1 // symtab.cc -- the gold symbol table
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
35 #include "dwarf_reader.h"
39 #include "workqueue.h"
43 #include "incremental.h"
50 // Initialize fields in Symbol. This initializes everything except u_
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
89 demangle(const char* name)
91 if (!parameters->options().do_demangle())
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97 if (demangled_name == NULL)
100 std::string retval(demangled_name);
101 free(demangled_name);
106 Symbol::demangled_name() const
108 return demangle(this->name());
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
113 template<int size, bool big_endian>
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym,
117 unsigned int st_shndx, bool is_ordinary)
119 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 sym.get_st_visibility(), sym.get_st_nonvis());
121 this->u_.from_object.object = object;
122 this->u_.from_object.shndx = st_shndx;
123 this->is_ordinary_shndx_ = is_ordinary;
124 this->source_ = FROM_OBJECT;
125 this->in_reg_ = !object->is_dynamic();
126 this->in_dyn_ = object->is_dynamic();
127 this->in_real_elf_ = object->pluginobj() == NULL;
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
134 Symbol::init_base_output_data(const char* name, const char* version,
135 Output_data* od, elfcpp::STT type,
136 elfcpp::STB binding, elfcpp::STV visibility,
137 unsigned char nonvis, bool offset_is_from_end,
140 this->init_fields(name, version, type, binding, visibility, nonvis);
141 this->u_.in_output_data.output_data = od;
142 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143 this->source_ = IN_OUTPUT_DATA;
144 this->in_reg_ = true;
145 this->in_real_elf_ = true;
146 this->is_predefined_ = is_predefined;
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
153 Symbol::init_base_output_segment(const char* name, const char* version,
154 Output_segment* os, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis,
157 Segment_offset_base offset_base,
160 this->init_fields(name, version, type, binding, visibility, nonvis);
161 this->u_.in_output_segment.output_segment = os;
162 this->u_.in_output_segment.offset_base = offset_base;
163 this->source_ = IN_OUTPUT_SEGMENT;
164 this->in_reg_ = true;
165 this->in_real_elf_ = true;
166 this->is_predefined_ = is_predefined;
169 // Initialize the fields in the base class Symbol for a symbol defined
173 Symbol::init_base_constant(const char* name, const char* version,
174 elfcpp::STT type, elfcpp::STB binding,
175 elfcpp::STV visibility, unsigned char nonvis,
178 this->init_fields(name, version, type, binding, visibility, nonvis);
179 this->source_ = IS_CONSTANT;
180 this->in_reg_ = true;
181 this->in_real_elf_ = true;
182 this->is_predefined_ = is_predefined;
185 // Initialize the fields in the base class Symbol for an undefined
189 Symbol::init_base_undefined(const char* name, const char* version,
190 elfcpp::STT type, elfcpp::STB binding,
191 elfcpp::STV visibility, unsigned char nonvis)
193 this->init_fields(name, version, type, binding, visibility, nonvis);
194 this->dynsym_index_ = -1U;
195 this->source_ = IS_UNDEFINED;
196 this->in_reg_ = true;
197 this->in_real_elf_ = true;
200 // Allocate a common symbol in the base.
203 Symbol::allocate_base_common(Output_data* od)
205 gold_assert(this->is_common());
206 this->source_ = IN_OUTPUT_DATA;
207 this->u_.in_output_data.output_data = od;
208 this->u_.in_output_data.offset_is_from_end = false;
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
214 template<bool big_endian>
216 Sized_symbol<size>::init_object(const char* name, const char* version,
218 const elfcpp::Sym<size, big_endian>& sym,
219 unsigned int st_shndx, bool is_ordinary)
221 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222 this->value_ = sym.get_st_value();
223 this->symsize_ = sym.get_st_size();
226 // Initialize the fields in Sized_symbol for a symbol defined in an
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 Output_data* od, Value_type value,
233 Size_type symsize, elfcpp::STT type,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 bool offset_is_from_end,
240 this->init_base_output_data(name, version, od, type, binding, visibility,
241 nonvis, offset_is_from_end, is_predefined);
242 this->value_ = value;
243 this->symsize_ = symsize;
246 // Initialize the fields in Sized_symbol for a symbol defined in an
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 Output_segment* os, Value_type value,
253 Size_type symsize, elfcpp::STT type,
255 elfcpp::STV visibility,
256 unsigned char nonvis,
257 Segment_offset_base offset_base,
260 this->init_base_output_segment(name, version, os, type, binding, visibility,
261 nonvis, offset_base, is_predefined);
262 this->value_ = value;
263 this->symsize_ = symsize;
266 // Initialize the fields in Sized_symbol for a symbol defined as a
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 Value_type value, Size_type symsize,
273 elfcpp::STT type, elfcpp::STB binding,
274 elfcpp::STV visibility, unsigned char nonvis,
277 this->init_base_constant(name, version, type, binding, visibility, nonvis,
279 this->value_ = value;
280 this->symsize_ = symsize;
283 // Initialize the fields in Sized_symbol for an undefined symbol.
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 elfcpp::STT type, elfcpp::STB binding,
289 elfcpp::STV visibility, unsigned char nonvis)
291 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
300 Symbol::versioned_name() const
302 gold_assert(this->version_ != NULL);
303 std::string ret = this->name_;
307 ret += this->version_;
311 // Return true if SHNDX represents a common symbol.
314 Symbol::is_common_shndx(unsigned int shndx)
316 return (shndx == elfcpp::SHN_COMMON
317 || shndx == parameters->target().small_common_shndx()
318 || shndx == parameters->target().large_common_shndx());
321 // Allocate a common symbol.
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
327 this->allocate_base_common(od);
328 this->value_ = value;
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
334 // Return true if this symbol should be added to the dynamic symbol
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
340 // If the symbol is only present on plugin files, the plugin decided we
342 if (!this->in_real_elf())
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters->options().gc_sections()
353 && !parameters->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
357 Relobj* relobj = static_cast<Relobj*>(this->object());
359 unsigned int shndx = this->shndx(&is_ordinary);
360 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361 && !relobj->is_section_included(shndx)
362 && !symtab->is_section_folded(relobj, shndx))
366 // If the symbol was forced local in a version script, do not add it.
367 if (this->is_forced_local())
370 // If the symbol was forced dynamic in a --dynamic-list file, add it.
371 if (parameters->options().in_dynamic_list(this->name()))
374 // If dynamic-list-data was specified, add any STT_OBJECT.
375 if (parameters->options().dynamic_list_data()
376 && !this->is_from_dynobj()
377 && this->type() == elfcpp::STT_OBJECT)
380 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
381 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
382 if ((parameters->options().dynamic_list_cpp_new()
383 || parameters->options().dynamic_list_cpp_typeinfo())
384 && !this->is_from_dynobj())
386 // TODO(csilvers): We could probably figure out if we're an operator
387 // new/delete or typeinfo without the need to demangle.
388 char* demangled_name = cplus_demangle(this->name(),
389 DMGL_ANSI | DMGL_PARAMS);
390 if (demangled_name == NULL)
392 // Not a C++ symbol, so it can't satisfy these flags
394 else if (parameters->options().dynamic_list_cpp_new()
395 && (strprefix(demangled_name, "operator new")
396 || strprefix(demangled_name, "operator delete")))
398 free(demangled_name);
401 else if (parameters->options().dynamic_list_cpp_typeinfo()
402 && (strprefix(demangled_name, "typeinfo name for")
403 || strprefix(demangled_name, "typeinfo for")))
405 free(demangled_name);
409 free(demangled_name);
412 // If exporting all symbols or building a shared library,
413 // and the symbol is defined in a regular object and is
414 // externally visible, we need to add it.
415 if ((parameters->options().export_dynamic() || parameters->options().shared())
416 && !this->is_from_dynobj()
417 && !this->is_undefined()
418 && this->is_externally_visible())
424 // Return true if the final value of this symbol is known at link
428 Symbol::final_value_is_known() const
430 // If we are not generating an executable, then no final values are
431 // known, since they will change at runtime.
432 if (parameters->options().output_is_position_independent()
433 || parameters->options().relocatable())
436 // If the symbol is not from an object file, and is not undefined,
437 // then it is defined, and known.
438 if (this->source_ != FROM_OBJECT)
440 if (this->source_ != IS_UNDEFINED)
445 // If the symbol is from a dynamic object, then the final value
447 if (this->object()->is_dynamic())
450 // If the symbol is not undefined (it is defined or common),
451 // then the final value is known.
452 if (!this->is_undefined())
456 // If the symbol is undefined, then whether the final value is known
457 // depends on whether we are doing a static link. If we are doing a
458 // dynamic link, then the final value could be filled in at runtime.
459 // This could reasonably be the case for a weak undefined symbol.
460 return parameters->doing_static_link();
463 // Return the output section where this symbol is defined.
466 Symbol::output_section() const
468 switch (this->source_)
472 unsigned int shndx = this->u_.from_object.shndx;
473 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
475 gold_assert(!this->u_.from_object.object->is_dynamic());
476 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
477 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
478 return relobj->output_section(shndx);
484 return this->u_.in_output_data.output_data->output_section();
486 case IN_OUTPUT_SEGMENT:
496 // Set the symbol's output section. This is used for symbols defined
497 // in scripts. This should only be called after the symbol table has
501 Symbol::set_output_section(Output_section* os)
503 switch (this->source_)
507 gold_assert(this->output_section() == os);
510 this->source_ = IN_OUTPUT_DATA;
511 this->u_.in_output_data.output_data = os;
512 this->u_.in_output_data.offset_is_from_end = false;
514 case IN_OUTPUT_SEGMENT:
521 // Class Symbol_table.
523 Symbol_table::Symbol_table(unsigned int count,
524 const Version_script_info& version_script)
525 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
526 forwarders_(), commons_(), tls_commons_(), small_commons_(),
527 large_commons_(), forced_locals_(), warnings_(),
528 version_script_(version_script), gc_(NULL), icf_(NULL)
530 namepool_.reserve(count);
533 Symbol_table::~Symbol_table()
537 // The symbol table key equality function. This is called with
541 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
542 const Symbol_table_key& k2) const
544 return k1.first == k2.first && k1.second == k2.second;
548 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
550 return (parameters->options().icf_enabled()
551 && this->icf_->is_section_folded(obj, shndx));
554 // For symbols that have been listed with -u option, add them to the
555 // work list to avoid gc'ing them.
558 Symbol_table::gc_mark_undef_symbols(Layout* layout)
560 for (options::String_set::const_iterator p =
561 parameters->options().undefined_begin();
562 p != parameters->options().undefined_end();
565 const char* name = p->c_str();
566 Symbol* sym = this->lookup(name);
567 gold_assert(sym != NULL);
568 if (sym->source() == Symbol::FROM_OBJECT
569 && !sym->object()->is_dynamic())
571 Relobj* obj = static_cast<Relobj*>(sym->object());
573 unsigned int shndx = sym->shndx(&is_ordinary);
576 gold_assert(this->gc_ != NULL);
577 this->gc_->worklist().push(Section_id(obj, shndx));
582 for (Script_options::referenced_const_iterator p =
583 layout->script_options()->referenced_begin();
584 p != layout->script_options()->referenced_end();
587 Symbol* sym = this->lookup(p->c_str());
588 gold_assert(sym != NULL);
589 if (sym->source() == Symbol::FROM_OBJECT
590 && !sym->object()->is_dynamic())
592 Relobj* obj = static_cast<Relobj*>(sym->object());
594 unsigned int shndx = sym->shndx(&is_ordinary);
597 gold_assert(this->gc_ != NULL);
598 this->gc_->worklist().push(Section_id(obj, shndx));
605 Symbol_table::gc_mark_symbol_for_shlib(Symbol* sym)
607 if (!sym->is_from_dynobj()
608 && sym->is_externally_visible())
610 //Add the object and section to the work list.
611 Relobj* obj = static_cast<Relobj*>(sym->object());
613 unsigned int shndx = sym->shndx(&is_ordinary);
614 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
616 gold_assert(this->gc_!= NULL);
617 this->gc_->worklist().push(Section_id(obj, shndx));
622 // When doing garbage collection, keep symbols that have been seen in
625 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
627 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
628 && !sym->object()->is_dynamic())
630 Relobj* obj = static_cast<Relobj*>(sym->object());
632 unsigned int shndx = sym->shndx(&is_ordinary);
633 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
635 gold_assert(this->gc_ != NULL);
636 this->gc_->worklist().push(Section_id(obj, shndx));
641 // Make TO a symbol which forwards to FROM.
644 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
646 gold_assert(from != to);
647 gold_assert(!from->is_forwarder() && !to->is_forwarder());
648 this->forwarders_[from] = to;
649 from->set_forwarder();
652 // Resolve the forwards from FROM, returning the real symbol.
655 Symbol_table::resolve_forwards(const Symbol* from) const
657 gold_assert(from->is_forwarder());
658 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
659 this->forwarders_.find(from);
660 gold_assert(p != this->forwarders_.end());
664 // Look up a symbol by name.
667 Symbol_table::lookup(const char* name, const char* version) const
669 Stringpool::Key name_key;
670 name = this->namepool_.find(name, &name_key);
674 Stringpool::Key version_key = 0;
677 version = this->namepool_.find(version, &version_key);
682 Symbol_table_key key(name_key, version_key);
683 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
684 if (p == this->table_.end())
689 // Resolve a Symbol with another Symbol. This is only used in the
690 // unusual case where there are references to both an unversioned
691 // symbol and a symbol with a version, and we then discover that that
692 // version is the default version. Because this is unusual, we do
693 // this the slow way, by converting back to an ELF symbol.
695 template<int size, bool big_endian>
697 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
699 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
700 elfcpp::Sym_write<size, big_endian> esym(buf);
701 // We don't bother to set the st_name or the st_shndx field.
702 esym.put_st_value(from->value());
703 esym.put_st_size(from->symsize());
704 esym.put_st_info(from->binding(), from->type());
705 esym.put_st_other(from->visibility(), from->nonvis());
707 unsigned int shndx = from->shndx(&is_ordinary);
708 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
714 if (parameters->options().gc_sections())
715 this->gc_mark_dyn_syms(to);
718 // Record that a symbol is forced to be local by a version script or
722 Symbol_table::force_local(Symbol* sym)
724 if (!sym->is_defined() && !sym->is_common())
726 if (sym->is_forced_local())
728 // We already got this one.
731 sym->set_is_forced_local();
732 this->forced_locals_.push_back(sym);
735 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
736 // is only called for undefined symbols, when at least one --wrap
740 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
742 // For some targets, we need to ignore a specific character when
743 // wrapping, and add it back later.
745 if (name[0] == parameters->target().wrap_char())
751 if (parameters->options().is_wrap(name))
753 // Turn NAME into __wrap_NAME.
760 // This will give us both the old and new name in NAMEPOOL_, but
761 // that is OK. Only the versions we need will wind up in the
762 // real string table in the output file.
763 return this->namepool_.add(s.c_str(), true, name_key);
766 const char* const real_prefix = "__real_";
767 const size_t real_prefix_length = strlen(real_prefix);
768 if (strncmp(name, real_prefix, real_prefix_length) == 0
769 && parameters->options().is_wrap(name + real_prefix_length))
771 // Turn __real_NAME into NAME.
775 s += name + real_prefix_length;
776 return this->namepool_.add(s.c_str(), true, name_key);
782 // This is called when we see a symbol NAME/VERSION, and the symbol
783 // already exists in the symbol table, and VERSION is marked as being
784 // the default version. SYM is the NAME/VERSION symbol we just added.
785 // DEFAULT_IS_NEW is true if this is the first time we have seen the
786 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
788 template<int size, bool big_endian>
790 Symbol_table::define_default_version(Sized_symbol<size>* sym,
792 Symbol_table_type::iterator pdef)
796 // This is the first time we have seen NAME/NULL. Make
797 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
800 sym->set_is_default();
802 else if (pdef->second == sym)
804 // NAME/NULL already points to NAME/VERSION. Don't mark the
805 // symbol as the default if it is not already the default.
809 // This is the unfortunate case where we already have entries
810 // for both NAME/VERSION and NAME/NULL. We now see a symbol
811 // NAME/VERSION where VERSION is the default version. We have
812 // already resolved this new symbol with the existing
813 // NAME/VERSION symbol.
815 // It's possible that NAME/NULL and NAME/VERSION are both
816 // defined in regular objects. This can only happen if one
817 // object file defines foo and another defines foo@@ver. This
818 // is somewhat obscure, but we call it a multiple definition
821 // It's possible that NAME/NULL actually has a version, in which
822 // case it won't be the same as VERSION. This happens with
823 // ver_test_7.so in the testsuite for the symbol t2_2. We see
824 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
825 // then see an unadorned t2_2 in an object file and give it
826 // version VER1 from the version script. This looks like a
827 // default definition for VER1, so it looks like we should merge
828 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
829 // not obvious that this is an error, either. So we just punt.
831 // If one of the symbols has non-default visibility, and the
832 // other is defined in a shared object, then they are different
835 // Otherwise, we just resolve the symbols as though they were
838 if (pdef->second->version() != NULL)
839 gold_assert(pdef->second->version() != sym->version());
840 else if (sym->visibility() != elfcpp::STV_DEFAULT
841 && pdef->second->is_from_dynobj())
843 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
844 && sym->is_from_dynobj())
848 const Sized_symbol<size>* symdef;
849 symdef = this->get_sized_symbol<size>(pdef->second);
850 Symbol_table::resolve<size, big_endian>(sym, symdef);
851 this->make_forwarder(pdef->second, sym);
853 sym->set_is_default();
858 // Add one symbol from OBJECT to the symbol table. NAME is symbol
859 // name and VERSION is the version; both are canonicalized. DEF is
860 // whether this is the default version. ST_SHNDX is the symbol's
861 // section index; IS_ORDINARY is whether this is a normal section
862 // rather than a special code.
864 // If IS_DEFAULT_VERSION is true, then this is the definition of a
865 // default version of a symbol. That means that any lookup of
866 // NAME/NULL and any lookup of NAME/VERSION should always return the
867 // same symbol. This is obvious for references, but in particular we
868 // want to do this for definitions: overriding NAME/NULL should also
869 // override NAME/VERSION. If we don't do that, it would be very hard
870 // to override functions in a shared library which uses versioning.
872 // We implement this by simply making both entries in the hash table
873 // point to the same Symbol structure. That is easy enough if this is
874 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
875 // that we have seen both already, in which case they will both have
876 // independent entries in the symbol table. We can't simply change
877 // the symbol table entry, because we have pointers to the entries
878 // attached to the object files. So we mark the entry attached to the
879 // object file as a forwarder, and record it in the forwarders_ map.
880 // Note that entries in the hash table will never be marked as
883 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
884 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
885 // for a special section code. ST_SHNDX may be modified if the symbol
886 // is defined in a section being discarded.
888 template<int size, bool big_endian>
890 Symbol_table::add_from_object(Object* object,
892 Stringpool::Key name_key,
894 Stringpool::Key version_key,
895 bool is_default_version,
896 const elfcpp::Sym<size, big_endian>& sym,
897 unsigned int st_shndx,
899 unsigned int orig_st_shndx)
901 // Print a message if this symbol is being traced.
902 if (parameters->options().is_trace_symbol(name))
904 if (orig_st_shndx == elfcpp::SHN_UNDEF)
905 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
907 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
910 // For an undefined symbol, we may need to adjust the name using
912 if (orig_st_shndx == elfcpp::SHN_UNDEF
913 && parameters->options().any_wrap())
915 const char* wrap_name = this->wrap_symbol(name, &name_key);
916 if (wrap_name != name)
918 // If we see a reference to malloc with version GLIBC_2.0,
919 // and we turn it into a reference to __wrap_malloc, then we
920 // discard the version number. Otherwise the user would be
921 // required to specify the correct version for
929 Symbol* const snull = NULL;
930 std::pair<typename Symbol_table_type::iterator, bool> ins =
931 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
934 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
935 std::make_pair(this->table_.end(), false);
936 if (is_default_version)
938 const Stringpool::Key vnull_key = 0;
939 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
944 // ins.first: an iterator, which is a pointer to a pair.
945 // ins.first->first: the key (a pair of name and version).
946 // ins.first->second: the value (Symbol*).
947 // ins.second: true if new entry was inserted, false if not.
949 Sized_symbol<size>* ret;
954 // We already have an entry for NAME/VERSION.
955 ret = this->get_sized_symbol<size>(ins.first->second);
956 gold_assert(ret != NULL);
958 was_undefined = ret->is_undefined();
959 was_common = ret->is_common();
961 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
963 if (parameters->options().gc_sections())
964 this->gc_mark_dyn_syms(ret);
966 if (is_default_version)
967 this->define_default_version<size, big_endian>(ret, insdefault.second,
972 // This is the first time we have seen NAME/VERSION.
973 gold_assert(ins.first->second == NULL);
975 if (is_default_version && !insdefault.second)
977 // We already have an entry for NAME/NULL. If we override
978 // it, then change it to NAME/VERSION.
979 ret = this->get_sized_symbol<size>(insdefault.first->second);
981 was_undefined = ret->is_undefined();
982 was_common = ret->is_common();
984 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
986 if (parameters->options().gc_sections())
987 this->gc_mark_dyn_syms(ret);
988 ins.first->second = ret;
992 was_undefined = false;
995 Sized_target<size, big_endian>* target =
996 parameters->sized_target<size, big_endian>();
997 if (!target->has_make_symbol())
998 ret = new Sized_symbol<size>();
1001 ret = target->make_symbol();
1004 // This means that we don't want a symbol table
1006 if (!is_default_version)
1007 this->table_.erase(ins.first);
1010 this->table_.erase(insdefault.first);
1011 // Inserting INSDEFAULT invalidated INS.
1012 this->table_.erase(std::make_pair(name_key,
1019 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1021 ins.first->second = ret;
1022 if (is_default_version)
1024 // This is the first time we have seen NAME/NULL. Point
1025 // it at the new entry for NAME/VERSION.
1026 gold_assert(insdefault.second);
1027 insdefault.first->second = ret;
1031 if (is_default_version)
1032 ret->set_is_default();
1035 // Record every time we see a new undefined symbol, to speed up
1037 if (!was_undefined && ret->is_undefined())
1039 ++this->saw_undefined_;
1040 if (parameters->options().has_plugins())
1041 parameters->options().plugins()->new_undefined_symbol(ret);
1044 // Keep track of common symbols, to speed up common symbol
1046 if (!was_common && ret->is_common())
1048 if (ret->type() == elfcpp::STT_TLS)
1049 this->tls_commons_.push_back(ret);
1050 else if (!is_ordinary
1051 && st_shndx == parameters->target().small_common_shndx())
1052 this->small_commons_.push_back(ret);
1053 else if (!is_ordinary
1054 && st_shndx == parameters->target().large_common_shndx())
1055 this->large_commons_.push_back(ret);
1057 this->commons_.push_back(ret);
1060 // If we're not doing a relocatable link, then any symbol with
1061 // hidden or internal visibility is local.
1062 if ((ret->visibility() == elfcpp::STV_HIDDEN
1063 || ret->visibility() == elfcpp::STV_INTERNAL)
1064 && (ret->binding() == elfcpp::STB_GLOBAL
1065 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1066 || ret->binding() == elfcpp::STB_WEAK)
1067 && !parameters->options().relocatable())
1068 this->force_local(ret);
1073 // Add all the symbols in a relocatable object to the hash table.
1075 template<int size, bool big_endian>
1077 Symbol_table::add_from_relobj(
1078 Sized_relobj_file<size, big_endian>* relobj,
1079 const unsigned char* syms,
1081 size_t symndx_offset,
1082 const char* sym_names,
1083 size_t sym_name_size,
1084 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1089 gold_assert(size == parameters->target().get_size());
1091 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1093 const bool just_symbols = relobj->just_symbols();
1095 const unsigned char* p = syms;
1096 for (size_t i = 0; i < count; ++i, p += sym_size)
1098 (*sympointers)[i] = NULL;
1100 elfcpp::Sym<size, big_endian> sym(p);
1102 unsigned int st_name = sym.get_st_name();
1103 if (st_name >= sym_name_size)
1105 relobj->error(_("bad global symbol name offset %u at %zu"),
1110 const char* name = sym_names + st_name;
1113 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1116 unsigned int orig_st_shndx = st_shndx;
1118 orig_st_shndx = elfcpp::SHN_UNDEF;
1120 if (st_shndx != elfcpp::SHN_UNDEF)
1123 // A symbol defined in a section which we are not including must
1124 // be treated as an undefined symbol.
1125 bool is_defined_in_discarded_section = false;
1126 if (st_shndx != elfcpp::SHN_UNDEF
1128 && !relobj->is_section_included(st_shndx)
1129 && !this->is_section_folded(relobj, st_shndx))
1131 st_shndx = elfcpp::SHN_UNDEF;
1132 is_defined_in_discarded_section = true;
1135 // In an object file, an '@' in the name separates the symbol
1136 // name from the version name. If there are two '@' characters,
1137 // this is the default version.
1138 const char* ver = strchr(name, '@');
1139 Stringpool::Key ver_key = 0;
1141 // IS_DEFAULT_VERSION: is the version default?
1142 // IS_FORCED_LOCAL: is the symbol forced local?
1143 bool is_default_version = false;
1144 bool is_forced_local = false;
1148 // The symbol name is of the form foo@VERSION or foo@@VERSION
1149 namelen = ver - name;
1153 is_default_version = true;
1156 ver = this->namepool_.add(ver, true, &ver_key);
1158 // We don't want to assign a version to an undefined symbol,
1159 // even if it is listed in the version script. FIXME: What
1160 // about a common symbol?
1163 namelen = strlen(name);
1164 if (!this->version_script_.empty()
1165 && st_shndx != elfcpp::SHN_UNDEF)
1167 // The symbol name did not have a version, but the
1168 // version script may assign a version anyway.
1169 std::string version;
1171 if (this->version_script_.get_symbol_version(name, &version,
1175 is_forced_local = true;
1176 else if (!version.empty())
1178 ver = this->namepool_.add_with_length(version.c_str(),
1182 is_default_version = true;
1188 elfcpp::Sym<size, big_endian>* psym = &sym;
1189 unsigned char symbuf[sym_size];
1190 elfcpp::Sym<size, big_endian> sym2(symbuf);
1193 memcpy(symbuf, p, sym_size);
1194 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1195 if (orig_st_shndx != elfcpp::SHN_UNDEF
1197 && relobj->e_type() == elfcpp::ET_REL)
1199 // Symbol values in relocatable object files are section
1200 // relative. This is normally what we want, but since here
1201 // we are converting the symbol to absolute we need to add
1202 // the section address. The section address in an object
1203 // file is normally zero, but people can use a linker
1204 // script to change it.
1205 sw.put_st_value(sym.get_st_value()
1206 + relobj->section_address(orig_st_shndx));
1208 st_shndx = elfcpp::SHN_ABS;
1209 is_ordinary = false;
1213 // Fix up visibility if object has no-export set.
1214 if (relobj->no_export()
1215 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1217 // We may have copied symbol already above.
1220 memcpy(symbuf, p, sym_size);
1224 elfcpp::STV visibility = sym2.get_st_visibility();
1225 if (visibility == elfcpp::STV_DEFAULT
1226 || visibility == elfcpp::STV_PROTECTED)
1228 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1229 unsigned char nonvis = sym2.get_st_nonvis();
1230 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1234 Stringpool::Key name_key;
1235 name = this->namepool_.add_with_length(name, namelen, true,
1238 Sized_symbol<size>* res;
1239 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1240 is_default_version, *psym, st_shndx,
1241 is_ordinary, orig_st_shndx);
1243 if (is_forced_local)
1244 this->force_local(res);
1246 // If building a shared library using garbage collection, do not
1247 // treat externally visible symbols as garbage.
1248 if (parameters->options().gc_sections()
1249 && parameters->options().shared())
1250 this->gc_mark_symbol_for_shlib(res);
1252 if (is_defined_in_discarded_section)
1253 res->set_is_defined_in_discarded_section();
1255 (*sympointers)[i] = res;
1259 // Add a symbol from a plugin-claimed file.
1261 template<int size, bool big_endian>
1263 Symbol_table::add_from_pluginobj(
1264 Sized_pluginobj<size, big_endian>* obj,
1267 elfcpp::Sym<size, big_endian>* sym)
1269 unsigned int st_shndx = sym->get_st_shndx();
1270 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1272 Stringpool::Key ver_key = 0;
1273 bool is_default_version = false;
1274 bool is_forced_local = false;
1278 ver = this->namepool_.add(ver, true, &ver_key);
1280 // We don't want to assign a version to an undefined symbol,
1281 // even if it is listed in the version script. FIXME: What
1282 // about a common symbol?
1285 if (!this->version_script_.empty()
1286 && st_shndx != elfcpp::SHN_UNDEF)
1288 // The symbol name did not have a version, but the
1289 // version script may assign a version anyway.
1290 std::string version;
1292 if (this->version_script_.get_symbol_version(name, &version,
1296 is_forced_local = true;
1297 else if (!version.empty())
1299 ver = this->namepool_.add_with_length(version.c_str(),
1303 is_default_version = true;
1309 Stringpool::Key name_key;
1310 name = this->namepool_.add(name, true, &name_key);
1312 Sized_symbol<size>* res;
1313 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1314 is_default_version, *sym, st_shndx,
1315 is_ordinary, st_shndx);
1317 if (is_forced_local)
1318 this->force_local(res);
1323 // Add all the symbols in a dynamic object to the hash table.
1325 template<int size, bool big_endian>
1327 Symbol_table::add_from_dynobj(
1328 Sized_dynobj<size, big_endian>* dynobj,
1329 const unsigned char* syms,
1331 const char* sym_names,
1332 size_t sym_name_size,
1333 const unsigned char* versym,
1335 const std::vector<const char*>* version_map,
1336 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1341 gold_assert(size == parameters->target().get_size());
1343 if (dynobj->just_symbols())
1345 gold_error(_("--just-symbols does not make sense with a shared object"));
1349 if (versym != NULL && versym_size / 2 < count)
1351 dynobj->error(_("too few symbol versions"));
1355 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1357 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1358 // weak aliases. This is necessary because if the dynamic object
1359 // provides the same variable under two names, one of which is a
1360 // weak definition, and the regular object refers to the weak
1361 // definition, we have to put both the weak definition and the
1362 // strong definition into the dynamic symbol table. Given a weak
1363 // definition, the only way that we can find the corresponding
1364 // strong definition, if any, is to search the symbol table.
1365 std::vector<Sized_symbol<size>*> object_symbols;
1367 const unsigned char* p = syms;
1368 const unsigned char* vs = versym;
1369 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1371 elfcpp::Sym<size, big_endian> sym(p);
1373 if (sympointers != NULL)
1374 (*sympointers)[i] = NULL;
1376 // Ignore symbols with local binding or that have
1377 // internal or hidden visibility.
1378 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1379 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1380 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1383 // A protected symbol in a shared library must be treated as a
1384 // normal symbol when viewed from outside the shared library.
1385 // Implement this by overriding the visibility here.
1386 elfcpp::Sym<size, big_endian>* psym = &sym;
1387 unsigned char symbuf[sym_size];
1388 elfcpp::Sym<size, big_endian> sym2(symbuf);
1389 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1391 memcpy(symbuf, p, sym_size);
1392 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1393 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1397 unsigned int st_name = psym->get_st_name();
1398 if (st_name >= sym_name_size)
1400 dynobj->error(_("bad symbol name offset %u at %zu"),
1405 const char* name = sym_names + st_name;
1408 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1411 if (st_shndx != elfcpp::SHN_UNDEF)
1414 Sized_symbol<size>* res;
1418 Stringpool::Key name_key;
1419 name = this->namepool_.add(name, true, &name_key);
1420 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1421 false, *psym, st_shndx, is_ordinary,
1426 // Read the version information.
1428 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1430 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1431 v &= elfcpp::VERSYM_VERSION;
1433 // The Sun documentation says that V can be VER_NDX_LOCAL,
1434 // or VER_NDX_GLOBAL, or a version index. The meaning of
1435 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1436 // The old GNU linker will happily generate VER_NDX_LOCAL
1437 // for an undefined symbol. I don't know what the Sun
1438 // linker will generate.
1440 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1441 && st_shndx != elfcpp::SHN_UNDEF)
1443 // This symbol should not be visible outside the object.
1447 // At this point we are definitely going to add this symbol.
1448 Stringpool::Key name_key;
1449 name = this->namepool_.add(name, true, &name_key);
1451 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1452 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1454 // This symbol does not have a version.
1455 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1456 false, *psym, st_shndx, is_ordinary,
1461 if (v >= version_map->size())
1463 dynobj->error(_("versym for symbol %zu out of range: %u"),
1468 const char* version = (*version_map)[v];
1469 if (version == NULL)
1471 dynobj->error(_("versym for symbol %zu has no name: %u"),
1476 Stringpool::Key version_key;
1477 version = this->namepool_.add(version, true, &version_key);
1479 // If this is an absolute symbol, and the version name
1480 // and symbol name are the same, then this is the
1481 // version definition symbol. These symbols exist to
1482 // support using -u to pull in particular versions. We
1483 // do not want to record a version for them.
1484 if (st_shndx == elfcpp::SHN_ABS
1486 && name_key == version_key)
1487 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1488 false, *psym, st_shndx, is_ordinary,
1492 const bool is_default_version =
1493 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1494 res = this->add_from_object(dynobj, name, name_key, version,
1495 version_key, is_default_version,
1497 is_ordinary, st_shndx);
1502 // Note that it is possible that RES was overridden by an
1503 // earlier object, in which case it can't be aliased here.
1504 if (st_shndx != elfcpp::SHN_UNDEF
1506 && psym->get_st_type() == elfcpp::STT_OBJECT
1507 && res->source() == Symbol::FROM_OBJECT
1508 && res->object() == dynobj)
1509 object_symbols.push_back(res);
1511 if (sympointers != NULL)
1512 (*sympointers)[i] = res;
1515 this->record_weak_aliases(&object_symbols);
1518 // Add a symbol from a incremental object file.
1520 template<int size, bool big_endian>
1522 Symbol_table::add_from_incrobj(
1526 elfcpp::Sym<size, big_endian>* sym)
1528 unsigned int st_shndx = sym->get_st_shndx();
1529 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1531 Stringpool::Key ver_key = 0;
1532 bool is_default_version = false;
1533 bool is_forced_local = false;
1535 Stringpool::Key name_key;
1536 name = this->namepool_.add(name, true, &name_key);
1538 Sized_symbol<size>* res;
1539 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1540 is_default_version, *sym, st_shndx,
1541 is_ordinary, st_shndx);
1543 if (is_forced_local)
1544 this->force_local(res);
1549 // This is used to sort weak aliases. We sort them first by section
1550 // index, then by offset, then by weak ahead of strong.
1553 class Weak_alias_sorter
1556 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1561 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1562 const Sized_symbol<size>* s2) const
1565 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1566 gold_assert(is_ordinary);
1567 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1568 gold_assert(is_ordinary);
1569 if (s1_shndx != s2_shndx)
1570 return s1_shndx < s2_shndx;
1572 if (s1->value() != s2->value())
1573 return s1->value() < s2->value();
1574 if (s1->binding() != s2->binding())
1576 if (s1->binding() == elfcpp::STB_WEAK)
1578 if (s2->binding() == elfcpp::STB_WEAK)
1581 return std::string(s1->name()) < std::string(s2->name());
1584 // SYMBOLS is a list of object symbols from a dynamic object. Look
1585 // for any weak aliases, and record them so that if we add the weak
1586 // alias to the dynamic symbol table, we also add the corresponding
1591 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1593 // Sort the vector by section index, then by offset, then by weak
1595 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1597 // Walk through the vector. For each weak definition, record
1599 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1601 p != symbols->end();
1604 if ((*p)->binding() != elfcpp::STB_WEAK)
1607 // Build a circular list of weak aliases. Each symbol points to
1608 // the next one in the circular list.
1610 Sized_symbol<size>* from_sym = *p;
1611 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1612 for (q = p + 1; q != symbols->end(); ++q)
1615 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1616 || (*q)->value() != from_sym->value())
1619 this->weak_aliases_[from_sym] = *q;
1620 from_sym->set_has_alias();
1626 this->weak_aliases_[from_sym] = *p;
1627 from_sym->set_has_alias();
1634 // Create and return a specially defined symbol. If ONLY_IF_REF is
1635 // true, then only create the symbol if there is a reference to it.
1636 // If this does not return NULL, it sets *POLDSYM to the existing
1637 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1638 // resolve the newly created symbol to the old one. This
1639 // canonicalizes *PNAME and *PVERSION.
1641 template<int size, bool big_endian>
1643 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1645 Sized_symbol<size>** poldsym,
1646 bool* resolve_oldsym)
1648 *resolve_oldsym = false;
1650 // If the caller didn't give us a version, see if we get one from
1651 // the version script.
1653 bool is_default_version = false;
1654 if (*pversion == NULL)
1657 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1659 if (is_global && !v.empty())
1661 *pversion = v.c_str();
1662 // If we get the version from a version script, then we
1663 // are also the default version.
1664 is_default_version = true;
1670 Sized_symbol<size>* sym;
1672 bool add_to_table = false;
1673 typename Symbol_table_type::iterator add_loc = this->table_.end();
1674 bool add_def_to_table = false;
1675 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1679 oldsym = this->lookup(*pname, *pversion);
1680 if (oldsym == NULL && is_default_version)
1681 oldsym = this->lookup(*pname, NULL);
1682 if (oldsym == NULL || !oldsym->is_undefined())
1685 *pname = oldsym->name();
1686 if (!is_default_version)
1687 *pversion = oldsym->version();
1691 // Canonicalize NAME and VERSION.
1692 Stringpool::Key name_key;
1693 *pname = this->namepool_.add(*pname, true, &name_key);
1695 Stringpool::Key version_key = 0;
1696 if (*pversion != NULL)
1697 *pversion = this->namepool_.add(*pversion, true, &version_key);
1699 Symbol* const snull = NULL;
1700 std::pair<typename Symbol_table_type::iterator, bool> ins =
1701 this->table_.insert(std::make_pair(std::make_pair(name_key,
1705 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1706 std::make_pair(this->table_.end(), false);
1707 if (is_default_version)
1709 const Stringpool::Key vnull = 0;
1711 this->table_.insert(std::make_pair(std::make_pair(name_key,
1718 // We already have a symbol table entry for NAME/VERSION.
1719 oldsym = ins.first->second;
1720 gold_assert(oldsym != NULL);
1722 if (is_default_version)
1724 Sized_symbol<size>* soldsym =
1725 this->get_sized_symbol<size>(oldsym);
1726 this->define_default_version<size, big_endian>(soldsym,
1733 // We haven't seen this symbol before.
1734 gold_assert(ins.first->second == NULL);
1736 add_to_table = true;
1737 add_loc = ins.first;
1739 if (is_default_version && !insdefault.second)
1741 // We are adding NAME/VERSION, and it is the default
1742 // version. We already have an entry for NAME/NULL.
1743 oldsym = insdefault.first->second;
1744 *resolve_oldsym = true;
1750 if (is_default_version)
1752 add_def_to_table = true;
1753 add_def_loc = insdefault.first;
1759 const Target& target = parameters->target();
1760 if (!target.has_make_symbol())
1761 sym = new Sized_symbol<size>();
1764 Sized_target<size, big_endian>* sized_target =
1765 parameters->sized_target<size, big_endian>();
1766 sym = sized_target->make_symbol();
1772 add_loc->second = sym;
1774 gold_assert(oldsym != NULL);
1776 if (add_def_to_table)
1777 add_def_loc->second = sym;
1779 *poldsym = this->get_sized_symbol<size>(oldsym);
1784 // Define a symbol based on an Output_data.
1787 Symbol_table::define_in_output_data(const char* name,
1788 const char* version,
1794 elfcpp::STB binding,
1795 elfcpp::STV visibility,
1796 unsigned char nonvis,
1797 bool offset_is_from_end,
1800 if (parameters->target().get_size() == 32)
1802 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1803 return this->do_define_in_output_data<32>(name, version, defined, od,
1804 value, symsize, type, binding,
1812 else if (parameters->target().get_size() == 64)
1814 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1815 return this->do_define_in_output_data<64>(name, version, defined, od,
1816 value, symsize, type, binding,
1828 // Define a symbol in an Output_data, sized version.
1832 Symbol_table::do_define_in_output_data(
1834 const char* version,
1837 typename elfcpp::Elf_types<size>::Elf_Addr value,
1838 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1840 elfcpp::STB binding,
1841 elfcpp::STV visibility,
1842 unsigned char nonvis,
1843 bool offset_is_from_end,
1846 Sized_symbol<size>* sym;
1847 Sized_symbol<size>* oldsym;
1848 bool resolve_oldsym;
1850 if (parameters->target().is_big_endian())
1852 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1853 sym = this->define_special_symbol<size, true>(&name, &version,
1854 only_if_ref, &oldsym,
1862 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1863 sym = this->define_special_symbol<size, false>(&name, &version,
1864 only_if_ref, &oldsym,
1874 sym->init_output_data(name, version, od, value, symsize, type, binding,
1875 visibility, nonvis, offset_is_from_end,
1876 defined == PREDEFINED);
1880 if (binding == elfcpp::STB_LOCAL
1881 || this->version_script_.symbol_is_local(name))
1882 this->force_local(sym);
1883 else if (version != NULL)
1884 sym->set_is_default();
1888 if (Symbol_table::should_override_with_special(oldsym, type, defined))
1889 this->override_with_special(oldsym, sym);
1900 // Define a symbol based on an Output_segment.
1903 Symbol_table::define_in_output_segment(const char* name,
1904 const char* version,
1910 elfcpp::STB binding,
1911 elfcpp::STV visibility,
1912 unsigned char nonvis,
1913 Symbol::Segment_offset_base offset_base,
1916 if (parameters->target().get_size() == 32)
1918 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1919 return this->do_define_in_output_segment<32>(name, version, defined, os,
1920 value, symsize, type,
1921 binding, visibility, nonvis,
1922 offset_base, only_if_ref);
1927 else if (parameters->target().get_size() == 64)
1929 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1930 return this->do_define_in_output_segment<64>(name, version, defined, os,
1931 value, symsize, type,
1932 binding, visibility, nonvis,
1933 offset_base, only_if_ref);
1942 // Define a symbol in an Output_segment, sized version.
1946 Symbol_table::do_define_in_output_segment(
1948 const char* version,
1951 typename elfcpp::Elf_types<size>::Elf_Addr value,
1952 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1954 elfcpp::STB binding,
1955 elfcpp::STV visibility,
1956 unsigned char nonvis,
1957 Symbol::Segment_offset_base offset_base,
1960 Sized_symbol<size>* sym;
1961 Sized_symbol<size>* oldsym;
1962 bool resolve_oldsym;
1964 if (parameters->target().is_big_endian())
1966 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1967 sym = this->define_special_symbol<size, true>(&name, &version,
1968 only_if_ref, &oldsym,
1976 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1977 sym = this->define_special_symbol<size, false>(&name, &version,
1978 only_if_ref, &oldsym,
1988 sym->init_output_segment(name, version, os, value, symsize, type, binding,
1989 visibility, nonvis, offset_base,
1990 defined == PREDEFINED);
1994 if (binding == elfcpp::STB_LOCAL
1995 || this->version_script_.symbol_is_local(name))
1996 this->force_local(sym);
1997 else if (version != NULL)
1998 sym->set_is_default();
2002 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2003 this->override_with_special(oldsym, sym);
2014 // Define a special symbol with a constant value. It is a multiple
2015 // definition error if this symbol is already defined.
2018 Symbol_table::define_as_constant(const char* name,
2019 const char* version,
2024 elfcpp::STB binding,
2025 elfcpp::STV visibility,
2026 unsigned char nonvis,
2028 bool force_override)
2030 if (parameters->target().get_size() == 32)
2032 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2033 return this->do_define_as_constant<32>(name, version, defined, value,
2034 symsize, type, binding,
2035 visibility, nonvis, only_if_ref,
2041 else if (parameters->target().get_size() == 64)
2043 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2044 return this->do_define_as_constant<64>(name, version, defined, value,
2045 symsize, type, binding,
2046 visibility, nonvis, only_if_ref,
2056 // Define a symbol as a constant, sized version.
2060 Symbol_table::do_define_as_constant(
2062 const char* version,
2064 typename elfcpp::Elf_types<size>::Elf_Addr value,
2065 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2067 elfcpp::STB binding,
2068 elfcpp::STV visibility,
2069 unsigned char nonvis,
2071 bool force_override)
2073 Sized_symbol<size>* sym;
2074 Sized_symbol<size>* oldsym;
2075 bool resolve_oldsym;
2077 if (parameters->target().is_big_endian())
2079 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2080 sym = this->define_special_symbol<size, true>(&name, &version,
2081 only_if_ref, &oldsym,
2089 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2090 sym = this->define_special_symbol<size, false>(&name, &version,
2091 only_if_ref, &oldsym,
2101 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2102 nonvis, defined == PREDEFINED);
2106 // Version symbols are absolute symbols with name == version.
2107 // We don't want to force them to be local.
2108 if ((version == NULL
2111 && (binding == elfcpp::STB_LOCAL
2112 || this->version_script_.symbol_is_local(name)))
2113 this->force_local(sym);
2114 else if (version != NULL
2115 && (name != version || value != 0))
2116 sym->set_is_default();
2121 || Symbol_table::should_override_with_special(oldsym, type, defined))
2122 this->override_with_special(oldsym, sym);
2133 // Define a set of symbols in output sections.
2136 Symbol_table::define_symbols(const Layout* layout, int count,
2137 const Define_symbol_in_section* p,
2140 for (int i = 0; i < count; ++i, ++p)
2142 Output_section* os = layout->find_output_section(p->output_section);
2144 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2145 p->size, p->type, p->binding,
2146 p->visibility, p->nonvis,
2147 p->offset_is_from_end,
2148 only_if_ref || p->only_if_ref);
2150 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2151 p->type, p->binding, p->visibility, p->nonvis,
2152 only_if_ref || p->only_if_ref,
2157 // Define a set of symbols in output segments.
2160 Symbol_table::define_symbols(const Layout* layout, int count,
2161 const Define_symbol_in_segment* p,
2164 for (int i = 0; i < count; ++i, ++p)
2166 Output_segment* os = layout->find_output_segment(p->segment_type,
2167 p->segment_flags_set,
2168 p->segment_flags_clear);
2170 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2171 p->size, p->type, p->binding,
2172 p->visibility, p->nonvis,
2174 only_if_ref || p->only_if_ref);
2176 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2177 p->type, p->binding, p->visibility, p->nonvis,
2178 only_if_ref || p->only_if_ref,
2183 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2184 // symbol should be defined--typically a .dyn.bss section. VALUE is
2185 // the offset within POSD.
2189 Symbol_table::define_with_copy_reloc(
2190 Sized_symbol<size>* csym,
2192 typename elfcpp::Elf_types<size>::Elf_Addr value)
2194 gold_assert(csym->is_from_dynobj());
2195 gold_assert(!csym->is_copied_from_dynobj());
2196 Object* object = csym->object();
2197 gold_assert(object->is_dynamic());
2198 Dynobj* dynobj = static_cast<Dynobj*>(object);
2200 // Our copied variable has to override any variable in a shared
2202 elfcpp::STB binding = csym->binding();
2203 if (binding == elfcpp::STB_WEAK)
2204 binding = elfcpp::STB_GLOBAL;
2206 this->define_in_output_data(csym->name(), csym->version(), COPY,
2207 posd, value, csym->symsize(),
2208 csym->type(), binding,
2209 csym->visibility(), csym->nonvis(),
2212 csym->set_is_copied_from_dynobj();
2213 csym->set_needs_dynsym_entry();
2215 this->copied_symbol_dynobjs_[csym] = dynobj;
2217 // We have now defined all aliases, but we have not entered them all
2218 // in the copied_symbol_dynobjs_ map.
2219 if (csym->has_alias())
2224 sym = this->weak_aliases_[sym];
2227 gold_assert(sym->output_data() == posd);
2229 sym->set_is_copied_from_dynobj();
2230 this->copied_symbol_dynobjs_[sym] = dynobj;
2235 // SYM is defined using a COPY reloc. Return the dynamic object where
2236 // the original definition was found.
2239 Symbol_table::get_copy_source(const Symbol* sym) const
2241 gold_assert(sym->is_copied_from_dynobj());
2242 Copied_symbol_dynobjs::const_iterator p =
2243 this->copied_symbol_dynobjs_.find(sym);
2244 gold_assert(p != this->copied_symbol_dynobjs_.end());
2248 // Add any undefined symbols named on the command line.
2251 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2253 if (parameters->options().any_undefined()
2254 || layout->script_options()->any_unreferenced())
2256 if (parameters->target().get_size() == 32)
2258 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2259 this->do_add_undefined_symbols_from_command_line<32>(layout);
2264 else if (parameters->target().get_size() == 64)
2266 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2267 this->do_add_undefined_symbols_from_command_line<64>(layout);
2279 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2281 for (options::String_set::const_iterator p =
2282 parameters->options().undefined_begin();
2283 p != parameters->options().undefined_end();
2285 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2287 for (Script_options::referenced_const_iterator p =
2288 layout->script_options()->referenced_begin();
2289 p != layout->script_options()->referenced_end();
2291 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2296 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2298 if (this->lookup(name) != NULL)
2301 const char* version = NULL;
2303 Sized_symbol<size>* sym;
2304 Sized_symbol<size>* oldsym;
2305 bool resolve_oldsym;
2306 if (parameters->target().is_big_endian())
2308 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2309 sym = this->define_special_symbol<size, true>(&name, &version,
2318 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2319 sym = this->define_special_symbol<size, false>(&name, &version,
2327 gold_assert(oldsym == NULL);
2329 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2330 elfcpp::STV_DEFAULT, 0);
2331 ++this->saw_undefined_;
2334 // Set the dynamic symbol indexes. INDEX is the index of the first
2335 // global dynamic symbol. Pointers to the symbols are stored into the
2336 // vector SYMS. The names are added to DYNPOOL. This returns an
2337 // updated dynamic symbol index.
2340 Symbol_table::set_dynsym_indexes(unsigned int index,
2341 std::vector<Symbol*>* syms,
2342 Stringpool* dynpool,
2345 for (Symbol_table_type::iterator p = this->table_.begin();
2346 p != this->table_.end();
2349 Symbol* sym = p->second;
2351 // Note that SYM may already have a dynamic symbol index, since
2352 // some symbols appear more than once in the symbol table, with
2353 // and without a version.
2355 if (!sym->should_add_dynsym_entry(this))
2356 sym->set_dynsym_index(-1U);
2357 else if (!sym->has_dynsym_index())
2359 sym->set_dynsym_index(index);
2361 syms->push_back(sym);
2362 dynpool->add(sym->name(), false, NULL);
2364 // Record any version information.
2365 if (sym->version() != NULL)
2366 versions->record_version(this, dynpool, sym);
2368 // If the symbol is defined in a dynamic object and is
2369 // referenced in a regular object, then mark the dynamic
2370 // object as needed. This is used to implement --as-needed.
2371 if (sym->is_from_dynobj() && sym->in_reg())
2372 sym->object()->set_is_needed();
2376 // Finish up the versions. In some cases this may add new dynamic
2378 index = versions->finalize(this, index, syms);
2383 // Set the final values for all the symbols. The index of the first
2384 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2385 // file offset OFF. Add their names to POOL. Return the new file
2386 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2389 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2390 size_t dyncount, Stringpool* pool,
2391 unsigned int* plocal_symcount)
2395 gold_assert(*plocal_symcount != 0);
2396 this->first_global_index_ = *plocal_symcount;
2398 this->dynamic_offset_ = dynoff;
2399 this->first_dynamic_global_index_ = dyn_global_index;
2400 this->dynamic_count_ = dyncount;
2402 if (parameters->target().get_size() == 32)
2404 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2405 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2410 else if (parameters->target().get_size() == 64)
2412 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2413 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2421 // Now that we have the final symbol table, we can reliably note
2422 // which symbols should get warnings.
2423 this->warnings_.note_warnings(this);
2428 // SYM is going into the symbol table at *PINDEX. Add the name to
2429 // POOL, update *PINDEX and *POFF.
2433 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2434 unsigned int* pindex, off_t* poff)
2436 sym->set_symtab_index(*pindex);
2437 if (sym->version() == NULL || !parameters->options().relocatable())
2438 pool->add(sym->name(), false, NULL);
2440 pool->add(sym->versioned_name(), true, NULL);
2442 *poff += elfcpp::Elf_sizes<size>::sym_size;
2445 // Set the final value for all the symbols. This is called after
2446 // Layout::finalize, so all the output sections have their final
2451 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2452 unsigned int* plocal_symcount)
2454 off = align_address(off, size >> 3);
2455 this->offset_ = off;
2457 unsigned int index = *plocal_symcount;
2458 const unsigned int orig_index = index;
2460 // First do all the symbols which have been forced to be local, as
2461 // they must appear before all global symbols.
2462 for (Forced_locals::iterator p = this->forced_locals_.begin();
2463 p != this->forced_locals_.end();
2467 gold_assert(sym->is_forced_local());
2468 if (this->sized_finalize_symbol<size>(sym))
2470 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2475 // Now do all the remaining symbols.
2476 for (Symbol_table_type::iterator p = this->table_.begin();
2477 p != this->table_.end();
2480 Symbol* sym = p->second;
2481 if (this->sized_finalize_symbol<size>(sym))
2482 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2485 this->output_count_ = index - orig_index;
2490 // Compute the final value of SYM and store status in location PSTATUS.
2491 // During relaxation, this may be called multiple times for a symbol to
2492 // compute its would-be final value in each relaxation pass.
2495 typename Sized_symbol<size>::Value_type
2496 Symbol_table::compute_final_value(
2497 const Sized_symbol<size>* sym,
2498 Compute_final_value_status* pstatus) const
2500 typedef typename Sized_symbol<size>::Value_type Value_type;
2503 switch (sym->source())
2505 case Symbol::FROM_OBJECT:
2508 unsigned int shndx = sym->shndx(&is_ordinary);
2511 && shndx != elfcpp::SHN_ABS
2512 && !Symbol::is_common_shndx(shndx))
2514 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2518 Object* symobj = sym->object();
2519 if (symobj->is_dynamic())
2522 shndx = elfcpp::SHN_UNDEF;
2524 else if (symobj->pluginobj() != NULL)
2527 shndx = elfcpp::SHN_UNDEF;
2529 else if (shndx == elfcpp::SHN_UNDEF)
2531 else if (!is_ordinary
2532 && (shndx == elfcpp::SHN_ABS
2533 || Symbol::is_common_shndx(shndx)))
2534 value = sym->value();
2537 Relobj* relobj = static_cast<Relobj*>(symobj);
2538 Output_section* os = relobj->output_section(shndx);
2540 if (this->is_section_folded(relobj, shndx))
2542 gold_assert(os == NULL);
2543 // Get the os of the section it is folded onto.
2544 Section_id folded = this->icf_->get_folded_section(relobj,
2546 gold_assert(folded.first != NULL);
2547 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2548 unsigned folded_shndx = folded.second;
2550 os = folded_obj->output_section(folded_shndx);
2551 gold_assert(os != NULL);
2553 // Replace (relobj, shndx) with canonical ICF input section.
2554 shndx = folded_shndx;
2555 relobj = folded_obj;
2558 uint64_t secoff64 = relobj->output_section_offset(shndx);
2561 bool static_or_reloc = (parameters->doing_static_link() ||
2562 parameters->options().relocatable());
2563 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2565 *pstatus = CFVS_NO_OUTPUT_SECTION;
2569 if (secoff64 == -1ULL)
2571 // The section needs special handling (e.g., a merge section).
2573 value = os->output_address(relobj, shndx, sym->value());
2578 convert_types<Value_type, uint64_t>(secoff64);
2579 if (sym->type() == elfcpp::STT_TLS)
2580 value = sym->value() + os->tls_offset() + secoff;
2582 value = sym->value() + os->address() + secoff;
2588 case Symbol::IN_OUTPUT_DATA:
2590 Output_data* od = sym->output_data();
2591 value = sym->value();
2592 if (sym->type() != elfcpp::STT_TLS)
2593 value += od->address();
2596 Output_section* os = od->output_section();
2597 gold_assert(os != NULL);
2598 value += os->tls_offset() + (od->address() - os->address());
2600 if (sym->offset_is_from_end())
2601 value += od->data_size();
2605 case Symbol::IN_OUTPUT_SEGMENT:
2607 Output_segment* os = sym->output_segment();
2608 value = sym->value();
2609 if (sym->type() != elfcpp::STT_TLS)
2610 value += os->vaddr();
2611 switch (sym->offset_base())
2613 case Symbol::SEGMENT_START:
2615 case Symbol::SEGMENT_END:
2616 value += os->memsz();
2618 case Symbol::SEGMENT_BSS:
2619 value += os->filesz();
2627 case Symbol::IS_CONSTANT:
2628 value = sym->value();
2631 case Symbol::IS_UNDEFINED:
2643 // Finalize the symbol SYM. This returns true if the symbol should be
2644 // added to the symbol table, false otherwise.
2648 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2650 typedef typename Sized_symbol<size>::Value_type Value_type;
2652 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2654 // The default version of a symbol may appear twice in the symbol
2655 // table. We only need to finalize it once.
2656 if (sym->has_symtab_index())
2661 gold_assert(!sym->has_symtab_index());
2662 sym->set_symtab_index(-1U);
2663 gold_assert(sym->dynsym_index() == -1U);
2667 // If the symbol is only present on plugin files, the plugin decided we
2669 if (!sym->in_real_elf())
2671 gold_assert(!sym->has_symtab_index());
2672 sym->set_symtab_index(-1U);
2676 // Compute final symbol value.
2677 Compute_final_value_status status;
2678 Value_type value = this->compute_final_value(sym, &status);
2684 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2687 unsigned int shndx = sym->shndx(&is_ordinary);
2688 gold_error(_("%s: unsupported symbol section 0x%x"),
2689 sym->demangled_name().c_str(), shndx);
2692 case CFVS_NO_OUTPUT_SECTION:
2693 sym->set_symtab_index(-1U);
2699 sym->set_value(value);
2701 if (parameters->options().strip_all()
2702 || !parameters->options().should_retain_symbol(sym->name()))
2704 sym->set_symtab_index(-1U);
2711 // Write out the global symbols.
2714 Symbol_table::write_globals(const Stringpool* sympool,
2715 const Stringpool* dynpool,
2716 Output_symtab_xindex* symtab_xindex,
2717 Output_symtab_xindex* dynsym_xindex,
2718 Output_file* of) const
2720 switch (parameters->size_and_endianness())
2722 #ifdef HAVE_TARGET_32_LITTLE
2723 case Parameters::TARGET_32_LITTLE:
2724 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2728 #ifdef HAVE_TARGET_32_BIG
2729 case Parameters::TARGET_32_BIG:
2730 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2734 #ifdef HAVE_TARGET_64_LITTLE
2735 case Parameters::TARGET_64_LITTLE:
2736 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2740 #ifdef HAVE_TARGET_64_BIG
2741 case Parameters::TARGET_64_BIG:
2742 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2751 // Write out the global symbols.
2753 template<int size, bool big_endian>
2755 Symbol_table::sized_write_globals(const Stringpool* sympool,
2756 const Stringpool* dynpool,
2757 Output_symtab_xindex* symtab_xindex,
2758 Output_symtab_xindex* dynsym_xindex,
2759 Output_file* of) const
2761 const Target& target = parameters->target();
2763 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2765 const unsigned int output_count = this->output_count_;
2766 const section_size_type oview_size = output_count * sym_size;
2767 const unsigned int first_global_index = this->first_global_index_;
2768 unsigned char* psyms;
2769 if (this->offset_ == 0 || output_count == 0)
2772 psyms = of->get_output_view(this->offset_, oview_size);
2774 const unsigned int dynamic_count = this->dynamic_count_;
2775 const section_size_type dynamic_size = dynamic_count * sym_size;
2776 const unsigned int first_dynamic_global_index =
2777 this->first_dynamic_global_index_;
2778 unsigned char* dynamic_view;
2779 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2780 dynamic_view = NULL;
2782 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2784 for (Symbol_table_type::const_iterator p = this->table_.begin();
2785 p != this->table_.end();
2788 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2790 // Possibly warn about unresolved symbols in shared libraries.
2791 this->warn_about_undefined_dynobj_symbol(sym);
2793 unsigned int sym_index = sym->symtab_index();
2794 unsigned int dynsym_index;
2795 if (dynamic_view == NULL)
2798 dynsym_index = sym->dynsym_index();
2800 if (sym_index == -1U && dynsym_index == -1U)
2802 // This symbol is not included in the output file.
2807 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2808 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2809 elfcpp::STB binding = sym->binding();
2810 switch (sym->source())
2812 case Symbol::FROM_OBJECT:
2815 unsigned int in_shndx = sym->shndx(&is_ordinary);
2818 && in_shndx != elfcpp::SHN_ABS
2819 && !Symbol::is_common_shndx(in_shndx))
2821 gold_error(_("%s: unsupported symbol section 0x%x"),
2822 sym->demangled_name().c_str(), in_shndx);
2827 Object* symobj = sym->object();
2828 if (symobj->is_dynamic())
2830 if (sym->needs_dynsym_value())
2831 dynsym_value = target.dynsym_value(sym);
2832 shndx = elfcpp::SHN_UNDEF;
2833 if (sym->is_undef_binding_weak())
2834 binding = elfcpp::STB_WEAK;
2836 binding = elfcpp::STB_GLOBAL;
2838 else if (symobj->pluginobj() != NULL)
2839 shndx = elfcpp::SHN_UNDEF;
2840 else if (in_shndx == elfcpp::SHN_UNDEF
2842 && (in_shndx == elfcpp::SHN_ABS
2843 || Symbol::is_common_shndx(in_shndx))))
2847 Relobj* relobj = static_cast<Relobj*>(symobj);
2848 Output_section* os = relobj->output_section(in_shndx);
2849 if (this->is_section_folded(relobj, in_shndx))
2851 // This global symbol must be written out even though
2853 // Get the os of the section it is folded onto.
2855 this->icf_->get_folded_section(relobj, in_shndx);
2856 gold_assert(folded.first !=NULL);
2857 Relobj* folded_obj =
2858 reinterpret_cast<Relobj*>(folded.first);
2859 os = folded_obj->output_section(folded.second);
2860 gold_assert(os != NULL);
2862 gold_assert(os != NULL);
2863 shndx = os->out_shndx();
2865 if (shndx >= elfcpp::SHN_LORESERVE)
2867 if (sym_index != -1U)
2868 symtab_xindex->add(sym_index, shndx);
2869 if (dynsym_index != -1U)
2870 dynsym_xindex->add(dynsym_index, shndx);
2871 shndx = elfcpp::SHN_XINDEX;
2874 // In object files symbol values are section
2876 if (parameters->options().relocatable())
2877 sym_value -= os->address();
2883 case Symbol::IN_OUTPUT_DATA:
2884 shndx = sym->output_data()->out_shndx();
2885 if (shndx >= elfcpp::SHN_LORESERVE)
2887 if (sym_index != -1U)
2888 symtab_xindex->add(sym_index, shndx);
2889 if (dynsym_index != -1U)
2890 dynsym_xindex->add(dynsym_index, shndx);
2891 shndx = elfcpp::SHN_XINDEX;
2895 case Symbol::IN_OUTPUT_SEGMENT:
2896 shndx = elfcpp::SHN_ABS;
2899 case Symbol::IS_CONSTANT:
2900 shndx = elfcpp::SHN_ABS;
2903 case Symbol::IS_UNDEFINED:
2904 shndx = elfcpp::SHN_UNDEF;
2911 if (sym_index != -1U)
2913 sym_index -= first_global_index;
2914 gold_assert(sym_index < output_count);
2915 unsigned char* ps = psyms + (sym_index * sym_size);
2916 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2917 binding, sympool, ps);
2920 if (dynsym_index != -1U)
2922 dynsym_index -= first_dynamic_global_index;
2923 gold_assert(dynsym_index < dynamic_count);
2924 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2925 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2926 binding, dynpool, pd);
2930 of->write_output_view(this->offset_, oview_size, psyms);
2931 if (dynamic_view != NULL)
2932 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2935 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2936 // strtab holding the name.
2938 template<int size, bool big_endian>
2940 Symbol_table::sized_write_symbol(
2941 Sized_symbol<size>* sym,
2942 typename elfcpp::Elf_types<size>::Elf_Addr value,
2944 elfcpp::STB binding,
2945 const Stringpool* pool,
2946 unsigned char* p) const
2948 elfcpp::Sym_write<size, big_endian> osym(p);
2949 if (sym->version() == NULL || !parameters->options().relocatable())
2950 osym.put_st_name(pool->get_offset(sym->name()));
2952 osym.put_st_name(pool->get_offset(sym->versioned_name()));
2953 osym.put_st_value(value);
2954 // Use a symbol size of zero for undefined symbols from shared libraries.
2955 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2956 osym.put_st_size(0);
2958 osym.put_st_size(sym->symsize());
2959 elfcpp::STT type = sym->type();
2960 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
2961 if (type == elfcpp::STT_GNU_IFUNC
2962 && sym->is_from_dynobj())
2963 type = elfcpp::STT_FUNC;
2964 // A version script may have overridden the default binding.
2965 if (sym->is_forced_local())
2966 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
2968 osym.put_st_info(elfcpp::elf_st_info(binding, type));
2969 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2970 osym.put_st_shndx(shndx);
2973 // Check for unresolved symbols in shared libraries. This is
2974 // controlled by the --allow-shlib-undefined option.
2976 // We only warn about libraries for which we have seen all the
2977 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2978 // which were not seen in this link. If we didn't see a DT_NEEDED
2979 // entry, we aren't going to be able to reliably report whether the
2980 // symbol is undefined.
2982 // We also don't warn about libraries found in a system library
2983 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2984 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
2985 // can have undefined references satisfied by ld-linux.so.
2988 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
2991 if (sym->source() == Symbol::FROM_OBJECT
2992 && sym->object()->is_dynamic()
2993 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2994 && sym->binding() != elfcpp::STB_WEAK
2995 && !parameters->options().allow_shlib_undefined()
2996 && !parameters->target().is_defined_by_abi(sym)
2997 && !sym->object()->is_in_system_directory())
2999 // A very ugly cast.
3000 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3001 if (!dynobj->has_unknown_needed_entries())
3002 gold_undefined_symbol(sym);
3006 // Write out a section symbol. Return the update offset.
3009 Symbol_table::write_section_symbol(const Output_section* os,
3010 Output_symtab_xindex* symtab_xindex,
3014 switch (parameters->size_and_endianness())
3016 #ifdef HAVE_TARGET_32_LITTLE
3017 case Parameters::TARGET_32_LITTLE:
3018 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3022 #ifdef HAVE_TARGET_32_BIG
3023 case Parameters::TARGET_32_BIG:
3024 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3028 #ifdef HAVE_TARGET_64_LITTLE
3029 case Parameters::TARGET_64_LITTLE:
3030 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3034 #ifdef HAVE_TARGET_64_BIG
3035 case Parameters::TARGET_64_BIG:
3036 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3045 // Write out a section symbol, specialized for size and endianness.
3047 template<int size, bool big_endian>
3049 Symbol_table::sized_write_section_symbol(const Output_section* os,
3050 Output_symtab_xindex* symtab_xindex,
3054 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3056 unsigned char* pov = of->get_output_view(offset, sym_size);
3058 elfcpp::Sym_write<size, big_endian> osym(pov);
3059 osym.put_st_name(0);
3060 if (parameters->options().relocatable())
3061 osym.put_st_value(0);
3063 osym.put_st_value(os->address());
3064 osym.put_st_size(0);
3065 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3066 elfcpp::STT_SECTION));
3067 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3069 unsigned int shndx = os->out_shndx();
3070 if (shndx >= elfcpp::SHN_LORESERVE)
3072 symtab_xindex->add(os->symtab_index(), shndx);
3073 shndx = elfcpp::SHN_XINDEX;
3075 osym.put_st_shndx(shndx);
3077 of->write_output_view(offset, sym_size, pov);
3080 // Print statistical information to stderr. This is used for --stats.
3083 Symbol_table::print_stats() const
3085 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3086 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3087 program_name, this->table_.size(), this->table_.bucket_count());
3089 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3090 program_name, this->table_.size());
3092 this->namepool_.print_stats("symbol table stringpool");
3095 // We check for ODR violations by looking for symbols with the same
3096 // name for which the debugging information reports that they were
3097 // defined in disjoint source locations. When comparing the source
3098 // location, we consider instances with the same base filename to be
3099 // the same. This is because different object files/shared libraries
3100 // can include the same header file using different paths, and
3101 // different optimization settings can make the line number appear to
3102 // be a couple lines off, and we don't want to report an ODR violation
3105 // This struct is used to compare line information, as returned by
3106 // Dwarf_line_info::one_addr2line. It implements a < comparison
3107 // operator used with std::sort.
3109 struct Odr_violation_compare
3112 operator()(const std::string& s1, const std::string& s2) const
3114 // Inputs should be of the form "dirname/filename:linenum" where
3115 // "dirname/" is optional. We want to compare just the filename:linenum.
3117 // Find the last '/' in each string.
3118 std::string::size_type s1begin = s1.rfind('/');
3119 std::string::size_type s2begin = s2.rfind('/');
3120 // If there was no '/' in a string, start at the beginning.
3121 if (s1begin == std::string::npos)
3123 if (s2begin == std::string::npos)
3125 return s1.compare(s1begin, std::string::npos,
3126 s2, s2begin, std::string::npos) < 0;
3130 // Returns all of the lines attached to LOC, not just the one the
3131 // instruction actually came from.
3132 std::vector<std::string>
3133 Symbol_table::linenos_from_loc(const Task* task,
3134 const Symbol_location& loc)
3136 // We need to lock the object in order to read it. This
3137 // means that we have to run in a singleton Task. If we
3138 // want to run this in a general Task for better
3139 // performance, we will need one Task for object, plus
3140 // appropriate locking to ensure that we don't conflict with
3141 // other uses of the object. Also note, one_addr2line is not
3142 // currently thread-safe.
3143 Task_lock_obj<Object> tl(task, loc.object);
3145 std::vector<std::string> result;
3146 // 16 is the size of the object-cache that one_addr2line should use.
3147 std::string canonical_result = Dwarf_line_info::one_addr2line(
3148 loc.object, loc.shndx, loc.offset, 16, &result);
3149 if (!canonical_result.empty())
3150 result.push_back(canonical_result);
3154 // OutputIterator that records if it was ever assigned to. This
3155 // allows it to be used with std::set_intersection() to check for
3156 // intersection rather than computing the intersection.
3157 struct Check_intersection
3159 Check_intersection()
3163 bool had_intersection() const
3164 { return this->value_; }
3166 Check_intersection& operator++()
3169 Check_intersection& operator*()
3172 template<typename T>
3173 Check_intersection& operator=(const T&)
3175 this->value_ = true;
3183 // Check candidate_odr_violations_ to find symbols with the same name
3184 // but apparently different definitions (different source-file/line-no
3185 // for each line assigned to the first instruction).
3188 Symbol_table::detect_odr_violations(const Task* task,
3189 const char* output_file_name) const
3191 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3192 it != candidate_odr_violations_.end();
3195 const char* const symbol_name = it->first;
3197 std::string first_object_name;
3198 std::vector<std::string> first_object_linenos;
3200 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3201 locs = it->second.begin();
3202 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3203 locs_end = it->second.end();
3204 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3206 // Save the line numbers from the first definition to
3207 // compare to the other definitions. Ideally, we'd compare
3208 // every definition to every other, but we don't want to
3209 // take O(N^2) time to do this. This shortcut may cause
3210 // false negatives that appear or disappear depending on the
3211 // link order, but it won't cause false positives.
3212 first_object_name = locs->object->name();
3213 first_object_linenos = this->linenos_from_loc(task, *locs);
3216 // Sort by Odr_violation_compare to make std::set_intersection work.
3217 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3218 Odr_violation_compare());
3220 for (; locs != locs_end; ++locs)
3222 std::vector<std::string> linenos =
3223 this->linenos_from_loc(task, *locs);
3224 // linenos will be empty if we couldn't parse the debug info.
3225 if (linenos.empty())
3227 // Sort by Odr_violation_compare to make std::set_intersection work.
3228 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3230 Check_intersection intersection_result =
3231 std::set_intersection(first_object_linenos.begin(),
3232 first_object_linenos.end(),
3235 Check_intersection(),
3236 Odr_violation_compare());
3237 if (!intersection_result.had_intersection())
3239 gold_warning(_("while linking %s: symbol '%s' defined in "
3240 "multiple places (possible ODR violation):"),
3241 output_file_name, demangle(symbol_name).c_str());
3242 // This only prints one location from each definition,
3243 // which may not be the location we expect to intersect
3244 // with another definition. We could print the whole
3245 // set of locations, but that seems too verbose.
3246 gold_assert(!first_object_linenos.empty());
3247 gold_assert(!linenos.empty());
3248 fprintf(stderr, _(" %s from %s\n"),
3249 first_object_linenos[0].c_str(),
3250 first_object_name.c_str());
3251 fprintf(stderr, _(" %s from %s\n"),
3253 locs->object->name().c_str());
3254 // Only print one broken pair, to avoid needing to
3255 // compare against a list of the disjoint definition
3256 // locations we've found so far. (If we kept comparing
3257 // against just the first one, we'd get a lot of
3258 // redundant complaints about the second definition
3264 // We only call one_addr2line() in this function, so we can clear its cache.
3265 Dwarf_line_info::clear_addr2line_cache();
3268 // Warnings functions.
3270 // Add a new warning.
3273 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3274 const std::string& warning)
3276 name = symtab->canonicalize_name(name);
3277 this->warnings_[name].set(obj, warning);
3280 // Look through the warnings and mark the symbols for which we should
3281 // warn. This is called during Layout::finalize when we know the
3282 // sources for all the symbols.
3285 Warnings::note_warnings(Symbol_table* symtab)
3287 for (Warning_table::iterator p = this->warnings_.begin();
3288 p != this->warnings_.end();
3291 Symbol* sym = symtab->lookup(p->first, NULL);
3293 && sym->source() == Symbol::FROM_OBJECT
3294 && sym->object() == p->second.object)
3295 sym->set_has_warning();
3299 // Issue a warning. This is called when we see a relocation against a
3300 // symbol for which has a warning.
3302 template<int size, bool big_endian>
3304 Warnings::issue_warning(const Symbol* sym,
3305 const Relocate_info<size, big_endian>* relinfo,
3306 size_t relnum, off_t reloffset) const
3308 gold_assert(sym->has_warning());
3310 // We don't want to issue a warning for a relocation against the
3311 // symbol in the same object file in which the symbol is defined.
3312 if (sym->object() == relinfo->object)
3315 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3316 gold_assert(p != this->warnings_.end());
3317 gold_warning_at_location(relinfo, relnum, reloffset,
3318 "%s", p->second.text.c_str());
3321 // Instantiate the templates we need. We could use the configure
3322 // script to restrict this to only the ones needed for implemented
3325 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3328 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3331 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3334 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3337 #ifdef HAVE_TARGET_32_LITTLE
3340 Symbol_table::add_from_relobj<32, false>(
3341 Sized_relobj_file<32, false>* relobj,
3342 const unsigned char* syms,
3344 size_t symndx_offset,
3345 const char* sym_names,
3346 size_t sym_name_size,
3347 Sized_relobj_file<32, false>::Symbols* sympointers,
3351 #ifdef HAVE_TARGET_32_BIG
3354 Symbol_table::add_from_relobj<32, true>(
3355 Sized_relobj_file<32, true>* relobj,
3356 const unsigned char* syms,
3358 size_t symndx_offset,
3359 const char* sym_names,
3360 size_t sym_name_size,
3361 Sized_relobj_file<32, true>::Symbols* sympointers,
3365 #ifdef HAVE_TARGET_64_LITTLE
3368 Symbol_table::add_from_relobj<64, false>(
3369 Sized_relobj_file<64, false>* relobj,
3370 const unsigned char* syms,
3372 size_t symndx_offset,
3373 const char* sym_names,
3374 size_t sym_name_size,
3375 Sized_relobj_file<64, false>::Symbols* sympointers,
3379 #ifdef HAVE_TARGET_64_BIG
3382 Symbol_table::add_from_relobj<64, true>(
3383 Sized_relobj_file<64, true>* relobj,
3384 const unsigned char* syms,
3386 size_t symndx_offset,
3387 const char* sym_names,
3388 size_t sym_name_size,
3389 Sized_relobj_file<64, true>::Symbols* sympointers,
3393 #ifdef HAVE_TARGET_32_LITTLE
3396 Symbol_table::add_from_pluginobj<32, false>(
3397 Sized_pluginobj<32, false>* obj,
3400 elfcpp::Sym<32, false>* sym);
3403 #ifdef HAVE_TARGET_32_BIG
3406 Symbol_table::add_from_pluginobj<32, true>(
3407 Sized_pluginobj<32, true>* obj,
3410 elfcpp::Sym<32, true>* sym);
3413 #ifdef HAVE_TARGET_64_LITTLE
3416 Symbol_table::add_from_pluginobj<64, false>(
3417 Sized_pluginobj<64, false>* obj,
3420 elfcpp::Sym<64, false>* sym);
3423 #ifdef HAVE_TARGET_64_BIG
3426 Symbol_table::add_from_pluginobj<64, true>(
3427 Sized_pluginobj<64, true>* obj,
3430 elfcpp::Sym<64, true>* sym);
3433 #ifdef HAVE_TARGET_32_LITTLE
3436 Symbol_table::add_from_dynobj<32, false>(
3437 Sized_dynobj<32, false>* dynobj,
3438 const unsigned char* syms,
3440 const char* sym_names,
3441 size_t sym_name_size,
3442 const unsigned char* versym,
3444 const std::vector<const char*>* version_map,
3445 Sized_relobj_file<32, false>::Symbols* sympointers,
3449 #ifdef HAVE_TARGET_32_BIG
3452 Symbol_table::add_from_dynobj<32, true>(
3453 Sized_dynobj<32, true>* dynobj,
3454 const unsigned char* syms,
3456 const char* sym_names,
3457 size_t sym_name_size,
3458 const unsigned char* versym,
3460 const std::vector<const char*>* version_map,
3461 Sized_relobj_file<32, true>::Symbols* sympointers,
3465 #ifdef HAVE_TARGET_64_LITTLE
3468 Symbol_table::add_from_dynobj<64, false>(
3469 Sized_dynobj<64, false>* dynobj,
3470 const unsigned char* syms,
3472 const char* sym_names,
3473 size_t sym_name_size,
3474 const unsigned char* versym,
3476 const std::vector<const char*>* version_map,
3477 Sized_relobj_file<64, false>::Symbols* sympointers,
3481 #ifdef HAVE_TARGET_64_BIG
3484 Symbol_table::add_from_dynobj<64, true>(
3485 Sized_dynobj<64, true>* dynobj,
3486 const unsigned char* syms,
3488 const char* sym_names,
3489 size_t sym_name_size,
3490 const unsigned char* versym,
3492 const std::vector<const char*>* version_map,
3493 Sized_relobj_file<64, true>::Symbols* sympointers,
3497 #ifdef HAVE_TARGET_32_LITTLE
3500 Symbol_table::add_from_incrobj(
3504 elfcpp::Sym<32, false>* sym);
3507 #ifdef HAVE_TARGET_32_BIG
3510 Symbol_table::add_from_incrobj(
3514 elfcpp::Sym<32, true>* sym);
3517 #ifdef HAVE_TARGET_64_LITTLE
3520 Symbol_table::add_from_incrobj(
3524 elfcpp::Sym<64, false>* sym);
3527 #ifdef HAVE_TARGET_64_BIG
3530 Symbol_table::add_from_incrobj(
3534 elfcpp::Sym<64, true>* sym);
3537 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3540 Symbol_table::define_with_copy_reloc<32>(
3541 Sized_symbol<32>* sym,
3543 elfcpp::Elf_types<32>::Elf_Addr value);
3546 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3549 Symbol_table::define_with_copy_reloc<64>(
3550 Sized_symbol<64>* sym,
3552 elfcpp::Elf_types<64>::Elf_Addr value);
3555 #ifdef HAVE_TARGET_32_LITTLE
3558 Warnings::issue_warning<32, false>(const Symbol* sym,
3559 const Relocate_info<32, false>* relinfo,
3560 size_t relnum, off_t reloffset) const;
3563 #ifdef HAVE_TARGET_32_BIG
3566 Warnings::issue_warning<32, true>(const Symbol* sym,
3567 const Relocate_info<32, true>* relinfo,
3568 size_t relnum, off_t reloffset) const;
3571 #ifdef HAVE_TARGET_64_LITTLE
3574 Warnings::issue_warning<64, false>(const Symbol* sym,
3575 const Relocate_info<64, false>* relinfo,
3576 size_t relnum, off_t reloffset) const;
3579 #ifdef HAVE_TARGET_64_BIG
3582 Warnings::issue_warning<64, true>(const Symbol* sym,
3583 const Relocate_info<64, true>* relinfo,
3584 size_t relnum, off_t reloffset) const;
3587 } // End namespace gold.