Don't get confused about whether a symbol is the default version if we
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <stdint.h>
26 #include <set>
27 #include <string>
28 #include <utility>
29 #include "demangle.h"
30
31 #include "object.h"
32 #include "dwarf_reader.h"
33 #include "dynobj.h"
34 #include "output.h"
35 #include "target.h"
36 #include "workqueue.h"
37 #include "symtab.h"
38
39 namespace gold
40 {
41
42 // Class Symbol.
43
44 // Initialize fields in Symbol.  This initializes everything except u_
45 // and source_.
46
47 void
48 Symbol::init_fields(const char* name, const char* version,
49                     elfcpp::STT type, elfcpp::STB binding,
50                     elfcpp::STV visibility, unsigned char nonvis)
51 {
52   this->name_ = name;
53   this->version_ = version;
54   this->symtab_index_ = 0;
55   this->dynsym_index_ = 0;
56   this->got_offset_ = 0;
57   this->plt_offset_ = 0;
58   this->type_ = type;
59   this->binding_ = binding;
60   this->visibility_ = visibility;
61   this->nonvis_ = nonvis;
62   this->is_target_special_ = false;
63   this->is_def_ = false;
64   this->is_forwarder_ = false;
65   this->has_alias_ = false;
66   this->needs_dynsym_entry_ = false;
67   this->in_reg_ = false;
68   this->in_dyn_ = false;
69   this->has_got_offset_ = false;
70   this->has_plt_offset_ = false;
71   this->has_warning_ = false;
72   this->is_copied_from_dynobj_ = false;
73   this->is_forced_local_ = false;
74 }
75
76 // Return the demangled version of the symbol's name, but only
77 // if the --demangle flag was set.
78
79 static std::string
80 demangle(const char* name)
81 {
82   if (!parameters->options().demangle())
83     return name;
84
85   // cplus_demangle allocates memory for the result it returns,
86   // and returns NULL if the name is already demangled.
87   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
88   if (demangled_name == NULL)
89     return name;
90
91   std::string retval(demangled_name);
92   free(demangled_name);
93   return retval;
94 }
95
96 std::string
97 Symbol::demangled_name() const
98 {
99   return demangle(this->name());
100 }
101
102 // Initialize the fields in the base class Symbol for SYM in OBJECT.
103
104 template<int size, bool big_endian>
105 void
106 Symbol::init_base(const char* name, const char* version, Object* object,
107                   const elfcpp::Sym<size, big_endian>& sym)
108 {
109   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
110                     sym.get_st_visibility(), sym.get_st_nonvis());
111   this->u_.from_object.object = object;
112   // FIXME: Handle SHN_XINDEX.
113   this->u_.from_object.shndx = sym.get_st_shndx();
114   this->source_ = FROM_OBJECT;
115   this->in_reg_ = !object->is_dynamic();
116   this->in_dyn_ = object->is_dynamic();
117 }
118
119 // Initialize the fields in the base class Symbol for a symbol defined
120 // in an Output_data.
121
122 void
123 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
124                   elfcpp::STB binding, elfcpp::STV visibility,
125                   unsigned char nonvis, bool offset_is_from_end)
126 {
127   this->init_fields(name, NULL, type, binding, visibility, nonvis);
128   this->u_.in_output_data.output_data = od;
129   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
130   this->source_ = IN_OUTPUT_DATA;
131   this->in_reg_ = true;
132 }
133
134 // Initialize the fields in the base class Symbol for a symbol defined
135 // in an Output_segment.
136
137 void
138 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
139                   elfcpp::STB binding, elfcpp::STV visibility,
140                   unsigned char nonvis, Segment_offset_base offset_base)
141 {
142   this->init_fields(name, NULL, type, binding, visibility, nonvis);
143   this->u_.in_output_segment.output_segment = os;
144   this->u_.in_output_segment.offset_base = offset_base;
145   this->source_ = IN_OUTPUT_SEGMENT;
146   this->in_reg_ = true;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // as a constant.
151
152 void
153 Symbol::init_base(const char* name, elfcpp::STT type,
154                   elfcpp::STB binding, elfcpp::STV visibility,
155                   unsigned char nonvis)
156 {
157   this->init_fields(name, NULL, type, binding, visibility, nonvis);
158   this->source_ = CONSTANT;
159   this->in_reg_ = true;
160 }
161
162 // Allocate a common symbol in the base.
163
164 void
165 Symbol::allocate_base_common(Output_data* od)
166 {
167   gold_assert(this->is_common());
168   this->source_ = IN_OUTPUT_DATA;
169   this->u_.in_output_data.output_data = od;
170   this->u_.in_output_data.offset_is_from_end = false;
171 }
172
173 // Initialize the fields in Sized_symbol for SYM in OBJECT.
174
175 template<int size>
176 template<bool big_endian>
177 void
178 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
179                          const elfcpp::Sym<size, big_endian>& sym)
180 {
181   this->init_base(name, version, object, sym);
182   this->value_ = sym.get_st_value();
183   this->symsize_ = sym.get_st_size();
184 }
185
186 // Initialize the fields in Sized_symbol for a symbol defined in an
187 // Output_data.
188
189 template<int size>
190 void
191 Sized_symbol<size>::init(const char* name, Output_data* od,
192                          Value_type value, Size_type symsize,
193                          elfcpp::STT type, elfcpp::STB binding,
194                          elfcpp::STV visibility, unsigned char nonvis,
195                          bool offset_is_from_end)
196 {
197   this->init_base(name, od, type, binding, visibility, nonvis,
198                   offset_is_from_end);
199   this->value_ = value;
200   this->symsize_ = symsize;
201 }
202
203 // Initialize the fields in Sized_symbol for a symbol defined in an
204 // Output_segment.
205
206 template<int size>
207 void
208 Sized_symbol<size>::init(const char* name, Output_segment* os,
209                          Value_type value, Size_type symsize,
210                          elfcpp::STT type, elfcpp::STB binding,
211                          elfcpp::STV visibility, unsigned char nonvis,
212                          Segment_offset_base offset_base)
213 {
214   this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
215   this->value_ = value;
216   this->symsize_ = symsize;
217 }
218
219 // Initialize the fields in Sized_symbol for a symbol defined as a
220 // constant.
221
222 template<int size>
223 void
224 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
225                          elfcpp::STT type, elfcpp::STB binding,
226                          elfcpp::STV visibility, unsigned char nonvis)
227 {
228   this->init_base(name, type, binding, visibility, nonvis);
229   this->value_ = value;
230   this->symsize_ = symsize;
231 }
232
233 // Allocate a common symbol.
234
235 template<int size>
236 void
237 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
238 {
239   this->allocate_base_common(od);
240   this->value_ = value;
241 }
242
243 // Return true if this symbol should be added to the dynamic symbol
244 // table.
245
246 inline bool
247 Symbol::should_add_dynsym_entry() const
248 {
249   // If the symbol is used by a dynamic relocation, we need to add it.
250   if (this->needs_dynsym_entry())
251     return true;
252
253   // If the symbol was forced local in a version script, do not add it.
254   if (this->is_forced_local())
255     return false;
256
257   // If exporting all symbols or building a shared library,
258   // and the symbol is defined in a regular object and is
259   // externally visible, we need to add it.
260   if ((parameters->options().export_dynamic() || parameters->options().shared())
261       && !this->is_from_dynobj()
262       && this->is_externally_visible())
263     return true;
264
265   return false;
266 }
267
268 // Return true if the final value of this symbol is known at link
269 // time.
270
271 bool
272 Symbol::final_value_is_known() const
273 {
274   // If we are not generating an executable, then no final values are
275   // known, since they will change at runtime.
276   if (parameters->options().shared() || parameters->options().relocatable())
277     return false;
278
279   // If the symbol is not from an object file, then it is defined, and
280   // known.
281   if (this->source_ != FROM_OBJECT)
282     return true;
283
284   // If the symbol is from a dynamic object, then the final value is
285   // not known.
286   if (this->object()->is_dynamic())
287     return false;
288
289   // If the symbol is not undefined (it is defined or common), then
290   // the final value is known.
291   if (!this->is_undefined())
292     return true;
293
294   // If the symbol is undefined, then whether the final value is known
295   // depends on whether we are doing a static link.  If we are doing a
296   // dynamic link, then the final value could be filled in at runtime.
297   // This could reasonably be the case for a weak undefined symbol.
298   return parameters->doing_static_link();
299 }
300
301 // Return the output section where this symbol is defined.
302
303 Output_section*
304 Symbol::output_section() const
305 {
306   switch (this->source_)
307     {
308     case FROM_OBJECT:
309       {
310         unsigned int shndx = this->u_.from_object.shndx;
311         if (shndx != elfcpp::SHN_UNDEF && shndx < elfcpp::SHN_LORESERVE)
312           {
313             gold_assert(!this->u_.from_object.object->is_dynamic());
314             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
315             section_offset_type dummy;
316             return relobj->output_section(shndx, &dummy);
317           }
318         return NULL;
319       }
320
321     case IN_OUTPUT_DATA:
322       return this->u_.in_output_data.output_data->output_section();
323
324     case IN_OUTPUT_SEGMENT:
325     case CONSTANT:
326       return NULL;
327
328     default:
329       gold_unreachable();
330     }
331 }
332
333 // Set the symbol's output section.  This is used for symbols defined
334 // in scripts.  This should only be called after the symbol table has
335 // been finalized.
336
337 void
338 Symbol::set_output_section(Output_section* os)
339 {
340   switch (this->source_)
341     {
342     case FROM_OBJECT:
343     case IN_OUTPUT_DATA:
344       gold_assert(this->output_section() == os);
345       break;
346     case CONSTANT:
347       this->source_ = IN_OUTPUT_DATA;
348       this->u_.in_output_data.output_data = os;
349       this->u_.in_output_data.offset_is_from_end = false;
350       break;
351     case IN_OUTPUT_SEGMENT:
352     default:
353       gold_unreachable();
354     }
355 }
356
357 // Class Symbol_table.
358
359 Symbol_table::Symbol_table(unsigned int count,
360                            const Version_script_info& version_script)
361   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
362     forwarders_(), commons_(), forced_locals_(), warnings_(),
363     version_script_(version_script)
364 {
365   namepool_.reserve(count);
366 }
367
368 Symbol_table::~Symbol_table()
369 {
370 }
371
372 // The hash function.  The key values are Stringpool keys.
373
374 inline size_t
375 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
376 {
377   return key.first ^ key.second;
378 }
379
380 // The symbol table key equality function.  This is called with
381 // Stringpool keys.
382
383 inline bool
384 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
385                                           const Symbol_table_key& k2) const
386 {
387   return k1.first == k2.first && k1.second == k2.second;
388 }
389
390 // Make TO a symbol which forwards to FROM.
391
392 void
393 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
394 {
395   gold_assert(from != to);
396   gold_assert(!from->is_forwarder() && !to->is_forwarder());
397   this->forwarders_[from] = to;
398   from->set_forwarder();
399 }
400
401 // Resolve the forwards from FROM, returning the real symbol.
402
403 Symbol*
404 Symbol_table::resolve_forwards(const Symbol* from) const
405 {
406   gold_assert(from->is_forwarder());
407   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
408     this->forwarders_.find(from);
409   gold_assert(p != this->forwarders_.end());
410   return p->second;
411 }
412
413 // Look up a symbol by name.
414
415 Symbol*
416 Symbol_table::lookup(const char* name, const char* version) const
417 {
418   Stringpool::Key name_key;
419   name = this->namepool_.find(name, &name_key);
420   if (name == NULL)
421     return NULL;
422
423   Stringpool::Key version_key = 0;
424   if (version != NULL)
425     {
426       version = this->namepool_.find(version, &version_key);
427       if (version == NULL)
428         return NULL;
429     }
430
431   Symbol_table_key key(name_key, version_key);
432   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
433   if (p == this->table_.end())
434     return NULL;
435   return p->second;
436 }
437
438 // Resolve a Symbol with another Symbol.  This is only used in the
439 // unusual case where there are references to both an unversioned
440 // symbol and a symbol with a version, and we then discover that that
441 // version is the default version.  Because this is unusual, we do
442 // this the slow way, by converting back to an ELF symbol.
443
444 template<int size, bool big_endian>
445 void
446 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
447                       const char* version)
448 {
449   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
450   elfcpp::Sym_write<size, big_endian> esym(buf);
451   // We don't bother to set the st_name field.
452   esym.put_st_value(from->value());
453   esym.put_st_size(from->symsize());
454   esym.put_st_info(from->binding(), from->type());
455   esym.put_st_other(from->visibility(), from->nonvis());
456   esym.put_st_shndx(from->shndx());
457   this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
458   if (from->in_reg())
459     to->set_in_reg();
460   if (from->in_dyn())
461     to->set_in_dyn();
462 }
463
464 // Record that a symbol is forced to be local by a version script.
465
466 void
467 Symbol_table::force_local(Symbol* sym)
468 {
469   if (!sym->is_defined() && !sym->is_common())
470     return;
471   if (sym->is_forced_local())
472     {
473       // We already got this one.
474       return;
475     }
476   sym->set_is_forced_local();
477   this->forced_locals_.push_back(sym);
478 }
479
480 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
481 // name and VERSION is the version; both are canonicalized.  DEF is
482 // whether this is the default version.
483
484 // If DEF is true, then this is the definition of a default version of
485 // a symbol.  That means that any lookup of NAME/NULL and any lookup
486 // of NAME/VERSION should always return the same symbol.  This is
487 // obvious for references, but in particular we want to do this for
488 // definitions: overriding NAME/NULL should also override
489 // NAME/VERSION.  If we don't do that, it would be very hard to
490 // override functions in a shared library which uses versioning.
491
492 // We implement this by simply making both entries in the hash table
493 // point to the same Symbol structure.  That is easy enough if this is
494 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
495 // that we have seen both already, in which case they will both have
496 // independent entries in the symbol table.  We can't simply change
497 // the symbol table entry, because we have pointers to the entries
498 // attached to the object files.  So we mark the entry attached to the
499 // object file as a forwarder, and record it in the forwarders_ map.
500 // Note that entries in the hash table will never be marked as
501 // forwarders.
502 //
503 // SYM and ORIG_SYM are almost always the same.  ORIG_SYM is the
504 // symbol exactly as it existed in the input file.  SYM is usually
505 // that as well, but can be modified, for instance if we determine
506 // it's in a to-be-discarded section.
507
508 template<int size, bool big_endian>
509 Sized_symbol<size>*
510 Symbol_table::add_from_object(Object* object,
511                               const char *name,
512                               Stringpool::Key name_key,
513                               const char *version,
514                               Stringpool::Key version_key,
515                               bool def,
516                               const elfcpp::Sym<size, big_endian>& sym,
517                               const elfcpp::Sym<size, big_endian>& orig_sym)
518 {
519   Symbol* const snull = NULL;
520   std::pair<typename Symbol_table_type::iterator, bool> ins =
521     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
522                                        snull));
523
524   std::pair<typename Symbol_table_type::iterator, bool> insdef =
525     std::make_pair(this->table_.end(), false);
526   if (def)
527     {
528       const Stringpool::Key vnull_key = 0;
529       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
530                                                                  vnull_key),
531                                                   snull));
532     }
533
534   // ins.first: an iterator, which is a pointer to a pair.
535   // ins.first->first: the key (a pair of name and version).
536   // ins.first->second: the value (Symbol*).
537   // ins.second: true if new entry was inserted, false if not.
538
539   Sized_symbol<size>* ret;
540   bool was_undefined;
541   bool was_common;
542   if (!ins.second)
543     {
544       // We already have an entry for NAME/VERSION.
545       ret = this->get_sized_symbol<size>(ins.first->second);
546       gold_assert(ret != NULL);
547
548       was_undefined = ret->is_undefined();
549       was_common = ret->is_common();
550
551       this->resolve(ret, sym, orig_sym, object, version);
552
553       if (def)
554         {
555           if (insdef.second)
556             {
557               // This is the first time we have seen NAME/NULL.  Make
558               // NAME/NULL point to NAME/VERSION.
559               insdef.first->second = ret;
560             }
561           else if (insdef.first->second != ret
562                    && insdef.first->second->is_undefined())
563             {
564               // This is the unfortunate case where we already have
565               // entries for both NAME/VERSION and NAME/NULL.  Note
566               // that we don't want to combine them if the existing
567               // symbol is going to override the new one.  FIXME: We
568               // currently just test is_undefined, but this may not do
569               // the right thing if the existing symbol is from a
570               // shared library and the new one is from a regular
571               // object.
572
573               const Sized_symbol<size>* sym2;
574               sym2 = this->get_sized_symbol<size>(insdef.first->second);
575               Symbol_table::resolve<size, big_endian>(ret, sym2, version);
576               this->make_forwarder(insdef.first->second, ret);
577               insdef.first->second = ret;
578             }
579         }
580     }
581   else
582     {
583       // This is the first time we have seen NAME/VERSION.
584       gold_assert(ins.first->second == NULL);
585
586       was_undefined = false;
587       was_common = false;
588
589       if (def && !insdef.second)
590         {
591           // We already have an entry for NAME/NULL.  If we override
592           // it, then change it to NAME/VERSION.
593           ret = this->get_sized_symbol<size>(insdef.first->second);
594           this->resolve(ret, sym, orig_sym, object, version);
595           ins.first->second = ret;
596         }
597       else
598         {
599           Sized_target<size, big_endian>* target =
600             object->sized_target<size, big_endian>();
601           if (!target->has_make_symbol())
602             ret = new Sized_symbol<size>();
603           else
604             {
605               ret = target->make_symbol();
606               if (ret == NULL)
607                 {
608                   // This means that we don't want a symbol table
609                   // entry after all.
610                   if (!def)
611                     this->table_.erase(ins.first);
612                   else
613                     {
614                       this->table_.erase(insdef.first);
615                       // Inserting insdef invalidated ins.
616                       this->table_.erase(std::make_pair(name_key,
617                                                         version_key));
618                     }
619                   return NULL;
620                 }
621             }
622
623           ret->init(name, version, object, sym);
624
625           ins.first->second = ret;
626           if (def)
627             {
628               // This is the first time we have seen NAME/NULL.  Point
629               // it at the new entry for NAME/VERSION.
630               gold_assert(insdef.second);
631               insdef.first->second = ret;
632             }
633         }
634     }
635
636   // Record every time we see a new undefined symbol, to speed up
637   // archive groups.
638   if (!was_undefined && ret->is_undefined())
639     ++this->saw_undefined_;
640
641   // Keep track of common symbols, to speed up common symbol
642   // allocation.
643   if (!was_common && ret->is_common())
644     this->commons_.push_back(ret);
645
646   if (def)
647     ret->set_is_default();
648   return ret;
649 }
650
651 // Add all the symbols in a relocatable object to the hash table.
652
653 template<int size, bool big_endian>
654 void
655 Symbol_table::add_from_relobj(
656     Sized_relobj<size, big_endian>* relobj,
657     const unsigned char* syms,
658     size_t count,
659     const char* sym_names,
660     size_t sym_name_size,
661     typename Sized_relobj<size, big_endian>::Symbols* sympointers)
662 {
663   gold_assert(size == relobj->target()->get_size());
664   gold_assert(size == parameters->target().get_size());
665
666   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
667
668   const bool just_symbols = relobj->just_symbols();
669
670   const unsigned char* p = syms;
671   for (size_t i = 0; i < count; ++i, p += sym_size)
672     {
673       elfcpp::Sym<size, big_endian> sym(p);
674       elfcpp::Sym<size, big_endian>* psym = &sym;
675
676       unsigned int st_name = psym->get_st_name();
677       if (st_name >= sym_name_size)
678         {
679           relobj->error(_("bad global symbol name offset %u at %zu"),
680                         st_name, i);
681           continue;
682         }
683
684       const char* name = sym_names + st_name;
685
686       // A symbol defined in a section which we are not including must
687       // be treated as an undefined symbol.
688       unsigned char symbuf[sym_size];
689       elfcpp::Sym<size, big_endian> sym2(symbuf);
690       unsigned int st_shndx = psym->get_st_shndx();
691       if (st_shndx != elfcpp::SHN_UNDEF
692           && st_shndx < elfcpp::SHN_LORESERVE
693           && !relobj->is_section_included(st_shndx))
694         {
695           memcpy(symbuf, p, sym_size);
696           elfcpp::Sym_write<size, big_endian> sw(symbuf);
697           sw.put_st_shndx(elfcpp::SHN_UNDEF);
698           psym = &sym2;
699         }
700
701       // In an object file, an '@' in the name separates the symbol
702       // name from the version name.  If there are two '@' characters,
703       // this is the default version.
704       const char* ver = strchr(name, '@');
705       int namelen = 0;
706       // DEF: is the version default?  LOCAL: is the symbol forced local?
707       bool def = false;
708       bool local = false;
709
710       if (ver != NULL)
711         {
712           // The symbol name is of the form foo@VERSION or foo@@VERSION
713           namelen = ver - name;
714           ++ver;
715           if (*ver == '@')
716             {
717               def = true;
718               ++ver;
719             }
720         }
721       else if (!version_script_.empty())
722         {
723           // The symbol name did not have a version, but
724           // the version script may assign a version anyway.
725           namelen = strlen(name);
726           def = true;
727           // Check the global: entries from the version script.
728           const std::string& version =
729               version_script_.get_symbol_version(name);
730           if (!version.empty())
731             ver = version.c_str();
732           // Check the local: entries from the version script
733           if (version_script_.symbol_is_local(name))
734             local = true;
735         }
736
737       if (just_symbols)
738         {
739           if (psym != &sym2)
740             memcpy(symbuf, p, sym_size);
741           elfcpp::Sym_write<size, big_endian> sw(symbuf);
742           sw.put_st_shndx(elfcpp::SHN_ABS);
743           if (st_shndx != elfcpp::SHN_UNDEF
744               && st_shndx < elfcpp::SHN_LORESERVE)
745             {
746               // Symbol values in object files are section relative.
747               // This is normally what we want, but since here we are
748               // converting the symbol to absolute we need to add the
749               // section address.  The section address in an object
750               // file is normally zero, but people can use a linker
751               // script to change it.
752               sw.put_st_value(sym2.get_st_value()
753                               + relobj->section_address(st_shndx));
754             }
755           psym = &sym2;
756         }
757
758       Sized_symbol<size>* res;
759       if (ver == NULL)
760         {
761           Stringpool::Key name_key;
762           name = this->namepool_.add(name, true, &name_key);
763           res = this->add_from_object(relobj, name, name_key, NULL, 0,
764                                       false, *psym, sym);
765           if (local)
766             this->force_local(res);
767         }
768       else
769         {
770           Stringpool::Key name_key;
771           name = this->namepool_.add_with_length(name, namelen, true,
772                                                  &name_key);
773           Stringpool::Key ver_key;
774           ver = this->namepool_.add(ver, true, &ver_key);
775
776           res = this->add_from_object(relobj, name, name_key, ver, ver_key,
777                                       def, *psym, sym);
778         }
779
780       (*sympointers)[i] = res;
781     }
782 }
783
784 // Add all the symbols in a dynamic object to the hash table.
785
786 template<int size, bool big_endian>
787 void
788 Symbol_table::add_from_dynobj(
789     Sized_dynobj<size, big_endian>* dynobj,
790     const unsigned char* syms,
791     size_t count,
792     const char* sym_names,
793     size_t sym_name_size,
794     const unsigned char* versym,
795     size_t versym_size,
796     const std::vector<const char*>* version_map)
797 {
798   gold_assert(size == dynobj->target()->get_size());
799   gold_assert(size == parameters->target().get_size());
800
801   if (dynobj->just_symbols())
802     {
803       gold_error(_("--just-symbols does not make sense with a shared object"));
804       return;
805     }
806
807   if (versym != NULL && versym_size / 2 < count)
808     {
809       dynobj->error(_("too few symbol versions"));
810       return;
811     }
812
813   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
814
815   // We keep a list of all STT_OBJECT symbols, so that we can resolve
816   // weak aliases.  This is necessary because if the dynamic object
817   // provides the same variable under two names, one of which is a
818   // weak definition, and the regular object refers to the weak
819   // definition, we have to put both the weak definition and the
820   // strong definition into the dynamic symbol table.  Given a weak
821   // definition, the only way that we can find the corresponding
822   // strong definition, if any, is to search the symbol table.
823   std::vector<Sized_symbol<size>*> object_symbols;
824
825   const unsigned char* p = syms;
826   const unsigned char* vs = versym;
827   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
828     {
829       elfcpp::Sym<size, big_endian> sym(p);
830
831       // Ignore symbols with local binding or that have
832       // internal or hidden visibility.
833       if (sym.get_st_bind() == elfcpp::STB_LOCAL
834           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
835           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
836         continue;
837
838       unsigned int st_name = sym.get_st_name();
839       if (st_name >= sym_name_size)
840         {
841           dynobj->error(_("bad symbol name offset %u at %zu"),
842                         st_name, i);
843           continue;
844         }
845
846       const char* name = sym_names + st_name;
847
848       Sized_symbol<size>* res;
849
850       if (versym == NULL)
851         {
852           Stringpool::Key name_key;
853           name = this->namepool_.add(name, true, &name_key);
854           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
855                                       false, sym, sym);
856         }
857       else
858         {
859           // Read the version information.
860
861           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
862
863           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
864           v &= elfcpp::VERSYM_VERSION;
865
866           // The Sun documentation says that V can be VER_NDX_LOCAL,
867           // or VER_NDX_GLOBAL, or a version index.  The meaning of
868           // VER_NDX_LOCAL is defined as "Symbol has local scope."
869           // The old GNU linker will happily generate VER_NDX_LOCAL
870           // for an undefined symbol.  I don't know what the Sun
871           // linker will generate.
872
873           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
874               && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
875             {
876               // This symbol should not be visible outside the object.
877               continue;
878             }
879
880           // At this point we are definitely going to add this symbol.
881           Stringpool::Key name_key;
882           name = this->namepool_.add(name, true, &name_key);
883
884           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
885               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
886             {
887               // This symbol does not have a version.
888               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
889                                           false, sym, sym);
890             }
891           else
892             {
893               if (v >= version_map->size())
894                 {
895                   dynobj->error(_("versym for symbol %zu out of range: %u"),
896                                 i, v);
897                   continue;
898                 }
899
900               const char* version = (*version_map)[v];
901               if (version == NULL)
902                 {
903                   dynobj->error(_("versym for symbol %zu has no name: %u"),
904                                 i, v);
905                   continue;
906                 }
907
908               Stringpool::Key version_key;
909               version = this->namepool_.add(version, true, &version_key);
910
911               // If this is an absolute symbol, and the version name
912               // and symbol name are the same, then this is the
913               // version definition symbol.  These symbols exist to
914               // support using -u to pull in particular versions.  We
915               // do not want to record a version for them.
916               if (sym.get_st_shndx() == elfcpp::SHN_ABS
917                   && name_key == version_key)
918                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
919                                             false, sym, sym);
920               else
921                 {
922                   const bool def = (!hidden
923                                     && (sym.get_st_shndx()
924                                         != elfcpp::SHN_UNDEF));
925                   res = this->add_from_object(dynobj, name, name_key, version,
926                                               version_key, def, sym, sym);
927                 }
928             }
929         }
930
931       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
932           && sym.get_st_type() == elfcpp::STT_OBJECT)
933         object_symbols.push_back(res);
934     }
935
936   this->record_weak_aliases(&object_symbols);
937 }
938
939 // This is used to sort weak aliases.  We sort them first by section
940 // index, then by offset, then by weak ahead of strong.
941
942 template<int size>
943 class Weak_alias_sorter
944 {
945  public:
946   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
947 };
948
949 template<int size>
950 bool
951 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
952                                     const Sized_symbol<size>* s2) const
953 {
954   if (s1->shndx() != s2->shndx())
955     return s1->shndx() < s2->shndx();
956   if (s1->value() != s2->value())
957     return s1->value() < s2->value();
958   if (s1->binding() != s2->binding())
959     {
960       if (s1->binding() == elfcpp::STB_WEAK)
961         return true;
962       if (s2->binding() == elfcpp::STB_WEAK)
963         return false;
964     }
965   return std::string(s1->name()) < std::string(s2->name());
966 }
967
968 // SYMBOLS is a list of object symbols from a dynamic object.  Look
969 // for any weak aliases, and record them so that if we add the weak
970 // alias to the dynamic symbol table, we also add the corresponding
971 // strong symbol.
972
973 template<int size>
974 void
975 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
976 {
977   // Sort the vector by section index, then by offset, then by weak
978   // ahead of strong.
979   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
980
981   // Walk through the vector.  For each weak definition, record
982   // aliases.
983   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
984          symbols->begin();
985        p != symbols->end();
986        ++p)
987     {
988       if ((*p)->binding() != elfcpp::STB_WEAK)
989         continue;
990
991       // Build a circular list of weak aliases.  Each symbol points to
992       // the next one in the circular list.
993
994       Sized_symbol<size>* from_sym = *p;
995       typename std::vector<Sized_symbol<size>*>::const_iterator q;
996       for (q = p + 1; q != symbols->end(); ++q)
997         {
998           if ((*q)->shndx() != from_sym->shndx()
999               || (*q)->value() != from_sym->value())
1000             break;
1001
1002           this->weak_aliases_[from_sym] = *q;
1003           from_sym->set_has_alias();
1004           from_sym = *q;
1005         }
1006
1007       if (from_sym != *p)
1008         {
1009           this->weak_aliases_[from_sym] = *p;
1010           from_sym->set_has_alias();
1011         }
1012
1013       p = q - 1;
1014     }
1015 }
1016
1017 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1018 // true, then only create the symbol if there is a reference to it.
1019 // If this does not return NULL, it sets *POLDSYM to the existing
1020 // symbol if there is one.  This canonicalizes *PNAME and *PVERSION.
1021
1022 template<int size, bool big_endian>
1023 Sized_symbol<size>*
1024 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1025                                     bool only_if_ref,
1026                                     Sized_symbol<size>** poldsym)
1027 {
1028   Symbol* oldsym;
1029   Sized_symbol<size>* sym;
1030   bool add_to_table = false;
1031   typename Symbol_table_type::iterator add_loc = this->table_.end();
1032
1033   // If the caller didn't give us a version, see if we get one from
1034   // the version script.
1035   if (*pversion == NULL)
1036     {
1037       const std::string& v(this->version_script_.get_symbol_version(*pname));
1038       if (!v.empty())
1039         *pversion = v.c_str();
1040     }
1041
1042   if (only_if_ref)
1043     {
1044       oldsym = this->lookup(*pname, *pversion);
1045       if (oldsym == NULL || !oldsym->is_undefined())
1046         return NULL;
1047
1048       *pname = oldsym->name();
1049       *pversion = oldsym->version();
1050     }
1051   else
1052     {
1053       // Canonicalize NAME and VERSION.
1054       Stringpool::Key name_key;
1055       *pname = this->namepool_.add(*pname, true, &name_key);
1056
1057       Stringpool::Key version_key = 0;
1058       if (*pversion != NULL)
1059         *pversion = this->namepool_.add(*pversion, true, &version_key);
1060
1061       Symbol* const snull = NULL;
1062       std::pair<typename Symbol_table_type::iterator, bool> ins =
1063         this->table_.insert(std::make_pair(std::make_pair(name_key,
1064                                                           version_key),
1065                                            snull));
1066
1067       if (!ins.second)
1068         {
1069           // We already have a symbol table entry for NAME/VERSION.
1070           oldsym = ins.first->second;
1071           gold_assert(oldsym != NULL);
1072         }
1073       else
1074         {
1075           // We haven't seen this symbol before.
1076           gold_assert(ins.first->second == NULL);
1077           add_to_table = true;
1078           add_loc = ins.first;
1079           oldsym = NULL;
1080         }
1081     }
1082
1083   const Target& target = parameters->target();
1084   if (!target.has_make_symbol())
1085     sym = new Sized_symbol<size>();
1086   else
1087     {
1088       gold_assert(target.get_size() == size);
1089       gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1090       typedef Sized_target<size, big_endian> My_target;
1091       const My_target* sized_target =
1092           static_cast<const My_target*>(&target);
1093       sym = sized_target->make_symbol();
1094       if (sym == NULL)
1095         return NULL;
1096     }
1097
1098   if (add_to_table)
1099     add_loc->second = sym;
1100   else
1101     gold_assert(oldsym != NULL);
1102
1103   *poldsym = this->get_sized_symbol<size>(oldsym);
1104
1105   return sym;
1106 }
1107
1108 // Define a symbol based on an Output_data.
1109
1110 Symbol*
1111 Symbol_table::define_in_output_data(const char* name,
1112                                     const char* version,
1113                                     Output_data* od,
1114                                     uint64_t value,
1115                                     uint64_t symsize,
1116                                     elfcpp::STT type,
1117                                     elfcpp::STB binding,
1118                                     elfcpp::STV visibility,
1119                                     unsigned char nonvis,
1120                                     bool offset_is_from_end,
1121                                     bool only_if_ref)
1122 {
1123   if (parameters->target().get_size() == 32)
1124     {
1125 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1126       return this->do_define_in_output_data<32>(name, version, od,
1127                                                 value, symsize, type, binding,
1128                                                 visibility, nonvis,
1129                                                 offset_is_from_end,
1130                                                 only_if_ref);
1131 #else
1132       gold_unreachable();
1133 #endif
1134     }
1135   else if (parameters->target().get_size() == 64)
1136     {
1137 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1138       return this->do_define_in_output_data<64>(name, version, od,
1139                                                 value, symsize, type, binding,
1140                                                 visibility, nonvis,
1141                                                 offset_is_from_end,
1142                                                 only_if_ref);
1143 #else
1144       gold_unreachable();
1145 #endif
1146     }
1147   else
1148     gold_unreachable();
1149 }
1150
1151 // Define a symbol in an Output_data, sized version.
1152
1153 template<int size>
1154 Sized_symbol<size>*
1155 Symbol_table::do_define_in_output_data(
1156     const char* name,
1157     const char* version,
1158     Output_data* od,
1159     typename elfcpp::Elf_types<size>::Elf_Addr value,
1160     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1161     elfcpp::STT type,
1162     elfcpp::STB binding,
1163     elfcpp::STV visibility,
1164     unsigned char nonvis,
1165     bool offset_is_from_end,
1166     bool only_if_ref)
1167 {
1168   Sized_symbol<size>* sym;
1169   Sized_symbol<size>* oldsym;
1170
1171   if (parameters->target().is_big_endian())
1172     {
1173 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1174       sym = this->define_special_symbol<size, true>(&name, &version,
1175                                                     only_if_ref, &oldsym);
1176 #else
1177       gold_unreachable();
1178 #endif
1179     }
1180   else
1181     {
1182 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1183       sym = this->define_special_symbol<size, false>(&name, &version,
1184                                                      only_if_ref, &oldsym);
1185 #else
1186       gold_unreachable();
1187 #endif
1188     }
1189
1190   if (sym == NULL)
1191     return NULL;
1192
1193   gold_assert(version == NULL || oldsym != NULL);
1194   sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1195             offset_is_from_end);
1196
1197   if (oldsym == NULL)
1198     {
1199       if (binding == elfcpp::STB_LOCAL
1200           || this->version_script_.symbol_is_local(name))
1201         this->force_local(sym);
1202       return sym;
1203     }
1204
1205   if (Symbol_table::should_override_with_special(oldsym))
1206     this->override_with_special(oldsym, sym);
1207   delete sym;
1208   return oldsym;
1209 }
1210
1211 // Define a symbol based on an Output_segment.
1212
1213 Symbol*
1214 Symbol_table::define_in_output_segment(const char* name,
1215                                        const char* version, Output_segment* os,
1216                                        uint64_t value,
1217                                        uint64_t symsize,
1218                                        elfcpp::STT type,
1219                                        elfcpp::STB binding,
1220                                        elfcpp::STV visibility,
1221                                        unsigned char nonvis,
1222                                        Symbol::Segment_offset_base offset_base,
1223                                        bool only_if_ref)
1224 {
1225   if (parameters->target().get_size() == 32)
1226     {
1227 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1228       return this->do_define_in_output_segment<32>(name, version, os,
1229                                                    value, symsize, type,
1230                                                    binding, visibility, nonvis,
1231                                                    offset_base, only_if_ref);
1232 #else
1233       gold_unreachable();
1234 #endif
1235     }
1236   else if (parameters->target().get_size() == 64)
1237     {
1238 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1239       return this->do_define_in_output_segment<64>(name, version, os,
1240                                                    value, symsize, type,
1241                                                    binding, visibility, nonvis,
1242                                                    offset_base, only_if_ref);
1243 #else
1244       gold_unreachable();
1245 #endif
1246     }
1247   else
1248     gold_unreachable();
1249 }
1250
1251 // Define a symbol in an Output_segment, sized version.
1252
1253 template<int size>
1254 Sized_symbol<size>*
1255 Symbol_table::do_define_in_output_segment(
1256     const char* name,
1257     const char* version,
1258     Output_segment* os,
1259     typename elfcpp::Elf_types<size>::Elf_Addr value,
1260     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1261     elfcpp::STT type,
1262     elfcpp::STB binding,
1263     elfcpp::STV visibility,
1264     unsigned char nonvis,
1265     Symbol::Segment_offset_base offset_base,
1266     bool only_if_ref)
1267 {
1268   Sized_symbol<size>* sym;
1269   Sized_symbol<size>* oldsym;
1270
1271   if (parameters->target().is_big_endian())
1272     {
1273 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1274       sym = this->define_special_symbol<size, true>(&name, &version,
1275                                                     only_if_ref, &oldsym);
1276 #else
1277       gold_unreachable();
1278 #endif
1279     }
1280   else
1281     {
1282 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1283       sym = this->define_special_symbol<size, false>(&name, &version,
1284                                                      only_if_ref, &oldsym);
1285 #else
1286       gold_unreachable();
1287 #endif
1288     }
1289
1290   if (sym == NULL)
1291     return NULL;
1292
1293   gold_assert(version == NULL || oldsym != NULL);
1294   sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1295             offset_base);
1296
1297   if (oldsym == NULL)
1298     {
1299       if (binding == elfcpp::STB_LOCAL
1300           || this->version_script_.symbol_is_local(name))
1301         this->force_local(sym);
1302       return sym;
1303     }
1304
1305   if (Symbol_table::should_override_with_special(oldsym))
1306     this->override_with_special(oldsym, sym);
1307   delete sym;
1308   return oldsym;
1309 }
1310
1311 // Define a special symbol with a constant value.  It is a multiple
1312 // definition error if this symbol is already defined.
1313
1314 Symbol*
1315 Symbol_table::define_as_constant(const char* name,
1316                                  const char* version,
1317                                  uint64_t value,
1318                                  uint64_t symsize,
1319                                  elfcpp::STT type,
1320                                  elfcpp::STB binding,
1321                                  elfcpp::STV visibility,
1322                                  unsigned char nonvis,
1323                                  bool only_if_ref,
1324                                  bool force_override)
1325 {
1326   if (parameters->target().get_size() == 32)
1327     {
1328 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1329       return this->do_define_as_constant<32>(name, version, value,
1330                                              symsize, type, binding,
1331                                              visibility, nonvis, only_if_ref,
1332                                              force_override);
1333 #else
1334       gold_unreachable();
1335 #endif
1336     }
1337   else if (parameters->target().get_size() == 64)
1338     {
1339 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1340       return this->do_define_as_constant<64>(name, version, value,
1341                                              symsize, type, binding,
1342                                              visibility, nonvis, only_if_ref,
1343                                              force_override);
1344 #else
1345       gold_unreachable();
1346 #endif
1347     }
1348   else
1349     gold_unreachable();
1350 }
1351
1352 // Define a symbol as a constant, sized version.
1353
1354 template<int size>
1355 Sized_symbol<size>*
1356 Symbol_table::do_define_as_constant(
1357     const char* name,
1358     const char* version,
1359     typename elfcpp::Elf_types<size>::Elf_Addr value,
1360     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1361     elfcpp::STT type,
1362     elfcpp::STB binding,
1363     elfcpp::STV visibility,
1364     unsigned char nonvis,
1365     bool only_if_ref,
1366     bool force_override)
1367 {
1368   Sized_symbol<size>* sym;
1369   Sized_symbol<size>* oldsym;
1370
1371   if (parameters->target().is_big_endian())
1372     {
1373 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1374       sym = this->define_special_symbol<size, true>(&name, &version,
1375                                                     only_if_ref, &oldsym);
1376 #else
1377       gold_unreachable();
1378 #endif
1379     }
1380   else
1381     {
1382 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1383       sym = this->define_special_symbol<size, false>(&name, &version,
1384                                                      only_if_ref, &oldsym);
1385 #else
1386       gold_unreachable();
1387 #endif
1388     }
1389
1390   if (sym == NULL)
1391     return NULL;
1392
1393   gold_assert(version == NULL || version == name || oldsym != NULL);
1394   sym->init(name, value, symsize, type, binding, visibility, nonvis);
1395
1396   if (oldsym == NULL)
1397     {
1398       if (binding == elfcpp::STB_LOCAL
1399           || this->version_script_.symbol_is_local(name))
1400         this->force_local(sym);
1401       return sym;
1402     }
1403
1404   if (force_override || Symbol_table::should_override_with_special(oldsym))
1405     this->override_with_special(oldsym, sym);
1406   delete sym;
1407   return oldsym;
1408 }
1409
1410 // Define a set of symbols in output sections.
1411
1412 void
1413 Symbol_table::define_symbols(const Layout* layout, int count,
1414                              const Define_symbol_in_section* p,
1415                              bool only_if_ref)
1416 {
1417   for (int i = 0; i < count; ++i, ++p)
1418     {
1419       Output_section* os = layout->find_output_section(p->output_section);
1420       if (os != NULL)
1421         this->define_in_output_data(p->name, NULL, os, p->value,
1422                                     p->size, p->type, p->binding,
1423                                     p->visibility, p->nonvis,
1424                                     p->offset_is_from_end,
1425                                     only_if_ref || p->only_if_ref);
1426       else
1427         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1428                                  p->binding, p->visibility, p->nonvis,
1429                                  only_if_ref || p->only_if_ref,
1430                                  false);
1431     }
1432 }
1433
1434 // Define a set of symbols in output segments.
1435
1436 void
1437 Symbol_table::define_symbols(const Layout* layout, int count,
1438                              const Define_symbol_in_segment* p,
1439                              bool only_if_ref)
1440 {
1441   for (int i = 0; i < count; ++i, ++p)
1442     {
1443       Output_segment* os = layout->find_output_segment(p->segment_type,
1444                                                        p->segment_flags_set,
1445                                                        p->segment_flags_clear);
1446       if (os != NULL)
1447         this->define_in_output_segment(p->name, NULL, os, p->value,
1448                                        p->size, p->type, p->binding,
1449                                        p->visibility, p->nonvis,
1450                                        p->offset_base,
1451                                        only_if_ref || p->only_if_ref);
1452       else
1453         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1454                                  p->binding, p->visibility, p->nonvis,
1455                                  only_if_ref || p->only_if_ref,
1456                                  false);
1457     }
1458 }
1459
1460 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
1461 // symbol should be defined--typically a .dyn.bss section.  VALUE is
1462 // the offset within POSD.
1463
1464 template<int size>
1465 void
1466 Symbol_table::define_with_copy_reloc(
1467     Sized_symbol<size>* csym,
1468     Output_data* posd,
1469     typename elfcpp::Elf_types<size>::Elf_Addr value)
1470 {
1471   gold_assert(csym->is_from_dynobj());
1472   gold_assert(!csym->is_copied_from_dynobj());
1473   Object* object = csym->object();
1474   gold_assert(object->is_dynamic());
1475   Dynobj* dynobj = static_cast<Dynobj*>(object);
1476
1477   // Our copied variable has to override any variable in a shared
1478   // library.
1479   elfcpp::STB binding = csym->binding();
1480   if (binding == elfcpp::STB_WEAK)
1481     binding = elfcpp::STB_GLOBAL;
1482
1483   this->define_in_output_data(csym->name(), csym->version(),
1484                               posd, value, csym->symsize(),
1485                               csym->type(), binding,
1486                               csym->visibility(), csym->nonvis(),
1487                               false, false);
1488
1489   csym->set_is_copied_from_dynobj();
1490   csym->set_needs_dynsym_entry();
1491
1492   this->copied_symbol_dynobjs_[csym] = dynobj;
1493
1494   // We have now defined all aliases, but we have not entered them all
1495   // in the copied_symbol_dynobjs_ map.
1496   if (csym->has_alias())
1497     {
1498       Symbol* sym = csym;
1499       while (true)
1500         {
1501           sym = this->weak_aliases_[sym];
1502           if (sym == csym)
1503             break;
1504           gold_assert(sym->output_data() == posd);
1505
1506           sym->set_is_copied_from_dynobj();
1507           this->copied_symbol_dynobjs_[sym] = dynobj;
1508         }
1509     }
1510 }
1511
1512 // SYM is defined using a COPY reloc.  Return the dynamic object where
1513 // the original definition was found.
1514
1515 Dynobj*
1516 Symbol_table::get_copy_source(const Symbol* sym) const
1517 {
1518   gold_assert(sym->is_copied_from_dynobj());
1519   Copied_symbol_dynobjs::const_iterator p =
1520     this->copied_symbol_dynobjs_.find(sym);
1521   gold_assert(p != this->copied_symbol_dynobjs_.end());
1522   return p->second;
1523 }
1524
1525 // Set the dynamic symbol indexes.  INDEX is the index of the first
1526 // global dynamic symbol.  Pointers to the symbols are stored into the
1527 // vector SYMS.  The names are added to DYNPOOL.  This returns an
1528 // updated dynamic symbol index.
1529
1530 unsigned int
1531 Symbol_table::set_dynsym_indexes(unsigned int index,
1532                                  std::vector<Symbol*>* syms,
1533                                  Stringpool* dynpool,
1534                                  Versions* versions)
1535 {
1536   for (Symbol_table_type::iterator p = this->table_.begin();
1537        p != this->table_.end();
1538        ++p)
1539     {
1540       Symbol* sym = p->second;
1541
1542       // Note that SYM may already have a dynamic symbol index, since
1543       // some symbols appear more than once in the symbol table, with
1544       // and without a version.
1545
1546       if (!sym->should_add_dynsym_entry())
1547         sym->set_dynsym_index(-1U);
1548       else if (!sym->has_dynsym_index())
1549         {
1550           sym->set_dynsym_index(index);
1551           ++index;
1552           syms->push_back(sym);
1553           dynpool->add(sym->name(), false, NULL);
1554
1555           // Record any version information.
1556           if (sym->version() != NULL)
1557             versions->record_version(this, dynpool, sym);
1558         }
1559     }
1560
1561   // Finish up the versions.  In some cases this may add new dynamic
1562   // symbols.
1563   index = versions->finalize(this, index, syms);
1564
1565   return index;
1566 }
1567
1568 // Set the final values for all the symbols.  The index of the first
1569 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
1570 // file offset OFF.  Add their names to POOL.  Return the new file
1571 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
1572
1573 off_t
1574 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1575                        size_t dyncount, Stringpool* pool,
1576                        unsigned int *plocal_symcount)
1577 {
1578   off_t ret;
1579
1580   gold_assert(*plocal_symcount != 0);
1581   this->first_global_index_ = *plocal_symcount;
1582
1583   this->dynamic_offset_ = dynoff;
1584   this->first_dynamic_global_index_ = dyn_global_index;
1585   this->dynamic_count_ = dyncount;
1586
1587   if (parameters->target().get_size() == 32)
1588     {
1589 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1590       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
1591 #else
1592       gold_unreachable();
1593 #endif
1594     }
1595   else if (parameters->target().get_size() == 64)
1596     {
1597 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1598       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
1599 #else
1600       gold_unreachable();
1601 #endif
1602     }
1603   else
1604     gold_unreachable();
1605
1606   // Now that we have the final symbol table, we can reliably note
1607   // which symbols should get warnings.
1608   this->warnings_.note_warnings(this);
1609
1610   return ret;
1611 }
1612
1613 // SYM is going into the symbol table at *PINDEX.  Add the name to
1614 // POOL, update *PINDEX and *POFF.
1615
1616 template<int size>
1617 void
1618 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1619                                   unsigned int* pindex, off_t* poff)
1620 {
1621   sym->set_symtab_index(*pindex);
1622   pool->add(sym->name(), false, NULL);
1623   ++*pindex;
1624   *poff += elfcpp::Elf_sizes<size>::sym_size;
1625 }
1626
1627 // Set the final value for all the symbols.  This is called after
1628 // Layout::finalize, so all the output sections have their final
1629 // address.
1630
1631 template<int size>
1632 off_t
1633 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1634                              unsigned int* plocal_symcount)
1635 {
1636   off = align_address(off, size >> 3);
1637   this->offset_ = off;
1638
1639   unsigned int index = *plocal_symcount;
1640   const unsigned int orig_index = index;
1641
1642   // First do all the symbols which have been forced to be local, as
1643   // they must appear before all global symbols.
1644   for (Forced_locals::iterator p = this->forced_locals_.begin();
1645        p != this->forced_locals_.end();
1646        ++p)
1647     {
1648       Symbol* sym = *p;
1649       gold_assert(sym->is_forced_local());
1650       if (this->sized_finalize_symbol<size>(sym))
1651         {
1652           this->add_to_final_symtab<size>(sym, pool, &index, &off);
1653           ++*plocal_symcount;
1654         }
1655     }
1656
1657   // Now do all the remaining symbols.
1658   for (Symbol_table_type::iterator p = this->table_.begin();
1659        p != this->table_.end();
1660        ++p)
1661     {
1662       Symbol* sym = p->second;
1663       if (this->sized_finalize_symbol<size>(sym))
1664         this->add_to_final_symtab<size>(sym, pool, &index, &off);
1665     }
1666
1667   this->output_count_ = index - orig_index;
1668
1669   return off;
1670 }
1671
1672 // Finalize the symbol SYM.  This returns true if the symbol should be
1673 // added to the symbol table, false otherwise.
1674
1675 template<int size>
1676 bool
1677 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
1678 {
1679   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
1680
1681   // The default version of a symbol may appear twice in the symbol
1682   // table.  We only need to finalize it once.
1683   if (sym->has_symtab_index())
1684     return false;
1685
1686   if (!sym->in_reg())
1687     {
1688       gold_assert(!sym->has_symtab_index());
1689       sym->set_symtab_index(-1U);
1690       gold_assert(sym->dynsym_index() == -1U);
1691       return false;
1692     }
1693
1694   typename Sized_symbol<size>::Value_type value;
1695
1696   switch (sym->source())
1697     {
1698     case Symbol::FROM_OBJECT:
1699       {
1700         unsigned int shndx = sym->shndx();
1701
1702         // FIXME: We need some target specific support here.
1703         if (shndx >= elfcpp::SHN_LORESERVE
1704             && shndx != elfcpp::SHN_ABS
1705             && shndx != elfcpp::SHN_COMMON)
1706           {
1707             gold_error(_("%s: unsupported symbol section 0x%x"),
1708                        sym->demangled_name().c_str(), shndx);
1709             shndx = elfcpp::SHN_UNDEF;
1710           }
1711
1712         Object* symobj = sym->object();
1713         if (symobj->is_dynamic())
1714           {
1715             value = 0;
1716             shndx = elfcpp::SHN_UNDEF;
1717           }
1718         else if (shndx == elfcpp::SHN_UNDEF)
1719           value = 0;
1720         else if (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON)
1721           value = sym->value();
1722         else
1723           {
1724             Relobj* relobj = static_cast<Relobj*>(symobj);
1725             section_offset_type secoff;
1726             Output_section* os = relobj->output_section(shndx, &secoff);
1727
1728             if (os == NULL)
1729               {
1730                 sym->set_symtab_index(-1U);
1731                 gold_assert(sym->dynsym_index() == -1U);
1732                 return false;
1733               }
1734
1735             if (sym->type() == elfcpp::STT_TLS)
1736               value = sym->value() + os->tls_offset() + secoff;
1737             else
1738               value = sym->value() + os->address() + secoff;
1739           }
1740       }
1741       break;
1742
1743     case Symbol::IN_OUTPUT_DATA:
1744       {
1745         Output_data* od = sym->output_data();
1746         value = sym->value() + od->address();
1747         if (sym->offset_is_from_end())
1748           value += od->data_size();
1749       }
1750       break;
1751
1752     case Symbol::IN_OUTPUT_SEGMENT:
1753       {
1754         Output_segment* os = sym->output_segment();
1755         value = sym->value() + os->vaddr();
1756         switch (sym->offset_base())
1757           {
1758           case Symbol::SEGMENT_START:
1759             break;
1760           case Symbol::SEGMENT_END:
1761             value += os->memsz();
1762             break;
1763           case Symbol::SEGMENT_BSS:
1764             value += os->filesz();
1765             break;
1766           default:
1767             gold_unreachable();
1768           }
1769       }
1770       break;
1771
1772     case Symbol::CONSTANT:
1773       value = sym->value();
1774       break;
1775
1776     default:
1777       gold_unreachable();
1778     }
1779
1780   sym->set_value(value);
1781
1782   if (parameters->options().strip_all())
1783     {
1784       sym->set_symtab_index(-1U);
1785       return false;
1786     }
1787
1788   return true;
1789 }
1790
1791 // Write out the global symbols.
1792
1793 void
1794 Symbol_table::write_globals(const Input_objects* input_objects,
1795                             const Stringpool* sympool,
1796                             const Stringpool* dynpool, Output_file* of) const
1797 {
1798   switch (parameters->size_and_endianness())
1799     {
1800 #ifdef HAVE_TARGET_32_LITTLE
1801     case Parameters::TARGET_32_LITTLE:
1802       this->sized_write_globals<32, false>(input_objects, sympool,
1803                                            dynpool, of);
1804       break;
1805 #endif
1806 #ifdef HAVE_TARGET_32_BIG
1807     case Parameters::TARGET_32_BIG:
1808       this->sized_write_globals<32, true>(input_objects, sympool,
1809                                           dynpool, of);
1810       break;
1811 #endif
1812 #ifdef HAVE_TARGET_64_LITTLE
1813     case Parameters::TARGET_64_LITTLE:
1814       this->sized_write_globals<64, false>(input_objects, sympool,
1815                                            dynpool, of);
1816       break;
1817 #endif
1818 #ifdef HAVE_TARGET_64_BIG
1819     case Parameters::TARGET_64_BIG:
1820       this->sized_write_globals<64, true>(input_objects, sympool,
1821                                           dynpool, of);
1822       break;
1823 #endif
1824     default:
1825       gold_unreachable();
1826     }
1827 }
1828
1829 // Write out the global symbols.
1830
1831 template<int size, bool big_endian>
1832 void
1833 Symbol_table::sized_write_globals(const Input_objects* input_objects,
1834                                   const Stringpool* sympool,
1835                                   const Stringpool* dynpool,
1836                                   Output_file* of) const
1837 {
1838   const Target& target = parameters->target();
1839
1840   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1841
1842   const unsigned int output_count = this->output_count_;
1843   const section_size_type oview_size = output_count * sym_size;
1844   const unsigned int first_global_index = this->first_global_index_;
1845   unsigned char* psyms;
1846   if (this->offset_ == 0 || output_count == 0)
1847     psyms = NULL;
1848   else
1849     psyms = of->get_output_view(this->offset_, oview_size);
1850
1851   const unsigned int dynamic_count = this->dynamic_count_;
1852   const section_size_type dynamic_size = dynamic_count * sym_size;
1853   const unsigned int first_dynamic_global_index =
1854     this->first_dynamic_global_index_;
1855   unsigned char* dynamic_view;
1856   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
1857     dynamic_view = NULL;
1858   else
1859     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1860
1861   for (Symbol_table_type::const_iterator p = this->table_.begin();
1862        p != this->table_.end();
1863        ++p)
1864     {
1865       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1866
1867       // Possibly warn about unresolved symbols in shared libraries.
1868       this->warn_about_undefined_dynobj_symbol(input_objects, sym);
1869
1870       unsigned int sym_index = sym->symtab_index();
1871       unsigned int dynsym_index;
1872       if (dynamic_view == NULL)
1873         dynsym_index = -1U;
1874       else
1875         dynsym_index = sym->dynsym_index();
1876
1877       if (sym_index == -1U && dynsym_index == -1U)
1878         {
1879           // This symbol is not included in the output file.
1880           continue;
1881         }
1882
1883       unsigned int shndx;
1884       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
1885       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
1886       switch (sym->source())
1887         {
1888         case Symbol::FROM_OBJECT:
1889           {
1890             unsigned int in_shndx = sym->shndx();
1891
1892             // FIXME: We need some target specific support here.
1893             if (in_shndx >= elfcpp::SHN_LORESERVE
1894                 && in_shndx != elfcpp::SHN_ABS
1895                 && in_shndx != elfcpp::SHN_COMMON)
1896               {
1897                 gold_error(_("%s: unsupported symbol section 0x%x"),
1898                            sym->demangled_name().c_str(), in_shndx);
1899                 shndx = in_shndx;
1900               }
1901             else
1902               {
1903                 Object* symobj = sym->object();
1904                 if (symobj->is_dynamic())
1905                   {
1906                     if (sym->needs_dynsym_value())
1907                       dynsym_value = target.dynsym_value(sym);
1908                     shndx = elfcpp::SHN_UNDEF;
1909                   }
1910                 else if (in_shndx == elfcpp::SHN_UNDEF
1911                          || in_shndx == elfcpp::SHN_ABS
1912                          || in_shndx == elfcpp::SHN_COMMON)
1913                   shndx = in_shndx;
1914                 else
1915                   {
1916                     Relobj* relobj = static_cast<Relobj*>(symobj);
1917                     section_offset_type secoff;
1918                     Output_section* os = relobj->output_section(in_shndx,
1919                                                                 &secoff);
1920                     gold_assert(os != NULL);
1921                     shndx = os->out_shndx();
1922
1923                     // In object files symbol values are section
1924                     // relative.
1925                     if (parameters->options().relocatable())
1926                       sym_value -= os->address();
1927                   }
1928               }
1929           }
1930           break;
1931
1932         case Symbol::IN_OUTPUT_DATA:
1933           shndx = sym->output_data()->out_shndx();
1934           break;
1935
1936         case Symbol::IN_OUTPUT_SEGMENT:
1937           shndx = elfcpp::SHN_ABS;
1938           break;
1939
1940         case Symbol::CONSTANT:
1941           shndx = elfcpp::SHN_ABS;
1942           break;
1943
1944         default:
1945           gold_unreachable();
1946         }
1947
1948       if (sym_index != -1U)
1949         {
1950           sym_index -= first_global_index;
1951           gold_assert(sym_index < output_count);
1952           unsigned char* ps = psyms + (sym_index * sym_size);
1953           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
1954                                                      sympool, ps);
1955         }
1956
1957       if (dynsym_index != -1U)
1958         {
1959           dynsym_index -= first_dynamic_global_index;
1960           gold_assert(dynsym_index < dynamic_count);
1961           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1962           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
1963                                                      dynpool, pd);
1964         }
1965     }
1966
1967   of->write_output_view(this->offset_, oview_size, psyms);
1968   if (dynamic_view != NULL)
1969     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1970 }
1971
1972 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
1973 // strtab holding the name.
1974
1975 template<int size, bool big_endian>
1976 void
1977 Symbol_table::sized_write_symbol(
1978     Sized_symbol<size>* sym,
1979     typename elfcpp::Elf_types<size>::Elf_Addr value,
1980     unsigned int shndx,
1981     const Stringpool* pool,
1982     unsigned char* p) const
1983 {
1984   elfcpp::Sym_write<size, big_endian> osym(p);
1985   osym.put_st_name(pool->get_offset(sym->name()));
1986   osym.put_st_value(value);
1987   osym.put_st_size(sym->symsize());
1988   // A version script may have overridden the default binding.
1989   if (sym->is_forced_local())
1990     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
1991   else
1992     osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1993   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1994   osym.put_st_shndx(shndx);
1995 }
1996
1997 // Check for unresolved symbols in shared libraries.  This is
1998 // controlled by the --allow-shlib-undefined option.
1999
2000 // We only warn about libraries for which we have seen all the
2001 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
2002 // which were not seen in this link.  If we didn't see a DT_NEEDED
2003 // entry, we aren't going to be able to reliably report whether the
2004 // symbol is undefined.
2005
2006 // We also don't warn about libraries found in the system library
2007 // directory (the directory were we find libc.so); we assume that
2008 // those libraries are OK.  This heuristic avoids problems in
2009 // GNU/Linux, in which -ldl can have undefined references satisfied by
2010 // ld-linux.so.
2011
2012 inline void
2013 Symbol_table::warn_about_undefined_dynobj_symbol(
2014     const Input_objects* input_objects,
2015     Symbol* sym) const
2016 {
2017   if (sym->source() == Symbol::FROM_OBJECT
2018       && sym->object()->is_dynamic()
2019       && sym->shndx() == elfcpp::SHN_UNDEF
2020       && sym->binding() != elfcpp::STB_WEAK
2021       && !parameters->options().allow_shlib_undefined()
2022       && !parameters->target().is_defined_by_abi(sym)
2023       && !input_objects->found_in_system_library_directory(sym->object()))
2024     {
2025       // A very ugly cast.
2026       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2027       if (!dynobj->has_unknown_needed_entries())
2028         gold_error(_("%s: undefined reference to '%s'"),
2029                    sym->object()->name().c_str(),
2030                    sym->demangled_name().c_str());
2031     }
2032 }
2033
2034 // Write out a section symbol.  Return the update offset.
2035
2036 void
2037 Symbol_table::write_section_symbol(const Output_section *os,
2038                                    Output_file* of,
2039                                    off_t offset) const
2040 {
2041   switch (parameters->size_and_endianness())
2042     {
2043 #ifdef HAVE_TARGET_32_LITTLE
2044     case Parameters::TARGET_32_LITTLE:
2045       this->sized_write_section_symbol<32, false>(os, of, offset);
2046       break;
2047 #endif
2048 #ifdef HAVE_TARGET_32_BIG
2049     case Parameters::TARGET_32_BIG:
2050       this->sized_write_section_symbol<32, true>(os, of, offset);
2051       break;
2052 #endif
2053 #ifdef HAVE_TARGET_64_LITTLE
2054     case Parameters::TARGET_64_LITTLE:
2055       this->sized_write_section_symbol<64, false>(os, of, offset);
2056       break;
2057 #endif
2058 #ifdef HAVE_TARGET_64_BIG
2059     case Parameters::TARGET_64_BIG:
2060       this->sized_write_section_symbol<64, true>(os, of, offset);
2061       break;
2062 #endif
2063     default:
2064       gold_unreachable();
2065     }
2066 }
2067
2068 // Write out a section symbol, specialized for size and endianness.
2069
2070 template<int size, bool big_endian>
2071 void
2072 Symbol_table::sized_write_section_symbol(const Output_section* os,
2073                                          Output_file* of,
2074                                          off_t offset) const
2075 {
2076   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2077
2078   unsigned char* pov = of->get_output_view(offset, sym_size);
2079
2080   elfcpp::Sym_write<size, big_endian> osym(pov);
2081   osym.put_st_name(0);
2082   osym.put_st_value(os->address());
2083   osym.put_st_size(0);
2084   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2085                                        elfcpp::STT_SECTION));
2086   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2087   osym.put_st_shndx(os->out_shndx());
2088
2089   of->write_output_view(offset, sym_size, pov);
2090 }
2091
2092 // Print statistical information to stderr.  This is used for --stats.
2093
2094 void
2095 Symbol_table::print_stats() const
2096 {
2097 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2098   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2099           program_name, this->table_.size(), this->table_.bucket_count());
2100 #else
2101   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2102           program_name, this->table_.size());
2103 #endif
2104   this->namepool_.print_stats("symbol table stringpool");
2105 }
2106
2107 // We check for ODR violations by looking for symbols with the same
2108 // name for which the debugging information reports that they were
2109 // defined in different source locations.  When comparing the source
2110 // location, we consider instances with the same base filename and
2111 // line number to be the same.  This is because different object
2112 // files/shared libraries can include the same header file using
2113 // different paths, and we don't want to report an ODR violation in
2114 // that case.
2115
2116 // This struct is used to compare line information, as returned by
2117 // Dwarf_line_info::one_addr2line.  It implements a < comparison
2118 // operator used with std::set.
2119
2120 struct Odr_violation_compare
2121 {
2122   bool
2123   operator()(const std::string& s1, const std::string& s2) const
2124   {
2125     std::string::size_type pos1 = s1.rfind('/');
2126     std::string::size_type pos2 = s2.rfind('/');
2127     if (pos1 == std::string::npos
2128         || pos2 == std::string::npos)
2129       return s1 < s2;
2130     return s1.compare(pos1, std::string::npos,
2131                       s2, pos2, std::string::npos) < 0;
2132   }
2133 };
2134
2135 // Check candidate_odr_violations_ to find symbols with the same name
2136 // but apparently different definitions (different source-file/line-no).
2137
2138 void
2139 Symbol_table::detect_odr_violations(const Task* task,
2140                                     const char* output_file_name) const
2141 {
2142   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2143        it != candidate_odr_violations_.end();
2144        ++it)
2145     {
2146       const char* symbol_name = it->first;
2147       // We use a sorted set so the output is deterministic.
2148       std::set<std::string, Odr_violation_compare> line_nums;
2149
2150       for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2151                locs = it->second.begin();
2152            locs != it->second.end();
2153            ++locs)
2154         {
2155           // We need to lock the object in order to read it.  This
2156           // means that we have to run in a singleton Task.  If we
2157           // want to run this in a general Task for better
2158           // performance, we will need one Task for object, plus
2159           // appropriate locking to ensure that we don't conflict with
2160           // other uses of the object.
2161           Task_lock_obj<Object> tl(task, locs->object);
2162           std::string lineno = Dwarf_line_info::one_addr2line(
2163               locs->object, locs->shndx, locs->offset);
2164           if (!lineno.empty())
2165             line_nums.insert(lineno);
2166         }
2167
2168       if (line_nums.size() > 1)
2169         {
2170           gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2171                          "places (possible ODR violation):"),
2172                        output_file_name, demangle(symbol_name).c_str());
2173           for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2174                it2 != line_nums.end();
2175                ++it2)
2176             fprintf(stderr, "  %s\n", it2->c_str());
2177         }
2178     }
2179 }
2180
2181 // Warnings functions.
2182
2183 // Add a new warning.
2184
2185 void
2186 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2187                       const std::string& warning)
2188 {
2189   name = symtab->canonicalize_name(name);
2190   this->warnings_[name].set(obj, warning);
2191 }
2192
2193 // Look through the warnings and mark the symbols for which we should
2194 // warn.  This is called during Layout::finalize when we know the
2195 // sources for all the symbols.
2196
2197 void
2198 Warnings::note_warnings(Symbol_table* symtab)
2199 {
2200   for (Warning_table::iterator p = this->warnings_.begin();
2201        p != this->warnings_.end();
2202        ++p)
2203     {
2204       Symbol* sym = symtab->lookup(p->first, NULL);
2205       if (sym != NULL
2206           && sym->source() == Symbol::FROM_OBJECT
2207           && sym->object() == p->second.object)
2208         sym->set_has_warning();
2209     }
2210 }
2211
2212 // Issue a warning.  This is called when we see a relocation against a
2213 // symbol for which has a warning.
2214
2215 template<int size, bool big_endian>
2216 void
2217 Warnings::issue_warning(const Symbol* sym,
2218                         const Relocate_info<size, big_endian>* relinfo,
2219                         size_t relnum, off_t reloffset) const
2220 {
2221   gold_assert(sym->has_warning());
2222   Warning_table::const_iterator p = this->warnings_.find(sym->name());
2223   gold_assert(p != this->warnings_.end());
2224   gold_warning_at_location(relinfo, relnum, reloffset,
2225                            "%s", p->second.text.c_str());
2226 }
2227
2228 // Instantiate the templates we need.  We could use the configure
2229 // script to restrict this to only the ones needed for implemented
2230 // targets.
2231
2232 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2233 template
2234 void
2235 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2236 #endif
2237
2238 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2239 template
2240 void
2241 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2242 #endif
2243
2244 #ifdef HAVE_TARGET_32_LITTLE
2245 template
2246 void
2247 Symbol_table::add_from_relobj<32, false>(
2248     Sized_relobj<32, false>* relobj,
2249     const unsigned char* syms,
2250     size_t count,
2251     const char* sym_names,
2252     size_t sym_name_size,
2253     Sized_relobj<32, true>::Symbols* sympointers);
2254 #endif
2255
2256 #ifdef HAVE_TARGET_32_BIG
2257 template
2258 void
2259 Symbol_table::add_from_relobj<32, true>(
2260     Sized_relobj<32, true>* relobj,
2261     const unsigned char* syms,
2262     size_t count,
2263     const char* sym_names,
2264     size_t sym_name_size,
2265     Sized_relobj<32, false>::Symbols* sympointers);
2266 #endif
2267
2268 #ifdef HAVE_TARGET_64_LITTLE
2269 template
2270 void
2271 Symbol_table::add_from_relobj<64, false>(
2272     Sized_relobj<64, false>* relobj,
2273     const unsigned char* syms,
2274     size_t count,
2275     const char* sym_names,
2276     size_t sym_name_size,
2277     Sized_relobj<64, true>::Symbols* sympointers);
2278 #endif
2279
2280 #ifdef HAVE_TARGET_64_BIG
2281 template
2282 void
2283 Symbol_table::add_from_relobj<64, true>(
2284     Sized_relobj<64, true>* relobj,
2285     const unsigned char* syms,
2286     size_t count,
2287     const char* sym_names,
2288     size_t sym_name_size,
2289     Sized_relobj<64, false>::Symbols* sympointers);
2290 #endif
2291
2292 #ifdef HAVE_TARGET_32_LITTLE
2293 template
2294 void
2295 Symbol_table::add_from_dynobj<32, false>(
2296     Sized_dynobj<32, false>* dynobj,
2297     const unsigned char* syms,
2298     size_t count,
2299     const char* sym_names,
2300     size_t sym_name_size,
2301     const unsigned char* versym,
2302     size_t versym_size,
2303     const std::vector<const char*>* version_map);
2304 #endif
2305
2306 #ifdef HAVE_TARGET_32_BIG
2307 template
2308 void
2309 Symbol_table::add_from_dynobj<32, true>(
2310     Sized_dynobj<32, true>* dynobj,
2311     const unsigned char* syms,
2312     size_t count,
2313     const char* sym_names,
2314     size_t sym_name_size,
2315     const unsigned char* versym,
2316     size_t versym_size,
2317     const std::vector<const char*>* version_map);
2318 #endif
2319
2320 #ifdef HAVE_TARGET_64_LITTLE
2321 template
2322 void
2323 Symbol_table::add_from_dynobj<64, false>(
2324     Sized_dynobj<64, false>* dynobj,
2325     const unsigned char* syms,
2326     size_t count,
2327     const char* sym_names,
2328     size_t sym_name_size,
2329     const unsigned char* versym,
2330     size_t versym_size,
2331     const std::vector<const char*>* version_map);
2332 #endif
2333
2334 #ifdef HAVE_TARGET_64_BIG
2335 template
2336 void
2337 Symbol_table::add_from_dynobj<64, true>(
2338     Sized_dynobj<64, true>* dynobj,
2339     const unsigned char* syms,
2340     size_t count,
2341     const char* sym_names,
2342     size_t sym_name_size,
2343     const unsigned char* versym,
2344     size_t versym_size,
2345     const std::vector<const char*>* version_map);
2346 #endif
2347
2348 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2349 template
2350 void
2351 Symbol_table::define_with_copy_reloc<32>(
2352     Sized_symbol<32>* sym,
2353     Output_data* posd,
2354     elfcpp::Elf_types<32>::Elf_Addr value);
2355 #endif
2356
2357 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2358 template
2359 void
2360 Symbol_table::define_with_copy_reloc<64>(
2361     Sized_symbol<64>* sym,
2362     Output_data* posd,
2363     elfcpp::Elf_types<64>::Elf_Addr value);
2364 #endif
2365
2366 #ifdef HAVE_TARGET_32_LITTLE
2367 template
2368 void
2369 Warnings::issue_warning<32, false>(const Symbol* sym,
2370                                    const Relocate_info<32, false>* relinfo,
2371                                    size_t relnum, off_t reloffset) const;
2372 #endif
2373
2374 #ifdef HAVE_TARGET_32_BIG
2375 template
2376 void
2377 Warnings::issue_warning<32, true>(const Symbol* sym,
2378                                   const Relocate_info<32, true>* relinfo,
2379                                   size_t relnum, off_t reloffset) const;
2380 #endif
2381
2382 #ifdef HAVE_TARGET_64_LITTLE
2383 template
2384 void
2385 Warnings::issue_warning<64, false>(const Symbol* sym,
2386                                    const Relocate_info<64, false>* relinfo,
2387                                    size_t relnum, off_t reloffset) const;
2388 #endif
2389
2390 #ifdef HAVE_TARGET_64_BIG
2391 template
2392 void
2393 Warnings::issue_warning<64, true>(const Symbol* sym,
2394                                   const Relocate_info<64, true>* relinfo,
2395                                   size_t relnum, off_t reloffset) const;
2396 #endif
2397
2398 } // End namespace gold.