* options.cc (General_options::parse_dynamic_list): New function.
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "object.h"
34 #include "dwarf_reader.h"
35 #include "dynobj.h"
36 #include "output.h"
37 #include "target.h"
38 #include "workqueue.h"
39 #include "symtab.h"
40 #include "demangle.h"   // needed for --dynamic-list-cpp-new
41 #include "plugin.h"
42
43 namespace gold
44 {
45
46 // Class Symbol.
47
48 // Initialize fields in Symbol.  This initializes everything except u_
49 // and source_.
50
51 void
52 Symbol::init_fields(const char* name, const char* version,
53                     elfcpp::STT type, elfcpp::STB binding,
54                     elfcpp::STV visibility, unsigned char nonvis)
55 {
56   this->name_ = name;
57   this->version_ = version;
58   this->symtab_index_ = 0;
59   this->dynsym_index_ = 0;
60   this->got_offsets_.init();
61   this->plt_offset_ = 0;
62   this->type_ = type;
63   this->binding_ = binding;
64   this->visibility_ = visibility;
65   this->nonvis_ = nonvis;
66   this->is_target_special_ = false;
67   this->is_def_ = false;
68   this->is_forwarder_ = false;
69   this->has_alias_ = false;
70   this->needs_dynsym_entry_ = false;
71   this->in_reg_ = false;
72   this->in_dyn_ = false;
73   this->has_plt_offset_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79 }
80
81 // Return the demangled version of the symbol's name, but only
82 // if the --demangle flag was set.
83
84 static std::string
85 demangle(const char* name)
86 {
87   if (!parameters->options().do_demangle())
88     return name;
89
90   // cplus_demangle allocates memory for the result it returns,
91   // and returns NULL if the name is already demangled.
92   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
93   if (demangled_name == NULL)
94     return name;
95
96   std::string retval(demangled_name);
97   free(demangled_name);
98   return retval;
99 }
100
101 std::string
102 Symbol::demangled_name() const
103 {
104   return demangle(this->name());
105 }
106
107 // Initialize the fields in the base class Symbol for SYM in OBJECT.
108
109 template<int size, bool big_endian>
110 void
111 Symbol::init_base_object(const char* name, const char* version, Object* object,
112                          const elfcpp::Sym<size, big_endian>& sym,
113                          unsigned int st_shndx, bool is_ordinary)
114 {
115   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
116                     sym.get_st_visibility(), sym.get_st_nonvis());
117   this->u_.from_object.object = object;
118   this->u_.from_object.shndx = st_shndx;
119   this->is_ordinary_shndx_ = is_ordinary;
120   this->source_ = FROM_OBJECT;
121   this->in_reg_ = !object->is_dynamic();
122   this->in_dyn_ = object->is_dynamic();
123   this->in_real_elf_ = object->pluginobj() == NULL;
124 }
125
126 // Initialize the fields in the base class Symbol for a symbol defined
127 // in an Output_data.
128
129 void
130 Symbol::init_base_output_data(const char* name, const char* version,
131                               Output_data* od, elfcpp::STT type,
132                               elfcpp::STB binding, elfcpp::STV visibility,
133                               unsigned char nonvis, bool offset_is_from_end)
134 {
135   this->init_fields(name, version, type, binding, visibility, nonvis);
136   this->u_.in_output_data.output_data = od;
137   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
138   this->source_ = IN_OUTPUT_DATA;
139   this->in_reg_ = true;
140   this->in_real_elf_ = true;
141 }
142
143 // Initialize the fields in the base class Symbol for a symbol defined
144 // in an Output_segment.
145
146 void
147 Symbol::init_base_output_segment(const char* name, const char* version,
148                                  Output_segment* os, elfcpp::STT type,
149                                  elfcpp::STB binding, elfcpp::STV visibility,
150                                  unsigned char nonvis,
151                                  Segment_offset_base offset_base)
152 {
153   this->init_fields(name, version, type, binding, visibility, nonvis);
154   this->u_.in_output_segment.output_segment = os;
155   this->u_.in_output_segment.offset_base = offset_base;
156   this->source_ = IN_OUTPUT_SEGMENT;
157   this->in_reg_ = true;
158   this->in_real_elf_ = true;
159 }
160
161 // Initialize the fields in the base class Symbol for a symbol defined
162 // as a constant.
163
164 void
165 Symbol::init_base_constant(const char* name, const char* version,
166                            elfcpp::STT type, elfcpp::STB binding,
167                            elfcpp::STV visibility, unsigned char nonvis)
168 {
169   this->init_fields(name, version, type, binding, visibility, nonvis);
170   this->source_ = IS_CONSTANT;
171   this->in_reg_ = true;
172   this->in_real_elf_ = true;
173 }
174
175 // Initialize the fields in the base class Symbol for an undefined
176 // symbol.
177
178 void
179 Symbol::init_base_undefined(const char* name, const char* version,
180                             elfcpp::STT type, elfcpp::STB binding,
181                             elfcpp::STV visibility, unsigned char nonvis)
182 {
183   this->init_fields(name, version, type, binding, visibility, nonvis);
184   this->dynsym_index_ = -1U;
185   this->source_ = IS_UNDEFINED;
186   this->in_reg_ = true;
187   this->in_real_elf_ = true;
188 }
189
190 // Allocate a common symbol in the base.
191
192 void
193 Symbol::allocate_base_common(Output_data* od)
194 {
195   gold_assert(this->is_common());
196   this->source_ = IN_OUTPUT_DATA;
197   this->u_.in_output_data.output_data = od;
198   this->u_.in_output_data.offset_is_from_end = false;
199 }
200
201 // Initialize the fields in Sized_symbol for SYM in OBJECT.
202
203 template<int size>
204 template<bool big_endian>
205 void
206 Sized_symbol<size>::init_object(const char* name, const char* version,
207                                 Object* object,
208                                 const elfcpp::Sym<size, big_endian>& sym,
209                                 unsigned int st_shndx, bool is_ordinary)
210 {
211   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
212   this->value_ = sym.get_st_value();
213   this->symsize_ = sym.get_st_size();
214 }
215
216 // Initialize the fields in Sized_symbol for a symbol defined in an
217 // Output_data.
218
219 template<int size>
220 void
221 Sized_symbol<size>::init_output_data(const char* name, const char* version,
222                                      Output_data* od, Value_type value,
223                                      Size_type symsize, elfcpp::STT type,
224                                      elfcpp::STB binding,
225                                      elfcpp::STV visibility,
226                                      unsigned char nonvis,
227                                      bool offset_is_from_end)
228 {
229   this->init_base_output_data(name, version, od, type, binding, visibility,
230                               nonvis, offset_is_from_end);
231   this->value_ = value;
232   this->symsize_ = symsize;
233 }
234
235 // Initialize the fields in Sized_symbol for a symbol defined in an
236 // Output_segment.
237
238 template<int size>
239 void
240 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
241                                         Output_segment* os, Value_type value,
242                                         Size_type symsize, elfcpp::STT type,
243                                         elfcpp::STB binding,
244                                         elfcpp::STV visibility,
245                                         unsigned char nonvis,
246                                         Segment_offset_base offset_base)
247 {
248   this->init_base_output_segment(name, version, os, type, binding, visibility,
249                                  nonvis, offset_base);
250   this->value_ = value;
251   this->symsize_ = symsize;
252 }
253
254 // Initialize the fields in Sized_symbol for a symbol defined as a
255 // constant.
256
257 template<int size>
258 void
259 Sized_symbol<size>::init_constant(const char* name, const char* version,
260                                   Value_type value, Size_type symsize,
261                                   elfcpp::STT type, elfcpp::STB binding,
262                                   elfcpp::STV visibility, unsigned char nonvis)
263 {
264   this->init_base_constant(name, version, type, binding, visibility, nonvis);
265   this->value_ = value;
266   this->symsize_ = symsize;
267 }
268
269 // Initialize the fields in Sized_symbol for an undefined symbol.
270
271 template<int size>
272 void
273 Sized_symbol<size>::init_undefined(const char* name, const char* version,
274                                    elfcpp::STT type, elfcpp::STB binding,
275                                    elfcpp::STV visibility, unsigned char nonvis)
276 {
277   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
278   this->value_ = 0;
279   this->symsize_ = 0;
280 }
281
282 // Allocate a common symbol.
283
284 template<int size>
285 void
286 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
287 {
288   this->allocate_base_common(od);
289   this->value_ = value;
290 }
291
292 // The ""'s around str ensure str is a string literal, so sizeof works.
293 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
294
295 // Return true if this symbol should be added to the dynamic symbol
296 // table.
297
298 inline bool
299 Symbol::should_add_dynsym_entry() const
300 {
301   // If the symbol is used by a dynamic relocation, we need to add it.
302   if (this->needs_dynsym_entry())
303     return true;
304
305   // If the symbol was forced local in a version script, do not add it.
306   if (this->is_forced_local())
307     return false;
308
309   // If the symbol was forced dynamic in a --dynamic-list file, add it.
310   if (parameters->options().in_dynamic_list(this->name()))
311     return true;
312
313   // If dynamic-list-data was specified, add any STT_OBJECT.
314   if (parameters->options().dynamic_list_data()
315       && !this->is_from_dynobj()
316       && this->type() == elfcpp::STT_OBJECT)
317     return true;
318
319   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
320   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
321   if ((parameters->options().dynamic_list_cpp_new()
322        || parameters->options().dynamic_list_cpp_typeinfo())
323       && !this->is_from_dynobj())
324     {
325       // TODO(csilvers): We could probably figure out if we're an operator
326       //                 new/delete or typeinfo without the need to demangle.
327       char* demangled_name = cplus_demangle(this->name(),
328                                             DMGL_ANSI | DMGL_PARAMS);
329       if (demangled_name == NULL)
330         {
331           // Not a C++ symbol, so it can't satisfy these flags
332         }
333       else if (parameters->options().dynamic_list_cpp_new()
334                && (strprefix(demangled_name, "operator new")
335                    || strprefix(demangled_name, "operator delete")))
336         {
337           free(demangled_name);
338           return true;
339         }
340       else if (parameters->options().dynamic_list_cpp_typeinfo()
341                && (strprefix(demangled_name, "typeinfo name for")
342                    || strprefix(demangled_name, "typeinfo for")))
343         {
344           free(demangled_name);
345           return true;
346         }
347       else
348         free(demangled_name);
349     }
350
351   // If exporting all symbols or building a shared library,
352   // and the symbol is defined in a regular object and is
353   // externally visible, we need to add it.
354   if ((parameters->options().export_dynamic() || parameters->options().shared())
355       && !this->is_from_dynobj()
356       && this->is_externally_visible())
357     return true;
358
359   return false;
360 }
361
362 // Return true if the final value of this symbol is known at link
363 // time.
364
365 bool
366 Symbol::final_value_is_known() const
367 {
368   // If we are not generating an executable, then no final values are
369   // known, since they will change at runtime.
370   if (parameters->options().shared() || parameters->options().relocatable())
371     return false;
372
373   // If the symbol is not from an object file, and is not undefined,
374   // then it is defined, and known.
375   if (this->source_ != FROM_OBJECT)
376     {
377       if (this->source_ != IS_UNDEFINED)
378         return true;
379     }
380   else
381     {
382       // If the symbol is from a dynamic object, then the final value
383       // is not known.
384       if (this->object()->is_dynamic())
385         return false;
386
387       // If the symbol is not undefined (it is defined or common),
388       // then the final value is known.
389       if (!this->is_undefined())
390         return true;
391     }
392
393   // If the symbol is undefined, then whether the final value is known
394   // depends on whether we are doing a static link.  If we are doing a
395   // dynamic link, then the final value could be filled in at runtime.
396   // This could reasonably be the case for a weak undefined symbol.
397   return parameters->doing_static_link();
398 }
399
400 // Return the output section where this symbol is defined.
401
402 Output_section*
403 Symbol::output_section() const
404 {
405   switch (this->source_)
406     {
407     case FROM_OBJECT:
408       {
409         unsigned int shndx = this->u_.from_object.shndx;
410         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
411           {
412             gold_assert(!this->u_.from_object.object->is_dynamic());
413             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
414             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
415             return relobj->output_section(shndx);
416           }
417         return NULL;
418       }
419
420     case IN_OUTPUT_DATA:
421       return this->u_.in_output_data.output_data->output_section();
422
423     case IN_OUTPUT_SEGMENT:
424     case IS_CONSTANT:
425     case IS_UNDEFINED:
426       return NULL;
427
428     default:
429       gold_unreachable();
430     }
431 }
432
433 // Set the symbol's output section.  This is used for symbols defined
434 // in scripts.  This should only be called after the symbol table has
435 // been finalized.
436
437 void
438 Symbol::set_output_section(Output_section* os)
439 {
440   switch (this->source_)
441     {
442     case FROM_OBJECT:
443     case IN_OUTPUT_DATA:
444       gold_assert(this->output_section() == os);
445       break;
446     case IS_CONSTANT:
447       this->source_ = IN_OUTPUT_DATA;
448       this->u_.in_output_data.output_data = os;
449       this->u_.in_output_data.offset_is_from_end = false;
450       break;
451     case IN_OUTPUT_SEGMENT:
452     case IS_UNDEFINED:
453     default:
454       gold_unreachable();
455     }
456 }
457
458 // Class Symbol_table.
459
460 Symbol_table::Symbol_table(unsigned int count,
461                            const Version_script_info& version_script)
462   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
463     forwarders_(), commons_(), tls_commons_(), forced_locals_(), warnings_(),
464     version_script_(version_script)
465 {
466   namepool_.reserve(count);
467 }
468
469 Symbol_table::~Symbol_table()
470 {
471 }
472
473 // The hash function.  The key values are Stringpool keys.
474
475 inline size_t
476 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
477 {
478   return key.first ^ key.second;
479 }
480
481 // The symbol table key equality function.  This is called with
482 // Stringpool keys.
483
484 inline bool
485 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
486                                           const Symbol_table_key& k2) const
487 {
488   return k1.first == k2.first && k1.second == k2.second;
489 }
490
491 // Make TO a symbol which forwards to FROM.
492
493 void
494 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
495 {
496   gold_assert(from != to);
497   gold_assert(!from->is_forwarder() && !to->is_forwarder());
498   this->forwarders_[from] = to;
499   from->set_forwarder();
500 }
501
502 // Resolve the forwards from FROM, returning the real symbol.
503
504 Symbol*
505 Symbol_table::resolve_forwards(const Symbol* from) const
506 {
507   gold_assert(from->is_forwarder());
508   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
509     this->forwarders_.find(from);
510   gold_assert(p != this->forwarders_.end());
511   return p->second;
512 }
513
514 // Look up a symbol by name.
515
516 Symbol*
517 Symbol_table::lookup(const char* name, const char* version) const
518 {
519   Stringpool::Key name_key;
520   name = this->namepool_.find(name, &name_key);
521   if (name == NULL)
522     return NULL;
523
524   Stringpool::Key version_key = 0;
525   if (version != NULL)
526     {
527       version = this->namepool_.find(version, &version_key);
528       if (version == NULL)
529         return NULL;
530     }
531
532   Symbol_table_key key(name_key, version_key);
533   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
534   if (p == this->table_.end())
535     return NULL;
536   return p->second;
537 }
538
539 // Resolve a Symbol with another Symbol.  This is only used in the
540 // unusual case where there are references to both an unversioned
541 // symbol and a symbol with a version, and we then discover that that
542 // version is the default version.  Because this is unusual, we do
543 // this the slow way, by converting back to an ELF symbol.
544
545 template<int size, bool big_endian>
546 void
547 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
548 {
549   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
550   elfcpp::Sym_write<size, big_endian> esym(buf);
551   // We don't bother to set the st_name or the st_shndx field.
552   esym.put_st_value(from->value());
553   esym.put_st_size(from->symsize());
554   esym.put_st_info(from->binding(), from->type());
555   esym.put_st_other(from->visibility(), from->nonvis());
556   bool is_ordinary;
557   unsigned int shndx = from->shndx(&is_ordinary);
558   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
559                 from->version());
560   if (from->in_reg())
561     to->set_in_reg();
562   if (from->in_dyn())
563     to->set_in_dyn();
564 }
565
566 // Record that a symbol is forced to be local by a version script.
567
568 void
569 Symbol_table::force_local(Symbol* sym)
570 {
571   if (!sym->is_defined() && !sym->is_common())
572     return;
573   if (sym->is_forced_local())
574     {
575       // We already got this one.
576       return;
577     }
578   sym->set_is_forced_local();
579   this->forced_locals_.push_back(sym);
580 }
581
582 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
583 // is only called for undefined symbols, when at least one --wrap
584 // option was used.
585
586 const char*
587 Symbol_table::wrap_symbol(Object* object, const char* name,
588                           Stringpool::Key* name_key)
589 {
590   // For some targets, we need to ignore a specific character when
591   // wrapping, and add it back later.
592   char prefix = '\0';
593   if (name[0] == object->target()->wrap_char())
594     {
595       prefix = name[0];
596       ++name;
597     }
598
599   if (parameters->options().is_wrap(name))
600     {
601       // Turn NAME into __wrap_NAME.
602       std::string s;
603       if (prefix != '\0')
604         s += prefix;
605       s += "__wrap_";
606       s += name;
607
608       // This will give us both the old and new name in NAMEPOOL_, but
609       // that is OK.  Only the versions we need will wind up in the
610       // real string table in the output file.
611       return this->namepool_.add(s.c_str(), true, name_key);
612     }
613
614   const char* const real_prefix = "__real_";
615   const size_t real_prefix_length = strlen(real_prefix);
616   if (strncmp(name, real_prefix, real_prefix_length) == 0
617       && parameters->options().is_wrap(name + real_prefix_length))
618     {
619       // Turn __real_NAME into NAME.
620       std::string s;
621       if (prefix != '\0')
622         s += prefix;
623       s += name + real_prefix_length;
624       return this->namepool_.add(s.c_str(), true, name_key);
625     }
626
627   return name;
628 }
629
630 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
631 // name and VERSION is the version; both are canonicalized.  DEF is
632 // whether this is the default version.  ST_SHNDX is the symbol's
633 // section index; IS_ORDINARY is whether this is a normal section
634 // rather than a special code.
635
636 // If DEF is true, then this is the definition of a default version of
637 // a symbol.  That means that any lookup of NAME/NULL and any lookup
638 // of NAME/VERSION should always return the same symbol.  This is
639 // obvious for references, but in particular we want to do this for
640 // definitions: overriding NAME/NULL should also override
641 // NAME/VERSION.  If we don't do that, it would be very hard to
642 // override functions in a shared library which uses versioning.
643
644 // We implement this by simply making both entries in the hash table
645 // point to the same Symbol structure.  That is easy enough if this is
646 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
647 // that we have seen both already, in which case they will both have
648 // independent entries in the symbol table.  We can't simply change
649 // the symbol table entry, because we have pointers to the entries
650 // attached to the object files.  So we mark the entry attached to the
651 // object file as a forwarder, and record it in the forwarders_ map.
652 // Note that entries in the hash table will never be marked as
653 // forwarders.
654 //
655 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
656 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
657 // for a special section code.  ST_SHNDX may be modified if the symbol
658 // is defined in a section being discarded.
659
660 template<int size, bool big_endian>
661 Sized_symbol<size>*
662 Symbol_table::add_from_object(Object* object,
663                               const char *name,
664                               Stringpool::Key name_key,
665                               const char *version,
666                               Stringpool::Key version_key,
667                               bool def,
668                               const elfcpp::Sym<size, big_endian>& sym,
669                               unsigned int st_shndx,
670                               bool is_ordinary,
671                               unsigned int orig_st_shndx)
672 {
673   // Print a message if this symbol is being traced.
674   if (parameters->options().is_trace_symbol(name))
675     {
676       if (orig_st_shndx == elfcpp::SHN_UNDEF)
677         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
678       else
679         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
680     }
681
682   // For an undefined symbol, we may need to adjust the name using
683   // --wrap.
684   if (orig_st_shndx == elfcpp::SHN_UNDEF
685       && parameters->options().any_wrap())
686     {
687       const char* wrap_name = this->wrap_symbol(object, name, &name_key);
688       if (wrap_name != name)
689         {
690           // If we see a reference to malloc with version GLIBC_2.0,
691           // and we turn it into a reference to __wrap_malloc, then we
692           // discard the version number.  Otherwise the user would be
693           // required to specify the correct version for
694           // __wrap_malloc.
695           version = NULL;
696           version_key = 0;
697           name = wrap_name;
698         }
699     }
700
701   Symbol* const snull = NULL;
702   std::pair<typename Symbol_table_type::iterator, bool> ins =
703     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
704                                        snull));
705
706   std::pair<typename Symbol_table_type::iterator, bool> insdef =
707     std::make_pair(this->table_.end(), false);
708   if (def)
709     {
710       const Stringpool::Key vnull_key = 0;
711       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
712                                                                  vnull_key),
713                                                   snull));
714     }
715
716   // ins.first: an iterator, which is a pointer to a pair.
717   // ins.first->first: the key (a pair of name and version).
718   // ins.first->second: the value (Symbol*).
719   // ins.second: true if new entry was inserted, false if not.
720
721   Sized_symbol<size>* ret;
722   bool was_undefined;
723   bool was_common;
724   if (!ins.second)
725     {
726       // We already have an entry for NAME/VERSION.
727       ret = this->get_sized_symbol<size>(ins.first->second);
728       gold_assert(ret != NULL);
729
730       was_undefined = ret->is_undefined();
731       was_common = ret->is_common();
732
733       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
734                     version);
735
736       if (def)
737         {
738           if (insdef.second)
739             {
740               // This is the first time we have seen NAME/NULL.  Make
741               // NAME/NULL point to NAME/VERSION.
742               insdef.first->second = ret;
743             }
744           else if (insdef.first->second != ret)
745             {
746               // This is the unfortunate case where we already have
747               // entries for both NAME/VERSION and NAME/NULL.  We now
748               // see a symbol NAME/VERSION where VERSION is the
749               // default version.  We have already resolved this new
750               // symbol with the existing NAME/VERSION symbol.
751
752               // It's possible that NAME/NULL and NAME/VERSION are
753               // both defined in regular objects.  This can only
754               // happen if one object file defines foo and another
755               // defines foo@@ver.  This is somewhat obscure, but we
756               // call it a multiple definition error.
757
758               // It's possible that NAME/NULL actually has a version,
759               // in which case it won't be the same as VERSION.  This
760               // happens with ver_test_7.so in the testsuite for the
761               // symbol t2_2.  We see t2_2@@VER2, so we define both
762               // t2_2/VER2 and t2_2/NULL.  We then see an unadorned
763               // t2_2 in an object file and give it version VER1 from
764               // the version script.  This looks like a default
765               // definition for VER1, so it looks like we should merge
766               // t2_2/NULL with t2_2/VER1.  That doesn't make sense,
767               // but it's not obvious that this is an error, either.
768               // So we just punt.
769
770               // If one of the symbols has non-default visibility, and
771               // the other is defined in a shared object, then they
772               // are different symbols.
773
774               // Otherwise, we just resolve the symbols as though they
775               // were the same.
776
777               if (insdef.first->second->version() != NULL)
778                 {
779                   gold_assert(insdef.first->second->version() != version);
780                   def = false;
781                 }
782               else if (ret->visibility() != elfcpp::STV_DEFAULT
783                   && insdef.first->second->is_from_dynobj())
784                 def = false;
785               else if (insdef.first->second->visibility() != elfcpp::STV_DEFAULT
786                        && ret->is_from_dynobj())
787                 def = false;
788               else
789                 {
790                   const Sized_symbol<size>* sym2;
791                   sym2 = this->get_sized_symbol<size>(insdef.first->second);
792                   Symbol_table::resolve<size, big_endian>(ret, sym2);
793                   this->make_forwarder(insdef.first->second, ret);
794                   insdef.first->second = ret;
795                 }
796             }
797           else
798             def = false;
799         }
800     }
801   else
802     {
803       // This is the first time we have seen NAME/VERSION.
804       gold_assert(ins.first->second == NULL);
805
806       if (def && !insdef.second)
807         {
808           // We already have an entry for NAME/NULL.  If we override
809           // it, then change it to NAME/VERSION.
810           ret = this->get_sized_symbol<size>(insdef.first->second);
811
812           was_undefined = ret->is_undefined();
813           was_common = ret->is_common();
814
815           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
816                         version);
817           ins.first->second = ret;
818         }
819       else
820         {
821           was_undefined = false;
822           was_common = false;
823
824           Sized_target<size, big_endian>* target =
825             object->sized_target<size, big_endian>();
826           if (!target->has_make_symbol())
827             ret = new Sized_symbol<size>();
828           else
829             {
830               ret = target->make_symbol();
831               if (ret == NULL)
832                 {
833                   // This means that we don't want a symbol table
834                   // entry after all.
835                   if (!def)
836                     this->table_.erase(ins.first);
837                   else
838                     {
839                       this->table_.erase(insdef.first);
840                       // Inserting insdef invalidated ins.
841                       this->table_.erase(std::make_pair(name_key,
842                                                         version_key));
843                     }
844                   return NULL;
845                 }
846             }
847
848           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
849
850           ins.first->second = ret;
851           if (def)
852             {
853               // This is the first time we have seen NAME/NULL.  Point
854               // it at the new entry for NAME/VERSION.
855               gold_assert(insdef.second);
856               insdef.first->second = ret;
857             }
858         }
859     }
860
861   // Record every time we see a new undefined symbol, to speed up
862   // archive groups.
863   if (!was_undefined && ret->is_undefined())
864     ++this->saw_undefined_;
865
866   // Keep track of common symbols, to speed up common symbol
867   // allocation.
868   if (!was_common && ret->is_common())
869     {
870       if (ret->type() != elfcpp::STT_TLS)
871         this->commons_.push_back(ret);
872       else
873         this->tls_commons_.push_back(ret);
874     }
875
876   if (def)
877     ret->set_is_default();
878   return ret;
879 }
880
881 // Add all the symbols in a relocatable object to the hash table.
882
883 template<int size, bool big_endian>
884 void
885 Symbol_table::add_from_relobj(
886     Sized_relobj<size, big_endian>* relobj,
887     const unsigned char* syms,
888     size_t count,
889     size_t symndx_offset,
890     const char* sym_names,
891     size_t sym_name_size,
892     typename Sized_relobj<size, big_endian>::Symbols* sympointers,
893     size_t *defined)
894 {
895   *defined = 0;
896
897   gold_assert(size == relobj->target()->get_size());
898   gold_assert(size == parameters->target().get_size());
899
900   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
901
902   const bool just_symbols = relobj->just_symbols();
903
904   const unsigned char* p = syms;
905   for (size_t i = 0; i < count; ++i, p += sym_size)
906     {
907       (*sympointers)[i] = NULL;
908
909       elfcpp::Sym<size, big_endian> sym(p);
910
911       unsigned int st_name = sym.get_st_name();
912       if (st_name >= sym_name_size)
913         {
914           relobj->error(_("bad global symbol name offset %u at %zu"),
915                         st_name, i);
916           continue;
917         }
918
919       const char* name = sym_names + st_name;
920
921       bool is_ordinary;
922       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
923                                                        sym.get_st_shndx(),
924                                                        &is_ordinary);
925       unsigned int orig_st_shndx = st_shndx;
926       if (!is_ordinary)
927         orig_st_shndx = elfcpp::SHN_UNDEF;
928
929       if (st_shndx != elfcpp::SHN_UNDEF)
930         ++*defined;
931
932       // A symbol defined in a section which we are not including must
933       // be treated as an undefined symbol.
934       if (st_shndx != elfcpp::SHN_UNDEF
935           && is_ordinary
936           && !relobj->is_section_included(st_shndx))
937         st_shndx = elfcpp::SHN_UNDEF;
938
939       // In an object file, an '@' in the name separates the symbol
940       // name from the version name.  If there are two '@' characters,
941       // this is the default version.
942       const char* ver = strchr(name, '@');
943       Stringpool::Key ver_key = 0;
944       int namelen = 0;
945       // DEF: is the version default?  LOCAL: is the symbol forced local?
946       bool def = false;
947       bool local = false;
948
949       if (ver != NULL)
950         {
951           // The symbol name is of the form foo@VERSION or foo@@VERSION
952           namelen = ver - name;
953           ++ver;
954           if (*ver == '@')
955             {
956               def = true;
957               ++ver;
958             }
959           ver = this->namepool_.add(ver, true, &ver_key);
960         }
961       // We don't want to assign a version to an undefined symbol,
962       // even if it is listed in the version script.  FIXME: What
963       // about a common symbol?
964       else
965         {
966           namelen = strlen(name);
967           if (!this->version_script_.empty()
968               && st_shndx != elfcpp::SHN_UNDEF)
969             {
970               // The symbol name did not have a version, but the
971               // version script may assign a version anyway.
972               std::string version;
973               if (this->version_script_.get_symbol_version(name, &version))
974                 {
975                   // The version can be empty if the version script is
976                   // only used to force some symbols to be local.
977                   if (!version.empty())
978                     {
979                       ver = this->namepool_.add_with_length(version.c_str(),
980                                                             version.length(),
981                                                             true,
982                                                             &ver_key);
983                       def = true;
984                     }
985                 }
986               else if (this->version_script_.symbol_is_local(name))
987                 local = true;
988             }
989         }
990
991       elfcpp::Sym<size, big_endian>* psym = &sym;
992       unsigned char symbuf[sym_size];
993       elfcpp::Sym<size, big_endian> sym2(symbuf);
994       if (just_symbols)
995         {
996           memcpy(symbuf, p, sym_size);
997           elfcpp::Sym_write<size, big_endian> sw(symbuf);
998           if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
999             {
1000               // Symbol values in object files are section relative.
1001               // This is normally what we want, but since here we are
1002               // converting the symbol to absolute we need to add the
1003               // section address.  The section address in an object
1004               // file is normally zero, but people can use a linker
1005               // script to change it.
1006               sw.put_st_value(sym.get_st_value()
1007                               + relobj->section_address(orig_st_shndx));
1008             }
1009           st_shndx = elfcpp::SHN_ABS;
1010           is_ordinary = false;
1011           psym = &sym2;
1012         }
1013
1014       Stringpool::Key name_key;
1015       name = this->namepool_.add_with_length(name, namelen, true,
1016                                              &name_key);
1017
1018       Sized_symbol<size>* res;
1019       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1020                                   def, *psym, st_shndx, is_ordinary,
1021                                   orig_st_shndx);
1022
1023       if (local)
1024         this->force_local(res);
1025
1026       (*sympointers)[i] = res;
1027     }
1028 }
1029
1030 // Add a symbol from a plugin-claimed file.
1031
1032 template<int size, bool big_endian>
1033 Symbol*
1034 Symbol_table::add_from_pluginobj(
1035     Sized_pluginobj<size, big_endian>* obj,
1036     const char* name,
1037     const char* ver,
1038     elfcpp::Sym<size, big_endian>* sym)
1039 {
1040   unsigned int st_shndx = sym->get_st_shndx();
1041
1042   Stringpool::Key ver_key = 0;
1043   bool def = false;
1044   bool local = false;
1045
1046   if (ver != NULL)
1047     {
1048       ver = this->namepool_.add(ver, true, &ver_key);
1049     }
1050   // We don't want to assign a version to an undefined symbol,
1051   // even if it is listed in the version script.  FIXME: What
1052   // about a common symbol?
1053   else
1054     {
1055       if (!this->version_script_.empty()
1056           && st_shndx != elfcpp::SHN_UNDEF)
1057         {
1058           // The symbol name did not have a version, but the
1059           // version script may assign a version anyway.
1060           std::string version;
1061           if (this->version_script_.get_symbol_version(name, &version))
1062             {
1063               // The version can be empty if the version script is
1064               // only used to force some symbols to be local.
1065               if (!version.empty())
1066                 {
1067                   ver = this->namepool_.add_with_length(version.c_str(),
1068                                                         version.length(),
1069                                                         true,
1070                                                         &ver_key);
1071                   def = true;
1072                 }
1073             }
1074           else if (this->version_script_.symbol_is_local(name))
1075             local = true;
1076         }
1077     }
1078
1079   Stringpool::Key name_key;
1080   name = this->namepool_.add(name, true, &name_key);
1081
1082   Sized_symbol<size>* res;
1083   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1084                               def, *sym, st_shndx, true, st_shndx);
1085
1086   if (local)
1087         this->force_local(res);
1088
1089   return res;
1090 }
1091
1092 // Add all the symbols in a dynamic object to the hash table.
1093
1094 template<int size, bool big_endian>
1095 void
1096 Symbol_table::add_from_dynobj(
1097     Sized_dynobj<size, big_endian>* dynobj,
1098     const unsigned char* syms,
1099     size_t count,
1100     const char* sym_names,
1101     size_t sym_name_size,
1102     const unsigned char* versym,
1103     size_t versym_size,
1104     const std::vector<const char*>* version_map,
1105     typename Sized_relobj<size, big_endian>::Symbols* sympointers,
1106     size_t* defined)
1107 {
1108   *defined = 0;
1109
1110   gold_assert(size == dynobj->target()->get_size());
1111   gold_assert(size == parameters->target().get_size());
1112
1113   if (dynobj->just_symbols())
1114     {
1115       gold_error(_("--just-symbols does not make sense with a shared object"));
1116       return;
1117     }
1118
1119   if (versym != NULL && versym_size / 2 < count)
1120     {
1121       dynobj->error(_("too few symbol versions"));
1122       return;
1123     }
1124
1125   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1126
1127   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1128   // weak aliases.  This is necessary because if the dynamic object
1129   // provides the same variable under two names, one of which is a
1130   // weak definition, and the regular object refers to the weak
1131   // definition, we have to put both the weak definition and the
1132   // strong definition into the dynamic symbol table.  Given a weak
1133   // definition, the only way that we can find the corresponding
1134   // strong definition, if any, is to search the symbol table.
1135   std::vector<Sized_symbol<size>*> object_symbols;
1136
1137   const unsigned char* p = syms;
1138   const unsigned char* vs = versym;
1139   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1140     {
1141       elfcpp::Sym<size, big_endian> sym(p);
1142
1143       if (sympointers != NULL)
1144         (*sympointers)[i] = NULL;
1145
1146       // Ignore symbols with local binding or that have
1147       // internal or hidden visibility.
1148       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1149           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1150           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1151         continue;
1152
1153       // A protected symbol in a shared library must be treated as a
1154       // normal symbol when viewed from outside the shared library.
1155       // Implement this by overriding the visibility here.
1156       elfcpp::Sym<size, big_endian>* psym = &sym;
1157       unsigned char symbuf[sym_size];
1158       elfcpp::Sym<size, big_endian> sym2(symbuf);
1159       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1160         {
1161           memcpy(symbuf, p, sym_size);
1162           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1163           sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1164           psym = &sym2;
1165         }
1166
1167       unsigned int st_name = psym->get_st_name();
1168       if (st_name >= sym_name_size)
1169         {
1170           dynobj->error(_("bad symbol name offset %u at %zu"),
1171                         st_name, i);
1172           continue;
1173         }
1174
1175       const char* name = sym_names + st_name;
1176
1177       bool is_ordinary;
1178       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1179                                                        &is_ordinary);
1180
1181       if (st_shndx != elfcpp::SHN_UNDEF)
1182         ++*defined;
1183
1184       Sized_symbol<size>* res;
1185
1186       if (versym == NULL)
1187         {
1188           Stringpool::Key name_key;
1189           name = this->namepool_.add(name, true, &name_key);
1190           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1191                                       false, *psym, st_shndx, is_ordinary,
1192                                       st_shndx);
1193         }
1194       else
1195         {
1196           // Read the version information.
1197
1198           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1199
1200           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1201           v &= elfcpp::VERSYM_VERSION;
1202
1203           // The Sun documentation says that V can be VER_NDX_LOCAL,
1204           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1205           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1206           // The old GNU linker will happily generate VER_NDX_LOCAL
1207           // for an undefined symbol.  I don't know what the Sun
1208           // linker will generate.
1209
1210           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1211               && st_shndx != elfcpp::SHN_UNDEF)
1212             {
1213               // This symbol should not be visible outside the object.
1214               continue;
1215             }
1216
1217           // At this point we are definitely going to add this symbol.
1218           Stringpool::Key name_key;
1219           name = this->namepool_.add(name, true, &name_key);
1220
1221           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1222               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1223             {
1224               // This symbol does not have a version.
1225               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1226                                           false, *psym, st_shndx, is_ordinary,
1227                                           st_shndx);
1228             }
1229           else
1230             {
1231               if (v >= version_map->size())
1232                 {
1233                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1234                                 i, v);
1235                   continue;
1236                 }
1237
1238               const char* version = (*version_map)[v];
1239               if (version == NULL)
1240                 {
1241                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1242                                 i, v);
1243                   continue;
1244                 }
1245
1246               Stringpool::Key version_key;
1247               version = this->namepool_.add(version, true, &version_key);
1248
1249               // If this is an absolute symbol, and the version name
1250               // and symbol name are the same, then this is the
1251               // version definition symbol.  These symbols exist to
1252               // support using -u to pull in particular versions.  We
1253               // do not want to record a version for them.
1254               if (st_shndx == elfcpp::SHN_ABS
1255                   && !is_ordinary
1256                   && name_key == version_key)
1257                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1258                                             false, *psym, st_shndx, is_ordinary,
1259                                             st_shndx);
1260               else
1261                 {
1262                   const bool def = (!hidden
1263                                     && st_shndx != elfcpp::SHN_UNDEF);
1264                   res = this->add_from_object(dynobj, name, name_key, version,
1265                                               version_key, def, *psym, st_shndx,
1266                                               is_ordinary, st_shndx);
1267                 }
1268             }
1269         }
1270
1271       // Note that it is possible that RES was overridden by an
1272       // earlier object, in which case it can't be aliased here.
1273       if (st_shndx != elfcpp::SHN_UNDEF
1274           && is_ordinary
1275           && psym->get_st_type() == elfcpp::STT_OBJECT
1276           && res->source() == Symbol::FROM_OBJECT
1277           && res->object() == dynobj)
1278         object_symbols.push_back(res);
1279
1280       if (sympointers != NULL)
1281         (*sympointers)[i] = res;
1282     }
1283
1284   this->record_weak_aliases(&object_symbols);
1285 }
1286
1287 // This is used to sort weak aliases.  We sort them first by section
1288 // index, then by offset, then by weak ahead of strong.
1289
1290 template<int size>
1291 class Weak_alias_sorter
1292 {
1293  public:
1294   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1295 };
1296
1297 template<int size>
1298 bool
1299 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1300                                     const Sized_symbol<size>* s2) const
1301 {
1302   bool is_ordinary;
1303   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1304   gold_assert(is_ordinary);
1305   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1306   gold_assert(is_ordinary);
1307   if (s1_shndx != s2_shndx)
1308     return s1_shndx < s2_shndx;
1309
1310   if (s1->value() != s2->value())
1311     return s1->value() < s2->value();
1312   if (s1->binding() != s2->binding())
1313     {
1314       if (s1->binding() == elfcpp::STB_WEAK)
1315         return true;
1316       if (s2->binding() == elfcpp::STB_WEAK)
1317         return false;
1318     }
1319   return std::string(s1->name()) < std::string(s2->name());
1320 }
1321
1322 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1323 // for any weak aliases, and record them so that if we add the weak
1324 // alias to the dynamic symbol table, we also add the corresponding
1325 // strong symbol.
1326
1327 template<int size>
1328 void
1329 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1330 {
1331   // Sort the vector by section index, then by offset, then by weak
1332   // ahead of strong.
1333   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1334
1335   // Walk through the vector.  For each weak definition, record
1336   // aliases.
1337   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1338          symbols->begin();
1339        p != symbols->end();
1340        ++p)
1341     {
1342       if ((*p)->binding() != elfcpp::STB_WEAK)
1343         continue;
1344
1345       // Build a circular list of weak aliases.  Each symbol points to
1346       // the next one in the circular list.
1347
1348       Sized_symbol<size>* from_sym = *p;
1349       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1350       for (q = p + 1; q != symbols->end(); ++q)
1351         {
1352           bool dummy;
1353           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1354               || (*q)->value() != from_sym->value())
1355             break;
1356
1357           this->weak_aliases_[from_sym] = *q;
1358           from_sym->set_has_alias();
1359           from_sym = *q;
1360         }
1361
1362       if (from_sym != *p)
1363         {
1364           this->weak_aliases_[from_sym] = *p;
1365           from_sym->set_has_alias();
1366         }
1367
1368       p = q - 1;
1369     }
1370 }
1371
1372 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1373 // true, then only create the symbol if there is a reference to it.
1374 // If this does not return NULL, it sets *POLDSYM to the existing
1375 // symbol if there is one.  This canonicalizes *PNAME and *PVERSION.
1376
1377 template<int size, bool big_endian>
1378 Sized_symbol<size>*
1379 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1380                                     bool only_if_ref,
1381                                     Sized_symbol<size>** poldsym)
1382 {
1383   Symbol* oldsym;
1384   Sized_symbol<size>* sym;
1385   bool add_to_table = false;
1386   typename Symbol_table_type::iterator add_loc = this->table_.end();
1387
1388   // If the caller didn't give us a version, see if we get one from
1389   // the version script.
1390   std::string v;
1391   if (*pversion == NULL)
1392     {
1393       if (this->version_script_.get_symbol_version(*pname, &v))
1394         {
1395           if (!v.empty())
1396             *pversion = v.c_str();
1397         }
1398     }
1399
1400   if (only_if_ref)
1401     {
1402       oldsym = this->lookup(*pname, *pversion);
1403       if (oldsym == NULL || !oldsym->is_undefined())
1404         return NULL;
1405
1406       *pname = oldsym->name();
1407       *pversion = oldsym->version();
1408     }
1409   else
1410     {
1411       // Canonicalize NAME and VERSION.
1412       Stringpool::Key name_key;
1413       *pname = this->namepool_.add(*pname, true, &name_key);
1414
1415       Stringpool::Key version_key = 0;
1416       if (*pversion != NULL)
1417         *pversion = this->namepool_.add(*pversion, true, &version_key);
1418
1419       Symbol* const snull = NULL;
1420       std::pair<typename Symbol_table_type::iterator, bool> ins =
1421         this->table_.insert(std::make_pair(std::make_pair(name_key,
1422                                                           version_key),
1423                                            snull));
1424
1425       if (!ins.second)
1426         {
1427           // We already have a symbol table entry for NAME/VERSION.
1428           oldsym = ins.first->second;
1429           gold_assert(oldsym != NULL);
1430         }
1431       else
1432         {
1433           // We haven't seen this symbol before.
1434           gold_assert(ins.first->second == NULL);
1435           add_to_table = true;
1436           add_loc = ins.first;
1437           oldsym = NULL;
1438         }
1439     }
1440
1441   const Target& target = parameters->target();
1442   if (!target.has_make_symbol())
1443     sym = new Sized_symbol<size>();
1444   else
1445     {
1446       gold_assert(target.get_size() == size);
1447       gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1448       typedef Sized_target<size, big_endian> My_target;
1449       const My_target* sized_target =
1450           static_cast<const My_target*>(&target);
1451       sym = sized_target->make_symbol();
1452       if (sym == NULL)
1453         return NULL;
1454     }
1455
1456   if (add_to_table)
1457     add_loc->second = sym;
1458   else
1459     gold_assert(oldsym != NULL);
1460
1461   *poldsym = this->get_sized_symbol<size>(oldsym);
1462
1463   return sym;
1464 }
1465
1466 // Define a symbol based on an Output_data.
1467
1468 Symbol*
1469 Symbol_table::define_in_output_data(const char* name,
1470                                     const char* version,
1471                                     Output_data* od,
1472                                     uint64_t value,
1473                                     uint64_t symsize,
1474                                     elfcpp::STT type,
1475                                     elfcpp::STB binding,
1476                                     elfcpp::STV visibility,
1477                                     unsigned char nonvis,
1478                                     bool offset_is_from_end,
1479                                     bool only_if_ref)
1480 {
1481   if (parameters->target().get_size() == 32)
1482     {
1483 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1484       return this->do_define_in_output_data<32>(name, version, od,
1485                                                 value, symsize, type, binding,
1486                                                 visibility, nonvis,
1487                                                 offset_is_from_end,
1488                                                 only_if_ref);
1489 #else
1490       gold_unreachable();
1491 #endif
1492     }
1493   else if (parameters->target().get_size() == 64)
1494     {
1495 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1496       return this->do_define_in_output_data<64>(name, version, od,
1497                                                 value, symsize, type, binding,
1498                                                 visibility, nonvis,
1499                                                 offset_is_from_end,
1500                                                 only_if_ref);
1501 #else
1502       gold_unreachable();
1503 #endif
1504     }
1505   else
1506     gold_unreachable();
1507 }
1508
1509 // Define a symbol in an Output_data, sized version.
1510
1511 template<int size>
1512 Sized_symbol<size>*
1513 Symbol_table::do_define_in_output_data(
1514     const char* name,
1515     const char* version,
1516     Output_data* od,
1517     typename elfcpp::Elf_types<size>::Elf_Addr value,
1518     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1519     elfcpp::STT type,
1520     elfcpp::STB binding,
1521     elfcpp::STV visibility,
1522     unsigned char nonvis,
1523     bool offset_is_from_end,
1524     bool only_if_ref)
1525 {
1526   Sized_symbol<size>* sym;
1527   Sized_symbol<size>* oldsym;
1528
1529   if (parameters->target().is_big_endian())
1530     {
1531 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1532       sym = this->define_special_symbol<size, true>(&name, &version,
1533                                                     only_if_ref, &oldsym);
1534 #else
1535       gold_unreachable();
1536 #endif
1537     }
1538   else
1539     {
1540 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1541       sym = this->define_special_symbol<size, false>(&name, &version,
1542                                                      only_if_ref, &oldsym);
1543 #else
1544       gold_unreachable();
1545 #endif
1546     }
1547
1548   if (sym == NULL)
1549     return NULL;
1550
1551   sym->init_output_data(name, version, od, value, symsize, type, binding,
1552                         visibility, nonvis, offset_is_from_end);
1553
1554   if (oldsym == NULL)
1555     {
1556       if (binding == elfcpp::STB_LOCAL
1557           || this->version_script_.symbol_is_local(name))
1558         this->force_local(sym);
1559       else if (version != NULL)
1560         sym->set_is_default();
1561       return sym;
1562     }
1563
1564   if (Symbol_table::should_override_with_special(oldsym))
1565     this->override_with_special(oldsym, sym);
1566   delete sym;
1567   return oldsym;
1568 }
1569
1570 // Define a symbol based on an Output_segment.
1571
1572 Symbol*
1573 Symbol_table::define_in_output_segment(const char* name,
1574                                        const char* version, Output_segment* os,
1575                                        uint64_t value,
1576                                        uint64_t symsize,
1577                                        elfcpp::STT type,
1578                                        elfcpp::STB binding,
1579                                        elfcpp::STV visibility,
1580                                        unsigned char nonvis,
1581                                        Symbol::Segment_offset_base offset_base,
1582                                        bool only_if_ref)
1583 {
1584   if (parameters->target().get_size() == 32)
1585     {
1586 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1587       return this->do_define_in_output_segment<32>(name, version, os,
1588                                                    value, symsize, type,
1589                                                    binding, visibility, nonvis,
1590                                                    offset_base, only_if_ref);
1591 #else
1592       gold_unreachable();
1593 #endif
1594     }
1595   else if (parameters->target().get_size() == 64)
1596     {
1597 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1598       return this->do_define_in_output_segment<64>(name, version, os,
1599                                                    value, symsize, type,
1600                                                    binding, visibility, nonvis,
1601                                                    offset_base, only_if_ref);
1602 #else
1603       gold_unreachable();
1604 #endif
1605     }
1606   else
1607     gold_unreachable();
1608 }
1609
1610 // Define a symbol in an Output_segment, sized version.
1611
1612 template<int size>
1613 Sized_symbol<size>*
1614 Symbol_table::do_define_in_output_segment(
1615     const char* name,
1616     const char* version,
1617     Output_segment* os,
1618     typename elfcpp::Elf_types<size>::Elf_Addr value,
1619     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1620     elfcpp::STT type,
1621     elfcpp::STB binding,
1622     elfcpp::STV visibility,
1623     unsigned char nonvis,
1624     Symbol::Segment_offset_base offset_base,
1625     bool only_if_ref)
1626 {
1627   Sized_symbol<size>* sym;
1628   Sized_symbol<size>* oldsym;
1629
1630   if (parameters->target().is_big_endian())
1631     {
1632 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1633       sym = this->define_special_symbol<size, true>(&name, &version,
1634                                                     only_if_ref, &oldsym);
1635 #else
1636       gold_unreachable();
1637 #endif
1638     }
1639   else
1640     {
1641 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1642       sym = this->define_special_symbol<size, false>(&name, &version,
1643                                                      only_if_ref, &oldsym);
1644 #else
1645       gold_unreachable();
1646 #endif
1647     }
1648
1649   if (sym == NULL)
1650     return NULL;
1651
1652   sym->init_output_segment(name, version, os, value, symsize, type, binding,
1653                            visibility, nonvis, offset_base);
1654
1655   if (oldsym == NULL)
1656     {
1657       if (binding == elfcpp::STB_LOCAL
1658           || this->version_script_.symbol_is_local(name))
1659         this->force_local(sym);
1660       else if (version != NULL)
1661         sym->set_is_default();
1662       return sym;
1663     }
1664
1665   if (Symbol_table::should_override_with_special(oldsym))
1666     this->override_with_special(oldsym, sym);
1667   delete sym;
1668   return oldsym;
1669 }
1670
1671 // Define a special symbol with a constant value.  It is a multiple
1672 // definition error if this symbol is already defined.
1673
1674 Symbol*
1675 Symbol_table::define_as_constant(const char* name,
1676                                  const char* version,
1677                                  uint64_t value,
1678                                  uint64_t symsize,
1679                                  elfcpp::STT type,
1680                                  elfcpp::STB binding,
1681                                  elfcpp::STV visibility,
1682                                  unsigned char nonvis,
1683                                  bool only_if_ref,
1684                                  bool force_override)
1685 {
1686   if (parameters->target().get_size() == 32)
1687     {
1688 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1689       return this->do_define_as_constant<32>(name, version, value,
1690                                              symsize, type, binding,
1691                                              visibility, nonvis, only_if_ref,
1692                                              force_override);
1693 #else
1694       gold_unreachable();
1695 #endif
1696     }
1697   else if (parameters->target().get_size() == 64)
1698     {
1699 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1700       return this->do_define_as_constant<64>(name, version, value,
1701                                              symsize, type, binding,
1702                                              visibility, nonvis, only_if_ref,
1703                                              force_override);
1704 #else
1705       gold_unreachable();
1706 #endif
1707     }
1708   else
1709     gold_unreachable();
1710 }
1711
1712 // Define a symbol as a constant, sized version.
1713
1714 template<int size>
1715 Sized_symbol<size>*
1716 Symbol_table::do_define_as_constant(
1717     const char* name,
1718     const char* version,
1719     typename elfcpp::Elf_types<size>::Elf_Addr value,
1720     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1721     elfcpp::STT type,
1722     elfcpp::STB binding,
1723     elfcpp::STV visibility,
1724     unsigned char nonvis,
1725     bool only_if_ref,
1726     bool force_override)
1727 {
1728   Sized_symbol<size>* sym;
1729   Sized_symbol<size>* oldsym;
1730
1731   if (parameters->target().is_big_endian())
1732     {
1733 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1734       sym = this->define_special_symbol<size, true>(&name, &version,
1735                                                     only_if_ref, &oldsym);
1736 #else
1737       gold_unreachable();
1738 #endif
1739     }
1740   else
1741     {
1742 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1743       sym = this->define_special_symbol<size, false>(&name, &version,
1744                                                      only_if_ref, &oldsym);
1745 #else
1746       gold_unreachable();
1747 #endif
1748     }
1749
1750   if (sym == NULL)
1751     return NULL;
1752
1753   sym->init_constant(name, version, value, symsize, type, binding, visibility,
1754                      nonvis);
1755
1756   if (oldsym == NULL)
1757     {
1758       // Version symbols are absolute symbols with name == version.
1759       // We don't want to force them to be local.
1760       if ((version == NULL
1761            || name != version
1762            || value != 0)
1763           && (binding == elfcpp::STB_LOCAL
1764               || this->version_script_.symbol_is_local(name)))
1765         this->force_local(sym);
1766       else if (version != NULL
1767                && (name != version || value != 0))
1768         sym->set_is_default();
1769       return sym;
1770     }
1771
1772   if (force_override || Symbol_table::should_override_with_special(oldsym))
1773     this->override_with_special(oldsym, sym);
1774   delete sym;
1775   return oldsym;
1776 }
1777
1778 // Define a set of symbols in output sections.
1779
1780 void
1781 Symbol_table::define_symbols(const Layout* layout, int count,
1782                              const Define_symbol_in_section* p,
1783                              bool only_if_ref)
1784 {
1785   for (int i = 0; i < count; ++i, ++p)
1786     {
1787       Output_section* os = layout->find_output_section(p->output_section);
1788       if (os != NULL)
1789         this->define_in_output_data(p->name, NULL, os, p->value,
1790                                     p->size, p->type, p->binding,
1791                                     p->visibility, p->nonvis,
1792                                     p->offset_is_from_end,
1793                                     only_if_ref || p->only_if_ref);
1794       else
1795         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1796                                  p->binding, p->visibility, p->nonvis,
1797                                  only_if_ref || p->only_if_ref,
1798                                  false);
1799     }
1800 }
1801
1802 // Define a set of symbols in output segments.
1803
1804 void
1805 Symbol_table::define_symbols(const Layout* layout, int count,
1806                              const Define_symbol_in_segment* p,
1807                              bool only_if_ref)
1808 {
1809   for (int i = 0; i < count; ++i, ++p)
1810     {
1811       Output_segment* os = layout->find_output_segment(p->segment_type,
1812                                                        p->segment_flags_set,
1813                                                        p->segment_flags_clear);
1814       if (os != NULL)
1815         this->define_in_output_segment(p->name, NULL, os, p->value,
1816                                        p->size, p->type, p->binding,
1817                                        p->visibility, p->nonvis,
1818                                        p->offset_base,
1819                                        only_if_ref || p->only_if_ref);
1820       else
1821         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1822                                  p->binding, p->visibility, p->nonvis,
1823                                  only_if_ref || p->only_if_ref,
1824                                  false);
1825     }
1826 }
1827
1828 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
1829 // symbol should be defined--typically a .dyn.bss section.  VALUE is
1830 // the offset within POSD.
1831
1832 template<int size>
1833 void
1834 Symbol_table::define_with_copy_reloc(
1835     Sized_symbol<size>* csym,
1836     Output_data* posd,
1837     typename elfcpp::Elf_types<size>::Elf_Addr value)
1838 {
1839   gold_assert(csym->is_from_dynobj());
1840   gold_assert(!csym->is_copied_from_dynobj());
1841   Object* object = csym->object();
1842   gold_assert(object->is_dynamic());
1843   Dynobj* dynobj = static_cast<Dynobj*>(object);
1844
1845   // Our copied variable has to override any variable in a shared
1846   // library.
1847   elfcpp::STB binding = csym->binding();
1848   if (binding == elfcpp::STB_WEAK)
1849     binding = elfcpp::STB_GLOBAL;
1850
1851   this->define_in_output_data(csym->name(), csym->version(),
1852                               posd, value, csym->symsize(),
1853                               csym->type(), binding,
1854                               csym->visibility(), csym->nonvis(),
1855                               false, false);
1856
1857   csym->set_is_copied_from_dynobj();
1858   csym->set_needs_dynsym_entry();
1859
1860   this->copied_symbol_dynobjs_[csym] = dynobj;
1861
1862   // We have now defined all aliases, but we have not entered them all
1863   // in the copied_symbol_dynobjs_ map.
1864   if (csym->has_alias())
1865     {
1866       Symbol* sym = csym;
1867       while (true)
1868         {
1869           sym = this->weak_aliases_[sym];
1870           if (sym == csym)
1871             break;
1872           gold_assert(sym->output_data() == posd);
1873
1874           sym->set_is_copied_from_dynobj();
1875           this->copied_symbol_dynobjs_[sym] = dynobj;
1876         }
1877     }
1878 }
1879
1880 // SYM is defined using a COPY reloc.  Return the dynamic object where
1881 // the original definition was found.
1882
1883 Dynobj*
1884 Symbol_table::get_copy_source(const Symbol* sym) const
1885 {
1886   gold_assert(sym->is_copied_from_dynobj());
1887   Copied_symbol_dynobjs::const_iterator p =
1888     this->copied_symbol_dynobjs_.find(sym);
1889   gold_assert(p != this->copied_symbol_dynobjs_.end());
1890   return p->second;
1891 }
1892
1893 // Add any undefined symbols named on the command line.
1894
1895 void
1896 Symbol_table::add_undefined_symbols_from_command_line()
1897 {
1898   if (parameters->options().any_undefined())
1899     {
1900       if (parameters->target().get_size() == 32)
1901         {
1902 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1903           this->do_add_undefined_symbols_from_command_line<32>();
1904 #else
1905           gold_unreachable();
1906 #endif
1907         }
1908       else if (parameters->target().get_size() == 64)
1909         {
1910 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1911           this->do_add_undefined_symbols_from_command_line<64>();
1912 #else
1913           gold_unreachable();
1914 #endif
1915         }
1916       else
1917         gold_unreachable();
1918     }
1919 }
1920
1921 template<int size>
1922 void
1923 Symbol_table::do_add_undefined_symbols_from_command_line()
1924 {
1925   for (options::String_set::const_iterator p =
1926          parameters->options().undefined_begin();
1927        p != parameters->options().undefined_end();
1928        ++p)
1929     {
1930       const char* name = p->c_str();
1931
1932       if (this->lookup(name) != NULL)
1933         continue;
1934
1935       const char* version = NULL;
1936
1937       Sized_symbol<size>* sym;
1938       Sized_symbol<size>* oldsym;
1939       if (parameters->target().is_big_endian())
1940         {
1941 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1942           sym = this->define_special_symbol<size, true>(&name, &version,
1943                                                         false, &oldsym);
1944 #else
1945           gold_unreachable();
1946 #endif
1947         }
1948       else
1949         {
1950 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1951           sym = this->define_special_symbol<size, false>(&name, &version,
1952                                                          false, &oldsym);
1953 #else
1954           gold_unreachable();
1955 #endif
1956         }
1957
1958       gold_assert(oldsym == NULL);
1959
1960       sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1961                           elfcpp::STV_DEFAULT, 0);
1962       ++this->saw_undefined_;
1963     }
1964 }
1965
1966 // Set the dynamic symbol indexes.  INDEX is the index of the first
1967 // global dynamic symbol.  Pointers to the symbols are stored into the
1968 // vector SYMS.  The names are added to DYNPOOL.  This returns an
1969 // updated dynamic symbol index.
1970
1971 unsigned int
1972 Symbol_table::set_dynsym_indexes(unsigned int index,
1973                                  std::vector<Symbol*>* syms,
1974                                  Stringpool* dynpool,
1975                                  Versions* versions)
1976 {
1977   for (Symbol_table_type::iterator p = this->table_.begin();
1978        p != this->table_.end();
1979        ++p)
1980     {
1981       Symbol* sym = p->second;
1982
1983       // Note that SYM may already have a dynamic symbol index, since
1984       // some symbols appear more than once in the symbol table, with
1985       // and without a version.
1986
1987       if (!sym->should_add_dynsym_entry())
1988         sym->set_dynsym_index(-1U);
1989       else if (!sym->has_dynsym_index())
1990         {
1991           sym->set_dynsym_index(index);
1992           ++index;
1993           syms->push_back(sym);
1994           dynpool->add(sym->name(), false, NULL);
1995
1996           // Record any version information.
1997           if (sym->version() != NULL)
1998             versions->record_version(this, dynpool, sym);
1999         }
2000     }
2001
2002   // Finish up the versions.  In some cases this may add new dynamic
2003   // symbols.
2004   index = versions->finalize(this, index, syms);
2005
2006   return index;
2007 }
2008
2009 // Set the final values for all the symbols.  The index of the first
2010 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2011 // file offset OFF.  Add their names to POOL.  Return the new file
2012 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2013
2014 off_t
2015 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2016                        size_t dyncount, Stringpool* pool,
2017                        unsigned int *plocal_symcount)
2018 {
2019   off_t ret;
2020
2021   gold_assert(*plocal_symcount != 0);
2022   this->first_global_index_ = *plocal_symcount;
2023
2024   this->dynamic_offset_ = dynoff;
2025   this->first_dynamic_global_index_ = dyn_global_index;
2026   this->dynamic_count_ = dyncount;
2027
2028   if (parameters->target().get_size() == 32)
2029     {
2030 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2031       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2032 #else
2033       gold_unreachable();
2034 #endif
2035     }
2036   else if (parameters->target().get_size() == 64)
2037     {
2038 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2039       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2040 #else
2041       gold_unreachable();
2042 #endif
2043     }
2044   else
2045     gold_unreachable();
2046
2047   // Now that we have the final symbol table, we can reliably note
2048   // which symbols should get warnings.
2049   this->warnings_.note_warnings(this);
2050
2051   return ret;
2052 }
2053
2054 // SYM is going into the symbol table at *PINDEX.  Add the name to
2055 // POOL, update *PINDEX and *POFF.
2056
2057 template<int size>
2058 void
2059 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2060                                   unsigned int* pindex, off_t* poff)
2061 {
2062   sym->set_symtab_index(*pindex);
2063   pool->add(sym->name(), false, NULL);
2064   ++*pindex;
2065   *poff += elfcpp::Elf_sizes<size>::sym_size;
2066 }
2067
2068 // Set the final value for all the symbols.  This is called after
2069 // Layout::finalize, so all the output sections have their final
2070 // address.
2071
2072 template<int size>
2073 off_t
2074 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2075                              unsigned int* plocal_symcount)
2076 {
2077   off = align_address(off, size >> 3);
2078   this->offset_ = off;
2079
2080   unsigned int index = *plocal_symcount;
2081   const unsigned int orig_index = index;
2082
2083   // First do all the symbols which have been forced to be local, as
2084   // they must appear before all global symbols.
2085   for (Forced_locals::iterator p = this->forced_locals_.begin();
2086        p != this->forced_locals_.end();
2087        ++p)
2088     {
2089       Symbol* sym = *p;
2090       gold_assert(sym->is_forced_local());
2091       if (this->sized_finalize_symbol<size>(sym))
2092         {
2093           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2094           ++*plocal_symcount;
2095         }
2096     }
2097
2098   // Now do all the remaining symbols.
2099   for (Symbol_table_type::iterator p = this->table_.begin();
2100        p != this->table_.end();
2101        ++p)
2102     {
2103       Symbol* sym = p->second;
2104       if (this->sized_finalize_symbol<size>(sym))
2105         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2106     }
2107
2108   this->output_count_ = index - orig_index;
2109
2110   return off;
2111 }
2112
2113 // Finalize the symbol SYM.  This returns true if the symbol should be
2114 // added to the symbol table, false otherwise.
2115
2116 template<int size>
2117 bool
2118 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2119 {
2120   typedef typename Sized_symbol<size>::Value_type Value_type;
2121
2122   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2123
2124   // The default version of a symbol may appear twice in the symbol
2125   // table.  We only need to finalize it once.
2126   if (sym->has_symtab_index())
2127     return false;
2128
2129   if (!sym->in_reg())
2130     {
2131       gold_assert(!sym->has_symtab_index());
2132       sym->set_symtab_index(-1U);
2133       gold_assert(sym->dynsym_index() == -1U);
2134       return false;
2135     }
2136
2137   Value_type value;
2138
2139   switch (sym->source())
2140     {
2141     case Symbol::FROM_OBJECT:
2142       {
2143         bool is_ordinary;
2144         unsigned int shndx = sym->shndx(&is_ordinary);
2145
2146         // FIXME: We need some target specific support here.
2147         if (!is_ordinary
2148             && shndx != elfcpp::SHN_ABS
2149             && shndx != elfcpp::SHN_COMMON)
2150           {
2151             gold_error(_("%s: unsupported symbol section 0x%x"),
2152                        sym->demangled_name().c_str(), shndx);
2153             shndx = elfcpp::SHN_UNDEF;
2154           }
2155
2156         Object* symobj = sym->object();
2157         if (symobj->is_dynamic())
2158           {
2159             value = 0;
2160             shndx = elfcpp::SHN_UNDEF;
2161           }
2162         else if (symobj->pluginobj() != NULL)
2163           {
2164             value = 0;
2165             shndx = elfcpp::SHN_UNDEF;
2166           }
2167         else if (shndx == elfcpp::SHN_UNDEF)
2168           value = 0;
2169         else if (!is_ordinary
2170                  && (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON))
2171           value = sym->value();
2172         else
2173           {
2174             Relobj* relobj = static_cast<Relobj*>(symobj);
2175             Output_section* os = relobj->output_section(shndx);
2176
2177             if (os == NULL)
2178               {
2179                 sym->set_symtab_index(-1U);
2180                 gold_assert(sym->dynsym_index() == -1U);
2181                 return false;
2182               }
2183
2184             uint64_t secoff64 = relobj->output_section_offset(shndx);
2185             if (secoff64 == -1ULL)
2186               {
2187                 // The section needs special handling (e.g., a merge section).
2188                 value = os->output_address(relobj, shndx, sym->value());
2189               }
2190             else
2191               {
2192                 Value_type secoff =
2193                   convert_types<Value_type, uint64_t>(secoff64);
2194                 if (sym->type() == elfcpp::STT_TLS)
2195                   value = sym->value() + os->tls_offset() + secoff;
2196                 else
2197                   value = sym->value() + os->address() + secoff;
2198               }
2199           }
2200       }
2201       break;
2202
2203     case Symbol::IN_OUTPUT_DATA:
2204       {
2205         Output_data* od = sym->output_data();
2206         value = sym->value();
2207         if (sym->type() != elfcpp::STT_TLS)
2208           value += od->address();
2209         else
2210           {
2211             Output_section* os = od->output_section();
2212             gold_assert(os != NULL);
2213             value += os->tls_offset() + (od->address() - os->address());
2214           }
2215         if (sym->offset_is_from_end())
2216           value += od->data_size();
2217       }
2218       break;
2219
2220     case Symbol::IN_OUTPUT_SEGMENT:
2221       {
2222         Output_segment* os = sym->output_segment();
2223         value = sym->value();
2224         if (sym->type() != elfcpp::STT_TLS)
2225           value += os->vaddr();
2226         switch (sym->offset_base())
2227           {
2228           case Symbol::SEGMENT_START:
2229             break;
2230           case Symbol::SEGMENT_END:
2231             value += os->memsz();
2232             break;
2233           case Symbol::SEGMENT_BSS:
2234             value += os->filesz();
2235             break;
2236           default:
2237             gold_unreachable();
2238           }
2239       }
2240       break;
2241
2242     case Symbol::IS_CONSTANT:
2243       value = sym->value();
2244       break;
2245
2246     case Symbol::IS_UNDEFINED:
2247       value = 0;
2248       break;
2249
2250     default:
2251       gold_unreachable();
2252     }
2253
2254   sym->set_value(value);
2255
2256   if (parameters->options().strip_all())
2257     {
2258       sym->set_symtab_index(-1U);
2259       return false;
2260     }
2261
2262   return true;
2263 }
2264
2265 // Write out the global symbols.
2266
2267 void
2268 Symbol_table::write_globals(const Input_objects* input_objects,
2269                             const Stringpool* sympool,
2270                             const Stringpool* dynpool,
2271                             Output_symtab_xindex* symtab_xindex,
2272                             Output_symtab_xindex* dynsym_xindex,
2273                             Output_file* of) const
2274 {
2275   switch (parameters->size_and_endianness())
2276     {
2277 #ifdef HAVE_TARGET_32_LITTLE
2278     case Parameters::TARGET_32_LITTLE:
2279       this->sized_write_globals<32, false>(input_objects, sympool,
2280                                            dynpool, symtab_xindex,
2281                                            dynsym_xindex, of);
2282       break;
2283 #endif
2284 #ifdef HAVE_TARGET_32_BIG
2285     case Parameters::TARGET_32_BIG:
2286       this->sized_write_globals<32, true>(input_objects, sympool,
2287                                           dynpool, symtab_xindex,
2288                                           dynsym_xindex, of);
2289       break;
2290 #endif
2291 #ifdef HAVE_TARGET_64_LITTLE
2292     case Parameters::TARGET_64_LITTLE:
2293       this->sized_write_globals<64, false>(input_objects, sympool,
2294                                            dynpool, symtab_xindex,
2295                                            dynsym_xindex, of);
2296       break;
2297 #endif
2298 #ifdef HAVE_TARGET_64_BIG
2299     case Parameters::TARGET_64_BIG:
2300       this->sized_write_globals<64, true>(input_objects, sympool,
2301                                           dynpool, symtab_xindex,
2302                                           dynsym_xindex, of);
2303       break;
2304 #endif
2305     default:
2306       gold_unreachable();
2307     }
2308 }
2309
2310 // Write out the global symbols.
2311
2312 template<int size, bool big_endian>
2313 void
2314 Symbol_table::sized_write_globals(const Input_objects* input_objects,
2315                                   const Stringpool* sympool,
2316                                   const Stringpool* dynpool,
2317                                   Output_symtab_xindex* symtab_xindex,
2318                                   Output_symtab_xindex* dynsym_xindex,
2319                                   Output_file* of) const
2320 {
2321   const Target& target = parameters->target();
2322
2323   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2324
2325   const unsigned int output_count = this->output_count_;
2326   const section_size_type oview_size = output_count * sym_size;
2327   const unsigned int first_global_index = this->first_global_index_;
2328   unsigned char* psyms;
2329   if (this->offset_ == 0 || output_count == 0)
2330     psyms = NULL;
2331   else
2332     psyms = of->get_output_view(this->offset_, oview_size);
2333
2334   const unsigned int dynamic_count = this->dynamic_count_;
2335   const section_size_type dynamic_size = dynamic_count * sym_size;
2336   const unsigned int first_dynamic_global_index =
2337     this->first_dynamic_global_index_;
2338   unsigned char* dynamic_view;
2339   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2340     dynamic_view = NULL;
2341   else
2342     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2343
2344   for (Symbol_table_type::const_iterator p = this->table_.begin();
2345        p != this->table_.end();
2346        ++p)
2347     {
2348       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2349
2350       // Possibly warn about unresolved symbols in shared libraries.
2351       this->warn_about_undefined_dynobj_symbol(input_objects, sym);
2352
2353       unsigned int sym_index = sym->symtab_index();
2354       unsigned int dynsym_index;
2355       if (dynamic_view == NULL)
2356         dynsym_index = -1U;
2357       else
2358         dynsym_index = sym->dynsym_index();
2359
2360       if (sym_index == -1U && dynsym_index == -1U)
2361         {
2362           // This symbol is not included in the output file.
2363           continue;
2364         }
2365
2366       unsigned int shndx;
2367       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2368       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2369       switch (sym->source())
2370         {
2371         case Symbol::FROM_OBJECT:
2372           {
2373             bool is_ordinary;
2374             unsigned int in_shndx = sym->shndx(&is_ordinary);
2375
2376             // FIXME: We need some target specific support here.
2377             if (!is_ordinary
2378                 && in_shndx != elfcpp::SHN_ABS
2379                 && in_shndx != elfcpp::SHN_COMMON)
2380               {
2381                 gold_error(_("%s: unsupported symbol section 0x%x"),
2382                            sym->demangled_name().c_str(), in_shndx);
2383                 shndx = in_shndx;
2384               }
2385             else
2386               {
2387                 Object* symobj = sym->object();
2388                 if (symobj->is_dynamic())
2389                   {
2390                     if (sym->needs_dynsym_value())
2391                       dynsym_value = target.dynsym_value(sym);
2392                     shndx = elfcpp::SHN_UNDEF;
2393                   }
2394                 else if (symobj->pluginobj() != NULL)
2395                   shndx = elfcpp::SHN_UNDEF;
2396                 else if (in_shndx == elfcpp::SHN_UNDEF
2397                          || (!is_ordinary
2398                              && (in_shndx == elfcpp::SHN_ABS
2399                                  || in_shndx == elfcpp::SHN_COMMON)))
2400                   shndx = in_shndx;
2401                 else
2402                   {
2403                     Relobj* relobj = static_cast<Relobj*>(symobj);
2404                     Output_section* os = relobj->output_section(in_shndx);
2405                     gold_assert(os != NULL);
2406                     shndx = os->out_shndx();
2407
2408                     if (shndx >= elfcpp::SHN_LORESERVE)
2409                       {
2410                         if (sym_index != -1U)
2411                           symtab_xindex->add(sym_index, shndx);
2412                         if (dynsym_index != -1U)
2413                           dynsym_xindex->add(dynsym_index, shndx);
2414                         shndx = elfcpp::SHN_XINDEX;
2415                       }
2416
2417                     // In object files symbol values are section
2418                     // relative.
2419                     if (parameters->options().relocatable())
2420                       sym_value -= os->address();
2421                   }
2422               }
2423           }
2424           break;
2425
2426         case Symbol::IN_OUTPUT_DATA:
2427           shndx = sym->output_data()->out_shndx();
2428           if (shndx >= elfcpp::SHN_LORESERVE)
2429             {
2430               if (sym_index != -1U)
2431                 symtab_xindex->add(sym_index, shndx);
2432               if (dynsym_index != -1U)
2433                 dynsym_xindex->add(dynsym_index, shndx);
2434               shndx = elfcpp::SHN_XINDEX;
2435             }
2436           break;
2437
2438         case Symbol::IN_OUTPUT_SEGMENT:
2439           shndx = elfcpp::SHN_ABS;
2440           break;
2441
2442         case Symbol::IS_CONSTANT:
2443           shndx = elfcpp::SHN_ABS;
2444           break;
2445
2446         case Symbol::IS_UNDEFINED:
2447           shndx = elfcpp::SHN_UNDEF;
2448           break;
2449
2450         default:
2451           gold_unreachable();
2452         }
2453
2454       if (sym_index != -1U)
2455         {
2456           sym_index -= first_global_index;
2457           gold_assert(sym_index < output_count);
2458           unsigned char* ps = psyms + (sym_index * sym_size);
2459           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2460                                                      sympool, ps);
2461         }
2462
2463       if (dynsym_index != -1U)
2464         {
2465           dynsym_index -= first_dynamic_global_index;
2466           gold_assert(dynsym_index < dynamic_count);
2467           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2468           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2469                                                      dynpool, pd);
2470         }
2471     }
2472
2473   of->write_output_view(this->offset_, oview_size, psyms);
2474   if (dynamic_view != NULL)
2475     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2476 }
2477
2478 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
2479 // strtab holding the name.
2480
2481 template<int size, bool big_endian>
2482 void
2483 Symbol_table::sized_write_symbol(
2484     Sized_symbol<size>* sym,
2485     typename elfcpp::Elf_types<size>::Elf_Addr value,
2486     unsigned int shndx,
2487     const Stringpool* pool,
2488     unsigned char* p) const
2489 {
2490   elfcpp::Sym_write<size, big_endian> osym(p);
2491   osym.put_st_name(pool->get_offset(sym->name()));
2492   osym.put_st_value(value);
2493   // Use a symbol size of zero for undefined symbols from shared libraries.
2494   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2495     osym.put_st_size(0);
2496   else
2497     osym.put_st_size(sym->symsize());
2498   // A version script may have overridden the default binding.
2499   if (sym->is_forced_local())
2500     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2501   else
2502     osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
2503   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2504   osym.put_st_shndx(shndx);
2505 }
2506
2507 // Check for unresolved symbols in shared libraries.  This is
2508 // controlled by the --allow-shlib-undefined option.
2509
2510 // We only warn about libraries for which we have seen all the
2511 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
2512 // which were not seen in this link.  If we didn't see a DT_NEEDED
2513 // entry, we aren't going to be able to reliably report whether the
2514 // symbol is undefined.
2515
2516 // We also don't warn about libraries found in the system library
2517 // directory (the directory were we find libc.so); we assume that
2518 // those libraries are OK.  This heuristic avoids problems in
2519 // GNU/Linux, in which -ldl can have undefined references satisfied by
2520 // ld-linux.so.
2521
2522 inline void
2523 Symbol_table::warn_about_undefined_dynobj_symbol(
2524     const Input_objects* input_objects,
2525     Symbol* sym) const
2526 {
2527   bool dummy;
2528   if (sym->source() == Symbol::FROM_OBJECT
2529       && sym->object()->is_dynamic()
2530       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2531       && sym->binding() != elfcpp::STB_WEAK
2532       && !parameters->options().allow_shlib_undefined()
2533       && !parameters->target().is_defined_by_abi(sym)
2534       && !input_objects->found_in_system_library_directory(sym->object()))
2535     {
2536       // A very ugly cast.
2537       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2538       if (!dynobj->has_unknown_needed_entries())
2539         {
2540           if (sym->version())
2541             gold_error(_("%s: undefined reference to '%s', version '%s'"),
2542                        sym->object()->name().c_str(),
2543                        sym->demangled_name().c_str(),
2544                        sym->version());
2545           else
2546             gold_error(_("%s: undefined reference to '%s'"),
2547                        sym->object()->name().c_str(),
2548                        sym->demangled_name().c_str());
2549         }
2550     }
2551 }
2552
2553 // Write out a section symbol.  Return the update offset.
2554
2555 void
2556 Symbol_table::write_section_symbol(const Output_section *os,
2557                                    Output_symtab_xindex* symtab_xindex,
2558                                    Output_file* of,
2559                                    off_t offset) const
2560 {
2561   switch (parameters->size_and_endianness())
2562     {
2563 #ifdef HAVE_TARGET_32_LITTLE
2564     case Parameters::TARGET_32_LITTLE:
2565       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
2566                                                   offset);
2567       break;
2568 #endif
2569 #ifdef HAVE_TARGET_32_BIG
2570     case Parameters::TARGET_32_BIG:
2571       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
2572                                                  offset);
2573       break;
2574 #endif
2575 #ifdef HAVE_TARGET_64_LITTLE
2576     case Parameters::TARGET_64_LITTLE:
2577       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
2578                                                   offset);
2579       break;
2580 #endif
2581 #ifdef HAVE_TARGET_64_BIG
2582     case Parameters::TARGET_64_BIG:
2583       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
2584                                                  offset);
2585       break;
2586 #endif
2587     default:
2588       gold_unreachable();
2589     }
2590 }
2591
2592 // Write out a section symbol, specialized for size and endianness.
2593
2594 template<int size, bool big_endian>
2595 void
2596 Symbol_table::sized_write_section_symbol(const Output_section* os,
2597                                          Output_symtab_xindex* symtab_xindex,
2598                                          Output_file* of,
2599                                          off_t offset) const
2600 {
2601   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2602
2603   unsigned char* pov = of->get_output_view(offset, sym_size);
2604
2605   elfcpp::Sym_write<size, big_endian> osym(pov);
2606   osym.put_st_name(0);
2607   osym.put_st_value(os->address());
2608   osym.put_st_size(0);
2609   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2610                                        elfcpp::STT_SECTION));
2611   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2612
2613   unsigned int shndx = os->out_shndx();
2614   if (shndx >= elfcpp::SHN_LORESERVE)
2615     {
2616       symtab_xindex->add(os->symtab_index(), shndx);
2617       shndx = elfcpp::SHN_XINDEX;
2618     }
2619   osym.put_st_shndx(shndx);
2620
2621   of->write_output_view(offset, sym_size, pov);
2622 }
2623
2624 // Print statistical information to stderr.  This is used for --stats.
2625
2626 void
2627 Symbol_table::print_stats() const
2628 {
2629 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2630   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2631           program_name, this->table_.size(), this->table_.bucket_count());
2632 #else
2633   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2634           program_name, this->table_.size());
2635 #endif
2636   this->namepool_.print_stats("symbol table stringpool");
2637 }
2638
2639 // We check for ODR violations by looking for symbols with the same
2640 // name for which the debugging information reports that they were
2641 // defined in different source locations.  When comparing the source
2642 // location, we consider instances with the same base filename and
2643 // line number to be the same.  This is because different object
2644 // files/shared libraries can include the same header file using
2645 // different paths, and we don't want to report an ODR violation in
2646 // that case.
2647
2648 // This struct is used to compare line information, as returned by
2649 // Dwarf_line_info::one_addr2line.  It implements a < comparison
2650 // operator used with std::set.
2651
2652 struct Odr_violation_compare
2653 {
2654   bool
2655   operator()(const std::string& s1, const std::string& s2) const
2656   {
2657     std::string::size_type pos1 = s1.rfind('/');
2658     std::string::size_type pos2 = s2.rfind('/');
2659     if (pos1 == std::string::npos
2660         || pos2 == std::string::npos)
2661       return s1 < s2;
2662     return s1.compare(pos1, std::string::npos,
2663                       s2, pos2, std::string::npos) < 0;
2664   }
2665 };
2666
2667 // Check candidate_odr_violations_ to find symbols with the same name
2668 // but apparently different definitions (different source-file/line-no).
2669
2670 void
2671 Symbol_table::detect_odr_violations(const Task* task,
2672                                     const char* output_file_name) const
2673 {
2674   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2675        it != candidate_odr_violations_.end();
2676        ++it)
2677     {
2678       const char* symbol_name = it->first;
2679       // We use a sorted set so the output is deterministic.
2680       std::set<std::string, Odr_violation_compare> line_nums;
2681
2682       for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2683                locs = it->second.begin();
2684            locs != it->second.end();
2685            ++locs)
2686         {
2687           // We need to lock the object in order to read it.  This
2688           // means that we have to run in a singleton Task.  If we
2689           // want to run this in a general Task for better
2690           // performance, we will need one Task for object, plus
2691           // appropriate locking to ensure that we don't conflict with
2692           // other uses of the object.  Also note, one_addr2line is not
2693           // currently thread-safe.
2694           Task_lock_obj<Object> tl(task, locs->object);
2695           // 16 is the size of the object-cache that one_addr2line should use.
2696           std::string lineno = Dwarf_line_info::one_addr2line(
2697               locs->object, locs->shndx, locs->offset, 16);
2698           if (!lineno.empty())
2699             line_nums.insert(lineno);
2700         }
2701
2702       if (line_nums.size() > 1)
2703         {
2704           gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2705                          "places (possible ODR violation):"),
2706                        output_file_name, demangle(symbol_name).c_str());
2707           for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2708                it2 != line_nums.end();
2709                ++it2)
2710             fprintf(stderr, "  %s\n", it2->c_str());
2711         }
2712     }
2713   // We only call one_addr2line() in this function, so we can clear its cache.
2714   Dwarf_line_info::clear_addr2line_cache();
2715 }
2716
2717 // Warnings functions.
2718
2719 // Add a new warning.
2720
2721 void
2722 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2723                       const std::string& warning)
2724 {
2725   name = symtab->canonicalize_name(name);
2726   this->warnings_[name].set(obj, warning);
2727 }
2728
2729 // Look through the warnings and mark the symbols for which we should
2730 // warn.  This is called during Layout::finalize when we know the
2731 // sources for all the symbols.
2732
2733 void
2734 Warnings::note_warnings(Symbol_table* symtab)
2735 {
2736   for (Warning_table::iterator p = this->warnings_.begin();
2737        p != this->warnings_.end();
2738        ++p)
2739     {
2740       Symbol* sym = symtab->lookup(p->first, NULL);
2741       if (sym != NULL
2742           && sym->source() == Symbol::FROM_OBJECT
2743           && sym->object() == p->second.object)
2744         sym->set_has_warning();
2745     }
2746 }
2747
2748 // Issue a warning.  This is called when we see a relocation against a
2749 // symbol for which has a warning.
2750
2751 template<int size, bool big_endian>
2752 void
2753 Warnings::issue_warning(const Symbol* sym,
2754                         const Relocate_info<size, big_endian>* relinfo,
2755                         size_t relnum, off_t reloffset) const
2756 {
2757   gold_assert(sym->has_warning());
2758   Warning_table::const_iterator p = this->warnings_.find(sym->name());
2759   gold_assert(p != this->warnings_.end());
2760   gold_warning_at_location(relinfo, relnum, reloffset,
2761                            "%s", p->second.text.c_str());
2762 }
2763
2764 // Instantiate the templates we need.  We could use the configure
2765 // script to restrict this to only the ones needed for implemented
2766 // targets.
2767
2768 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2769 template
2770 void
2771 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2772 #endif
2773
2774 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2775 template
2776 void
2777 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2778 #endif
2779
2780 #ifdef HAVE_TARGET_32_LITTLE
2781 template
2782 void
2783 Symbol_table::add_from_relobj<32, false>(
2784     Sized_relobj<32, false>* relobj,
2785     const unsigned char* syms,
2786     size_t count,
2787     size_t symndx_offset,
2788     const char* sym_names,
2789     size_t sym_name_size,
2790     Sized_relobj<32, false>::Symbols* sympointers,
2791     size_t* defined);
2792 #endif
2793
2794 #ifdef HAVE_TARGET_32_BIG
2795 template
2796 void
2797 Symbol_table::add_from_relobj<32, true>(
2798     Sized_relobj<32, true>* relobj,
2799     const unsigned char* syms,
2800     size_t count,
2801     size_t symndx_offset,
2802     const char* sym_names,
2803     size_t sym_name_size,
2804     Sized_relobj<32, true>::Symbols* sympointers,
2805     size_t* defined);
2806 #endif
2807
2808 #ifdef HAVE_TARGET_64_LITTLE
2809 template
2810 void
2811 Symbol_table::add_from_relobj<64, false>(
2812     Sized_relobj<64, false>* relobj,
2813     const unsigned char* syms,
2814     size_t count,
2815     size_t symndx_offset,
2816     const char* sym_names,
2817     size_t sym_name_size,
2818     Sized_relobj<64, false>::Symbols* sympointers,
2819     size_t* defined);
2820 #endif
2821
2822 #ifdef HAVE_TARGET_64_BIG
2823 template
2824 void
2825 Symbol_table::add_from_relobj<64, true>(
2826     Sized_relobj<64, true>* relobj,
2827     const unsigned char* syms,
2828     size_t count,
2829     size_t symndx_offset,
2830     const char* sym_names,
2831     size_t sym_name_size,
2832     Sized_relobj<64, true>::Symbols* sympointers,
2833     size_t* defined);
2834 #endif
2835
2836 #ifdef HAVE_TARGET_32_LITTLE
2837 template
2838 Symbol*
2839 Symbol_table::add_from_pluginobj<32, false>(
2840     Sized_pluginobj<32, false>* obj,
2841     const char* name,
2842     const char* ver,
2843     elfcpp::Sym<32, false>* sym);
2844 #endif
2845
2846 #ifdef HAVE_TARGET_32_BIG
2847 template
2848 Symbol*
2849 Symbol_table::add_from_pluginobj<32, true>(
2850     Sized_pluginobj<32, true>* obj,
2851     const char* name,
2852     const char* ver,
2853     elfcpp::Sym<32, true>* sym);
2854 #endif
2855
2856 #ifdef HAVE_TARGET_64_LITTLE
2857 template
2858 Symbol*
2859 Symbol_table::add_from_pluginobj<64, false>(
2860     Sized_pluginobj<64, false>* obj,
2861     const char* name,
2862     const char* ver,
2863     elfcpp::Sym<64, false>* sym);
2864 #endif
2865
2866 #ifdef HAVE_TARGET_64_BIG
2867 template
2868 Symbol*
2869 Symbol_table::add_from_pluginobj<64, true>(
2870     Sized_pluginobj<64, true>* obj,
2871     const char* name,
2872     const char* ver,
2873     elfcpp::Sym<64, true>* sym);
2874 #endif
2875
2876 #ifdef HAVE_TARGET_32_LITTLE
2877 template
2878 void
2879 Symbol_table::add_from_dynobj<32, false>(
2880     Sized_dynobj<32, false>* dynobj,
2881     const unsigned char* syms,
2882     size_t count,
2883     const char* sym_names,
2884     size_t sym_name_size,
2885     const unsigned char* versym,
2886     size_t versym_size,
2887     const std::vector<const char*>* version_map,
2888     Sized_relobj<32, false>::Symbols* sympointers,
2889     size_t* defined);
2890 #endif
2891
2892 #ifdef HAVE_TARGET_32_BIG
2893 template
2894 void
2895 Symbol_table::add_from_dynobj<32, true>(
2896     Sized_dynobj<32, true>* dynobj,
2897     const unsigned char* syms,
2898     size_t count,
2899     const char* sym_names,
2900     size_t sym_name_size,
2901     const unsigned char* versym,
2902     size_t versym_size,
2903     const std::vector<const char*>* version_map,
2904     Sized_relobj<32, true>::Symbols* sympointers,
2905     size_t* defined);
2906 #endif
2907
2908 #ifdef HAVE_TARGET_64_LITTLE
2909 template
2910 void
2911 Symbol_table::add_from_dynobj<64, false>(
2912     Sized_dynobj<64, false>* dynobj,
2913     const unsigned char* syms,
2914     size_t count,
2915     const char* sym_names,
2916     size_t sym_name_size,
2917     const unsigned char* versym,
2918     size_t versym_size,
2919     const std::vector<const char*>* version_map,
2920     Sized_relobj<64, false>::Symbols* sympointers,
2921     size_t* defined);
2922 #endif
2923
2924 #ifdef HAVE_TARGET_64_BIG
2925 template
2926 void
2927 Symbol_table::add_from_dynobj<64, true>(
2928     Sized_dynobj<64, true>* dynobj,
2929     const unsigned char* syms,
2930     size_t count,
2931     const char* sym_names,
2932     size_t sym_name_size,
2933     const unsigned char* versym,
2934     size_t versym_size,
2935     const std::vector<const char*>* version_map,
2936     Sized_relobj<64, true>::Symbols* sympointers,
2937     size_t* defined);
2938 #endif
2939
2940 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2941 template
2942 void
2943 Symbol_table::define_with_copy_reloc<32>(
2944     Sized_symbol<32>* sym,
2945     Output_data* posd,
2946     elfcpp::Elf_types<32>::Elf_Addr value);
2947 #endif
2948
2949 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2950 template
2951 void
2952 Symbol_table::define_with_copy_reloc<64>(
2953     Sized_symbol<64>* sym,
2954     Output_data* posd,
2955     elfcpp::Elf_types<64>::Elf_Addr value);
2956 #endif
2957
2958 #ifdef HAVE_TARGET_32_LITTLE
2959 template
2960 void
2961 Warnings::issue_warning<32, false>(const Symbol* sym,
2962                                    const Relocate_info<32, false>* relinfo,
2963                                    size_t relnum, off_t reloffset) const;
2964 #endif
2965
2966 #ifdef HAVE_TARGET_32_BIG
2967 template
2968 void
2969 Warnings::issue_warning<32, true>(const Symbol* sym,
2970                                   const Relocate_info<32, true>* relinfo,
2971                                   size_t relnum, off_t reloffset) const;
2972 #endif
2973
2974 #ifdef HAVE_TARGET_64_LITTLE
2975 template
2976 void
2977 Warnings::issue_warning<64, false>(const Symbol* sym,
2978                                    const Relocate_info<64, false>* relinfo,
2979                                    size_t relnum, off_t reloffset) const;
2980 #endif
2981
2982 #ifdef HAVE_TARGET_64_BIG
2983 template
2984 void
2985 Warnings::issue_warning<64, true>(const Symbol* sym,
2986                                   const Relocate_info<64, true>* relinfo,
2987                                   size_t relnum, off_t reloffset) const;
2988 #endif
2989
2990 } // End namespace gold.