Don't override definition a shared object by one in a later shared object.
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol.  This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55                     elfcpp::STT type, elfcpp::STB binding,
56                     elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91   if (!parameters->options().do_demangle())
92     return name;
93
94   // cplus_demangle allocates memory for the result it returns,
95   // and returns NULL if the name is already demangled.
96   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97   if (demangled_name == NULL)
98     return name;
99
100   std::string retval(demangled_name);
101   free(demangled_name);
102   return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108   return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116                          const elfcpp::Sym<size, big_endian>& sym,
117                          unsigned int st_shndx, bool is_ordinary)
118 {
119   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120                     sym.get_st_visibility(), sym.get_st_nonvis());
121   this->u_.from_object.object = object;
122   this->u_.from_object.shndx = st_shndx;
123   this->is_ordinary_shndx_ = is_ordinary;
124   this->source_ = FROM_OBJECT;
125   this->in_reg_ = !object->is_dynamic();
126   this->in_dyn_ = object->is_dynamic();
127   this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135                               Output_data* od, elfcpp::STT type,
136                               elfcpp::STB binding, elfcpp::STV visibility,
137                               unsigned char nonvis, bool offset_is_from_end,
138                               bool is_predefined)
139 {
140   this->init_fields(name, version, type, binding, visibility, nonvis);
141   this->u_.in_output_data.output_data = od;
142   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143   this->source_ = IN_OUTPUT_DATA;
144   this->in_reg_ = true;
145   this->in_real_elf_ = true;
146   this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154                                  Output_segment* os, elfcpp::STT type,
155                                  elfcpp::STB binding, elfcpp::STV visibility,
156                                  unsigned char nonvis,
157                                  Segment_offset_base offset_base,
158                                  bool is_predefined)
159 {
160   this->init_fields(name, version, type, binding, visibility, nonvis);
161   this->u_.in_output_segment.output_segment = os;
162   this->u_.in_output_segment.offset_base = offset_base;
163   this->source_ = IN_OUTPUT_SEGMENT;
164   this->in_reg_ = true;
165   this->in_real_elf_ = true;
166   this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174                            elfcpp::STT type, elfcpp::STB binding,
175                            elfcpp::STV visibility, unsigned char nonvis,
176                            bool is_predefined)
177 {
178   this->init_fields(name, version, type, binding, visibility, nonvis);
179   this->source_ = IS_CONSTANT;
180   this->in_reg_ = true;
181   this->in_real_elf_ = true;
182   this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190                             elfcpp::STT type, elfcpp::STB binding,
191                             elfcpp::STV visibility, unsigned char nonvis)
192 {
193   this->init_fields(name, version, type, binding, visibility, nonvis);
194   this->dynsym_index_ = -1U;
195   this->source_ = IS_UNDEFINED;
196   this->in_reg_ = true;
197   this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205   gold_assert(this->is_common());
206   this->source_ = IN_OUTPUT_DATA;
207   this->u_.in_output_data.output_data = od;
208   this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217                                 Object* object,
218                                 const elfcpp::Sym<size, big_endian>& sym,
219                                 unsigned int st_shndx, bool is_ordinary)
220 {
221   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222   this->value_ = sym.get_st_value();
223   this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232                                      Output_data* od, Value_type value,
233                                      Size_type symsize, elfcpp::STT type,
234                                      elfcpp::STB binding,
235                                      elfcpp::STV visibility,
236                                      unsigned char nonvis,
237                                      bool offset_is_from_end,
238                                      bool is_predefined)
239 {
240   this->init_base_output_data(name, version, od, type, binding, visibility,
241                               nonvis, offset_is_from_end, is_predefined);
242   this->value_ = value;
243   this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252                                         Output_segment* os, Value_type value,
253                                         Size_type symsize, elfcpp::STT type,
254                                         elfcpp::STB binding,
255                                         elfcpp::STV visibility,
256                                         unsigned char nonvis,
257                                         Segment_offset_base offset_base,
258                                         bool is_predefined)
259 {
260   this->init_base_output_segment(name, version, os, type, binding, visibility,
261                                  nonvis, offset_base, is_predefined);
262   this->value_ = value;
263   this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272                                   Value_type value, Size_type symsize,
273                                   elfcpp::STT type, elfcpp::STB binding,
274                                   elfcpp::STV visibility, unsigned char nonvis,
275                                   bool is_predefined)
276 {
277   this->init_base_constant(name, version, type, binding, visibility, nonvis,
278                            is_predefined);
279   this->value_ = value;
280   this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288                                    Value_type value, elfcpp::STT type,
289                                    elfcpp::STB binding, elfcpp::STV visibility,
290                                    unsigned char nonvis)
291 {
292   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
293   this->value_ = value;
294   this->symsize_ = 0;
295 }
296
297 // Return an allocated string holding the symbol's name as
298 // name@version.  This is used for relocatable links.
299
300 std::string
301 Symbol::versioned_name() const
302 {
303   gold_assert(this->version_ != NULL);
304   std::string ret = this->name_;
305   ret.push_back('@');
306   if (this->is_def_)
307     ret.push_back('@');
308   ret += this->version_;
309   return ret;
310 }
311
312 // Return true if SHNDX represents a common symbol.
313
314 bool
315 Symbol::is_common_shndx(unsigned int shndx)
316 {
317   return (shndx == elfcpp::SHN_COMMON
318           || shndx == parameters->target().small_common_shndx()
319           || shndx == parameters->target().large_common_shndx());
320 }
321
322 // Allocate a common symbol.
323
324 template<int size>
325 void
326 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
327 {
328   this->allocate_base_common(od);
329   this->value_ = value;
330 }
331
332 // The ""'s around str ensure str is a string literal, so sizeof works.
333 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
334
335 // Return true if this symbol should be added to the dynamic symbol
336 // table.
337
338 bool
339 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
340 {
341   // If the symbol is only present on plugin files, the plugin decided we
342   // don't need it.
343   if (!this->in_real_elf())
344     return false;
345
346   // If the symbol is used by a dynamic relocation, we need to add it.
347   if (this->needs_dynsym_entry())
348     return true;
349
350   // If this symbol's section is not added, the symbol need not be added. 
351   // The section may have been GCed.  Note that export_dynamic is being 
352   // overridden here.  This should not be done for shared objects.
353   if (parameters->options().gc_sections() 
354       && !parameters->options().shared()
355       && this->source() == Symbol::FROM_OBJECT
356       && !this->object()->is_dynamic())
357     {
358       Relobj* relobj = static_cast<Relobj*>(this->object());
359       bool is_ordinary;
360       unsigned int shndx = this->shndx(&is_ordinary);
361       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
362           && !relobj->is_section_included(shndx)
363           && !symtab->is_section_folded(relobj, shndx))
364         return false;
365     }
366
367   // If the symbol was forced dynamic in a --dynamic-list file
368   // or an --export-dynamic-symbol option, add it.
369   if (!this->is_from_dynobj()
370       && (parameters->options().in_dynamic_list(this->name())
371           || parameters->options().is_export_dynamic_symbol(this->name())))
372     {
373       if (!this->is_forced_local())
374         return true;
375       gold_warning(_("Cannot export local symbol '%s'"),
376                    this->demangled_name().c_str());
377       return false;
378     }
379
380   // If the symbol was forced local in a version script, do not add it.
381   if (this->is_forced_local())
382     return false;
383
384   // If dynamic-list-data was specified, add any STT_OBJECT.
385   if (parameters->options().dynamic_list_data()
386       && !this->is_from_dynobj()
387       && this->type() == elfcpp::STT_OBJECT)
388     return true;
389
390   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
391   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
392   if ((parameters->options().dynamic_list_cpp_new()
393        || parameters->options().dynamic_list_cpp_typeinfo())
394       && !this->is_from_dynobj())
395     {
396       // TODO(csilvers): We could probably figure out if we're an operator
397       //                 new/delete or typeinfo without the need to demangle.
398       char* demangled_name = cplus_demangle(this->name(),
399                                             DMGL_ANSI | DMGL_PARAMS);
400       if (demangled_name == NULL)
401         {
402           // Not a C++ symbol, so it can't satisfy these flags
403         }
404       else if (parameters->options().dynamic_list_cpp_new()
405                && (strprefix(demangled_name, "operator new")
406                    || strprefix(demangled_name, "operator delete")))
407         {
408           free(demangled_name);
409           return true;
410         }
411       else if (parameters->options().dynamic_list_cpp_typeinfo()
412                && (strprefix(demangled_name, "typeinfo name for")
413                    || strprefix(demangled_name, "typeinfo for")))
414         {
415           free(demangled_name);
416           return true;
417         }
418       else
419         free(demangled_name);
420     }
421
422   // If exporting all symbols or building a shared library,
423   // or the symbol should be globally unique (GNU_UNIQUE),
424   // and the symbol is defined in a regular object and is
425   // externally visible, we need to add it.
426   if ((parameters->options().export_dynamic()
427        || parameters->options().shared()
428        || (parameters->options().gnu_unique()
429            && this->binding() == elfcpp::STB_GNU_UNIQUE))
430       && !this->is_from_dynobj()
431       && !this->is_undefined()
432       && this->is_externally_visible())
433     return true;
434
435   return false;
436 }
437
438 // Return true if the final value of this symbol is known at link
439 // time.
440
441 bool
442 Symbol::final_value_is_known() const
443 {
444   // If we are not generating an executable, then no final values are
445   // known, since they will change at runtime, with the exception of
446   // TLS symbols in a position-independent executable.
447   if ((parameters->options().output_is_position_independent()
448        || parameters->options().relocatable())
449       && !(this->type() == elfcpp::STT_TLS
450            && parameters->options().pie()))
451     return false;
452
453   // If the symbol is not from an object file, and is not undefined,
454   // then it is defined, and known.
455   if (this->source_ != FROM_OBJECT)
456     {
457       if (this->source_ != IS_UNDEFINED)
458         return true;
459     }
460   else
461     {
462       // If the symbol is from a dynamic object, then the final value
463       // is not known.
464       if (this->object()->is_dynamic())
465         return false;
466
467       // If the symbol is not undefined (it is defined or common),
468       // then the final value is known.
469       if (!this->is_undefined())
470         return true;
471     }
472
473   // If the symbol is undefined, then whether the final value is known
474   // depends on whether we are doing a static link.  If we are doing a
475   // dynamic link, then the final value could be filled in at runtime.
476   // This could reasonably be the case for a weak undefined symbol.
477   return parameters->doing_static_link();
478 }
479
480 // Return the output section where this symbol is defined.
481
482 Output_section*
483 Symbol::output_section() const
484 {
485   switch (this->source_)
486     {
487     case FROM_OBJECT:
488       {
489         unsigned int shndx = this->u_.from_object.shndx;
490         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
491           {
492             gold_assert(!this->u_.from_object.object->is_dynamic());
493             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
494             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
495             return relobj->output_section(shndx);
496           }
497         return NULL;
498       }
499
500     case IN_OUTPUT_DATA:
501       return this->u_.in_output_data.output_data->output_section();
502
503     case IN_OUTPUT_SEGMENT:
504     case IS_CONSTANT:
505     case IS_UNDEFINED:
506       return NULL;
507
508     default:
509       gold_unreachable();
510     }
511 }
512
513 // Set the symbol's output section.  This is used for symbols defined
514 // in scripts.  This should only be called after the symbol table has
515 // been finalized.
516
517 void
518 Symbol::set_output_section(Output_section* os)
519 {
520   switch (this->source_)
521     {
522     case FROM_OBJECT:
523     case IN_OUTPUT_DATA:
524       gold_assert(this->output_section() == os);
525       break;
526     case IS_CONSTANT:
527       this->source_ = IN_OUTPUT_DATA;
528       this->u_.in_output_data.output_data = os;
529       this->u_.in_output_data.offset_is_from_end = false;
530       break;
531     case IN_OUTPUT_SEGMENT:
532     case IS_UNDEFINED:
533     default:
534       gold_unreachable();
535     }
536 }
537
538 // Set the symbol's output segment.  This is used for pre-defined
539 // symbols whose segments aren't known until after layout is done
540 // (e.g., __ehdr_start).
541
542 void
543 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
544 {
545   gold_assert(this->is_predefined_);
546   this->source_ = IN_OUTPUT_SEGMENT;
547   this->u_.in_output_segment.output_segment = os;
548   this->u_.in_output_segment.offset_base = base;
549 }
550
551 // Set the symbol to undefined.  This is used for pre-defined
552 // symbols whose segments aren't known until after layout is done
553 // (e.g., __ehdr_start).
554
555 void
556 Symbol::set_undefined()
557 {
558   this->source_ = IS_UNDEFINED;
559   this->is_predefined_ = false;
560 }
561
562 // Class Symbol_table.
563
564 Symbol_table::Symbol_table(unsigned int count,
565                            const Version_script_info& version_script)
566   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
567     forwarders_(), commons_(), tls_commons_(), small_commons_(),
568     large_commons_(), forced_locals_(), warnings_(),
569     version_script_(version_script), gc_(NULL), icf_(NULL),
570     target_symbols_()
571 {
572   namepool_.reserve(count);
573 }
574
575 Symbol_table::~Symbol_table()
576 {
577 }
578
579 // The symbol table key equality function.  This is called with
580 // Stringpool keys.
581
582 inline bool
583 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
584                                           const Symbol_table_key& k2) const
585 {
586   return k1.first == k2.first && k1.second == k2.second;
587 }
588
589 bool
590 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
591 {
592   return (parameters->options().icf_enabled()
593           && this->icf_->is_section_folded(obj, shndx));
594 }
595
596 // For symbols that have been listed with a -u or --export-dynamic-symbol
597 // option, add them to the work list to avoid gc'ing them.
598
599 void 
600 Symbol_table::gc_mark_undef_symbols(Layout* layout)
601 {
602   for (options::String_set::const_iterator p =
603          parameters->options().undefined_begin();
604        p != parameters->options().undefined_end();
605        ++p)
606     {
607       const char* name = p->c_str();
608       Symbol* sym = this->lookup(name);
609       gold_assert(sym != NULL);
610       if (sym->source() == Symbol::FROM_OBJECT 
611           && !sym->object()->is_dynamic())
612         {
613           this->gc_mark_symbol(sym);
614         }
615     }
616
617   for (options::String_set::const_iterator p =
618          parameters->options().export_dynamic_symbol_begin();
619        p != parameters->options().export_dynamic_symbol_end();
620        ++p)
621     {
622       const char* name = p->c_str();
623       Symbol* sym = this->lookup(name);
624       // It's not an error if a symbol named by --export-dynamic-symbol
625       // is undefined.
626       if (sym != NULL
627           && sym->source() == Symbol::FROM_OBJECT 
628           && !sym->object()->is_dynamic())
629         {
630           this->gc_mark_symbol(sym);
631         }
632     }
633
634   for (Script_options::referenced_const_iterator p =
635          layout->script_options()->referenced_begin();
636        p != layout->script_options()->referenced_end();
637        ++p)
638     {
639       Symbol* sym = this->lookup(p->c_str());
640       gold_assert(sym != NULL);
641       if (sym->source() == Symbol::FROM_OBJECT
642           && !sym->object()->is_dynamic())
643         {
644           this->gc_mark_symbol(sym);
645         }
646     }
647 }
648
649 void
650 Symbol_table::gc_mark_symbol(Symbol* sym)
651 {
652   // Add the object and section to the work list.
653   bool is_ordinary;
654   unsigned int shndx = sym->shndx(&is_ordinary);
655   if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
656     {
657       gold_assert(this->gc_!= NULL);
658       Relobj* relobj = static_cast<Relobj*>(sym->object());
659       this->gc_->worklist().push_back(Section_id(relobj, shndx));
660     }
661   parameters->target().gc_mark_symbol(this, sym);
662 }
663
664 // When doing garbage collection, keep symbols that have been seen in
665 // dynamic objects.
666 inline void 
667 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
668 {
669   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
670       && !sym->object()->is_dynamic())
671     this->gc_mark_symbol(sym);
672 }
673
674 // Make TO a symbol which forwards to FROM.
675
676 void
677 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
678 {
679   gold_assert(from != to);
680   gold_assert(!from->is_forwarder() && !to->is_forwarder());
681   this->forwarders_[from] = to;
682   from->set_forwarder();
683 }
684
685 // Resolve the forwards from FROM, returning the real symbol.
686
687 Symbol*
688 Symbol_table::resolve_forwards(const Symbol* from) const
689 {
690   gold_assert(from->is_forwarder());
691   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
692     this->forwarders_.find(from);
693   gold_assert(p != this->forwarders_.end());
694   return p->second;
695 }
696
697 // Look up a symbol by name.
698
699 Symbol*
700 Symbol_table::lookup(const char* name, const char* version) const
701 {
702   Stringpool::Key name_key;
703   name = this->namepool_.find(name, &name_key);
704   if (name == NULL)
705     return NULL;
706
707   Stringpool::Key version_key = 0;
708   if (version != NULL)
709     {
710       version = this->namepool_.find(version, &version_key);
711       if (version == NULL)
712         return NULL;
713     }
714
715   Symbol_table_key key(name_key, version_key);
716   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
717   if (p == this->table_.end())
718     return NULL;
719   return p->second;
720 }
721
722 // Resolve a Symbol with another Symbol.  This is only used in the
723 // unusual case where there are references to both an unversioned
724 // symbol and a symbol with a version, and we then discover that that
725 // version is the default version.  Because this is unusual, we do
726 // this the slow way, by converting back to an ELF symbol.
727
728 template<int size, bool big_endian>
729 void
730 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
731 {
732   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
733   elfcpp::Sym_write<size, big_endian> esym(buf);
734   // We don't bother to set the st_name or the st_shndx field.
735   esym.put_st_value(from->value());
736   esym.put_st_size(from->symsize());
737   esym.put_st_info(from->binding(), from->type());
738   esym.put_st_other(from->visibility(), from->nonvis());
739   bool is_ordinary;
740   unsigned int shndx = from->shndx(&is_ordinary);
741   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
742                 from->version(), true);
743   if (from->in_reg())
744     to->set_in_reg();
745   if (from->in_dyn())
746     to->set_in_dyn();
747   if (parameters->options().gc_sections())
748     this->gc_mark_dyn_syms(to);
749 }
750
751 // Record that a symbol is forced to be local by a version script or
752 // by visibility.
753
754 void
755 Symbol_table::force_local(Symbol* sym)
756 {
757   if (!sym->is_defined() && !sym->is_common())
758     return;
759   if (sym->is_forced_local())
760     {
761       // We already got this one.
762       return;
763     }
764   sym->set_is_forced_local();
765   this->forced_locals_.push_back(sym);
766 }
767
768 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
769 // is only called for undefined symbols, when at least one --wrap
770 // option was used.
771
772 const char*
773 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
774 {
775   // For some targets, we need to ignore a specific character when
776   // wrapping, and add it back later.
777   char prefix = '\0';
778   if (name[0] == parameters->target().wrap_char())
779     {
780       prefix = name[0];
781       ++name;
782     }
783
784   if (parameters->options().is_wrap(name))
785     {
786       // Turn NAME into __wrap_NAME.
787       std::string s;
788       if (prefix != '\0')
789         s += prefix;
790       s += "__wrap_";
791       s += name;
792
793       // This will give us both the old and new name in NAMEPOOL_, but
794       // that is OK.  Only the versions we need will wind up in the
795       // real string table in the output file.
796       return this->namepool_.add(s.c_str(), true, name_key);
797     }
798
799   const char* const real_prefix = "__real_";
800   const size_t real_prefix_length = strlen(real_prefix);
801   if (strncmp(name, real_prefix, real_prefix_length) == 0
802       && parameters->options().is_wrap(name + real_prefix_length))
803     {
804       // Turn __real_NAME into NAME.
805       std::string s;
806       if (prefix != '\0')
807         s += prefix;
808       s += name + real_prefix_length;
809       return this->namepool_.add(s.c_str(), true, name_key);
810     }
811
812   return name;
813 }
814
815 // This is called when we see a symbol NAME/VERSION, and the symbol
816 // already exists in the symbol table, and VERSION is marked as being
817 // the default version.  SYM is the NAME/VERSION symbol we just added.
818 // DEFAULT_IS_NEW is true if this is the first time we have seen the
819 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
820
821 template<int size, bool big_endian>
822 void
823 Symbol_table::define_default_version(Sized_symbol<size>* sym,
824                                      bool default_is_new,
825                                      Symbol_table_type::iterator pdef)
826 {
827   if (default_is_new)
828     {
829       // This is the first time we have seen NAME/NULL.  Make
830       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
831       // version.
832       pdef->second = sym;
833       sym->set_is_default();
834     }
835   else if (pdef->second == sym)
836     {
837       // NAME/NULL already points to NAME/VERSION.  Don't mark the
838       // symbol as the default if it is not already the default.
839     }
840   else
841     {
842       // This is the unfortunate case where we already have entries
843       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
844       // NAME/VERSION where VERSION is the default version.  We have
845       // already resolved this new symbol with the existing
846       // NAME/VERSION symbol.
847
848       // It's possible that NAME/NULL and NAME/VERSION are both
849       // defined in regular objects.  This can only happen if one
850       // object file defines foo and another defines foo@@ver.  This
851       // is somewhat obscure, but we call it a multiple definition
852       // error.
853
854       // It's possible that NAME/NULL actually has a version, in which
855       // case it won't be the same as VERSION.  This happens with
856       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
857       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
858       // then see an unadorned t2_2 in an object file and give it
859       // version VER1 from the version script.  This looks like a
860       // default definition for VER1, so it looks like we should merge
861       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
862       // not obvious that this is an error, either.  So we just punt.
863
864       // If one of the symbols has non-default visibility, and the
865       // other is defined in a shared object, then they are different
866       // symbols.
867
868       // If the two symbols are from different shared objects,
869       // they are different symbols.
870
871       // Otherwise, we just resolve the symbols as though they were
872       // the same.
873
874       if (pdef->second->version() != NULL)
875         gold_assert(pdef->second->version() != sym->version());
876       else if (sym->visibility() != elfcpp::STV_DEFAULT
877                && pdef->second->is_from_dynobj())
878         ;
879       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
880                && sym->is_from_dynobj())
881         ;
882       else if (pdef->second->is_from_dynobj()
883                && sym->is_from_dynobj()
884                && pdef->second->object() != sym->object())
885         ;
886       else
887         {
888           const Sized_symbol<size>* symdef;
889           symdef = this->get_sized_symbol<size>(pdef->second);
890           Symbol_table::resolve<size, big_endian>(sym, symdef);
891           this->make_forwarder(pdef->second, sym);
892           pdef->second = sym;
893           sym->set_is_default();
894         }
895     }
896 }
897
898 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
899 // name and VERSION is the version; both are canonicalized.  DEF is
900 // whether this is the default version.  ST_SHNDX is the symbol's
901 // section index; IS_ORDINARY is whether this is a normal section
902 // rather than a special code.
903
904 // If IS_DEFAULT_VERSION is true, then this is the definition of a
905 // default version of a symbol.  That means that any lookup of
906 // NAME/NULL and any lookup of NAME/VERSION should always return the
907 // same symbol.  This is obvious for references, but in particular we
908 // want to do this for definitions: overriding NAME/NULL should also
909 // override NAME/VERSION.  If we don't do that, it would be very hard
910 // to override functions in a shared library which uses versioning.
911
912 // We implement this by simply making both entries in the hash table
913 // point to the same Symbol structure.  That is easy enough if this is
914 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
915 // that we have seen both already, in which case they will both have
916 // independent entries in the symbol table.  We can't simply change
917 // the symbol table entry, because we have pointers to the entries
918 // attached to the object files.  So we mark the entry attached to the
919 // object file as a forwarder, and record it in the forwarders_ map.
920 // Note that entries in the hash table will never be marked as
921 // forwarders.
922 //
923 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
924 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
925 // for a special section code.  ST_SHNDX may be modified if the symbol
926 // is defined in a section being discarded.
927
928 template<int size, bool big_endian>
929 Sized_symbol<size>*
930 Symbol_table::add_from_object(Object* object,
931                               const char* name,
932                               Stringpool::Key name_key,
933                               const char* version,
934                               Stringpool::Key version_key,
935                               bool is_default_version,
936                               const elfcpp::Sym<size, big_endian>& sym,
937                               unsigned int st_shndx,
938                               bool is_ordinary,
939                               unsigned int orig_st_shndx)
940 {
941   // Print a message if this symbol is being traced.
942   if (parameters->options().is_trace_symbol(name))
943     {
944       if (orig_st_shndx == elfcpp::SHN_UNDEF)
945         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
946       else
947         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
948     }
949
950   // For an undefined symbol, we may need to adjust the name using
951   // --wrap.
952   if (orig_st_shndx == elfcpp::SHN_UNDEF
953       && parameters->options().any_wrap())
954     {
955       const char* wrap_name = this->wrap_symbol(name, &name_key);
956       if (wrap_name != name)
957         {
958           // If we see a reference to malloc with version GLIBC_2.0,
959           // and we turn it into a reference to __wrap_malloc, then we
960           // discard the version number.  Otherwise the user would be
961           // required to specify the correct version for
962           // __wrap_malloc.
963           version = NULL;
964           version_key = 0;
965           name = wrap_name;
966         }
967     }
968
969   Symbol* const snull = NULL;
970   std::pair<typename Symbol_table_type::iterator, bool> ins =
971     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
972                                        snull));
973
974   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
975     std::make_pair(this->table_.end(), false);
976   if (is_default_version)
977     {
978       const Stringpool::Key vnull_key = 0;
979       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
980                                                                      vnull_key),
981                                                       snull));
982     }
983
984   // ins.first: an iterator, which is a pointer to a pair.
985   // ins.first->first: the key (a pair of name and version).
986   // ins.first->second: the value (Symbol*).
987   // ins.second: true if new entry was inserted, false if not.
988
989   Sized_symbol<size>* ret;
990   bool was_undefined;
991   bool was_common;
992   if (!ins.second)
993     {
994       // We already have an entry for NAME/VERSION.
995       ret = this->get_sized_symbol<size>(ins.first->second);
996       gold_assert(ret != NULL);
997
998       was_undefined = ret->is_undefined();
999       // Commons from plugins are just placeholders.
1000       was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1001
1002       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1003                     version, is_default_version);
1004       if (parameters->options().gc_sections())
1005         this->gc_mark_dyn_syms(ret);
1006
1007       if (is_default_version)
1008         this->define_default_version<size, big_endian>(ret, insdefault.second,
1009                                                        insdefault.first);
1010       else
1011         {
1012           bool dummy;
1013           if (version != NULL
1014               && ret->source() == Symbol::FROM_OBJECT
1015               && ret->object() == object
1016               && is_ordinary
1017               && ret->shndx(&dummy) == st_shndx
1018               && ret->is_default())
1019             {
1020               // We have seen NAME/VERSION already, and marked it as the
1021               // default version, but now we see a definition for
1022               // NAME/VERSION that is not the default version. This can
1023               // happen when the assembler generates two symbols for
1024               // a symbol as a result of a ".symver foo,foo@VER"
1025               // directive. We see the first unversioned symbol and
1026               // we may mark it as the default version (from a
1027               // version script); then we see the second versioned
1028               // symbol and we need to override the first.
1029               // In any other case, the two symbols should have generated
1030               // a multiple definition error.
1031               // (See PR gold/18703.)
1032               ret->set_is_not_default();
1033               const Stringpool::Key vnull_key = 0;
1034               this->table_.erase(std::make_pair(name_key, vnull_key));
1035             }
1036         }
1037     }
1038   else
1039     {
1040       // This is the first time we have seen NAME/VERSION.
1041       gold_assert(ins.first->second == NULL);
1042
1043       if (is_default_version && !insdefault.second)
1044         {
1045           // We already have an entry for NAME/NULL.  If we override
1046           // it, then change it to NAME/VERSION.
1047           ret = this->get_sized_symbol<size>(insdefault.first->second);
1048
1049           was_undefined = ret->is_undefined();
1050           // Commons from plugins are just placeholders.
1051           was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1052
1053           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1054                         version, is_default_version);
1055           if (parameters->options().gc_sections())
1056             this->gc_mark_dyn_syms(ret);
1057           ins.first->second = ret;
1058         }
1059       else
1060         {
1061           was_undefined = false;
1062           was_common = false;
1063
1064           Sized_target<size, big_endian>* target =
1065             parameters->sized_target<size, big_endian>();
1066           if (!target->has_make_symbol())
1067             ret = new Sized_symbol<size>();
1068           else
1069             {
1070               ret = target->make_symbol(name, sym.get_st_type(), object,
1071                                         st_shndx, sym.get_st_value());
1072               if (ret == NULL)
1073                 {
1074                   // This means that we don't want a symbol table
1075                   // entry after all.
1076                   if (!is_default_version)
1077                     this->table_.erase(ins.first);
1078                   else
1079                     {
1080                       this->table_.erase(insdefault.first);
1081                       // Inserting INSDEFAULT invalidated INS.
1082                       this->table_.erase(std::make_pair(name_key,
1083                                                         version_key));
1084                     }
1085                   return NULL;
1086                 }
1087             }
1088
1089           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1090
1091           ins.first->second = ret;
1092           if (is_default_version)
1093             {
1094               // This is the first time we have seen NAME/NULL.  Point
1095               // it at the new entry for NAME/VERSION.
1096               gold_assert(insdefault.second);
1097               insdefault.first->second = ret;
1098             }
1099         }
1100
1101       if (is_default_version)
1102         ret->set_is_default();
1103     }
1104
1105   // Record every time we see a new undefined symbol, to speed up
1106   // archive groups.
1107   if (!was_undefined && ret->is_undefined())
1108     {
1109       ++this->saw_undefined_;
1110       if (parameters->options().has_plugins())
1111         parameters->options().plugins()->new_undefined_symbol(ret);
1112     }
1113
1114   // Keep track of common symbols, to speed up common symbol
1115   // allocation.  Don't record commons from plugin objects;
1116   // we need to wait until we see the real symbol in the
1117   // replacement file.
1118   if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1119     {
1120       if (ret->type() == elfcpp::STT_TLS)
1121         this->tls_commons_.push_back(ret);
1122       else if (!is_ordinary
1123                && st_shndx == parameters->target().small_common_shndx())
1124         this->small_commons_.push_back(ret);
1125       else if (!is_ordinary
1126                && st_shndx == parameters->target().large_common_shndx())
1127         this->large_commons_.push_back(ret);
1128       else
1129         this->commons_.push_back(ret);
1130     }
1131
1132   // If we're not doing a relocatable link, then any symbol with
1133   // hidden or internal visibility is local.
1134   if ((ret->visibility() == elfcpp::STV_HIDDEN
1135        || ret->visibility() == elfcpp::STV_INTERNAL)
1136       && (ret->binding() == elfcpp::STB_GLOBAL
1137           || ret->binding() == elfcpp::STB_GNU_UNIQUE
1138           || ret->binding() == elfcpp::STB_WEAK)
1139       && !parameters->options().relocatable())
1140     this->force_local(ret);
1141
1142   return ret;
1143 }
1144
1145 // Add all the symbols in a relocatable object to the hash table.
1146
1147 template<int size, bool big_endian>
1148 void
1149 Symbol_table::add_from_relobj(
1150     Sized_relobj_file<size, big_endian>* relobj,
1151     const unsigned char* syms,
1152     size_t count,
1153     size_t symndx_offset,
1154     const char* sym_names,
1155     size_t sym_name_size,
1156     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1157     size_t* defined)
1158 {
1159   *defined = 0;
1160
1161   gold_assert(size == parameters->target().get_size());
1162
1163   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1164
1165   const bool just_symbols = relobj->just_symbols();
1166
1167   const unsigned char* p = syms;
1168   for (size_t i = 0; i < count; ++i, p += sym_size)
1169     {
1170       (*sympointers)[i] = NULL;
1171
1172       elfcpp::Sym<size, big_endian> sym(p);
1173
1174       unsigned int st_name = sym.get_st_name();
1175       if (st_name >= sym_name_size)
1176         {
1177           relobj->error(_("bad global symbol name offset %u at %zu"),
1178                         st_name, i);
1179           continue;
1180         }
1181
1182       const char* name = sym_names + st_name;
1183
1184       if (!parameters->options().relocatable()
1185           && strcmp (name, "__gnu_lto_slim") == 0)
1186         gold_info(_("%s: plugin needed to handle lto object"),
1187                   relobj->name().c_str());
1188
1189       bool is_ordinary;
1190       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1191                                                        sym.get_st_shndx(),
1192                                                        &is_ordinary);
1193       unsigned int orig_st_shndx = st_shndx;
1194       if (!is_ordinary)
1195         orig_st_shndx = elfcpp::SHN_UNDEF;
1196
1197       if (st_shndx != elfcpp::SHN_UNDEF)
1198         ++*defined;
1199
1200       // A symbol defined in a section which we are not including must
1201       // be treated as an undefined symbol.
1202       bool is_defined_in_discarded_section = false;
1203       if (st_shndx != elfcpp::SHN_UNDEF
1204           && is_ordinary
1205           && !relobj->is_section_included(st_shndx)
1206           && !this->is_section_folded(relobj, st_shndx))
1207         {
1208           st_shndx = elfcpp::SHN_UNDEF;
1209           is_defined_in_discarded_section = true;
1210         }
1211
1212       // In an object file, an '@' in the name separates the symbol
1213       // name from the version name.  If there are two '@' characters,
1214       // this is the default version.
1215       const char* ver = strchr(name, '@');
1216       Stringpool::Key ver_key = 0;
1217       int namelen = 0;
1218       // IS_DEFAULT_VERSION: is the version default?
1219       // IS_FORCED_LOCAL: is the symbol forced local?
1220       bool is_default_version = false;
1221       bool is_forced_local = false;
1222
1223       // FIXME: For incremental links, we don't store version information,
1224       // so we need to ignore version symbols for now.
1225       if (parameters->incremental_update() && ver != NULL)
1226         {
1227           namelen = ver - name;
1228           ver = NULL;
1229         }
1230
1231       if (ver != NULL)
1232         {
1233           // The symbol name is of the form foo@VERSION or foo@@VERSION
1234           namelen = ver - name;
1235           ++ver;
1236           if (*ver == '@')
1237             {
1238               is_default_version = true;
1239               ++ver;
1240             }
1241           ver = this->namepool_.add(ver, true, &ver_key);
1242         }
1243       // We don't want to assign a version to an undefined symbol,
1244       // even if it is listed in the version script.  FIXME: What
1245       // about a common symbol?
1246       else
1247         {
1248           namelen = strlen(name);
1249           if (!this->version_script_.empty()
1250               && st_shndx != elfcpp::SHN_UNDEF)
1251             {
1252               // The symbol name did not have a version, but the
1253               // version script may assign a version anyway.
1254               std::string version;
1255               bool is_global;
1256               if (this->version_script_.get_symbol_version(name, &version,
1257                                                            &is_global))
1258                 {
1259                   if (!is_global)
1260                     is_forced_local = true;
1261                   else if (!version.empty())
1262                     {
1263                       ver = this->namepool_.add_with_length(version.c_str(),
1264                                                             version.length(),
1265                                                             true,
1266                                                             &ver_key);
1267                       is_default_version = true;
1268                     }
1269                 }
1270             }
1271         }
1272
1273       elfcpp::Sym<size, big_endian>* psym = &sym;
1274       unsigned char symbuf[sym_size];
1275       elfcpp::Sym<size, big_endian> sym2(symbuf);
1276       if (just_symbols)
1277         {
1278           memcpy(symbuf, p, sym_size);
1279           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1280           if (orig_st_shndx != elfcpp::SHN_UNDEF
1281               && is_ordinary
1282               && relobj->e_type() == elfcpp::ET_REL)
1283             {
1284               // Symbol values in relocatable object files are section
1285               // relative.  This is normally what we want, but since here
1286               // we are converting the symbol to absolute we need to add
1287               // the section address.  The section address in an object
1288               // file is normally zero, but people can use a linker
1289               // script to change it.
1290               sw.put_st_value(sym.get_st_value()
1291                               + relobj->section_address(orig_st_shndx));
1292             }
1293           st_shndx = elfcpp::SHN_ABS;
1294           is_ordinary = false;
1295           psym = &sym2;
1296         }
1297
1298       // Fix up visibility if object has no-export set.
1299       if (relobj->no_export()
1300           && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1301         {
1302           // We may have copied symbol already above.
1303           if (psym != &sym2)
1304             {
1305               memcpy(symbuf, p, sym_size);
1306               psym = &sym2;
1307             }
1308
1309           elfcpp::STV visibility = sym2.get_st_visibility();
1310           if (visibility == elfcpp::STV_DEFAULT
1311               || visibility == elfcpp::STV_PROTECTED)
1312             {
1313               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1314               unsigned char nonvis = sym2.get_st_nonvis();
1315               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1316             }
1317         }
1318
1319       Stringpool::Key name_key;
1320       name = this->namepool_.add_with_length(name, namelen, true,
1321                                              &name_key);
1322
1323       Sized_symbol<size>* res;
1324       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1325                                   is_default_version, *psym, st_shndx,
1326                                   is_ordinary, orig_st_shndx);
1327       
1328       if (is_forced_local)
1329         this->force_local(res);
1330
1331       // Do not treat this symbol as garbage if this symbol will be
1332       // exported to the dynamic symbol table.  This is true when
1333       // building a shared library or using --export-dynamic and
1334       // the symbol is externally visible.
1335       if (parameters->options().gc_sections()
1336           && res->is_externally_visible()
1337           && !res->is_from_dynobj()
1338           && (parameters->options().shared()
1339               || parameters->options().export_dynamic()
1340               || parameters->options().in_dynamic_list(res->name())))
1341         this->gc_mark_symbol(res);
1342
1343       if (is_defined_in_discarded_section)
1344         res->set_is_defined_in_discarded_section();
1345
1346       (*sympointers)[i] = res;
1347     }
1348 }
1349
1350 // Add a symbol from a plugin-claimed file.
1351
1352 template<int size, bool big_endian>
1353 Symbol*
1354 Symbol_table::add_from_pluginobj(
1355     Sized_pluginobj<size, big_endian>* obj,
1356     const char* name,
1357     const char* ver,
1358     elfcpp::Sym<size, big_endian>* sym)
1359 {
1360   unsigned int st_shndx = sym->get_st_shndx();
1361   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1362
1363   Stringpool::Key ver_key = 0;
1364   bool is_default_version = false;
1365   bool is_forced_local = false;
1366
1367   if (ver != NULL)
1368     {
1369       ver = this->namepool_.add(ver, true, &ver_key);
1370     }
1371   // We don't want to assign a version to an undefined symbol,
1372   // even if it is listed in the version script.  FIXME: What
1373   // about a common symbol?
1374   else
1375     {
1376       if (!this->version_script_.empty()
1377           && st_shndx != elfcpp::SHN_UNDEF)
1378         {
1379           // The symbol name did not have a version, but the
1380           // version script may assign a version anyway.
1381           std::string version;
1382           bool is_global;
1383           if (this->version_script_.get_symbol_version(name, &version,
1384                                                        &is_global))
1385             {
1386               if (!is_global)
1387                 is_forced_local = true;
1388               else if (!version.empty())
1389                 {
1390                   ver = this->namepool_.add_with_length(version.c_str(),
1391                                                         version.length(),
1392                                                         true,
1393                                                         &ver_key);
1394                   is_default_version = true;
1395                 }
1396             }
1397         }
1398     }
1399
1400   Stringpool::Key name_key;
1401   name = this->namepool_.add(name, true, &name_key);
1402
1403   Sized_symbol<size>* res;
1404   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1405                               is_default_version, *sym, st_shndx,
1406                               is_ordinary, st_shndx);
1407
1408   if (is_forced_local)
1409     this->force_local(res);
1410
1411   return res;
1412 }
1413
1414 // Add all the symbols in a dynamic object to the hash table.
1415
1416 template<int size, bool big_endian>
1417 void
1418 Symbol_table::add_from_dynobj(
1419     Sized_dynobj<size, big_endian>* dynobj,
1420     const unsigned char* syms,
1421     size_t count,
1422     const char* sym_names,
1423     size_t sym_name_size,
1424     const unsigned char* versym,
1425     size_t versym_size,
1426     const std::vector<const char*>* version_map,
1427     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1428     size_t* defined)
1429 {
1430   *defined = 0;
1431
1432   gold_assert(size == parameters->target().get_size());
1433
1434   if (dynobj->just_symbols())
1435     {
1436       gold_error(_("--just-symbols does not make sense with a shared object"));
1437       return;
1438     }
1439
1440   // FIXME: For incremental links, we don't store version information,
1441   // so we need to ignore version symbols for now.
1442   if (parameters->incremental_update())
1443     versym = NULL;
1444
1445   if (versym != NULL && versym_size / 2 < count)
1446     {
1447       dynobj->error(_("too few symbol versions"));
1448       return;
1449     }
1450
1451   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1452
1453   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1454   // weak aliases.  This is necessary because if the dynamic object
1455   // provides the same variable under two names, one of which is a
1456   // weak definition, and the regular object refers to the weak
1457   // definition, we have to put both the weak definition and the
1458   // strong definition into the dynamic symbol table.  Given a weak
1459   // definition, the only way that we can find the corresponding
1460   // strong definition, if any, is to search the symbol table.
1461   std::vector<Sized_symbol<size>*> object_symbols;
1462
1463   const unsigned char* p = syms;
1464   const unsigned char* vs = versym;
1465   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1466     {
1467       elfcpp::Sym<size, big_endian> sym(p);
1468
1469       if (sympointers != NULL)
1470         (*sympointers)[i] = NULL;
1471
1472       // Ignore symbols with local binding or that have
1473       // internal or hidden visibility.
1474       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1475           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1476           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1477         continue;
1478
1479       // A protected symbol in a shared library must be treated as a
1480       // normal symbol when viewed from outside the shared library.
1481       // Implement this by overriding the visibility here.
1482       // Likewise, an IFUNC symbol in a shared library must be treated
1483       // as a normal FUNC symbol.
1484       elfcpp::Sym<size, big_endian>* psym = &sym;
1485       unsigned char symbuf[sym_size];
1486       elfcpp::Sym<size, big_endian> sym2(symbuf);
1487       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1488           || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1489         {
1490           memcpy(symbuf, p, sym_size);
1491           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1492           if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1493             sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1494           if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1495             sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1496           psym = &sym2;
1497         }
1498
1499       unsigned int st_name = psym->get_st_name();
1500       if (st_name >= sym_name_size)
1501         {
1502           dynobj->error(_("bad symbol name offset %u at %zu"),
1503                         st_name, i);
1504           continue;
1505         }
1506
1507       const char* name = sym_names + st_name;
1508
1509       bool is_ordinary;
1510       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1511                                                        &is_ordinary);
1512
1513       if (st_shndx != elfcpp::SHN_UNDEF)
1514         ++*defined;
1515
1516       Sized_symbol<size>* res;
1517
1518       if (versym == NULL)
1519         {
1520           Stringpool::Key name_key;
1521           name = this->namepool_.add(name, true, &name_key);
1522           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1523                                       false, *psym, st_shndx, is_ordinary,
1524                                       st_shndx);
1525         }
1526       else
1527         {
1528           // Read the version information.
1529
1530           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1531
1532           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1533           v &= elfcpp::VERSYM_VERSION;
1534
1535           // The Sun documentation says that V can be VER_NDX_LOCAL,
1536           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1537           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1538           // The old GNU linker will happily generate VER_NDX_LOCAL
1539           // for an undefined symbol.  I don't know what the Sun
1540           // linker will generate.
1541
1542           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1543               && st_shndx != elfcpp::SHN_UNDEF)
1544             {
1545               // This symbol should not be visible outside the object.
1546               continue;
1547             }
1548
1549           // At this point we are definitely going to add this symbol.
1550           Stringpool::Key name_key;
1551           name = this->namepool_.add(name, true, &name_key);
1552
1553           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1554               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1555             {
1556               // This symbol does not have a version.
1557               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1558                                           false, *psym, st_shndx, is_ordinary,
1559                                           st_shndx);
1560             }
1561           else
1562             {
1563               if (v >= version_map->size())
1564                 {
1565                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1566                                 i, v);
1567                   continue;
1568                 }
1569
1570               const char* version = (*version_map)[v];
1571               if (version == NULL)
1572                 {
1573                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1574                                 i, v);
1575                   continue;
1576                 }
1577
1578               Stringpool::Key version_key;
1579               version = this->namepool_.add(version, true, &version_key);
1580
1581               // If this is an absolute symbol, and the version name
1582               // and symbol name are the same, then this is the
1583               // version definition symbol.  These symbols exist to
1584               // support using -u to pull in particular versions.  We
1585               // do not want to record a version for them.
1586               if (st_shndx == elfcpp::SHN_ABS
1587                   && !is_ordinary
1588                   && name_key == version_key)
1589                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1590                                             false, *psym, st_shndx, is_ordinary,
1591                                             st_shndx);
1592               else
1593                 {
1594                   const bool is_default_version =
1595                     !hidden && st_shndx != elfcpp::SHN_UNDEF;
1596                   res = this->add_from_object(dynobj, name, name_key, version,
1597                                               version_key, is_default_version,
1598                                               *psym, st_shndx,
1599                                               is_ordinary, st_shndx);
1600                 }
1601             }
1602         }
1603
1604       // Note that it is possible that RES was overridden by an
1605       // earlier object, in which case it can't be aliased here.
1606       if (st_shndx != elfcpp::SHN_UNDEF
1607           && is_ordinary
1608           && psym->get_st_type() == elfcpp::STT_OBJECT
1609           && res->source() == Symbol::FROM_OBJECT
1610           && res->object() == dynobj)
1611         object_symbols.push_back(res);
1612
1613       if (sympointers != NULL)
1614         (*sympointers)[i] = res;
1615     }
1616
1617   this->record_weak_aliases(&object_symbols);
1618 }
1619
1620 // Add a symbol from a incremental object file.
1621
1622 template<int size, bool big_endian>
1623 Sized_symbol<size>*
1624 Symbol_table::add_from_incrobj(
1625     Object* obj,
1626     const char* name,
1627     const char* ver,
1628     elfcpp::Sym<size, big_endian>* sym)
1629 {
1630   unsigned int st_shndx = sym->get_st_shndx();
1631   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1632
1633   Stringpool::Key ver_key = 0;
1634   bool is_default_version = false;
1635   bool is_forced_local = false;
1636
1637   Stringpool::Key name_key;
1638   name = this->namepool_.add(name, true, &name_key);
1639
1640   Sized_symbol<size>* res;
1641   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1642                               is_default_version, *sym, st_shndx,
1643                               is_ordinary, st_shndx);
1644
1645   if (is_forced_local)
1646     this->force_local(res);
1647
1648   return res;
1649 }
1650
1651 // This is used to sort weak aliases.  We sort them first by section
1652 // index, then by offset, then by weak ahead of strong.
1653
1654 template<int size>
1655 class Weak_alias_sorter
1656 {
1657  public:
1658   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1659 };
1660
1661 template<int size>
1662 bool
1663 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1664                                     const Sized_symbol<size>* s2) const
1665 {
1666   bool is_ordinary;
1667   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1668   gold_assert(is_ordinary);
1669   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1670   gold_assert(is_ordinary);
1671   if (s1_shndx != s2_shndx)
1672     return s1_shndx < s2_shndx;
1673
1674   if (s1->value() != s2->value())
1675     return s1->value() < s2->value();
1676   if (s1->binding() != s2->binding())
1677     {
1678       if (s1->binding() == elfcpp::STB_WEAK)
1679         return true;
1680       if (s2->binding() == elfcpp::STB_WEAK)
1681         return false;
1682     }
1683   return std::string(s1->name()) < std::string(s2->name());
1684 }
1685
1686 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1687 // for any weak aliases, and record them so that if we add the weak
1688 // alias to the dynamic symbol table, we also add the corresponding
1689 // strong symbol.
1690
1691 template<int size>
1692 void
1693 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1694 {
1695   // Sort the vector by section index, then by offset, then by weak
1696   // ahead of strong.
1697   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1698
1699   // Walk through the vector.  For each weak definition, record
1700   // aliases.
1701   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1702          symbols->begin();
1703        p != symbols->end();
1704        ++p)
1705     {
1706       if ((*p)->binding() != elfcpp::STB_WEAK)
1707         continue;
1708
1709       // Build a circular list of weak aliases.  Each symbol points to
1710       // the next one in the circular list.
1711
1712       Sized_symbol<size>* from_sym = *p;
1713       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1714       for (q = p + 1; q != symbols->end(); ++q)
1715         {
1716           bool dummy;
1717           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1718               || (*q)->value() != from_sym->value())
1719             break;
1720
1721           this->weak_aliases_[from_sym] = *q;
1722           from_sym->set_has_alias();
1723           from_sym = *q;
1724         }
1725
1726       if (from_sym != *p)
1727         {
1728           this->weak_aliases_[from_sym] = *p;
1729           from_sym->set_has_alias();
1730         }
1731
1732       p = q - 1;
1733     }
1734 }
1735
1736 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1737 // true, then only create the symbol if there is a reference to it.
1738 // If this does not return NULL, it sets *POLDSYM to the existing
1739 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1740 // resolve the newly created symbol to the old one.  This
1741 // canonicalizes *PNAME and *PVERSION.
1742
1743 template<int size, bool big_endian>
1744 Sized_symbol<size>*
1745 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1746                                     bool only_if_ref,
1747                                     Sized_symbol<size>** poldsym,
1748                                     bool* resolve_oldsym)
1749 {
1750   *resolve_oldsym = false;
1751   *poldsym = NULL;
1752
1753   // If the caller didn't give us a version, see if we get one from
1754   // the version script.
1755   std::string v;
1756   bool is_default_version = false;
1757   if (*pversion == NULL)
1758     {
1759       bool is_global;
1760       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1761         {
1762           if (is_global && !v.empty())
1763             {
1764               *pversion = v.c_str();
1765               // If we get the version from a version script, then we
1766               // are also the default version.
1767               is_default_version = true;
1768             }
1769         }
1770     }
1771
1772   Symbol* oldsym;
1773   Sized_symbol<size>* sym;
1774
1775   bool add_to_table = false;
1776   typename Symbol_table_type::iterator add_loc = this->table_.end();
1777   bool add_def_to_table = false;
1778   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1779
1780   if (only_if_ref)
1781     {
1782       oldsym = this->lookup(*pname, *pversion);
1783       if (oldsym == NULL && is_default_version)
1784         oldsym = this->lookup(*pname, NULL);
1785       if (oldsym == NULL || !oldsym->is_undefined())
1786         return NULL;
1787
1788       *pname = oldsym->name();
1789       if (is_default_version)
1790         *pversion = this->namepool_.add(*pversion, true, NULL);
1791       else
1792         *pversion = oldsym->version();
1793     }
1794   else
1795     {
1796       // Canonicalize NAME and VERSION.
1797       Stringpool::Key name_key;
1798       *pname = this->namepool_.add(*pname, true, &name_key);
1799
1800       Stringpool::Key version_key = 0;
1801       if (*pversion != NULL)
1802         *pversion = this->namepool_.add(*pversion, true, &version_key);
1803
1804       Symbol* const snull = NULL;
1805       std::pair<typename Symbol_table_type::iterator, bool> ins =
1806         this->table_.insert(std::make_pair(std::make_pair(name_key,
1807                                                           version_key),
1808                                            snull));
1809
1810       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1811         std::make_pair(this->table_.end(), false);
1812       if (is_default_version)
1813         {
1814           const Stringpool::Key vnull = 0;
1815           insdefault =
1816             this->table_.insert(std::make_pair(std::make_pair(name_key,
1817                                                               vnull),
1818                                                snull));
1819         }
1820
1821       if (!ins.second)
1822         {
1823           // We already have a symbol table entry for NAME/VERSION.
1824           oldsym = ins.first->second;
1825           gold_assert(oldsym != NULL);
1826
1827           if (is_default_version)
1828             {
1829               Sized_symbol<size>* soldsym =
1830                 this->get_sized_symbol<size>(oldsym);
1831               this->define_default_version<size, big_endian>(soldsym,
1832                                                              insdefault.second,
1833                                                              insdefault.first);
1834             }
1835         }
1836       else
1837         {
1838           // We haven't seen this symbol before.
1839           gold_assert(ins.first->second == NULL);
1840
1841           add_to_table = true;
1842           add_loc = ins.first;
1843
1844           if (is_default_version && !insdefault.second)
1845             {
1846               // We are adding NAME/VERSION, and it is the default
1847               // version.  We already have an entry for NAME/NULL.
1848               oldsym = insdefault.first->second;
1849               *resolve_oldsym = true;
1850             }
1851           else
1852             {
1853               oldsym = NULL;
1854
1855               if (is_default_version)
1856                 {
1857                   add_def_to_table = true;
1858                   add_def_loc = insdefault.first;
1859                 }
1860             }
1861         }
1862     }
1863
1864   const Target& target = parameters->target();
1865   if (!target.has_make_symbol())
1866     sym = new Sized_symbol<size>();
1867   else
1868     {
1869       Sized_target<size, big_endian>* sized_target =
1870         parameters->sized_target<size, big_endian>();
1871       sym = sized_target->make_symbol(*pname, elfcpp::STT_NOTYPE,
1872                                       NULL, elfcpp::SHN_UNDEF, 0);
1873       if (sym == NULL)
1874         return NULL;
1875     }
1876
1877   if (add_to_table)
1878     add_loc->second = sym;
1879   else
1880     gold_assert(oldsym != NULL);
1881
1882   if (add_def_to_table)
1883     add_def_loc->second = sym;
1884
1885   *poldsym = this->get_sized_symbol<size>(oldsym);
1886
1887   return sym;
1888 }
1889
1890 // Define a symbol based on an Output_data.
1891
1892 Symbol*
1893 Symbol_table::define_in_output_data(const char* name,
1894                                     const char* version,
1895                                     Defined defined,
1896                                     Output_data* od,
1897                                     uint64_t value,
1898                                     uint64_t symsize,
1899                                     elfcpp::STT type,
1900                                     elfcpp::STB binding,
1901                                     elfcpp::STV visibility,
1902                                     unsigned char nonvis,
1903                                     bool offset_is_from_end,
1904                                     bool only_if_ref)
1905 {
1906   if (parameters->target().get_size() == 32)
1907     {
1908 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1909       return this->do_define_in_output_data<32>(name, version, defined, od,
1910                                                 value, symsize, type, binding,
1911                                                 visibility, nonvis,
1912                                                 offset_is_from_end,
1913                                                 only_if_ref);
1914 #else
1915       gold_unreachable();
1916 #endif
1917     }
1918   else if (parameters->target().get_size() == 64)
1919     {
1920 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1921       return this->do_define_in_output_data<64>(name, version, defined, od,
1922                                                 value, symsize, type, binding,
1923                                                 visibility, nonvis,
1924                                                 offset_is_from_end,
1925                                                 only_if_ref);
1926 #else
1927       gold_unreachable();
1928 #endif
1929     }
1930   else
1931     gold_unreachable();
1932 }
1933
1934 // Define a symbol in an Output_data, sized version.
1935
1936 template<int size>
1937 Sized_symbol<size>*
1938 Symbol_table::do_define_in_output_data(
1939     const char* name,
1940     const char* version,
1941     Defined defined,
1942     Output_data* od,
1943     typename elfcpp::Elf_types<size>::Elf_Addr value,
1944     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1945     elfcpp::STT type,
1946     elfcpp::STB binding,
1947     elfcpp::STV visibility,
1948     unsigned char nonvis,
1949     bool offset_is_from_end,
1950     bool only_if_ref)
1951 {
1952   Sized_symbol<size>* sym;
1953   Sized_symbol<size>* oldsym;
1954   bool resolve_oldsym;
1955
1956   if (parameters->target().is_big_endian())
1957     {
1958 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1959       sym = this->define_special_symbol<size, true>(&name, &version,
1960                                                     only_if_ref, &oldsym,
1961                                                     &resolve_oldsym);
1962 #else
1963       gold_unreachable();
1964 #endif
1965     }
1966   else
1967     {
1968 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1969       sym = this->define_special_symbol<size, false>(&name, &version,
1970                                                      only_if_ref, &oldsym,
1971                                                      &resolve_oldsym);
1972 #else
1973       gold_unreachable();
1974 #endif
1975     }
1976
1977   if (sym == NULL)
1978     return NULL;
1979
1980   sym->init_output_data(name, version, od, value, symsize, type, binding,
1981                         visibility, nonvis, offset_is_from_end,
1982                         defined == PREDEFINED);
1983
1984   if (oldsym == NULL)
1985     {
1986       if (binding == elfcpp::STB_LOCAL
1987           || this->version_script_.symbol_is_local(name))
1988         this->force_local(sym);
1989       else if (version != NULL)
1990         sym->set_is_default();
1991       return sym;
1992     }
1993
1994   if (Symbol_table::should_override_with_special(oldsym, type, defined))
1995     this->override_with_special(oldsym, sym);
1996
1997   if (resolve_oldsym)
1998     return sym;
1999   else
2000     {
2001       if (defined == PREDEFINED
2002           && (binding == elfcpp::STB_LOCAL
2003               || this->version_script_.symbol_is_local(name)))
2004         this->force_local(oldsym);
2005       delete sym;
2006       return oldsym;
2007     }
2008 }
2009
2010 // Define a symbol based on an Output_segment.
2011
2012 Symbol*
2013 Symbol_table::define_in_output_segment(const char* name,
2014                                        const char* version,
2015                                        Defined defined,
2016                                        Output_segment* os,
2017                                        uint64_t value,
2018                                        uint64_t symsize,
2019                                        elfcpp::STT type,
2020                                        elfcpp::STB binding,
2021                                        elfcpp::STV visibility,
2022                                        unsigned char nonvis,
2023                                        Symbol::Segment_offset_base offset_base,
2024                                        bool only_if_ref)
2025 {
2026   if (parameters->target().get_size() == 32)
2027     {
2028 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2029       return this->do_define_in_output_segment<32>(name, version, defined, os,
2030                                                    value, symsize, type,
2031                                                    binding, visibility, nonvis,
2032                                                    offset_base, only_if_ref);
2033 #else
2034       gold_unreachable();
2035 #endif
2036     }
2037   else if (parameters->target().get_size() == 64)
2038     {
2039 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2040       return this->do_define_in_output_segment<64>(name, version, defined, os,
2041                                                    value, symsize, type,
2042                                                    binding, visibility, nonvis,
2043                                                    offset_base, only_if_ref);
2044 #else
2045       gold_unreachable();
2046 #endif
2047     }
2048   else
2049     gold_unreachable();
2050 }
2051
2052 // Define a symbol in an Output_segment, sized version.
2053
2054 template<int size>
2055 Sized_symbol<size>*
2056 Symbol_table::do_define_in_output_segment(
2057     const char* name,
2058     const char* version,
2059     Defined defined,
2060     Output_segment* os,
2061     typename elfcpp::Elf_types<size>::Elf_Addr value,
2062     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2063     elfcpp::STT type,
2064     elfcpp::STB binding,
2065     elfcpp::STV visibility,
2066     unsigned char nonvis,
2067     Symbol::Segment_offset_base offset_base,
2068     bool only_if_ref)
2069 {
2070   Sized_symbol<size>* sym;
2071   Sized_symbol<size>* oldsym;
2072   bool resolve_oldsym;
2073
2074   if (parameters->target().is_big_endian())
2075     {
2076 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2077       sym = this->define_special_symbol<size, true>(&name, &version,
2078                                                     only_if_ref, &oldsym,
2079                                                     &resolve_oldsym);
2080 #else
2081       gold_unreachable();
2082 #endif
2083     }
2084   else
2085     {
2086 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2087       sym = this->define_special_symbol<size, false>(&name, &version,
2088                                                      only_if_ref, &oldsym,
2089                                                      &resolve_oldsym);
2090 #else
2091       gold_unreachable();
2092 #endif
2093     }
2094
2095   if (sym == NULL)
2096     return NULL;
2097
2098   sym->init_output_segment(name, version, os, value, symsize, type, binding,
2099                            visibility, nonvis, offset_base,
2100                            defined == PREDEFINED);
2101
2102   if (oldsym == NULL)
2103     {
2104       if (binding == elfcpp::STB_LOCAL
2105           || this->version_script_.symbol_is_local(name))
2106         this->force_local(sym);
2107       else if (version != NULL)
2108         sym->set_is_default();
2109       return sym;
2110     }
2111
2112   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2113     this->override_with_special(oldsym, sym);
2114
2115   if (resolve_oldsym)
2116     return sym;
2117   else
2118     {
2119       if (binding == elfcpp::STB_LOCAL
2120           || this->version_script_.symbol_is_local(name))
2121         this->force_local(oldsym);
2122       delete sym;
2123       return oldsym;
2124     }
2125 }
2126
2127 // Define a special symbol with a constant value.  It is a multiple
2128 // definition error if this symbol is already defined.
2129
2130 Symbol*
2131 Symbol_table::define_as_constant(const char* name,
2132                                  const char* version,
2133                                  Defined defined,
2134                                  uint64_t value,
2135                                  uint64_t symsize,
2136                                  elfcpp::STT type,
2137                                  elfcpp::STB binding,
2138                                  elfcpp::STV visibility,
2139                                  unsigned char nonvis,
2140                                  bool only_if_ref,
2141                                  bool force_override)
2142 {
2143   if (parameters->target().get_size() == 32)
2144     {
2145 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2146       return this->do_define_as_constant<32>(name, version, defined, value,
2147                                              symsize, type, binding,
2148                                              visibility, nonvis, only_if_ref,
2149                                              force_override);
2150 #else
2151       gold_unreachable();
2152 #endif
2153     }
2154   else if (parameters->target().get_size() == 64)
2155     {
2156 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2157       return this->do_define_as_constant<64>(name, version, defined, value,
2158                                              symsize, type, binding,
2159                                              visibility, nonvis, only_if_ref,
2160                                              force_override);
2161 #else
2162       gold_unreachable();
2163 #endif
2164     }
2165   else
2166     gold_unreachable();
2167 }
2168
2169 // Define a symbol as a constant, sized version.
2170
2171 template<int size>
2172 Sized_symbol<size>*
2173 Symbol_table::do_define_as_constant(
2174     const char* name,
2175     const char* version,
2176     Defined defined,
2177     typename elfcpp::Elf_types<size>::Elf_Addr value,
2178     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2179     elfcpp::STT type,
2180     elfcpp::STB binding,
2181     elfcpp::STV visibility,
2182     unsigned char nonvis,
2183     bool only_if_ref,
2184     bool force_override)
2185 {
2186   Sized_symbol<size>* sym;
2187   Sized_symbol<size>* oldsym;
2188   bool resolve_oldsym;
2189
2190   if (parameters->target().is_big_endian())
2191     {
2192 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2193       sym = this->define_special_symbol<size, true>(&name, &version,
2194                                                     only_if_ref, &oldsym,
2195                                                     &resolve_oldsym);
2196 #else
2197       gold_unreachable();
2198 #endif
2199     }
2200   else
2201     {
2202 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2203       sym = this->define_special_symbol<size, false>(&name, &version,
2204                                                      only_if_ref, &oldsym,
2205                                                      &resolve_oldsym);
2206 #else
2207       gold_unreachable();
2208 #endif
2209     }
2210
2211   if (sym == NULL)
2212     return NULL;
2213
2214   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2215                      nonvis, defined == PREDEFINED);
2216
2217   if (oldsym == NULL)
2218     {
2219       // Version symbols are absolute symbols with name == version.
2220       // We don't want to force them to be local.
2221       if ((version == NULL
2222            || name != version
2223            || value != 0)
2224           && (binding == elfcpp::STB_LOCAL
2225               || this->version_script_.symbol_is_local(name)))
2226         this->force_local(sym);
2227       else if (version != NULL
2228                && (name != version || value != 0))
2229         sym->set_is_default();
2230       return sym;
2231     }
2232
2233   if (force_override
2234       || Symbol_table::should_override_with_special(oldsym, type, defined))
2235     this->override_with_special(oldsym, sym);
2236
2237   if (resolve_oldsym)
2238     return sym;
2239   else
2240     {
2241       if (binding == elfcpp::STB_LOCAL
2242           || this->version_script_.symbol_is_local(name))
2243         this->force_local(oldsym);
2244       delete sym;
2245       return oldsym;
2246     }
2247 }
2248
2249 // Define a set of symbols in output sections.
2250
2251 void
2252 Symbol_table::define_symbols(const Layout* layout, int count,
2253                              const Define_symbol_in_section* p,
2254                              bool only_if_ref)
2255 {
2256   for (int i = 0; i < count; ++i, ++p)
2257     {
2258       Output_section* os = layout->find_output_section(p->output_section);
2259       if (os != NULL)
2260         this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2261                                     p->size, p->type, p->binding,
2262                                     p->visibility, p->nonvis,
2263                                     p->offset_is_from_end,
2264                                     only_if_ref || p->only_if_ref);
2265       else
2266         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2267                                  p->type, p->binding, p->visibility, p->nonvis,
2268                                  only_if_ref || p->only_if_ref,
2269                                  false);
2270     }
2271 }
2272
2273 // Define a set of symbols in output segments.
2274
2275 void
2276 Symbol_table::define_symbols(const Layout* layout, int count,
2277                              const Define_symbol_in_segment* p,
2278                              bool only_if_ref)
2279 {
2280   for (int i = 0; i < count; ++i, ++p)
2281     {
2282       Output_segment* os = layout->find_output_segment(p->segment_type,
2283                                                        p->segment_flags_set,
2284                                                        p->segment_flags_clear);
2285       if (os != NULL)
2286         this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2287                                        p->size, p->type, p->binding,
2288                                        p->visibility, p->nonvis,
2289                                        p->offset_base,
2290                                        only_if_ref || p->only_if_ref);
2291       else
2292         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2293                                  p->type, p->binding, p->visibility, p->nonvis,
2294                                  only_if_ref || p->only_if_ref,
2295                                  false);
2296     }
2297 }
2298
2299 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2300 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2301 // the offset within POSD.
2302
2303 template<int size>
2304 void
2305 Symbol_table::define_with_copy_reloc(
2306     Sized_symbol<size>* csym,
2307     Output_data* posd,
2308     typename elfcpp::Elf_types<size>::Elf_Addr value)
2309 {
2310   gold_assert(csym->is_from_dynobj());
2311   gold_assert(!csym->is_copied_from_dynobj());
2312   Object* object = csym->object();
2313   gold_assert(object->is_dynamic());
2314   Dynobj* dynobj = static_cast<Dynobj*>(object);
2315
2316   // Our copied variable has to override any variable in a shared
2317   // library.
2318   elfcpp::STB binding = csym->binding();
2319   if (binding == elfcpp::STB_WEAK)
2320     binding = elfcpp::STB_GLOBAL;
2321
2322   this->define_in_output_data(csym->name(), csym->version(), COPY,
2323                               posd, value, csym->symsize(),
2324                               csym->type(), binding,
2325                               csym->visibility(), csym->nonvis(),
2326                               false, false);
2327
2328   csym->set_is_copied_from_dynobj();
2329   csym->set_needs_dynsym_entry();
2330
2331   this->copied_symbol_dynobjs_[csym] = dynobj;
2332
2333   // We have now defined all aliases, but we have not entered them all
2334   // in the copied_symbol_dynobjs_ map.
2335   if (csym->has_alias())
2336     {
2337       Symbol* sym = csym;
2338       while (true)
2339         {
2340           sym = this->weak_aliases_[sym];
2341           if (sym == csym)
2342             break;
2343           gold_assert(sym->output_data() == posd);
2344
2345           sym->set_is_copied_from_dynobj();
2346           this->copied_symbol_dynobjs_[sym] = dynobj;
2347         }
2348     }
2349 }
2350
2351 // SYM is defined using a COPY reloc.  Return the dynamic object where
2352 // the original definition was found.
2353
2354 Dynobj*
2355 Symbol_table::get_copy_source(const Symbol* sym) const
2356 {
2357   gold_assert(sym->is_copied_from_dynobj());
2358   Copied_symbol_dynobjs::const_iterator p =
2359     this->copied_symbol_dynobjs_.find(sym);
2360   gold_assert(p != this->copied_symbol_dynobjs_.end());
2361   return p->second;
2362 }
2363
2364 // Add any undefined symbols named on the command line.
2365
2366 void
2367 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2368 {
2369   if (parameters->options().any_undefined()
2370       || layout->script_options()->any_unreferenced())
2371     {
2372       if (parameters->target().get_size() == 32)
2373         {
2374 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2375           this->do_add_undefined_symbols_from_command_line<32>(layout);
2376 #else
2377           gold_unreachable();
2378 #endif
2379         }
2380       else if (parameters->target().get_size() == 64)
2381         {
2382 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2383           this->do_add_undefined_symbols_from_command_line<64>(layout);
2384 #else
2385           gold_unreachable();
2386 #endif
2387         }
2388       else
2389         gold_unreachable();
2390     }
2391 }
2392
2393 template<int size>
2394 void
2395 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2396 {
2397   for (options::String_set::const_iterator p =
2398          parameters->options().undefined_begin();
2399        p != parameters->options().undefined_end();
2400        ++p)
2401     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2402
2403   for (options::String_set::const_iterator p =
2404          parameters->options().export_dynamic_symbol_begin();
2405        p != parameters->options().export_dynamic_symbol_end();
2406        ++p)
2407     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2408
2409   for (Script_options::referenced_const_iterator p =
2410          layout->script_options()->referenced_begin();
2411        p != layout->script_options()->referenced_end();
2412        ++p)
2413     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2414 }
2415
2416 template<int size>
2417 void
2418 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2419 {
2420   if (this->lookup(name) != NULL)
2421     return;
2422
2423   const char* version = NULL;
2424
2425   Sized_symbol<size>* sym;
2426   Sized_symbol<size>* oldsym;
2427   bool resolve_oldsym;
2428   if (parameters->target().is_big_endian())
2429     {
2430 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2431       sym = this->define_special_symbol<size, true>(&name, &version,
2432                                                     false, &oldsym,
2433                                                     &resolve_oldsym);
2434 #else
2435       gold_unreachable();
2436 #endif
2437     }
2438   else
2439     {
2440 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2441       sym = this->define_special_symbol<size, false>(&name, &version,
2442                                                      false, &oldsym,
2443                                                      &resolve_oldsym);
2444 #else
2445       gold_unreachable();
2446 #endif
2447     }
2448
2449   gold_assert(oldsym == NULL);
2450
2451   sym->init_undefined(name, version, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2452                       elfcpp::STV_DEFAULT, 0);
2453   ++this->saw_undefined_;
2454 }
2455
2456 // Set the dynamic symbol indexes.  INDEX is the index of the first
2457 // global dynamic symbol.  Pointers to the symbols are stored into the
2458 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2459 // updated dynamic symbol index.
2460
2461 unsigned int
2462 Symbol_table::set_dynsym_indexes(unsigned int index,
2463                                  std::vector<Symbol*>* syms,
2464                                  Stringpool* dynpool,
2465                                  Versions* versions)
2466 {
2467   std::vector<Symbol*> as_needed_sym;
2468
2469   // Allow a target to set dynsym indexes.
2470   if (parameters->target().has_custom_set_dynsym_indexes())
2471     {
2472       std::vector<Symbol*> dyn_symbols;
2473       for (Symbol_table_type::iterator p = this->table_.begin();
2474            p != this->table_.end();
2475            ++p)
2476         {
2477           Symbol* sym = p->second;
2478           if (!sym->should_add_dynsym_entry(this))
2479             sym->set_dynsym_index(-1U);
2480           else
2481             dyn_symbols.push_back(sym);
2482         }
2483
2484       return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2485                                                      dynpool, versions, this);
2486     }
2487
2488   for (Symbol_table_type::iterator p = this->table_.begin();
2489        p != this->table_.end();
2490        ++p)
2491     {
2492       Symbol* sym = p->second;
2493
2494       // Note that SYM may already have a dynamic symbol index, since
2495       // some symbols appear more than once in the symbol table, with
2496       // and without a version.
2497
2498       if (!sym->should_add_dynsym_entry(this))
2499         sym->set_dynsym_index(-1U);
2500       else if (!sym->has_dynsym_index())
2501         {
2502           sym->set_dynsym_index(index);
2503           ++index;
2504           syms->push_back(sym);
2505           dynpool->add(sym->name(), false, NULL);
2506
2507           // If the symbol is defined in a dynamic object and is
2508           // referenced strongly in a regular object, then mark the
2509           // dynamic object as needed.  This is used to implement
2510           // --as-needed.
2511           if (sym->is_from_dynobj()
2512               && sym->in_reg()
2513               && !sym->is_undef_binding_weak())
2514             sym->object()->set_is_needed();
2515
2516           // Record any version information, except those from
2517           // as-needed libraries not seen to be needed.  Note that the
2518           // is_needed state for such libraries can change in this loop.
2519           if (sym->version() != NULL)
2520             {
2521               if (!sym->is_from_dynobj()
2522                   || !sym->object()->as_needed()
2523                   || sym->object()->is_needed())
2524                 versions->record_version(this, dynpool, sym);
2525               else
2526                 as_needed_sym.push_back(sym);
2527             }
2528         }
2529     }
2530
2531   // Process version information for symbols from as-needed libraries.
2532   for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2533        p != as_needed_sym.end();
2534        ++p)
2535     {
2536       Symbol* sym = *p;
2537
2538       if (sym->object()->is_needed())
2539         versions->record_version(this, dynpool, sym);
2540       else
2541         sym->clear_version();
2542     }
2543
2544   // Finish up the versions.  In some cases this may add new dynamic
2545   // symbols.
2546   index = versions->finalize(this, index, syms);
2547
2548   // Process target-specific symbols.
2549   for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2550        p != this->target_symbols_.end();
2551        ++p)
2552     {
2553       (*p)->set_dynsym_index(index);
2554       ++index;
2555       syms->push_back(*p);
2556       dynpool->add((*p)->name(), false, NULL);
2557     }
2558
2559   return index;
2560 }
2561
2562 // Set the final values for all the symbols.  The index of the first
2563 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2564 // file offset OFF.  Add their names to POOL.  Return the new file
2565 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2566
2567 off_t
2568 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2569                        size_t dyncount, Stringpool* pool,
2570                        unsigned int* plocal_symcount)
2571 {
2572   off_t ret;
2573
2574   gold_assert(*plocal_symcount != 0);
2575   this->first_global_index_ = *plocal_symcount;
2576
2577   this->dynamic_offset_ = dynoff;
2578   this->first_dynamic_global_index_ = dyn_global_index;
2579   this->dynamic_count_ = dyncount;
2580
2581   if (parameters->target().get_size() == 32)
2582     {
2583 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2584       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2585 #else
2586       gold_unreachable();
2587 #endif
2588     }
2589   else if (parameters->target().get_size() == 64)
2590     {
2591 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2592       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2593 #else
2594       gold_unreachable();
2595 #endif
2596     }
2597   else
2598     gold_unreachable();
2599
2600   // Now that we have the final symbol table, we can reliably note
2601   // which symbols should get warnings.
2602   this->warnings_.note_warnings(this);
2603
2604   return ret;
2605 }
2606
2607 // SYM is going into the symbol table at *PINDEX.  Add the name to
2608 // POOL, update *PINDEX and *POFF.
2609
2610 template<int size>
2611 void
2612 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2613                                   unsigned int* pindex, off_t* poff)
2614 {
2615   sym->set_symtab_index(*pindex);
2616   if (sym->version() == NULL || !parameters->options().relocatable())
2617     pool->add(sym->name(), false, NULL);
2618   else
2619     pool->add(sym->versioned_name(), true, NULL);
2620   ++*pindex;
2621   *poff += elfcpp::Elf_sizes<size>::sym_size;
2622 }
2623
2624 // Set the final value for all the symbols.  This is called after
2625 // Layout::finalize, so all the output sections have their final
2626 // address.
2627
2628 template<int size>
2629 off_t
2630 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2631                              unsigned int* plocal_symcount)
2632 {
2633   off = align_address(off, size >> 3);
2634   this->offset_ = off;
2635
2636   unsigned int index = *plocal_symcount;
2637   const unsigned int orig_index = index;
2638
2639   // First do all the symbols which have been forced to be local, as
2640   // they must appear before all global symbols.
2641   for (Forced_locals::iterator p = this->forced_locals_.begin();
2642        p != this->forced_locals_.end();
2643        ++p)
2644     {
2645       Symbol* sym = *p;
2646       gold_assert(sym->is_forced_local());
2647       if (this->sized_finalize_symbol<size>(sym))
2648         {
2649           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2650           ++*plocal_symcount;
2651         }
2652     }
2653
2654   // Now do all the remaining symbols.
2655   for (Symbol_table_type::iterator p = this->table_.begin();
2656        p != this->table_.end();
2657        ++p)
2658     {
2659       Symbol* sym = p->second;
2660       if (this->sized_finalize_symbol<size>(sym))
2661         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2662     }
2663
2664   // Now do target-specific symbols.
2665   for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2666        p != this->target_symbols_.end();
2667        ++p)
2668     {
2669       this->add_to_final_symtab<size>(*p, pool, &index, &off);
2670     }
2671
2672   this->output_count_ = index - orig_index;
2673
2674   return off;
2675 }
2676
2677 // Compute the final value of SYM and store status in location PSTATUS.
2678 // During relaxation, this may be called multiple times for a symbol to
2679 // compute its would-be final value in each relaxation pass.
2680
2681 template<int size>
2682 typename Sized_symbol<size>::Value_type
2683 Symbol_table::compute_final_value(
2684     const Sized_symbol<size>* sym,
2685     Compute_final_value_status* pstatus) const
2686 {
2687   typedef typename Sized_symbol<size>::Value_type Value_type;
2688   Value_type value;
2689
2690   switch (sym->source())
2691     {
2692     case Symbol::FROM_OBJECT:
2693       {
2694         bool is_ordinary;
2695         unsigned int shndx = sym->shndx(&is_ordinary);
2696
2697         if (!is_ordinary
2698             && shndx != elfcpp::SHN_ABS
2699             && !Symbol::is_common_shndx(shndx))
2700           {
2701             *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2702             return 0;
2703           }
2704
2705         Object* symobj = sym->object();
2706         if (symobj->is_dynamic())
2707           {
2708             value = 0;
2709             shndx = elfcpp::SHN_UNDEF;
2710           }
2711         else if (symobj->pluginobj() != NULL)
2712           {
2713             value = 0;
2714             shndx = elfcpp::SHN_UNDEF;
2715           }
2716         else if (shndx == elfcpp::SHN_UNDEF)
2717           value = 0;
2718         else if (!is_ordinary
2719                  && (shndx == elfcpp::SHN_ABS
2720                      || Symbol::is_common_shndx(shndx)))
2721           value = sym->value();
2722         else
2723           {
2724             Relobj* relobj = static_cast<Relobj*>(symobj);
2725             Output_section* os = relobj->output_section(shndx);
2726
2727             if (this->is_section_folded(relobj, shndx))
2728               {
2729                 gold_assert(os == NULL);
2730                 // Get the os of the section it is folded onto.
2731                 Section_id folded = this->icf_->get_folded_section(relobj,
2732                                                                    shndx);
2733                 gold_assert(folded.first != NULL);
2734                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2735                 unsigned folded_shndx = folded.second;
2736
2737                 os = folded_obj->output_section(folded_shndx);  
2738                 gold_assert(os != NULL);
2739
2740                 // Replace (relobj, shndx) with canonical ICF input section.
2741                 shndx = folded_shndx;
2742                 relobj = folded_obj;
2743               }
2744
2745             uint64_t secoff64 = relobj->output_section_offset(shndx);
2746             if (os == NULL)
2747               {
2748                 bool static_or_reloc = (parameters->doing_static_link() ||
2749                                         parameters->options().relocatable());
2750                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2751
2752                 *pstatus = CFVS_NO_OUTPUT_SECTION;
2753                 return 0;
2754               }
2755
2756             if (secoff64 == -1ULL)
2757               {
2758                 // The section needs special handling (e.g., a merge section).
2759
2760                 value = os->output_address(relobj, shndx, sym->value());
2761               }
2762             else
2763               {
2764                 Value_type secoff =
2765                   convert_types<Value_type, uint64_t>(secoff64);
2766                 if (sym->type() == elfcpp::STT_TLS)
2767                   value = sym->value() + os->tls_offset() + secoff;
2768                 else
2769                   value = sym->value() + os->address() + secoff;
2770               }
2771           }
2772       }
2773       break;
2774
2775     case Symbol::IN_OUTPUT_DATA:
2776       {
2777         Output_data* od = sym->output_data();
2778         value = sym->value();
2779         if (sym->type() != elfcpp::STT_TLS)
2780           value += od->address();
2781         else
2782           {
2783             Output_section* os = od->output_section();
2784             gold_assert(os != NULL);
2785             value += os->tls_offset() + (od->address() - os->address());
2786           }
2787         if (sym->offset_is_from_end())
2788           value += od->data_size();
2789       }
2790       break;
2791
2792     case Symbol::IN_OUTPUT_SEGMENT:
2793       {
2794         Output_segment* os = sym->output_segment();
2795         value = sym->value();
2796         if (sym->type() != elfcpp::STT_TLS)
2797           value += os->vaddr();
2798         switch (sym->offset_base())
2799           {
2800           case Symbol::SEGMENT_START:
2801             break;
2802           case Symbol::SEGMENT_END:
2803             value += os->memsz();
2804             break;
2805           case Symbol::SEGMENT_BSS:
2806             value += os->filesz();
2807             break;
2808           default:
2809             gold_unreachable();
2810           }
2811       }
2812       break;
2813
2814     case Symbol::IS_CONSTANT:
2815       value = sym->value();
2816       break;
2817
2818     case Symbol::IS_UNDEFINED:
2819       value = 0;
2820       break;
2821
2822     default:
2823       gold_unreachable();
2824     }
2825
2826   *pstatus = CFVS_OK;
2827   return value;
2828 }
2829
2830 // Finalize the symbol SYM.  This returns true if the symbol should be
2831 // added to the symbol table, false otherwise.
2832
2833 template<int size>
2834 bool
2835 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2836 {
2837   typedef typename Sized_symbol<size>::Value_type Value_type;
2838
2839   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2840
2841   // The default version of a symbol may appear twice in the symbol
2842   // table.  We only need to finalize it once.
2843   if (sym->has_symtab_index())
2844     return false;
2845
2846   if (!sym->in_reg())
2847     {
2848       gold_assert(!sym->has_symtab_index());
2849       sym->set_symtab_index(-1U);
2850       gold_assert(sym->dynsym_index() == -1U);
2851       return false;
2852     }
2853
2854   // If the symbol is only present on plugin files, the plugin decided we
2855   // don't need it.
2856   if (!sym->in_real_elf())
2857     {
2858       gold_assert(!sym->has_symtab_index());
2859       sym->set_symtab_index(-1U);
2860       return false;
2861     }
2862
2863   // Compute final symbol value.
2864   Compute_final_value_status status;
2865   Value_type value = this->compute_final_value(sym, &status);
2866
2867   switch (status)
2868     {
2869     case CFVS_OK:
2870       break;
2871     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2872       {
2873         bool is_ordinary;
2874         unsigned int shndx = sym->shndx(&is_ordinary);
2875         gold_error(_("%s: unsupported symbol section 0x%x"),
2876                    sym->demangled_name().c_str(), shndx);
2877       }
2878       break;
2879     case CFVS_NO_OUTPUT_SECTION:
2880       sym->set_symtab_index(-1U);
2881       return false;
2882     default:
2883       gold_unreachable();
2884     }
2885
2886   sym->set_value(value);
2887
2888   if (parameters->options().strip_all()
2889       || !parameters->options().should_retain_symbol(sym->name()))
2890     {
2891       sym->set_symtab_index(-1U);
2892       return false;
2893     }
2894
2895   return true;
2896 }
2897
2898 // Write out the global symbols.
2899
2900 void
2901 Symbol_table::write_globals(const Stringpool* sympool,
2902                             const Stringpool* dynpool,
2903                             Output_symtab_xindex* symtab_xindex,
2904                             Output_symtab_xindex* dynsym_xindex,
2905                             Output_file* of) const
2906 {
2907   switch (parameters->size_and_endianness())
2908     {
2909 #ifdef HAVE_TARGET_32_LITTLE
2910     case Parameters::TARGET_32_LITTLE:
2911       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2912                                            dynsym_xindex, of);
2913       break;
2914 #endif
2915 #ifdef HAVE_TARGET_32_BIG
2916     case Parameters::TARGET_32_BIG:
2917       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2918                                           dynsym_xindex, of);
2919       break;
2920 #endif
2921 #ifdef HAVE_TARGET_64_LITTLE
2922     case Parameters::TARGET_64_LITTLE:
2923       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2924                                            dynsym_xindex, of);
2925       break;
2926 #endif
2927 #ifdef HAVE_TARGET_64_BIG
2928     case Parameters::TARGET_64_BIG:
2929       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2930                                           dynsym_xindex, of);
2931       break;
2932 #endif
2933     default:
2934       gold_unreachable();
2935     }
2936 }
2937
2938 // Write out the global symbols.
2939
2940 template<int size, bool big_endian>
2941 void
2942 Symbol_table::sized_write_globals(const Stringpool* sympool,
2943                                   const Stringpool* dynpool,
2944                                   Output_symtab_xindex* symtab_xindex,
2945                                   Output_symtab_xindex* dynsym_xindex,
2946                                   Output_file* of) const
2947 {
2948   const Target& target = parameters->target();
2949
2950   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2951
2952   const unsigned int output_count = this->output_count_;
2953   const section_size_type oview_size = output_count * sym_size;
2954   const unsigned int first_global_index = this->first_global_index_;
2955   unsigned char* psyms;
2956   if (this->offset_ == 0 || output_count == 0)
2957     psyms = NULL;
2958   else
2959     psyms = of->get_output_view(this->offset_, oview_size);
2960
2961   const unsigned int dynamic_count = this->dynamic_count_;
2962   const section_size_type dynamic_size = dynamic_count * sym_size;
2963   const unsigned int first_dynamic_global_index =
2964     this->first_dynamic_global_index_;
2965   unsigned char* dynamic_view;
2966   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2967     dynamic_view = NULL;
2968   else
2969     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2970
2971   for (Symbol_table_type::const_iterator p = this->table_.begin();
2972        p != this->table_.end();
2973        ++p)
2974     {
2975       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2976
2977       // Possibly warn about unresolved symbols in shared libraries.
2978       this->warn_about_undefined_dynobj_symbol(sym);
2979
2980       unsigned int sym_index = sym->symtab_index();
2981       unsigned int dynsym_index;
2982       if (dynamic_view == NULL)
2983         dynsym_index = -1U;
2984       else
2985         dynsym_index = sym->dynsym_index();
2986
2987       if (sym_index == -1U && dynsym_index == -1U)
2988         {
2989           // This symbol is not included in the output file.
2990           continue;
2991         }
2992
2993       unsigned int shndx;
2994       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2995       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2996       elfcpp::STB binding = sym->binding();
2997
2998       // If --weak-unresolved-symbols is set, change binding of unresolved
2999       // global symbols to STB_WEAK.
3000       if (parameters->options().weak_unresolved_symbols()
3001           && binding == elfcpp::STB_GLOBAL
3002           && sym->is_undefined())
3003         binding = elfcpp::STB_WEAK;
3004
3005       // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
3006       if (binding == elfcpp::STB_GNU_UNIQUE
3007           && !parameters->options().gnu_unique())
3008         binding = elfcpp::STB_GLOBAL;
3009
3010       switch (sym->source())
3011         {
3012         case Symbol::FROM_OBJECT:
3013           {
3014             bool is_ordinary;
3015             unsigned int in_shndx = sym->shndx(&is_ordinary);
3016
3017             if (!is_ordinary
3018                 && in_shndx != elfcpp::SHN_ABS
3019                 && !Symbol::is_common_shndx(in_shndx))
3020               {
3021                 gold_error(_("%s: unsupported symbol section 0x%x"),
3022                            sym->demangled_name().c_str(), in_shndx);
3023                 shndx = in_shndx;
3024               }
3025             else
3026               {
3027                 Object* symobj = sym->object();
3028                 if (symobj->is_dynamic())
3029                   {
3030                     if (sym->needs_dynsym_value())
3031                       dynsym_value = target.dynsym_value(sym);
3032                     shndx = elfcpp::SHN_UNDEF;
3033                     if (sym->is_undef_binding_weak())
3034                       binding = elfcpp::STB_WEAK;
3035                     else
3036                       binding = elfcpp::STB_GLOBAL;
3037                   }
3038                 else if (symobj->pluginobj() != NULL)
3039                   shndx = elfcpp::SHN_UNDEF;
3040                 else if (in_shndx == elfcpp::SHN_UNDEF
3041                          || (!is_ordinary
3042                              && (in_shndx == elfcpp::SHN_ABS
3043                                  || Symbol::is_common_shndx(in_shndx))))
3044                   shndx = in_shndx;
3045                 else
3046                   {
3047                     Relobj* relobj = static_cast<Relobj*>(symobj);
3048                     Output_section* os = relobj->output_section(in_shndx);
3049                     if (this->is_section_folded(relobj, in_shndx))
3050                       {
3051                         // This global symbol must be written out even though
3052                         // it is folded.
3053                         // Get the os of the section it is folded onto.
3054                         Section_id folded =
3055                              this->icf_->get_folded_section(relobj, in_shndx);
3056                         gold_assert(folded.first !=NULL);
3057                         Relobj* folded_obj = 
3058                           reinterpret_cast<Relobj*>(folded.first);
3059                         os = folded_obj->output_section(folded.second);  
3060                         gold_assert(os != NULL);
3061                       }
3062                     gold_assert(os != NULL);
3063                     shndx = os->out_shndx();
3064
3065                     if (shndx >= elfcpp::SHN_LORESERVE)
3066                       {
3067                         if (sym_index != -1U)
3068                           symtab_xindex->add(sym_index, shndx);
3069                         if (dynsym_index != -1U)
3070                           dynsym_xindex->add(dynsym_index, shndx);
3071                         shndx = elfcpp::SHN_XINDEX;
3072                       }
3073
3074                     // In object files symbol values are section
3075                     // relative.
3076                     if (parameters->options().relocatable())
3077                       sym_value -= os->address();
3078                   }
3079               }
3080           }
3081           break;
3082
3083         case Symbol::IN_OUTPUT_DATA:
3084           {
3085             Output_data* od = sym->output_data();
3086
3087             shndx = od->out_shndx();
3088             if (shndx >= elfcpp::SHN_LORESERVE)
3089               {
3090                 if (sym_index != -1U)
3091                   symtab_xindex->add(sym_index, shndx);
3092                 if (dynsym_index != -1U)
3093                   dynsym_xindex->add(dynsym_index, shndx);
3094                 shndx = elfcpp::SHN_XINDEX;
3095               }
3096
3097             // In object files symbol values are section
3098             // relative.
3099             if (parameters->options().relocatable())
3100               sym_value -= od->address();
3101           }
3102           break;
3103
3104         case Symbol::IN_OUTPUT_SEGMENT:
3105           shndx = elfcpp::SHN_ABS;
3106           break;
3107
3108         case Symbol::IS_CONSTANT:
3109           shndx = elfcpp::SHN_ABS;
3110           break;
3111
3112         case Symbol::IS_UNDEFINED:
3113           shndx = elfcpp::SHN_UNDEF;
3114           break;
3115
3116         default:
3117           gold_unreachable();
3118         }
3119
3120       if (sym_index != -1U)
3121         {
3122           sym_index -= first_global_index;
3123           gold_assert(sym_index < output_count);
3124           unsigned char* ps = psyms + (sym_index * sym_size);
3125           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3126                                                      binding, sympool, ps);
3127         }
3128
3129       if (dynsym_index != -1U)
3130         {
3131           dynsym_index -= first_dynamic_global_index;
3132           gold_assert(dynsym_index < dynamic_count);
3133           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3134           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3135                                                      binding, dynpool, pd);
3136           // Allow a target to adjust dynamic symbol value.
3137           parameters->target().adjust_dyn_symbol(sym, pd);
3138         }
3139     }
3140
3141   // Write the target-specific symbols.
3142   for (std::vector<Symbol*>::const_iterator p = this->target_symbols_.begin();
3143        p != this->target_symbols_.end();
3144        ++p)
3145     {
3146       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(*p);
3147
3148       unsigned int sym_index = sym->symtab_index();
3149       unsigned int dynsym_index;
3150       if (dynamic_view == NULL)
3151         dynsym_index = -1U;
3152       else
3153         dynsym_index = sym->dynsym_index();
3154
3155       unsigned int shndx;
3156       switch (sym->source())
3157         {
3158         case Symbol::IS_CONSTANT:
3159           shndx = elfcpp::SHN_ABS;
3160           break;
3161         case Symbol::IS_UNDEFINED:
3162           shndx = elfcpp::SHN_UNDEF;
3163           break;
3164         default:
3165           gold_unreachable();
3166         }
3167
3168       if (sym_index != -1U)
3169         {
3170           sym_index -= first_global_index;
3171           gold_assert(sym_index < output_count);
3172           unsigned char* ps = psyms + (sym_index * sym_size);
3173           this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3174                                                      sym->binding(), sympool,
3175                                                      ps);
3176         }
3177
3178       if (dynsym_index != -1U)
3179         {
3180           dynsym_index -= first_dynamic_global_index;
3181           gold_assert(dynsym_index < dynamic_count);
3182           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3183           this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3184                                                      sym->binding(), dynpool,
3185                                                      pd);
3186         }
3187     }
3188
3189   of->write_output_view(this->offset_, oview_size, psyms);
3190   if (dynamic_view != NULL)
3191     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3192 }
3193
3194 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
3195 // strtab holding the name.
3196
3197 template<int size, bool big_endian>
3198 void
3199 Symbol_table::sized_write_symbol(
3200     Sized_symbol<size>* sym,
3201     typename elfcpp::Elf_types<size>::Elf_Addr value,
3202     unsigned int shndx,
3203     elfcpp::STB binding,
3204     const Stringpool* pool,
3205     unsigned char* p) const
3206 {
3207   elfcpp::Sym_write<size, big_endian> osym(p);
3208   if (sym->version() == NULL || !parameters->options().relocatable())
3209     osym.put_st_name(pool->get_offset(sym->name()));
3210   else
3211     osym.put_st_name(pool->get_offset(sym->versioned_name()));
3212   osym.put_st_value(value);
3213   // Use a symbol size of zero for undefined symbols from shared libraries.
3214   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3215     osym.put_st_size(0);
3216   else
3217     osym.put_st_size(sym->symsize());
3218   elfcpp::STT type = sym->type();
3219   gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3220   // A version script may have overridden the default binding.
3221   if (sym->is_forced_local())
3222     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3223   else
3224     osym.put_st_info(elfcpp::elf_st_info(binding, type));
3225   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3226   osym.put_st_shndx(shndx);
3227 }
3228
3229 // Check for unresolved symbols in shared libraries.  This is
3230 // controlled by the --allow-shlib-undefined option.
3231
3232 // We only warn about libraries for which we have seen all the
3233 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
3234 // which were not seen in this link.  If we didn't see a DT_NEEDED
3235 // entry, we aren't going to be able to reliably report whether the
3236 // symbol is undefined.
3237
3238 // We also don't warn about libraries found in a system library
3239 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3240 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
3241 // can have undefined references satisfied by ld-linux.so.
3242
3243 inline void
3244 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3245 {
3246   bool dummy;
3247   if (sym->source() == Symbol::FROM_OBJECT
3248       && sym->object()->is_dynamic()
3249       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3250       && sym->binding() != elfcpp::STB_WEAK
3251       && !parameters->options().allow_shlib_undefined()
3252       && !parameters->target().is_defined_by_abi(sym)
3253       && !sym->object()->is_in_system_directory())
3254     {
3255       // A very ugly cast.
3256       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3257       if (!dynobj->has_unknown_needed_entries())
3258         gold_undefined_symbol(sym);
3259     }
3260 }
3261
3262 // Write out a section symbol.  Return the update offset.
3263
3264 void
3265 Symbol_table::write_section_symbol(const Output_section* os,
3266                                    Output_symtab_xindex* symtab_xindex,
3267                                    Output_file* of,
3268                                    off_t offset) const
3269 {
3270   switch (parameters->size_and_endianness())
3271     {
3272 #ifdef HAVE_TARGET_32_LITTLE
3273     case Parameters::TARGET_32_LITTLE:
3274       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3275                                                   offset);
3276       break;
3277 #endif
3278 #ifdef HAVE_TARGET_32_BIG
3279     case Parameters::TARGET_32_BIG:
3280       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3281                                                  offset);
3282       break;
3283 #endif
3284 #ifdef HAVE_TARGET_64_LITTLE
3285     case Parameters::TARGET_64_LITTLE:
3286       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3287                                                   offset);
3288       break;
3289 #endif
3290 #ifdef HAVE_TARGET_64_BIG
3291     case Parameters::TARGET_64_BIG:
3292       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3293                                                  offset);
3294       break;
3295 #endif
3296     default:
3297       gold_unreachable();
3298     }
3299 }
3300
3301 // Write out a section symbol, specialized for size and endianness.
3302
3303 template<int size, bool big_endian>
3304 void
3305 Symbol_table::sized_write_section_symbol(const Output_section* os,
3306                                          Output_symtab_xindex* symtab_xindex,
3307                                          Output_file* of,
3308                                          off_t offset) const
3309 {
3310   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3311
3312   unsigned char* pov = of->get_output_view(offset, sym_size);
3313
3314   elfcpp::Sym_write<size, big_endian> osym(pov);
3315   osym.put_st_name(0);
3316   if (parameters->options().relocatable())
3317     osym.put_st_value(0);
3318   else
3319     osym.put_st_value(os->address());
3320   osym.put_st_size(0);
3321   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3322                                        elfcpp::STT_SECTION));
3323   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3324
3325   unsigned int shndx = os->out_shndx();
3326   if (shndx >= elfcpp::SHN_LORESERVE)
3327     {
3328       symtab_xindex->add(os->symtab_index(), shndx);
3329       shndx = elfcpp::SHN_XINDEX;
3330     }
3331   osym.put_st_shndx(shndx);
3332
3333   of->write_output_view(offset, sym_size, pov);
3334 }
3335
3336 // Print statistical information to stderr.  This is used for --stats.
3337
3338 void
3339 Symbol_table::print_stats() const
3340 {
3341 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3342   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3343           program_name, this->table_.size(), this->table_.bucket_count());
3344 #else
3345   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3346           program_name, this->table_.size());
3347 #endif
3348   this->namepool_.print_stats("symbol table stringpool");
3349 }
3350
3351 // We check for ODR violations by looking for symbols with the same
3352 // name for which the debugging information reports that they were
3353 // defined in disjoint source locations.  When comparing the source
3354 // location, we consider instances with the same base filename to be
3355 // the same.  This is because different object files/shared libraries
3356 // can include the same header file using different paths, and
3357 // different optimization settings can make the line number appear to
3358 // be a couple lines off, and we don't want to report an ODR violation
3359 // in those cases.
3360
3361 // This struct is used to compare line information, as returned by
3362 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3363 // operator used with std::sort.
3364
3365 struct Odr_violation_compare
3366 {
3367   bool
3368   operator()(const std::string& s1, const std::string& s2) const
3369   {
3370     // Inputs should be of the form "dirname/filename:linenum" where
3371     // "dirname/" is optional.  We want to compare just the filename:linenum.
3372
3373     // Find the last '/' in each string.
3374     std::string::size_type s1begin = s1.rfind('/');
3375     std::string::size_type s2begin = s2.rfind('/');
3376     // If there was no '/' in a string, start at the beginning.
3377     if (s1begin == std::string::npos)
3378       s1begin = 0;
3379     if (s2begin == std::string::npos)
3380       s2begin = 0;
3381     return s1.compare(s1begin, std::string::npos,
3382                       s2, s2begin, std::string::npos) < 0;
3383   }
3384 };
3385
3386 // Returns all of the lines attached to LOC, not just the one the
3387 // instruction actually came from.
3388 std::vector<std::string>
3389 Symbol_table::linenos_from_loc(const Task* task,
3390                                const Symbol_location& loc)
3391 {
3392   // We need to lock the object in order to read it.  This
3393   // means that we have to run in a singleton Task.  If we
3394   // want to run this in a general Task for better
3395   // performance, we will need one Task for object, plus
3396   // appropriate locking to ensure that we don't conflict with
3397   // other uses of the object.  Also note, one_addr2line is not
3398   // currently thread-safe.
3399   Task_lock_obj<Object> tl(task, loc.object);
3400
3401   std::vector<std::string> result;
3402   Symbol_location code_loc = loc;
3403   parameters->target().function_location(&code_loc);
3404   // 16 is the size of the object-cache that one_addr2line should use.
3405   std::string canonical_result = Dwarf_line_info::one_addr2line(
3406       code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3407   if (!canonical_result.empty())
3408     result.push_back(canonical_result);
3409   return result;
3410 }
3411
3412 // OutputIterator that records if it was ever assigned to.  This
3413 // allows it to be used with std::set_intersection() to check for
3414 // intersection rather than computing the intersection.
3415 struct Check_intersection
3416 {
3417   Check_intersection()
3418     : value_(false)
3419   {}
3420
3421   bool had_intersection() const
3422   { return this->value_; }
3423
3424   Check_intersection& operator++()
3425   { return *this; }
3426
3427   Check_intersection& operator*()
3428   { return *this; }
3429
3430   template<typename T>
3431   Check_intersection& operator=(const T&)
3432   {
3433     this->value_ = true;
3434     return *this;
3435   }
3436
3437  private:
3438   bool value_;
3439 };
3440
3441 // Check candidate_odr_violations_ to find symbols with the same name
3442 // but apparently different definitions (different source-file/line-no
3443 // for each line assigned to the first instruction).
3444
3445 void
3446 Symbol_table::detect_odr_violations(const Task* task,
3447                                     const char* output_file_name) const
3448 {
3449   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3450        it != candidate_odr_violations_.end();
3451        ++it)
3452     {
3453       const char* const symbol_name = it->first;
3454
3455       std::string first_object_name;
3456       std::vector<std::string> first_object_linenos;
3457
3458       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3459           locs = it->second.begin();
3460       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3461           locs_end = it->second.end();
3462       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3463         {
3464           // Save the line numbers from the first definition to
3465           // compare to the other definitions.  Ideally, we'd compare
3466           // every definition to every other, but we don't want to
3467           // take O(N^2) time to do this.  This shortcut may cause
3468           // false negatives that appear or disappear depending on the
3469           // link order, but it won't cause false positives.
3470           first_object_name = locs->object->name();
3471           first_object_linenos = this->linenos_from_loc(task, *locs);
3472         }
3473       if (first_object_linenos.empty())
3474         continue;
3475
3476       // Sort by Odr_violation_compare to make std::set_intersection work.
3477       std::string first_object_canonical_result = first_object_linenos.back();
3478       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3479                 Odr_violation_compare());
3480
3481       for (; locs != locs_end; ++locs)
3482         {
3483           std::vector<std::string> linenos =
3484               this->linenos_from_loc(task, *locs);
3485           // linenos will be empty if we couldn't parse the debug info.
3486           if (linenos.empty())
3487             continue;
3488           // Sort by Odr_violation_compare to make std::set_intersection work.
3489           gold_assert(!linenos.empty());
3490           std::string second_object_canonical_result = linenos.back();
3491           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3492
3493           Check_intersection intersection_result =
3494               std::set_intersection(first_object_linenos.begin(),
3495                                     first_object_linenos.end(),
3496                                     linenos.begin(),
3497                                     linenos.end(),
3498                                     Check_intersection(),
3499                                     Odr_violation_compare());
3500           if (!intersection_result.had_intersection())
3501             {
3502               gold_warning(_("while linking %s: symbol '%s' defined in "
3503                              "multiple places (possible ODR violation):"),
3504                            output_file_name, demangle(symbol_name).c_str());
3505               // This only prints one location from each definition,
3506               // which may not be the location we expect to intersect
3507               // with another definition.  We could print the whole
3508               // set of locations, but that seems too verbose.
3509               fprintf(stderr, _("  %s from %s\n"),
3510                       first_object_canonical_result.c_str(),
3511                       first_object_name.c_str());
3512               fprintf(stderr, _("  %s from %s\n"),
3513                       second_object_canonical_result.c_str(),
3514                       locs->object->name().c_str());
3515               // Only print one broken pair, to avoid needing to
3516               // compare against a list of the disjoint definition
3517               // locations we've found so far.  (If we kept comparing
3518               // against just the first one, we'd get a lot of
3519               // redundant complaints about the second definition
3520               // location.)
3521               break;
3522             }
3523         }
3524     }
3525   // We only call one_addr2line() in this function, so we can clear its cache.
3526   Dwarf_line_info::clear_addr2line_cache();
3527 }
3528
3529 // Warnings functions.
3530
3531 // Add a new warning.
3532
3533 void
3534 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3535                       const std::string& warning)
3536 {
3537   name = symtab->canonicalize_name(name);
3538   this->warnings_[name].set(obj, warning);
3539 }
3540
3541 // Look through the warnings and mark the symbols for which we should
3542 // warn.  This is called during Layout::finalize when we know the
3543 // sources for all the symbols.
3544
3545 void
3546 Warnings::note_warnings(Symbol_table* symtab)
3547 {
3548   for (Warning_table::iterator p = this->warnings_.begin();
3549        p != this->warnings_.end();
3550        ++p)
3551     {
3552       Symbol* sym = symtab->lookup(p->first, NULL);
3553       if (sym != NULL
3554           && sym->source() == Symbol::FROM_OBJECT
3555           && sym->object() == p->second.object)
3556         sym->set_has_warning();
3557     }
3558 }
3559
3560 // Issue a warning.  This is called when we see a relocation against a
3561 // symbol for which has a warning.
3562
3563 template<int size, bool big_endian>
3564 void
3565 Warnings::issue_warning(const Symbol* sym,
3566                         const Relocate_info<size, big_endian>* relinfo,
3567                         size_t relnum, off_t reloffset) const
3568 {
3569   gold_assert(sym->has_warning());
3570
3571   // We don't want to issue a warning for a relocation against the
3572   // symbol in the same object file in which the symbol is defined.
3573   if (sym->object() == relinfo->object)
3574     return;
3575
3576   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3577   gold_assert(p != this->warnings_.end());
3578   gold_warning_at_location(relinfo, relnum, reloffset,
3579                            "%s", p->second.text.c_str());
3580 }
3581
3582 // Instantiate the templates we need.  We could use the configure
3583 // script to restrict this to only the ones needed for implemented
3584 // targets.
3585
3586 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3587 template
3588 void
3589 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3590 #endif
3591
3592 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3593 template
3594 void
3595 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3596 #endif
3597
3598 #ifdef HAVE_TARGET_32_LITTLE
3599 template
3600 void
3601 Symbol_table::add_from_relobj<32, false>(
3602     Sized_relobj_file<32, false>* relobj,
3603     const unsigned char* syms,
3604     size_t count,
3605     size_t symndx_offset,
3606     const char* sym_names,
3607     size_t sym_name_size,
3608     Sized_relobj_file<32, false>::Symbols* sympointers,
3609     size_t* defined);
3610 #endif
3611
3612 #ifdef HAVE_TARGET_32_BIG
3613 template
3614 void
3615 Symbol_table::add_from_relobj<32, true>(
3616     Sized_relobj_file<32, true>* relobj,
3617     const unsigned char* syms,
3618     size_t count,
3619     size_t symndx_offset,
3620     const char* sym_names,
3621     size_t sym_name_size,
3622     Sized_relobj_file<32, true>::Symbols* sympointers,
3623     size_t* defined);
3624 #endif
3625
3626 #ifdef HAVE_TARGET_64_LITTLE
3627 template
3628 void
3629 Symbol_table::add_from_relobj<64, false>(
3630     Sized_relobj_file<64, false>* relobj,
3631     const unsigned char* syms,
3632     size_t count,
3633     size_t symndx_offset,
3634     const char* sym_names,
3635     size_t sym_name_size,
3636     Sized_relobj_file<64, false>::Symbols* sympointers,
3637     size_t* defined);
3638 #endif
3639
3640 #ifdef HAVE_TARGET_64_BIG
3641 template
3642 void
3643 Symbol_table::add_from_relobj<64, true>(
3644     Sized_relobj_file<64, true>* relobj,
3645     const unsigned char* syms,
3646     size_t count,
3647     size_t symndx_offset,
3648     const char* sym_names,
3649     size_t sym_name_size,
3650     Sized_relobj_file<64, true>::Symbols* sympointers,
3651     size_t* defined);
3652 #endif
3653
3654 #ifdef HAVE_TARGET_32_LITTLE
3655 template
3656 Symbol*
3657 Symbol_table::add_from_pluginobj<32, false>(
3658     Sized_pluginobj<32, false>* obj,
3659     const char* name,
3660     const char* ver,
3661     elfcpp::Sym<32, false>* sym);
3662 #endif
3663
3664 #ifdef HAVE_TARGET_32_BIG
3665 template
3666 Symbol*
3667 Symbol_table::add_from_pluginobj<32, true>(
3668     Sized_pluginobj<32, true>* obj,
3669     const char* name,
3670     const char* ver,
3671     elfcpp::Sym<32, true>* sym);
3672 #endif
3673
3674 #ifdef HAVE_TARGET_64_LITTLE
3675 template
3676 Symbol*
3677 Symbol_table::add_from_pluginobj<64, false>(
3678     Sized_pluginobj<64, false>* obj,
3679     const char* name,
3680     const char* ver,
3681     elfcpp::Sym<64, false>* sym);
3682 #endif
3683
3684 #ifdef HAVE_TARGET_64_BIG
3685 template
3686 Symbol*
3687 Symbol_table::add_from_pluginobj<64, true>(
3688     Sized_pluginobj<64, true>* obj,
3689     const char* name,
3690     const char* ver,
3691     elfcpp::Sym<64, true>* sym);
3692 #endif
3693
3694 #ifdef HAVE_TARGET_32_LITTLE
3695 template
3696 void
3697 Symbol_table::add_from_dynobj<32, false>(
3698     Sized_dynobj<32, false>* dynobj,
3699     const unsigned char* syms,
3700     size_t count,
3701     const char* sym_names,
3702     size_t sym_name_size,
3703     const unsigned char* versym,
3704     size_t versym_size,
3705     const std::vector<const char*>* version_map,
3706     Sized_relobj_file<32, false>::Symbols* sympointers,
3707     size_t* defined);
3708 #endif
3709
3710 #ifdef HAVE_TARGET_32_BIG
3711 template
3712 void
3713 Symbol_table::add_from_dynobj<32, true>(
3714     Sized_dynobj<32, true>* dynobj,
3715     const unsigned char* syms,
3716     size_t count,
3717     const char* sym_names,
3718     size_t sym_name_size,
3719     const unsigned char* versym,
3720     size_t versym_size,
3721     const std::vector<const char*>* version_map,
3722     Sized_relobj_file<32, true>::Symbols* sympointers,
3723     size_t* defined);
3724 #endif
3725
3726 #ifdef HAVE_TARGET_64_LITTLE
3727 template
3728 void
3729 Symbol_table::add_from_dynobj<64, false>(
3730     Sized_dynobj<64, false>* dynobj,
3731     const unsigned char* syms,
3732     size_t count,
3733     const char* sym_names,
3734     size_t sym_name_size,
3735     const unsigned char* versym,
3736     size_t versym_size,
3737     const std::vector<const char*>* version_map,
3738     Sized_relobj_file<64, false>::Symbols* sympointers,
3739     size_t* defined);
3740 #endif
3741
3742 #ifdef HAVE_TARGET_64_BIG
3743 template
3744 void
3745 Symbol_table::add_from_dynobj<64, true>(
3746     Sized_dynobj<64, true>* dynobj,
3747     const unsigned char* syms,
3748     size_t count,
3749     const char* sym_names,
3750     size_t sym_name_size,
3751     const unsigned char* versym,
3752     size_t versym_size,
3753     const std::vector<const char*>* version_map,
3754     Sized_relobj_file<64, true>::Symbols* sympointers,
3755     size_t* defined);
3756 #endif
3757
3758 #ifdef HAVE_TARGET_32_LITTLE
3759 template
3760 Sized_symbol<32>*
3761 Symbol_table::add_from_incrobj(
3762     Object* obj,
3763     const char* name,
3764     const char* ver,
3765     elfcpp::Sym<32, false>* sym);
3766 #endif
3767
3768 #ifdef HAVE_TARGET_32_BIG
3769 template
3770 Sized_symbol<32>*
3771 Symbol_table::add_from_incrobj(
3772     Object* obj,
3773     const char* name,
3774     const char* ver,
3775     elfcpp::Sym<32, true>* sym);
3776 #endif
3777
3778 #ifdef HAVE_TARGET_64_LITTLE
3779 template
3780 Sized_symbol<64>*
3781 Symbol_table::add_from_incrobj(
3782     Object* obj,
3783     const char* name,
3784     const char* ver,
3785     elfcpp::Sym<64, false>* sym);
3786 #endif
3787
3788 #ifdef HAVE_TARGET_64_BIG
3789 template
3790 Sized_symbol<64>*
3791 Symbol_table::add_from_incrobj(
3792     Object* obj,
3793     const char* name,
3794     const char* ver,
3795     elfcpp::Sym<64, true>* sym);
3796 #endif
3797
3798 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3799 template
3800 void
3801 Symbol_table::define_with_copy_reloc<32>(
3802     Sized_symbol<32>* sym,
3803     Output_data* posd,
3804     elfcpp::Elf_types<32>::Elf_Addr value);
3805 #endif
3806
3807 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3808 template
3809 void
3810 Symbol_table::define_with_copy_reloc<64>(
3811     Sized_symbol<64>* sym,
3812     Output_data* posd,
3813     elfcpp::Elf_types<64>::Elf_Addr value);
3814 #endif
3815
3816 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3817 template
3818 void
3819 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3820                                    Output_data* od, Value_type value,
3821                                    Size_type symsize, elfcpp::STT type,
3822                                    elfcpp::STB binding,
3823                                    elfcpp::STV visibility,
3824                                    unsigned char nonvis,
3825                                    bool offset_is_from_end,
3826                                    bool is_predefined);
3827
3828 template
3829 void
3830 Sized_symbol<32>::init_constant(const char* name, const char* version,
3831                                 Value_type value, Size_type symsize,
3832                                 elfcpp::STT type, elfcpp::STB binding,
3833                                 elfcpp::STV visibility, unsigned char nonvis,
3834                                 bool is_predefined);
3835
3836 template
3837 void
3838 Sized_symbol<32>::init_undefined(const char* name, const char* version,
3839                                  Value_type value, elfcpp::STT type,
3840                                  elfcpp::STB binding, elfcpp::STV visibility,
3841                                  unsigned char nonvis);
3842 #endif
3843
3844 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3845 template
3846 void
3847 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3848                                    Output_data* od, Value_type value,
3849                                    Size_type symsize, elfcpp::STT type,
3850                                    elfcpp::STB binding,
3851                                    elfcpp::STV visibility,
3852                                    unsigned char nonvis,
3853                                    bool offset_is_from_end,
3854                                    bool is_predefined);
3855
3856 template
3857 void
3858 Sized_symbol<64>::init_constant(const char* name, const char* version,
3859                                 Value_type value, Size_type symsize,
3860                                 elfcpp::STT type, elfcpp::STB binding,
3861                                 elfcpp::STV visibility, unsigned char nonvis,
3862                                 bool is_predefined);
3863
3864 template
3865 void
3866 Sized_symbol<64>::init_undefined(const char* name, const char* version,
3867                                  Value_type value, elfcpp::STT type,
3868                                  elfcpp::STB binding, elfcpp::STV visibility,
3869                                  unsigned char nonvis);
3870 #endif
3871
3872 #ifdef HAVE_TARGET_32_LITTLE
3873 template
3874 void
3875 Warnings::issue_warning<32, false>(const Symbol* sym,
3876                                    const Relocate_info<32, false>* relinfo,
3877                                    size_t relnum, off_t reloffset) const;
3878 #endif
3879
3880 #ifdef HAVE_TARGET_32_BIG
3881 template
3882 void
3883 Warnings::issue_warning<32, true>(const Symbol* sym,
3884                                   const Relocate_info<32, true>* relinfo,
3885                                   size_t relnum, off_t reloffset) const;
3886 #endif
3887
3888 #ifdef HAVE_TARGET_64_LITTLE
3889 template
3890 void
3891 Warnings::issue_warning<64, false>(const Symbol* sym,
3892                                    const Relocate_info<64, false>* relinfo,
3893                                    size_t relnum, off_t reloffset) const;
3894 #endif
3895
3896 #ifdef HAVE_TARGET_64_BIG
3897 template
3898 void
3899 Warnings::issue_warning<64, true>(const Symbol* sym,
3900                                   const Relocate_info<64, true>* relinfo,
3901                                   size_t relnum, off_t reloffset) const;
3902 #endif
3903
3904 } // End namespace gold.