2008-08-28 Kris Van Hees <kris.van.hees@oracle.com>
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "object.h"
34 #include "dwarf_reader.h"
35 #include "dynobj.h"
36 #include "output.h"
37 #include "target.h"
38 #include "workqueue.h"
39 #include "symtab.h"
40
41 namespace gold
42 {
43
44 // Class Symbol.
45
46 // Initialize fields in Symbol.  This initializes everything except u_
47 // and source_.
48
49 void
50 Symbol::init_fields(const char* name, const char* version,
51                     elfcpp::STT type, elfcpp::STB binding,
52                     elfcpp::STV visibility, unsigned char nonvis)
53 {
54   this->name_ = name;
55   this->version_ = version;
56   this->symtab_index_ = 0;
57   this->dynsym_index_ = 0;
58   this->got_offsets_.init();
59   this->plt_offset_ = 0;
60   this->type_ = type;
61   this->binding_ = binding;
62   this->visibility_ = visibility;
63   this->nonvis_ = nonvis;
64   this->is_target_special_ = false;
65   this->is_def_ = false;
66   this->is_forwarder_ = false;
67   this->has_alias_ = false;
68   this->needs_dynsym_entry_ = false;
69   this->in_reg_ = false;
70   this->in_dyn_ = false;
71   this->has_plt_offset_ = false;
72   this->has_warning_ = false;
73   this->is_copied_from_dynobj_ = false;
74   this->is_forced_local_ = false;
75   this->is_ordinary_shndx_ = false;
76 }
77
78 // Return the demangled version of the symbol's name, but only
79 // if the --demangle flag was set.
80
81 static std::string
82 demangle(const char* name)
83 {
84   if (!parameters->options().do_demangle())
85     return name;
86
87   // cplus_demangle allocates memory for the result it returns,
88   // and returns NULL if the name is already demangled.
89   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
90   if (demangled_name == NULL)
91     return name;
92
93   std::string retval(demangled_name);
94   free(demangled_name);
95   return retval;
96 }
97
98 std::string
99 Symbol::demangled_name() const
100 {
101   return demangle(this->name());
102 }
103
104 // Initialize the fields in the base class Symbol for SYM in OBJECT.
105
106 template<int size, bool big_endian>
107 void
108 Symbol::init_base_object(const char* name, const char* version, Object* object,
109                          const elfcpp::Sym<size, big_endian>& sym,
110                          unsigned int st_shndx, bool is_ordinary)
111 {
112   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
113                     sym.get_st_visibility(), sym.get_st_nonvis());
114   this->u_.from_object.object = object;
115   this->u_.from_object.shndx = st_shndx;
116   this->is_ordinary_shndx_ = is_ordinary;
117   this->source_ = FROM_OBJECT;
118   this->in_reg_ = !object->is_dynamic();
119   this->in_dyn_ = object->is_dynamic();
120 }
121
122 // Initialize the fields in the base class Symbol for a symbol defined
123 // in an Output_data.
124
125 void
126 Symbol::init_base_output_data(const char* name, const char* version,
127                               Output_data* od, elfcpp::STT type,
128                               elfcpp::STB binding, elfcpp::STV visibility,
129                               unsigned char nonvis, bool offset_is_from_end)
130 {
131   this->init_fields(name, version, type, binding, visibility, nonvis);
132   this->u_.in_output_data.output_data = od;
133   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
134   this->source_ = IN_OUTPUT_DATA;
135   this->in_reg_ = true;
136 }
137
138 // Initialize the fields in the base class Symbol for a symbol defined
139 // in an Output_segment.
140
141 void
142 Symbol::init_base_output_segment(const char* name, const char* version,
143                                  Output_segment* os, elfcpp::STT type,
144                                  elfcpp::STB binding, elfcpp::STV visibility,
145                                  unsigned char nonvis,
146                                  Segment_offset_base offset_base)
147 {
148   this->init_fields(name, version, type, binding, visibility, nonvis);
149   this->u_.in_output_segment.output_segment = os;
150   this->u_.in_output_segment.offset_base = offset_base;
151   this->source_ = IN_OUTPUT_SEGMENT;
152   this->in_reg_ = true;
153 }
154
155 // Initialize the fields in the base class Symbol for a symbol defined
156 // as a constant.
157
158 void
159 Symbol::init_base_constant(const char* name, const char* version,
160                            elfcpp::STT type, elfcpp::STB binding,
161                            elfcpp::STV visibility, unsigned char nonvis)
162 {
163   this->init_fields(name, version, type, binding, visibility, nonvis);
164   this->source_ = IS_CONSTANT;
165   this->in_reg_ = true;
166 }
167
168 // Initialize the fields in the base class Symbol for an undefined
169 // symbol.
170
171 void
172 Symbol::init_base_undefined(const char* name, const char* version,
173                             elfcpp::STT type, elfcpp::STB binding,
174                             elfcpp::STV visibility, unsigned char nonvis)
175 {
176   this->init_fields(name, version, type, binding, visibility, nonvis);
177   this->dynsym_index_ = -1U;
178   this->source_ = IS_UNDEFINED;
179   this->in_reg_ = true;
180 }
181
182 // Allocate a common symbol in the base.
183
184 void
185 Symbol::allocate_base_common(Output_data* od)
186 {
187   gold_assert(this->is_common());
188   this->source_ = IN_OUTPUT_DATA;
189   this->u_.in_output_data.output_data = od;
190   this->u_.in_output_data.offset_is_from_end = false;
191 }
192
193 // Initialize the fields in Sized_symbol for SYM in OBJECT.
194
195 template<int size>
196 template<bool big_endian>
197 void
198 Sized_symbol<size>::init_object(const char* name, const char* version,
199                                 Object* object,
200                                 const elfcpp::Sym<size, big_endian>& sym,
201                                 unsigned int st_shndx, bool is_ordinary)
202 {
203   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
204   this->value_ = sym.get_st_value();
205   this->symsize_ = sym.get_st_size();
206 }
207
208 // Initialize the fields in Sized_symbol for a symbol defined in an
209 // Output_data.
210
211 template<int size>
212 void
213 Sized_symbol<size>::init_output_data(const char* name, const char* version,
214                                      Output_data* od, Value_type value,
215                                      Size_type symsize, elfcpp::STT type,
216                                      elfcpp::STB binding,
217                                      elfcpp::STV visibility,
218                                      unsigned char nonvis,
219                                      bool offset_is_from_end)
220 {
221   this->init_base_output_data(name, version, od, type, binding, visibility,
222                               nonvis, offset_is_from_end);
223   this->value_ = value;
224   this->symsize_ = symsize;
225 }
226
227 // Initialize the fields in Sized_symbol for a symbol defined in an
228 // Output_segment.
229
230 template<int size>
231 void
232 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
233                                         Output_segment* os, Value_type value,
234                                         Size_type symsize, elfcpp::STT type,
235                                         elfcpp::STB binding,
236                                         elfcpp::STV visibility,
237                                         unsigned char nonvis,
238                                         Segment_offset_base offset_base)
239 {
240   this->init_base_output_segment(name, version, os, type, binding, visibility,
241                                  nonvis, offset_base);
242   this->value_ = value;
243   this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined as a
247 // constant.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_constant(const char* name, const char* version,
252                                   Value_type value, Size_type symsize,
253                                   elfcpp::STT type, elfcpp::STB binding,
254                                   elfcpp::STV visibility, unsigned char nonvis)
255 {
256   this->init_base_constant(name, version, type, binding, visibility, nonvis);
257   this->value_ = value;
258   this->symsize_ = symsize;
259 }
260
261 // Initialize the fields in Sized_symbol for an undefined symbol.
262
263 template<int size>
264 void
265 Sized_symbol<size>::init_undefined(const char* name, const char* version,
266                                    elfcpp::STT type, elfcpp::STB binding,
267                                    elfcpp::STV visibility, unsigned char nonvis)
268 {
269   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
270   this->value_ = 0;
271   this->symsize_ = 0;
272 }
273
274 // Allocate a common symbol.
275
276 template<int size>
277 void
278 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
279 {
280   this->allocate_base_common(od);
281   this->value_ = value;
282 }
283
284 // Return true if this symbol should be added to the dynamic symbol
285 // table.
286
287 inline bool
288 Symbol::should_add_dynsym_entry() const
289 {
290   // If the symbol is used by a dynamic relocation, we need to add it.
291   if (this->needs_dynsym_entry())
292     return true;
293
294   // If the symbol was forced local in a version script, do not add it.
295   if (this->is_forced_local())
296     return false;
297
298   // If exporting all symbols or building a shared library,
299   // and the symbol is defined in a regular object and is
300   // externally visible, we need to add it.
301   if ((parameters->options().export_dynamic() || parameters->options().shared())
302       && !this->is_from_dynobj()
303       && this->is_externally_visible())
304     return true;
305
306   return false;
307 }
308
309 // Return true if the final value of this symbol is known at link
310 // time.
311
312 bool
313 Symbol::final_value_is_known() const
314 {
315   // If we are not generating an executable, then no final values are
316   // known, since they will change at runtime.
317   if (parameters->options().shared() || parameters->options().relocatable())
318     return false;
319
320   // If the symbol is not from an object file, and is not undefined,
321   // then it is defined, and known.
322   if (this->source_ != FROM_OBJECT)
323     {
324       if (this->source_ != IS_UNDEFINED)
325         return true;
326     }
327   else
328     {
329       // If the symbol is from a dynamic object, then the final value
330       // is not known.
331       if (this->object()->is_dynamic())
332         return false;
333
334       // If the symbol is not undefined (it is defined or common),
335       // then the final value is known.
336       if (!this->is_undefined())
337         return true;
338     }
339
340   // If the symbol is undefined, then whether the final value is known
341   // depends on whether we are doing a static link.  If we are doing a
342   // dynamic link, then the final value could be filled in at runtime.
343   // This could reasonably be the case for a weak undefined symbol.
344   return parameters->doing_static_link();
345 }
346
347 // Return the output section where this symbol is defined.
348
349 Output_section*
350 Symbol::output_section() const
351 {
352   switch (this->source_)
353     {
354     case FROM_OBJECT:
355       {
356         unsigned int shndx = this->u_.from_object.shndx;
357         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
358           {
359             gold_assert(!this->u_.from_object.object->is_dynamic());
360             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
361             return relobj->output_section(shndx);
362           }
363         return NULL;
364       }
365
366     case IN_OUTPUT_DATA:
367       return this->u_.in_output_data.output_data->output_section();
368
369     case IN_OUTPUT_SEGMENT:
370     case IS_CONSTANT:
371     case IS_UNDEFINED:
372       return NULL;
373
374     default:
375       gold_unreachable();
376     }
377 }
378
379 // Set the symbol's output section.  This is used for symbols defined
380 // in scripts.  This should only be called after the symbol table has
381 // been finalized.
382
383 void
384 Symbol::set_output_section(Output_section* os)
385 {
386   switch (this->source_)
387     {
388     case FROM_OBJECT:
389     case IN_OUTPUT_DATA:
390       gold_assert(this->output_section() == os);
391       break;
392     case IS_CONSTANT:
393       this->source_ = IN_OUTPUT_DATA;
394       this->u_.in_output_data.output_data = os;
395       this->u_.in_output_data.offset_is_from_end = false;
396       break;
397     case IN_OUTPUT_SEGMENT:
398     case IS_UNDEFINED:
399     default:
400       gold_unreachable();
401     }
402 }
403
404 // Class Symbol_table.
405
406 Symbol_table::Symbol_table(unsigned int count,
407                            const Version_script_info& version_script)
408   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
409     forwarders_(), commons_(), tls_commons_(), forced_locals_(), warnings_(),
410     version_script_(version_script)
411 {
412   namepool_.reserve(count);
413 }
414
415 Symbol_table::~Symbol_table()
416 {
417 }
418
419 // The hash function.  The key values are Stringpool keys.
420
421 inline size_t
422 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
423 {
424   return key.first ^ key.second;
425 }
426
427 // The symbol table key equality function.  This is called with
428 // Stringpool keys.
429
430 inline bool
431 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
432                                           const Symbol_table_key& k2) const
433 {
434   return k1.first == k2.first && k1.second == k2.second;
435 }
436
437 // Make TO a symbol which forwards to FROM.
438
439 void
440 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
441 {
442   gold_assert(from != to);
443   gold_assert(!from->is_forwarder() && !to->is_forwarder());
444   this->forwarders_[from] = to;
445   from->set_forwarder();
446 }
447
448 // Resolve the forwards from FROM, returning the real symbol.
449
450 Symbol*
451 Symbol_table::resolve_forwards(const Symbol* from) const
452 {
453   gold_assert(from->is_forwarder());
454   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
455     this->forwarders_.find(from);
456   gold_assert(p != this->forwarders_.end());
457   return p->second;
458 }
459
460 // Look up a symbol by name.
461
462 Symbol*
463 Symbol_table::lookup(const char* name, const char* version) const
464 {
465   Stringpool::Key name_key;
466   name = this->namepool_.find(name, &name_key);
467   if (name == NULL)
468     return NULL;
469
470   Stringpool::Key version_key = 0;
471   if (version != NULL)
472     {
473       version = this->namepool_.find(version, &version_key);
474       if (version == NULL)
475         return NULL;
476     }
477
478   Symbol_table_key key(name_key, version_key);
479   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
480   if (p == this->table_.end())
481     return NULL;
482   return p->second;
483 }
484
485 // Resolve a Symbol with another Symbol.  This is only used in the
486 // unusual case where there are references to both an unversioned
487 // symbol and a symbol with a version, and we then discover that that
488 // version is the default version.  Because this is unusual, we do
489 // this the slow way, by converting back to an ELF symbol.
490
491 template<int size, bool big_endian>
492 void
493 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
494 {
495   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
496   elfcpp::Sym_write<size, big_endian> esym(buf);
497   // We don't bother to set the st_name or the st_shndx field.
498   esym.put_st_value(from->value());
499   esym.put_st_size(from->symsize());
500   esym.put_st_info(from->binding(), from->type());
501   esym.put_st_other(from->visibility(), from->nonvis());
502   bool is_ordinary;
503   unsigned int shndx = from->shndx(&is_ordinary);
504   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
505                 from->version());
506   if (from->in_reg())
507     to->set_in_reg();
508   if (from->in_dyn())
509     to->set_in_dyn();
510 }
511
512 // Record that a symbol is forced to be local by a version script.
513
514 void
515 Symbol_table::force_local(Symbol* sym)
516 {
517   if (!sym->is_defined() && !sym->is_common())
518     return;
519   if (sym->is_forced_local())
520     {
521       // We already got this one.
522       return;
523     }
524   sym->set_is_forced_local();
525   this->forced_locals_.push_back(sym);
526 }
527
528 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
529 // is only called for undefined symbols, when at least one --wrap
530 // option was used.
531
532 const char*
533 Symbol_table::wrap_symbol(Object* object, const char* name,
534                           Stringpool::Key* name_key)
535 {
536   // For some targets, we need to ignore a specific character when
537   // wrapping, and add it back later.
538   char prefix = '\0';
539   if (name[0] == object->target()->wrap_char())
540     {
541       prefix = name[0];
542       ++name;
543     }
544
545   if (parameters->options().is_wrap(name))
546     {
547       // Turn NAME into __wrap_NAME.
548       std::string s;
549       if (prefix != '\0')
550         s += prefix;
551       s += "__wrap_";
552       s += name;
553
554       // This will give us both the old and new name in NAMEPOOL_, but
555       // that is OK.  Only the versions we need will wind up in the
556       // real string table in the output file.
557       return this->namepool_.add(s.c_str(), true, name_key);
558     }
559
560   const char* const real_prefix = "__real_";
561   const size_t real_prefix_length = strlen(real_prefix);
562   if (strncmp(name, real_prefix, real_prefix_length) == 0
563       && parameters->options().is_wrap(name + real_prefix_length))
564     {
565       // Turn __real_NAME into NAME.
566       std::string s;
567       if (prefix != '\0')
568         s += prefix;
569       s += name + real_prefix_length;
570       return this->namepool_.add(s.c_str(), true, name_key);
571     }
572
573   return name;
574 }
575
576 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
577 // name and VERSION is the version; both are canonicalized.  DEF is
578 // whether this is the default version.  ST_SHNDX is the symbol's
579 // section index; IS_ORDINARY is whether this is a normal section
580 // rather than a special code.
581
582 // If DEF is true, then this is the definition of a default version of
583 // a symbol.  That means that any lookup of NAME/NULL and any lookup
584 // of NAME/VERSION should always return the same symbol.  This is
585 // obvious for references, but in particular we want to do this for
586 // definitions: overriding NAME/NULL should also override
587 // NAME/VERSION.  If we don't do that, it would be very hard to
588 // override functions in a shared library which uses versioning.
589
590 // We implement this by simply making both entries in the hash table
591 // point to the same Symbol structure.  That is easy enough if this is
592 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
593 // that we have seen both already, in which case they will both have
594 // independent entries in the symbol table.  We can't simply change
595 // the symbol table entry, because we have pointers to the entries
596 // attached to the object files.  So we mark the entry attached to the
597 // object file as a forwarder, and record it in the forwarders_ map.
598 // Note that entries in the hash table will never be marked as
599 // forwarders.
600 //
601 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
602 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
603 // for a special section code.  ST_SHNDX may be modified if the symbol
604 // is defined in a section being discarded.
605
606 template<int size, bool big_endian>
607 Sized_symbol<size>*
608 Symbol_table::add_from_object(Object* object,
609                               const char *name,
610                               Stringpool::Key name_key,
611                               const char *version,
612                               Stringpool::Key version_key,
613                               bool def,
614                               const elfcpp::Sym<size, big_endian>& sym,
615                               unsigned int st_shndx,
616                               bool is_ordinary,
617                               unsigned int orig_st_shndx)
618 {
619   // Print a message if this symbol is being traced.
620   if (parameters->options().is_trace_symbol(name))
621     {
622       if (orig_st_shndx == elfcpp::SHN_UNDEF)
623         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
624       else
625         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
626     }
627
628   // For an undefined symbol, we may need to adjust the name using
629   // --wrap.
630   if (orig_st_shndx == elfcpp::SHN_UNDEF
631       && parameters->options().any_wrap())
632     {
633       const char* wrap_name = this->wrap_symbol(object, name, &name_key);
634       if (wrap_name != name)
635         {
636           // If we see a reference to malloc with version GLIBC_2.0,
637           // and we turn it into a reference to __wrap_malloc, then we
638           // discard the version number.  Otherwise the user would be
639           // required to specify the correct version for
640           // __wrap_malloc.
641           version = NULL;
642           version_key = 0;
643           name = wrap_name;
644         }
645     }
646
647   Symbol* const snull = NULL;
648   std::pair<typename Symbol_table_type::iterator, bool> ins =
649     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
650                                        snull));
651
652   std::pair<typename Symbol_table_type::iterator, bool> insdef =
653     std::make_pair(this->table_.end(), false);
654   if (def)
655     {
656       const Stringpool::Key vnull_key = 0;
657       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
658                                                                  vnull_key),
659                                                   snull));
660     }
661
662   // ins.first: an iterator, which is a pointer to a pair.
663   // ins.first->first: the key (a pair of name and version).
664   // ins.first->second: the value (Symbol*).
665   // ins.second: true if new entry was inserted, false if not.
666
667   Sized_symbol<size>* ret;
668   bool was_undefined;
669   bool was_common;
670   if (!ins.second)
671     {
672       // We already have an entry for NAME/VERSION.
673       ret = this->get_sized_symbol<size>(ins.first->second);
674       gold_assert(ret != NULL);
675
676       was_undefined = ret->is_undefined();
677       was_common = ret->is_common();
678
679       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
680                     version);
681
682       if (def)
683         {
684           if (insdef.second)
685             {
686               // This is the first time we have seen NAME/NULL.  Make
687               // NAME/NULL point to NAME/VERSION.
688               insdef.first->second = ret;
689             }
690           else if (insdef.first->second != ret)
691             {
692               // This is the unfortunate case where we already have
693               // entries for both NAME/VERSION and NAME/NULL.  We now
694               // see a symbol NAME/VERSION where VERSION is the
695               // default version.  We have already resolved this new
696               // symbol with the existing NAME/VERSION symbol.
697
698               // It's possible that NAME/NULL and NAME/VERSION are
699               // both defined in regular objects.  This can only
700               // happen if one object file defines foo and another
701               // defines foo@@ver.  This is somewhat obscure, but we
702               // call it a multiple definition error.
703
704               // It's possible that NAME/NULL actually has a version,
705               // in which case it won't be the same as VERSION.  This
706               // happens with ver_test_7.so in the testsuite for the
707               // symbol t2_2.  We see t2_2@@VER2, so we define both
708               // t2_2/VER2 and t2_2/NULL.  We then see an unadorned
709               // t2_2 in an object file and give it version VER1 from
710               // the version script.  This looks like a default
711               // definition for VER1, so it looks like we should merge
712               // t2_2/NULL with t2_2/VER1.  That doesn't make sense,
713               // but it's not obvious that this is an error, either.
714               // So we just punt.
715
716               // If one of the symbols has non-default visibility, and
717               // the other is defined in a shared object, then they
718               // are different symbols.
719
720               // Otherwise, we just resolve the symbols as though they
721               // were the same.
722
723               if (insdef.first->second->version() != NULL)
724                 {
725                   gold_assert(insdef.first->second->version() != version);
726                   def = false;
727                 }
728               else if (ret->visibility() != elfcpp::STV_DEFAULT
729                   && insdef.first->second->is_from_dynobj())
730                 def = false;
731               else if (insdef.first->second->visibility() != elfcpp::STV_DEFAULT
732                        && ret->is_from_dynobj())
733                 def = false;
734               else
735                 {
736                   const Sized_symbol<size>* sym2;
737                   sym2 = this->get_sized_symbol<size>(insdef.first->second);
738                   Symbol_table::resolve<size, big_endian>(ret, sym2);
739                   this->make_forwarder(insdef.first->second, ret);
740                   insdef.first->second = ret;
741                 }
742             }
743           else
744             def = false;
745         }
746     }
747   else
748     {
749       // This is the first time we have seen NAME/VERSION.
750       gold_assert(ins.first->second == NULL);
751
752       if (def && !insdef.second)
753         {
754           // We already have an entry for NAME/NULL.  If we override
755           // it, then change it to NAME/VERSION.
756           ret = this->get_sized_symbol<size>(insdef.first->second);
757
758           was_undefined = ret->is_undefined();
759           was_common = ret->is_common();
760
761           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
762                         version);
763           ins.first->second = ret;
764         }
765       else
766         {
767           was_undefined = false;
768           was_common = false;
769
770           Sized_target<size, big_endian>* target =
771             object->sized_target<size, big_endian>();
772           if (!target->has_make_symbol())
773             ret = new Sized_symbol<size>();
774           else
775             {
776               ret = target->make_symbol();
777               if (ret == NULL)
778                 {
779                   // This means that we don't want a symbol table
780                   // entry after all.
781                   if (!def)
782                     this->table_.erase(ins.first);
783                   else
784                     {
785                       this->table_.erase(insdef.first);
786                       // Inserting insdef invalidated ins.
787                       this->table_.erase(std::make_pair(name_key,
788                                                         version_key));
789                     }
790                   return NULL;
791                 }
792             }
793
794           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
795
796           ins.first->second = ret;
797           if (def)
798             {
799               // This is the first time we have seen NAME/NULL.  Point
800               // it at the new entry for NAME/VERSION.
801               gold_assert(insdef.second);
802               insdef.first->second = ret;
803             }
804         }
805     }
806
807   // Record every time we see a new undefined symbol, to speed up
808   // archive groups.
809   if (!was_undefined && ret->is_undefined())
810     ++this->saw_undefined_;
811
812   // Keep track of common symbols, to speed up common symbol
813   // allocation.
814   if (!was_common && ret->is_common())
815     {
816       if (ret->type() != elfcpp::STT_TLS)
817         this->commons_.push_back(ret);
818       else
819         this->tls_commons_.push_back(ret);
820     }
821
822   if (def)
823     ret->set_is_default();
824   return ret;
825 }
826
827 // Add all the symbols in a relocatable object to the hash table.
828
829 template<int size, bool big_endian>
830 void
831 Symbol_table::add_from_relobj(
832     Sized_relobj<size, big_endian>* relobj,
833     const unsigned char* syms,
834     size_t count,
835     size_t symndx_offset,
836     const char* sym_names,
837     size_t sym_name_size,
838     typename Sized_relobj<size, big_endian>::Symbols* sympointers,
839     size_t *defined)
840 {
841   *defined = 0;
842
843   gold_assert(size == relobj->target()->get_size());
844   gold_assert(size == parameters->target().get_size());
845
846   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
847
848   const bool just_symbols = relobj->just_symbols();
849
850   const unsigned char* p = syms;
851   for (size_t i = 0; i < count; ++i, p += sym_size)
852     {
853       (*sympointers)[i] = NULL;
854
855       elfcpp::Sym<size, big_endian> sym(p);
856
857       unsigned int st_name = sym.get_st_name();
858       if (st_name >= sym_name_size)
859         {
860           relobj->error(_("bad global symbol name offset %u at %zu"),
861                         st_name, i);
862           continue;
863         }
864
865       const char* name = sym_names + st_name;
866
867       bool is_ordinary;
868       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
869                                                        sym.get_st_shndx(),
870                                                        &is_ordinary);
871       unsigned int orig_st_shndx = st_shndx;
872       if (!is_ordinary)
873         orig_st_shndx = elfcpp::SHN_UNDEF;
874
875       if (st_shndx != elfcpp::SHN_UNDEF)
876         ++*defined;
877
878       // A symbol defined in a section which we are not including must
879       // be treated as an undefined symbol.
880       if (st_shndx != elfcpp::SHN_UNDEF
881           && is_ordinary
882           && !relobj->is_section_included(st_shndx))
883         st_shndx = elfcpp::SHN_UNDEF;
884
885       // In an object file, an '@' in the name separates the symbol
886       // name from the version name.  If there are two '@' characters,
887       // this is the default version.
888       const char* ver = strchr(name, '@');
889       Stringpool::Key ver_key = 0;
890       int namelen = 0;
891       // DEF: is the version default?  LOCAL: is the symbol forced local?
892       bool def = false;
893       bool local = false;
894
895       if (ver != NULL)
896         {
897           // The symbol name is of the form foo@VERSION or foo@@VERSION
898           namelen = ver - name;
899           ++ver;
900           if (*ver == '@')
901             {
902               def = true;
903               ++ver;
904             }
905           ver = this->namepool_.add(ver, true, &ver_key);
906         }
907       // We don't want to assign a version to an undefined symbol,
908       // even if it is listed in the version script.  FIXME: What
909       // about a common symbol?
910       else
911         {
912           namelen = strlen(name);
913           if (!this->version_script_.empty()
914               && st_shndx != elfcpp::SHN_UNDEF)
915             {
916               // The symbol name did not have a version, but the
917               // version script may assign a version anyway.
918               std::string version;
919               if (this->version_script_.get_symbol_version(name, &version))
920                 {
921                   // The version can be empty if the version script is
922                   // only used to force some symbols to be local.
923                   if (!version.empty())
924                     {
925                       ver = this->namepool_.add_with_length(version.c_str(),
926                                                             version.length(),
927                                                             true,
928                                                             &ver_key);
929                       def = true;
930                     }
931                 }
932               else if (this->version_script_.symbol_is_local(name))
933                 local = true;
934             }
935         }
936
937       elfcpp::Sym<size, big_endian>* psym = &sym;
938       unsigned char symbuf[sym_size];
939       elfcpp::Sym<size, big_endian> sym2(symbuf);
940       if (just_symbols)
941         {
942           memcpy(symbuf, p, sym_size);
943           elfcpp::Sym_write<size, big_endian> sw(symbuf);
944           if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
945             {
946               // Symbol values in object files are section relative.
947               // This is normally what we want, but since here we are
948               // converting the symbol to absolute we need to add the
949               // section address.  The section address in an object
950               // file is normally zero, but people can use a linker
951               // script to change it.
952               sw.put_st_value(sym.get_st_value()
953                               + relobj->section_address(orig_st_shndx));
954             }
955           st_shndx = elfcpp::SHN_ABS;
956           is_ordinary = false;
957           psym = &sym2;
958         }
959
960       Stringpool::Key name_key;
961       name = this->namepool_.add_with_length(name, namelen, true,
962                                              &name_key);
963
964       Sized_symbol<size>* res;
965       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
966                                   def, *psym, st_shndx, is_ordinary,
967                                   orig_st_shndx);
968
969       if (local)
970         this->force_local(res);
971
972       (*sympointers)[i] = res;
973     }
974 }
975
976 // Add all the symbols in a dynamic object to the hash table.
977
978 template<int size, bool big_endian>
979 void
980 Symbol_table::add_from_dynobj(
981     Sized_dynobj<size, big_endian>* dynobj,
982     const unsigned char* syms,
983     size_t count,
984     const char* sym_names,
985     size_t sym_name_size,
986     const unsigned char* versym,
987     size_t versym_size,
988     const std::vector<const char*>* version_map,
989     typename Sized_relobj<size, big_endian>::Symbols* sympointers,
990     size_t* defined)
991 {
992   *defined = 0;
993
994   gold_assert(size == dynobj->target()->get_size());
995   gold_assert(size == parameters->target().get_size());
996
997   if (dynobj->just_symbols())
998     {
999       gold_error(_("--just-symbols does not make sense with a shared object"));
1000       return;
1001     }
1002
1003   if (versym != NULL && versym_size / 2 < count)
1004     {
1005       dynobj->error(_("too few symbol versions"));
1006       return;
1007     }
1008
1009   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1010
1011   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1012   // weak aliases.  This is necessary because if the dynamic object
1013   // provides the same variable under two names, one of which is a
1014   // weak definition, and the regular object refers to the weak
1015   // definition, we have to put both the weak definition and the
1016   // strong definition into the dynamic symbol table.  Given a weak
1017   // definition, the only way that we can find the corresponding
1018   // strong definition, if any, is to search the symbol table.
1019   std::vector<Sized_symbol<size>*> object_symbols;
1020
1021   const unsigned char* p = syms;
1022   const unsigned char* vs = versym;
1023   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1024     {
1025       elfcpp::Sym<size, big_endian> sym(p);
1026
1027       if (sympointers != NULL)
1028         (*sympointers)[i] = NULL;
1029
1030       // Ignore symbols with local binding or that have
1031       // internal or hidden visibility.
1032       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1033           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1034           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1035         continue;
1036
1037       // A protected symbol in a shared library must be treated as a
1038       // normal symbol when viewed from outside the shared library.
1039       // Implement this by overriding the visibility here.
1040       elfcpp::Sym<size, big_endian>* psym = &sym;
1041       unsigned char symbuf[sym_size];
1042       elfcpp::Sym<size, big_endian> sym2(symbuf);
1043       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1044         {
1045           memcpy(symbuf, p, sym_size);
1046           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1047           sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1048           psym = &sym2;
1049         }
1050
1051       unsigned int st_name = psym->get_st_name();
1052       if (st_name >= sym_name_size)
1053         {
1054           dynobj->error(_("bad symbol name offset %u at %zu"),
1055                         st_name, i);
1056           continue;
1057         }
1058
1059       const char* name = sym_names + st_name;
1060
1061       bool is_ordinary;
1062       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1063                                                        &is_ordinary);
1064
1065       if (st_shndx != elfcpp::SHN_UNDEF)
1066         ++*defined;
1067
1068       Sized_symbol<size>* res;
1069
1070       if (versym == NULL)
1071         {
1072           Stringpool::Key name_key;
1073           name = this->namepool_.add(name, true, &name_key);
1074           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1075                                       false, *psym, st_shndx, is_ordinary,
1076                                       st_shndx);
1077         }
1078       else
1079         {
1080           // Read the version information.
1081
1082           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1083
1084           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1085           v &= elfcpp::VERSYM_VERSION;
1086
1087           // The Sun documentation says that V can be VER_NDX_LOCAL,
1088           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1089           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1090           // The old GNU linker will happily generate VER_NDX_LOCAL
1091           // for an undefined symbol.  I don't know what the Sun
1092           // linker will generate.
1093
1094           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1095               && st_shndx != elfcpp::SHN_UNDEF)
1096             {
1097               // This symbol should not be visible outside the object.
1098               continue;
1099             }
1100
1101           // At this point we are definitely going to add this symbol.
1102           Stringpool::Key name_key;
1103           name = this->namepool_.add(name, true, &name_key);
1104
1105           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1106               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1107             {
1108               // This symbol does not have a version.
1109               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1110                                           false, *psym, st_shndx, is_ordinary,
1111                                           st_shndx);
1112             }
1113           else
1114             {
1115               if (v >= version_map->size())
1116                 {
1117                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1118                                 i, v);
1119                   continue;
1120                 }
1121
1122               const char* version = (*version_map)[v];
1123               if (version == NULL)
1124                 {
1125                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1126                                 i, v);
1127                   continue;
1128                 }
1129
1130               Stringpool::Key version_key;
1131               version = this->namepool_.add(version, true, &version_key);
1132
1133               // If this is an absolute symbol, and the version name
1134               // and symbol name are the same, then this is the
1135               // version definition symbol.  These symbols exist to
1136               // support using -u to pull in particular versions.  We
1137               // do not want to record a version for them.
1138               if (st_shndx == elfcpp::SHN_ABS
1139                   && !is_ordinary
1140                   && name_key == version_key)
1141                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1142                                             false, *psym, st_shndx, is_ordinary,
1143                                             st_shndx);
1144               else
1145                 {
1146                   const bool def = (!hidden
1147                                     && st_shndx != elfcpp::SHN_UNDEF);
1148                   res = this->add_from_object(dynobj, name, name_key, version,
1149                                               version_key, def, *psym, st_shndx,
1150                                               is_ordinary, st_shndx);
1151                 }
1152             }
1153         }
1154
1155       // Note that it is possible that RES was overridden by an
1156       // earlier object, in which case it can't be aliased here.
1157       if (st_shndx != elfcpp::SHN_UNDEF
1158           && is_ordinary
1159           && psym->get_st_type() == elfcpp::STT_OBJECT
1160           && res->source() == Symbol::FROM_OBJECT
1161           && res->object() == dynobj)
1162         object_symbols.push_back(res);
1163
1164       if (sympointers != NULL)
1165         (*sympointers)[i] = res;
1166     }
1167
1168   this->record_weak_aliases(&object_symbols);
1169 }
1170
1171 // This is used to sort weak aliases.  We sort them first by section
1172 // index, then by offset, then by weak ahead of strong.
1173
1174 template<int size>
1175 class Weak_alias_sorter
1176 {
1177  public:
1178   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1179 };
1180
1181 template<int size>
1182 bool
1183 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1184                                     const Sized_symbol<size>* s2) const
1185 {
1186   bool is_ordinary;
1187   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1188   gold_assert(is_ordinary);
1189   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1190   gold_assert(is_ordinary);
1191   if (s1_shndx != s2_shndx)
1192     return s1_shndx < s2_shndx;
1193
1194   if (s1->value() != s2->value())
1195     return s1->value() < s2->value();
1196   if (s1->binding() != s2->binding())
1197     {
1198       if (s1->binding() == elfcpp::STB_WEAK)
1199         return true;
1200       if (s2->binding() == elfcpp::STB_WEAK)
1201         return false;
1202     }
1203   return std::string(s1->name()) < std::string(s2->name());
1204 }
1205
1206 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1207 // for any weak aliases, and record them so that if we add the weak
1208 // alias to the dynamic symbol table, we also add the corresponding
1209 // strong symbol.
1210
1211 template<int size>
1212 void
1213 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1214 {
1215   // Sort the vector by section index, then by offset, then by weak
1216   // ahead of strong.
1217   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1218
1219   // Walk through the vector.  For each weak definition, record
1220   // aliases.
1221   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1222          symbols->begin();
1223        p != symbols->end();
1224        ++p)
1225     {
1226       if ((*p)->binding() != elfcpp::STB_WEAK)
1227         continue;
1228
1229       // Build a circular list of weak aliases.  Each symbol points to
1230       // the next one in the circular list.
1231
1232       Sized_symbol<size>* from_sym = *p;
1233       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1234       for (q = p + 1; q != symbols->end(); ++q)
1235         {
1236           bool dummy;
1237           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1238               || (*q)->value() != from_sym->value())
1239             break;
1240
1241           this->weak_aliases_[from_sym] = *q;
1242           from_sym->set_has_alias();
1243           from_sym = *q;
1244         }
1245
1246       if (from_sym != *p)
1247         {
1248           this->weak_aliases_[from_sym] = *p;
1249           from_sym->set_has_alias();
1250         }
1251
1252       p = q - 1;
1253     }
1254 }
1255
1256 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1257 // true, then only create the symbol if there is a reference to it.
1258 // If this does not return NULL, it sets *POLDSYM to the existing
1259 // symbol if there is one.  This canonicalizes *PNAME and *PVERSION.
1260
1261 template<int size, bool big_endian>
1262 Sized_symbol<size>*
1263 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1264                                     bool only_if_ref,
1265                                     Sized_symbol<size>** poldsym)
1266 {
1267   Symbol* oldsym;
1268   Sized_symbol<size>* sym;
1269   bool add_to_table = false;
1270   typename Symbol_table_type::iterator add_loc = this->table_.end();
1271
1272   // If the caller didn't give us a version, see if we get one from
1273   // the version script.
1274   std::string v;
1275   if (*pversion == NULL)
1276     {
1277       if (this->version_script_.get_symbol_version(*pname, &v))
1278         {
1279           if (!v.empty())
1280             *pversion = v.c_str();
1281         }
1282     }
1283
1284   if (only_if_ref)
1285     {
1286       oldsym = this->lookup(*pname, *pversion);
1287       if (oldsym == NULL || !oldsym->is_undefined())
1288         return NULL;
1289
1290       *pname = oldsym->name();
1291       *pversion = oldsym->version();
1292     }
1293   else
1294     {
1295       // Canonicalize NAME and VERSION.
1296       Stringpool::Key name_key;
1297       *pname = this->namepool_.add(*pname, true, &name_key);
1298
1299       Stringpool::Key version_key = 0;
1300       if (*pversion != NULL)
1301         *pversion = this->namepool_.add(*pversion, true, &version_key);
1302
1303       Symbol* const snull = NULL;
1304       std::pair<typename Symbol_table_type::iterator, bool> ins =
1305         this->table_.insert(std::make_pair(std::make_pair(name_key,
1306                                                           version_key),
1307                                            snull));
1308
1309       if (!ins.second)
1310         {
1311           // We already have a symbol table entry for NAME/VERSION.
1312           oldsym = ins.first->second;
1313           gold_assert(oldsym != NULL);
1314         }
1315       else
1316         {
1317           // We haven't seen this symbol before.
1318           gold_assert(ins.first->second == NULL);
1319           add_to_table = true;
1320           add_loc = ins.first;
1321           oldsym = NULL;
1322         }
1323     }
1324
1325   const Target& target = parameters->target();
1326   if (!target.has_make_symbol())
1327     sym = new Sized_symbol<size>();
1328   else
1329     {
1330       gold_assert(target.get_size() == size);
1331       gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1332       typedef Sized_target<size, big_endian> My_target;
1333       const My_target* sized_target =
1334           static_cast<const My_target*>(&target);
1335       sym = sized_target->make_symbol();
1336       if (sym == NULL)
1337         return NULL;
1338     }
1339
1340   if (add_to_table)
1341     add_loc->second = sym;
1342   else
1343     gold_assert(oldsym != NULL);
1344
1345   *poldsym = this->get_sized_symbol<size>(oldsym);
1346
1347   return sym;
1348 }
1349
1350 // Define a symbol based on an Output_data.
1351
1352 Symbol*
1353 Symbol_table::define_in_output_data(const char* name,
1354                                     const char* version,
1355                                     Output_data* od,
1356                                     uint64_t value,
1357                                     uint64_t symsize,
1358                                     elfcpp::STT type,
1359                                     elfcpp::STB binding,
1360                                     elfcpp::STV visibility,
1361                                     unsigned char nonvis,
1362                                     bool offset_is_from_end,
1363                                     bool only_if_ref)
1364 {
1365   if (parameters->target().get_size() == 32)
1366     {
1367 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1368       return this->do_define_in_output_data<32>(name, version, od,
1369                                                 value, symsize, type, binding,
1370                                                 visibility, nonvis,
1371                                                 offset_is_from_end,
1372                                                 only_if_ref);
1373 #else
1374       gold_unreachable();
1375 #endif
1376     }
1377   else if (parameters->target().get_size() == 64)
1378     {
1379 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1380       return this->do_define_in_output_data<64>(name, version, od,
1381                                                 value, symsize, type, binding,
1382                                                 visibility, nonvis,
1383                                                 offset_is_from_end,
1384                                                 only_if_ref);
1385 #else
1386       gold_unreachable();
1387 #endif
1388     }
1389   else
1390     gold_unreachable();
1391 }
1392
1393 // Define a symbol in an Output_data, sized version.
1394
1395 template<int size>
1396 Sized_symbol<size>*
1397 Symbol_table::do_define_in_output_data(
1398     const char* name,
1399     const char* version,
1400     Output_data* od,
1401     typename elfcpp::Elf_types<size>::Elf_Addr value,
1402     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1403     elfcpp::STT type,
1404     elfcpp::STB binding,
1405     elfcpp::STV visibility,
1406     unsigned char nonvis,
1407     bool offset_is_from_end,
1408     bool only_if_ref)
1409 {
1410   Sized_symbol<size>* sym;
1411   Sized_symbol<size>* oldsym;
1412
1413   if (parameters->target().is_big_endian())
1414     {
1415 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1416       sym = this->define_special_symbol<size, true>(&name, &version,
1417                                                     only_if_ref, &oldsym);
1418 #else
1419       gold_unreachable();
1420 #endif
1421     }
1422   else
1423     {
1424 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1425       sym = this->define_special_symbol<size, false>(&name, &version,
1426                                                      only_if_ref, &oldsym);
1427 #else
1428       gold_unreachable();
1429 #endif
1430     }
1431
1432   if (sym == NULL)
1433     return NULL;
1434
1435   sym->init_output_data(name, version, od, value, symsize, type, binding,
1436                         visibility, nonvis, offset_is_from_end);
1437
1438   if (oldsym == NULL)
1439     {
1440       if (binding == elfcpp::STB_LOCAL
1441           || this->version_script_.symbol_is_local(name))
1442         this->force_local(sym);
1443       else if (version != NULL)
1444         sym->set_is_default();
1445       return sym;
1446     }
1447
1448   if (Symbol_table::should_override_with_special(oldsym))
1449     this->override_with_special(oldsym, sym);
1450   delete sym;
1451   return oldsym;
1452 }
1453
1454 // Define a symbol based on an Output_segment.
1455
1456 Symbol*
1457 Symbol_table::define_in_output_segment(const char* name,
1458                                        const char* version, Output_segment* os,
1459                                        uint64_t value,
1460                                        uint64_t symsize,
1461                                        elfcpp::STT type,
1462                                        elfcpp::STB binding,
1463                                        elfcpp::STV visibility,
1464                                        unsigned char nonvis,
1465                                        Symbol::Segment_offset_base offset_base,
1466                                        bool only_if_ref)
1467 {
1468   if (parameters->target().get_size() == 32)
1469     {
1470 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1471       return this->do_define_in_output_segment<32>(name, version, os,
1472                                                    value, symsize, type,
1473                                                    binding, visibility, nonvis,
1474                                                    offset_base, only_if_ref);
1475 #else
1476       gold_unreachable();
1477 #endif
1478     }
1479   else if (parameters->target().get_size() == 64)
1480     {
1481 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1482       return this->do_define_in_output_segment<64>(name, version, os,
1483                                                    value, symsize, type,
1484                                                    binding, visibility, nonvis,
1485                                                    offset_base, only_if_ref);
1486 #else
1487       gold_unreachable();
1488 #endif
1489     }
1490   else
1491     gold_unreachable();
1492 }
1493
1494 // Define a symbol in an Output_segment, sized version.
1495
1496 template<int size>
1497 Sized_symbol<size>*
1498 Symbol_table::do_define_in_output_segment(
1499     const char* name,
1500     const char* version,
1501     Output_segment* os,
1502     typename elfcpp::Elf_types<size>::Elf_Addr value,
1503     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1504     elfcpp::STT type,
1505     elfcpp::STB binding,
1506     elfcpp::STV visibility,
1507     unsigned char nonvis,
1508     Symbol::Segment_offset_base offset_base,
1509     bool only_if_ref)
1510 {
1511   Sized_symbol<size>* sym;
1512   Sized_symbol<size>* oldsym;
1513
1514   if (parameters->target().is_big_endian())
1515     {
1516 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1517       sym = this->define_special_symbol<size, true>(&name, &version,
1518                                                     only_if_ref, &oldsym);
1519 #else
1520       gold_unreachable();
1521 #endif
1522     }
1523   else
1524     {
1525 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1526       sym = this->define_special_symbol<size, false>(&name, &version,
1527                                                      only_if_ref, &oldsym);
1528 #else
1529       gold_unreachable();
1530 #endif
1531     }
1532
1533   if (sym == NULL)
1534     return NULL;
1535
1536   sym->init_output_segment(name, version, os, value, symsize, type, binding,
1537                            visibility, nonvis, offset_base);
1538
1539   if (oldsym == NULL)
1540     {
1541       if (binding == elfcpp::STB_LOCAL
1542           || this->version_script_.symbol_is_local(name))
1543         this->force_local(sym);
1544       else if (version != NULL)
1545         sym->set_is_default();
1546       return sym;
1547     }
1548
1549   if (Symbol_table::should_override_with_special(oldsym))
1550     this->override_with_special(oldsym, sym);
1551   delete sym;
1552   return oldsym;
1553 }
1554
1555 // Define a special symbol with a constant value.  It is a multiple
1556 // definition error if this symbol is already defined.
1557
1558 Symbol*
1559 Symbol_table::define_as_constant(const char* name,
1560                                  const char* version,
1561                                  uint64_t value,
1562                                  uint64_t symsize,
1563                                  elfcpp::STT type,
1564                                  elfcpp::STB binding,
1565                                  elfcpp::STV visibility,
1566                                  unsigned char nonvis,
1567                                  bool only_if_ref,
1568                                  bool force_override)
1569 {
1570   if (parameters->target().get_size() == 32)
1571     {
1572 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1573       return this->do_define_as_constant<32>(name, version, value,
1574                                              symsize, type, binding,
1575                                              visibility, nonvis, only_if_ref,
1576                                              force_override);
1577 #else
1578       gold_unreachable();
1579 #endif
1580     }
1581   else if (parameters->target().get_size() == 64)
1582     {
1583 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1584       return this->do_define_as_constant<64>(name, version, value,
1585                                              symsize, type, binding,
1586                                              visibility, nonvis, only_if_ref,
1587                                              force_override);
1588 #else
1589       gold_unreachable();
1590 #endif
1591     }
1592   else
1593     gold_unreachable();
1594 }
1595
1596 // Define a symbol as a constant, sized version.
1597
1598 template<int size>
1599 Sized_symbol<size>*
1600 Symbol_table::do_define_as_constant(
1601     const char* name,
1602     const char* version,
1603     typename elfcpp::Elf_types<size>::Elf_Addr value,
1604     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1605     elfcpp::STT type,
1606     elfcpp::STB binding,
1607     elfcpp::STV visibility,
1608     unsigned char nonvis,
1609     bool only_if_ref,
1610     bool force_override)
1611 {
1612   Sized_symbol<size>* sym;
1613   Sized_symbol<size>* oldsym;
1614
1615   if (parameters->target().is_big_endian())
1616     {
1617 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1618       sym = this->define_special_symbol<size, true>(&name, &version,
1619                                                     only_if_ref, &oldsym);
1620 #else
1621       gold_unreachable();
1622 #endif
1623     }
1624   else
1625     {
1626 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1627       sym = this->define_special_symbol<size, false>(&name, &version,
1628                                                      only_if_ref, &oldsym);
1629 #else
1630       gold_unreachable();
1631 #endif
1632     }
1633
1634   if (sym == NULL)
1635     return NULL;
1636
1637   sym->init_constant(name, version, value, symsize, type, binding, visibility,
1638                      nonvis);
1639
1640   if (oldsym == NULL)
1641     {
1642       // Version symbols are absolute symbols with name == version.
1643       // We don't want to force them to be local.
1644       if ((version == NULL
1645            || name != version
1646            || value != 0)
1647           && (binding == elfcpp::STB_LOCAL
1648               || this->version_script_.symbol_is_local(name)))
1649         this->force_local(sym);
1650       else if (version != NULL
1651                && (name != version || value != 0))
1652         sym->set_is_default();
1653       return sym;
1654     }
1655
1656   if (force_override || Symbol_table::should_override_with_special(oldsym))
1657     this->override_with_special(oldsym, sym);
1658   delete sym;
1659   return oldsym;
1660 }
1661
1662 // Define a set of symbols in output sections.
1663
1664 void
1665 Symbol_table::define_symbols(const Layout* layout, int count,
1666                              const Define_symbol_in_section* p,
1667                              bool only_if_ref)
1668 {
1669   for (int i = 0; i < count; ++i, ++p)
1670     {
1671       Output_section* os = layout->find_output_section(p->output_section);
1672       if (os != NULL)
1673         this->define_in_output_data(p->name, NULL, os, p->value,
1674                                     p->size, p->type, p->binding,
1675                                     p->visibility, p->nonvis,
1676                                     p->offset_is_from_end,
1677                                     only_if_ref || p->only_if_ref);
1678       else
1679         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1680                                  p->binding, p->visibility, p->nonvis,
1681                                  only_if_ref || p->only_if_ref,
1682                                  false);
1683     }
1684 }
1685
1686 // Define a set of symbols in output segments.
1687
1688 void
1689 Symbol_table::define_symbols(const Layout* layout, int count,
1690                              const Define_symbol_in_segment* p,
1691                              bool only_if_ref)
1692 {
1693   for (int i = 0; i < count; ++i, ++p)
1694     {
1695       Output_segment* os = layout->find_output_segment(p->segment_type,
1696                                                        p->segment_flags_set,
1697                                                        p->segment_flags_clear);
1698       if (os != NULL)
1699         this->define_in_output_segment(p->name, NULL, os, p->value,
1700                                        p->size, p->type, p->binding,
1701                                        p->visibility, p->nonvis,
1702                                        p->offset_base,
1703                                        only_if_ref || p->only_if_ref);
1704       else
1705         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1706                                  p->binding, p->visibility, p->nonvis,
1707                                  only_if_ref || p->only_if_ref,
1708                                  false);
1709     }
1710 }
1711
1712 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
1713 // symbol should be defined--typically a .dyn.bss section.  VALUE is
1714 // the offset within POSD.
1715
1716 template<int size>
1717 void
1718 Symbol_table::define_with_copy_reloc(
1719     Sized_symbol<size>* csym,
1720     Output_data* posd,
1721     typename elfcpp::Elf_types<size>::Elf_Addr value)
1722 {
1723   gold_assert(csym->is_from_dynobj());
1724   gold_assert(!csym->is_copied_from_dynobj());
1725   Object* object = csym->object();
1726   gold_assert(object->is_dynamic());
1727   Dynobj* dynobj = static_cast<Dynobj*>(object);
1728
1729   // Our copied variable has to override any variable in a shared
1730   // library.
1731   elfcpp::STB binding = csym->binding();
1732   if (binding == elfcpp::STB_WEAK)
1733     binding = elfcpp::STB_GLOBAL;
1734
1735   this->define_in_output_data(csym->name(), csym->version(),
1736                               posd, value, csym->symsize(),
1737                               csym->type(), binding,
1738                               csym->visibility(), csym->nonvis(),
1739                               false, false);
1740
1741   csym->set_is_copied_from_dynobj();
1742   csym->set_needs_dynsym_entry();
1743
1744   this->copied_symbol_dynobjs_[csym] = dynobj;
1745
1746   // We have now defined all aliases, but we have not entered them all
1747   // in the copied_symbol_dynobjs_ map.
1748   if (csym->has_alias())
1749     {
1750       Symbol* sym = csym;
1751       while (true)
1752         {
1753           sym = this->weak_aliases_[sym];
1754           if (sym == csym)
1755             break;
1756           gold_assert(sym->output_data() == posd);
1757
1758           sym->set_is_copied_from_dynobj();
1759           this->copied_symbol_dynobjs_[sym] = dynobj;
1760         }
1761     }
1762 }
1763
1764 // SYM is defined using a COPY reloc.  Return the dynamic object where
1765 // the original definition was found.
1766
1767 Dynobj*
1768 Symbol_table::get_copy_source(const Symbol* sym) const
1769 {
1770   gold_assert(sym->is_copied_from_dynobj());
1771   Copied_symbol_dynobjs::const_iterator p =
1772     this->copied_symbol_dynobjs_.find(sym);
1773   gold_assert(p != this->copied_symbol_dynobjs_.end());
1774   return p->second;
1775 }
1776
1777 // Add any undefined symbols named on the command line.
1778
1779 void
1780 Symbol_table::add_undefined_symbols_from_command_line()
1781 {
1782   if (parameters->options().any_undefined())
1783     {
1784       if (parameters->target().get_size() == 32)
1785         {
1786 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1787           this->do_add_undefined_symbols_from_command_line<32>();
1788 #else
1789           gold_unreachable();
1790 #endif
1791         }
1792       else if (parameters->target().get_size() == 64)
1793         {
1794 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1795           this->do_add_undefined_symbols_from_command_line<64>();
1796 #else
1797           gold_unreachable();
1798 #endif
1799         }
1800       else
1801         gold_unreachable();
1802     }
1803 }
1804
1805 template<int size>
1806 void
1807 Symbol_table::do_add_undefined_symbols_from_command_line()
1808 {
1809   for (options::String_set::const_iterator p =
1810          parameters->options().undefined_begin();
1811        p != parameters->options().undefined_end();
1812        ++p)
1813     {
1814       const char* name = p->c_str();
1815
1816       if (this->lookup(name) != NULL)
1817         continue;
1818
1819       const char* version = NULL;
1820
1821       Sized_symbol<size>* sym;
1822       Sized_symbol<size>* oldsym;
1823       if (parameters->target().is_big_endian())
1824         {
1825 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1826           sym = this->define_special_symbol<size, true>(&name, &version,
1827                                                         false, &oldsym);
1828 #else
1829           gold_unreachable();
1830 #endif
1831         }
1832       else
1833         {
1834 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1835           sym = this->define_special_symbol<size, false>(&name, &version,
1836                                                          false, &oldsym);
1837 #else
1838           gold_unreachable();
1839 #endif
1840         }
1841
1842       gold_assert(oldsym == NULL);
1843
1844       sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1845                           elfcpp::STV_DEFAULT, 0);
1846       ++this->saw_undefined_;
1847     }
1848 }
1849
1850 // Set the dynamic symbol indexes.  INDEX is the index of the first
1851 // global dynamic symbol.  Pointers to the symbols are stored into the
1852 // vector SYMS.  The names are added to DYNPOOL.  This returns an
1853 // updated dynamic symbol index.
1854
1855 unsigned int
1856 Symbol_table::set_dynsym_indexes(unsigned int index,
1857                                  std::vector<Symbol*>* syms,
1858                                  Stringpool* dynpool,
1859                                  Versions* versions)
1860 {
1861   for (Symbol_table_type::iterator p = this->table_.begin();
1862        p != this->table_.end();
1863        ++p)
1864     {
1865       Symbol* sym = p->second;
1866
1867       // Note that SYM may already have a dynamic symbol index, since
1868       // some symbols appear more than once in the symbol table, with
1869       // and without a version.
1870
1871       if (!sym->should_add_dynsym_entry())
1872         sym->set_dynsym_index(-1U);
1873       else if (!sym->has_dynsym_index())
1874         {
1875           sym->set_dynsym_index(index);
1876           ++index;
1877           syms->push_back(sym);
1878           dynpool->add(sym->name(), false, NULL);
1879
1880           // Record any version information.
1881           if (sym->version() != NULL)
1882             versions->record_version(this, dynpool, sym);
1883         }
1884     }
1885
1886   // Finish up the versions.  In some cases this may add new dynamic
1887   // symbols.
1888   index = versions->finalize(this, index, syms);
1889
1890   return index;
1891 }
1892
1893 // Set the final values for all the symbols.  The index of the first
1894 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
1895 // file offset OFF.  Add their names to POOL.  Return the new file
1896 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
1897
1898 off_t
1899 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1900                        size_t dyncount, Stringpool* pool,
1901                        unsigned int *plocal_symcount)
1902 {
1903   off_t ret;
1904
1905   gold_assert(*plocal_symcount != 0);
1906   this->first_global_index_ = *plocal_symcount;
1907
1908   this->dynamic_offset_ = dynoff;
1909   this->first_dynamic_global_index_ = dyn_global_index;
1910   this->dynamic_count_ = dyncount;
1911
1912   if (parameters->target().get_size() == 32)
1913     {
1914 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1915       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
1916 #else
1917       gold_unreachable();
1918 #endif
1919     }
1920   else if (parameters->target().get_size() == 64)
1921     {
1922 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1923       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
1924 #else
1925       gold_unreachable();
1926 #endif
1927     }
1928   else
1929     gold_unreachable();
1930
1931   // Now that we have the final symbol table, we can reliably note
1932   // which symbols should get warnings.
1933   this->warnings_.note_warnings(this);
1934
1935   return ret;
1936 }
1937
1938 // SYM is going into the symbol table at *PINDEX.  Add the name to
1939 // POOL, update *PINDEX and *POFF.
1940
1941 template<int size>
1942 void
1943 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1944                                   unsigned int* pindex, off_t* poff)
1945 {
1946   sym->set_symtab_index(*pindex);
1947   pool->add(sym->name(), false, NULL);
1948   ++*pindex;
1949   *poff += elfcpp::Elf_sizes<size>::sym_size;
1950 }
1951
1952 // Set the final value for all the symbols.  This is called after
1953 // Layout::finalize, so all the output sections have their final
1954 // address.
1955
1956 template<int size>
1957 off_t
1958 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1959                              unsigned int* plocal_symcount)
1960 {
1961   off = align_address(off, size >> 3);
1962   this->offset_ = off;
1963
1964   unsigned int index = *plocal_symcount;
1965   const unsigned int orig_index = index;
1966
1967   // First do all the symbols which have been forced to be local, as
1968   // they must appear before all global symbols.
1969   for (Forced_locals::iterator p = this->forced_locals_.begin();
1970        p != this->forced_locals_.end();
1971        ++p)
1972     {
1973       Symbol* sym = *p;
1974       gold_assert(sym->is_forced_local());
1975       if (this->sized_finalize_symbol<size>(sym))
1976         {
1977           this->add_to_final_symtab<size>(sym, pool, &index, &off);
1978           ++*plocal_symcount;
1979         }
1980     }
1981
1982   // Now do all the remaining symbols.
1983   for (Symbol_table_type::iterator p = this->table_.begin();
1984        p != this->table_.end();
1985        ++p)
1986     {
1987       Symbol* sym = p->second;
1988       if (this->sized_finalize_symbol<size>(sym))
1989         this->add_to_final_symtab<size>(sym, pool, &index, &off);
1990     }
1991
1992   this->output_count_ = index - orig_index;
1993
1994   return off;
1995 }
1996
1997 // Finalize the symbol SYM.  This returns true if the symbol should be
1998 // added to the symbol table, false otherwise.
1999
2000 template<int size>
2001 bool
2002 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2003 {
2004   typedef typename Sized_symbol<size>::Value_type Value_type;
2005
2006   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2007
2008   // The default version of a symbol may appear twice in the symbol
2009   // table.  We only need to finalize it once.
2010   if (sym->has_symtab_index())
2011     return false;
2012
2013   if (!sym->in_reg())
2014     {
2015       gold_assert(!sym->has_symtab_index());
2016       sym->set_symtab_index(-1U);
2017       gold_assert(sym->dynsym_index() == -1U);
2018       return false;
2019     }
2020
2021   Value_type value;
2022
2023   switch (sym->source())
2024     {
2025     case Symbol::FROM_OBJECT:
2026       {
2027         bool is_ordinary;
2028         unsigned int shndx = sym->shndx(&is_ordinary);
2029
2030         // FIXME: We need some target specific support here.
2031         if (!is_ordinary
2032             && shndx != elfcpp::SHN_ABS
2033             && shndx != elfcpp::SHN_COMMON)
2034           {
2035             gold_error(_("%s: unsupported symbol section 0x%x"),
2036                        sym->demangled_name().c_str(), shndx);
2037             shndx = elfcpp::SHN_UNDEF;
2038           }
2039
2040         Object* symobj = sym->object();
2041         if (symobj->is_dynamic())
2042           {
2043             value = 0;
2044             shndx = elfcpp::SHN_UNDEF;
2045           }
2046         else if (shndx == elfcpp::SHN_UNDEF)
2047           value = 0;
2048         else if (!is_ordinary
2049                  && (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON))
2050           value = sym->value();
2051         else
2052           {
2053             Relobj* relobj = static_cast<Relobj*>(symobj);
2054             Output_section* os = relobj->output_section(shndx);
2055
2056             if (os == NULL)
2057               {
2058                 sym->set_symtab_index(-1U);
2059                 gold_assert(sym->dynsym_index() == -1U);
2060                 return false;
2061               }
2062
2063             uint64_t secoff64 = relobj->output_section_offset(shndx);
2064             Value_type secoff = convert_types<Value_type, uint64_t>(secoff64);
2065             if (sym->type() == elfcpp::STT_TLS)
2066               value = sym->value() + os->tls_offset() + secoff;
2067             else
2068               value = sym->value() + os->address() + secoff;
2069           }
2070       }
2071       break;
2072
2073     case Symbol::IN_OUTPUT_DATA:
2074       {
2075         Output_data* od = sym->output_data();
2076         value = sym->value();
2077         if (sym->type() != elfcpp::STT_TLS)
2078           value += od->address();
2079         else
2080           {
2081             Output_section* os = od->output_section();
2082             gold_assert(os != NULL);
2083             value += os->tls_offset() + (od->address() - os->address());
2084           }
2085         if (sym->offset_is_from_end())
2086           value += od->data_size();
2087       }
2088       break;
2089
2090     case Symbol::IN_OUTPUT_SEGMENT:
2091       {
2092         Output_segment* os = sym->output_segment();
2093         value = sym->value();
2094         if (sym->type() != elfcpp::STT_TLS)
2095           value += os->vaddr();
2096         switch (sym->offset_base())
2097           {
2098           case Symbol::SEGMENT_START:
2099             break;
2100           case Symbol::SEGMENT_END:
2101             value += os->memsz();
2102             break;
2103           case Symbol::SEGMENT_BSS:
2104             value += os->filesz();
2105             break;
2106           default:
2107             gold_unreachable();
2108           }
2109       }
2110       break;
2111
2112     case Symbol::IS_CONSTANT:
2113       value = sym->value();
2114       break;
2115
2116     case Symbol::IS_UNDEFINED:
2117       value = 0;
2118       break;
2119
2120     default:
2121       gold_unreachable();
2122     }
2123
2124   sym->set_value(value);
2125
2126   if (parameters->options().strip_all())
2127     {
2128       sym->set_symtab_index(-1U);
2129       return false;
2130     }
2131
2132   return true;
2133 }
2134
2135 // Write out the global symbols.
2136
2137 void
2138 Symbol_table::write_globals(const Input_objects* input_objects,
2139                             const Stringpool* sympool,
2140                             const Stringpool* dynpool,
2141                             Output_symtab_xindex* symtab_xindex,
2142                             Output_symtab_xindex* dynsym_xindex,
2143                             Output_file* of) const
2144 {
2145   switch (parameters->size_and_endianness())
2146     {
2147 #ifdef HAVE_TARGET_32_LITTLE
2148     case Parameters::TARGET_32_LITTLE:
2149       this->sized_write_globals<32, false>(input_objects, sympool,
2150                                            dynpool, symtab_xindex,
2151                                            dynsym_xindex, of);
2152       break;
2153 #endif
2154 #ifdef HAVE_TARGET_32_BIG
2155     case Parameters::TARGET_32_BIG:
2156       this->sized_write_globals<32, true>(input_objects, sympool,
2157                                           dynpool, symtab_xindex,
2158                                           dynsym_xindex, of);
2159       break;
2160 #endif
2161 #ifdef HAVE_TARGET_64_LITTLE
2162     case Parameters::TARGET_64_LITTLE:
2163       this->sized_write_globals<64, false>(input_objects, sympool,
2164                                            dynpool, symtab_xindex,
2165                                            dynsym_xindex, of);
2166       break;
2167 #endif
2168 #ifdef HAVE_TARGET_64_BIG
2169     case Parameters::TARGET_64_BIG:
2170       this->sized_write_globals<64, true>(input_objects, sympool,
2171                                           dynpool, symtab_xindex,
2172                                           dynsym_xindex, of);
2173       break;
2174 #endif
2175     default:
2176       gold_unreachable();
2177     }
2178 }
2179
2180 // Write out the global symbols.
2181
2182 template<int size, bool big_endian>
2183 void
2184 Symbol_table::sized_write_globals(const Input_objects* input_objects,
2185                                   const Stringpool* sympool,
2186                                   const Stringpool* dynpool,
2187                                   Output_symtab_xindex* symtab_xindex,
2188                                   Output_symtab_xindex* dynsym_xindex,
2189                                   Output_file* of) const
2190 {
2191   const Target& target = parameters->target();
2192
2193   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2194
2195   const unsigned int output_count = this->output_count_;
2196   const section_size_type oview_size = output_count * sym_size;
2197   const unsigned int first_global_index = this->first_global_index_;
2198   unsigned char* psyms;
2199   if (this->offset_ == 0 || output_count == 0)
2200     psyms = NULL;
2201   else
2202     psyms = of->get_output_view(this->offset_, oview_size);
2203
2204   const unsigned int dynamic_count = this->dynamic_count_;
2205   const section_size_type dynamic_size = dynamic_count * sym_size;
2206   const unsigned int first_dynamic_global_index =
2207     this->first_dynamic_global_index_;
2208   unsigned char* dynamic_view;
2209   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2210     dynamic_view = NULL;
2211   else
2212     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2213
2214   for (Symbol_table_type::const_iterator p = this->table_.begin();
2215        p != this->table_.end();
2216        ++p)
2217     {
2218       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2219
2220       // Possibly warn about unresolved symbols in shared libraries.
2221       this->warn_about_undefined_dynobj_symbol(input_objects, sym);
2222
2223       unsigned int sym_index = sym->symtab_index();
2224       unsigned int dynsym_index;
2225       if (dynamic_view == NULL)
2226         dynsym_index = -1U;
2227       else
2228         dynsym_index = sym->dynsym_index();
2229
2230       if (sym_index == -1U && dynsym_index == -1U)
2231         {
2232           // This symbol is not included in the output file.
2233           continue;
2234         }
2235
2236       unsigned int shndx;
2237       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2238       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2239       switch (sym->source())
2240         {
2241         case Symbol::FROM_OBJECT:
2242           {
2243             bool is_ordinary;
2244             unsigned int in_shndx = sym->shndx(&is_ordinary);
2245
2246             // FIXME: We need some target specific support here.
2247             if (!is_ordinary
2248                 && in_shndx != elfcpp::SHN_ABS
2249                 && in_shndx != elfcpp::SHN_COMMON)
2250               {
2251                 gold_error(_("%s: unsupported symbol section 0x%x"),
2252                            sym->demangled_name().c_str(), in_shndx);
2253                 shndx = in_shndx;
2254               }
2255             else
2256               {
2257                 Object* symobj = sym->object();
2258                 if (symobj->is_dynamic())
2259                   {
2260                     if (sym->needs_dynsym_value())
2261                       dynsym_value = target.dynsym_value(sym);
2262                     shndx = elfcpp::SHN_UNDEF;
2263                   }
2264                 else if (in_shndx == elfcpp::SHN_UNDEF
2265                          || (!is_ordinary
2266                              && (in_shndx == elfcpp::SHN_ABS
2267                                  || in_shndx == elfcpp::SHN_COMMON)))
2268                   shndx = in_shndx;
2269                 else
2270                   {
2271                     Relobj* relobj = static_cast<Relobj*>(symobj);
2272                     Output_section* os = relobj->output_section(in_shndx);
2273                     gold_assert(os != NULL);
2274                     shndx = os->out_shndx();
2275
2276                     if (shndx >= elfcpp::SHN_LORESERVE)
2277                       {
2278                         if (sym_index != -1U)
2279                           symtab_xindex->add(sym_index, shndx);
2280                         if (dynsym_index != -1U)
2281                           dynsym_xindex->add(dynsym_index, shndx);
2282                         shndx = elfcpp::SHN_XINDEX;
2283                       }
2284
2285                     // In object files symbol values are section
2286                     // relative.
2287                     if (parameters->options().relocatable())
2288                       sym_value -= os->address();
2289                   }
2290               }
2291           }
2292           break;
2293
2294         case Symbol::IN_OUTPUT_DATA:
2295           shndx = sym->output_data()->out_shndx();
2296           if (shndx >= elfcpp::SHN_LORESERVE)
2297             {
2298               if (sym_index != -1U)
2299                 symtab_xindex->add(sym_index, shndx);
2300               if (dynsym_index != -1U)
2301                 dynsym_xindex->add(dynsym_index, shndx);
2302               shndx = elfcpp::SHN_XINDEX;
2303             }
2304           break;
2305
2306         case Symbol::IN_OUTPUT_SEGMENT:
2307           shndx = elfcpp::SHN_ABS;
2308           break;
2309
2310         case Symbol::IS_CONSTANT:
2311           shndx = elfcpp::SHN_ABS;
2312           break;
2313
2314         case Symbol::IS_UNDEFINED:
2315           shndx = elfcpp::SHN_UNDEF;
2316           break;
2317
2318         default:
2319           gold_unreachable();
2320         }
2321
2322       if (sym_index != -1U)
2323         {
2324           sym_index -= first_global_index;
2325           gold_assert(sym_index < output_count);
2326           unsigned char* ps = psyms + (sym_index * sym_size);
2327           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2328                                                      sympool, ps);
2329         }
2330
2331       if (dynsym_index != -1U)
2332         {
2333           dynsym_index -= first_dynamic_global_index;
2334           gold_assert(dynsym_index < dynamic_count);
2335           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2336           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2337                                                      dynpool, pd);
2338         }
2339     }
2340
2341   of->write_output_view(this->offset_, oview_size, psyms);
2342   if (dynamic_view != NULL)
2343     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2344 }
2345
2346 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
2347 // strtab holding the name.
2348
2349 template<int size, bool big_endian>
2350 void
2351 Symbol_table::sized_write_symbol(
2352     Sized_symbol<size>* sym,
2353     typename elfcpp::Elf_types<size>::Elf_Addr value,
2354     unsigned int shndx,
2355     const Stringpool* pool,
2356     unsigned char* p) const
2357 {
2358   elfcpp::Sym_write<size, big_endian> osym(p);
2359   osym.put_st_name(pool->get_offset(sym->name()));
2360   osym.put_st_value(value);
2361   // Use a symbol size of zero for undefined symbols from shared libraries.
2362   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2363     osym.put_st_size(0);
2364   else
2365     osym.put_st_size(sym->symsize());
2366   // A version script may have overridden the default binding.
2367   if (sym->is_forced_local())
2368     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2369   else
2370     osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
2371   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2372   osym.put_st_shndx(shndx);
2373 }
2374
2375 // Check for unresolved symbols in shared libraries.  This is
2376 // controlled by the --allow-shlib-undefined option.
2377
2378 // We only warn about libraries for which we have seen all the
2379 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
2380 // which were not seen in this link.  If we didn't see a DT_NEEDED
2381 // entry, we aren't going to be able to reliably report whether the
2382 // symbol is undefined.
2383
2384 // We also don't warn about libraries found in the system library
2385 // directory (the directory were we find libc.so); we assume that
2386 // those libraries are OK.  This heuristic avoids problems in
2387 // GNU/Linux, in which -ldl can have undefined references satisfied by
2388 // ld-linux.so.
2389
2390 inline void
2391 Symbol_table::warn_about_undefined_dynobj_symbol(
2392     const Input_objects* input_objects,
2393     Symbol* sym) const
2394 {
2395   bool dummy;
2396   if (sym->source() == Symbol::FROM_OBJECT
2397       && sym->object()->is_dynamic()
2398       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2399       && sym->binding() != elfcpp::STB_WEAK
2400       && !parameters->options().allow_shlib_undefined()
2401       && !parameters->target().is_defined_by_abi(sym)
2402       && !input_objects->found_in_system_library_directory(sym->object()))
2403     {
2404       // A very ugly cast.
2405       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2406       if (!dynobj->has_unknown_needed_entries())
2407         {
2408           if (sym->version())
2409             gold_error(_("%s: undefined reference to '%s', version '%s'"),
2410                        sym->object()->name().c_str(),
2411                        sym->demangled_name().c_str(),
2412                        sym->version());
2413           else
2414             gold_error(_("%s: undefined reference to '%s'"),
2415                        sym->object()->name().c_str(),
2416                        sym->demangled_name().c_str());
2417         }
2418     }
2419 }
2420
2421 // Write out a section symbol.  Return the update offset.
2422
2423 void
2424 Symbol_table::write_section_symbol(const Output_section *os,
2425                                    Output_symtab_xindex* symtab_xindex,
2426                                    Output_file* of,
2427                                    off_t offset) const
2428 {
2429   switch (parameters->size_and_endianness())
2430     {
2431 #ifdef HAVE_TARGET_32_LITTLE
2432     case Parameters::TARGET_32_LITTLE:
2433       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
2434                                                   offset);
2435       break;
2436 #endif
2437 #ifdef HAVE_TARGET_32_BIG
2438     case Parameters::TARGET_32_BIG:
2439       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
2440                                                  offset);
2441       break;
2442 #endif
2443 #ifdef HAVE_TARGET_64_LITTLE
2444     case Parameters::TARGET_64_LITTLE:
2445       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
2446                                                   offset);
2447       break;
2448 #endif
2449 #ifdef HAVE_TARGET_64_BIG
2450     case Parameters::TARGET_64_BIG:
2451       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
2452                                                  offset);
2453       break;
2454 #endif
2455     default:
2456       gold_unreachable();
2457     }
2458 }
2459
2460 // Write out a section symbol, specialized for size and endianness.
2461
2462 template<int size, bool big_endian>
2463 void
2464 Symbol_table::sized_write_section_symbol(const Output_section* os,
2465                                          Output_symtab_xindex* symtab_xindex,
2466                                          Output_file* of,
2467                                          off_t offset) const
2468 {
2469   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2470
2471   unsigned char* pov = of->get_output_view(offset, sym_size);
2472
2473   elfcpp::Sym_write<size, big_endian> osym(pov);
2474   osym.put_st_name(0);
2475   osym.put_st_value(os->address());
2476   osym.put_st_size(0);
2477   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2478                                        elfcpp::STT_SECTION));
2479   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2480
2481   unsigned int shndx = os->out_shndx();
2482   if (shndx >= elfcpp::SHN_LORESERVE)
2483     {
2484       symtab_xindex->add(os->symtab_index(), shndx);
2485       shndx = elfcpp::SHN_XINDEX;
2486     }
2487   osym.put_st_shndx(shndx);
2488
2489   of->write_output_view(offset, sym_size, pov);
2490 }
2491
2492 // Print statistical information to stderr.  This is used for --stats.
2493
2494 void
2495 Symbol_table::print_stats() const
2496 {
2497 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2498   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2499           program_name, this->table_.size(), this->table_.bucket_count());
2500 #else
2501   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2502           program_name, this->table_.size());
2503 #endif
2504   this->namepool_.print_stats("symbol table stringpool");
2505 }
2506
2507 // We check for ODR violations by looking for symbols with the same
2508 // name for which the debugging information reports that they were
2509 // defined in different source locations.  When comparing the source
2510 // location, we consider instances with the same base filename and
2511 // line number to be the same.  This is because different object
2512 // files/shared libraries can include the same header file using
2513 // different paths, and we don't want to report an ODR violation in
2514 // that case.
2515
2516 // This struct is used to compare line information, as returned by
2517 // Dwarf_line_info::one_addr2line.  It implements a < comparison
2518 // operator used with std::set.
2519
2520 struct Odr_violation_compare
2521 {
2522   bool
2523   operator()(const std::string& s1, const std::string& s2) const
2524   {
2525     std::string::size_type pos1 = s1.rfind('/');
2526     std::string::size_type pos2 = s2.rfind('/');
2527     if (pos1 == std::string::npos
2528         || pos2 == std::string::npos)
2529       return s1 < s2;
2530     return s1.compare(pos1, std::string::npos,
2531                       s2, pos2, std::string::npos) < 0;
2532   }
2533 };
2534
2535 // Check candidate_odr_violations_ to find symbols with the same name
2536 // but apparently different definitions (different source-file/line-no).
2537
2538 void
2539 Symbol_table::detect_odr_violations(const Task* task,
2540                                     const char* output_file_name) const
2541 {
2542   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2543        it != candidate_odr_violations_.end();
2544        ++it)
2545     {
2546       const char* symbol_name = it->first;
2547       // We use a sorted set so the output is deterministic.
2548       std::set<std::string, Odr_violation_compare> line_nums;
2549
2550       for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2551                locs = it->second.begin();
2552            locs != it->second.end();
2553            ++locs)
2554         {
2555           // We need to lock the object in order to read it.  This
2556           // means that we have to run in a singleton Task.  If we
2557           // want to run this in a general Task for better
2558           // performance, we will need one Task for object, plus
2559           // appropriate locking to ensure that we don't conflict with
2560           // other uses of the object.  Also note, one_addr2line is not
2561           // currently thread-safe.
2562           Task_lock_obj<Object> tl(task, locs->object);
2563           // 16 is the size of the object-cache that one_addr2line should use.
2564           std::string lineno = Dwarf_line_info::one_addr2line(
2565               locs->object, locs->shndx, locs->offset, 16);
2566           if (!lineno.empty())
2567             line_nums.insert(lineno);
2568         }
2569
2570       if (line_nums.size() > 1)
2571         {
2572           gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2573                          "places (possible ODR violation):"),
2574                        output_file_name, demangle(symbol_name).c_str());
2575           for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2576                it2 != line_nums.end();
2577                ++it2)
2578             fprintf(stderr, "  %s\n", it2->c_str());
2579         }
2580     }
2581   // We only call one_addr2line() in this function, so we can clear its cache.
2582   Dwarf_line_info::clear_addr2line_cache();
2583 }
2584
2585 // Warnings functions.
2586
2587 // Add a new warning.
2588
2589 void
2590 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2591                       const std::string& warning)
2592 {
2593   name = symtab->canonicalize_name(name);
2594   this->warnings_[name].set(obj, warning);
2595 }
2596
2597 // Look through the warnings and mark the symbols for which we should
2598 // warn.  This is called during Layout::finalize when we know the
2599 // sources for all the symbols.
2600
2601 void
2602 Warnings::note_warnings(Symbol_table* symtab)
2603 {
2604   for (Warning_table::iterator p = this->warnings_.begin();
2605        p != this->warnings_.end();
2606        ++p)
2607     {
2608       Symbol* sym = symtab->lookup(p->first, NULL);
2609       if (sym != NULL
2610           && sym->source() == Symbol::FROM_OBJECT
2611           && sym->object() == p->second.object)
2612         sym->set_has_warning();
2613     }
2614 }
2615
2616 // Issue a warning.  This is called when we see a relocation against a
2617 // symbol for which has a warning.
2618
2619 template<int size, bool big_endian>
2620 void
2621 Warnings::issue_warning(const Symbol* sym,
2622                         const Relocate_info<size, big_endian>* relinfo,
2623                         size_t relnum, off_t reloffset) const
2624 {
2625   gold_assert(sym->has_warning());
2626   Warning_table::const_iterator p = this->warnings_.find(sym->name());
2627   gold_assert(p != this->warnings_.end());
2628   gold_warning_at_location(relinfo, relnum, reloffset,
2629                            "%s", p->second.text.c_str());
2630 }
2631
2632 // Instantiate the templates we need.  We could use the configure
2633 // script to restrict this to only the ones needed for implemented
2634 // targets.
2635
2636 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2637 template
2638 void
2639 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2640 #endif
2641
2642 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2643 template
2644 void
2645 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2646 #endif
2647
2648 #ifdef HAVE_TARGET_32_LITTLE
2649 template
2650 void
2651 Symbol_table::add_from_relobj<32, false>(
2652     Sized_relobj<32, false>* relobj,
2653     const unsigned char* syms,
2654     size_t count,
2655     size_t symndx_offset,
2656     const char* sym_names,
2657     size_t sym_name_size,
2658     Sized_relobj<32, true>::Symbols* sympointers,
2659     size_t* defined);
2660 #endif
2661
2662 #ifdef HAVE_TARGET_32_BIG
2663 template
2664 void
2665 Symbol_table::add_from_relobj<32, true>(
2666     Sized_relobj<32, true>* relobj,
2667     const unsigned char* syms,
2668     size_t count,
2669     size_t symndx_offset,
2670     const char* sym_names,
2671     size_t sym_name_size,
2672     Sized_relobj<32, false>::Symbols* sympointers,
2673     size_t* defined);
2674 #endif
2675
2676 #ifdef HAVE_TARGET_64_LITTLE
2677 template
2678 void
2679 Symbol_table::add_from_relobj<64, false>(
2680     Sized_relobj<64, false>* relobj,
2681     const unsigned char* syms,
2682     size_t count,
2683     size_t symndx_offset,
2684     const char* sym_names,
2685     size_t sym_name_size,
2686     Sized_relobj<64, true>::Symbols* sympointers,
2687     size_t* defined);
2688 #endif
2689
2690 #ifdef HAVE_TARGET_64_BIG
2691 template
2692 void
2693 Symbol_table::add_from_relobj<64, true>(
2694     Sized_relobj<64, true>* relobj,
2695     const unsigned char* syms,
2696     size_t count,
2697     size_t symndx_offset,
2698     const char* sym_names,
2699     size_t sym_name_size,
2700     Sized_relobj<64, false>::Symbols* sympointers,
2701     size_t* defined);
2702 #endif
2703
2704 #ifdef HAVE_TARGET_32_LITTLE
2705 template
2706 void
2707 Symbol_table::add_from_dynobj<32, false>(
2708     Sized_dynobj<32, false>* dynobj,
2709     const unsigned char* syms,
2710     size_t count,
2711     const char* sym_names,
2712     size_t sym_name_size,
2713     const unsigned char* versym,
2714     size_t versym_size,
2715     const std::vector<const char*>* version_map,
2716     Sized_relobj<32, false>::Symbols* sympointers,
2717     size_t* defined);
2718 #endif
2719
2720 #ifdef HAVE_TARGET_32_BIG
2721 template
2722 void
2723 Symbol_table::add_from_dynobj<32, true>(
2724     Sized_dynobj<32, true>* dynobj,
2725     const unsigned char* syms,
2726     size_t count,
2727     const char* sym_names,
2728     size_t sym_name_size,
2729     const unsigned char* versym,
2730     size_t versym_size,
2731     const std::vector<const char*>* version_map,
2732     Sized_relobj<32, true>::Symbols* sympointers,
2733     size_t* defined);
2734 #endif
2735
2736 #ifdef HAVE_TARGET_64_LITTLE
2737 template
2738 void
2739 Symbol_table::add_from_dynobj<64, false>(
2740     Sized_dynobj<64, false>* dynobj,
2741     const unsigned char* syms,
2742     size_t count,
2743     const char* sym_names,
2744     size_t sym_name_size,
2745     const unsigned char* versym,
2746     size_t versym_size,
2747     const std::vector<const char*>* version_map,
2748     Sized_relobj<64, false>::Symbols* sympointers,
2749     size_t* defined);
2750 #endif
2751
2752 #ifdef HAVE_TARGET_64_BIG
2753 template
2754 void
2755 Symbol_table::add_from_dynobj<64, true>(
2756     Sized_dynobj<64, true>* dynobj,
2757     const unsigned char* syms,
2758     size_t count,
2759     const char* sym_names,
2760     size_t sym_name_size,
2761     const unsigned char* versym,
2762     size_t versym_size,
2763     const std::vector<const char*>* version_map,
2764     Sized_relobj<64, true>::Symbols* sympointers,
2765     size_t* defined);
2766 #endif
2767
2768 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2769 template
2770 void
2771 Symbol_table::define_with_copy_reloc<32>(
2772     Sized_symbol<32>* sym,
2773     Output_data* posd,
2774     elfcpp::Elf_types<32>::Elf_Addr value);
2775 #endif
2776
2777 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2778 template
2779 void
2780 Symbol_table::define_with_copy_reloc<64>(
2781     Sized_symbol<64>* sym,
2782     Output_data* posd,
2783     elfcpp::Elf_types<64>::Elf_Addr value);
2784 #endif
2785
2786 #ifdef HAVE_TARGET_32_LITTLE
2787 template
2788 void
2789 Warnings::issue_warning<32, false>(const Symbol* sym,
2790                                    const Relocate_info<32, false>* relinfo,
2791                                    size_t relnum, off_t reloffset) const;
2792 #endif
2793
2794 #ifdef HAVE_TARGET_32_BIG
2795 template
2796 void
2797 Warnings::issue_warning<32, true>(const Symbol* sym,
2798                                   const Relocate_info<32, true>* relinfo,
2799                                   size_t relnum, off_t reloffset) const;
2800 #endif
2801
2802 #ifdef HAVE_TARGET_64_LITTLE
2803 template
2804 void
2805 Warnings::issue_warning<64, false>(const Symbol* sym,
2806                                    const Relocate_info<64, false>* relinfo,
2807                                    size_t relnum, off_t reloffset) const;
2808 #endif
2809
2810 #ifdef HAVE_TARGET_64_BIG
2811 template
2812 void
2813 Warnings::issue_warning<64, true>(const Symbol* sym,
2814                                   const Relocate_info<64, true>* relinfo,
2815                                   size_t relnum, off_t reloffset) const;
2816 #endif
2817
2818 } // End namespace gold.