* gold/incremental.cc (Sized_incremental_binary::do_process_got_plt):
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol.  This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55                     elfcpp::STT type, elfcpp::STB binding,
56                     elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91   if (!parameters->options().do_demangle())
92     return name;
93
94   // cplus_demangle allocates memory for the result it returns,
95   // and returns NULL if the name is already demangled.
96   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97   if (demangled_name == NULL)
98     return name;
99
100   std::string retval(demangled_name);
101   free(demangled_name);
102   return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108   return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116                          const elfcpp::Sym<size, big_endian>& sym,
117                          unsigned int st_shndx, bool is_ordinary)
118 {
119   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120                     sym.get_st_visibility(), sym.get_st_nonvis());
121   this->u_.from_object.object = object;
122   this->u_.from_object.shndx = st_shndx;
123   this->is_ordinary_shndx_ = is_ordinary;
124   this->source_ = FROM_OBJECT;
125   this->in_reg_ = !object->is_dynamic();
126   this->in_dyn_ = object->is_dynamic();
127   this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135                               Output_data* od, elfcpp::STT type,
136                               elfcpp::STB binding, elfcpp::STV visibility,
137                               unsigned char nonvis, bool offset_is_from_end,
138                               bool is_predefined)
139 {
140   this->init_fields(name, version, type, binding, visibility, nonvis);
141   this->u_.in_output_data.output_data = od;
142   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143   this->source_ = IN_OUTPUT_DATA;
144   this->in_reg_ = true;
145   this->in_real_elf_ = true;
146   this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154                                  Output_segment* os, elfcpp::STT type,
155                                  elfcpp::STB binding, elfcpp::STV visibility,
156                                  unsigned char nonvis,
157                                  Segment_offset_base offset_base,
158                                  bool is_predefined)
159 {
160   this->init_fields(name, version, type, binding, visibility, nonvis);
161   this->u_.in_output_segment.output_segment = os;
162   this->u_.in_output_segment.offset_base = offset_base;
163   this->source_ = IN_OUTPUT_SEGMENT;
164   this->in_reg_ = true;
165   this->in_real_elf_ = true;
166   this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174                            elfcpp::STT type, elfcpp::STB binding,
175                            elfcpp::STV visibility, unsigned char nonvis,
176                            bool is_predefined)
177 {
178   this->init_fields(name, version, type, binding, visibility, nonvis);
179   this->source_ = IS_CONSTANT;
180   this->in_reg_ = true;
181   this->in_real_elf_ = true;
182   this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190                             elfcpp::STT type, elfcpp::STB binding,
191                             elfcpp::STV visibility, unsigned char nonvis)
192 {
193   this->init_fields(name, version, type, binding, visibility, nonvis);
194   this->dynsym_index_ = -1U;
195   this->source_ = IS_UNDEFINED;
196   this->in_reg_ = true;
197   this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205   gold_assert(this->is_common());
206   this->source_ = IN_OUTPUT_DATA;
207   this->u_.in_output_data.output_data = od;
208   this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217                                 Object* object,
218                                 const elfcpp::Sym<size, big_endian>& sym,
219                                 unsigned int st_shndx, bool is_ordinary)
220 {
221   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222   this->value_ = sym.get_st_value();
223   this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232                                      Output_data* od, Value_type value,
233                                      Size_type symsize, elfcpp::STT type,
234                                      elfcpp::STB binding,
235                                      elfcpp::STV visibility,
236                                      unsigned char nonvis,
237                                      bool offset_is_from_end,
238                                      bool is_predefined)
239 {
240   this->init_base_output_data(name, version, od, type, binding, visibility,
241                               nonvis, offset_is_from_end, is_predefined);
242   this->value_ = value;
243   this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252                                         Output_segment* os, Value_type value,
253                                         Size_type symsize, elfcpp::STT type,
254                                         elfcpp::STB binding,
255                                         elfcpp::STV visibility,
256                                         unsigned char nonvis,
257                                         Segment_offset_base offset_base,
258                                         bool is_predefined)
259 {
260   this->init_base_output_segment(name, version, os, type, binding, visibility,
261                                  nonvis, offset_base, is_predefined);
262   this->value_ = value;
263   this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272                                   Value_type value, Size_type symsize,
273                                   elfcpp::STT type, elfcpp::STB binding,
274                                   elfcpp::STV visibility, unsigned char nonvis,
275                                   bool is_predefined)
276 {
277   this->init_base_constant(name, version, type, binding, visibility, nonvis,
278                            is_predefined);
279   this->value_ = value;
280   this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288                                    elfcpp::STT type, elfcpp::STB binding,
289                                    elfcpp::STV visibility, unsigned char nonvis)
290 {
291   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292   this->value_ = 0;
293   this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version.  This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302   gold_assert(this->version_ != NULL);
303   std::string ret = this->name_;
304   ret.push_back('@');
305   if (this->is_def_)
306     ret.push_back('@');
307   ret += this->version_;
308   return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316   return (shndx == elfcpp::SHN_COMMON
317           || shndx == parameters->target().small_common_shndx()
318           || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327   this->allocate_base_common(od);
328   this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 inline bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340   // If the symbol is only present on plugin files, the plugin decided we
341   // don't need it.
342   if (!this->in_real_elf())
343     return false;
344
345   // If the symbol is used by a dynamic relocation, we need to add it.
346   if (this->needs_dynsym_entry())
347     return true;
348
349   // If this symbol's section is not added, the symbol need not be added. 
350   // The section may have been GCed.  Note that export_dynamic is being 
351   // overridden here.  This should not be done for shared objects.
352   if (parameters->options().gc_sections() 
353       && !parameters->options().shared()
354       && this->source() == Symbol::FROM_OBJECT
355       && !this->object()->is_dynamic())
356     {
357       Relobj* relobj = static_cast<Relobj*>(this->object());
358       bool is_ordinary;
359       unsigned int shndx = this->shndx(&is_ordinary);
360       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361           && !relobj->is_section_included(shndx)
362           && !symtab->is_section_folded(relobj, shndx))
363         return false;
364     }
365
366   // If the symbol was forced local in a version script, do not add it.
367   if (this->is_forced_local())
368     return false;
369
370   // If the symbol was forced dynamic in a --dynamic-list file, add it.
371   if (parameters->options().in_dynamic_list(this->name()))
372     return true;
373
374   // If dynamic-list-data was specified, add any STT_OBJECT.
375   if (parameters->options().dynamic_list_data()
376       && !this->is_from_dynobj()
377       && this->type() == elfcpp::STT_OBJECT)
378     return true;
379
380   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
381   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
382   if ((parameters->options().dynamic_list_cpp_new()
383        || parameters->options().dynamic_list_cpp_typeinfo())
384       && !this->is_from_dynobj())
385     {
386       // TODO(csilvers): We could probably figure out if we're an operator
387       //                 new/delete or typeinfo without the need to demangle.
388       char* demangled_name = cplus_demangle(this->name(),
389                                             DMGL_ANSI | DMGL_PARAMS);
390       if (demangled_name == NULL)
391         {
392           // Not a C++ symbol, so it can't satisfy these flags
393         }
394       else if (parameters->options().dynamic_list_cpp_new()
395                && (strprefix(demangled_name, "operator new")
396                    || strprefix(demangled_name, "operator delete")))
397         {
398           free(demangled_name);
399           return true;
400         }
401       else if (parameters->options().dynamic_list_cpp_typeinfo()
402                && (strprefix(demangled_name, "typeinfo name for")
403                    || strprefix(demangled_name, "typeinfo for")))
404         {
405           free(demangled_name);
406           return true;
407         }
408       else
409         free(demangled_name);
410     }
411
412   // If exporting all symbols or building a shared library,
413   // and the symbol is defined in a regular object and is
414   // externally visible, we need to add it.
415   if ((parameters->options().export_dynamic() || parameters->options().shared())
416       && !this->is_from_dynobj()
417       && !this->is_undefined()
418       && this->is_externally_visible())
419     return true;
420
421   return false;
422 }
423
424 // Return true if the final value of this symbol is known at link
425 // time.
426
427 bool
428 Symbol::final_value_is_known() const
429 {
430   // If we are not generating an executable, then no final values are
431   // known, since they will change at runtime.
432   if (parameters->options().output_is_position_independent()
433       || parameters->options().relocatable())
434     return false;
435
436   // If the symbol is not from an object file, and is not undefined,
437   // then it is defined, and known.
438   if (this->source_ != FROM_OBJECT)
439     {
440       if (this->source_ != IS_UNDEFINED)
441         return true;
442     }
443   else
444     {
445       // If the symbol is from a dynamic object, then the final value
446       // is not known.
447       if (this->object()->is_dynamic())
448         return false;
449
450       // If the symbol is not undefined (it is defined or common),
451       // then the final value is known.
452       if (!this->is_undefined())
453         return true;
454     }
455
456   // If the symbol is undefined, then whether the final value is known
457   // depends on whether we are doing a static link.  If we are doing a
458   // dynamic link, then the final value could be filled in at runtime.
459   // This could reasonably be the case for a weak undefined symbol.
460   return parameters->doing_static_link();
461 }
462
463 // Return the output section where this symbol is defined.
464
465 Output_section*
466 Symbol::output_section() const
467 {
468   switch (this->source_)
469     {
470     case FROM_OBJECT:
471       {
472         unsigned int shndx = this->u_.from_object.shndx;
473         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
474           {
475             gold_assert(!this->u_.from_object.object->is_dynamic());
476             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
477             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
478             return relobj->output_section(shndx);
479           }
480         return NULL;
481       }
482
483     case IN_OUTPUT_DATA:
484       return this->u_.in_output_data.output_data->output_section();
485
486     case IN_OUTPUT_SEGMENT:
487     case IS_CONSTANT:
488     case IS_UNDEFINED:
489       return NULL;
490
491     default:
492       gold_unreachable();
493     }
494 }
495
496 // Set the symbol's output section.  This is used for symbols defined
497 // in scripts.  This should only be called after the symbol table has
498 // been finalized.
499
500 void
501 Symbol::set_output_section(Output_section* os)
502 {
503   switch (this->source_)
504     {
505     case FROM_OBJECT:
506     case IN_OUTPUT_DATA:
507       gold_assert(this->output_section() == os);
508       break;
509     case IS_CONSTANT:
510       this->source_ = IN_OUTPUT_DATA;
511       this->u_.in_output_data.output_data = os;
512       this->u_.in_output_data.offset_is_from_end = false;
513       break;
514     case IN_OUTPUT_SEGMENT:
515     case IS_UNDEFINED:
516     default:
517       gold_unreachable();
518     }
519 }
520
521 // Class Symbol_table.
522
523 Symbol_table::Symbol_table(unsigned int count,
524                            const Version_script_info& version_script)
525   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
526     forwarders_(), commons_(), tls_commons_(), small_commons_(),
527     large_commons_(), forced_locals_(), warnings_(),
528     version_script_(version_script), gc_(NULL), icf_(NULL)
529 {
530   namepool_.reserve(count);
531 }
532
533 Symbol_table::~Symbol_table()
534 {
535 }
536
537 // The symbol table key equality function.  This is called with
538 // Stringpool keys.
539
540 inline bool
541 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
542                                           const Symbol_table_key& k2) const
543 {
544   return k1.first == k2.first && k1.second == k2.second;
545 }
546
547 bool
548 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
549 {
550   return (parameters->options().icf_enabled()
551           && this->icf_->is_section_folded(obj, shndx));
552 }
553
554 // For symbols that have been listed with -u option, add them to the
555 // work list to avoid gc'ing them.
556
557 void 
558 Symbol_table::gc_mark_undef_symbols(Layout* layout)
559 {
560   for (options::String_set::const_iterator p =
561          parameters->options().undefined_begin();
562        p != parameters->options().undefined_end();
563        ++p)
564     {
565       const char* name = p->c_str();
566       Symbol* sym = this->lookup(name);
567       gold_assert(sym != NULL);
568       if (sym->source() == Symbol::FROM_OBJECT 
569           && !sym->object()->is_dynamic())
570         {
571           Relobj* obj = static_cast<Relobj*>(sym->object());
572           bool is_ordinary;
573           unsigned int shndx = sym->shndx(&is_ordinary);
574           if (is_ordinary)
575             {
576               gold_assert(this->gc_ != NULL);
577               this->gc_->worklist().push(Section_id(obj, shndx));
578             }
579         }
580     }
581
582   for (Script_options::referenced_const_iterator p =
583          layout->script_options()->referenced_begin();
584        p != layout->script_options()->referenced_end();
585        ++p)
586     {
587       Symbol* sym = this->lookup(p->c_str());
588       gold_assert(sym != NULL);
589       if (sym->source() == Symbol::FROM_OBJECT
590           && !sym->object()->is_dynamic())
591         {
592           Relobj* obj = static_cast<Relobj*>(sym->object());
593           bool is_ordinary;
594           unsigned int shndx = sym->shndx(&is_ordinary);
595           if (is_ordinary)
596             {
597               gold_assert(this->gc_ != NULL);
598               this->gc_->worklist().push(Section_id(obj, shndx));
599             }
600         }
601     }
602 }
603
604 void
605 Symbol_table::gc_mark_symbol_for_shlib(Symbol* sym)
606 {
607   if (!sym->is_from_dynobj() 
608       && sym->is_externally_visible())
609     {
610       //Add the object and section to the work list.
611       Relobj* obj = static_cast<Relobj*>(sym->object());
612       bool is_ordinary;
613       unsigned int shndx = sym->shndx(&is_ordinary);
614       if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
615         {
616           gold_assert(this->gc_!= NULL);
617           this->gc_->worklist().push(Section_id(obj, shndx));
618         }
619     }
620 }
621
622 // When doing garbage collection, keep symbols that have been seen in
623 // dynamic objects.
624 inline void 
625 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
626 {
627   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
628       && !sym->object()->is_dynamic())
629     {
630       Relobj* obj = static_cast<Relobj*>(sym->object()); 
631       bool is_ordinary;
632       unsigned int shndx = sym->shndx(&is_ordinary);
633       if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
634         {
635           gold_assert(this->gc_ != NULL);
636           this->gc_->worklist().push(Section_id(obj, shndx));
637         }
638     }
639 }
640
641 // Make TO a symbol which forwards to FROM.
642
643 void
644 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
645 {
646   gold_assert(from != to);
647   gold_assert(!from->is_forwarder() && !to->is_forwarder());
648   this->forwarders_[from] = to;
649   from->set_forwarder();
650 }
651
652 // Resolve the forwards from FROM, returning the real symbol.
653
654 Symbol*
655 Symbol_table::resolve_forwards(const Symbol* from) const
656 {
657   gold_assert(from->is_forwarder());
658   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
659     this->forwarders_.find(from);
660   gold_assert(p != this->forwarders_.end());
661   return p->second;
662 }
663
664 // Look up a symbol by name.
665
666 Symbol*
667 Symbol_table::lookup(const char* name, const char* version) const
668 {
669   Stringpool::Key name_key;
670   name = this->namepool_.find(name, &name_key);
671   if (name == NULL)
672     return NULL;
673
674   Stringpool::Key version_key = 0;
675   if (version != NULL)
676     {
677       version = this->namepool_.find(version, &version_key);
678       if (version == NULL)
679         return NULL;
680     }
681
682   Symbol_table_key key(name_key, version_key);
683   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
684   if (p == this->table_.end())
685     return NULL;
686   return p->second;
687 }
688
689 // Resolve a Symbol with another Symbol.  This is only used in the
690 // unusual case where there are references to both an unversioned
691 // symbol and a symbol with a version, and we then discover that that
692 // version is the default version.  Because this is unusual, we do
693 // this the slow way, by converting back to an ELF symbol.
694
695 template<int size, bool big_endian>
696 void
697 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
698 {
699   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
700   elfcpp::Sym_write<size, big_endian> esym(buf);
701   // We don't bother to set the st_name or the st_shndx field.
702   esym.put_st_value(from->value());
703   esym.put_st_size(from->symsize());
704   esym.put_st_info(from->binding(), from->type());
705   esym.put_st_other(from->visibility(), from->nonvis());
706   bool is_ordinary;
707   unsigned int shndx = from->shndx(&is_ordinary);
708   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
709                 from->version());
710   if (from->in_reg())
711     to->set_in_reg();
712   if (from->in_dyn())
713     to->set_in_dyn();
714   if (parameters->options().gc_sections())
715     this->gc_mark_dyn_syms(to);
716 }
717
718 // Record that a symbol is forced to be local by a version script or
719 // by visibility.
720
721 void
722 Symbol_table::force_local(Symbol* sym)
723 {
724   if (!sym->is_defined() && !sym->is_common())
725     return;
726   if (sym->is_forced_local())
727     {
728       // We already got this one.
729       return;
730     }
731   sym->set_is_forced_local();
732   this->forced_locals_.push_back(sym);
733 }
734
735 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
736 // is only called for undefined symbols, when at least one --wrap
737 // option was used.
738
739 const char*
740 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
741 {
742   // For some targets, we need to ignore a specific character when
743   // wrapping, and add it back later.
744   char prefix = '\0';
745   if (name[0] == parameters->target().wrap_char())
746     {
747       prefix = name[0];
748       ++name;
749     }
750
751   if (parameters->options().is_wrap(name))
752     {
753       // Turn NAME into __wrap_NAME.
754       std::string s;
755       if (prefix != '\0')
756         s += prefix;
757       s += "__wrap_";
758       s += name;
759
760       // This will give us both the old and new name in NAMEPOOL_, but
761       // that is OK.  Only the versions we need will wind up in the
762       // real string table in the output file.
763       return this->namepool_.add(s.c_str(), true, name_key);
764     }
765
766   const char* const real_prefix = "__real_";
767   const size_t real_prefix_length = strlen(real_prefix);
768   if (strncmp(name, real_prefix, real_prefix_length) == 0
769       && parameters->options().is_wrap(name + real_prefix_length))
770     {
771       // Turn __real_NAME into NAME.
772       std::string s;
773       if (prefix != '\0')
774         s += prefix;
775       s += name + real_prefix_length;
776       return this->namepool_.add(s.c_str(), true, name_key);
777     }
778
779   return name;
780 }
781
782 // This is called when we see a symbol NAME/VERSION, and the symbol
783 // already exists in the symbol table, and VERSION is marked as being
784 // the default version.  SYM is the NAME/VERSION symbol we just added.
785 // DEFAULT_IS_NEW is true if this is the first time we have seen the
786 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
787
788 template<int size, bool big_endian>
789 void
790 Symbol_table::define_default_version(Sized_symbol<size>* sym,
791                                      bool default_is_new,
792                                      Symbol_table_type::iterator pdef)
793 {
794   if (default_is_new)
795     {
796       // This is the first time we have seen NAME/NULL.  Make
797       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
798       // version.
799       pdef->second = sym;
800       sym->set_is_default();
801     }
802   else if (pdef->second == sym)
803     {
804       // NAME/NULL already points to NAME/VERSION.  Don't mark the
805       // symbol as the default if it is not already the default.
806     }
807   else
808     {
809       // This is the unfortunate case where we already have entries
810       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
811       // NAME/VERSION where VERSION is the default version.  We have
812       // already resolved this new symbol with the existing
813       // NAME/VERSION symbol.
814
815       // It's possible that NAME/NULL and NAME/VERSION are both
816       // defined in regular objects.  This can only happen if one
817       // object file defines foo and another defines foo@@ver.  This
818       // is somewhat obscure, but we call it a multiple definition
819       // error.
820
821       // It's possible that NAME/NULL actually has a version, in which
822       // case it won't be the same as VERSION.  This happens with
823       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
824       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
825       // then see an unadorned t2_2 in an object file and give it
826       // version VER1 from the version script.  This looks like a
827       // default definition for VER1, so it looks like we should merge
828       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
829       // not obvious that this is an error, either.  So we just punt.
830
831       // If one of the symbols has non-default visibility, and the
832       // other is defined in a shared object, then they are different
833       // symbols.
834
835       // Otherwise, we just resolve the symbols as though they were
836       // the same.
837
838       if (pdef->second->version() != NULL)
839         gold_assert(pdef->second->version() != sym->version());
840       else if (sym->visibility() != elfcpp::STV_DEFAULT
841                && pdef->second->is_from_dynobj())
842         ;
843       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
844                && sym->is_from_dynobj())
845         ;
846       else
847         {
848           const Sized_symbol<size>* symdef;
849           symdef = this->get_sized_symbol<size>(pdef->second);
850           Symbol_table::resolve<size, big_endian>(sym, symdef);
851           this->make_forwarder(pdef->second, sym);
852           pdef->second = sym;
853           sym->set_is_default();
854         }
855     }
856 }
857
858 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
859 // name and VERSION is the version; both are canonicalized.  DEF is
860 // whether this is the default version.  ST_SHNDX is the symbol's
861 // section index; IS_ORDINARY is whether this is a normal section
862 // rather than a special code.
863
864 // If IS_DEFAULT_VERSION is true, then this is the definition of a
865 // default version of a symbol.  That means that any lookup of
866 // NAME/NULL and any lookup of NAME/VERSION should always return the
867 // same symbol.  This is obvious for references, but in particular we
868 // want to do this for definitions: overriding NAME/NULL should also
869 // override NAME/VERSION.  If we don't do that, it would be very hard
870 // to override functions in a shared library which uses versioning.
871
872 // We implement this by simply making both entries in the hash table
873 // point to the same Symbol structure.  That is easy enough if this is
874 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
875 // that we have seen both already, in which case they will both have
876 // independent entries in the symbol table.  We can't simply change
877 // the symbol table entry, because we have pointers to the entries
878 // attached to the object files.  So we mark the entry attached to the
879 // object file as a forwarder, and record it in the forwarders_ map.
880 // Note that entries in the hash table will never be marked as
881 // forwarders.
882 //
883 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
884 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
885 // for a special section code.  ST_SHNDX may be modified if the symbol
886 // is defined in a section being discarded.
887
888 template<int size, bool big_endian>
889 Sized_symbol<size>*
890 Symbol_table::add_from_object(Object* object,
891                               const char* name,
892                               Stringpool::Key name_key,
893                               const char* version,
894                               Stringpool::Key version_key,
895                               bool is_default_version,
896                               const elfcpp::Sym<size, big_endian>& sym,
897                               unsigned int st_shndx,
898                               bool is_ordinary,
899                               unsigned int orig_st_shndx)
900 {
901   // Print a message if this symbol is being traced.
902   if (parameters->options().is_trace_symbol(name))
903     {
904       if (orig_st_shndx == elfcpp::SHN_UNDEF)
905         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
906       else
907         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
908     }
909
910   // For an undefined symbol, we may need to adjust the name using
911   // --wrap.
912   if (orig_st_shndx == elfcpp::SHN_UNDEF
913       && parameters->options().any_wrap())
914     {
915       const char* wrap_name = this->wrap_symbol(name, &name_key);
916       if (wrap_name != name)
917         {
918           // If we see a reference to malloc with version GLIBC_2.0,
919           // and we turn it into a reference to __wrap_malloc, then we
920           // discard the version number.  Otherwise the user would be
921           // required to specify the correct version for
922           // __wrap_malloc.
923           version = NULL;
924           version_key = 0;
925           name = wrap_name;
926         }
927     }
928
929   Symbol* const snull = NULL;
930   std::pair<typename Symbol_table_type::iterator, bool> ins =
931     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
932                                        snull));
933
934   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
935     std::make_pair(this->table_.end(), false);
936   if (is_default_version)
937     {
938       const Stringpool::Key vnull_key = 0;
939       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
940                                                                      vnull_key),
941                                                       snull));
942     }
943
944   // ins.first: an iterator, which is a pointer to a pair.
945   // ins.first->first: the key (a pair of name and version).
946   // ins.first->second: the value (Symbol*).
947   // ins.second: true if new entry was inserted, false if not.
948
949   Sized_symbol<size>* ret;
950   bool was_undefined;
951   bool was_common;
952   if (!ins.second)
953     {
954       // We already have an entry for NAME/VERSION.
955       ret = this->get_sized_symbol<size>(ins.first->second);
956       gold_assert(ret != NULL);
957
958       was_undefined = ret->is_undefined();
959       was_common = ret->is_common();
960
961       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
962                     version);
963       if (parameters->options().gc_sections())
964         this->gc_mark_dyn_syms(ret);
965
966       if (is_default_version)
967         this->define_default_version<size, big_endian>(ret, insdefault.second,
968                                                        insdefault.first);
969     }
970   else
971     {
972       // This is the first time we have seen NAME/VERSION.
973       gold_assert(ins.first->second == NULL);
974
975       if (is_default_version && !insdefault.second)
976         {
977           // We already have an entry for NAME/NULL.  If we override
978           // it, then change it to NAME/VERSION.
979           ret = this->get_sized_symbol<size>(insdefault.first->second);
980
981           was_undefined = ret->is_undefined();
982           was_common = ret->is_common();
983
984           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
985                         version);
986           if (parameters->options().gc_sections())
987             this->gc_mark_dyn_syms(ret);
988           ins.first->second = ret;
989         }
990       else
991         {
992           was_undefined = false;
993           was_common = false;
994
995           Sized_target<size, big_endian>* target =
996             parameters->sized_target<size, big_endian>();
997           if (!target->has_make_symbol())
998             ret = new Sized_symbol<size>();
999           else
1000             {
1001               ret = target->make_symbol();
1002               if (ret == NULL)
1003                 {
1004                   // This means that we don't want a symbol table
1005                   // entry after all.
1006                   if (!is_default_version)
1007                     this->table_.erase(ins.first);
1008                   else
1009                     {
1010                       this->table_.erase(insdefault.first);
1011                       // Inserting INSDEFAULT invalidated INS.
1012                       this->table_.erase(std::make_pair(name_key,
1013                                                         version_key));
1014                     }
1015                   return NULL;
1016                 }
1017             }
1018
1019           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1020
1021           ins.first->second = ret;
1022           if (is_default_version)
1023             {
1024               // This is the first time we have seen NAME/NULL.  Point
1025               // it at the new entry for NAME/VERSION.
1026               gold_assert(insdefault.second);
1027               insdefault.first->second = ret;
1028             }
1029         }
1030
1031       if (is_default_version)
1032         ret->set_is_default();
1033     }
1034
1035   // Record every time we see a new undefined symbol, to speed up
1036   // archive groups.
1037   if (!was_undefined && ret->is_undefined())
1038     {
1039       ++this->saw_undefined_;
1040       if (parameters->options().has_plugins())
1041         parameters->options().plugins()->new_undefined_symbol(ret);
1042     }
1043
1044   // Keep track of common symbols, to speed up common symbol
1045   // allocation.
1046   if (!was_common && ret->is_common())
1047     {
1048       if (ret->type() == elfcpp::STT_TLS)
1049         this->tls_commons_.push_back(ret);
1050       else if (!is_ordinary
1051                && st_shndx == parameters->target().small_common_shndx())
1052         this->small_commons_.push_back(ret);
1053       else if (!is_ordinary
1054                && st_shndx == parameters->target().large_common_shndx())
1055         this->large_commons_.push_back(ret);
1056       else
1057         this->commons_.push_back(ret);
1058     }
1059
1060   // If we're not doing a relocatable link, then any symbol with
1061   // hidden or internal visibility is local.
1062   if ((ret->visibility() == elfcpp::STV_HIDDEN
1063        || ret->visibility() == elfcpp::STV_INTERNAL)
1064       && (ret->binding() == elfcpp::STB_GLOBAL
1065           || ret->binding() == elfcpp::STB_GNU_UNIQUE
1066           || ret->binding() == elfcpp::STB_WEAK)
1067       && !parameters->options().relocatable())
1068     this->force_local(ret);
1069
1070   return ret;
1071 }
1072
1073 // Add all the symbols in a relocatable object to the hash table.
1074
1075 template<int size, bool big_endian>
1076 void
1077 Symbol_table::add_from_relobj(
1078     Sized_relobj_file<size, big_endian>* relobj,
1079     const unsigned char* syms,
1080     size_t count,
1081     size_t symndx_offset,
1082     const char* sym_names,
1083     size_t sym_name_size,
1084     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1085     size_t* defined)
1086 {
1087   *defined = 0;
1088
1089   gold_assert(size == parameters->target().get_size());
1090
1091   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1092
1093   const bool just_symbols = relobj->just_symbols();
1094
1095   const unsigned char* p = syms;
1096   for (size_t i = 0; i < count; ++i, p += sym_size)
1097     {
1098       (*sympointers)[i] = NULL;
1099
1100       elfcpp::Sym<size, big_endian> sym(p);
1101
1102       unsigned int st_name = sym.get_st_name();
1103       if (st_name >= sym_name_size)
1104         {
1105           relobj->error(_("bad global symbol name offset %u at %zu"),
1106                         st_name, i);
1107           continue;
1108         }
1109
1110       const char* name = sym_names + st_name;
1111
1112       bool is_ordinary;
1113       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1114                                                        sym.get_st_shndx(),
1115                                                        &is_ordinary);
1116       unsigned int orig_st_shndx = st_shndx;
1117       if (!is_ordinary)
1118         orig_st_shndx = elfcpp::SHN_UNDEF;
1119
1120       if (st_shndx != elfcpp::SHN_UNDEF)
1121         ++*defined;
1122
1123       // A symbol defined in a section which we are not including must
1124       // be treated as an undefined symbol.
1125       bool is_defined_in_discarded_section = false;
1126       if (st_shndx != elfcpp::SHN_UNDEF
1127           && is_ordinary
1128           && !relobj->is_section_included(st_shndx)
1129           && !this->is_section_folded(relobj, st_shndx))
1130         {
1131           st_shndx = elfcpp::SHN_UNDEF;
1132           is_defined_in_discarded_section = true;
1133         }
1134
1135       // In an object file, an '@' in the name separates the symbol
1136       // name from the version name.  If there are two '@' characters,
1137       // this is the default version.
1138       const char* ver = strchr(name, '@');
1139       Stringpool::Key ver_key = 0;
1140       int namelen = 0;
1141       // IS_DEFAULT_VERSION: is the version default?
1142       // IS_FORCED_LOCAL: is the symbol forced local?
1143       bool is_default_version = false;
1144       bool is_forced_local = false;
1145
1146       // FIXME: For incremental links, we don't store version information,
1147       // so we need to ignore version symbols for now.
1148       if (parameters->incremental_update() && ver != NULL)
1149         {
1150           namelen = ver - name;
1151           ver = NULL;
1152         }
1153
1154       if (ver != NULL)
1155         {
1156           // The symbol name is of the form foo@VERSION or foo@@VERSION
1157           namelen = ver - name;
1158           ++ver;
1159           if (*ver == '@')
1160             {
1161               is_default_version = true;
1162               ++ver;
1163             }
1164           ver = this->namepool_.add(ver, true, &ver_key);
1165         }
1166       // We don't want to assign a version to an undefined symbol,
1167       // even if it is listed in the version script.  FIXME: What
1168       // about a common symbol?
1169       else
1170         {
1171           namelen = strlen(name);
1172           if (!this->version_script_.empty()
1173               && st_shndx != elfcpp::SHN_UNDEF)
1174             {
1175               // The symbol name did not have a version, but the
1176               // version script may assign a version anyway.
1177               std::string version;
1178               bool is_global;
1179               if (this->version_script_.get_symbol_version(name, &version,
1180                                                            &is_global))
1181                 {
1182                   if (!is_global)
1183                     is_forced_local = true;
1184                   else if (!version.empty())
1185                     {
1186                       ver = this->namepool_.add_with_length(version.c_str(),
1187                                                             version.length(),
1188                                                             true,
1189                                                             &ver_key);
1190                       is_default_version = true;
1191                     }
1192                 }
1193             }
1194         }
1195
1196       elfcpp::Sym<size, big_endian>* psym = &sym;
1197       unsigned char symbuf[sym_size];
1198       elfcpp::Sym<size, big_endian> sym2(symbuf);
1199       if (just_symbols)
1200         {
1201           memcpy(symbuf, p, sym_size);
1202           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1203           if (orig_st_shndx != elfcpp::SHN_UNDEF
1204               && is_ordinary
1205               && relobj->e_type() == elfcpp::ET_REL)
1206             {
1207               // Symbol values in relocatable object files are section
1208               // relative.  This is normally what we want, but since here
1209               // we are converting the symbol to absolute we need to add
1210               // the section address.  The section address in an object
1211               // file is normally zero, but people can use a linker
1212               // script to change it.
1213               sw.put_st_value(sym.get_st_value()
1214                               + relobj->section_address(orig_st_shndx));
1215             }
1216           st_shndx = elfcpp::SHN_ABS;
1217           is_ordinary = false;
1218           psym = &sym2;
1219         }
1220
1221       // Fix up visibility if object has no-export set.
1222       if (relobj->no_export()
1223           && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1224         {
1225           // We may have copied symbol already above.
1226           if (psym != &sym2)
1227             {
1228               memcpy(symbuf, p, sym_size);
1229               psym = &sym2;
1230             }
1231
1232           elfcpp::STV visibility = sym2.get_st_visibility();
1233           if (visibility == elfcpp::STV_DEFAULT
1234               || visibility == elfcpp::STV_PROTECTED)
1235             {
1236               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1237               unsigned char nonvis = sym2.get_st_nonvis();
1238               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1239             }
1240         }
1241
1242       Stringpool::Key name_key;
1243       name = this->namepool_.add_with_length(name, namelen, true,
1244                                              &name_key);
1245
1246       Sized_symbol<size>* res;
1247       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1248                                   is_default_version, *psym, st_shndx,
1249                                   is_ordinary, orig_st_shndx);
1250       
1251       if (is_forced_local)
1252         this->force_local(res);
1253
1254       // If building a shared library using garbage collection, do not 
1255       // treat externally visible symbols as garbage.
1256       if (parameters->options().gc_sections() 
1257           && parameters->options().shared())
1258         this->gc_mark_symbol_for_shlib(res);
1259
1260       if (is_defined_in_discarded_section)
1261         res->set_is_defined_in_discarded_section();
1262
1263       (*sympointers)[i] = res;
1264     }
1265 }
1266
1267 // Add a symbol from a plugin-claimed file.
1268
1269 template<int size, bool big_endian>
1270 Symbol*
1271 Symbol_table::add_from_pluginobj(
1272     Sized_pluginobj<size, big_endian>* obj,
1273     const char* name,
1274     const char* ver,
1275     elfcpp::Sym<size, big_endian>* sym)
1276 {
1277   unsigned int st_shndx = sym->get_st_shndx();
1278   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1279
1280   Stringpool::Key ver_key = 0;
1281   bool is_default_version = false;
1282   bool is_forced_local = false;
1283
1284   if (ver != NULL)
1285     {
1286       ver = this->namepool_.add(ver, true, &ver_key);
1287     }
1288   // We don't want to assign a version to an undefined symbol,
1289   // even if it is listed in the version script.  FIXME: What
1290   // about a common symbol?
1291   else
1292     {
1293       if (!this->version_script_.empty()
1294           && st_shndx != elfcpp::SHN_UNDEF)
1295         {
1296           // The symbol name did not have a version, but the
1297           // version script may assign a version anyway.
1298           std::string version;
1299           bool is_global;
1300           if (this->version_script_.get_symbol_version(name, &version,
1301                                                        &is_global))
1302             {
1303               if (!is_global)
1304                 is_forced_local = true;
1305               else if (!version.empty())
1306                 {
1307                   ver = this->namepool_.add_with_length(version.c_str(),
1308                                                         version.length(),
1309                                                         true,
1310                                                         &ver_key);
1311                   is_default_version = true;
1312                 }
1313             }
1314         }
1315     }
1316
1317   Stringpool::Key name_key;
1318   name = this->namepool_.add(name, true, &name_key);
1319
1320   Sized_symbol<size>* res;
1321   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1322                               is_default_version, *sym, st_shndx,
1323                               is_ordinary, st_shndx);
1324
1325   if (is_forced_local)
1326     this->force_local(res);
1327
1328   return res;
1329 }
1330
1331 // Add all the symbols in a dynamic object to the hash table.
1332
1333 template<int size, bool big_endian>
1334 void
1335 Symbol_table::add_from_dynobj(
1336     Sized_dynobj<size, big_endian>* dynobj,
1337     const unsigned char* syms,
1338     size_t count,
1339     const char* sym_names,
1340     size_t sym_name_size,
1341     const unsigned char* versym,
1342     size_t versym_size,
1343     const std::vector<const char*>* version_map,
1344     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1345     size_t* defined)
1346 {
1347   *defined = 0;
1348
1349   gold_assert(size == parameters->target().get_size());
1350
1351   if (dynobj->just_symbols())
1352     {
1353       gold_error(_("--just-symbols does not make sense with a shared object"));
1354       return;
1355     }
1356
1357   // FIXME: For incremental links, we don't store version information,
1358   // so we need to ignore version symbols for now.
1359   if (parameters->incremental_update())
1360     versym = NULL;
1361
1362   if (versym != NULL && versym_size / 2 < count)
1363     {
1364       dynobj->error(_("too few symbol versions"));
1365       return;
1366     }
1367
1368   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1369
1370   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1371   // weak aliases.  This is necessary because if the dynamic object
1372   // provides the same variable under two names, one of which is a
1373   // weak definition, and the regular object refers to the weak
1374   // definition, we have to put both the weak definition and the
1375   // strong definition into the dynamic symbol table.  Given a weak
1376   // definition, the only way that we can find the corresponding
1377   // strong definition, if any, is to search the symbol table.
1378   std::vector<Sized_symbol<size>*> object_symbols;
1379
1380   const unsigned char* p = syms;
1381   const unsigned char* vs = versym;
1382   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1383     {
1384       elfcpp::Sym<size, big_endian> sym(p);
1385
1386       if (sympointers != NULL)
1387         (*sympointers)[i] = NULL;
1388
1389       // Ignore symbols with local binding or that have
1390       // internal or hidden visibility.
1391       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1392           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1393           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1394         continue;
1395
1396       // A protected symbol in a shared library must be treated as a
1397       // normal symbol when viewed from outside the shared library.
1398       // Implement this by overriding the visibility here.
1399       elfcpp::Sym<size, big_endian>* psym = &sym;
1400       unsigned char symbuf[sym_size];
1401       elfcpp::Sym<size, big_endian> sym2(symbuf);
1402       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1403         {
1404           memcpy(symbuf, p, sym_size);
1405           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1406           sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1407           psym = &sym2;
1408         }
1409
1410       unsigned int st_name = psym->get_st_name();
1411       if (st_name >= sym_name_size)
1412         {
1413           dynobj->error(_("bad symbol name offset %u at %zu"),
1414                         st_name, i);
1415           continue;
1416         }
1417
1418       const char* name = sym_names + st_name;
1419
1420       bool is_ordinary;
1421       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1422                                                        &is_ordinary);
1423
1424       if (st_shndx != elfcpp::SHN_UNDEF)
1425         ++*defined;
1426
1427       Sized_symbol<size>* res;
1428
1429       if (versym == NULL)
1430         {
1431           Stringpool::Key name_key;
1432           name = this->namepool_.add(name, true, &name_key);
1433           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1434                                       false, *psym, st_shndx, is_ordinary,
1435                                       st_shndx);
1436         }
1437       else
1438         {
1439           // Read the version information.
1440
1441           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1442
1443           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1444           v &= elfcpp::VERSYM_VERSION;
1445
1446           // The Sun documentation says that V can be VER_NDX_LOCAL,
1447           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1448           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1449           // The old GNU linker will happily generate VER_NDX_LOCAL
1450           // for an undefined symbol.  I don't know what the Sun
1451           // linker will generate.
1452
1453           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1454               && st_shndx != elfcpp::SHN_UNDEF)
1455             {
1456               // This symbol should not be visible outside the object.
1457               continue;
1458             }
1459
1460           // At this point we are definitely going to add this symbol.
1461           Stringpool::Key name_key;
1462           name = this->namepool_.add(name, true, &name_key);
1463
1464           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1465               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1466             {
1467               // This symbol does not have a version.
1468               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1469                                           false, *psym, st_shndx, is_ordinary,
1470                                           st_shndx);
1471             }
1472           else
1473             {
1474               if (v >= version_map->size())
1475                 {
1476                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1477                                 i, v);
1478                   continue;
1479                 }
1480
1481               const char* version = (*version_map)[v];
1482               if (version == NULL)
1483                 {
1484                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1485                                 i, v);
1486                   continue;
1487                 }
1488
1489               Stringpool::Key version_key;
1490               version = this->namepool_.add(version, true, &version_key);
1491
1492               // If this is an absolute symbol, and the version name
1493               // and symbol name are the same, then this is the
1494               // version definition symbol.  These symbols exist to
1495               // support using -u to pull in particular versions.  We
1496               // do not want to record a version for them.
1497               if (st_shndx == elfcpp::SHN_ABS
1498                   && !is_ordinary
1499                   && name_key == version_key)
1500                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1501                                             false, *psym, st_shndx, is_ordinary,
1502                                             st_shndx);
1503               else
1504                 {
1505                   const bool is_default_version =
1506                     !hidden && st_shndx != elfcpp::SHN_UNDEF;
1507                   res = this->add_from_object(dynobj, name, name_key, version,
1508                                               version_key, is_default_version,
1509                                               *psym, st_shndx,
1510                                               is_ordinary, st_shndx);
1511                 }
1512             }
1513         }
1514
1515       // Note that it is possible that RES was overridden by an
1516       // earlier object, in which case it can't be aliased here.
1517       if (st_shndx != elfcpp::SHN_UNDEF
1518           && is_ordinary
1519           && psym->get_st_type() == elfcpp::STT_OBJECT
1520           && res->source() == Symbol::FROM_OBJECT
1521           && res->object() == dynobj)
1522         object_symbols.push_back(res);
1523
1524       if (sympointers != NULL)
1525         (*sympointers)[i] = res;
1526     }
1527
1528   this->record_weak_aliases(&object_symbols);
1529 }
1530
1531 // Add a symbol from a incremental object file.
1532
1533 template<int size, bool big_endian>
1534 Sized_symbol<size>*
1535 Symbol_table::add_from_incrobj(
1536     Object* obj,
1537     const char* name,
1538     const char* ver,
1539     elfcpp::Sym<size, big_endian>* sym)
1540 {
1541   unsigned int st_shndx = sym->get_st_shndx();
1542   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1543
1544   Stringpool::Key ver_key = 0;
1545   bool is_default_version = false;
1546   bool is_forced_local = false;
1547
1548   Stringpool::Key name_key;
1549   name = this->namepool_.add(name, true, &name_key);
1550
1551   Sized_symbol<size>* res;
1552   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1553                               is_default_version, *sym, st_shndx,
1554                               is_ordinary, st_shndx);
1555
1556   if (is_forced_local)
1557     this->force_local(res);
1558
1559   return res;
1560 }
1561
1562 // This is used to sort weak aliases.  We sort them first by section
1563 // index, then by offset, then by weak ahead of strong.
1564
1565 template<int size>
1566 class Weak_alias_sorter
1567 {
1568  public:
1569   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1570 };
1571
1572 template<int size>
1573 bool
1574 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1575                                     const Sized_symbol<size>* s2) const
1576 {
1577   bool is_ordinary;
1578   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1579   gold_assert(is_ordinary);
1580   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1581   gold_assert(is_ordinary);
1582   if (s1_shndx != s2_shndx)
1583     return s1_shndx < s2_shndx;
1584
1585   if (s1->value() != s2->value())
1586     return s1->value() < s2->value();
1587   if (s1->binding() != s2->binding())
1588     {
1589       if (s1->binding() == elfcpp::STB_WEAK)
1590         return true;
1591       if (s2->binding() == elfcpp::STB_WEAK)
1592         return false;
1593     }
1594   return std::string(s1->name()) < std::string(s2->name());
1595 }
1596
1597 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1598 // for any weak aliases, and record them so that if we add the weak
1599 // alias to the dynamic symbol table, we also add the corresponding
1600 // strong symbol.
1601
1602 template<int size>
1603 void
1604 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1605 {
1606   // Sort the vector by section index, then by offset, then by weak
1607   // ahead of strong.
1608   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1609
1610   // Walk through the vector.  For each weak definition, record
1611   // aliases.
1612   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1613          symbols->begin();
1614        p != symbols->end();
1615        ++p)
1616     {
1617       if ((*p)->binding() != elfcpp::STB_WEAK)
1618         continue;
1619
1620       // Build a circular list of weak aliases.  Each symbol points to
1621       // the next one in the circular list.
1622
1623       Sized_symbol<size>* from_sym = *p;
1624       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1625       for (q = p + 1; q != symbols->end(); ++q)
1626         {
1627           bool dummy;
1628           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1629               || (*q)->value() != from_sym->value())
1630             break;
1631
1632           this->weak_aliases_[from_sym] = *q;
1633           from_sym->set_has_alias();
1634           from_sym = *q;
1635         }
1636
1637       if (from_sym != *p)
1638         {
1639           this->weak_aliases_[from_sym] = *p;
1640           from_sym->set_has_alias();
1641         }
1642
1643       p = q - 1;
1644     }
1645 }
1646
1647 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1648 // true, then only create the symbol if there is a reference to it.
1649 // If this does not return NULL, it sets *POLDSYM to the existing
1650 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1651 // resolve the newly created symbol to the old one.  This
1652 // canonicalizes *PNAME and *PVERSION.
1653
1654 template<int size, bool big_endian>
1655 Sized_symbol<size>*
1656 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1657                                     bool only_if_ref,
1658                                     Sized_symbol<size>** poldsym,
1659                                     bool* resolve_oldsym)
1660 {
1661   *resolve_oldsym = false;
1662
1663   // If the caller didn't give us a version, see if we get one from
1664   // the version script.
1665   std::string v;
1666   bool is_default_version = false;
1667   if (*pversion == NULL)
1668     {
1669       bool is_global;
1670       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1671         {
1672           if (is_global && !v.empty())
1673             {
1674               *pversion = v.c_str();
1675               // If we get the version from a version script, then we
1676               // are also the default version.
1677               is_default_version = true;
1678             }
1679         }
1680     }
1681
1682   Symbol* oldsym;
1683   Sized_symbol<size>* sym;
1684
1685   bool add_to_table = false;
1686   typename Symbol_table_type::iterator add_loc = this->table_.end();
1687   bool add_def_to_table = false;
1688   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1689
1690   if (only_if_ref)
1691     {
1692       oldsym = this->lookup(*pname, *pversion);
1693       if (oldsym == NULL && is_default_version)
1694         oldsym = this->lookup(*pname, NULL);
1695       if (oldsym == NULL || !oldsym->is_undefined())
1696         return NULL;
1697
1698       *pname = oldsym->name();
1699       if (is_default_version)
1700         *pversion = this->namepool_.add(*pversion, true, NULL);
1701       else
1702         *pversion = oldsym->version();
1703     }
1704   else
1705     {
1706       // Canonicalize NAME and VERSION.
1707       Stringpool::Key name_key;
1708       *pname = this->namepool_.add(*pname, true, &name_key);
1709
1710       Stringpool::Key version_key = 0;
1711       if (*pversion != NULL)
1712         *pversion = this->namepool_.add(*pversion, true, &version_key);
1713
1714       Symbol* const snull = NULL;
1715       std::pair<typename Symbol_table_type::iterator, bool> ins =
1716         this->table_.insert(std::make_pair(std::make_pair(name_key,
1717                                                           version_key),
1718                                            snull));
1719
1720       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1721         std::make_pair(this->table_.end(), false);
1722       if (is_default_version)
1723         {
1724           const Stringpool::Key vnull = 0;
1725           insdefault =
1726             this->table_.insert(std::make_pair(std::make_pair(name_key,
1727                                                               vnull),
1728                                                snull));
1729         }
1730
1731       if (!ins.second)
1732         {
1733           // We already have a symbol table entry for NAME/VERSION.
1734           oldsym = ins.first->second;
1735           gold_assert(oldsym != NULL);
1736
1737           if (is_default_version)
1738             {
1739               Sized_symbol<size>* soldsym =
1740                 this->get_sized_symbol<size>(oldsym);
1741               this->define_default_version<size, big_endian>(soldsym,
1742                                                              insdefault.second,
1743                                                              insdefault.first);
1744             }
1745         }
1746       else
1747         {
1748           // We haven't seen this symbol before.
1749           gold_assert(ins.first->second == NULL);
1750
1751           add_to_table = true;
1752           add_loc = ins.first;
1753
1754           if (is_default_version && !insdefault.second)
1755             {
1756               // We are adding NAME/VERSION, and it is the default
1757               // version.  We already have an entry for NAME/NULL.
1758               oldsym = insdefault.first->second;
1759               *resolve_oldsym = true;
1760             }
1761           else
1762             {
1763               oldsym = NULL;
1764
1765               if (is_default_version)
1766                 {
1767                   add_def_to_table = true;
1768                   add_def_loc = insdefault.first;
1769                 }
1770             }
1771         }
1772     }
1773
1774   const Target& target = parameters->target();
1775   if (!target.has_make_symbol())
1776     sym = new Sized_symbol<size>();
1777   else
1778     {
1779       Sized_target<size, big_endian>* sized_target =
1780         parameters->sized_target<size, big_endian>();
1781       sym = sized_target->make_symbol();
1782       if (sym == NULL)
1783         return NULL;
1784     }
1785
1786   if (add_to_table)
1787     add_loc->second = sym;
1788   else
1789     gold_assert(oldsym != NULL);
1790
1791   if (add_def_to_table)
1792     add_def_loc->second = sym;
1793
1794   *poldsym = this->get_sized_symbol<size>(oldsym);
1795
1796   return sym;
1797 }
1798
1799 // Define a symbol based on an Output_data.
1800
1801 Symbol*
1802 Symbol_table::define_in_output_data(const char* name,
1803                                     const char* version,
1804                                     Defined defined,
1805                                     Output_data* od,
1806                                     uint64_t value,
1807                                     uint64_t symsize,
1808                                     elfcpp::STT type,
1809                                     elfcpp::STB binding,
1810                                     elfcpp::STV visibility,
1811                                     unsigned char nonvis,
1812                                     bool offset_is_from_end,
1813                                     bool only_if_ref)
1814 {
1815   if (parameters->target().get_size() == 32)
1816     {
1817 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1818       return this->do_define_in_output_data<32>(name, version, defined, od,
1819                                                 value, symsize, type, binding,
1820                                                 visibility, nonvis,
1821                                                 offset_is_from_end,
1822                                                 only_if_ref);
1823 #else
1824       gold_unreachable();
1825 #endif
1826     }
1827   else if (parameters->target().get_size() == 64)
1828     {
1829 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1830       return this->do_define_in_output_data<64>(name, version, defined, od,
1831                                                 value, symsize, type, binding,
1832                                                 visibility, nonvis,
1833                                                 offset_is_from_end,
1834                                                 only_if_ref);
1835 #else
1836       gold_unreachable();
1837 #endif
1838     }
1839   else
1840     gold_unreachable();
1841 }
1842
1843 // Define a symbol in an Output_data, sized version.
1844
1845 template<int size>
1846 Sized_symbol<size>*
1847 Symbol_table::do_define_in_output_data(
1848     const char* name,
1849     const char* version,
1850     Defined defined,
1851     Output_data* od,
1852     typename elfcpp::Elf_types<size>::Elf_Addr value,
1853     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1854     elfcpp::STT type,
1855     elfcpp::STB binding,
1856     elfcpp::STV visibility,
1857     unsigned char nonvis,
1858     bool offset_is_from_end,
1859     bool only_if_ref)
1860 {
1861   Sized_symbol<size>* sym;
1862   Sized_symbol<size>* oldsym;
1863   bool resolve_oldsym;
1864
1865   if (parameters->target().is_big_endian())
1866     {
1867 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1868       sym = this->define_special_symbol<size, true>(&name, &version,
1869                                                     only_if_ref, &oldsym,
1870                                                     &resolve_oldsym);
1871 #else
1872       gold_unreachable();
1873 #endif
1874     }
1875   else
1876     {
1877 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1878       sym = this->define_special_symbol<size, false>(&name, &version,
1879                                                      only_if_ref, &oldsym,
1880                                                      &resolve_oldsym);
1881 #else
1882       gold_unreachable();
1883 #endif
1884     }
1885
1886   if (sym == NULL)
1887     return NULL;
1888
1889   sym->init_output_data(name, version, od, value, symsize, type, binding,
1890                         visibility, nonvis, offset_is_from_end,
1891                         defined == PREDEFINED);
1892
1893   if (oldsym == NULL)
1894     {
1895       if (binding == elfcpp::STB_LOCAL
1896           || this->version_script_.symbol_is_local(name))
1897         this->force_local(sym);
1898       else if (version != NULL)
1899         sym->set_is_default();
1900       return sym;
1901     }
1902
1903   if (Symbol_table::should_override_with_special(oldsym, type, defined))
1904     this->override_with_special(oldsym, sym);
1905
1906   if (resolve_oldsym)
1907     return sym;
1908   else
1909     {
1910       delete sym;
1911       return oldsym;
1912     }
1913 }
1914
1915 // Define a symbol based on an Output_segment.
1916
1917 Symbol*
1918 Symbol_table::define_in_output_segment(const char* name,
1919                                        const char* version,
1920                                        Defined defined,
1921                                        Output_segment* os,
1922                                        uint64_t value,
1923                                        uint64_t symsize,
1924                                        elfcpp::STT type,
1925                                        elfcpp::STB binding,
1926                                        elfcpp::STV visibility,
1927                                        unsigned char nonvis,
1928                                        Symbol::Segment_offset_base offset_base,
1929                                        bool only_if_ref)
1930 {
1931   if (parameters->target().get_size() == 32)
1932     {
1933 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1934       return this->do_define_in_output_segment<32>(name, version, defined, os,
1935                                                    value, symsize, type,
1936                                                    binding, visibility, nonvis,
1937                                                    offset_base, only_if_ref);
1938 #else
1939       gold_unreachable();
1940 #endif
1941     }
1942   else if (parameters->target().get_size() == 64)
1943     {
1944 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1945       return this->do_define_in_output_segment<64>(name, version, defined, os,
1946                                                    value, symsize, type,
1947                                                    binding, visibility, nonvis,
1948                                                    offset_base, only_if_ref);
1949 #else
1950       gold_unreachable();
1951 #endif
1952     }
1953   else
1954     gold_unreachable();
1955 }
1956
1957 // Define a symbol in an Output_segment, sized version.
1958
1959 template<int size>
1960 Sized_symbol<size>*
1961 Symbol_table::do_define_in_output_segment(
1962     const char* name,
1963     const char* version,
1964     Defined defined,
1965     Output_segment* os,
1966     typename elfcpp::Elf_types<size>::Elf_Addr value,
1967     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1968     elfcpp::STT type,
1969     elfcpp::STB binding,
1970     elfcpp::STV visibility,
1971     unsigned char nonvis,
1972     Symbol::Segment_offset_base offset_base,
1973     bool only_if_ref)
1974 {
1975   Sized_symbol<size>* sym;
1976   Sized_symbol<size>* oldsym;
1977   bool resolve_oldsym;
1978
1979   if (parameters->target().is_big_endian())
1980     {
1981 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1982       sym = this->define_special_symbol<size, true>(&name, &version,
1983                                                     only_if_ref, &oldsym,
1984                                                     &resolve_oldsym);
1985 #else
1986       gold_unreachable();
1987 #endif
1988     }
1989   else
1990     {
1991 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1992       sym = this->define_special_symbol<size, false>(&name, &version,
1993                                                      only_if_ref, &oldsym,
1994                                                      &resolve_oldsym);
1995 #else
1996       gold_unreachable();
1997 #endif
1998     }
1999
2000   if (sym == NULL)
2001     return NULL;
2002
2003   sym->init_output_segment(name, version, os, value, symsize, type, binding,
2004                            visibility, nonvis, offset_base,
2005                            defined == PREDEFINED);
2006
2007   if (oldsym == NULL)
2008     {
2009       if (binding == elfcpp::STB_LOCAL
2010           || this->version_script_.symbol_is_local(name))
2011         this->force_local(sym);
2012       else if (version != NULL)
2013         sym->set_is_default();
2014       return sym;
2015     }
2016
2017   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2018     this->override_with_special(oldsym, sym);
2019
2020   if (resolve_oldsym)
2021     return sym;
2022   else
2023     {
2024       delete sym;
2025       return oldsym;
2026     }
2027 }
2028
2029 // Define a special symbol with a constant value.  It is a multiple
2030 // definition error if this symbol is already defined.
2031
2032 Symbol*
2033 Symbol_table::define_as_constant(const char* name,
2034                                  const char* version,
2035                                  Defined defined,
2036                                  uint64_t value,
2037                                  uint64_t symsize,
2038                                  elfcpp::STT type,
2039                                  elfcpp::STB binding,
2040                                  elfcpp::STV visibility,
2041                                  unsigned char nonvis,
2042                                  bool only_if_ref,
2043                                  bool force_override)
2044 {
2045   if (parameters->target().get_size() == 32)
2046     {
2047 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2048       return this->do_define_as_constant<32>(name, version, defined, value,
2049                                              symsize, type, binding,
2050                                              visibility, nonvis, only_if_ref,
2051                                              force_override);
2052 #else
2053       gold_unreachable();
2054 #endif
2055     }
2056   else if (parameters->target().get_size() == 64)
2057     {
2058 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2059       return this->do_define_as_constant<64>(name, version, defined, value,
2060                                              symsize, type, binding,
2061                                              visibility, nonvis, only_if_ref,
2062                                              force_override);
2063 #else
2064       gold_unreachable();
2065 #endif
2066     }
2067   else
2068     gold_unreachable();
2069 }
2070
2071 // Define a symbol as a constant, sized version.
2072
2073 template<int size>
2074 Sized_symbol<size>*
2075 Symbol_table::do_define_as_constant(
2076     const char* name,
2077     const char* version,
2078     Defined defined,
2079     typename elfcpp::Elf_types<size>::Elf_Addr value,
2080     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2081     elfcpp::STT type,
2082     elfcpp::STB binding,
2083     elfcpp::STV visibility,
2084     unsigned char nonvis,
2085     bool only_if_ref,
2086     bool force_override)
2087 {
2088   Sized_symbol<size>* sym;
2089   Sized_symbol<size>* oldsym;
2090   bool resolve_oldsym;
2091
2092   if (parameters->target().is_big_endian())
2093     {
2094 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2095       sym = this->define_special_symbol<size, true>(&name, &version,
2096                                                     only_if_ref, &oldsym,
2097                                                     &resolve_oldsym);
2098 #else
2099       gold_unreachable();
2100 #endif
2101     }
2102   else
2103     {
2104 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2105       sym = this->define_special_symbol<size, false>(&name, &version,
2106                                                      only_if_ref, &oldsym,
2107                                                      &resolve_oldsym);
2108 #else
2109       gold_unreachable();
2110 #endif
2111     }
2112
2113   if (sym == NULL)
2114     return NULL;
2115
2116   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2117                      nonvis, defined == PREDEFINED);
2118
2119   if (oldsym == NULL)
2120     {
2121       // Version symbols are absolute symbols with name == version.
2122       // We don't want to force them to be local.
2123       if ((version == NULL
2124            || name != version
2125            || value != 0)
2126           && (binding == elfcpp::STB_LOCAL
2127               || this->version_script_.symbol_is_local(name)))
2128         this->force_local(sym);
2129       else if (version != NULL
2130                && (name != version || value != 0))
2131         sym->set_is_default();
2132       return sym;
2133     }
2134
2135   if (force_override
2136       || Symbol_table::should_override_with_special(oldsym, type, defined))
2137     this->override_with_special(oldsym, sym);
2138
2139   if (resolve_oldsym)
2140     return sym;
2141   else
2142     {
2143       delete sym;
2144       return oldsym;
2145     }
2146 }
2147
2148 // Define a set of symbols in output sections.
2149
2150 void
2151 Symbol_table::define_symbols(const Layout* layout, int count,
2152                              const Define_symbol_in_section* p,
2153                              bool only_if_ref)
2154 {
2155   for (int i = 0; i < count; ++i, ++p)
2156     {
2157       Output_section* os = layout->find_output_section(p->output_section);
2158       if (os != NULL)
2159         this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2160                                     p->size, p->type, p->binding,
2161                                     p->visibility, p->nonvis,
2162                                     p->offset_is_from_end,
2163                                     only_if_ref || p->only_if_ref);
2164       else
2165         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2166                                  p->type, p->binding, p->visibility, p->nonvis,
2167                                  only_if_ref || p->only_if_ref,
2168                                  false);
2169     }
2170 }
2171
2172 // Define a set of symbols in output segments.
2173
2174 void
2175 Symbol_table::define_symbols(const Layout* layout, int count,
2176                              const Define_symbol_in_segment* p,
2177                              bool only_if_ref)
2178 {
2179   for (int i = 0; i < count; ++i, ++p)
2180     {
2181       Output_segment* os = layout->find_output_segment(p->segment_type,
2182                                                        p->segment_flags_set,
2183                                                        p->segment_flags_clear);
2184       if (os != NULL)
2185         this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2186                                        p->size, p->type, p->binding,
2187                                        p->visibility, p->nonvis,
2188                                        p->offset_base,
2189                                        only_if_ref || p->only_if_ref);
2190       else
2191         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2192                                  p->type, p->binding, p->visibility, p->nonvis,
2193                                  only_if_ref || p->only_if_ref,
2194                                  false);
2195     }
2196 }
2197
2198 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2199 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2200 // the offset within POSD.
2201
2202 template<int size>
2203 void
2204 Symbol_table::define_with_copy_reloc(
2205     Sized_symbol<size>* csym,
2206     Output_data* posd,
2207     typename elfcpp::Elf_types<size>::Elf_Addr value)
2208 {
2209   gold_assert(csym->is_from_dynobj());
2210   gold_assert(!csym->is_copied_from_dynobj());
2211   Object* object = csym->object();
2212   gold_assert(object->is_dynamic());
2213   Dynobj* dynobj = static_cast<Dynobj*>(object);
2214
2215   // Our copied variable has to override any variable in a shared
2216   // library.
2217   elfcpp::STB binding = csym->binding();
2218   if (binding == elfcpp::STB_WEAK)
2219     binding = elfcpp::STB_GLOBAL;
2220
2221   this->define_in_output_data(csym->name(), csym->version(), COPY,
2222                               posd, value, csym->symsize(),
2223                               csym->type(), binding,
2224                               csym->visibility(), csym->nonvis(),
2225                               false, false);
2226
2227   csym->set_is_copied_from_dynobj();
2228   csym->set_needs_dynsym_entry();
2229
2230   this->copied_symbol_dynobjs_[csym] = dynobj;
2231
2232   // We have now defined all aliases, but we have not entered them all
2233   // in the copied_symbol_dynobjs_ map.
2234   if (csym->has_alias())
2235     {
2236       Symbol* sym = csym;
2237       while (true)
2238         {
2239           sym = this->weak_aliases_[sym];
2240           if (sym == csym)
2241             break;
2242           gold_assert(sym->output_data() == posd);
2243
2244           sym->set_is_copied_from_dynobj();
2245           this->copied_symbol_dynobjs_[sym] = dynobj;
2246         }
2247     }
2248 }
2249
2250 // SYM is defined using a COPY reloc.  Return the dynamic object where
2251 // the original definition was found.
2252
2253 Dynobj*
2254 Symbol_table::get_copy_source(const Symbol* sym) const
2255 {
2256   gold_assert(sym->is_copied_from_dynobj());
2257   Copied_symbol_dynobjs::const_iterator p =
2258     this->copied_symbol_dynobjs_.find(sym);
2259   gold_assert(p != this->copied_symbol_dynobjs_.end());
2260   return p->second;
2261 }
2262
2263 // Add any undefined symbols named on the command line.
2264
2265 void
2266 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2267 {
2268   if (parameters->options().any_undefined()
2269       || layout->script_options()->any_unreferenced())
2270     {
2271       if (parameters->target().get_size() == 32)
2272         {
2273 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2274           this->do_add_undefined_symbols_from_command_line<32>(layout);
2275 #else
2276           gold_unreachable();
2277 #endif
2278         }
2279       else if (parameters->target().get_size() == 64)
2280         {
2281 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2282           this->do_add_undefined_symbols_from_command_line<64>(layout);
2283 #else
2284           gold_unreachable();
2285 #endif
2286         }
2287       else
2288         gold_unreachable();
2289     }
2290 }
2291
2292 template<int size>
2293 void
2294 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2295 {
2296   for (options::String_set::const_iterator p =
2297          parameters->options().undefined_begin();
2298        p != parameters->options().undefined_end();
2299        ++p)
2300     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2301
2302   for (Script_options::referenced_const_iterator p =
2303          layout->script_options()->referenced_begin();
2304        p != layout->script_options()->referenced_end();
2305        ++p)
2306     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2307 }
2308
2309 template<int size>
2310 void
2311 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2312 {
2313   if (this->lookup(name) != NULL)
2314     return;
2315
2316   const char* version = NULL;
2317
2318   Sized_symbol<size>* sym;
2319   Sized_symbol<size>* oldsym;
2320   bool resolve_oldsym;
2321   if (parameters->target().is_big_endian())
2322     {
2323 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2324       sym = this->define_special_symbol<size, true>(&name, &version,
2325                                                     false, &oldsym,
2326                                                     &resolve_oldsym);
2327 #else
2328       gold_unreachable();
2329 #endif
2330     }
2331   else
2332     {
2333 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2334       sym = this->define_special_symbol<size, false>(&name, &version,
2335                                                      false, &oldsym,
2336                                                      &resolve_oldsym);
2337 #else
2338       gold_unreachable();
2339 #endif
2340     }
2341
2342   gold_assert(oldsym == NULL);
2343
2344   sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2345                       elfcpp::STV_DEFAULT, 0);
2346   ++this->saw_undefined_;
2347 }
2348
2349 // Set the dynamic symbol indexes.  INDEX is the index of the first
2350 // global dynamic symbol.  Pointers to the symbols are stored into the
2351 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2352 // updated dynamic symbol index.
2353
2354 unsigned int
2355 Symbol_table::set_dynsym_indexes(unsigned int index,
2356                                  std::vector<Symbol*>* syms,
2357                                  Stringpool* dynpool,
2358                                  Versions* versions)
2359 {
2360   for (Symbol_table_type::iterator p = this->table_.begin();
2361        p != this->table_.end();
2362        ++p)
2363     {
2364       Symbol* sym = p->second;
2365
2366       // Note that SYM may already have a dynamic symbol index, since
2367       // some symbols appear more than once in the symbol table, with
2368       // and without a version.
2369
2370       if (!sym->should_add_dynsym_entry(this))
2371         sym->set_dynsym_index(-1U);
2372       else if (!sym->has_dynsym_index())
2373         {
2374           sym->set_dynsym_index(index);
2375           ++index;
2376           syms->push_back(sym);
2377           dynpool->add(sym->name(), false, NULL);
2378
2379           // Record any version information.
2380           if (sym->version() != NULL)
2381             versions->record_version(this, dynpool, sym);
2382
2383           // If the symbol is defined in a dynamic object and is
2384           // referenced in a regular object, then mark the dynamic
2385           // object as needed.  This is used to implement --as-needed.
2386           if (sym->is_from_dynobj() && sym->in_reg())
2387             sym->object()->set_is_needed();
2388         }
2389     }
2390
2391   // Finish up the versions.  In some cases this may add new dynamic
2392   // symbols.
2393   index = versions->finalize(this, index, syms);
2394
2395   return index;
2396 }
2397
2398 // Set the final values for all the symbols.  The index of the first
2399 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2400 // file offset OFF.  Add their names to POOL.  Return the new file
2401 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2402
2403 off_t
2404 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2405                        size_t dyncount, Stringpool* pool,
2406                        unsigned int* plocal_symcount)
2407 {
2408   off_t ret;
2409
2410   gold_assert(*plocal_symcount != 0);
2411   this->first_global_index_ = *plocal_symcount;
2412
2413   this->dynamic_offset_ = dynoff;
2414   this->first_dynamic_global_index_ = dyn_global_index;
2415   this->dynamic_count_ = dyncount;
2416
2417   if (parameters->target().get_size() == 32)
2418     {
2419 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2420       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2421 #else
2422       gold_unreachable();
2423 #endif
2424     }
2425   else if (parameters->target().get_size() == 64)
2426     {
2427 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2428       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2429 #else
2430       gold_unreachable();
2431 #endif
2432     }
2433   else
2434     gold_unreachable();
2435
2436   // Now that we have the final symbol table, we can reliably note
2437   // which symbols should get warnings.
2438   this->warnings_.note_warnings(this);
2439
2440   return ret;
2441 }
2442
2443 // SYM is going into the symbol table at *PINDEX.  Add the name to
2444 // POOL, update *PINDEX and *POFF.
2445
2446 template<int size>
2447 void
2448 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2449                                   unsigned int* pindex, off_t* poff)
2450 {
2451   sym->set_symtab_index(*pindex);
2452   if (sym->version() == NULL || !parameters->options().relocatable())
2453     pool->add(sym->name(), false, NULL);
2454   else
2455     pool->add(sym->versioned_name(), true, NULL);
2456   ++*pindex;
2457   *poff += elfcpp::Elf_sizes<size>::sym_size;
2458 }
2459
2460 // Set the final value for all the symbols.  This is called after
2461 // Layout::finalize, so all the output sections have their final
2462 // address.
2463
2464 template<int size>
2465 off_t
2466 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2467                              unsigned int* plocal_symcount)
2468 {
2469   off = align_address(off, size >> 3);
2470   this->offset_ = off;
2471
2472   unsigned int index = *plocal_symcount;
2473   const unsigned int orig_index = index;
2474
2475   // First do all the symbols which have been forced to be local, as
2476   // they must appear before all global symbols.
2477   for (Forced_locals::iterator p = this->forced_locals_.begin();
2478        p != this->forced_locals_.end();
2479        ++p)
2480     {
2481       Symbol* sym = *p;
2482       gold_assert(sym->is_forced_local());
2483       if (this->sized_finalize_symbol<size>(sym))
2484         {
2485           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2486           ++*plocal_symcount;
2487         }
2488     }
2489
2490   // Now do all the remaining symbols.
2491   for (Symbol_table_type::iterator p = this->table_.begin();
2492        p != this->table_.end();
2493        ++p)
2494     {
2495       Symbol* sym = p->second;
2496       if (this->sized_finalize_symbol<size>(sym))
2497         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2498     }
2499
2500   this->output_count_ = index - orig_index;
2501
2502   return off;
2503 }
2504
2505 // Compute the final value of SYM and store status in location PSTATUS.
2506 // During relaxation, this may be called multiple times for a symbol to
2507 // compute its would-be final value in each relaxation pass.
2508
2509 template<int size>
2510 typename Sized_symbol<size>::Value_type
2511 Symbol_table::compute_final_value(
2512     const Sized_symbol<size>* sym,
2513     Compute_final_value_status* pstatus) const
2514 {
2515   typedef typename Sized_symbol<size>::Value_type Value_type;
2516   Value_type value;
2517
2518   switch (sym->source())
2519     {
2520     case Symbol::FROM_OBJECT:
2521       {
2522         bool is_ordinary;
2523         unsigned int shndx = sym->shndx(&is_ordinary);
2524
2525         if (!is_ordinary
2526             && shndx != elfcpp::SHN_ABS
2527             && !Symbol::is_common_shndx(shndx))
2528           {
2529             *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2530             return 0;
2531           }
2532
2533         Object* symobj = sym->object();
2534         if (symobj->is_dynamic())
2535           {
2536             value = 0;
2537             shndx = elfcpp::SHN_UNDEF;
2538           }
2539         else if (symobj->pluginobj() != NULL)
2540           {
2541             value = 0;
2542             shndx = elfcpp::SHN_UNDEF;
2543           }
2544         else if (shndx == elfcpp::SHN_UNDEF)
2545           value = 0;
2546         else if (!is_ordinary
2547                  && (shndx == elfcpp::SHN_ABS
2548                      || Symbol::is_common_shndx(shndx)))
2549           value = sym->value();
2550         else
2551           {
2552             Relobj* relobj = static_cast<Relobj*>(symobj);
2553             Output_section* os = relobj->output_section(shndx);
2554
2555             if (this->is_section_folded(relobj, shndx))
2556               {
2557                 gold_assert(os == NULL);
2558                 // Get the os of the section it is folded onto.
2559                 Section_id folded = this->icf_->get_folded_section(relobj,
2560                                                                    shndx);
2561                 gold_assert(folded.first != NULL);
2562                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2563                 unsigned folded_shndx = folded.second;
2564
2565                 os = folded_obj->output_section(folded_shndx);  
2566                 gold_assert(os != NULL);
2567
2568                 // Replace (relobj, shndx) with canonical ICF input section.
2569                 shndx = folded_shndx;
2570                 relobj = folded_obj;
2571               }
2572
2573             uint64_t secoff64 = relobj->output_section_offset(shndx);
2574             if (os == NULL)
2575               {
2576                 bool static_or_reloc = (parameters->doing_static_link() ||
2577                                         parameters->options().relocatable());
2578                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2579
2580                 *pstatus = CFVS_NO_OUTPUT_SECTION;
2581                 return 0;
2582               }
2583
2584             if (secoff64 == -1ULL)
2585               {
2586                 // The section needs special handling (e.g., a merge section).
2587
2588                 value = os->output_address(relobj, shndx, sym->value());
2589               }
2590             else
2591               {
2592                 Value_type secoff =
2593                   convert_types<Value_type, uint64_t>(secoff64);
2594                 if (sym->type() == elfcpp::STT_TLS)
2595                   value = sym->value() + os->tls_offset() + secoff;
2596                 else
2597                   value = sym->value() + os->address() + secoff;
2598               }
2599           }
2600       }
2601       break;
2602
2603     case Symbol::IN_OUTPUT_DATA:
2604       {
2605         Output_data* od = sym->output_data();
2606         value = sym->value();
2607         if (sym->type() != elfcpp::STT_TLS)
2608           value += od->address();
2609         else
2610           {
2611             Output_section* os = od->output_section();
2612             gold_assert(os != NULL);
2613             value += os->tls_offset() + (od->address() - os->address());
2614           }
2615         if (sym->offset_is_from_end())
2616           value += od->data_size();
2617       }
2618       break;
2619
2620     case Symbol::IN_OUTPUT_SEGMENT:
2621       {
2622         Output_segment* os = sym->output_segment();
2623         value = sym->value();
2624         if (sym->type() != elfcpp::STT_TLS)
2625           value += os->vaddr();
2626         switch (sym->offset_base())
2627           {
2628           case Symbol::SEGMENT_START:
2629             break;
2630           case Symbol::SEGMENT_END:
2631             value += os->memsz();
2632             break;
2633           case Symbol::SEGMENT_BSS:
2634             value += os->filesz();
2635             break;
2636           default:
2637             gold_unreachable();
2638           }
2639       }
2640       break;
2641
2642     case Symbol::IS_CONSTANT:
2643       value = sym->value();
2644       break;
2645
2646     case Symbol::IS_UNDEFINED:
2647       value = 0;
2648       break;
2649
2650     default:
2651       gold_unreachable();
2652     }
2653
2654   *pstatus = CFVS_OK;
2655   return value;
2656 }
2657
2658 // Finalize the symbol SYM.  This returns true if the symbol should be
2659 // added to the symbol table, false otherwise.
2660
2661 template<int size>
2662 bool
2663 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2664 {
2665   typedef typename Sized_symbol<size>::Value_type Value_type;
2666
2667   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2668
2669   // The default version of a symbol may appear twice in the symbol
2670   // table.  We only need to finalize it once.
2671   if (sym->has_symtab_index())
2672     return false;
2673
2674   if (!sym->in_reg())
2675     {
2676       gold_assert(!sym->has_symtab_index());
2677       sym->set_symtab_index(-1U);
2678       gold_assert(sym->dynsym_index() == -1U);
2679       return false;
2680     }
2681
2682   // If the symbol is only present on plugin files, the plugin decided we
2683   // don't need it.
2684   if (!sym->in_real_elf())
2685     {
2686       gold_assert(!sym->has_symtab_index());
2687       sym->set_symtab_index(-1U);
2688       return false;
2689     }
2690
2691   // Compute final symbol value.
2692   Compute_final_value_status status;
2693   Value_type value = this->compute_final_value(sym, &status);
2694
2695   switch (status)
2696     {
2697     case CFVS_OK:
2698       break;
2699     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2700       {
2701         bool is_ordinary;
2702         unsigned int shndx = sym->shndx(&is_ordinary);
2703         gold_error(_("%s: unsupported symbol section 0x%x"),
2704                    sym->demangled_name().c_str(), shndx);
2705       }
2706       break;
2707     case CFVS_NO_OUTPUT_SECTION:
2708       sym->set_symtab_index(-1U);
2709       return false;
2710     default:
2711       gold_unreachable();
2712     }
2713
2714   sym->set_value(value);
2715
2716   if (parameters->options().strip_all()
2717       || !parameters->options().should_retain_symbol(sym->name()))
2718     {
2719       sym->set_symtab_index(-1U);
2720       return false;
2721     }
2722
2723   return true;
2724 }
2725
2726 // Write out the global symbols.
2727
2728 void
2729 Symbol_table::write_globals(const Stringpool* sympool,
2730                             const Stringpool* dynpool,
2731                             Output_symtab_xindex* symtab_xindex,
2732                             Output_symtab_xindex* dynsym_xindex,
2733                             Output_file* of) const
2734 {
2735   switch (parameters->size_and_endianness())
2736     {
2737 #ifdef HAVE_TARGET_32_LITTLE
2738     case Parameters::TARGET_32_LITTLE:
2739       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2740                                            dynsym_xindex, of);
2741       break;
2742 #endif
2743 #ifdef HAVE_TARGET_32_BIG
2744     case Parameters::TARGET_32_BIG:
2745       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2746                                           dynsym_xindex, of);
2747       break;
2748 #endif
2749 #ifdef HAVE_TARGET_64_LITTLE
2750     case Parameters::TARGET_64_LITTLE:
2751       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2752                                            dynsym_xindex, of);
2753       break;
2754 #endif
2755 #ifdef HAVE_TARGET_64_BIG
2756     case Parameters::TARGET_64_BIG:
2757       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2758                                           dynsym_xindex, of);
2759       break;
2760 #endif
2761     default:
2762       gold_unreachable();
2763     }
2764 }
2765
2766 // Write out the global symbols.
2767
2768 template<int size, bool big_endian>
2769 void
2770 Symbol_table::sized_write_globals(const Stringpool* sympool,
2771                                   const Stringpool* dynpool,
2772                                   Output_symtab_xindex* symtab_xindex,
2773                                   Output_symtab_xindex* dynsym_xindex,
2774                                   Output_file* of) const
2775 {
2776   const Target& target = parameters->target();
2777
2778   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2779
2780   const unsigned int output_count = this->output_count_;
2781   const section_size_type oview_size = output_count * sym_size;
2782   const unsigned int first_global_index = this->first_global_index_;
2783   unsigned char* psyms;
2784   if (this->offset_ == 0 || output_count == 0)
2785     psyms = NULL;
2786   else
2787     psyms = of->get_output_view(this->offset_, oview_size);
2788
2789   const unsigned int dynamic_count = this->dynamic_count_;
2790   const section_size_type dynamic_size = dynamic_count * sym_size;
2791   const unsigned int first_dynamic_global_index =
2792     this->first_dynamic_global_index_;
2793   unsigned char* dynamic_view;
2794   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2795     dynamic_view = NULL;
2796   else
2797     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2798
2799   for (Symbol_table_type::const_iterator p = this->table_.begin();
2800        p != this->table_.end();
2801        ++p)
2802     {
2803       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2804
2805       // Possibly warn about unresolved symbols in shared libraries.
2806       this->warn_about_undefined_dynobj_symbol(sym);
2807
2808       unsigned int sym_index = sym->symtab_index();
2809       unsigned int dynsym_index;
2810       if (dynamic_view == NULL)
2811         dynsym_index = -1U;
2812       else
2813         dynsym_index = sym->dynsym_index();
2814
2815       if (sym_index == -1U && dynsym_index == -1U)
2816         {
2817           // This symbol is not included in the output file.
2818           continue;
2819         }
2820
2821       unsigned int shndx;
2822       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2823       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2824       elfcpp::STB binding = sym->binding();
2825       switch (sym->source())
2826         {
2827         case Symbol::FROM_OBJECT:
2828           {
2829             bool is_ordinary;
2830             unsigned int in_shndx = sym->shndx(&is_ordinary);
2831
2832             if (!is_ordinary
2833                 && in_shndx != elfcpp::SHN_ABS
2834                 && !Symbol::is_common_shndx(in_shndx))
2835               {
2836                 gold_error(_("%s: unsupported symbol section 0x%x"),
2837                            sym->demangled_name().c_str(), in_shndx);
2838                 shndx = in_shndx;
2839               }
2840             else
2841               {
2842                 Object* symobj = sym->object();
2843                 if (symobj->is_dynamic())
2844                   {
2845                     if (sym->needs_dynsym_value())
2846                       dynsym_value = target.dynsym_value(sym);
2847                     shndx = elfcpp::SHN_UNDEF;
2848                     if (sym->is_undef_binding_weak())
2849                       binding = elfcpp::STB_WEAK;
2850                     else
2851                       binding = elfcpp::STB_GLOBAL;
2852                   }
2853                 else if (symobj->pluginobj() != NULL)
2854                   shndx = elfcpp::SHN_UNDEF;
2855                 else if (in_shndx == elfcpp::SHN_UNDEF
2856                          || (!is_ordinary
2857                              && (in_shndx == elfcpp::SHN_ABS
2858                                  || Symbol::is_common_shndx(in_shndx))))
2859                   shndx = in_shndx;
2860                 else
2861                   {
2862                     Relobj* relobj = static_cast<Relobj*>(symobj);
2863                     Output_section* os = relobj->output_section(in_shndx);
2864                     if (this->is_section_folded(relobj, in_shndx))
2865                       {
2866                         // This global symbol must be written out even though
2867                         // it is folded.
2868                         // Get the os of the section it is folded onto.
2869                         Section_id folded =
2870                              this->icf_->get_folded_section(relobj, in_shndx);
2871                         gold_assert(folded.first !=NULL);
2872                         Relobj* folded_obj = 
2873                           reinterpret_cast<Relobj*>(folded.first);
2874                         os = folded_obj->output_section(folded.second);  
2875                         gold_assert(os != NULL);
2876                       }
2877                     gold_assert(os != NULL);
2878                     shndx = os->out_shndx();
2879
2880                     if (shndx >= elfcpp::SHN_LORESERVE)
2881                       {
2882                         if (sym_index != -1U)
2883                           symtab_xindex->add(sym_index, shndx);
2884                         if (dynsym_index != -1U)
2885                           dynsym_xindex->add(dynsym_index, shndx);
2886                         shndx = elfcpp::SHN_XINDEX;
2887                       }
2888
2889                     // In object files symbol values are section
2890                     // relative.
2891                     if (parameters->options().relocatable())
2892                       sym_value -= os->address();
2893                   }
2894               }
2895           }
2896           break;
2897
2898         case Symbol::IN_OUTPUT_DATA:
2899           shndx = sym->output_data()->out_shndx();
2900           if (shndx >= elfcpp::SHN_LORESERVE)
2901             {
2902               if (sym_index != -1U)
2903                 symtab_xindex->add(sym_index, shndx);
2904               if (dynsym_index != -1U)
2905                 dynsym_xindex->add(dynsym_index, shndx);
2906               shndx = elfcpp::SHN_XINDEX;
2907             }
2908           break;
2909
2910         case Symbol::IN_OUTPUT_SEGMENT:
2911           shndx = elfcpp::SHN_ABS;
2912           break;
2913
2914         case Symbol::IS_CONSTANT:
2915           shndx = elfcpp::SHN_ABS;
2916           break;
2917
2918         case Symbol::IS_UNDEFINED:
2919           shndx = elfcpp::SHN_UNDEF;
2920           break;
2921
2922         default:
2923           gold_unreachable();
2924         }
2925
2926       if (sym_index != -1U)
2927         {
2928           sym_index -= first_global_index;
2929           gold_assert(sym_index < output_count);
2930           unsigned char* ps = psyms + (sym_index * sym_size);
2931           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2932                                                      binding, sympool, ps);
2933         }
2934
2935       if (dynsym_index != -1U)
2936         {
2937           dynsym_index -= first_dynamic_global_index;
2938           gold_assert(dynsym_index < dynamic_count);
2939           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2940           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2941                                                      binding, dynpool, pd);
2942         }
2943     }
2944
2945   of->write_output_view(this->offset_, oview_size, psyms);
2946   if (dynamic_view != NULL)
2947     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2948 }
2949
2950 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
2951 // strtab holding the name.
2952
2953 template<int size, bool big_endian>
2954 void
2955 Symbol_table::sized_write_symbol(
2956     Sized_symbol<size>* sym,
2957     typename elfcpp::Elf_types<size>::Elf_Addr value,
2958     unsigned int shndx,
2959     elfcpp::STB binding,
2960     const Stringpool* pool,
2961     unsigned char* p) const
2962 {
2963   elfcpp::Sym_write<size, big_endian> osym(p);
2964   if (sym->version() == NULL || !parameters->options().relocatable())
2965     osym.put_st_name(pool->get_offset(sym->name()));
2966   else
2967     osym.put_st_name(pool->get_offset(sym->versioned_name()));
2968   osym.put_st_value(value);
2969   // Use a symbol size of zero for undefined symbols from shared libraries.
2970   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2971     osym.put_st_size(0);
2972   else
2973     osym.put_st_size(sym->symsize());
2974   elfcpp::STT type = sym->type();
2975   // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
2976   if (type == elfcpp::STT_GNU_IFUNC
2977       && sym->is_from_dynobj())
2978     type = elfcpp::STT_FUNC;
2979   // A version script may have overridden the default binding.
2980   if (sym->is_forced_local())
2981     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
2982   else
2983     osym.put_st_info(elfcpp::elf_st_info(binding, type));
2984   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2985   osym.put_st_shndx(shndx);
2986 }
2987
2988 // Check for unresolved symbols in shared libraries.  This is
2989 // controlled by the --allow-shlib-undefined option.
2990
2991 // We only warn about libraries for which we have seen all the
2992 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
2993 // which were not seen in this link.  If we didn't see a DT_NEEDED
2994 // entry, we aren't going to be able to reliably report whether the
2995 // symbol is undefined.
2996
2997 // We also don't warn about libraries found in a system library
2998 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2999 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
3000 // can have undefined references satisfied by ld-linux.so.
3001
3002 inline void
3003 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3004 {
3005   bool dummy;
3006   if (sym->source() == Symbol::FROM_OBJECT
3007       && sym->object()->is_dynamic()
3008       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3009       && sym->binding() != elfcpp::STB_WEAK
3010       && !parameters->options().allow_shlib_undefined()
3011       && !parameters->target().is_defined_by_abi(sym)
3012       && !sym->object()->is_in_system_directory())
3013     {
3014       // A very ugly cast.
3015       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3016       if (!dynobj->has_unknown_needed_entries())
3017         gold_undefined_symbol(sym);
3018     }
3019 }
3020
3021 // Write out a section symbol.  Return the update offset.
3022
3023 void
3024 Symbol_table::write_section_symbol(const Output_section* os,
3025                                    Output_symtab_xindex* symtab_xindex,
3026                                    Output_file* of,
3027                                    off_t offset) const
3028 {
3029   switch (parameters->size_and_endianness())
3030     {
3031 #ifdef HAVE_TARGET_32_LITTLE
3032     case Parameters::TARGET_32_LITTLE:
3033       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3034                                                   offset);
3035       break;
3036 #endif
3037 #ifdef HAVE_TARGET_32_BIG
3038     case Parameters::TARGET_32_BIG:
3039       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3040                                                  offset);
3041       break;
3042 #endif
3043 #ifdef HAVE_TARGET_64_LITTLE
3044     case Parameters::TARGET_64_LITTLE:
3045       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3046                                                   offset);
3047       break;
3048 #endif
3049 #ifdef HAVE_TARGET_64_BIG
3050     case Parameters::TARGET_64_BIG:
3051       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3052                                                  offset);
3053       break;
3054 #endif
3055     default:
3056       gold_unreachable();
3057     }
3058 }
3059
3060 // Write out a section symbol, specialized for size and endianness.
3061
3062 template<int size, bool big_endian>
3063 void
3064 Symbol_table::sized_write_section_symbol(const Output_section* os,
3065                                          Output_symtab_xindex* symtab_xindex,
3066                                          Output_file* of,
3067                                          off_t offset) const
3068 {
3069   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3070
3071   unsigned char* pov = of->get_output_view(offset, sym_size);
3072
3073   elfcpp::Sym_write<size, big_endian> osym(pov);
3074   osym.put_st_name(0);
3075   if (parameters->options().relocatable())
3076     osym.put_st_value(0);
3077   else
3078     osym.put_st_value(os->address());
3079   osym.put_st_size(0);
3080   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3081                                        elfcpp::STT_SECTION));
3082   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3083
3084   unsigned int shndx = os->out_shndx();
3085   if (shndx >= elfcpp::SHN_LORESERVE)
3086     {
3087       symtab_xindex->add(os->symtab_index(), shndx);
3088       shndx = elfcpp::SHN_XINDEX;
3089     }
3090   osym.put_st_shndx(shndx);
3091
3092   of->write_output_view(offset, sym_size, pov);
3093 }
3094
3095 // Print statistical information to stderr.  This is used for --stats.
3096
3097 void
3098 Symbol_table::print_stats() const
3099 {
3100 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3101   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3102           program_name, this->table_.size(), this->table_.bucket_count());
3103 #else
3104   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3105           program_name, this->table_.size());
3106 #endif
3107   this->namepool_.print_stats("symbol table stringpool");
3108 }
3109
3110 // We check for ODR violations by looking for symbols with the same
3111 // name for which the debugging information reports that they were
3112 // defined in disjoint source locations.  When comparing the source
3113 // location, we consider instances with the same base filename to be
3114 // the same.  This is because different object files/shared libraries
3115 // can include the same header file using different paths, and
3116 // different optimization settings can make the line number appear to
3117 // be a couple lines off, and we don't want to report an ODR violation
3118 // in those cases.
3119
3120 // This struct is used to compare line information, as returned by
3121 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3122 // operator used with std::sort.
3123
3124 struct Odr_violation_compare
3125 {
3126   bool
3127   operator()(const std::string& s1, const std::string& s2) const
3128   {
3129     // Inputs should be of the form "dirname/filename:linenum" where
3130     // "dirname/" is optional.  We want to compare just the filename:linenum.
3131
3132     // Find the last '/' in each string.
3133     std::string::size_type s1begin = s1.rfind('/');
3134     std::string::size_type s2begin = s2.rfind('/');
3135     // If there was no '/' in a string, start at the beginning.
3136     if (s1begin == std::string::npos)
3137       s1begin = 0;
3138     if (s2begin == std::string::npos)
3139       s2begin = 0;
3140     return s1.compare(s1begin, std::string::npos,
3141                       s2, s2begin, std::string::npos) < 0;
3142   }
3143 };
3144
3145 // Returns all of the lines attached to LOC, not just the one the
3146 // instruction actually came from.
3147 std::vector<std::string>
3148 Symbol_table::linenos_from_loc(const Task* task,
3149                                const Symbol_location& loc)
3150 {
3151   // We need to lock the object in order to read it.  This
3152   // means that we have to run in a singleton Task.  If we
3153   // want to run this in a general Task for better
3154   // performance, we will need one Task for object, plus
3155   // appropriate locking to ensure that we don't conflict with
3156   // other uses of the object.  Also note, one_addr2line is not
3157   // currently thread-safe.
3158   Task_lock_obj<Object> tl(task, loc.object);
3159
3160   std::vector<std::string> result;
3161   // 16 is the size of the object-cache that one_addr2line should use.
3162   std::string canonical_result = Dwarf_line_info::one_addr2line(
3163       loc.object, loc.shndx, loc.offset, 16, &result);
3164   if (!canonical_result.empty())
3165     result.push_back(canonical_result);
3166   return result;
3167 }
3168
3169 // OutputIterator that records if it was ever assigned to.  This
3170 // allows it to be used with std::set_intersection() to check for
3171 // intersection rather than computing the intersection.
3172 struct Check_intersection
3173 {
3174   Check_intersection()
3175     : value_(false)
3176   {}
3177
3178   bool had_intersection() const
3179   { return this->value_; }
3180
3181   Check_intersection& operator++()
3182   { return *this; }
3183
3184   Check_intersection& operator*()
3185   { return *this; }
3186
3187   template<typename T>
3188   Check_intersection& operator=(const T&)
3189   {
3190     this->value_ = true;
3191     return *this;
3192   }
3193
3194  private:
3195   bool value_;
3196 };
3197
3198 // Check candidate_odr_violations_ to find symbols with the same name
3199 // but apparently different definitions (different source-file/line-no
3200 // for each line assigned to the first instruction).
3201
3202 void
3203 Symbol_table::detect_odr_violations(const Task* task,
3204                                     const char* output_file_name) const
3205 {
3206   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3207        it != candidate_odr_violations_.end();
3208        ++it)
3209     {
3210       const char* const symbol_name = it->first;
3211
3212       std::string first_object_name;
3213       std::vector<std::string> first_object_linenos;
3214
3215       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3216           locs = it->second.begin();
3217       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3218           locs_end = it->second.end();
3219       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3220         {
3221           // Save the line numbers from the first definition to
3222           // compare to the other definitions.  Ideally, we'd compare
3223           // every definition to every other, but we don't want to
3224           // take O(N^2) time to do this.  This shortcut may cause
3225           // false negatives that appear or disappear depending on the
3226           // link order, but it won't cause false positives.
3227           first_object_name = locs->object->name();
3228           first_object_linenos = this->linenos_from_loc(task, *locs);
3229         }
3230
3231       // Sort by Odr_violation_compare to make std::set_intersection work.
3232       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3233                 Odr_violation_compare());
3234
3235       for (; locs != locs_end; ++locs)
3236         {
3237           std::vector<std::string> linenos =
3238               this->linenos_from_loc(task, *locs);
3239           // linenos will be empty if we couldn't parse the debug info.
3240           if (linenos.empty())
3241             continue;
3242           // Sort by Odr_violation_compare to make std::set_intersection work.
3243           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3244
3245           Check_intersection intersection_result =
3246               std::set_intersection(first_object_linenos.begin(),
3247                                     first_object_linenos.end(),
3248                                     linenos.begin(),
3249                                     linenos.end(),
3250                                     Check_intersection(),
3251                                     Odr_violation_compare());
3252           if (!intersection_result.had_intersection())
3253             {
3254               gold_warning(_("while linking %s: symbol '%s' defined in "
3255                              "multiple places (possible ODR violation):"),
3256                            output_file_name, demangle(symbol_name).c_str());
3257               // This only prints one location from each definition,
3258               // which may not be the location we expect to intersect
3259               // with another definition.  We could print the whole
3260               // set of locations, but that seems too verbose.
3261               gold_assert(!first_object_linenos.empty());
3262               gold_assert(!linenos.empty());
3263               fprintf(stderr, _("  %s from %s\n"),
3264                       first_object_linenos[0].c_str(),
3265                       first_object_name.c_str());
3266               fprintf(stderr, _("  %s from %s\n"),
3267                       linenos[0].c_str(),
3268                       locs->object->name().c_str());
3269               // Only print one broken pair, to avoid needing to
3270               // compare against a list of the disjoint definition
3271               // locations we've found so far.  (If we kept comparing
3272               // against just the first one, we'd get a lot of
3273               // redundant complaints about the second definition
3274               // location.)
3275               break;
3276             }
3277         }
3278     }
3279   // We only call one_addr2line() in this function, so we can clear its cache.
3280   Dwarf_line_info::clear_addr2line_cache();
3281 }
3282
3283 // Warnings functions.
3284
3285 // Add a new warning.
3286
3287 void
3288 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3289                       const std::string& warning)
3290 {
3291   name = symtab->canonicalize_name(name);
3292   this->warnings_[name].set(obj, warning);
3293 }
3294
3295 // Look through the warnings and mark the symbols for which we should
3296 // warn.  This is called during Layout::finalize when we know the
3297 // sources for all the symbols.
3298
3299 void
3300 Warnings::note_warnings(Symbol_table* symtab)
3301 {
3302   for (Warning_table::iterator p = this->warnings_.begin();
3303        p != this->warnings_.end();
3304        ++p)
3305     {
3306       Symbol* sym = symtab->lookup(p->first, NULL);
3307       if (sym != NULL
3308           && sym->source() == Symbol::FROM_OBJECT
3309           && sym->object() == p->second.object)
3310         sym->set_has_warning();
3311     }
3312 }
3313
3314 // Issue a warning.  This is called when we see a relocation against a
3315 // symbol for which has a warning.
3316
3317 template<int size, bool big_endian>
3318 void
3319 Warnings::issue_warning(const Symbol* sym,
3320                         const Relocate_info<size, big_endian>* relinfo,
3321                         size_t relnum, off_t reloffset) const
3322 {
3323   gold_assert(sym->has_warning());
3324
3325   // We don't want to issue a warning for a relocation against the
3326   // symbol in the same object file in which the symbol is defined.
3327   if (sym->object() == relinfo->object)
3328     return;
3329
3330   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3331   gold_assert(p != this->warnings_.end());
3332   gold_warning_at_location(relinfo, relnum, reloffset,
3333                            "%s", p->second.text.c_str());
3334 }
3335
3336 // Instantiate the templates we need.  We could use the configure
3337 // script to restrict this to only the ones needed for implemented
3338 // targets.
3339
3340 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3341 template
3342 void
3343 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3344 #endif
3345
3346 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3347 template
3348 void
3349 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3350 #endif
3351
3352 #ifdef HAVE_TARGET_32_LITTLE
3353 template
3354 void
3355 Symbol_table::add_from_relobj<32, false>(
3356     Sized_relobj_file<32, false>* relobj,
3357     const unsigned char* syms,
3358     size_t count,
3359     size_t symndx_offset,
3360     const char* sym_names,
3361     size_t sym_name_size,
3362     Sized_relobj_file<32, false>::Symbols* sympointers,
3363     size_t* defined);
3364 #endif
3365
3366 #ifdef HAVE_TARGET_32_BIG
3367 template
3368 void
3369 Symbol_table::add_from_relobj<32, true>(
3370     Sized_relobj_file<32, true>* relobj,
3371     const unsigned char* syms,
3372     size_t count,
3373     size_t symndx_offset,
3374     const char* sym_names,
3375     size_t sym_name_size,
3376     Sized_relobj_file<32, true>::Symbols* sympointers,
3377     size_t* defined);
3378 #endif
3379
3380 #ifdef HAVE_TARGET_64_LITTLE
3381 template
3382 void
3383 Symbol_table::add_from_relobj<64, false>(
3384     Sized_relobj_file<64, false>* relobj,
3385     const unsigned char* syms,
3386     size_t count,
3387     size_t symndx_offset,
3388     const char* sym_names,
3389     size_t sym_name_size,
3390     Sized_relobj_file<64, false>::Symbols* sympointers,
3391     size_t* defined);
3392 #endif
3393
3394 #ifdef HAVE_TARGET_64_BIG
3395 template
3396 void
3397 Symbol_table::add_from_relobj<64, true>(
3398     Sized_relobj_file<64, true>* relobj,
3399     const unsigned char* syms,
3400     size_t count,
3401     size_t symndx_offset,
3402     const char* sym_names,
3403     size_t sym_name_size,
3404     Sized_relobj_file<64, true>::Symbols* sympointers,
3405     size_t* defined);
3406 #endif
3407
3408 #ifdef HAVE_TARGET_32_LITTLE
3409 template
3410 Symbol*
3411 Symbol_table::add_from_pluginobj<32, false>(
3412     Sized_pluginobj<32, false>* obj,
3413     const char* name,
3414     const char* ver,
3415     elfcpp::Sym<32, false>* sym);
3416 #endif
3417
3418 #ifdef HAVE_TARGET_32_BIG
3419 template
3420 Symbol*
3421 Symbol_table::add_from_pluginobj<32, true>(
3422     Sized_pluginobj<32, true>* obj,
3423     const char* name,
3424     const char* ver,
3425     elfcpp::Sym<32, true>* sym);
3426 #endif
3427
3428 #ifdef HAVE_TARGET_64_LITTLE
3429 template
3430 Symbol*
3431 Symbol_table::add_from_pluginobj<64, false>(
3432     Sized_pluginobj<64, false>* obj,
3433     const char* name,
3434     const char* ver,
3435     elfcpp::Sym<64, false>* sym);
3436 #endif
3437
3438 #ifdef HAVE_TARGET_64_BIG
3439 template
3440 Symbol*
3441 Symbol_table::add_from_pluginobj<64, true>(
3442     Sized_pluginobj<64, true>* obj,
3443     const char* name,
3444     const char* ver,
3445     elfcpp::Sym<64, true>* sym);
3446 #endif
3447
3448 #ifdef HAVE_TARGET_32_LITTLE
3449 template
3450 void
3451 Symbol_table::add_from_dynobj<32, false>(
3452     Sized_dynobj<32, false>* dynobj,
3453     const unsigned char* syms,
3454     size_t count,
3455     const char* sym_names,
3456     size_t sym_name_size,
3457     const unsigned char* versym,
3458     size_t versym_size,
3459     const std::vector<const char*>* version_map,
3460     Sized_relobj_file<32, false>::Symbols* sympointers,
3461     size_t* defined);
3462 #endif
3463
3464 #ifdef HAVE_TARGET_32_BIG
3465 template
3466 void
3467 Symbol_table::add_from_dynobj<32, true>(
3468     Sized_dynobj<32, true>* dynobj,
3469     const unsigned char* syms,
3470     size_t count,
3471     const char* sym_names,
3472     size_t sym_name_size,
3473     const unsigned char* versym,
3474     size_t versym_size,
3475     const std::vector<const char*>* version_map,
3476     Sized_relobj_file<32, true>::Symbols* sympointers,
3477     size_t* defined);
3478 #endif
3479
3480 #ifdef HAVE_TARGET_64_LITTLE
3481 template
3482 void
3483 Symbol_table::add_from_dynobj<64, false>(
3484     Sized_dynobj<64, false>* dynobj,
3485     const unsigned char* syms,
3486     size_t count,
3487     const char* sym_names,
3488     size_t sym_name_size,
3489     const unsigned char* versym,
3490     size_t versym_size,
3491     const std::vector<const char*>* version_map,
3492     Sized_relobj_file<64, false>::Symbols* sympointers,
3493     size_t* defined);
3494 #endif
3495
3496 #ifdef HAVE_TARGET_64_BIG
3497 template
3498 void
3499 Symbol_table::add_from_dynobj<64, true>(
3500     Sized_dynobj<64, true>* dynobj,
3501     const unsigned char* syms,
3502     size_t count,
3503     const char* sym_names,
3504     size_t sym_name_size,
3505     const unsigned char* versym,
3506     size_t versym_size,
3507     const std::vector<const char*>* version_map,
3508     Sized_relobj_file<64, true>::Symbols* sympointers,
3509     size_t* defined);
3510 #endif
3511
3512 #ifdef HAVE_TARGET_32_LITTLE
3513 template
3514 Sized_symbol<32>*
3515 Symbol_table::add_from_incrobj(
3516     Object* obj,
3517     const char* name,
3518     const char* ver,
3519     elfcpp::Sym<32, false>* sym);
3520 #endif
3521
3522 #ifdef HAVE_TARGET_32_BIG
3523 template
3524 Sized_symbol<32>*
3525 Symbol_table::add_from_incrobj(
3526     Object* obj,
3527     const char* name,
3528     const char* ver,
3529     elfcpp::Sym<32, true>* sym);
3530 #endif
3531
3532 #ifdef HAVE_TARGET_64_LITTLE
3533 template
3534 Sized_symbol<64>*
3535 Symbol_table::add_from_incrobj(
3536     Object* obj,
3537     const char* name,
3538     const char* ver,
3539     elfcpp::Sym<64, false>* sym);
3540 #endif
3541
3542 #ifdef HAVE_TARGET_64_BIG
3543 template
3544 Sized_symbol<64>*
3545 Symbol_table::add_from_incrobj(
3546     Object* obj,
3547     const char* name,
3548     const char* ver,
3549     elfcpp::Sym<64, true>* sym);
3550 #endif
3551
3552 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3553 template
3554 void
3555 Symbol_table::define_with_copy_reloc<32>(
3556     Sized_symbol<32>* sym,
3557     Output_data* posd,
3558     elfcpp::Elf_types<32>::Elf_Addr value);
3559 #endif
3560
3561 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3562 template
3563 void
3564 Symbol_table::define_with_copy_reloc<64>(
3565     Sized_symbol<64>* sym,
3566     Output_data* posd,
3567     elfcpp::Elf_types<64>::Elf_Addr value);
3568 #endif
3569
3570 #ifdef HAVE_TARGET_32_LITTLE
3571 template
3572 void
3573 Warnings::issue_warning<32, false>(const Symbol* sym,
3574                                    const Relocate_info<32, false>* relinfo,
3575                                    size_t relnum, off_t reloffset) const;
3576 #endif
3577
3578 #ifdef HAVE_TARGET_32_BIG
3579 template
3580 void
3581 Warnings::issue_warning<32, true>(const Symbol* sym,
3582                                   const Relocate_info<32, true>* relinfo,
3583                                   size_t relnum, off_t reloffset) const;
3584 #endif
3585
3586 #ifdef HAVE_TARGET_64_LITTLE
3587 template
3588 void
3589 Warnings::issue_warning<64, false>(const Symbol* sym,
3590                                    const Relocate_info<64, false>* relinfo,
3591                                    size_t relnum, off_t reloffset) const;
3592 #endif
3593
3594 #ifdef HAVE_TARGET_64_BIG
3595 template
3596 void
3597 Warnings::issue_warning<64, true>(const Symbol* sym,
3598                                   const Relocate_info<64, true>* relinfo,
3599                                   size_t relnum, off_t reloffset) const;
3600 #endif
3601
3602 } // End namespace gold.