a pair of name and version).
438   // ins.first->second: the value (Symbol*).
439   // ins.second: true if new entry was inserted, false if not.
440
441   Sized_symbol<size>* ret;
442   bool was_undefined;
443   bool was_common;
444   if (!ins.second)
445     {
446       // We already have an entry for NAME/VERSION.
447       ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
448                                                            SELECT_SIZE(size));
449       gold_assert(ret != NULL);
450
451       was_undefined = ret->is_undefined();
452       was_common = ret->is_common();
453
454       this->resolve(ret, sym, orig_sym, object, version);
455
456       if (def)
457         {
458           if (insdef.second)
459             {
460               // This is the first time we have seen NAME/NULL.  Make
461               // NAME/NULL point to NAME/VERSION.
462               insdef.first->second = ret;
463             }
464           else if (insdef.first->second != ret)
465             {
466               // This is the unfortunate case where we already have
467               // entries for both NAME/VERSION and NAME/NULL.
468               const Sized_symbol<size>* sym2;
469               sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
470                 insdef.first->second
471                 SELECT_SIZE(size));
472               Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
473                 ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian));
474               this->make_forwarder(insdef.first->second, ret);
475               insdef.first->second = ret;
476             }
477         }
478     }
479   else
480     {
481       // This is the first time we have seen NAME/VERSION.
482       gold_assert(ins.first->second == NULL);
483
484       was_undefined = false;
485       was_common = false;
486
487       if (def && !insdef.second)
488         {
489           // We already have an entry for NAME/NULL.  If we override
490           // it, then change it to NAME/VERSION.
491           ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
492               insdef.first->second
493               SELECT_SIZE(size));
494           this->resolve(ret, sym, orig_sym, object, version);
495           ins.first->second = ret;
496         }
497       else
498         {
499           Sized_target<size, big_endian>* target =
500             object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
501                 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
502           if (!target->has_make_symbol())
503             ret = new Sized_symbol<size>();
504           else
505             {
506               ret = target->make_symbol();
507               if (ret == NULL)
508                 {
509                   // This means that we don't want a symbol table
510                   // entry after all.
511                   if (!def)
512                     this->table_.erase(ins.first);
513                   else
514                     {
515                       this->table_.erase(insdef.first);
516                       // Inserting insdef invalidated ins.
517                       this->table_.erase(std::make_pair(name_key,
518                                                         version_key));
519                     }
520                   return NULL;
521                 }
522             }
523
524           ret->init(name, version, object, sym);
525
526           ins.first->second = ret;
527           if (def)
528             {
529               // This is the first time we have seen NAME/NULL.  Point
530               // it at the new entry for NAME/VERSION.
531               gold_assert(insdef.second);
532               insdef.first->second = ret;
533             }
534         }
535     }
536
537   // Record every time we see a new undefined symbol, to speed up
538   // archive groups.
539   if (!was_undefined && ret->is_undefined())
540     ++this->saw_undefined_;
541
542   // Keep track of common symbols, to speed up common symbol
543   // allocation.
544   if (!was_common && ret->is_common())
545     this->commons_.push_back(ret);
546
547   return ret;
548 }
549
550 // Add all the symbols in a relocatable object to the hash table.
551
552 template<int size, bool big_endian>
553 void
554 Symbol_table::add_from_relobj(
555     Sized_relobj<size, big_endian>* relobj,
556     const unsigned char* syms,
557     size_t count,
558     const char* sym_names,
559     size_t sym_name_size,
560     typename Sized_relobj<size, big_endian>::Symbols* sympointers)
561 {
562   gold_assert(size == relobj->target()->get_size());
563   gold_assert(size == parameters->get_size());
564
565   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
566
567   const unsigned char* p = syms;
568   for (size_t i = 0; i < count; ++i, p += sym_size)
569     {
570       elfcpp::Sym<size, big_endian> sym(p);
571       elfcpp::Sym<size, big_endian>* psym = &sym;
572
573       unsigned int st_name = psym->get_st_name();
574       if (st_name >= sym_name_size)
575         {
576           relobj->error(_("bad global symbol name offset %u at %zu"),
577                         st_name, i);
578           continue;
579         }
580
581       const char* name = sym_names + st_name;
582
583       // A symbol defined in a section which we are not including must
584       // be treated as an undefined symbol.
585       unsigned char symbuf[sym_size];
586       elfcpp::Sym<size, big_endian> sym2(symbuf);
587       unsigned int st_shndx = psym->get_st_shndx();
588       if (st_shndx != elfcpp::SHN_UNDEF
589           && st_shndx < elfcpp::SHN_LORESERVE
590           && !relobj->is_section_included(st_shndx))
591         {
592           memcpy(symbuf, p, sym_size);
593           elfcpp::Sym_write<size, big_endian> sw(symbuf);
594           sw.put_st_shndx(elfcpp::SHN_UNDEF);
595           psym = &sym2;
596         }
597
598       // In an object file, an '@' in the name separates the symbol
599       // name from the version name.  If there are two '@' characters,
600       // this is the default version.
601       const char* ver = strchr(name, '@');
602
603       Sized_symbol<size>* res;
604       if (ver == NULL)
605         {
606           Stringpool::Key name_key;
607           name = this->namepool_.add(name, true, &name_key);
608           res = this->add_from_object(relobj, name, name_key, NULL, 0,
609                                       false, *psym, sym);
610         }
611       else
612         {
613           Stringpool::Key name_key;
614           name = this->namepool_.add_prefix(name, ver - name, &name_key);
615
616           bool def = false;
617           ++ver;
618           if (*ver == '@')
619             {
620               def = true;
621               ++ver;
622             }
623
624           Stringpool::Key ver_key;
625           ver = this->namepool_.add(ver, true, &ver_key);
626
627           res = this->add_from_object(relobj, name, name_key, ver, ver_key,
628                                       def, *psym, sym);
629         }
630
631       (*sympointers)[i] = res;
632     }
633 }
634
635 // Add all the symbols in a dynamic object to the hash table.
636
637 template<int size, bool big_endian>
638 void
639 Symbol_table::add_from_dynobj(
640     Sized_dynobj<size, big_endian>* dynobj,
641     const unsigned char* syms,
642     size_t count,
643     const char* sym_names,
644     size_t sym_name_size,
645     const unsigned char* versym,
646     size_t versym_size,
647     const std::vector<const char*>* version_map)
648 {
649   gold_assert(size == dynobj->target()->get_size());
650   gold_assert(size == parameters->get_size());
651
652   if (versym != NULL && versym_size / 2 < count)
653     {
654       dynobj->error(_("too few symbol versions"));
655       return;
656     }
657
658   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
659
660   // We keep a list of all STT_OBJECT symbols, so that we can resolve
661   // weak aliases.  This is necessary because if the dynamic object
662   // provides the same variable under two names, one of which is a
663   // weak definition, and the regular object refers to the weak
664   // definition, we have to put both the weak definition and the
665   // strong definition into the dynamic symbol table.  Given a weak
666   // definition, the only way that we can find the corresponding
667   // strong definition, if any, is to search the symbol table.
668   std::vector<Sized_symbol<size>*> object_symbols;
669
670   const unsigned char* p = syms;
671   const unsigned char* vs = versym;
672   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
673     {
674       elfcpp::Sym<size, big_endian> sym(p);
675
676       // Ignore symbols with local binding.
677       if (sym.get_st_bind() == elfcpp::STB_LOCAL)
678         continue;
679
680       unsigned int st_name = sym.get_st_name();
681       if (st_name >= sym_name_size)
682         {
683           dynobj->error(_("bad symbol name offset %u at %zu"),
684                         st_name, i);
685           continue;
686         }
687
688       const char* name = sym_names + st_name;
689
690       Sized_symbol<size>* res;
691
692       if (versym == NULL)
693         {
694           Stringpool::Key name_key;
695           name = this->namepool_.add(name, true, &name_key);
696           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
697                                       false, sym, sym);
698         }
699       else
700         {
701           // Read the version information.
702
703           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
704
705           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
706           v &= elfcpp::VERSYM_VERSION;
707
708           // The Sun documentation says that V can be VER_NDX_LOCAL,
709           // or VER_NDX_GLOBAL, or a version index.  The meaning of
710           // VER_NDX_LOCAL is defined as "Symbol has local scope."
711           // The old GNU linker will happily generate VER_NDX_LOCAL
712           // for an undefined symbol.  I don't know what the Sun
713           // linker will generate.
714
715           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
716               && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
717             {
718               // This symbol should not be visible outside the object.
719               continue;
720             }
721
722           // At this point we are definitely going to add this symbol.
723           Stringpool::Key name_key;
724           name = this->namepool_.add(name, true, &name_key);
725
726           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
727               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
728             {
729               // This symbol does not have a version.
730               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
731                                           false, sym, sym);
732             }
733           else
734             {
735               if (v >= version_map->size())
736                 {
737                   dynobj->error(_("versym for symbol %zu out of range: %u"),
738                                 i, v);
739                   continue;
740                 }
741
742               const char* version = (*version_map)[v];
743               if (version == NULL)
744                 {
745                   dynobj->error(_("versym for symbol %zu has no name: %u"),
746                                 i, v);
747                   continue;
748                 }
749
750               Stringpool::Key version_key;
751               version = this->namepool_.add(version, true, &version_key);
752
753               // If this is an absolute symbol, and the version name
754               // and symbol name are the same, then this is the
755               // version definition symbol.  These symbols exist to
756               // support using -u to pull in particular versions.  We
757               // do not want to record a version for them.
758               if (sym.get_st_shndx() == elfcpp::SHN_ABS
759                   && name_key == version_key)
760                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
761                                             false, sym, sym);
762               else
763                 {
764                   const bool def = (!hidden
765                                     && (sym.get_st_shndx()
766                                         != elfcpp::SHN_UNDEF));
767                   res = this->add_from_object(dynobj, name, name_key, version,
768                                               version_key, def, sym, sym);
769                 }
770             }
771         }
772
773       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
774           && sym.get_st_type() == elfcpp::STT_OBJECT)
775         object_symbols.push_back(res);
776     }
777
778   this->record_weak_aliases(&object_symbols);
779 }
780
781 // This is used to sort weak aliases.  We sort them first by section
782 // index, then by offset, then by weak ahead of strong.
783
784 template<int size>
785 class Weak_alias_sorter
786 {
787  public:
788   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
789 };
790
791 template<int size>
792 bool
793 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
794                                     const Sized_symbol<size>* s2) const
795 {
796   if (s1->shndx() != s2->shndx())
797     return s1->shndx() < s2->shndx();
798   if (s1->value() != s2->value())
799     return s1->value() < s2->value();
800   if (s1->binding() != s2->binding())
801     {
802       if (s1->binding() == elfcpp::STB_WEAK)
803         return true;
804       if (s2->binding() == elfcpp::STB_WEAK)
805         return false;
806     }
807   return std::string(s1->name()) < std::string(s2->name());
808 }
809
810 // SYMBOLS is a list of object symbols from a dynamic object.  Look
811 // for any weak aliases, and record them so that if we add the weak
812 // alias to the dynamic symbol table, we also add the corresponding
813 // strong symbol.
814
815 template<int size>
816 void
817 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
818 {
819   // Sort the vector by section index, then by offset, then by weak
820   // ahead of strong.
821   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
822
823   // Walk through the vector.  For each weak definition, record
824   // aliases.
825   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
826          symbols->begin();
827        p != symbols->end();
828        ++p)
829     {
830       if ((*p)->binding() != elfcpp::STB_WEAK)
831         continue;
832
833       // Build a circular list of weak aliases.  Each symbol points to
834       // the next one in the circular list.
835
836       Sized_symbol<size>* from_sym = *p;
837       typename std::vector<Sized_symbol<size>*>::const_iterator q;
838       for (q = p + 1; q != symbols->end(); ++q)
839         {
840           if ((*q)->shndx() != from_sym->shndx()
841               || (*q)->value() != from_sym->value())
842             break;
843
844           this->weak_aliases_[from_sym] = *q;
845           from_sym->set_has_alias();
846           from_sym = *q;
847         }
848
849       if (from_sym != *p)
850         {
851           this->weak_aliases_[from_sym] = *p;
852           from_sym->set_has_alias();
853         }
854
855       p = q - 1;
856     }
857 }
858
859 // Create and return a specially defined symbol.  If ONLY_IF_REF is
860 // true, then only create the symbol if there is a reference to it.
861 // If this does not return NULL, it sets *POLDSYM to the existing
862 // symbol if there is one.  This canonicalizes *PNAME and *PVERSION.
863
864 template<int size, bool big_endian>
865 Sized_symbol<size>*
866 Symbol_table::define_special_symbol(const Target* target, const char** pname,
867                                     const char** pversion, bool only_if_ref,
868                                     Sized_symbol<size>** poldsym
869                                     ACCEPT_SIZE_ENDIAN)
870 {
871   Symbol* oldsym;
872   Sized_symbol<size>* sym;
873   bool add_to_table = false;
874   typename Symbol_table_type::iterator add_loc = this->table_.end();
875
876   if (only_if_ref)
877     {
878       oldsym = this->lookup(*pname, *pversion);
879       if (oldsym == NULL || !oldsym->is_undefined())
880         return NULL;
881
882       *pname = oldsym->name();
883       *pversion = oldsym->version();
884     }
885   else
886     {
887       // Canonicalize NAME and VERSION.
888       Stringpool::Key name_key;
889       *pname = this->namepool_.add(*pname, true, &name_key);
890
891       Stringpool::Key version_key = 0;
892       if (*pversion != NULL)
893         *pversion = this->namepool_.add(*pversion, true, &version_key);
894
895       Symbol* const snull = NULL;
896       std::pair<typename Symbol_table_type::iterator, bool> ins =
897         this->table_.insert(std::make_pair(std::make_pair(name_key,
898                                                           version_key),
899                                            snull));
900
901       if (!ins.second)
902         {
903           // We already have a symbol table entry for NAME/VERSION.
904           oldsym = ins.first->second;
905           gold_assert(oldsym != NULL);
906         }
907       else
908         {
909           // We haven't seen this symbol before.
910           gold_assert(ins.first->second == NULL);
911           add_to_table = true;
912           add_loc = ins.first;
913           oldsym = NULL;
914         }
915     }
916
917   if (!target->has_make_symbol())
918     sym = new Sized_symbol<size>();
919   else
920     {
921       gold_assert(target->get_size() == size);
922       gold_assert(target->is_big_endian() ? big_endian : !big_endian);
923       typedef Sized_target<size, big_endian> My_target;
924       const My_target* sized_target =
925           static_cast<const My_target*>(target);
926       sym = sized_target->make_symbol();
927       if (sym == NULL)
928         return NULL;
929     }
930
931   if (add_to_table)
932     add_loc->second = sym;
933   else
934     gold_assert(oldsym != NULL);
935
936   *poldsym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
937                                                             SELECT_SIZE(size));
938
939   return sym;
940 }
941
942 // Define a symbol based on an Output_data.
943
944 Symbol*
945 Symbol_table::define_in_output_data(const Target* target, const char* name,
946                                     const char* version, Output_data* od,
947                                     uint64_t value, uint64_t symsize,
948                                     elfcpp::STT type, elfcpp::STB binding,
949                                     elfcpp::STV visibility,
950                                     unsigned char nonvis,
951                                     bool offset_is_from_end,
952                                     bool only_if_ref)
953 {
954   if (parameters->get_size() == 32)
955     {
956 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
957       return this->do_define_in_output_data<32>(target, name, version, od,
958                                                 value, symsize, type, binding,
959                                                 visibility, nonvis,
960                                                 offset_is_from_end,
961                                                 only_if_ref);
962 #else
963       gold_unreachable();
964 #endif
965     }
966   else if (parameters->get_size() == 64)
967     {
968 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
969       return this->do_define_in_output_data<64>(target, name, version, od,
970                                                 value, symsize, type, binding,
971                                                 visibility, nonvis,
972                                                 offset_is_from_end,
973                                                 only_if_ref);
974 #else
975       gold_unreachable();
976 #endif
977     }
978   else
979     gold_unreachable();
980 }
981
982 // Define a symbol in an Output_data, sized version.
983
984 template<int size>
985 Sized_symbol<size>*
986 Symbol_table::do_define_in_output_data(
987     const Target* target,
988     const char* name,
989     const char* version,
990     Output_data* od,
991     typename elfcpp::Elf_types<size>::Elf_Addr value,
992     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
993     elfcpp::STT type,
994     elfcpp::STB binding,
995     elfcpp::STV visibility,
996     unsigned char nonvis,
997     bool offset_is_from_end,
998     bool only_if_ref)
999 {
1000   Sized_symbol<size>* sym;
1001   Sized_symbol<size>* oldsym;
1002
1003   if (parameters->is_big_endian())
1004     {
1005 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1006       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1007           target, &name, &version, only_if_ref, &oldsym
1008           SELECT_SIZE_ENDIAN(size, true));
1009 #else
1010       gold_unreachable();
1011 #endif
1012     }
1013   else
1014     {
1015 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1016       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1017           target, &name, &version, only_if_ref, &oldsym
1018           SELECT_SIZE_ENDIAN(size, false));
1019 #else
1020       gold_unreachable();
1021 #endif
1022     }
1023
1024   if (sym == NULL)
1025     return NULL;
1026
1027   gold_assert(version == NULL || oldsym != NULL);
1028   sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1029             offset_is_from_end);
1030
1031   if (oldsym != NULL
1032       && Symbol_table::should_override_with_special(oldsym))
1033     this->override_with_special(oldsym, sym);
1034
1035   return sym;
1036 }
1037
1038 // Define a symbol based on an Output_segment.
1039
1040 Symbol*
1041 Symbol_table::define_in_output_segment(const Target* target, const char* name,
1042                                        const char* version, Output_segment* os,
1043                                        uint64_t value, uint64_t symsize,
1044                                        elfcpp::STT type, elfcpp::STB binding,
1045                                        elfcpp::STV visibility,
1046                                        unsigned char nonvis,
1047                                        Symbol::Segment_offset_base offset_base,
1048                                        bool only_if_ref)
1049 {
1050   if (parameters->get_size() == 32)
1051     {
1052 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1053       return this->do_define_in_output_segment<32>(target, name, version, os,
1054                                                    value, symsize, type,
1055                                                    binding, visibility, nonvis,
1056                                                    offset_base, only_if_ref);
1057 #else
1058       gold_unreachable();
1059 #endif
1060     }
1061   else if (parameters->get_size() == 64)
1062     {
1063 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1064       return this->do_define_in_output_segment<64>(target, name, version, os,
1065                                                    value, symsize, type,
1066                                                    binding, visibility, nonvis,
1067                                                    offset_base, only_if_ref);
1068 #else
1069       gold_unreachable();
1070 #endif
1071     }
1072   else
1073     gold_unreachable();
1074 }
1075
1076 // Define a symbol in an Output_segment, sized version.
1077
1078 template<int size>
1079 Sized_symbol<size>*
1080 Symbol_table::do_define_in_output_segment(
1081     const Target* target,
1082     const char* name,
1083     const char* version,
1084     Output_segment* os,
1085     typename elfcpp::Elf_types<size>::Elf_Addr value,
1086     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1087     elfcpp::STT type,
1088     elfcpp::STB binding,
1089     elfcpp::STV visibility,
1090     unsigned char nonvis,
1091     Symbol::Segment_offset_base offset_base,
1092     bool only_if_ref)
1093 {
1094   Sized_symbol<size>* sym;
1095   Sized_symbol<size>* oldsym;
1096
1097   if (parameters->is_big_endian())
1098     {
1099 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1100       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1101           target, &name, &version, only_if_ref, &oldsym
1102           SELECT_SIZE_ENDIAN(size, true));
1103 #else
1104       gold_unreachable();
1105 #endif
1106     }
1107   else
1108     {
1109 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1110       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1111           target, &name, &version, only_if_ref, &oldsym
1112           SELECT_SIZE_ENDIAN(size, false));
1113 #else
1114       gold_unreachable();
1115 #endif
1116     }
1117
1118   if (sym == NULL)
1119     return NULL;
1120
1121   gold_assert(version == NULL || oldsym != NULL);
1122   sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1123             offset_base);
1124
1125   if (oldsym != NULL
1126       && Symbol_table::should_override_with_special(oldsym))
1127     this->override_with_special(oldsym, sym);
1128
1129   return sym;
1130 }
1131
1132 // Define a special symbol with a constant value.  It is a multiple
1133 // definition error if this symbol is already defined.
1134
1135 Symbol*
1136 Symbol_table::define_as_constant(const Target* target, const char* name,
1137                                  const char* version, uint64_t value,
1138                                  uint64_t symsize, elfcpp::STT type,
1139                                  elfcpp::STB binding, elfcpp::STV visibility,
1140                                  unsigned char nonvis, bool only_if_ref)
1141 {
1142   if (parameters->get_size() == 32)
1143     {
1144 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1145       return this->do_define_as_constant<32>(target, name, version, value,
1146                                              symsize, type, binding,
1147                                              visibility, nonvis, only_if_ref);
1148 #else
1149       gold_unreachable();
1150 #endif
1151     }
1152   else if (parameters->get_size() == 64)
1153     {
1154 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1155       return this->do_define_as_constant<64>(target, name, version, value,
1156                                              symsize, type, binding,
1157                                              visibility, nonvis, only_if_ref);
1158 #else
1159       gold_unreachable();
1160 #endif
1161     }
1162   else
1163     gold_unreachable();
1164 }
1165
1166 // Define a symbol as a constant, sized version.
1167
1168 template<int size>
1169 Sized_symbol<size>*
1170 Symbol_table::do_define_as_constant(
1171     const Target* target,
1172     const char* name,
1173     const char* version,
1174     typename elfcpp::Elf_types<size>::Elf_Addr value,
1175     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1176     elfcpp::STT type,
1177     elfcpp::STB binding,
1178     elfcpp::STV visibility,
1179     unsigned char nonvis,
1180     bool only_if_ref)
1181 {
1182   Sized_symbol<size>* sym;
1183   Sized_symbol<size>* oldsym;
1184
1185   if (parameters->is_big_endian())
1186     {
1187 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1188       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1189           target, &name, &version, only_if_ref, &oldsym
1190           SELECT_SIZE_ENDIAN(size, true));
1191 #else
1192       gold_unreachable();
1193 #endif
1194     }
1195   else
1196     {
1197 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1198       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1199           target, &name, &version, only_if_ref, &oldsym
1200           SELECT_SIZE_ENDIAN(size, false));
1201 #else
1202       gold_unreachable();
1203 #endif
1204     }
1205
1206   if (sym == NULL)
1207     return NULL;
1208
1209   gold_assert(version == NULL || oldsym != NULL);
1210   sym->init(name, value, symsize, type, binding, visibility, nonvis);
1211
1212   if (oldsym != NULL
1213       && Symbol_table::should_override_with_special(oldsym))
1214     this->override_with_special(oldsym, sym);
1215
1216   return sym;
1217 }
1218
1219 // Define a set of symbols in output sections.
1220
1221 void
1222 Symbol_table::define_symbols(const Layout* layout, const Target* target,
1223                              int count, const Define_symbol_in_section* p)
1224 {
1225   for (int i = 0; i < count; ++i, ++p)
1226     {
1227       Output_section* os = layout->find_output_section(p->output_section);
1228       if (os != NULL)
1229         this->define_in_output_data(target, p->name, NULL, os, p->value,
1230                                     p->size, p->type, p->binding,
1231                                     p->visibility, p->nonvis,
1232                                     p->offset_is_from_end, p->only_if_ref);
1233       else
1234         this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1235                                  p->binding, p->visibility, p->nonvis,
1236                                  p->only_if_ref);
1237     }
1238 }
1239
1240 // Define a set of symbols in output segments.
1241
1242 void
1243 Symbol_table::define_symbols(const Layout* layout, const Target* target,
1244                              int count, const Define_symbol_in_segment* p)
1245 {
1246   for (int i = 0; i < count; ++i, ++p)
1247     {
1248       Output_segment* os = layout->find_output_segment(p->segment_type,
1249                                                        p->segment_flags_set,
1250                                                        p->segment_flags_clear);
1251       if (os != NULL)
1252         this->define_in_output_segment(target, p->name, NULL, os, p->value,
1253                                        p->size, p->type, p->binding,
1254                                        p->visibility, p->nonvis,
1255                                        p->offset_base, p->only_if_ref);
1256       else
1257         this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1258                                  p->binding, p->visibility, p->nonvis,
1259                                  p->only_if_ref);
1260     }
1261 }
1262
1263 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
1264 // symbol should be defined--typically a .dyn.bss section.  VALUE is
1265 // the offset within POSD.
1266
1267 template<int size>
1268 void
1269 Symbol_table::define_with_copy_reloc(const Target* target,
1270                                      Sized_symbol<size>* csym,
1271                                      Output_data* posd, uint64_t value)
1272 {
1273   gold_assert(csym->is_from_dynobj());
1274   gold_assert(!csym->is_copied_from_dynobj());
1275   Object* object = csym->object();
1276   gold_assert(object->is_dynamic());
1277   Dynobj* dynobj = static_cast<Dynobj*>(object);
1278
1279   // Our copied variable has to override any variable in a shared
1280   // library.
1281   elfcpp::STB binding = csym->binding();
1282   if (binding == elfcpp::STB_WEAK)
1283     binding = elfcpp::STB_GLOBAL;
1284
1285   this->define_in_output_data(target, csym->name(), csym->version(),
1286                               posd, value, csym->symsize(),
1287                               csym->type(), binding,
1288                               csym->visibility(), csym->nonvis(),
1289                               false, false);
1290
1291   csym->set_is_copied_from_dynobj();
1292   csym->set_needs_dynsym_entry();
1293
1294   this->copied_symbol_dynobjs_[csym] = dynobj;
1295
1296   // We have now defined all aliases, but we have not entered them all
1297   // in the copied_symbol_dynobjs_ map.
1298   if (csym->has_alias())
1299     {
1300       Symbol* sym = csym;
1301       while (true)
1302         {
1303           sym = this->weak_aliases_[sym];
1304           if (sym == csym)
1305             break;
1306           gold_assert(sym->output_data() == posd);
1307
1308           sym->set_is_copied_from_dynobj();
1309           this->copied_symbol_dynobjs_[sym] = dynobj;
1310         }
1311     }
1312 }
1313
1314 // SYM is defined using a COPY reloc.  Return the dynamic object where
1315 // the original definition was found.
1316
1317 Dynobj*
1318 Symbol_table::get_copy_source(const Symbol* sym) const
1319 {
1320   gold_assert(sym->is_copied_from_dynobj());
1321   Copied_symbol_dynobjs::const_iterator p =
1322     this->copied_symbol_dynobjs_.find(sym);
1323   gold_assert(p != this->copied_symbol_dynobjs_.end());
1324   return p->second;
1325 }
1326
1327 // Set the dynamic symbol indexes.  INDEX is the index of the first
1328 // global dynamic symbol.  Pointers to the symbols are stored into the
1329 // vector SYMS.  The names are added to DYNPOOL.  This returns an
1330 // updated dynamic symbol index.
1331
1332 unsigned int
1333 Symbol_table::set_dynsym_indexes(const Target* target,
1334                                  unsigned int index,
1335                                  std::vector<Symbol*>* syms,
1336                                  Stringpool* dynpool,
1337                                  Versions* versions)
1338 {
1339   for (Symbol_table_type::iterator p = this->table_.begin();
1340        p != this->table_.end();
1341        ++p)
1342     {
1343       Symbol* sym = p->second;
1344
1345       // Note that SYM may already have a dynamic symbol index, since
1346       // some symbols appear more than once in the symbol table, with
1347       // and without a version.
1348
1349       if (!sym->should_add_dynsym_entry())
1350         sym->set_dynsym_index(-1U);
1351       else if (!sym->has_dynsym_index())
1352         {
1353           sym->set_dynsym_index(index);
1354           ++index;
1355           syms->push_back(sym);
1356           dynpool->add(sym->name(), false, NULL);
1357
1358           // Record any version information.
1359           if (sym->version() != NULL)
1360             versions->record_version(this, dynpool, sym);
1361         }
1362     }
1363
1364   // Finish up the versions.  In some cases this may add new dynamic
1365   // symbols.
1366   index = versions->finalize(target, this, index, syms);
1367
1368   return index;
1369 }
1370
1371 // Set the final values for all the symbols.  The index of the first
1372 // global symbol in the output file is INDEX.  Record the file offset
1373 // OFF.  Add their names to POOL.  Return the new file offset.
1374
1375 off_t
1376 Symbol_table::finalize(unsigned int index, off_t off, off_t dynoff,
1377                        size_t dyn_global_index, size_t dyncount,
1378                        Stringpool* pool)
1379 {
1380   off_t ret;
1381
1382   gold_assert(index != 0);
1383   this->first_global_index_ = index;
1384
1385   this->dynamic_offset_ = dynoff;
1386   this->first_dynamic_global_index_ = dyn_global_index;
1387   this->dynamic_count_ = dyncount;
1388
1389   if (parameters->get_size() == 32)
1390     {
1391 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1392       ret = this->sized_finalize<32>(index, off, pool);
1393 #else
1394       gold_unreachable();
1395 #endif
1396     }
1397   else if (parameters->get_size() == 64)
1398     {
1399 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1400       ret = this->sized_finalize<64>(index, off, pool);
1401 #else
1402       gold_unreachable();
1403 #endif
1404     }
1405   else
1406     gold_unreachable();
1407
1408   // Now that we have the final symbol table, we can reliably note
1409   // which symbols should get warnings.
1410   this->warnings_.note_warnings(this);
1411
1412   return ret;
1413 }
1414
1415 // Set the final value for all the symbols.  This is called after
1416 // Layout::finalize, so all the output sections have their final
1417 // address.
1418
1419 template<int size>
1420 off_t
1421 Symbol_table::sized_finalize(unsigned index, off_t off, Stringpool* pool)
1422 {
1423   off = align_address(off, size >> 3);
1424   this->offset_ = off;
1425
1426   size_t orig_index = index;
1427
1428   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1429   for (Symbol_table_type::iterator p = this->table_.begin();
1430        p != this->table_.end();
1431        ++p)
1432     {
1433       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1434
1435       // FIXME: Here we need to decide which symbols should go into
1436       // the output file, based on --strip.
1437
1438       // The default version of a symbol may appear twice in the
1439       // symbol table.  We only need to finalize it once.
1440       if (sym->has_symtab_index())
1441         continue;
1442
1443       if (!sym->in_reg())
1444         {
1445           gold_assert(!sym->has_symtab_index());
1446           sym->set_symtab_index(-1U);
1447           gold_assert(sym->dynsym_index() == -1U);
1448           continue;
1449         }
1450
1451       typename Sized_symbol<size>::Value_type value;
1452
1453       switch (sym->source())
1454         {
1455         case Symbol::FROM_OBJECT:
1456           {
1457             unsigned int shndx = sym->shndx();
1458
1459             // FIXME: We need some target specific support here.
1460             if (shndx >= elfcpp::SHN_LORESERVE
1461                 && shndx != elfcpp::SHN_ABS)
1462               {
1463                 gold_error(_("%s: unsupported symbol section 0x%x"),
1464                            sym->demangled_name().c_str(), shndx);
1465                 shndx = elfcpp::SHN_UNDEF;
1466               }
1467
1468             Object* symobj = sym->object();
1469             if (symobj->is_dynamic())
1470               {
1471                 value = 0;
1472                 shndx = elfcpp::SHN_UNDEF;
1473               }
1474             else if (shndx == elfcpp::SHN_UNDEF)
1475               value = 0;
1476             else if (shndx == elfcpp::SHN_ABS)
1477               value = sym->value();
1478             else
1479               {
1480                 Relobj* relobj = static_cast<Relobj*>(symobj);
1481                 off_t secoff;
1482                 Output_section* os = relobj->output_section(shndx, &secoff);
1483
1484                 if (os == NULL)
1485                   {
1486                     sym->set_symtab_index(-1U);
1487                     gold_assert(sym->dynsym_index() == -1U);
1488                     continue;
1489                   }
1490
1491                 value = sym->value() + os->address() + secoff;
1492               }
1493           }
1494           break;
1495
1496         case Symbol::IN_OUTPUT_DATA:
1497           {
1498             Output_data* od = sym->output_data();
1499             value = sym->value() + od->address();
1500             if (sym->offset_is_from_end())
1501               value += od->data_size();
1502           }
1503           break;
1504
1505         case Symbol::IN_OUTPUT_SEGMENT:
1506           {
1507             Output_segment* os = sym->output_segment();
1508             value = sym->value() + os->vaddr();
1509             switch (sym->offset_base())
1510               {
1511               case Symbol::SEGMENT_START:
1512                 break;
1513               case Symbol::SEGMENT_END:
1514                 value += os->memsz();
1515                 break;
1516               case Symbol::SEGMENT_BSS:
1517                 value += os->filesz();
1518                 break;
1519               default:
1520                 gold_unreachable();
1521               }
1522           }
1523           break;
1524
1525         case Symbol::CONSTANT:
1526           value = sym->value();
1527           break;
1528
1529         default:
1530           gold_unreachable();
1531         }
1532
1533       sym->set_value(value);
1534
1535       if (parameters->strip_all())
1536         sym->set_symtab_index(-1U);
1537       else
1538         {
1539           sym->set_symtab_index(index);
1540           pool->add(sym->name(), false, NULL);
1541           ++index;
1542           off += sym_size;
1543         }
1544     }
1545
1546   this->output_count_ = index - orig_index;
1547
1548   return off;
1549 }
1550
1551 // Write out the global symbols.
1552
1553 void
1554 Symbol_table::write_globals(const Input_objects* input_objects,
1555                             const Stringpool* sympool,
1556                             const Stringpool* dynpool, Output_file* of) const
1557 {
1558   if (parameters->get_size() == 32)
1559     {
1560       if (parameters->is_big_endian())
1561         {
1562 #ifdef HAVE_TARGET_32_BIG
1563           this->sized_write_globals<32, true>(input_objects, sympool,
1564                                               dynpool, of);
1565 #else
1566           gold_unreachable();
1567 #endif
1568         }
1569       else
1570         {
1571 #ifdef HAVE_TARGET_32_LITTLE
1572           this->sized_write_globals<32, false>(input_objects, sympool,
1573                                                dynpool, of);
1574 #else
1575           gold_unreachable();
1576 #endif
1577         }
1578     }
1579   else if (parameters->get_size() == 64)
1580     {
1581       if (parameters->is_big_endian())
1582         {
1583 #ifdef HAVE_TARGET_64_BIG
1584           this->sized_write_globals<64, true>(input_objects, sympool,
1585                                               dynpool, of);
1586 #else
1587           gold_unreachable();
1588 #endif
1589         }
1590       else
1591         {
1592 #ifdef HAVE_TARGET_64_LITTLE
1593           this->sized_write_globals<64, false>(input_objects, sympool,
1594                                                dynpool, of);
1595 #else
1596           gold_unreachable();
1597 #endif
1598         }
1599     }
1600   else
1601     gold_unreachable();
1602 }
1603
1604 // Write out the global symbols.
1605
1606 template<int size, bool big_endian>
1607 void
1608 Symbol_table::sized_write_globals(const Input_objects* input_objects,
1609                                   const Stringpool* sympool,
1610                                   const Stringpool* dynpool,
1611                                   Output_file* of) const
1612 {
1613   const Target* const target = input_objects->target();
1614
1615   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1616   unsigned int index = this->first_global_index_;
1617   const off_t oview_size = this->output_count_ * sym_size;
1618   unsigned char* const psyms = of->get_output_view(this->offset_, oview_size);
1619
1620   unsigned int dynamic_count = this->dynamic_count_;
1621   off_t dynamic_size = dynamic_count * sym_size;
1622   unsigned int first_dynamic_global_index = this->first_dynamic_global_index_;
1623   unsigned char* dynamic_view;
1624   if (this->dynamic_offset_ == 0)
1625     dynamic_view = NULL;
1626   else
1627     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1628
1629   unsigned char* ps = psyms;
1630   for (Symbol_table_type::const_iterator p = this->table_.begin();
1631        p != this->table_.end();
1632        ++p)
1633     {
1634       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1635
1636       // Possibly warn about unresolved symbols in shared libraries.
1637       this->warn_about_undefined_dynobj_symbol(input_objects, sym);
1638
1639       unsigned int sym_index = sym->symtab_index();
1640       unsigned int dynsym_index;
1641       if (dynamic_view == NULL)
1642         dynsym_index = -1U;
1643       else
1644         dynsym_index = sym->dynsym_index();
1645
1646       if (sym_index == -1U && dynsym_index == -1U)
1647         {
1648           // This symbol is not included in the output file.
1649           continue;
1650         }
1651
1652       if (sym_index == index)
1653         ++index;
1654       else if (sym_index != -1U)
1655         {
1656           // We have already seen this symbol, because it has a
1657           // default version.
1658           gold_assert(sym_index < index);
1659           if (dynsym_index == -1U)
1660             continue;
1661           sym_index = -1U;
1662         }
1663
1664       unsigned int shndx;
1665       typename elfcpp::Elf_types<32>::Elf_Addr value = sym->value();
1666       switch (sym->source())
1667         {
1668         case Symbol::FROM_OBJECT:
1669           {
1670             unsigned int in_shndx = sym->shndx();
1671
1672             // FIXME: We need some target specific support here.
1673             if (in_shndx >= elfcpp::SHN_LORESERVE
1674                 && in_shndx != elfcpp::SHN_ABS)
1675               {
1676                 gold_error(_("%s: unsupported symbol section 0x%x"),
1677                            sym->demangled_name().c_str(), in_shndx);
1678                 shndx = in_shndx;
1679               }
1680             else
1681               {
1682                 Object* symobj = sym->object();
1683                 if (symobj->is_dynamic())
1684                   {
1685                     if (sym->needs_dynsym_value())
1686                       value = target->dynsym_value(sym);
1687                     shndx = elfcpp::SHN_UNDEF;
1688                   }
1689                 else if (in_shndx == elfcpp::SHN_UNDEF
1690                          || in_shndx == elfcpp::SHN_ABS)
1691                   shndx = in_shndx;
1692                 else
1693                   {
1694                     Relobj* relobj = static_cast<Relobj*>(symobj);
1695                     off_t secoff;
1696                     Output_section* os = relobj->output_section(in_shndx,
1697                                                                 &secoff);
1698                     gold_assert(os != NULL);
1699                     shndx = os->out_shndx();
1700                   }
1701               }
1702           }
1703           break;
1704
1705         case Symbol::IN_OUTPUT_DATA:
1706           shndx = sym->output_data()->out_shndx();
1707           break;
1708
1709         case Symbol::IN_OUTPUT_SEGMENT:
1710           shndx = elfcpp::SHN_ABS;
1711           break;
1712
1713         case Symbol::CONSTANT:
1714           shndx = elfcpp::SHN_ABS;
1715           break;
1716
1717         default:
1718           gold_unreachable();
1719         }
1720
1721       if (sym_index != -1U)
1722         {
1723           this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1724               sym, sym->value(), shndx, sympool, ps
1725               SELECT_SIZE_ENDIAN(size, big_endian));
1726           ps += sym_size;
1727         }
1728
1729       if (dynsym_index != -1U)
1730         {
1731           dynsym_index -= first_dynamic_global_index;
1732           gold_assert(dynsym_index < dynamic_count);
1733           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1734           this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1735               sym, value, shndx, dynpool, pd
1736               SELECT_SIZE_ENDIAN(size, big_endian));
1737         }
1738     }
1739
1740   gold_assert(ps - psyms == oview_size);
1741
1742   of->write_output_view(this->offset_, oview_size, psyms);
1743   if (dynamic_view != NULL)
1744     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1745 }
1746
1747 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
1748 // strtab holding the name.
1749
1750 template<int size, bool big_endian>
1751 void
1752 Symbol_table::sized_write_symbol(
1753     Sized_symbol<size>* sym,
1754     typename elfcpp::Elf_types<size>::Elf_Addr value,
1755     unsigned int shndx,
1756     const Stringpool* pool,
1757     unsigned char* p
1758     ACCEPT_SIZE_ENDIAN) const
1759 {
1760   elfcpp::Sym_write<size, big_endian> osym(p);
1761   osym.put_st_name(pool->get_offset(sym->name()));
1762   osym.put_st_value(value);
1763   osym.put_st_size(sym->symsize());
1764   osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1765   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1766   osym.put_st_shndx(shndx);
1767 }
1768
1769 // Check for unresolved symbols in shared libraries.  This is
1770 // controlled by the --allow-shlib-undefined option.
1771
1772 // We only warn about libraries for which we have seen all the
1773 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
1774 // which were not seen in this link.  If we didn't see a DT_NEEDED
1775 // entry, we aren't going to be able to reliably report whether the
1776 // symbol is undefined.
1777
1778 // We also don't warn about libraries found in the system library
1779 // directory (the directory were we find libc.so); we assume that
1780 // those libraries are OK.  This heuristic avoids problems in
1781 // GNU/Linux, in which -ldl can have undefined references satisfied by
1782 // ld-linux.so.
1783
1784 inline void
1785 Symbol_table::warn_about_undefined_dynobj_symbol(
1786     const Input_objects* input_objects,
1787     Symbol* sym) const
1788 {
1789   if (sym->source() == Symbol::FROM_OBJECT
1790       && sym->object()->is_dynamic()
1791       && sym->shndx() == elfcpp::SHN_UNDEF
1792       && sym->binding() != elfcpp::STB_WEAK
1793       && !parameters->allow_shlib_undefined()
1794       && !input_objects->target()->is_defined_by_abi(sym)
1795       && !input_objects->found_in_system_library_directory(sym->object()))
1796     {
1797       // A very ugly cast.
1798       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
1799       if (!dynobj->has_unknown_needed_entries())
1800         gold_error(_("%s: undefined reference to '%s'"),
1801                    sym->object()->name().c_str(),
1802                    sym->demangled_name().c_str());
1803     }
1804 }
1805
1806 // Write out a section symbol.  Return the update offset.
1807
1808 void
1809 Symbol_table::write_section_symbol(const Output_section *os,
1810                                    Output_file* of,
1811                                    off_t offset) const
1812 {
1813   if (parameters->get_size() == 32)
1814     {
1815       if (parameters->is_big_endian())
1816         {
1817 #ifdef HAVE_TARGET_32_BIG
1818           this->sized_write_section_symbol<32, true>(os, of, offset);
1819 #else
1820           gold_unreachable();
1821 #endif
1822         }
1823       else
1824         {
1825 #ifdef HAVE_TARGET_32_LITTLE
1826           this->sized_write_section_symbol<32, false>(os, of, offset);
1827 #else
1828           gold_unreachable();
1829 #endif
1830         }
1831     }
1832   else if (parameters->get_size() == 64)
1833     {
1834       if (parameters->is_big_endian())
1835         {
1836 #ifdef HAVE_TARGET_64_BIG
1837           this->sized_write_section_symbol<64, true>(os, of, offset);
1838 #else
1839           gold_unreachable();
1840 #endif
1841         }
1842       else
1843         {
1844 #ifdef HAVE_TARGET_64_LITTLE
1845           this->sized_write_section_symbol<64, false>(os, of, offset);
1846 #else
1847           gold_unreachable();
1848 #endif
1849         }
1850     }
1851   else
1852     gold_unreachable();
1853 }
1854
1855 // Write out a section symbol, specialized for size and endianness.
1856
1857 template<int size, bool big_endian>
1858 void
1859 Symbol_table::sized_write_section_symbol(const Output_section* os,
1860                                          Output_file* of,
1861                                          off_t offset) const
1862 {
1863   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1864
1865   unsigned char* pov = of->get_output_view(offset, sym_size);
1866
1867   elfcpp::Sym_write<size, big_endian> osym(pov);
1868   osym.put_st_name(0);
1869   osym.put_st_value(os->address());
1870   osym.put_st_size(0);
1871   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
1872                                        elfcpp::STT_SECTION));
1873   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
1874   osym.put_st_shndx(os->out_shndx());
1875
1876   of->write_output_view(offset, sym_size, pov);
1877 }
1878
1879 // We check for ODR violations by looking for symbols with the same
1880 // name for which the debugging information reports that they were
1881 // defined in different source locations.  When comparing the source
1882 // location, we consider instances with the same base filename and
1883 // line number to be the same.  This is because different object
1884 // files/shared libraries can include the same header file using
1885 // different paths, and we don't want to report an ODR violation in
1886 // that case.
1887
1888 // This struct is used to compare line information, as returned by
1889 // Dwarf_line_info::one_addr2line.  It imlements a < comparison
1890 // operator used with std::set.
1891
1892 struct Odr_violation_compare
1893 {
1894   bool
1895   operator()(const std::string& s1, const std::string& s2) const
1896   {
1897     std::string::size_type pos1 = s1.rfind('/');
1898     std::string::size_type pos2 = s2.rfind('/');
1899     if (pos1 == std::string::npos
1900         || pos2 == std::string::npos)
1901       return s1 < s2;
1902     return s1.compare(pos1, std::string::npos,
1903                       s2, pos2, std::string::npos) < 0;
1904   }
1905 };
1906
1907 // Check candidate_odr_violations_ to find symbols with the same name
1908 // but apparently different definitions (different source-file/line-no).
1909
1910 void
1911 Symbol_table::detect_odr_violations(const char* output_file_name) const
1912 {
1913   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
1914        it != candidate_odr_violations_.end();
1915        ++it)
1916     {
1917       const char* symbol_name = it->first;
1918       // We use a sorted set so the output is deterministic.
1919       std::set<std::string, Odr_violation_compare> line_nums;
1920
1921       for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
1922                locs = it->second.begin();
1923            locs != it->second.end();
1924            ++locs)
1925         {
1926           // We need to lock the object in order to read it.  This
1927           // means that we can not run inside a Task.  If we want to
1928           // run this in a Task for better performance, we will need
1929           // one Task for object, plus appropriate locking to ensure
1930           // that we don't conflict with other uses of the object.
1931           locs->object->lock();
1932           std::string lineno = Dwarf_line_info::one_addr2line(
1933               locs->object, locs->shndx, locs->offset);
1934           locs->object->unlock();
1935           if (!lineno.empty())
1936             line_nums.insert(lineno);
1937         }
1938
1939       if (line_nums.size() > 1)
1940         {
1941           gold_warning(_("while linking %s: symbol '%s' defined in multiple "
1942                          "places (possible ODR violation):"),
1943                        output_file_name, demangle(symbol_name).c_str());
1944           for (std::set<std::string>::const_iterator it2 = line_nums.begin();
1945                it2 != line_nums.end();
1946                ++it2)
1947             fprintf(stderr, "  %s\n", it2->c_str());
1948         }
1949     }
1950 }
1951
1952 // Warnings functions.
1953
1954 // Add a new warning.
1955
1956 void
1957 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
1958                       unsigned int shndx)
1959 {
1960   name = symtab->canonicalize_name(name);
1961   this->warnings_[name].set(obj, shndx);
1962 }
1963
1964 // Look through the warnings and mark the symbols for which we should
1965 // warn.  This is called during Layout::finalize when we know the
1966 // sources for all the symbols.
1967
1968 void
1969 Warnings::note_warnings(Symbol_table* symtab)
1970 {
1971   for (Warning_table::iterator p = this->warnings_.begin();
1972        p != this->warnings_.end();
1973        ++p)
1974     {
1975       Symbol* sym = symtab->lookup(p->first, NULL);
1976       if (sym != NULL
1977           && sym->source() == Symbol::FROM_OBJECT
1978           && sym->object() == p->second.object)
1979         {
1980           sym->set_has_warning();
1981
1982           // Read the section contents to get the warning text.  It
1983           // would be nicer if we only did this if we have to actually
1984           // issue a warning.  Unfortunately, warnings are issued as
1985           // we relocate sections.  That means that we can not lock
1986           // the object then, as we might try to issue the same
1987           // warning multiple times simultaneously.
1988           {
1989             Task_locker_obj<Object> tl(*p->second.object);
1990             const unsigned char* c;
1991             off_t len;
1992             c = p->second.object->section_contents(p->second.shndx, &len,
1993                                                    false);
1994             p->second.set_text(reinterpret_cast<const char*>(c), len);
1995           }
1996         }
1997     }
1998 }
1999
2000 // Issue a warning.  This is called when we see a relocation against a
2001 // symbol for which has a warning.
2002
2003 template<int size, bool big_endian>
2004 void
2005 Warnings::issue_warning(const Symbol* sym,
2006                         const Relocate_info<size, big_endian>* relinfo,
2007                         size_t relnum, off_t reloffset) const
2008 {
2009   gold_assert(sym->has_warning());
2010   Warning_table::const_iterator p = this->warnings_.find(sym->name());
2011   gold_assert(p != this->warnings_.end());
2012   gold_warning_at_location(relinfo, relnum, reloffset,
2013                            "%s", p->second.text.c_str());
2014 }
2015
2016 // Instantiate the templates we need.  We could use the configure
2017 // script to restrict this to only the ones needed for implemented
2018 // targets.
2019
2020 #ifdef HAVE_TARGET_32_LITTLE
2021 template
2022 void
2023 Symbol_table::add_from_relobj<32, false>(
2024     Sized_relobj<32, false>* relobj,
2025     const unsigned char* syms,
2026     size_t count,
2027     const char* sym_names,
2028     size_t sym_name_size,
2029     Sized_relobj<32, true>::Symbols* sympointers);
2030 #endif
2031
2032 #ifdef HAVE_TARGET_32_BIG
2033 template
2034 void
2035 Symbol_table::add_from_relobj<32, true>(
2036     Sized_relobj<32, true>* relobj,
2037     const unsigned char* syms,
2038     size_t count,
2039     const char* sym_names,
2040     size_t sym_name_size,
2041     Sized_relobj<32, false>::Symbols* sympointers);
2042 #endif
2043
2044 #ifdef HAVE_TARGET_64_LITTLE
2045 template
2046 void
2047 Symbol_table::add_from_relobj<64, false>(
2048     Sized_relobj<64, false>* relobj,
2049     const unsigned char* syms,
2050     size_t count,
2051     const char* sym_names,
2052     size_t sym_name_size,
2053     Sized_relobj<64, true>::Symbols* sympointers);
2054 #endif
2055
2056 #ifdef HAVE_TARGET_64_BIG
2057 template
2058 void
2059 Symbol_table::add_from_relobj<64, true>(
2060     Sized_relobj<64, true>* relobj,
2061     const unsigned char* syms,
2062     size_t count,
2063     const char* sym_names,
2064     size_t sym_name_size,
2065     Sized_relobj<64, false>::Symbols* sympointers);
2066 #endif
2067
2068 #ifdef HAVE_TARGET_32_LITTLE
2069 template
2070 void
2071 Symbol_table::add_from_dynobj<32, false>(
2072     Sized_dynobj<32, false>* dynobj,
2073     const unsigned char* syms,
2074     size_t count,
2075     const char* sym_names,
2076     size_t sym_name_size,
2077     const unsigned char* versym,
2078     size_t versym_size,
2079     const std::vector<const char*>* version_map);
2080 #endif
2081
2082 #ifdef HAVE_TARGET_32_BIG
2083 template
2084 void
2085 Symbol_table::add_from_dynobj<32, true>(
2086     Sized_dynobj<32, true>* dynobj,
2087     const unsigned char* syms,
2088     size_t count,
2089     const char* sym_names,
2090     size_t sym_name_size,
2091     const unsigned char* versym,
2092     size_t versym_size,
2093     const std::vector<const char*>* version_map);
2094 #endif
2095
2096 #ifdef HAVE_TARGET_64_LITTLE
2097 template
2098 void
2099 Symbol_table::add_from_dynobj<64, false>(
2100     Sized_dynobj<64, false>* dynobj,
2101     const unsigned char* syms,
2102     size_t count,
2103     const char* sym_names,
2104     size_t sym_name_size,
2105     const unsigned char* versym,
2106     size_t versym_size,
2107     const std::vector<const char*>* version_map);
2108 #endif
2109
2110 #ifdef HAVE_TARGET_64_BIG
2111 template
2112 void
2113 Symbol_table::add_from_dynobj<64, true>(
2114     Sized_dynobj<64, true>* dynobj,
2115     const unsigned char* syms,
2116     size_t count,
2117     const char* sym_names,
2118     size_t sym_name_size,
2119     const unsigned char* versym,
2120     size_t versym_size,
2121     const std::vector<const char*>* version_map);
2122 #endif
2123
2124 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2125 template
2126 void
2127 Symbol_table::define_with_copy_reloc<32>(const Target* target,
2128                                          Sized_symbol<32>* sym,
2129                                          Output_data* posd, uint64_t value);
2130 #endif
2131
2132 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2133 template
2134 void
2135 Symbol_table::define_with_copy_reloc<64>(const Target* target,
2136                                          Sized_symbol<64>* sym,
2137                                          Output_data* posd, uint64_t value);
2138 #endif
2139
2140 #ifdef HAVE_TARGET_32_LITTLE
2141 template
2142 void
2143 Warnings::issue_warning<32, false>(const Symbol* sym,
2144                                    const Relocate_info<32, false>* relinfo,
2145                                    size_t relnum, off_t reloffset) const;
2146 #endif
2147
2148 #ifdef HAVE_TARGET_32_BIG
2149 template
2150 void
2151 Warnings::issue_warning<32, true>(const Symbol* sym,
2152                                   const Relocate_info<32, true>* relinfo,
2153                                   size_t relnum, off_t reloffset) const;
2154 #endif
2155
2156 #ifdef HAVE_TARGET_64_LITTLE
2157 template
2158 void
2159 Warnings::issue_warning<64, false>(const Symbol* sym,
2160                                    const Relocate_info<64, false>* relinfo,
2161                                    size_t relnum, off_t reloffset) const;
2162 #endif
2163
2164 #ifdef HAVE_TARGET_64_BIG
2165 template
2166 void
2167 Warnings::issue_warning<64, true>(const Symbol* sym,
2168                                   const Relocate_info<64, true>* relinfo,
2169                                   size_t relnum, off_t reloffset) const;
2170 #endif
2171
2172 } // End namespace gold.