From Cary Coutant: More shared library support, some refactorization.
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <stdint.h>
26 #include <string>
27 #include <utility>
28
29 #include "object.h"
30 #include "dynobj.h"
31 #include "output.h"
32 #include "target.h"
33 #include "workqueue.h"
34 #include "symtab.h"
35
36 namespace gold
37 {
38
39 // Class Symbol.
40
41 // Initialize fields in Symbol.  This initializes everything except u_
42 // and source_.
43
44 void
45 Symbol::init_fields(const char* name, const char* version,
46                     elfcpp::STT type, elfcpp::STB binding,
47                     elfcpp::STV visibility, unsigned char nonvis)
48 {
49   this->name_ = name;
50   this->version_ = version;
51   this->symtab_index_ = 0;
52   this->dynsym_index_ = 0;
53   this->got_offset_ = 0;
54   this->plt_offset_ = 0;
55   this->type_ = type;
56   this->binding_ = binding;
57   this->visibility_ = visibility;
58   this->nonvis_ = nonvis;
59   this->is_target_special_ = false;
60   this->is_def_ = false;
61   this->is_forwarder_ = false;
62   this->has_alias_ = false;
63   this->needs_dynsym_entry_ = false;
64   this->in_reg_ = false;
65   this->in_dyn_ = false;
66   this->has_got_offset_ = false;
67   this->has_plt_offset_ = false;
68   this->has_warning_ = false;
69   this->is_copied_from_dynobj_ = false;
70   this->needs_value_in_got_ = false;
71 }
72
73 // Initialize the fields in the base class Symbol for SYM in OBJECT.
74
75 template<int size, bool big_endian>
76 void
77 Symbol::init_base(const char* name, const char* version, Object* object,
78                   const elfcpp::Sym<size, big_endian>& sym)
79 {
80   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
81                     sym.get_st_visibility(), sym.get_st_nonvis());
82   this->u_.from_object.object = object;
83   // FIXME: Handle SHN_XINDEX.
84   this->u_.from_object.shndx = sym.get_st_shndx();
85   this->source_ = FROM_OBJECT;
86   this->in_reg_ = !object->is_dynamic();
87   this->in_dyn_ = object->is_dynamic();
88 }
89
90 // Initialize the fields in the base class Symbol for a symbol defined
91 // in an Output_data.
92
93 void
94 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
95                   elfcpp::STB binding, elfcpp::STV visibility,
96                   unsigned char nonvis, bool offset_is_from_end)
97 {
98   this->init_fields(name, NULL, type, binding, visibility, nonvis);
99   this->u_.in_output_data.output_data = od;
100   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
101   this->source_ = IN_OUTPUT_DATA;
102   this->in_reg_ = true;
103 }
104
105 // Initialize the fields in the base class Symbol for a symbol defined
106 // in an Output_segment.
107
108 void
109 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
110                   elfcpp::STB binding, elfcpp::STV visibility,
111                   unsigned char nonvis, Segment_offset_base offset_base)
112 {
113   this->init_fields(name, NULL, type, binding, visibility, nonvis);
114   this->u_.in_output_segment.output_segment = os;
115   this->u_.in_output_segment.offset_base = offset_base;
116   this->source_ = IN_OUTPUT_SEGMENT;
117   this->in_reg_ = true;
118 }
119
120 // Initialize the fields in the base class Symbol for a symbol defined
121 // as a constant.
122
123 void
124 Symbol::init_base(const char* name, elfcpp::STT type,
125                   elfcpp::STB binding, elfcpp::STV visibility,
126                   unsigned char nonvis)
127 {
128   this->init_fields(name, NULL, type, binding, visibility, nonvis);
129   this->source_ = CONSTANT;
130   this->in_reg_ = true;
131 }
132
133 // Initialize the fields in Sized_symbol for SYM in OBJECT.
134
135 template<int size>
136 template<bool big_endian>
137 void
138 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
139                          const elfcpp::Sym<size, big_endian>& sym)
140 {
141   this->init_base(name, version, object, sym);
142   this->value_ = sym.get_st_value();
143   this->symsize_ = sym.get_st_size();
144 }
145
146 // Initialize the fields in Sized_symbol for a symbol defined in an
147 // Output_data.
148
149 template<int size>
150 void
151 Sized_symbol<size>::init(const char* name, Output_data* od,
152                          Value_type value, Size_type symsize,
153                          elfcpp::STT type, elfcpp::STB binding,
154                          elfcpp::STV visibility, unsigned char nonvis,
155                          bool offset_is_from_end)
156 {
157   this->init_base(name, od, type, binding, visibility, nonvis,
158                   offset_is_from_end);
159   this->value_ = value;
160   this->symsize_ = symsize;
161 }
162
163 // Initialize the fields in Sized_symbol for a symbol defined in an
164 // Output_segment.
165
166 template<int size>
167 void
168 Sized_symbol<size>::init(const char* name, Output_segment* os,
169                          Value_type value, Size_type symsize,
170                          elfcpp::STT type, elfcpp::STB binding,
171                          elfcpp::STV visibility, unsigned char nonvis,
172                          Segment_offset_base offset_base)
173 {
174   this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
175   this->value_ = value;
176   this->symsize_ = symsize;
177 }
178
179 // Initialize the fields in Sized_symbol for a symbol defined as a
180 // constant.
181
182 template<int size>
183 void
184 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
185                          elfcpp::STT type, elfcpp::STB binding,
186                          elfcpp::STV visibility, unsigned char nonvis)
187 {
188   this->init_base(name, type, binding, visibility, nonvis);
189   this->value_ = value;
190   this->symsize_ = symsize;
191 }
192
193 // Return true if this symbol should be added to the dynamic symbol
194 // table.
195
196 inline bool
197 Symbol::should_add_dynsym_entry() const
198 {
199   // If the symbol is used by a dynamic relocation, we need to add it.
200   if (this->needs_dynsym_entry())
201     return true;
202
203   // If exporting all symbols or building a shared library,
204   // and the symbol is defined in a regular object and is
205   // externally visible, we need to add it.
206   if ((parameters->export_dynamic() || parameters->output_is_shared())
207       && !this->is_from_dynobj()
208       && this->is_externally_visible())
209     return true;
210
211   return false;
212 }
213
214 // Return true if the final value of this symbol is known at link
215 // time.
216
217 bool
218 Symbol::final_value_is_known() const
219 {
220   // If we are not generating an executable, then no final values are
221   // known, since they will change at runtime.
222   if (!parameters->output_is_executable())
223     return false;
224
225   // If the symbol is not from an object file, then it is defined, and
226   // known.
227   if (this->source_ != FROM_OBJECT)
228     return true;
229
230   // If the symbol is from a dynamic object, then the final value is
231   // not known.
232   if (this->object()->is_dynamic())
233     return false;
234
235   // If the symbol is not undefined (it is defined or common), then
236   // the final value is known.
237   if (!this->is_undefined())
238     return true;
239
240   // If the symbol is undefined, then whether the final value is known
241   // depends on whether we are doing a static link.  If we are doing a
242   // dynamic link, then the final value could be filled in at runtime.
243   // This could reasonably be the case for a weak undefined symbol.
244   return parameters->doing_static_link();
245 }
246
247 // Class Symbol_table.
248
249 Symbol_table::Symbol_table()
250   : saw_undefined_(0), offset_(0), table_(), namepool_(),
251     forwarders_(), commons_(), warnings_()
252 {
253 }
254
255 Symbol_table::~Symbol_table()
256 {
257 }
258
259 // The hash function.  The key is always canonicalized, so we use a
260 // simple combination of the pointers.
261
262 size_t
263 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
264 {
265   return key.first ^ key.second;
266 }
267
268 // The symbol table key equality function.  This is only called with
269 // canonicalized name and version strings, so we can use pointer
270 // comparison.
271
272 bool
273 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
274                                           const Symbol_table_key& k2) const
275 {
276   return k1.first == k2.first && k1.second == k2.second;
277 }
278
279 // Make TO a symbol which forwards to FROM.  
280
281 void
282 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
283 {
284   gold_assert(from != to);
285   gold_assert(!from->is_forwarder() && !to->is_forwarder());
286   this->forwarders_[from] = to;
287   from->set_forwarder();
288 }
289
290 // Resolve the forwards from FROM, returning the real symbol.
291
292 Symbol*
293 Symbol_table::resolve_forwards(const Symbol* from) const
294 {
295   gold_assert(from->is_forwarder());
296   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
297     this->forwarders_.find(from);
298   gold_assert(p != this->forwarders_.end());
299   return p->second;
300 }
301
302 // Look up a symbol by name.
303
304 Symbol*
305 Symbol_table::lookup(const char* name, const char* version) const
306 {
307   Stringpool::Key name_key;
308   name = this->namepool_.find(name, &name_key);
309   if (name == NULL)
310     return NULL;
311
312   Stringpool::Key version_key = 0;
313   if (version != NULL)
314     {
315       version = this->namepool_.find(version, &version_key);
316       if (version == NULL)
317         return NULL;
318     }
319
320   Symbol_table_key key(name_key, version_key);
321   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
322   if (p == this->table_.end())
323     return NULL;
324   return p->second;
325 }
326
327 // Resolve a Symbol with another Symbol.  This is only used in the
328 // unusual case where there are references to both an unversioned
329 // symbol and a symbol with a version, and we then discover that that
330 // version is the default version.  Because this is unusual, we do
331 // this the slow way, by converting back to an ELF symbol.
332
333 template<int size, bool big_endian>
334 void
335 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
336                       const char* version ACCEPT_SIZE_ENDIAN)
337 {
338   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
339   elfcpp::Sym_write<size, big_endian> esym(buf);
340   // We don't bother to set the st_name field.
341   esym.put_st_value(from->value());
342   esym.put_st_size(from->symsize());
343   esym.put_st_info(from->binding(), from->type());
344   esym.put_st_other(from->visibility(), from->nonvis());
345   esym.put_st_shndx(from->shndx());
346   this->resolve(to, esym.sym(), from->object(), version);
347   if (from->in_reg())
348     to->set_in_reg();
349   if (from->in_dyn())
350     to->set_in_dyn();
351 }
352
353 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
354 // name and VERSION is the version; both are canonicalized.  DEF is
355 // whether this is the default version.
356
357 // If DEF is true, then this is the definition of a default version of
358 // a symbol.  That means that any lookup of NAME/NULL and any lookup
359 // of NAME/VERSION should always return the same symbol.  This is
360 // obvious for references, but in particular we want to do this for
361 // definitions: overriding NAME/NULL should also override
362 // NAME/VERSION.  If we don't do that, it would be very hard to
363 // override functions in a shared library which uses versioning.
364
365 // We implement this by simply making both entries in the hash table
366 // point to the same Symbol structure.  That is easy enough if this is
367 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
368 // that we have seen both already, in which case they will both have
369 // independent entries in the symbol table.  We can't simply change
370 // the symbol table entry, because we have pointers to the entries
371 // attached to the object files.  So we mark the entry attached to the
372 // object file as a forwarder, and record it in the forwarders_ map.
373 // Note that entries in the hash table will never be marked as
374 // forwarders.
375
376 template<int size, bool big_endian>
377 Sized_symbol<size>*
378 Symbol_table::add_from_object(Object* object,
379                               const char *name,
380                               Stringpool::Key name_key,
381                               const char *version,
382                               Stringpool::Key version_key,
383                               bool def,
384                               const elfcpp::Sym<size, big_endian>& sym)
385 {
386   Symbol* const snull = NULL;
387   std::pair<typename Symbol_table_type::iterator, bool> ins =
388     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
389                                        snull));
390
391   std::pair<typename Symbol_table_type::iterator, bool> insdef =
392     std::make_pair(this->table_.end(), false);
393   if (def)
394     {
395       const Stringpool::Key vnull_key = 0;
396       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
397                                                                  vnull_key),
398                                                   snull));
399     }
400
401   // ins.first: an iterator, which is a pointer to a pair.
402   // ins.first->first: the key (a pair of name and version).
403   // ins.first->second: the value (Symbol*).
404   // ins.second: true if new entry was inserted, false if not.
405
406   Sized_symbol<size>* ret;
407   bool was_undefined;
408   bool was_common;
409   if (!ins.second)
410     {
411       // We already have an entry for NAME/VERSION.
412       ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
413                                                            SELECT_SIZE(size));
414       gold_assert(ret != NULL);
415
416       was_undefined = ret->is_undefined();
417       was_common = ret->is_common();
418
419       this->resolve(ret, sym, object, version);
420
421       if (def)
422         {
423           if (insdef.second)
424             {
425               // This is the first time we have seen NAME/NULL.  Make
426               // NAME/NULL point to NAME/VERSION.
427               insdef.first->second = ret;
428             }
429           else if (insdef.first->second != ret)
430             {
431               // This is the unfortunate case where we already have
432               // entries for both NAME/VERSION and NAME/NULL.
433               const Sized_symbol<size>* sym2;
434               sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
435                 insdef.first->second
436                 SELECT_SIZE(size));
437               Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
438                 ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian));
439               this->make_forwarder(insdef.first->second, ret);
440               insdef.first->second = ret;
441             }
442         }
443     }
444   else
445     {
446       // This is the first time we have seen NAME/VERSION.
447       gold_assert(ins.first->second == NULL);
448
449       was_undefined = false;
450       was_common = false;
451
452       if (def && !insdef.second)
453         {
454           // We already have an entry for NAME/NULL.  If we override
455           // it, then change it to NAME/VERSION.
456           ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
457               insdef.first->second
458               SELECT_SIZE(size));
459           this->resolve(ret, sym, object, version);
460           ins.first->second = ret;
461         }
462       else
463         {
464           Sized_target<size, big_endian>* target =
465             object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
466                 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
467           if (!target->has_make_symbol())
468             ret = new Sized_symbol<size>();
469           else
470             {
471               ret = target->make_symbol();
472               if (ret == NULL)
473                 {
474                   // This means that we don't want a symbol table
475                   // entry after all.
476                   if (!def)
477                     this->table_.erase(ins.first);
478                   else
479                     {
480                       this->table_.erase(insdef.first);
481                       // Inserting insdef invalidated ins.
482                       this->table_.erase(std::make_pair(name_key,
483                                                         version_key));
484                     }
485                   return NULL;
486                 }
487             }
488
489           ret->init(name, version, object, sym);
490
491           ins.first->second = ret;
492           if (def)
493             {
494               // This is the first time we have seen NAME/NULL.  Point
495               // it at the new entry for NAME/VERSION.
496               gold_assert(insdef.second);
497               insdef.first->second = ret;
498             }
499         }
500     }
501
502   // Record every time we see a new undefined symbol, to speed up
503   // archive groups.
504   if (!was_undefined && ret->is_undefined())
505     ++this->saw_undefined_;
506
507   // Keep track of common symbols, to speed up common symbol
508   // allocation.
509   if (!was_common && ret->is_common())
510     this->commons_.push_back(ret);
511
512   return ret;
513 }
514
515 // Add all the symbols in a relocatable object to the hash table.
516
517 template<int size, bool big_endian>
518 void
519 Symbol_table::add_from_relobj(
520     Sized_relobj<size, big_endian>* relobj,
521     const unsigned char* syms,
522     size_t count,
523     const char* sym_names,
524     size_t sym_name_size,
525     typename Sized_relobj<size, big_endian>::Symbols* sympointers)
526 {
527   gold_assert(size == relobj->target()->get_size());
528   gold_assert(size == parameters->get_size());
529
530   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
531
532   const unsigned char* p = syms;
533   for (size_t i = 0; i < count; ++i, p += sym_size)
534     {
535       elfcpp::Sym<size, big_endian> sym(p);
536       elfcpp::Sym<size, big_endian>* psym = &sym;
537
538       unsigned int st_name = psym->get_st_name();
539       if (st_name >= sym_name_size)
540         {
541           relobj->error(_("bad global symbol name offset %u at %zu"),
542                         st_name, i);
543           continue;
544         }
545
546       const char* name = sym_names + st_name;
547
548       // A symbol defined in a section which we are not including must
549       // be treated as an undefined symbol.
550       unsigned char symbuf[sym_size];
551       elfcpp::Sym<size, big_endian> sym2(symbuf);
552       unsigned int st_shndx = psym->get_st_shndx();
553       if (st_shndx != elfcpp::SHN_UNDEF
554           && st_shndx < elfcpp::SHN_LORESERVE
555           && !relobj->is_section_included(st_shndx))
556         {
557           memcpy(symbuf, p, sym_size);
558           elfcpp::Sym_write<size, big_endian> sw(symbuf);
559           sw.put_st_shndx(elfcpp::SHN_UNDEF);
560           psym = &sym2;
561         }
562
563       // In an object file, an '@' in the name separates the symbol
564       // name from the version name.  If there are two '@' characters,
565       // this is the default version.
566       const char* ver = strchr(name, '@');
567
568       Sized_symbol<size>* res;
569       if (ver == NULL)
570         {
571           Stringpool::Key name_key;
572           name = this->namepool_.add(name, true, &name_key);
573           res = this->add_from_object(relobj, name, name_key, NULL, 0,
574                                       false, *psym);
575         }
576       else
577         {
578           Stringpool::Key name_key;
579           name = this->namepool_.add_prefix(name, ver - name, &name_key);
580
581           bool def = false;
582           ++ver;
583           if (*ver == '@')
584             {
585               def = true;
586               ++ver;
587             }
588
589           Stringpool::Key ver_key;
590           ver = this->namepool_.add(ver, true, &ver_key);
591
592           res = this->add_from_object(relobj, name, name_key, ver, ver_key,
593                                       def, *psym);
594         }
595
596       (*sympointers)[i] = res;
597     }
598 }
599
600 // Add all the symbols in a dynamic object to the hash table.
601
602 template<int size, bool big_endian>
603 void
604 Symbol_table::add_from_dynobj(
605     Sized_dynobj<size, big_endian>* dynobj,
606     const unsigned char* syms,
607     size_t count,
608     const char* sym_names,
609     size_t sym_name_size,
610     const unsigned char* versym,
611     size_t versym_size,
612     const std::vector<const char*>* version_map)
613 {
614   gold_assert(size == dynobj->target()->get_size());
615   gold_assert(size == parameters->get_size());
616
617   if (versym != NULL && versym_size / 2 < count)
618     {
619       dynobj->error(_("too few symbol versions"));
620       return;
621     }
622
623   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
624
625   // We keep a list of all STT_OBJECT symbols, so that we can resolve
626   // weak aliases.  This is necessary because if the dynamic object
627   // provides the same variable under two names, one of which is a
628   // weak definition, and the regular object refers to the weak
629   // definition, we have to put both the weak definition and the
630   // strong definition into the dynamic symbol table.  Given a weak
631   // definition, the only way that we can find the corresponding
632   // strong definition, if any, is to search the symbol table.
633   std::vector<Sized_symbol<size>*> object_symbols;
634
635   const unsigned char* p = syms;
636   const unsigned char* vs = versym;
637   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
638     {
639       elfcpp::Sym<size, big_endian> sym(p);
640
641       // Ignore symbols with local binding.
642       if (sym.get_st_bind() == elfcpp::STB_LOCAL)
643         continue;
644
645       unsigned int st_name = sym.get_st_name();
646       if (st_name >= sym_name_size)
647         {
648           dynobj->error(_("bad symbol name offset %u at %zu"),
649                         st_name, i);
650           continue;
651         }
652
653       const char* name = sym_names + st_name;
654
655       Sized_symbol<size>* res;
656
657       if (versym == NULL)
658         {
659           Stringpool::Key name_key;
660           name = this->namepool_.add(name, true, &name_key);
661           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
662                                       false, sym);
663         }
664       else
665         {
666           // Read the version information.
667
668           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
669
670           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
671           v &= elfcpp::VERSYM_VERSION;
672
673           // The Sun documentation says that V can be VER_NDX_LOCAL,
674           // or VER_NDX_GLOBAL, or a version index.  The meaning of
675           // VER_NDX_LOCAL is defined as "Symbol has local scope."
676           // The old GNU linker will happily generate VER_NDX_LOCAL
677           // for an undefined symbol.  I don't know what the Sun
678           // linker will generate.
679
680           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
681               && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
682             {
683               // This symbol should not be visible outside the object.
684               continue;
685             }
686
687           // At this point we are definitely going to add this symbol.
688           Stringpool::Key name_key;
689           name = this->namepool_.add(name, true, &name_key);
690
691           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
692               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
693             {
694               // This symbol does not have a version.
695               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
696                                           false, sym);
697             }
698           else
699             {
700               if (v >= version_map->size())
701                 {
702                   dynobj->error(_("versym for symbol %zu out of range: %u"),
703                                 i, v);
704                   continue;
705                 }
706
707               const char* version = (*version_map)[v];
708               if (version == NULL)
709                 {
710                   dynobj->error(_("versym for symbol %zu has no name: %u"),
711                                 i, v);
712                   continue;
713                 }
714
715               Stringpool::Key version_key;
716               version = this->namepool_.add(version, true, &version_key);
717
718               // If this is an absolute symbol, and the version name
719               // and symbol name are the same, then this is the
720               // version definition symbol.  These symbols exist to
721               // support using -u to pull in particular versions.  We
722               // do not want to record a version for them.
723               if (sym.get_st_shndx() == elfcpp::SHN_ABS
724                   && name_key == version_key)
725                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
726                                             false, sym);
727               else
728                 {
729                   const bool def = (!hidden
730                                     && (sym.get_st_shndx()
731                                         != elfcpp::SHN_UNDEF));
732                   res = this->add_from_object(dynobj, name, name_key, version,
733                                               version_key, def, sym);
734                 }
735             }
736         }
737
738       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
739           && sym.get_st_type() == elfcpp::STT_OBJECT)
740         object_symbols.push_back(res);
741     }
742
743   this->record_weak_aliases(&object_symbols);
744 }
745
746 // This is used to sort weak aliases.  We sort them first by section
747 // index, then by offset, then by weak ahead of strong.
748
749 template<int size>
750 class Weak_alias_sorter
751 {
752  public:
753   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
754 };
755
756 template<int size>
757 bool
758 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
759                                     const Sized_symbol<size>* s2) const
760 {
761   if (s1->shndx() != s2->shndx())
762     return s1->shndx() < s2->shndx();
763   if (s1->value() != s2->value())
764     return s1->value() < s2->value();
765   if (s1->binding() != s2->binding())
766     {
767       if (s1->binding() == elfcpp::STB_WEAK)
768         return true;
769       if (s2->binding() == elfcpp::STB_WEAK)
770         return false;
771     }
772   return std::string(s1->name()) < std::string(s2->name());
773 }
774
775 // SYMBOLS is a list of object symbols from a dynamic object.  Look
776 // for any weak aliases, and record them so that if we add the weak
777 // alias to the dynamic symbol table, we also add the corresponding
778 // strong symbol.
779
780 template<int size>
781 void
782 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
783 {
784   // Sort the vector by section index, then by offset, then by weak
785   // ahead of strong.
786   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
787
788   // Walk through the vector.  For each weak definition, record
789   // aliases.
790   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
791          symbols->begin();
792        p != symbols->end();
793        ++p)
794     {
795       if ((*p)->binding() != elfcpp::STB_WEAK)
796         continue;
797
798       // Build a circular list of weak aliases.  Each symbol points to
799       // the next one in the circular list.
800
801       Sized_symbol<size>* from_sym = *p;
802       typename std::vector<Sized_symbol<size>*>::const_iterator q;
803       for (q = p + 1; q != symbols->end(); ++q)
804         {
805           if ((*q)->shndx() != from_sym->shndx()
806               || (*q)->value() != from_sym->value())
807             break;
808
809           this->weak_aliases_[from_sym] = *q;
810           from_sym->set_has_alias();
811           from_sym = *q;
812         }
813
814       if (from_sym != *p)
815         {
816           this->weak_aliases_[from_sym] = *p;
817           from_sym->set_has_alias();
818         }
819
820       p = q - 1;
821     }
822 }
823
824 // Create and return a specially defined symbol.  If ONLY_IF_REF is
825 // true, then only create the symbol if there is a reference to it.
826 // If this does not return NULL, it sets *POLDSYM to the existing
827 // symbol if there is one.  This canonicalizes *PNAME and *PVERSION.
828
829 template<int size, bool big_endian>
830 Sized_symbol<size>*
831 Symbol_table::define_special_symbol(const Target* target, const char** pname,
832                                     const char** pversion, bool only_if_ref,
833                                     Sized_symbol<size>** poldsym
834                                     ACCEPT_SIZE_ENDIAN)
835 {
836   Symbol* oldsym;
837   Sized_symbol<size>* sym;
838   bool add_to_table = false;
839   typename Symbol_table_type::iterator add_loc = this->table_.end();
840
841   if (only_if_ref)
842     {
843       oldsym = this->lookup(*pname, *pversion);
844       if (oldsym == NULL || !oldsym->is_undefined())
845         return NULL;
846
847       *pname = oldsym->name();
848       *pversion = oldsym->version();
849     }
850   else
851     {
852       // Canonicalize NAME and VERSION.
853       Stringpool::Key name_key;
854       *pname = this->namepool_.add(*pname, true, &name_key);
855
856       Stringpool::Key version_key = 0;
857       if (*pversion != NULL)
858         *pversion = this->namepool_.add(*pversion, true, &version_key);
859
860       Symbol* const snull = NULL;
861       std::pair<typename Symbol_table_type::iterator, bool> ins =
862         this->table_.insert(std::make_pair(std::make_pair(name_key,
863                                                           version_key),
864                                            snull));
865
866       if (!ins.second)
867         {
868           // We already have a symbol table entry for NAME/VERSION.
869           oldsym = ins.first->second;
870           gold_assert(oldsym != NULL);
871         }
872       else
873         {
874           // We haven't seen this symbol before.
875           gold_assert(ins.first->second == NULL);
876           add_to_table = true;
877           add_loc = ins.first;
878           oldsym = NULL;
879         }
880     }
881
882   if (!target->has_make_symbol())
883     sym = new Sized_symbol<size>();
884   else
885     {
886       gold_assert(target->get_size() == size);
887       gold_assert(target->is_big_endian() ? big_endian : !big_endian);
888       typedef Sized_target<size, big_endian> My_target;
889       const My_target* sized_target =
890           static_cast<const My_target*>(target);
891       sym = sized_target->make_symbol();
892       if (sym == NULL)
893         return NULL;
894     }
895
896   if (add_to_table)
897     add_loc->second = sym;
898   else
899     gold_assert(oldsym != NULL);
900
901   *poldsym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
902                                                             SELECT_SIZE(size));
903
904   return sym;
905 }
906
907 // Define a symbol based on an Output_data.
908
909 Symbol*
910 Symbol_table::define_in_output_data(const Target* target, const char* name,
911                                     const char* version, Output_data* od,
912                                     uint64_t value, uint64_t symsize,
913                                     elfcpp::STT type, elfcpp::STB binding,
914                                     elfcpp::STV visibility,
915                                     unsigned char nonvis,
916                                     bool offset_is_from_end,
917                                     bool only_if_ref)
918 {
919   if (parameters->get_size() == 32)
920     {
921 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
922       return this->do_define_in_output_data<32>(target, name, version, od,
923                                                 value, symsize, type, binding,
924                                                 visibility, nonvis,
925                                                 offset_is_from_end,
926                                                 only_if_ref);
927 #else
928       gold_unreachable();
929 #endif
930     }
931   else if (parameters->get_size() == 64)
932     {
933 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
934       return this->do_define_in_output_data<64>(target, name, version, od,
935                                                 value, symsize, type, binding,
936                                                 visibility, nonvis,
937                                                 offset_is_from_end,
938                                                 only_if_ref);
939 #else
940       gold_unreachable();
941 #endif
942     }
943   else
944     gold_unreachable();
945 }
946
947 // Define a symbol in an Output_data, sized version.
948
949 template<int size>
950 Sized_symbol<size>*
951 Symbol_table::do_define_in_output_data(
952     const Target* target,
953     const char* name,
954     const char* version,
955     Output_data* od,
956     typename elfcpp::Elf_types<size>::Elf_Addr value,
957     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
958     elfcpp::STT type,
959     elfcpp::STB binding,
960     elfcpp::STV visibility,
961     unsigned char nonvis,
962     bool offset_is_from_end,
963     bool only_if_ref)
964 {
965   Sized_symbol<size>* sym;
966   Sized_symbol<size>* oldsym;
967
968   if (parameters->is_big_endian())
969     {
970 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
971       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
972           target, &name, &version, only_if_ref, &oldsym
973           SELECT_SIZE_ENDIAN(size, true));
974 #else
975       gold_unreachable();
976 #endif
977     }
978   else
979     {
980 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
981       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
982           target, &name, &version, only_if_ref, &oldsym
983           SELECT_SIZE_ENDIAN(size, false));
984 #else
985       gold_unreachable();
986 #endif
987     }
988
989   if (sym == NULL)
990     return NULL;
991
992   gold_assert(version == NULL || oldsym != NULL);
993   sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
994             offset_is_from_end);
995
996   if (oldsym != NULL
997       && Symbol_table::should_override_with_special(oldsym))
998     this->override_with_special(oldsym, sym);
999
1000   return sym;
1001 }
1002
1003 // Define a symbol based on an Output_segment.
1004
1005 Symbol*
1006 Symbol_table::define_in_output_segment(const Target* target, const char* name,
1007                                        const char* version, Output_segment* os,
1008                                        uint64_t value, uint64_t symsize,
1009                                        elfcpp::STT type, elfcpp::STB binding,
1010                                        elfcpp::STV visibility,
1011                                        unsigned char nonvis,
1012                                        Symbol::Segment_offset_base offset_base,
1013                                        bool only_if_ref)
1014 {
1015   if (parameters->get_size() == 32)
1016     {
1017 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1018       return this->do_define_in_output_segment<32>(target, name, version, os,
1019                                                    value, symsize, type,
1020                                                    binding, visibility, nonvis,
1021                                                    offset_base, only_if_ref);
1022 #else
1023       gold_unreachable();
1024 #endif
1025     }
1026   else if (parameters->get_size() == 64)
1027     {
1028 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1029       return this->do_define_in_output_segment<64>(target, name, version, os,
1030                                                    value, symsize, type,
1031                                                    binding, visibility, nonvis,
1032                                                    offset_base, only_if_ref);
1033 #else
1034       gold_unreachable();
1035 #endif
1036     }
1037   else
1038     gold_unreachable();
1039 }
1040
1041 // Define a symbol in an Output_segment, sized version.
1042
1043 template<int size>
1044 Sized_symbol<size>*
1045 Symbol_table::do_define_in_output_segment(
1046     const Target* target,
1047     const char* name,
1048     const char* version,
1049     Output_segment* os,
1050     typename elfcpp::Elf_types<size>::Elf_Addr value,
1051     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1052     elfcpp::STT type,
1053     elfcpp::STB binding,
1054     elfcpp::STV visibility,
1055     unsigned char nonvis,
1056     Symbol::Segment_offset_base offset_base,
1057     bool only_if_ref)
1058 {
1059   Sized_symbol<size>* sym;
1060   Sized_symbol<size>* oldsym;
1061
1062   if (parameters->is_big_endian())
1063     {
1064 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1065       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1066           target, &name, &version, only_if_ref, &oldsym
1067           SELECT_SIZE_ENDIAN(size, true));
1068 #else
1069       gold_unreachable();
1070 #endif
1071     }
1072   else
1073     {
1074 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1075       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1076           target, &name, &version, only_if_ref, &oldsym
1077           SELECT_SIZE_ENDIAN(size, false));
1078 #else
1079       gold_unreachable();
1080 #endif
1081     }
1082
1083   if (sym == NULL)
1084     return NULL;
1085
1086   gold_assert(version == NULL || oldsym != NULL);
1087   sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1088             offset_base);
1089
1090   if (oldsym != NULL
1091       && Symbol_table::should_override_with_special(oldsym))
1092     this->override_with_special(oldsym, sym);
1093
1094   return sym;
1095 }
1096
1097 // Define a special symbol with a constant value.  It is a multiple
1098 // definition error if this symbol is already defined.
1099
1100 Symbol*
1101 Symbol_table::define_as_constant(const Target* target, const char* name,
1102                                  const char* version, uint64_t value,
1103                                  uint64_t symsize, elfcpp::STT type,
1104                                  elfcpp::STB binding, elfcpp::STV visibility,
1105                                  unsigned char nonvis, bool only_if_ref)
1106 {
1107   if (parameters->get_size() == 32)
1108     {
1109 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1110       return this->do_define_as_constant<32>(target, name, version, value,
1111                                              symsize, type, binding,
1112                                              visibility, nonvis, only_if_ref);
1113 #else
1114       gold_unreachable();
1115 #endif
1116     }
1117   else if (parameters->get_size() == 64)
1118     {
1119 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1120       return this->do_define_as_constant<64>(target, name, version, value,
1121                                              symsize, type, binding,
1122                                              visibility, nonvis, only_if_ref);
1123 #else
1124       gold_unreachable();
1125 #endif
1126     }
1127   else
1128     gold_unreachable();
1129 }
1130
1131 // Define a symbol as a constant, sized version.
1132
1133 template<int size>
1134 Sized_symbol<size>*
1135 Symbol_table::do_define_as_constant(
1136     const Target* target,
1137     const char* name,
1138     const char* version,
1139     typename elfcpp::Elf_types<size>::Elf_Addr value,
1140     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1141     elfcpp::STT type,
1142     elfcpp::STB binding,
1143     elfcpp::STV visibility,
1144     unsigned char nonvis,
1145     bool only_if_ref)
1146 {
1147   Sized_symbol<size>* sym;
1148   Sized_symbol<size>* oldsym;
1149
1150   if (parameters->is_big_endian())
1151     {
1152 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1153       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1154           target, &name, &version, only_if_ref, &oldsym
1155           SELECT_SIZE_ENDIAN(size, true));
1156 #else
1157       gold_unreachable();
1158 #endif
1159     }
1160   else
1161     {
1162 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1163       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1164           target, &name, &version, only_if_ref, &oldsym
1165           SELECT_SIZE_ENDIAN(size, false));
1166 #else
1167       gold_unreachable();
1168 #endif
1169     }
1170
1171   if (sym == NULL)
1172     return NULL;
1173
1174   gold_assert(version == NULL || oldsym != NULL);
1175   sym->init(name, value, symsize, type, binding, visibility, nonvis);
1176
1177   if (oldsym != NULL
1178       && Symbol_table::should_override_with_special(oldsym))
1179     this->override_with_special(oldsym, sym);
1180
1181   return sym;
1182 }
1183
1184 // Define a set of symbols in output sections.
1185
1186 void
1187 Symbol_table::define_symbols(const Layout* layout, const Target* target,
1188                              int count, const Define_symbol_in_section* p)
1189 {
1190   for (int i = 0; i < count; ++i, ++p)
1191     {
1192       Output_section* os = layout->find_output_section(p->output_section);
1193       if (os != NULL)
1194         this->define_in_output_data(target, p->name, NULL, os, p->value,
1195                                     p->size, p->type, p->binding,
1196                                     p->visibility, p->nonvis,
1197                                     p->offset_is_from_end, p->only_if_ref);
1198       else
1199         this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1200                                  p->binding, p->visibility, p->nonvis,
1201                                  p->only_if_ref);
1202     }
1203 }
1204
1205 // Define a set of symbols in output segments.
1206
1207 void
1208 Symbol_table::define_symbols(const Layout* layout, const Target* target,
1209                              int count, const Define_symbol_in_segment* p)
1210 {
1211   for (int i = 0; i < count; ++i, ++p)
1212     {
1213       Output_segment* os = layout->find_output_segment(p->segment_type,
1214                                                        p->segment_flags_set,
1215                                                        p->segment_flags_clear);
1216       if (os != NULL)
1217         this->define_in_output_segment(target, p->name, NULL, os, p->value,
1218                                        p->size, p->type, p->binding,
1219                                        p->visibility, p->nonvis,
1220                                        p->offset_base, p->only_if_ref);
1221       else
1222         this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1223                                  p->binding, p->visibility, p->nonvis,
1224                                  p->only_if_ref);
1225     }
1226 }
1227
1228 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
1229 // symbol should be defined--typically a .dyn.bss section.  VALUE is
1230 // the offset within POSD.
1231
1232 template<int size>
1233 void
1234 Symbol_table::define_with_copy_reloc(const Target* target,
1235                                      Sized_symbol<size>* csym,
1236                                      Output_data* posd, uint64_t value)
1237 {
1238   gold_assert(csym->is_from_dynobj());
1239   gold_assert(!csym->is_copied_from_dynobj());
1240   Object* object = csym->object();
1241   gold_assert(object->is_dynamic());
1242   Dynobj* dynobj = static_cast<Dynobj*>(object);
1243
1244   // Our copied variable has to override any variable in a shared
1245   // library.
1246   elfcpp::STB binding = csym->binding();
1247   if (binding == elfcpp::STB_WEAK)
1248     binding = elfcpp::STB_GLOBAL;
1249
1250   this->define_in_output_data(target, csym->name(), csym->version(),
1251                               posd, value, csym->symsize(),
1252                               csym->type(), binding,
1253                               csym->visibility(), csym->nonvis(),
1254                               false, false);
1255
1256   csym->set_is_copied_from_dynobj();
1257   csym->set_needs_dynsym_entry();
1258
1259   this->copied_symbol_dynobjs_[csym] = dynobj;
1260
1261   // We have now defined all aliases, but we have not entered them all
1262   // in the copied_symbol_dynobjs_ map.
1263   if (csym->has_alias())
1264     {
1265       Symbol* sym = csym;
1266       while (true)
1267         {
1268           sym = this->weak_aliases_[sym];
1269           if (sym == csym)
1270             break;
1271           gold_assert(sym->output_data() == posd);
1272
1273           sym->set_is_copied_from_dynobj();
1274           this->copied_symbol_dynobjs_[sym] = dynobj;
1275         }
1276     }
1277 }
1278
1279 // SYM is defined using a COPY reloc.  Return the dynamic object where
1280 // the original definition was found.
1281
1282 Dynobj*
1283 Symbol_table::get_copy_source(const Symbol* sym) const
1284 {
1285   gold_assert(sym->is_copied_from_dynobj());
1286   Copied_symbol_dynobjs::const_iterator p =
1287     this->copied_symbol_dynobjs_.find(sym);
1288   gold_assert(p != this->copied_symbol_dynobjs_.end());
1289   return p->second;
1290 }
1291
1292 // Set the dynamic symbol indexes.  INDEX is the index of the first
1293 // global dynamic symbol.  Pointers to the symbols are stored into the
1294 // vector SYMS.  The names are added to DYNPOOL.  This returns an
1295 // updated dynamic symbol index.
1296
1297 unsigned int
1298 Symbol_table::set_dynsym_indexes(const Target* target,
1299                                  unsigned int index,
1300                                  std::vector<Symbol*>* syms,
1301                                  Stringpool* dynpool,
1302                                  Versions* versions)
1303 {
1304   for (Symbol_table_type::iterator p = this->table_.begin();
1305        p != this->table_.end();
1306        ++p)
1307     {
1308       Symbol* sym = p->second;
1309
1310       // Note that SYM may already have a dynamic symbol index, since
1311       // some symbols appear more than once in the symbol table, with
1312       // and without a version.
1313
1314       if (!sym->should_add_dynsym_entry())
1315         sym->set_dynsym_index(-1U);
1316       else if (!sym->has_dynsym_index())
1317         {
1318           sym->set_dynsym_index(index);
1319           ++index;
1320           syms->push_back(sym);
1321           dynpool->add(sym->name(), false, NULL);
1322
1323           // Record any version information.
1324           if (sym->version() != NULL)
1325             versions->record_version(this, dynpool, sym);
1326         }
1327     }
1328
1329   // Finish up the versions.  In some cases this may add new dynamic
1330   // symbols.
1331   index = versions->finalize(target, this, index, syms);
1332
1333   return index;
1334 }
1335
1336 // Set the final values for all the symbols.  The index of the first
1337 // global symbol in the output file is INDEX.  Record the file offset
1338 // OFF.  Add their names to POOL.  Return the new file offset.
1339
1340 off_t
1341 Symbol_table::finalize(unsigned int index, off_t off, off_t dynoff,
1342                        size_t dyn_global_index, size_t dyncount,
1343                        Stringpool* pool)
1344 {
1345   off_t ret;
1346
1347   gold_assert(index != 0);
1348   this->first_global_index_ = index;
1349
1350   this->dynamic_offset_ = dynoff;
1351   this->first_dynamic_global_index_ = dyn_global_index;
1352   this->dynamic_count_ = dyncount;
1353
1354   if (parameters->get_size() == 32)
1355     {
1356 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1357       ret = this->sized_finalize<32>(index, off, pool);
1358 #else
1359       gold_unreachable();
1360 #endif
1361     }
1362   else if (parameters->get_size() == 64)
1363     {
1364 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1365       ret = this->sized_finalize<64>(index, off, pool);
1366 #else
1367       gold_unreachable();
1368 #endif
1369     }
1370   else
1371     gold_unreachable();
1372
1373   // Now that we have the final symbol table, we can reliably note
1374   // which symbols should get warnings.
1375   this->warnings_.note_warnings(this);
1376
1377   return ret;
1378 }
1379
1380 // Set the final value for all the symbols.  This is called after
1381 // Layout::finalize, so all the output sections have their final
1382 // address.
1383
1384 template<int size>
1385 off_t
1386 Symbol_table::sized_finalize(unsigned index, off_t off, Stringpool* pool)
1387 {
1388   off = align_address(off, size >> 3);
1389   this->offset_ = off;
1390
1391   size_t orig_index = index;
1392
1393   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1394   for (Symbol_table_type::iterator p = this->table_.begin();
1395        p != this->table_.end();
1396        ++p)
1397     {
1398       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1399
1400       // FIXME: Here we need to decide which symbols should go into
1401       // the output file, based on --strip.
1402
1403       // The default version of a symbol may appear twice in the
1404       // symbol table.  We only need to finalize it once.
1405       if (sym->has_symtab_index())
1406         continue;
1407
1408       if (!sym->in_reg())
1409         {
1410           gold_assert(!sym->has_symtab_index());
1411           sym->set_symtab_index(-1U);
1412           gold_assert(sym->dynsym_index() == -1U);
1413           continue;
1414         }
1415
1416       typename Sized_symbol<size>::Value_type value;
1417
1418       switch (sym->source())
1419         {
1420         case Symbol::FROM_OBJECT:
1421           {
1422             unsigned int shndx = sym->shndx();
1423
1424             // FIXME: We need some target specific support here.
1425             if (shndx >= elfcpp::SHN_LORESERVE
1426                 && shndx != elfcpp::SHN_ABS)
1427               {
1428                 gold_error(_("%s: unsupported symbol section 0x%x"),
1429                            sym->name(), shndx);
1430                 shndx = elfcpp::SHN_UNDEF;
1431               }
1432
1433             Object* symobj = sym->object();
1434             if (symobj->is_dynamic())
1435               {
1436                 value = 0;
1437                 shndx = elfcpp::SHN_UNDEF;
1438               }
1439             else if (shndx == elfcpp::SHN_UNDEF)
1440               value = 0;
1441             else if (shndx == elfcpp::SHN_ABS)
1442               value = sym->value();
1443             else
1444               {
1445                 Relobj* relobj = static_cast<Relobj*>(symobj);
1446                 off_t secoff;
1447                 Output_section* os = relobj->output_section(shndx, &secoff);
1448
1449                 if (os == NULL)
1450                   {
1451                     sym->set_symtab_index(-1U);
1452                     gold_assert(sym->dynsym_index() == -1U);
1453                     continue;
1454                   }
1455
1456                 value = sym->value() + os->address() + secoff;
1457               }
1458           }
1459           break;
1460
1461         case Symbol::IN_OUTPUT_DATA:
1462           {
1463             Output_data* od = sym->output_data();
1464             value = sym->value() + od->address();
1465             if (sym->offset_is_from_end())
1466               value += od->data_size();
1467           }
1468           break;
1469
1470         case Symbol::IN_OUTPUT_SEGMENT:
1471           {
1472             Output_segment* os = sym->output_segment();
1473             value = sym->value() + os->vaddr();
1474             switch (sym->offset_base())
1475               {
1476               case Symbol::SEGMENT_START:
1477                 break;
1478               case Symbol::SEGMENT_END:
1479                 value += os->memsz();
1480                 break;
1481               case Symbol::SEGMENT_BSS:
1482                 value += os->filesz();
1483                 break;
1484               default:
1485                 gold_unreachable();
1486               }
1487           }
1488           break;
1489
1490         case Symbol::CONSTANT:
1491           value = sym->value();
1492           break;
1493
1494         default:
1495           gold_unreachable();
1496         }
1497
1498       sym->set_value(value);
1499
1500       if (parameters->strip_all())
1501         sym->set_symtab_index(-1U);
1502       else
1503         {
1504           sym->set_symtab_index(index);
1505           pool->add(sym->name(), false, NULL);
1506           ++index;
1507           off += sym_size;
1508         }
1509     }
1510
1511   this->output_count_ = index - orig_index;
1512
1513   return off;
1514 }
1515
1516 // Write out the global symbols.
1517
1518 void
1519 Symbol_table::write_globals(const Target* target, const Stringpool* sympool,
1520                             const Stringpool* dynpool, Output_file* of) const
1521 {
1522   if (parameters->get_size() == 32)
1523     {
1524       if (parameters->is_big_endian())
1525         {
1526 #ifdef HAVE_TARGET_32_BIG
1527           this->sized_write_globals<32, true>(target, sympool, dynpool, of);
1528 #else
1529           gold_unreachable();
1530 #endif
1531         }
1532       else
1533         {
1534 #ifdef HAVE_TARGET_32_LITTLE
1535           this->sized_write_globals<32, false>(target, sympool, dynpool, of);
1536 #else
1537           gold_unreachable();
1538 #endif
1539         }
1540     }
1541   else if (parameters->get_size() == 64)
1542     {
1543       if (parameters->is_big_endian())
1544         {
1545 #ifdef HAVE_TARGET_64_BIG
1546           this->sized_write_globals<64, true>(target, sympool, dynpool, of);
1547 #else
1548           gold_unreachable();
1549 #endif
1550         }
1551       else
1552         {
1553 #ifdef HAVE_TARGET_64_LITTLE
1554           this->sized_write_globals<64, false>(target, sympool, dynpool, of);
1555 #else
1556           gold_unreachable();
1557 #endif
1558         }
1559     }
1560   else
1561     gold_unreachable();
1562 }
1563
1564 // Write out the global symbols.
1565
1566 template<int size, bool big_endian>
1567 void
1568 Symbol_table::sized_write_globals(const Target* target,
1569                                   const Stringpool* sympool,
1570                                   const Stringpool* dynpool,
1571                                   Output_file* of) const
1572 {
1573   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1574   unsigned int index = this->first_global_index_;
1575   const off_t oview_size = this->output_count_ * sym_size;
1576   unsigned char* const psyms = of->get_output_view(this->offset_, oview_size);
1577
1578   unsigned int dynamic_count = this->dynamic_count_;
1579   off_t dynamic_size = dynamic_count * sym_size;
1580   unsigned int first_dynamic_global_index = this->first_dynamic_global_index_;
1581   unsigned char* dynamic_view;
1582   if (this->dynamic_offset_ == 0)
1583     dynamic_view = NULL;
1584   else
1585     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1586
1587   unsigned char* ps = psyms;
1588   for (Symbol_table_type::const_iterator p = this->table_.begin();
1589        p != this->table_.end();
1590        ++p)
1591     {
1592       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1593
1594       unsigned int sym_index = sym->symtab_index();
1595       unsigned int dynsym_index;
1596       if (dynamic_view == NULL)
1597         dynsym_index = -1U;
1598       else
1599         dynsym_index = sym->dynsym_index();
1600
1601       if (sym_index == -1U && dynsym_index == -1U)
1602         {
1603           // This symbol is not included in the output file.
1604           continue;
1605         }
1606
1607       if (sym_index == index)
1608         ++index;
1609       else if (sym_index != -1U)
1610         {
1611           // We have already seen this symbol, because it has a
1612           // default version.
1613           gold_assert(sym_index < index);
1614           if (dynsym_index == -1U)
1615             continue;
1616           sym_index = -1U;
1617         }
1618
1619       unsigned int shndx;
1620       typename elfcpp::Elf_types<32>::Elf_Addr value = sym->value();
1621       switch (sym->source())
1622         {
1623         case Symbol::FROM_OBJECT:
1624           {
1625             unsigned int in_shndx = sym->shndx();
1626
1627             // FIXME: We need some target specific support here.
1628             if (in_shndx >= elfcpp::SHN_LORESERVE
1629                 && in_shndx != elfcpp::SHN_ABS)
1630               {
1631                 gold_error(_("%s: unsupported symbol section 0x%x"),
1632                            sym->name(), in_shndx);
1633                 shndx = in_shndx;
1634               }
1635             else
1636               {
1637                 Object* symobj = sym->object();
1638                 if (symobj->is_dynamic())
1639                   {
1640                     if (sym->needs_dynsym_value())
1641                       value = target->dynsym_value(sym);
1642                     shndx = elfcpp::SHN_UNDEF;
1643                   }
1644                 else if (in_shndx == elfcpp::SHN_UNDEF
1645                          || in_shndx == elfcpp::SHN_ABS)
1646                   shndx = in_shndx;
1647                 else
1648                   {
1649                     Relobj* relobj = static_cast<Relobj*>(symobj);
1650                     off_t secoff;
1651                     Output_section* os = relobj->output_section(in_shndx,
1652                                                                 &secoff);
1653                     gold_assert(os != NULL);
1654                     shndx = os->out_shndx();
1655                   }
1656               }
1657           }
1658           break;
1659
1660         case Symbol::IN_OUTPUT_DATA:
1661           shndx = sym->output_data()->out_shndx();
1662           break;
1663
1664         case Symbol::IN_OUTPUT_SEGMENT:
1665           shndx = elfcpp::SHN_ABS;
1666           break;
1667
1668         case Symbol::CONSTANT:
1669           shndx = elfcpp::SHN_ABS;
1670           break;
1671
1672         default:
1673           gold_unreachable();
1674         }
1675
1676       if (sym_index != -1U)
1677         {
1678           this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1679               sym, sym->value(), shndx, sympool, ps
1680               SELECT_SIZE_ENDIAN(size, big_endian));
1681           ps += sym_size;
1682         }
1683
1684       if (dynsym_index != -1U)
1685         {
1686           dynsym_index -= first_dynamic_global_index;
1687           gold_assert(dynsym_index < dynamic_count);
1688           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1689           this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1690               sym, value, shndx, dynpool, pd
1691               SELECT_SIZE_ENDIAN(size, big_endian));
1692         }
1693     }
1694
1695   gold_assert(ps - psyms == oview_size);
1696
1697   of->write_output_view(this->offset_, oview_size, psyms);
1698   if (dynamic_view != NULL)
1699     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1700 }
1701
1702 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
1703 // strtab holding the name.
1704
1705 template<int size, bool big_endian>
1706 void
1707 Symbol_table::sized_write_symbol(
1708     Sized_symbol<size>* sym,
1709     typename elfcpp::Elf_types<size>::Elf_Addr value,
1710     unsigned int shndx,
1711     const Stringpool* pool,
1712     unsigned char* p
1713     ACCEPT_SIZE_ENDIAN) const
1714 {
1715   elfcpp::Sym_write<size, big_endian> osym(p);
1716   osym.put_st_name(pool->get_offset(sym->name()));
1717   osym.put_st_value(value);
1718   osym.put_st_size(sym->symsize());
1719   osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1720   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1721   osym.put_st_shndx(shndx);
1722 }
1723
1724 // Write out a section symbol.  Return the update offset.
1725
1726 void
1727 Symbol_table::write_section_symbol(const Output_section *os,
1728                                    Output_file* of,
1729                                    off_t offset) const
1730 {
1731   if (parameters->get_size() == 32)
1732     {
1733       if (parameters->is_big_endian())
1734         {
1735 #ifdef HAVE_TARGET_32_BIG
1736           this->sized_write_section_symbol<32, true>(os, of, offset);
1737 #else
1738           gold_unreachable();
1739 #endif
1740         }
1741       else
1742         {
1743 #ifdef HAVE_TARGET_32_LITTLE
1744           this->sized_write_section_symbol<32, false>(os, of, offset);
1745 #else
1746           gold_unreachable();
1747 #endif
1748         }
1749     }
1750   else if (parameters->get_size() == 64)
1751     {
1752       if (parameters->is_big_endian())
1753         {
1754 #ifdef HAVE_TARGET_64_BIG
1755           this->sized_write_section_symbol<64, true>(os, of, offset);
1756 #else
1757           gold_unreachable();
1758 #endif
1759         }
1760       else
1761         {
1762 #ifdef HAVE_TARGET_64_LITTLE
1763           this->sized_write_section_symbol<64, false>(os, of, offset);
1764 #else
1765           gold_unreachable();
1766 #endif
1767         }
1768     }
1769   else
1770     gold_unreachable();
1771 }
1772
1773 // Write out a section symbol, specialized for size and endianness.
1774
1775 template<int size, bool big_endian>
1776 void
1777 Symbol_table::sized_write_section_symbol(const Output_section* os,
1778                                          Output_file* of,
1779                                          off_t offset) const
1780 {
1781   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1782
1783   unsigned char* pov = of->get_output_view(offset, sym_size);
1784
1785   elfcpp::Sym_write<size, big_endian> osym(pov);
1786   osym.put_st_name(0);
1787   osym.put_st_value(os->address());
1788   osym.put_st_size(0);
1789   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
1790                                        elfcpp::STT_SECTION));
1791   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
1792   osym.put_st_shndx(os->out_shndx());
1793
1794   of->write_output_view(offset, sym_size, pov);
1795 }
1796
1797 // Warnings functions.
1798
1799 // Add a new warning.
1800
1801 void
1802 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
1803                       unsigned int shndx)
1804 {
1805   name = symtab->canonicalize_name(name);
1806   this->warnings_[name].set(obj, shndx);
1807 }
1808
1809 // Look through the warnings and mark the symbols for which we should
1810 // warn.  This is called during Layout::finalize when we know the
1811 // sources for all the symbols.
1812
1813 void
1814 Warnings::note_warnings(Symbol_table* symtab)
1815 {
1816   for (Warning_table::iterator p = this->warnings_.begin();
1817        p != this->warnings_.end();
1818        ++p)
1819     {
1820       Symbol* sym = symtab->lookup(p->first, NULL);
1821       if (sym != NULL
1822           && sym->source() == Symbol::FROM_OBJECT
1823           && sym->object() == p->second.object)
1824         {
1825           sym->set_has_warning();
1826
1827           // Read the section contents to get the warning text.  It
1828           // would be nicer if we only did this if we have to actually
1829           // issue a warning.  Unfortunately, warnings are issued as
1830           // we relocate sections.  That means that we can not lock
1831           // the object then, as we might try to issue the same
1832           // warning multiple times simultaneously.
1833           {
1834             Task_locker_obj<Object> tl(*p->second.object);
1835             const unsigned char* c;
1836             off_t len;
1837             c = p->second.object->section_contents(p->second.shndx, &len,
1838                                                    false);
1839             p->second.set_text(reinterpret_cast<const char*>(c), len);
1840           }
1841         }
1842     }
1843 }
1844
1845 // Issue a warning.  This is called when we see a relocation against a
1846 // symbol for which has a warning.
1847
1848 template<int size, bool big_endian>
1849 void
1850 Warnings::issue_warning(const Symbol* sym,
1851                         const Relocate_info<size, big_endian>* relinfo,
1852                         size_t relnum, off_t reloffset) const
1853 {
1854   gold_assert(sym->has_warning());
1855   Warning_table::const_iterator p = this->warnings_.find(sym->name());
1856   gold_assert(p != this->warnings_.end());
1857   gold_warning_at_location(relinfo, relnum, reloffset,
1858                            "%s", p->second.text.c_str());
1859 }
1860
1861 // Instantiate the templates we need.  We could use the configure
1862 // script to restrict this to only the ones needed for implemented
1863 // targets.
1864
1865 #ifdef HAVE_TARGET_32_LITTLE
1866 template
1867 void
1868 Symbol_table::add_from_relobj<32, false>(
1869     Sized_relobj<32, false>* relobj,
1870     const unsigned char* syms,
1871     size_t count,
1872     const char* sym_names,
1873     size_t sym_name_size,
1874     Sized_relobj<32, true>::Symbols* sympointers);
1875 #endif
1876
1877 #ifdef HAVE_TARGET_32_BIG
1878 template
1879 void
1880 Symbol_table::add_from_relobj<32, true>(
1881     Sized_relobj<32, true>* relobj,
1882     const unsigned char* syms,
1883     size_t count,
1884     const char* sym_names,
1885     size_t sym_name_size,
1886     Sized_relobj<32, false>::Symbols* sympointers);
1887 #endif
1888
1889 #ifdef HAVE_TARGET_64_LITTLE
1890 template
1891 void
1892 Symbol_table::add_from_relobj<64, false>(
1893     Sized_relobj<64, false>* relobj,
1894     const unsigned char* syms,
1895     size_t count,
1896     const char* sym_names,
1897     size_t sym_name_size,
1898     Sized_relobj<64, true>::Symbols* sympointers);
1899 #endif
1900
1901 #ifdef HAVE_TARGET_64_BIG
1902 template
1903 void
1904 Symbol_table::add_from_relobj<64, true>(
1905     Sized_relobj<64, true>* relobj,
1906     const unsigned char* syms,
1907     size_t count,
1908     const char* sym_names,
1909     size_t sym_name_size,
1910     Sized_relobj<64, false>::Symbols* sympointers);
1911 #endif
1912
1913 #ifdef HAVE_TARGET_32_LITTLE
1914 template
1915 void
1916 Symbol_table::add_from_dynobj<32, false>(
1917     Sized_dynobj<32, false>* dynobj,
1918     const unsigned char* syms,
1919     size_t count,
1920     const char* sym_names,
1921     size_t sym_name_size,
1922     const unsigned char* versym,
1923     size_t versym_size,
1924     const std::vector<const char*>* version_map);
1925 #endif
1926
1927 #ifdef HAVE_TARGET_32_BIG
1928 template
1929 void
1930 Symbol_table::add_from_dynobj<32, true>(
1931     Sized_dynobj<32, true>* dynobj,
1932     const unsigned char* syms,
1933     size_t count,
1934     const char* sym_names,
1935     size_t sym_name_size,
1936     const unsigned char* versym,
1937     size_t versym_size,
1938     const std::vector<const char*>* version_map);
1939 #endif
1940
1941 #ifdef HAVE_TARGET_64_LITTLE
1942 template
1943 void
1944 Symbol_table::add_from_dynobj<64, false>(
1945     Sized_dynobj<64, false>* dynobj,
1946     const unsigned char* syms,
1947     size_t count,
1948     const char* sym_names,
1949     size_t sym_name_size,
1950     const unsigned char* versym,
1951     size_t versym_size,
1952     const std::vector<const char*>* version_map);
1953 #endif
1954
1955 #ifdef HAVE_TARGET_64_BIG
1956 template
1957 void
1958 Symbol_table::add_from_dynobj<64, true>(
1959     Sized_dynobj<64, true>* dynobj,
1960     const unsigned char* syms,
1961     size_t count,
1962     const char* sym_names,
1963     size_t sym_name_size,
1964     const unsigned char* versym,
1965     size_t versym_size,
1966     const std::vector<const char*>* version_map);
1967 #endif
1968
1969 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1970 template
1971 void
1972 Symbol_table::define_with_copy_reloc<32>(const Target* target,
1973                                          Sized_symbol<32>* sym,
1974                                          Output_data* posd, uint64_t value);
1975 #endif
1976
1977 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1978 template
1979 void
1980 Symbol_table::define_with_copy_reloc<64>(const Target* target,
1981                                          Sized_symbol<64>* sym,
1982                                          Output_data* posd, uint64_t value);
1983 #endif
1984
1985 #ifdef HAVE_TARGET_32_LITTLE
1986 template
1987 void
1988 Warnings::issue_warning<32, false>(const Symbol* sym,
1989                                    const Relocate_info<32, false>* relinfo,
1990                                    size_t relnum, off_t reloffset) const;
1991 #endif
1992
1993 #ifdef HAVE_TARGET_32_BIG
1994 template
1995 void
1996 Warnings::issue_warning<32, true>(const Symbol* sym,
1997                                   const Relocate_info<32, true>* relinfo,
1998                                   size_t relnum, off_t reloffset) const;
1999 #endif
2000
2001 #ifdef HAVE_TARGET_64_LITTLE
2002 template
2003 void
2004 Warnings::issue_warning<64, false>(const Symbol* sym,
2005                                    const Relocate_info<64, false>* relinfo,
2006                                    size_t relnum, off_t reloffset) const;
2007 #endif
2008
2009 #ifdef HAVE_TARGET_64_BIG
2010 template
2011 void
2012 Warnings::issue_warning<64, true>(const Symbol* sym,
2013                                   const Relocate_info<64, true>* relinfo,
2014                                   size_t relnum, off_t reloffset) const;
2015 #endif
2016
2017 } // End namespace gold.