* cref.cc: New file.
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "object.h"
34 #include "dwarf_reader.h"
35 #include "dynobj.h"
36 #include "output.h"
37 #include "target.h"
38 #include "workqueue.h"
39 #include "symtab.h"
40
41 namespace gold
42 {
43
44 // Class Symbol.
45
46 // Initialize fields in Symbol.  This initializes everything except u_
47 // and source_.
48
49 void
50 Symbol::init_fields(const char* name, const char* version,
51                     elfcpp::STT type, elfcpp::STB binding,
52                     elfcpp::STV visibility, unsigned char nonvis)
53 {
54   this->name_ = name;
55   this->version_ = version;
56   this->symtab_index_ = 0;
57   this->dynsym_index_ = 0;
58   this->got_offsets_.init();
59   this->plt_offset_ = 0;
60   this->type_ = type;
61   this->binding_ = binding;
62   this->visibility_ = visibility;
63   this->nonvis_ = nonvis;
64   this->is_target_special_ = false;
65   this->is_def_ = false;
66   this->is_forwarder_ = false;
67   this->has_alias_ = false;
68   this->needs_dynsym_entry_ = false;
69   this->in_reg_ = false;
70   this->in_dyn_ = false;
71   this->has_plt_offset_ = false;
72   this->has_warning_ = false;
73   this->is_copied_from_dynobj_ = false;
74   this->is_forced_local_ = false;
75   this->is_ordinary_shndx_ = false;
76 }
77
78 // Return the demangled version of the symbol's name, but only
79 // if the --demangle flag was set.
80
81 static std::string
82 demangle(const char* name)
83 {
84   if (!parameters->options().do_demangle())
85     return name;
86
87   // cplus_demangle allocates memory for the result it returns,
88   // and returns NULL if the name is already demangled.
89   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
90   if (demangled_name == NULL)
91     return name;
92
93   std::string retval(demangled_name);
94   free(demangled_name);
95   return retval;
96 }
97
98 std::string
99 Symbol::demangled_name() const
100 {
101   return demangle(this->name());
102 }
103
104 // Initialize the fields in the base class Symbol for SYM in OBJECT.
105
106 template<int size, bool big_endian>
107 void
108 Symbol::init_base_object(const char* name, const char* version, Object* object,
109                          const elfcpp::Sym<size, big_endian>& sym,
110                          unsigned int st_shndx, bool is_ordinary)
111 {
112   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
113                     sym.get_st_visibility(), sym.get_st_nonvis());
114   this->u_.from_object.object = object;
115   this->u_.from_object.shndx = st_shndx;
116   this->is_ordinary_shndx_ = is_ordinary;
117   this->source_ = FROM_OBJECT;
118   this->in_reg_ = !object->is_dynamic();
119   this->in_dyn_ = object->is_dynamic();
120 }
121
122 // Initialize the fields in the base class Symbol for a symbol defined
123 // in an Output_data.
124
125 void
126 Symbol::init_base_output_data(const char* name, const char* version,
127                               Output_data* od, elfcpp::STT type,
128                               elfcpp::STB binding, elfcpp::STV visibility,
129                               unsigned char nonvis, bool offset_is_from_end)
130 {
131   this->init_fields(name, version, type, binding, visibility, nonvis);
132   this->u_.in_output_data.output_data = od;
133   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
134   this->source_ = IN_OUTPUT_DATA;
135   this->in_reg_ = true;
136 }
137
138 // Initialize the fields in the base class Symbol for a symbol defined
139 // in an Output_segment.
140
141 void
142 Symbol::init_base_output_segment(const char* name, const char* version,
143                                  Output_segment* os, elfcpp::STT type,
144                                  elfcpp::STB binding, elfcpp::STV visibility,
145                                  unsigned char nonvis,
146                                  Segment_offset_base offset_base)
147 {
148   this->init_fields(name, version, type, binding, visibility, nonvis);
149   this->u_.in_output_segment.output_segment = os;
150   this->u_.in_output_segment.offset_base = offset_base;
151   this->source_ = IN_OUTPUT_SEGMENT;
152   this->in_reg_ = true;
153 }
154
155 // Initialize the fields in the base class Symbol for a symbol defined
156 // as a constant.
157
158 void
159 Symbol::init_base_constant(const char* name, const char* version,
160                            elfcpp::STT type, elfcpp::STB binding,
161                            elfcpp::STV visibility, unsigned char nonvis)
162 {
163   this->init_fields(name, version, type, binding, visibility, nonvis);
164   this->source_ = IS_CONSTANT;
165   this->in_reg_ = true;
166 }
167
168 // Initialize the fields in the base class Symbol for an undefined
169 // symbol.
170
171 void
172 Symbol::init_base_undefined(const char* name, const char* version,
173                             elfcpp::STT type, elfcpp::STB binding,
174                             elfcpp::STV visibility, unsigned char nonvis)
175 {
176   this->init_fields(name, version, type, binding, visibility, nonvis);
177   this->source_ = IS_UNDEFINED;
178   this->in_reg_ = true;
179 }
180
181 // Allocate a common symbol in the base.
182
183 void
184 Symbol::allocate_base_common(Output_data* od)
185 {
186   gold_assert(this->is_common());
187   this->source_ = IN_OUTPUT_DATA;
188   this->u_.in_output_data.output_data = od;
189   this->u_.in_output_data.offset_is_from_end = false;
190 }
191
192 // Initialize the fields in Sized_symbol for SYM in OBJECT.
193
194 template<int size>
195 template<bool big_endian>
196 void
197 Sized_symbol<size>::init_object(const char* name, const char* version,
198                                 Object* object,
199                                 const elfcpp::Sym<size, big_endian>& sym,
200                                 unsigned int st_shndx, bool is_ordinary)
201 {
202   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
203   this->value_ = sym.get_st_value();
204   this->symsize_ = sym.get_st_size();
205 }
206
207 // Initialize the fields in Sized_symbol for a symbol defined in an
208 // Output_data.
209
210 template<int size>
211 void
212 Sized_symbol<size>::init_output_data(const char* name, const char* version,
213                                      Output_data* od, Value_type value,
214                                      Size_type symsize, elfcpp::STT type,
215                                      elfcpp::STB binding,
216                                      elfcpp::STV visibility,
217                                      unsigned char nonvis,
218                                      bool offset_is_from_end)
219 {
220   this->init_base_output_data(name, version, od, type, binding, visibility,
221                               nonvis, offset_is_from_end);
222   this->value_ = value;
223   this->symsize_ = symsize;
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_segment.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
232                                         Output_segment* os, Value_type value,
233                                         Size_type symsize, elfcpp::STT type,
234                                         elfcpp::STB binding,
235                                         elfcpp::STV visibility,
236                                         unsigned char nonvis,
237                                         Segment_offset_base offset_base)
238 {
239   this->init_base_output_segment(name, version, os, type, binding, visibility,
240                                  nonvis, offset_base);
241   this->value_ = value;
242   this->symsize_ = symsize;
243 }
244
245 // Initialize the fields in Sized_symbol for a symbol defined as a
246 // constant.
247
248 template<int size>
249 void
250 Sized_symbol<size>::init_constant(const char* name, const char* version,
251                                   Value_type value, Size_type symsize,
252                                   elfcpp::STT type, elfcpp::STB binding,
253                                   elfcpp::STV visibility, unsigned char nonvis)
254 {
255   this->init_base_constant(name, version, type, binding, visibility, nonvis);
256   this->value_ = value;
257   this->symsize_ = symsize;
258 }
259
260 // Initialize the fields in Sized_symbol for an undefined symbol.
261
262 template<int size>
263 void
264 Sized_symbol<size>::init_undefined(const char* name, const char* version,
265                                    elfcpp::STT type, elfcpp::STB binding,
266                                    elfcpp::STV visibility, unsigned char nonvis)
267 {
268   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
269   this->value_ = 0;
270   this->symsize_ = 0;
271 }
272
273 // Allocate a common symbol.
274
275 template<int size>
276 void
277 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
278 {
279   this->allocate_base_common(od);
280   this->value_ = value;
281 }
282
283 // Return true if this symbol should be added to the dynamic symbol
284 // table.
285
286 inline bool
287 Symbol::should_add_dynsym_entry() const
288 {
289   // If the symbol is used by a dynamic relocation, we need to add it.
290   if (this->needs_dynsym_entry())
291     return true;
292
293   // If the symbol was forced local in a version script, do not add it.
294   if (this->is_forced_local())
295     return false;
296
297   // If exporting all symbols or building a shared library,
298   // and the symbol is defined in a regular object and is
299   // externally visible, we need to add it.
300   if ((parameters->options().export_dynamic() || parameters->options().shared())
301       && !this->is_from_dynobj()
302       && this->is_externally_visible())
303     return true;
304
305   return false;
306 }
307
308 // Return true if the final value of this symbol is known at link
309 // time.
310
311 bool
312 Symbol::final_value_is_known() const
313 {
314   // If we are not generating an executable, then no final values are
315   // known, since they will change at runtime.
316   if (parameters->options().shared() || parameters->options().relocatable())
317     return false;
318
319   // If the symbol is not from an object file, and is not undefined,
320   // then it is defined, and known.
321   if (this->source_ != FROM_OBJECT)
322     {
323       if (this->source_ != IS_UNDEFINED)
324         return true;
325     }
326   else
327     {
328       // If the symbol is from a dynamic object, then the final value
329       // is not known.
330       if (this->object()->is_dynamic())
331         return false;
332
333       // If the symbol is not undefined (it is defined or common),
334       // then the final value is known.
335       if (!this->is_undefined())
336         return true;
337     }
338
339   // If the symbol is undefined, then whether the final value is known
340   // depends on whether we are doing a static link.  If we are doing a
341   // dynamic link, then the final value could be filled in at runtime.
342   // This could reasonably be the case for a weak undefined symbol.
343   return parameters->doing_static_link();
344 }
345
346 // Return the output section where this symbol is defined.
347
348 Output_section*
349 Symbol::output_section() const
350 {
351   switch (this->source_)
352     {
353     case FROM_OBJECT:
354       {
355         unsigned int shndx = this->u_.from_object.shndx;
356         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
357           {
358             gold_assert(!this->u_.from_object.object->is_dynamic());
359             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
360             return relobj->output_section(shndx);
361           }
362         return NULL;
363       }
364
365     case IN_OUTPUT_DATA:
366       return this->u_.in_output_data.output_data->output_section();
367
368     case IN_OUTPUT_SEGMENT:
369     case IS_CONSTANT:
370     case IS_UNDEFINED:
371       return NULL;
372
373     default:
374       gold_unreachable();
375     }
376 }
377
378 // Set the symbol's output section.  This is used for symbols defined
379 // in scripts.  This should only be called after the symbol table has
380 // been finalized.
381
382 void
383 Symbol::set_output_section(Output_section* os)
384 {
385   switch (this->source_)
386     {
387     case FROM_OBJECT:
388     case IN_OUTPUT_DATA:
389       gold_assert(this->output_section() == os);
390       break;
391     case IS_CONSTANT:
392       this->source_ = IN_OUTPUT_DATA;
393       this->u_.in_output_data.output_data = os;
394       this->u_.in_output_data.offset_is_from_end = false;
395       break;
396     case IN_OUTPUT_SEGMENT:
397     case IS_UNDEFINED:
398     default:
399       gold_unreachable();
400     }
401 }
402
403 // Class Symbol_table.
404
405 Symbol_table::Symbol_table(unsigned int count,
406                            const Version_script_info& version_script)
407   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
408     forwarders_(), commons_(), tls_commons_(), forced_locals_(), warnings_(),
409     version_script_(version_script)
410 {
411   namepool_.reserve(count);
412 }
413
414 Symbol_table::~Symbol_table()
415 {
416 }
417
418 // The hash function.  The key values are Stringpool keys.
419
420 inline size_t
421 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
422 {
423   return key.first ^ key.second;
424 }
425
426 // The symbol table key equality function.  This is called with
427 // Stringpool keys.
428
429 inline bool
430 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
431                                           const Symbol_table_key& k2) const
432 {
433   return k1.first == k2.first && k1.second == k2.second;
434 }
435
436 // Make TO a symbol which forwards to FROM.
437
438 void
439 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
440 {
441   gold_assert(from != to);
442   gold_assert(!from->is_forwarder() && !to->is_forwarder());
443   this->forwarders_[from] = to;
444   from->set_forwarder();
445 }
446
447 // Resolve the forwards from FROM, returning the real symbol.
448
449 Symbol*
450 Symbol_table::resolve_forwards(const Symbol* from) const
451 {
452   gold_assert(from->is_forwarder());
453   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
454     this->forwarders_.find(from);
455   gold_assert(p != this->forwarders_.end());
456   return p->second;
457 }
458
459 // Look up a symbol by name.
460
461 Symbol*
462 Symbol_table::lookup(const char* name, const char* version) const
463 {
464   Stringpool::Key name_key;
465   name = this->namepool_.find(name, &name_key);
466   if (name == NULL)
467     return NULL;
468
469   Stringpool::Key version_key = 0;
470   if (version != NULL)
471     {
472       version = this->namepool_.find(version, &version_key);
473       if (version == NULL)
474         return NULL;
475     }
476
477   Symbol_table_key key(name_key, version_key);
478   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
479   if (p == this->table_.end())
480     return NULL;
481   return p->second;
482 }
483
484 // Resolve a Symbol with another Symbol.  This is only used in the
485 // unusual case where there are references to both an unversioned
486 // symbol and a symbol with a version, and we then discover that that
487 // version is the default version.  Because this is unusual, we do
488 // this the slow way, by converting back to an ELF symbol.
489
490 template<int size, bool big_endian>
491 void
492 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
493                       const char* version)
494 {
495   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
496   elfcpp::Sym_write<size, big_endian> esym(buf);
497   // We don't bother to set the st_name or the st_shndx field.
498   esym.put_st_value(from->value());
499   esym.put_st_size(from->symsize());
500   esym.put_st_info(from->binding(), from->type());
501   esym.put_st_other(from->visibility(), from->nonvis());
502   bool is_ordinary;
503   unsigned int shndx = from->shndx(&is_ordinary);
504   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
505                 version);
506   if (from->in_reg())
507     to->set_in_reg();
508   if (from->in_dyn())
509     to->set_in_dyn();
510 }
511
512 // Record that a symbol is forced to be local by a version script.
513
514 void
515 Symbol_table::force_local(Symbol* sym)
516 {
517   if (!sym->is_defined() && !sym->is_common())
518     return;
519   if (sym->is_forced_local())
520     {
521       // We already got this one.
522       return;
523     }
524   sym->set_is_forced_local();
525   this->forced_locals_.push_back(sym);
526 }
527
528 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
529 // is only called for undefined symbols, when at least one --wrap
530 // option was used.
531
532 const char*
533 Symbol_table::wrap_symbol(Object* object, const char* name,
534                           Stringpool::Key* name_key)
535 {
536   // For some targets, we need to ignore a specific character when
537   // wrapping, and add it back later.
538   char prefix = '\0';
539   if (name[0] == object->target()->wrap_char())
540     {
541       prefix = name[0];
542       ++name;
543     }
544
545   if (parameters->options().is_wrap(name))
546     {
547       // Turn NAME into __wrap_NAME.
548       std::string s;
549       if (prefix != '\0')
550         s += prefix;
551       s += "__wrap_";
552       s += name;
553
554       // This will give us both the old and new name in NAMEPOOL_, but
555       // that is OK.  Only the versions we need will wind up in the
556       // real string table in the output file.
557       return this->namepool_.add(s.c_str(), true, name_key);
558     }
559
560   const char* const real_prefix = "__real_";
561   const size_t real_prefix_length = strlen(real_prefix);
562   if (strncmp(name, real_prefix, real_prefix_length) == 0
563       && parameters->options().is_wrap(name + real_prefix_length))
564     {
565       // Turn __real_NAME into NAME.
566       std::string s;
567       if (prefix != '\0')
568         s += prefix;
569       s += name + real_prefix_length;
570       return this->namepool_.add(s.c_str(), true, name_key);
571     }
572
573   return name;
574 }
575
576 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
577 // name and VERSION is the version; both are canonicalized.  DEF is
578 // whether this is the default version.  ST_SHNDX is the symbol's
579 // section index; IS_ORDINARY is whether this is a normal section
580 // rather than a special code.
581
582 // If DEF is true, then this is the definition of a default version of
583 // a symbol.  That means that any lookup of NAME/NULL and any lookup
584 // of NAME/VERSION should always return the same symbol.  This is
585 // obvious for references, but in particular we want to do this for
586 // definitions: overriding NAME/NULL should also override
587 // NAME/VERSION.  If we don't do that, it would be very hard to
588 // override functions in a shared library which uses versioning.
589
590 // We implement this by simply making both entries in the hash table
591 // point to the same Symbol structure.  That is easy enough if this is
592 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
593 // that we have seen both already, in which case they will both have
594 // independent entries in the symbol table.  We can't simply change
595 // the symbol table entry, because we have pointers to the entries
596 // attached to the object files.  So we mark the entry attached to the
597 // object file as a forwarder, and record it in the forwarders_ map.
598 // Note that entries in the hash table will never be marked as
599 // forwarders.
600 //
601 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
602 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
603 // for a special section code.  ST_SHNDX may be modified if the symbol
604 // is defined in a section being discarded.
605
606 template<int size, bool big_endian>
607 Sized_symbol<size>*
608 Symbol_table::add_from_object(Object* object,
609                               const char *name,
610                               Stringpool::Key name_key,
611                               const char *version,
612                               Stringpool::Key version_key,
613                               bool def,
614                               const elfcpp::Sym<size, big_endian>& sym,
615                               unsigned int st_shndx,
616                               bool is_ordinary,
617                               unsigned int orig_st_shndx)
618 {
619   // Print a message if this symbol is being traced.
620   if (parameters->options().is_trace_symbol(name))
621     {
622       if (orig_st_shndx == elfcpp::SHN_UNDEF)
623         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
624       else
625         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
626     }
627
628   // For an undefined symbol, we may need to adjust the name using
629   // --wrap.
630   if (orig_st_shndx == elfcpp::SHN_UNDEF
631       && parameters->options().any_wrap())
632     {
633       const char* wrap_name = this->wrap_symbol(object, name, &name_key);
634       if (wrap_name != name)
635         {
636           // If we see a reference to malloc with version GLIBC_2.0,
637           // and we turn it into a reference to __wrap_malloc, then we
638           // discard the version number.  Otherwise the user would be
639           // required to specify the correct version for
640           // __wrap_malloc.
641           version = NULL;
642           version_key = 0;
643           name = wrap_name;
644         }
645     }
646
647   Symbol* const snull = NULL;
648   std::pair<typename Symbol_table_type::iterator, bool> ins =
649     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
650                                        snull));
651
652   std::pair<typename Symbol_table_type::iterator, bool> insdef =
653     std::make_pair(this->table_.end(), false);
654   if (def)
655     {
656       const Stringpool::Key vnull_key = 0;
657       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
658                                                                  vnull_key),
659                                                   snull));
660     }
661
662   // ins.first: an iterator, which is a pointer to a pair.
663   // ins.first->first: the key (a pair of name and version).
664   // ins.first->second: the value (Symbol*).
665   // ins.second: true if new entry was inserted, false if not.
666
667   Sized_symbol<size>* ret;
668   bool was_undefined;
669   bool was_common;
670   if (!ins.second)
671     {
672       // We already have an entry for NAME/VERSION.
673       ret = this->get_sized_symbol<size>(ins.first->second);
674       gold_assert(ret != NULL);
675
676       was_undefined = ret->is_undefined();
677       was_common = ret->is_common();
678
679       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
680                     version);
681
682       if (def)
683         {
684           if (insdef.second)
685             {
686               // This is the first time we have seen NAME/NULL.  Make
687               // NAME/NULL point to NAME/VERSION.
688               insdef.first->second = ret;
689             }
690           else if (insdef.first->second != ret)
691             {
692               // This is the unfortunate case where we already have
693               // entries for both NAME/VERSION and NAME/NULL.  We now
694               // see a symbol NAME/VERSION where VERSION is the
695               // default version.  We have already resolved this new
696               // symbol with the existing NAME/VERSION symbol.
697
698               // It's possible that NAME/NULL and NAME/VERSION are
699               // both defined in regular objects.  This can only
700               // happen if one object file defines foo and another
701               // defines foo@@ver.  This is somewhat obscure, but we
702               // call it a multiple definition error.
703
704               // It's possible that NAME/NULL actually has a version,
705               // in which case it won't be the same as VERSION.  This
706               // happens with ver_test_7.so in the testsuite for the
707               // symbol t2_2.  We see t2_2@@VER2, so we define both
708               // t2_2/VER2 and t2_2/NULL.  We then see an unadorned
709               // t2_2 in an object file and give it version VER1 from
710               // the version script.  This looks like a default
711               // definition for VER1, so it looks like we should merge
712               // t2_2/NULL with t2_2/VER1.  That doesn't make sense,
713               // but it's not obvious that this is an error, either.
714               // So we just punt.
715
716               // If one of the symbols has non-default visibility, and
717               // the other is defined in a shared object, then they
718               // are different symbols.
719
720               // Otherwise, we just resolve the symbols as though they
721               // were the same.
722
723               if (insdef.first->second->version() != NULL)
724                 {
725                   gold_assert(insdef.first->second->version() != version);
726                   def = false;
727                 }
728               else if (ret->visibility() != elfcpp::STV_DEFAULT
729                   && insdef.first->second->is_from_dynobj())
730                 def = false;
731               else if (insdef.first->second->visibility() != elfcpp::STV_DEFAULT
732                        && ret->is_from_dynobj())
733                 def = false;
734               else
735                 {
736                   const Sized_symbol<size>* sym2;
737                   sym2 = this->get_sized_symbol<size>(insdef.first->second);
738                   Symbol_table::resolve<size, big_endian>(ret, sym2, version);
739                   this->make_forwarder(insdef.first->second, ret);
740                   insdef.first->second = ret;
741                 }
742             }
743           else
744             def = false;
745         }
746     }
747   else
748     {
749       // This is the first time we have seen NAME/VERSION.
750       gold_assert(ins.first->second == NULL);
751
752       if (def && !insdef.second)
753         {
754           // We already have an entry for NAME/NULL.  If we override
755           // it, then change it to NAME/VERSION.
756           ret = this->get_sized_symbol<size>(insdef.first->second);
757
758           was_undefined = ret->is_undefined();
759           was_common = ret->is_common();
760
761           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
762                         version);
763           ins.first->second = ret;
764         }
765       else
766         {
767           was_undefined = false;
768           was_common = false;
769
770           Sized_target<size, big_endian>* target =
771             object->sized_target<size, big_endian>();
772           if (!target->has_make_symbol())
773             ret = new Sized_symbol<size>();
774           else
775             {
776               ret = target->make_symbol();
777               if (ret == NULL)
778                 {
779                   // This means that we don't want a symbol table
780                   // entry after all.
781                   if (!def)
782                     this->table_.erase(ins.first);
783                   else
784                     {
785                       this->table_.erase(insdef.first);
786                       // Inserting insdef invalidated ins.
787                       this->table_.erase(std::make_pair(name_key,
788                                                         version_key));
789                     }
790                   return NULL;
791                 }
792             }
793
794           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
795
796           ins.first->second = ret;
797           if (def)
798             {
799               // This is the first time we have seen NAME/NULL.  Point
800               // it at the new entry for NAME/VERSION.
801               gold_assert(insdef.second);
802               insdef.first->second = ret;
803             }
804         }
805     }
806
807   // Record every time we see a new undefined symbol, to speed up
808   // archive groups.
809   if (!was_undefined && ret->is_undefined())
810     ++this->saw_undefined_;
811
812   // Keep track of common symbols, to speed up common symbol
813   // allocation.
814   if (!was_common && ret->is_common())
815     {
816       if (ret->type() != elfcpp::STT_TLS)
817         this->commons_.push_back(ret);
818       else
819         this->tls_commons_.push_back(ret);
820     }
821
822   if (def)
823     ret->set_is_default();
824   return ret;
825 }
826
827 // Add all the symbols in a relocatable object to the hash table.
828
829 template<int size, bool big_endian>
830 void
831 Symbol_table::add_from_relobj(
832     Sized_relobj<size, big_endian>* relobj,
833     const unsigned char* syms,
834     size_t count,
835     size_t symndx_offset,
836     const char* sym_names,
837     size_t sym_name_size,
838     typename Sized_relobj<size, big_endian>::Symbols* sympointers,
839     size_t *defined)
840 {
841   *defined = 0;
842
843   gold_assert(size == relobj->target()->get_size());
844   gold_assert(size == parameters->target().get_size());
845
846   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
847
848   const bool just_symbols = relobj->just_symbols();
849
850   const unsigned char* p = syms;
851   for (size_t i = 0; i < count; ++i, p += sym_size)
852     {
853       (*sympointers)[i] = NULL;
854
855       elfcpp::Sym<size, big_endian> sym(p);
856
857       unsigned int st_name = sym.get_st_name();
858       if (st_name >= sym_name_size)
859         {
860           relobj->error(_("bad global symbol name offset %u at %zu"),
861                         st_name, i);
862           continue;
863         }
864
865       const char* name = sym_names + st_name;
866
867       bool is_ordinary;
868       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
869                                                        sym.get_st_shndx(),
870                                                        &is_ordinary);
871       unsigned int orig_st_shndx = st_shndx;
872       if (!is_ordinary)
873         orig_st_shndx = elfcpp::SHN_UNDEF;
874
875       if (st_shndx != elfcpp::SHN_UNDEF)
876         ++*defined;
877
878       // A symbol defined in a section which we are not including must
879       // be treated as an undefined symbol.
880       if (st_shndx != elfcpp::SHN_UNDEF
881           && is_ordinary
882           && !relobj->is_section_included(st_shndx))
883         st_shndx = elfcpp::SHN_UNDEF;
884
885       // In an object file, an '@' in the name separates the symbol
886       // name from the version name.  If there are two '@' characters,
887       // this is the default version.
888       const char* ver = strchr(name, '@');
889       int namelen = 0;
890       // DEF: is the version default?  LOCAL: is the symbol forced local?
891       bool def = false;
892       bool local = false;
893
894       if (ver != NULL)
895         {
896           // The symbol name is of the form foo@VERSION or foo@@VERSION
897           namelen = ver - name;
898           ++ver;
899           if (*ver == '@')
900             {
901               def = true;
902               ++ver;
903             }
904         }
905       // We don't want to assign a version to an undefined symbol,
906       // even if it is listed in the version script.  FIXME: What
907       // about a common symbol?
908       else if (!version_script_.empty()
909                && st_shndx != elfcpp::SHN_UNDEF)
910         {
911           // The symbol name did not have a version, but
912           // the version script may assign a version anyway.
913           namelen = strlen(name);
914           def = true;
915           // Check the global: entries from the version script.
916           const std::string& version =
917               version_script_.get_symbol_version(name);
918           if (!version.empty())
919             ver = version.c_str();
920           // Check the local: entries from the version script
921           if (version_script_.symbol_is_local(name))
922             local = true;
923         }
924
925       elfcpp::Sym<size, big_endian>* psym = &sym;
926       unsigned char symbuf[sym_size];
927       elfcpp::Sym<size, big_endian> sym2(symbuf);
928       if (just_symbols)
929         {
930           memcpy(symbuf, p, sym_size);
931           elfcpp::Sym_write<size, big_endian> sw(symbuf);
932           if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
933             {
934               // Symbol values in object files are section relative.
935               // This is normally what we want, but since here we are
936               // converting the symbol to absolute we need to add the
937               // section address.  The section address in an object
938               // file is normally zero, but people can use a linker
939               // script to change it.
940               sw.put_st_value(sym.get_st_value()
941                               + relobj->section_address(orig_st_shndx));
942             }
943           st_shndx = elfcpp::SHN_ABS;
944           is_ordinary = false;
945           psym = &sym2;
946         }
947
948       Sized_symbol<size>* res;
949       if (ver == NULL)
950         {
951           Stringpool::Key name_key;
952           name = this->namepool_.add(name, true, &name_key);
953           res = this->add_from_object(relobj, name, name_key, NULL, 0,
954                                       false, *psym, st_shndx, is_ordinary,
955                                       orig_st_shndx);
956           if (local)
957             this->force_local(res);
958         }
959       else
960         {
961           Stringpool::Key name_key;
962           name = this->namepool_.add_with_length(name, namelen, true,
963                                                  &name_key);
964           Stringpool::Key ver_key;
965           ver = this->namepool_.add(ver, true, &ver_key);
966
967           res = this->add_from_object(relobj, name, name_key, ver, ver_key,
968                                       def, *psym, st_shndx, is_ordinary,
969                                       orig_st_shndx);
970         }
971
972       (*sympointers)[i] = res;
973     }
974 }
975
976 // Add all the symbols in a dynamic object to the hash table.
977
978 template<int size, bool big_endian>
979 void
980 Symbol_table::add_from_dynobj(
981     Sized_dynobj<size, big_endian>* dynobj,
982     const unsigned char* syms,
983     size_t count,
984     const char* sym_names,
985     size_t sym_name_size,
986     const unsigned char* versym,
987     size_t versym_size,
988     const std::vector<const char*>* version_map,
989     typename Sized_relobj<size, big_endian>::Symbols* sympointers,
990     size_t* defined)
991 {
992   *defined = 0;
993
994   gold_assert(size == dynobj->target()->get_size());
995   gold_assert(size == parameters->target().get_size());
996
997   if (dynobj->just_symbols())
998     {
999       gold_error(_("--just-symbols does not make sense with a shared object"));
1000       return;
1001     }
1002
1003   if (versym != NULL && versym_size / 2 < count)
1004     {
1005       dynobj->error(_("too few symbol versions"));
1006       return;
1007     }
1008
1009   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1010
1011   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1012   // weak aliases.  This is necessary because if the dynamic object
1013   // provides the same variable under two names, one of which is a
1014   // weak definition, and the regular object refers to the weak
1015   // definition, we have to put both the weak definition and the
1016   // strong definition into the dynamic symbol table.  Given a weak
1017   // definition, the only way that we can find the corresponding
1018   // strong definition, if any, is to search the symbol table.
1019   std::vector<Sized_symbol<size>*> object_symbols;
1020
1021   const unsigned char* p = syms;
1022   const unsigned char* vs = versym;
1023   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1024     {
1025       elfcpp::Sym<size, big_endian> sym(p);
1026
1027       if (sympointers != NULL)
1028         (*sympointers)[i] = NULL;
1029
1030       // Ignore symbols with local binding or that have
1031       // internal or hidden visibility.
1032       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1033           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1034           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1035         continue;
1036
1037       // A protected symbol in a shared library must be treated as a
1038       // normal symbol when viewed from outside the shared library.
1039       // Implement this by overriding the visibility here.
1040       elfcpp::Sym<size, big_endian>* psym = &sym;
1041       unsigned char symbuf[sym_size];
1042       elfcpp::Sym<size, big_endian> sym2(symbuf);
1043       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1044         {
1045           memcpy(symbuf, p, sym_size);
1046           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1047           sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1048           psym = &sym2;
1049         }
1050
1051       unsigned int st_name = psym->get_st_name();
1052       if (st_name >= sym_name_size)
1053         {
1054           dynobj->error(_("bad symbol name offset %u at %zu"),
1055                         st_name, i);
1056           continue;
1057         }
1058
1059       const char* name = sym_names + st_name;
1060
1061       bool is_ordinary;
1062       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1063                                                        &is_ordinary);
1064
1065       if (st_shndx != elfcpp::SHN_UNDEF)
1066         ++*defined;
1067
1068       Sized_symbol<size>* res;
1069
1070       if (versym == NULL)
1071         {
1072           Stringpool::Key name_key;
1073           name = this->namepool_.add(name, true, &name_key);
1074           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1075                                       false, *psym, st_shndx, is_ordinary,
1076                                       st_shndx);
1077         }
1078       else
1079         {
1080           // Read the version information.
1081
1082           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1083
1084           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1085           v &= elfcpp::VERSYM_VERSION;
1086
1087           // The Sun documentation says that V can be VER_NDX_LOCAL,
1088           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1089           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1090           // The old GNU linker will happily generate VER_NDX_LOCAL
1091           // for an undefined symbol.  I don't know what the Sun
1092           // linker will generate.
1093
1094           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1095               && st_shndx != elfcpp::SHN_UNDEF)
1096             {
1097               // This symbol should not be visible outside the object.
1098               continue;
1099             }
1100
1101           // At this point we are definitely going to add this symbol.
1102           Stringpool::Key name_key;
1103           name = this->namepool_.add(name, true, &name_key);
1104
1105           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1106               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1107             {
1108               // This symbol does not have a version.
1109               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1110                                           false, *psym, st_shndx, is_ordinary,
1111                                           st_shndx);
1112             }
1113           else
1114             {
1115               if (v >= version_map->size())
1116                 {
1117                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1118                                 i, v);
1119                   continue;
1120                 }
1121
1122               const char* version = (*version_map)[v];
1123               if (version == NULL)
1124                 {
1125                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1126                                 i, v);
1127                   continue;
1128                 }
1129
1130               Stringpool::Key version_key;
1131               version = this->namepool_.add(version, true, &version_key);
1132
1133               // If this is an absolute symbol, and the version name
1134               // and symbol name are the same, then this is the
1135               // version definition symbol.  These symbols exist to
1136               // support using -u to pull in particular versions.  We
1137               // do not want to record a version for them.
1138               if (st_shndx == elfcpp::SHN_ABS
1139                   && !is_ordinary
1140                   && name_key == version_key)
1141                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1142                                             false, *psym, st_shndx, is_ordinary,
1143                                             st_shndx);
1144               else
1145                 {
1146                   const bool def = (!hidden
1147                                     && st_shndx != elfcpp::SHN_UNDEF);
1148                   res = this->add_from_object(dynobj, name, name_key, version,
1149                                               version_key, def, *psym, st_shndx,
1150                                               is_ordinary, st_shndx);
1151                 }
1152             }
1153         }
1154
1155       // Note that it is possible that RES was overridden by an
1156       // earlier object, in which case it can't be aliased here.
1157       if (st_shndx != elfcpp::SHN_UNDEF
1158           && is_ordinary
1159           && psym->get_st_type() == elfcpp::STT_OBJECT
1160           && res->source() == Symbol::FROM_OBJECT
1161           && res->object() == dynobj)
1162         object_symbols.push_back(res);
1163
1164       if (sympointers != NULL)
1165         (*sympointers)[i] = res;
1166     }
1167
1168   this->record_weak_aliases(&object_symbols);
1169 }
1170
1171 // This is used to sort weak aliases.  We sort them first by section
1172 // index, then by offset, then by weak ahead of strong.
1173
1174 template<int size>
1175 class Weak_alias_sorter
1176 {
1177  public:
1178   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1179 };
1180
1181 template<int size>
1182 bool
1183 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1184                                     const Sized_symbol<size>* s2) const
1185 {
1186   bool is_ordinary;
1187   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1188   gold_assert(is_ordinary);
1189   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1190   gold_assert(is_ordinary);
1191   if (s1_shndx != s2_shndx)
1192     return s1_shndx < s2_shndx;
1193
1194   if (s1->value() != s2->value())
1195     return s1->value() < s2->value();
1196   if (s1->binding() != s2->binding())
1197     {
1198       if (s1->binding() == elfcpp::STB_WEAK)
1199         return true;
1200       if (s2->binding() == elfcpp::STB_WEAK)
1201         return false;
1202     }
1203   return std::string(s1->name()) < std::string(s2->name());
1204 }
1205
1206 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1207 // for any weak aliases, and record them so that if we add the weak
1208 // alias to the dynamic symbol table, we also add the corresponding
1209 // strong symbol.
1210
1211 template<int size>
1212 void
1213 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1214 {
1215   // Sort the vector by section index, then by offset, then by weak
1216   // ahead of strong.
1217   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1218
1219   // Walk through the vector.  For each weak definition, record
1220   // aliases.
1221   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1222          symbols->begin();
1223        p != symbols->end();
1224        ++p)
1225     {
1226       if ((*p)->binding() != elfcpp::STB_WEAK)
1227         continue;
1228
1229       // Build a circular list of weak aliases.  Each symbol points to
1230       // the next one in the circular list.
1231
1232       Sized_symbol<size>* from_sym = *p;
1233       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1234       for (q = p + 1; q != symbols->end(); ++q)
1235         {
1236           bool dummy;
1237           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1238               || (*q)->value() != from_sym->value())
1239             break;
1240
1241           this->weak_aliases_[from_sym] = *q;
1242           from_sym->set_has_alias();
1243           from_sym = *q;
1244         }
1245
1246       if (from_sym != *p)
1247         {
1248           this->weak_aliases_[from_sym] = *p;
1249           from_sym->set_has_alias();
1250         }
1251
1252       p = q - 1;
1253     }
1254 }
1255
1256 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1257 // true, then only create the symbol if there is a reference to it.
1258 // If this does not return NULL, it sets *POLDSYM to the existing
1259 // symbol if there is one.  This canonicalizes *PNAME and *PVERSION.
1260
1261 template<int size, bool big_endian>
1262 Sized_symbol<size>*
1263 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1264                                     bool only_if_ref,
1265                                     Sized_symbol<size>** poldsym)
1266 {
1267   Symbol* oldsym;
1268   Sized_symbol<size>* sym;
1269   bool add_to_table = false;
1270   typename Symbol_table_type::iterator add_loc = this->table_.end();
1271
1272   // If the caller didn't give us a version, see if we get one from
1273   // the version script.
1274   if (*pversion == NULL)
1275     {
1276       const std::string& v(this->version_script_.get_symbol_version(*pname));
1277       if (!v.empty())
1278         *pversion = v.c_str();
1279     }
1280
1281   if (only_if_ref)
1282     {
1283       oldsym = this->lookup(*pname, *pversion);
1284       if (oldsym == NULL || !oldsym->is_undefined())
1285         return NULL;
1286
1287       *pname = oldsym->name();
1288       *pversion = oldsym->version();
1289     }
1290   else
1291     {
1292       // Canonicalize NAME and VERSION.
1293       Stringpool::Key name_key;
1294       *pname = this->namepool_.add(*pname, true, &name_key);
1295
1296       Stringpool::Key version_key = 0;
1297       if (*pversion != NULL)
1298         *pversion = this->namepool_.add(*pversion, true, &version_key);
1299
1300       Symbol* const snull = NULL;
1301       std::pair<typename Symbol_table_type::iterator, bool> ins =
1302         this->table_.insert(std::make_pair(std::make_pair(name_key,
1303                                                           version_key),
1304                                            snull));
1305
1306       if (!ins.second)
1307         {
1308           // We already have a symbol table entry for NAME/VERSION.
1309           oldsym = ins.first->second;
1310           gold_assert(oldsym != NULL);
1311         }
1312       else
1313         {
1314           // We haven't seen this symbol before.
1315           gold_assert(ins.first->second == NULL);
1316           add_to_table = true;
1317           add_loc = ins.first;
1318           oldsym = NULL;
1319         }
1320     }
1321
1322   const Target& target = parameters->target();
1323   if (!target.has_make_symbol())
1324     sym = new Sized_symbol<size>();
1325   else
1326     {
1327       gold_assert(target.get_size() == size);
1328       gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1329       typedef Sized_target<size, big_endian> My_target;
1330       const My_target* sized_target =
1331           static_cast<const My_target*>(&target);
1332       sym = sized_target->make_symbol();
1333       if (sym == NULL)
1334         return NULL;
1335     }
1336
1337   if (add_to_table)
1338     add_loc->second = sym;
1339   else
1340     gold_assert(oldsym != NULL);
1341
1342   *poldsym = this->get_sized_symbol<size>(oldsym);
1343
1344   return sym;
1345 }
1346
1347 // Define a symbol based on an Output_data.
1348
1349 Symbol*
1350 Symbol_table::define_in_output_data(const char* name,
1351                                     const char* version,
1352                                     Output_data* od,
1353                                     uint64_t value,
1354                                     uint64_t symsize,
1355                                     elfcpp::STT type,
1356                                     elfcpp::STB binding,
1357                                     elfcpp::STV visibility,
1358                                     unsigned char nonvis,
1359                                     bool offset_is_from_end,
1360                                     bool only_if_ref)
1361 {
1362   if (parameters->target().get_size() == 32)
1363     {
1364 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1365       return this->do_define_in_output_data<32>(name, version, od,
1366                                                 value, symsize, type, binding,
1367                                                 visibility, nonvis,
1368                                                 offset_is_from_end,
1369                                                 only_if_ref);
1370 #else
1371       gold_unreachable();
1372 #endif
1373     }
1374   else if (parameters->target().get_size() == 64)
1375     {
1376 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1377       return this->do_define_in_output_data<64>(name, version, od,
1378                                                 value, symsize, type, binding,
1379                                                 visibility, nonvis,
1380                                                 offset_is_from_end,
1381                                                 only_if_ref);
1382 #else
1383       gold_unreachable();
1384 #endif
1385     }
1386   else
1387     gold_unreachable();
1388 }
1389
1390 // Define a symbol in an Output_data, sized version.
1391
1392 template<int size>
1393 Sized_symbol<size>*
1394 Symbol_table::do_define_in_output_data(
1395     const char* name,
1396     const char* version,
1397     Output_data* od,
1398     typename elfcpp::Elf_types<size>::Elf_Addr value,
1399     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1400     elfcpp::STT type,
1401     elfcpp::STB binding,
1402     elfcpp::STV visibility,
1403     unsigned char nonvis,
1404     bool offset_is_from_end,
1405     bool only_if_ref)
1406 {
1407   Sized_symbol<size>* sym;
1408   Sized_symbol<size>* oldsym;
1409
1410   if (parameters->target().is_big_endian())
1411     {
1412 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1413       sym = this->define_special_symbol<size, true>(&name, &version,
1414                                                     only_if_ref, &oldsym);
1415 #else
1416       gold_unreachable();
1417 #endif
1418     }
1419   else
1420     {
1421 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1422       sym = this->define_special_symbol<size, false>(&name, &version,
1423                                                      only_if_ref, &oldsym);
1424 #else
1425       gold_unreachable();
1426 #endif
1427     }
1428
1429   if (sym == NULL)
1430     return NULL;
1431
1432   sym->init_output_data(name, version, od, value, symsize, type, binding,
1433                         visibility, nonvis, offset_is_from_end);
1434
1435   if (oldsym == NULL)
1436     {
1437       if (binding == elfcpp::STB_LOCAL
1438           || this->version_script_.symbol_is_local(name))
1439         this->force_local(sym);
1440       else if (version != NULL)
1441         sym->set_is_default();
1442       return sym;
1443     }
1444
1445   if (Symbol_table::should_override_with_special(oldsym))
1446     this->override_with_special(oldsym, sym);
1447   delete sym;
1448   return oldsym;
1449 }
1450
1451 // Define a symbol based on an Output_segment.
1452
1453 Symbol*
1454 Symbol_table::define_in_output_segment(const char* name,
1455                                        const char* version, Output_segment* os,
1456                                        uint64_t value,
1457                                        uint64_t symsize,
1458                                        elfcpp::STT type,
1459                                        elfcpp::STB binding,
1460                                        elfcpp::STV visibility,
1461                                        unsigned char nonvis,
1462                                        Symbol::Segment_offset_base offset_base,
1463                                        bool only_if_ref)
1464 {
1465   if (parameters->target().get_size() == 32)
1466     {
1467 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1468       return this->do_define_in_output_segment<32>(name, version, os,
1469                                                    value, symsize, type,
1470                                                    binding, visibility, nonvis,
1471                                                    offset_base, only_if_ref);
1472 #else
1473       gold_unreachable();
1474 #endif
1475     }
1476   else if (parameters->target().get_size() == 64)
1477     {
1478 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1479       return this->do_define_in_output_segment<64>(name, version, os,
1480                                                    value, symsize, type,
1481                                                    binding, visibility, nonvis,
1482                                                    offset_base, only_if_ref);
1483 #else
1484       gold_unreachable();
1485 #endif
1486     }
1487   else
1488     gold_unreachable();
1489 }
1490
1491 // Define a symbol in an Output_segment, sized version.
1492
1493 template<int size>
1494 Sized_symbol<size>*
1495 Symbol_table::do_define_in_output_segment(
1496     const char* name,
1497     const char* version,
1498     Output_segment* os,
1499     typename elfcpp::Elf_types<size>::Elf_Addr value,
1500     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1501     elfcpp::STT type,
1502     elfcpp::STB binding,
1503     elfcpp::STV visibility,
1504     unsigned char nonvis,
1505     Symbol::Segment_offset_base offset_base,
1506     bool only_if_ref)
1507 {
1508   Sized_symbol<size>* sym;
1509   Sized_symbol<size>* oldsym;
1510
1511   if (parameters->target().is_big_endian())
1512     {
1513 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1514       sym = this->define_special_symbol<size, true>(&name, &version,
1515                                                     only_if_ref, &oldsym);
1516 #else
1517       gold_unreachable();
1518 #endif
1519     }
1520   else
1521     {
1522 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1523       sym = this->define_special_symbol<size, false>(&name, &version,
1524                                                      only_if_ref, &oldsym);
1525 #else
1526       gold_unreachable();
1527 #endif
1528     }
1529
1530   if (sym == NULL)
1531     return NULL;
1532
1533   sym->init_output_segment(name, version, os, value, symsize, type, binding,
1534                            visibility, nonvis, offset_base);
1535
1536   if (oldsym == NULL)
1537     {
1538       if (binding == elfcpp::STB_LOCAL
1539           || this->version_script_.symbol_is_local(name))
1540         this->force_local(sym);
1541       else if (version != NULL)
1542         sym->set_is_default();
1543       return sym;
1544     }
1545
1546   if (Symbol_table::should_override_with_special(oldsym))
1547     this->override_with_special(oldsym, sym);
1548   delete sym;
1549   return oldsym;
1550 }
1551
1552 // Define a special symbol with a constant value.  It is a multiple
1553 // definition error if this symbol is already defined.
1554
1555 Symbol*
1556 Symbol_table::define_as_constant(const char* name,
1557                                  const char* version,
1558                                  uint64_t value,
1559                                  uint64_t symsize,
1560                                  elfcpp::STT type,
1561                                  elfcpp::STB binding,
1562                                  elfcpp::STV visibility,
1563                                  unsigned char nonvis,
1564                                  bool only_if_ref,
1565                                  bool force_override)
1566 {
1567   if (parameters->target().get_size() == 32)
1568     {
1569 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1570       return this->do_define_as_constant<32>(name, version, value,
1571                                              symsize, type, binding,
1572                                              visibility, nonvis, only_if_ref,
1573                                              force_override);
1574 #else
1575       gold_unreachable();
1576 #endif
1577     }
1578   else if (parameters->target().get_size() == 64)
1579     {
1580 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1581       return this->do_define_as_constant<64>(name, version, value,
1582                                              symsize, type, binding,
1583                                              visibility, nonvis, only_if_ref,
1584                                              force_override);
1585 #else
1586       gold_unreachable();
1587 #endif
1588     }
1589   else
1590     gold_unreachable();
1591 }
1592
1593 // Define a symbol as a constant, sized version.
1594
1595 template<int size>
1596 Sized_symbol<size>*
1597 Symbol_table::do_define_as_constant(
1598     const char* name,
1599     const char* version,
1600     typename elfcpp::Elf_types<size>::Elf_Addr value,
1601     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1602     elfcpp::STT type,
1603     elfcpp::STB binding,
1604     elfcpp::STV visibility,
1605     unsigned char nonvis,
1606     bool only_if_ref,
1607     bool force_override)
1608 {
1609   Sized_symbol<size>* sym;
1610   Sized_symbol<size>* oldsym;
1611
1612   if (parameters->target().is_big_endian())
1613     {
1614 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1615       sym = this->define_special_symbol<size, true>(&name, &version,
1616                                                     only_if_ref, &oldsym);
1617 #else
1618       gold_unreachable();
1619 #endif
1620     }
1621   else
1622     {
1623 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1624       sym = this->define_special_symbol<size, false>(&name, &version,
1625                                                      only_if_ref, &oldsym);
1626 #else
1627       gold_unreachable();
1628 #endif
1629     }
1630
1631   if (sym == NULL)
1632     return NULL;
1633
1634   sym->init_constant(name, version, value, symsize, type, binding, visibility,
1635                      nonvis);
1636
1637   if (oldsym == NULL)
1638     {
1639       // Version symbols are absolute symbols with name == version.
1640       // We don't want to force them to be local.
1641       if ((version == NULL
1642            || name != version
1643            || value != 0)
1644           && (binding == elfcpp::STB_LOCAL
1645               || this->version_script_.symbol_is_local(name)))
1646         this->force_local(sym);
1647       else if (version != NULL
1648                && (name != version || value != 0))
1649         sym->set_is_default();
1650       return sym;
1651     }
1652
1653   if (force_override || Symbol_table::should_override_with_special(oldsym))
1654     this->override_with_special(oldsym, sym);
1655   delete sym;
1656   return oldsym;
1657 }
1658
1659 // Define a set of symbols in output sections.
1660
1661 void
1662 Symbol_table::define_symbols(const Layout* layout, int count,
1663                              const Define_symbol_in_section* p,
1664                              bool only_if_ref)
1665 {
1666   for (int i = 0; i < count; ++i, ++p)
1667     {
1668       Output_section* os = layout->find_output_section(p->output_section);
1669       if (os != NULL)
1670         this->define_in_output_data(p->name, NULL, os, p->value,
1671                                     p->size, p->type, p->binding,
1672                                     p->visibility, p->nonvis,
1673                                     p->offset_is_from_end,
1674                                     only_if_ref || p->only_if_ref);
1675       else
1676         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1677                                  p->binding, p->visibility, p->nonvis,
1678                                  only_if_ref || p->only_if_ref,
1679                                  false);
1680     }
1681 }
1682
1683 // Define a set of symbols in output segments.
1684
1685 void
1686 Symbol_table::define_symbols(const Layout* layout, int count,
1687                              const Define_symbol_in_segment* p,
1688                              bool only_if_ref)
1689 {
1690   for (int i = 0; i < count; ++i, ++p)
1691     {
1692       Output_segment* os = layout->find_output_segment(p->segment_type,
1693                                                        p->segment_flags_set,
1694                                                        p->segment_flags_clear);
1695       if (os != NULL)
1696         this->define_in_output_segment(p->name, NULL, os, p->value,
1697                                        p->size, p->type, p->binding,
1698                                        p->visibility, p->nonvis,
1699                                        p->offset_base,
1700                                        only_if_ref || p->only_if_ref);
1701       else
1702         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1703                                  p->binding, p->visibility, p->nonvis,
1704                                  only_if_ref || p->only_if_ref,
1705                                  false);
1706     }
1707 }
1708
1709 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
1710 // symbol should be defined--typically a .dyn.bss section.  VALUE is
1711 // the offset within POSD.
1712
1713 template<int size>
1714 void
1715 Symbol_table::define_with_copy_reloc(
1716     Sized_symbol<size>* csym,
1717     Output_data* posd,
1718     typename elfcpp::Elf_types<size>::Elf_Addr value)
1719 {
1720   gold_assert(csym->is_from_dynobj());
1721   gold_assert(!csym->is_copied_from_dynobj());
1722   Object* object = csym->object();
1723   gold_assert(object->is_dynamic());
1724   Dynobj* dynobj = static_cast<Dynobj*>(object);
1725
1726   // Our copied variable has to override any variable in a shared
1727   // library.
1728   elfcpp::STB binding = csym->binding();
1729   if (binding == elfcpp::STB_WEAK)
1730     binding = elfcpp::STB_GLOBAL;
1731
1732   this->define_in_output_data(csym->name(), csym->version(),
1733                               posd, value, csym->symsize(),
1734                               csym->type(), binding,
1735                               csym->visibility(), csym->nonvis(),
1736                               false, false);
1737
1738   csym->set_is_copied_from_dynobj();
1739   csym->set_needs_dynsym_entry();
1740
1741   this->copied_symbol_dynobjs_[csym] = dynobj;
1742
1743   // We have now defined all aliases, but we have not entered them all
1744   // in the copied_symbol_dynobjs_ map.
1745   if (csym->has_alias())
1746     {
1747       Symbol* sym = csym;
1748       while (true)
1749         {
1750           sym = this->weak_aliases_[sym];
1751           if (sym == csym)
1752             break;
1753           gold_assert(sym->output_data() == posd);
1754
1755           sym->set_is_copied_from_dynobj();
1756           this->copied_symbol_dynobjs_[sym] = dynobj;
1757         }
1758     }
1759 }
1760
1761 // SYM is defined using a COPY reloc.  Return the dynamic object where
1762 // the original definition was found.
1763
1764 Dynobj*
1765 Symbol_table::get_copy_source(const Symbol* sym) const
1766 {
1767   gold_assert(sym->is_copied_from_dynobj());
1768   Copied_symbol_dynobjs::const_iterator p =
1769     this->copied_symbol_dynobjs_.find(sym);
1770   gold_assert(p != this->copied_symbol_dynobjs_.end());
1771   return p->second;
1772 }
1773
1774 // Add any undefined symbols named on the command line.
1775
1776 void
1777 Symbol_table::add_undefined_symbols_from_command_line()
1778 {
1779   if (parameters->options().any_undefined())
1780     {
1781       if (parameters->target().get_size() == 32)
1782         {
1783 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1784           this->do_add_undefined_symbols_from_command_line<32>();
1785 #else
1786           gold_unreachable();
1787 #endif
1788         }
1789       else if (parameters->target().get_size() == 64)
1790         {
1791 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1792           this->do_add_undefined_symbols_from_command_line<64>();
1793 #else
1794           gold_unreachable();
1795 #endif
1796         }
1797       else
1798         gold_unreachable();
1799     }
1800 }
1801
1802 template<int size>
1803 void
1804 Symbol_table::do_add_undefined_symbols_from_command_line()
1805 {
1806   for (options::String_set::const_iterator p =
1807          parameters->options().undefined_begin();
1808        p != parameters->options().undefined_end();
1809        ++p)
1810     {
1811       const char* name = p->c_str();
1812
1813       if (this->lookup(name) != NULL)
1814         continue;
1815
1816       const char* version = NULL;
1817
1818       Sized_symbol<size>* sym;
1819       Sized_symbol<size>* oldsym;
1820       if (parameters->target().is_big_endian())
1821         {
1822 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1823           sym = this->define_special_symbol<size, true>(&name, &version,
1824                                                         false, &oldsym);
1825 #else
1826           gold_unreachable();
1827 #endif
1828         }
1829       else
1830         {
1831 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1832           sym = this->define_special_symbol<size, false>(&name, &version,
1833                                                          false, &oldsym);
1834 #else
1835           gold_unreachable();
1836 #endif
1837         }
1838
1839       gold_assert(oldsym == NULL);
1840
1841       sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1842                           elfcpp::STV_DEFAULT, 0);
1843       ++this->saw_undefined_;
1844     }
1845 }
1846
1847 // Set the dynamic symbol indexes.  INDEX is the index of the first
1848 // global dynamic symbol.  Pointers to the symbols are stored into the
1849 // vector SYMS.  The names are added to DYNPOOL.  This returns an
1850 // updated dynamic symbol index.
1851
1852 unsigned int
1853 Symbol_table::set_dynsym_indexes(unsigned int index,
1854                                  std::vector<Symbol*>* syms,
1855                                  Stringpool* dynpool,
1856                                  Versions* versions)
1857 {
1858   for (Symbol_table_type::iterator p = this->table_.begin();
1859        p != this->table_.end();
1860        ++p)
1861     {
1862       Symbol* sym = p->second;
1863
1864       // Note that SYM may already have a dynamic symbol index, since
1865       // some symbols appear more than once in the symbol table, with
1866       // and without a version.
1867
1868       if (!sym->should_add_dynsym_entry())
1869         sym->set_dynsym_index(-1U);
1870       else if (!sym->has_dynsym_index())
1871         {
1872           sym->set_dynsym_index(index);
1873           ++index;
1874           syms->push_back(sym);
1875           dynpool->add(sym->name(), false, NULL);
1876
1877           // Record any version information.
1878           if (sym->version() != NULL)
1879             versions->record_version(this, dynpool, sym);
1880         }
1881     }
1882
1883   // Finish up the versions.  In some cases this may add new dynamic
1884   // symbols.
1885   index = versions->finalize(this, index, syms);
1886
1887   return index;
1888 }
1889
1890 // Set the final values for all the symbols.  The index of the first
1891 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
1892 // file offset OFF.  Add their names to POOL.  Return the new file
1893 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
1894
1895 off_t
1896 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1897                        size_t dyncount, Stringpool* pool,
1898                        unsigned int *plocal_symcount)
1899 {
1900   off_t ret;
1901
1902   gold_assert(*plocal_symcount != 0);
1903   this->first_global_index_ = *plocal_symcount;
1904
1905   this->dynamic_offset_ = dynoff;
1906   this->first_dynamic_global_index_ = dyn_global_index;
1907   this->dynamic_count_ = dyncount;
1908
1909   if (parameters->target().get_size() == 32)
1910     {
1911 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1912       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
1913 #else
1914       gold_unreachable();
1915 #endif
1916     }
1917   else if (parameters->target().get_size() == 64)
1918     {
1919 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1920       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
1921 #else
1922       gold_unreachable();
1923 #endif
1924     }
1925   else
1926     gold_unreachable();
1927
1928   // Now that we have the final symbol table, we can reliably note
1929   // which symbols should get warnings.
1930   this->warnings_.note_warnings(this);
1931
1932   return ret;
1933 }
1934
1935 // SYM is going into the symbol table at *PINDEX.  Add the name to
1936 // POOL, update *PINDEX and *POFF.
1937
1938 template<int size>
1939 void
1940 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1941                                   unsigned int* pindex, off_t* poff)
1942 {
1943   sym->set_symtab_index(*pindex);
1944   pool->add(sym->name(), false, NULL);
1945   ++*pindex;
1946   *poff += elfcpp::Elf_sizes<size>::sym_size;
1947 }
1948
1949 // Set the final value for all the symbols.  This is called after
1950 // Layout::finalize, so all the output sections have their final
1951 // address.
1952
1953 template<int size>
1954 off_t
1955 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1956                              unsigned int* plocal_symcount)
1957 {
1958   off = align_address(off, size >> 3);
1959   this->offset_ = off;
1960
1961   unsigned int index = *plocal_symcount;
1962   const unsigned int orig_index = index;
1963
1964   // First do all the symbols which have been forced to be local, as
1965   // they must appear before all global symbols.
1966   for (Forced_locals::iterator p = this->forced_locals_.begin();
1967        p != this->forced_locals_.end();
1968        ++p)
1969     {
1970       Symbol* sym = *p;
1971       gold_assert(sym->is_forced_local());
1972       if (this->sized_finalize_symbol<size>(sym))
1973         {
1974           this->add_to_final_symtab<size>(sym, pool, &index, &off);
1975           ++*plocal_symcount;
1976         }
1977     }
1978
1979   // Now do all the remaining symbols.
1980   for (Symbol_table_type::iterator p = this->table_.begin();
1981        p != this->table_.end();
1982        ++p)
1983     {
1984       Symbol* sym = p->second;
1985       if (this->sized_finalize_symbol<size>(sym))
1986         this->add_to_final_symtab<size>(sym, pool, &index, &off);
1987     }
1988
1989   this->output_count_ = index - orig_index;
1990
1991   return off;
1992 }
1993
1994 // Finalize the symbol SYM.  This returns true if the symbol should be
1995 // added to the symbol table, false otherwise.
1996
1997 template<int size>
1998 bool
1999 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2000 {
2001   typedef typename Sized_symbol<size>::Value_type Value_type;
2002
2003   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2004
2005   // The default version of a symbol may appear twice in the symbol
2006   // table.  We only need to finalize it once.
2007   if (sym->has_symtab_index())
2008     return false;
2009
2010   if (!sym->in_reg())
2011     {
2012       gold_assert(!sym->has_symtab_index());
2013       sym->set_symtab_index(-1U);
2014       gold_assert(sym->dynsym_index() == -1U);
2015       return false;
2016     }
2017
2018   Value_type value;
2019
2020   switch (sym->source())
2021     {
2022     case Symbol::FROM_OBJECT:
2023       {
2024         bool is_ordinary;
2025         unsigned int shndx = sym->shndx(&is_ordinary);
2026
2027         // FIXME: We need some target specific support here.
2028         if (!is_ordinary
2029             && shndx != elfcpp::SHN_ABS
2030             && shndx != elfcpp::SHN_COMMON)
2031           {
2032             gold_error(_("%s: unsupported symbol section 0x%x"),
2033                        sym->demangled_name().c_str(), shndx);
2034             shndx = elfcpp::SHN_UNDEF;
2035           }
2036
2037         Object* symobj = sym->object();
2038         if (symobj->is_dynamic())
2039           {
2040             value = 0;
2041             shndx = elfcpp::SHN_UNDEF;
2042           }
2043         else if (shndx == elfcpp::SHN_UNDEF)
2044           value = 0;
2045         else if (!is_ordinary
2046                  && (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON))
2047           value = sym->value();
2048         else
2049           {
2050             Relobj* relobj = static_cast<Relobj*>(symobj);
2051             Output_section* os = relobj->output_section(shndx);
2052
2053             if (os == NULL)
2054               {
2055                 sym->set_symtab_index(-1U);
2056                 gold_assert(sym->dynsym_index() == -1U);
2057                 return false;
2058               }
2059
2060             uint64_t secoff64 = relobj->output_section_offset(shndx);
2061             Value_type secoff = convert_types<Value_type, uint64_t>(secoff64);
2062             if (sym->type() == elfcpp::STT_TLS)
2063               value = sym->value() + os->tls_offset() + secoff;
2064             else
2065               value = sym->value() + os->address() + secoff;
2066           }
2067       }
2068       break;
2069
2070     case Symbol::IN_OUTPUT_DATA:
2071       {
2072         Output_data* od = sym->output_data();
2073         value = sym->value();
2074         if (sym->type() != elfcpp::STT_TLS)
2075           value += od->address();
2076         else
2077           {
2078             Output_section* os = od->output_section();
2079             gold_assert(os != NULL);
2080             value += os->tls_offset() + (od->address() - os->address());
2081           }
2082         if (sym->offset_is_from_end())
2083           value += od->data_size();
2084       }
2085       break;
2086
2087     case Symbol::IN_OUTPUT_SEGMENT:
2088       {
2089         Output_segment* os = sym->output_segment();
2090         value = sym->value();
2091         if (sym->type() != elfcpp::STT_TLS)
2092           value += os->vaddr();
2093         switch (sym->offset_base())
2094           {
2095           case Symbol::SEGMENT_START:
2096             break;
2097           case Symbol::SEGMENT_END:
2098             value += os->memsz();
2099             break;
2100           case Symbol::SEGMENT_BSS:
2101             value += os->filesz();
2102             break;
2103           default:
2104             gold_unreachable();
2105           }
2106       }
2107       break;
2108
2109     case Symbol::IS_CONSTANT:
2110       value = sym->value();
2111       break;
2112
2113     case Symbol::IS_UNDEFINED:
2114       value = 0;
2115       break;
2116
2117     default:
2118       gold_unreachable();
2119     }
2120
2121   sym->set_value(value);
2122
2123   if (parameters->options().strip_all())
2124     {
2125       sym->set_symtab_index(-1U);
2126       return false;
2127     }
2128
2129   return true;
2130 }
2131
2132 // Write out the global symbols.
2133
2134 void
2135 Symbol_table::write_globals(const Input_objects* input_objects,
2136                             const Stringpool* sympool,
2137                             const Stringpool* dynpool,
2138                             Output_symtab_xindex* symtab_xindex,
2139                             Output_symtab_xindex* dynsym_xindex,
2140                             Output_file* of) const
2141 {
2142   switch (parameters->size_and_endianness())
2143     {
2144 #ifdef HAVE_TARGET_32_LITTLE
2145     case Parameters::TARGET_32_LITTLE:
2146       this->sized_write_globals<32, false>(input_objects, sympool,
2147                                            dynpool, symtab_xindex,
2148                                            dynsym_xindex, of);
2149       break;
2150 #endif
2151 #ifdef HAVE_TARGET_32_BIG
2152     case Parameters::TARGET_32_BIG:
2153       this->sized_write_globals<32, true>(input_objects, sympool,
2154                                           dynpool, symtab_xindex,
2155                                           dynsym_xindex, of);
2156       break;
2157 #endif
2158 #ifdef HAVE_TARGET_64_LITTLE
2159     case Parameters::TARGET_64_LITTLE:
2160       this->sized_write_globals<64, false>(input_objects, sympool,
2161                                            dynpool, symtab_xindex,
2162                                            dynsym_xindex, of);
2163       break;
2164 #endif
2165 #ifdef HAVE_TARGET_64_BIG
2166     case Parameters::TARGET_64_BIG:
2167       this->sized_write_globals<64, true>(input_objects, sympool,
2168                                           dynpool, symtab_xindex,
2169                                           dynsym_xindex, of);
2170       break;
2171 #endif
2172     default:
2173       gold_unreachable();
2174     }
2175 }
2176
2177 // Write out the global symbols.
2178
2179 template<int size, bool big_endian>
2180 void
2181 Symbol_table::sized_write_globals(const Input_objects* input_objects,
2182                                   const Stringpool* sympool,
2183                                   const Stringpool* dynpool,
2184                                   Output_symtab_xindex* symtab_xindex,
2185                                   Output_symtab_xindex* dynsym_xindex,
2186                                   Output_file* of) const
2187 {
2188   const Target& target = parameters->target();
2189
2190   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2191
2192   const unsigned int output_count = this->output_count_;
2193   const section_size_type oview_size = output_count * sym_size;
2194   const unsigned int first_global_index = this->first_global_index_;
2195   unsigned char* psyms;
2196   if (this->offset_ == 0 || output_count == 0)
2197     psyms = NULL;
2198   else
2199     psyms = of->get_output_view(this->offset_, oview_size);
2200
2201   const unsigned int dynamic_count = this->dynamic_count_;
2202   const section_size_type dynamic_size = dynamic_count * sym_size;
2203   const unsigned int first_dynamic_global_index =
2204     this->first_dynamic_global_index_;
2205   unsigned char* dynamic_view;
2206   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2207     dynamic_view = NULL;
2208   else
2209     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2210
2211   for (Symbol_table_type::const_iterator p = this->table_.begin();
2212        p != this->table_.end();
2213        ++p)
2214     {
2215       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2216
2217       // Possibly warn about unresolved symbols in shared libraries.
2218       this->warn_about_undefined_dynobj_symbol(input_objects, sym);
2219
2220       unsigned int sym_index = sym->symtab_index();
2221       unsigned int dynsym_index;
2222       if (dynamic_view == NULL)
2223         dynsym_index = -1U;
2224       else
2225         dynsym_index = sym->dynsym_index();
2226
2227       if (sym_index == -1U && dynsym_index == -1U)
2228         {
2229           // This symbol is not included in the output file.
2230           continue;
2231         }
2232
2233       unsigned int shndx;
2234       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2235       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2236       switch (sym->source())
2237         {
2238         case Symbol::FROM_OBJECT:
2239           {
2240             bool is_ordinary;
2241             unsigned int in_shndx = sym->shndx(&is_ordinary);
2242
2243             // FIXME: We need some target specific support here.
2244             if (!is_ordinary
2245                 && in_shndx != elfcpp::SHN_ABS
2246                 && in_shndx != elfcpp::SHN_COMMON)
2247               {
2248                 gold_error(_("%s: unsupported symbol section 0x%x"),
2249                            sym->demangled_name().c_str(), in_shndx);
2250                 shndx = in_shndx;
2251               }
2252             else
2253               {
2254                 Object* symobj = sym->object();
2255                 if (symobj->is_dynamic())
2256                   {
2257                     if (sym->needs_dynsym_value())
2258                       dynsym_value = target.dynsym_value(sym);
2259                     shndx = elfcpp::SHN_UNDEF;
2260                   }
2261                 else if (in_shndx == elfcpp::SHN_UNDEF
2262                          || (!is_ordinary
2263                              && (in_shndx == elfcpp::SHN_ABS
2264                                  || in_shndx == elfcpp::SHN_COMMON)))
2265                   shndx = in_shndx;
2266                 else
2267                   {
2268                     Relobj* relobj = static_cast<Relobj*>(symobj);
2269                     Output_section* os = relobj->output_section(in_shndx);
2270                     gold_assert(os != NULL);
2271                     shndx = os->out_shndx();
2272
2273                     if (shndx >= elfcpp::SHN_LORESERVE)
2274                       {
2275                         if (sym_index != -1U)
2276                           symtab_xindex->add(sym_index, shndx);
2277                         if (dynsym_index != -1U)
2278                           dynsym_xindex->add(dynsym_index, shndx);
2279                         shndx = elfcpp::SHN_XINDEX;
2280                       }
2281
2282                     // In object files symbol values are section
2283                     // relative.
2284                     if (parameters->options().relocatable())
2285                       sym_value -= os->address();
2286                   }
2287               }
2288           }
2289           break;
2290
2291         case Symbol::IN_OUTPUT_DATA:
2292           shndx = sym->output_data()->out_shndx();
2293           if (shndx >= elfcpp::SHN_LORESERVE)
2294             {
2295               if (sym_index != -1U)
2296                 symtab_xindex->add(sym_index, shndx);
2297               if (dynsym_index != -1U)
2298                 dynsym_xindex->add(dynsym_index, shndx);
2299               shndx = elfcpp::SHN_XINDEX;
2300             }
2301           break;
2302
2303         case Symbol::IN_OUTPUT_SEGMENT:
2304           shndx = elfcpp::SHN_ABS;
2305           break;
2306
2307         case Symbol::IS_CONSTANT:
2308           shndx = elfcpp::SHN_ABS;
2309           break;
2310
2311         case Symbol::IS_UNDEFINED:
2312           shndx = elfcpp::SHN_UNDEF;
2313           break;
2314
2315         default:
2316           gold_unreachable();
2317         }
2318
2319       if (sym_index != -1U)
2320         {
2321           sym_index -= first_global_index;
2322           gold_assert(sym_index < output_count);
2323           unsigned char* ps = psyms + (sym_index * sym_size);
2324           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2325                                                      sympool, ps);
2326         }
2327
2328       if (dynsym_index != -1U)
2329         {
2330           dynsym_index -= first_dynamic_global_index;
2331           gold_assert(dynsym_index < dynamic_count);
2332           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2333           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2334                                                      dynpool, pd);
2335         }
2336     }
2337
2338   of->write_output_view(this->offset_, oview_size, psyms);
2339   if (dynamic_view != NULL)
2340     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2341 }
2342
2343 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
2344 // strtab holding the name.
2345
2346 template<int size, bool big_endian>
2347 void
2348 Symbol_table::sized_write_symbol(
2349     Sized_symbol<size>* sym,
2350     typename elfcpp::Elf_types<size>::Elf_Addr value,
2351     unsigned int shndx,
2352     const Stringpool* pool,
2353     unsigned char* p) const
2354 {
2355   elfcpp::Sym_write<size, big_endian> osym(p);
2356   osym.put_st_name(pool->get_offset(sym->name()));
2357   osym.put_st_value(value);
2358   // Use a symbol size of zero for undefined symbols.
2359   osym.put_st_size(shndx == elfcpp::SHN_UNDEF ? 0 : sym->symsize());
2360   // A version script may have overridden the default binding.
2361   if (sym->is_forced_local())
2362     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2363   else
2364     osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
2365   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2366   osym.put_st_shndx(shndx);
2367 }
2368
2369 // Check for unresolved symbols in shared libraries.  This is
2370 // controlled by the --allow-shlib-undefined option.
2371
2372 // We only warn about libraries for which we have seen all the
2373 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
2374 // which were not seen in this link.  If we didn't see a DT_NEEDED
2375 // entry, we aren't going to be able to reliably report whether the
2376 // symbol is undefined.
2377
2378 // We also don't warn about libraries found in the system library
2379 // directory (the directory were we find libc.so); we assume that
2380 // those libraries are OK.  This heuristic avoids problems in
2381 // GNU/Linux, in which -ldl can have undefined references satisfied by
2382 // ld-linux.so.
2383
2384 inline void
2385 Symbol_table::warn_about_undefined_dynobj_symbol(
2386     const Input_objects* input_objects,
2387     Symbol* sym) const
2388 {
2389   bool dummy;
2390   if (sym->source() == Symbol::FROM_OBJECT
2391       && sym->object()->is_dynamic()
2392       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2393       && sym->binding() != elfcpp::STB_WEAK
2394       && !parameters->options().allow_shlib_undefined()
2395       && !parameters->target().is_defined_by_abi(sym)
2396       && !input_objects->found_in_system_library_directory(sym->object()))
2397     {
2398       // A very ugly cast.
2399       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2400       if (!dynobj->has_unknown_needed_entries())
2401         {
2402           if (sym->version())
2403             gold_error(_("%s: undefined reference to '%s', version '%s'"),
2404                        sym->object()->name().c_str(),
2405                        sym->demangled_name().c_str(),
2406                        sym->version());
2407           else
2408             gold_error(_("%s: undefined reference to '%s'"),
2409                        sym->object()->name().c_str(),
2410                        sym->demangled_name().c_str());
2411         }
2412     }
2413 }
2414
2415 // Write out a section symbol.  Return the update offset.
2416
2417 void
2418 Symbol_table::write_section_symbol(const Output_section *os,
2419                                    Output_symtab_xindex* symtab_xindex,
2420                                    Output_file* of,
2421                                    off_t offset) const
2422 {
2423   switch (parameters->size_and_endianness())
2424     {
2425 #ifdef HAVE_TARGET_32_LITTLE
2426     case Parameters::TARGET_32_LITTLE:
2427       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
2428                                                   offset);
2429       break;
2430 #endif
2431 #ifdef HAVE_TARGET_32_BIG
2432     case Parameters::TARGET_32_BIG:
2433       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
2434                                                  offset);
2435       break;
2436 #endif
2437 #ifdef HAVE_TARGET_64_LITTLE
2438     case Parameters::TARGET_64_LITTLE:
2439       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
2440                                                   offset);
2441       break;
2442 #endif
2443 #ifdef HAVE_TARGET_64_BIG
2444     case Parameters::TARGET_64_BIG:
2445       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
2446                                                  offset);
2447       break;
2448 #endif
2449     default:
2450       gold_unreachable();
2451     }
2452 }
2453
2454 // Write out a section symbol, specialized for size and endianness.
2455
2456 template<int size, bool big_endian>
2457 void
2458 Symbol_table::sized_write_section_symbol(const Output_section* os,
2459                                          Output_symtab_xindex* symtab_xindex,
2460                                          Output_file* of,
2461                                          off_t offset) const
2462 {
2463   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2464
2465   unsigned char* pov = of->get_output_view(offset, sym_size);
2466
2467   elfcpp::Sym_write<size, big_endian> osym(pov);
2468   osym.put_st_name(0);
2469   osym.put_st_value(os->address());
2470   osym.put_st_size(0);
2471   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2472                                        elfcpp::STT_SECTION));
2473   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2474
2475   unsigned int shndx = os->out_shndx();
2476   if (shndx >= elfcpp::SHN_LORESERVE)
2477     {
2478       symtab_xindex->add(os->symtab_index(), shndx);
2479       shndx = elfcpp::SHN_XINDEX;
2480     }
2481   osym.put_st_shndx(shndx);
2482
2483   of->write_output_view(offset, sym_size, pov);
2484 }
2485
2486 // Print statistical information to stderr.  This is used for --stats.
2487
2488 void
2489 Symbol_table::print_stats() const
2490 {
2491 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2492   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2493           program_name, this->table_.size(), this->table_.bucket_count());
2494 #else
2495   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2496           program_name, this->table_.size());
2497 #endif
2498   this->namepool_.print_stats("symbol table stringpool");
2499 }
2500
2501 // We check for ODR violations by looking for symbols with the same
2502 // name for which the debugging information reports that they were
2503 // defined in different source locations.  When comparing the source
2504 // location, we consider instances with the same base filename and
2505 // line number to be the same.  This is because different object
2506 // files/shared libraries can include the same header file using
2507 // different paths, and we don't want to report an ODR violation in
2508 // that case.
2509
2510 // This struct is used to compare line information, as returned by
2511 // Dwarf_line_info::one_addr2line.  It implements a < comparison
2512 // operator used with std::set.
2513
2514 struct Odr_violation_compare
2515 {
2516   bool
2517   operator()(const std::string& s1, const std::string& s2) const
2518   {
2519     std::string::size_type pos1 = s1.rfind('/');
2520     std::string::size_type pos2 = s2.rfind('/');
2521     if (pos1 == std::string::npos
2522         || pos2 == std::string::npos)
2523       return s1 < s2;
2524     return s1.compare(pos1, std::string::npos,
2525                       s2, pos2, std::string::npos) < 0;
2526   }
2527 };
2528
2529 // Check candidate_odr_violations_ to find symbols with the same name
2530 // but apparently different definitions (different source-file/line-no).
2531
2532 void
2533 Symbol_table::detect_odr_violations(const Task* task,
2534                                     const char* output_file_name) const
2535 {
2536   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2537        it != candidate_odr_violations_.end();
2538        ++it)
2539     {
2540       const char* symbol_name = it->first;
2541       // We use a sorted set so the output is deterministic.
2542       std::set<std::string, Odr_violation_compare> line_nums;
2543
2544       for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2545                locs = it->second.begin();
2546            locs != it->second.end();
2547            ++locs)
2548         {
2549           // We need to lock the object in order to read it.  This
2550           // means that we have to run in a singleton Task.  If we
2551           // want to run this in a general Task for better
2552           // performance, we will need one Task for object, plus
2553           // appropriate locking to ensure that we don't conflict with
2554           // other uses of the object.  Also note, one_addr2line is not
2555           // currently thread-safe.
2556           Task_lock_obj<Object> tl(task, locs->object);
2557           // 16 is the size of the object-cache that one_addr2line should use.
2558           std::string lineno = Dwarf_line_info::one_addr2line(
2559               locs->object, locs->shndx, locs->offset, 16);
2560           if (!lineno.empty())
2561             line_nums.insert(lineno);
2562         }
2563
2564       if (line_nums.size() > 1)
2565         {
2566           gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2567                          "places (possible ODR violation):"),
2568                        output_file_name, demangle(symbol_name).c_str());
2569           for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2570                it2 != line_nums.end();
2571                ++it2)
2572             fprintf(stderr, "  %s\n", it2->c_str());
2573         }
2574     }
2575   // We only call one_addr2line() in this function, so we can clear its cache.
2576   Dwarf_line_info::clear_addr2line_cache();
2577 }
2578
2579 // Warnings functions.
2580
2581 // Add a new warning.
2582
2583 void
2584 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2585                       const std::string& warning)
2586 {
2587   name = symtab->canonicalize_name(name);
2588   this->warnings_[name].set(obj, warning);
2589 }
2590
2591 // Look through the warnings and mark the symbols for which we should
2592 // warn.  This is called during Layout::finalize when we know the
2593 // sources for all the symbols.
2594
2595 void
2596 Warnings::note_warnings(Symbol_table* symtab)
2597 {
2598   for (Warning_table::iterator p = this->warnings_.begin();
2599        p != this->warnings_.end();
2600        ++p)
2601     {
2602       Symbol* sym = symtab->lookup(p->first, NULL);
2603       if (sym != NULL
2604           && sym->source() == Symbol::FROM_OBJECT
2605           && sym->object() == p->second.object)
2606         sym->set_has_warning();
2607     }
2608 }
2609
2610 // Issue a warning.  This is called when we see a relocation against a
2611 // symbol for which has a warning.
2612
2613 template<int size, bool big_endian>
2614 void
2615 Warnings::issue_warning(const Symbol* sym,
2616                         const Relocate_info<size, big_endian>* relinfo,
2617                         size_t relnum, off_t reloffset) const
2618 {
2619   gold_assert(sym->has_warning());
2620   Warning_table::const_iterator p = this->warnings_.find(sym->name());
2621   gold_assert(p != this->warnings_.end());
2622   gold_warning_at_location(relinfo, relnum, reloffset,
2623                            "%s", p->second.text.c_str());
2624 }
2625
2626 // Instantiate the templates we need.  We could use the configure
2627 // script to restrict this to only the ones needed for implemented
2628 // targets.
2629
2630 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2631 template
2632 void
2633 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2634 #endif
2635
2636 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2637 template
2638 void
2639 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2640 #endif
2641
2642 #ifdef HAVE_TARGET_32_LITTLE
2643 template
2644 void
2645 Symbol_table::add_from_relobj<32, false>(
2646     Sized_relobj<32, false>* relobj,
2647     const unsigned char* syms,
2648     size_t count,
2649     size_t symndx_offset,
2650     const char* sym_names,
2651     size_t sym_name_size,
2652     Sized_relobj<32, true>::Symbols* sympointers,
2653     size_t* defined);
2654 #endif
2655
2656 #ifdef HAVE_TARGET_32_BIG
2657 template
2658 void
2659 Symbol_table::add_from_relobj<32, true>(
2660     Sized_relobj<32, true>* relobj,
2661     const unsigned char* syms,
2662     size_t count,
2663     size_t symndx_offset,
2664     const char* sym_names,
2665     size_t sym_name_size,
2666     Sized_relobj<32, false>::Symbols* sympointers,
2667     size_t* defined);
2668 #endif
2669
2670 #ifdef HAVE_TARGET_64_LITTLE
2671 template
2672 void
2673 Symbol_table::add_from_relobj<64, false>(
2674     Sized_relobj<64, false>* relobj,
2675     const unsigned char* syms,
2676     size_t count,
2677     size_t symndx_offset,
2678     const char* sym_names,
2679     size_t sym_name_size,
2680     Sized_relobj<64, true>::Symbols* sympointers,
2681     size_t* defined);
2682 #endif
2683
2684 #ifdef HAVE_TARGET_64_BIG
2685 template
2686 void
2687 Symbol_table::add_from_relobj<64, true>(
2688     Sized_relobj<64, true>* relobj,
2689     const unsigned char* syms,
2690     size_t count,
2691     size_t symndx_offset,
2692     const char* sym_names,
2693     size_t sym_name_size,
2694     Sized_relobj<64, false>::Symbols* sympointers,
2695     size_t* defined);
2696 #endif
2697
2698 #ifdef HAVE_TARGET_32_LITTLE
2699 template
2700 void
2701 Symbol_table::add_from_dynobj<32, false>(
2702     Sized_dynobj<32, false>* dynobj,
2703     const unsigned char* syms,
2704     size_t count,
2705     const char* sym_names,
2706     size_t sym_name_size,
2707     const unsigned char* versym,
2708     size_t versym_size,
2709     const std::vector<const char*>* version_map,
2710     Sized_relobj<32, false>::Symbols* sympointers,
2711     size_t* defined);
2712 #endif
2713
2714 #ifdef HAVE_TARGET_32_BIG
2715 template
2716 void
2717 Symbol_table::add_from_dynobj<32, true>(
2718     Sized_dynobj<32, true>* dynobj,
2719     const unsigned char* syms,
2720     size_t count,
2721     const char* sym_names,
2722     size_t sym_name_size,
2723     const unsigned char* versym,
2724     size_t versym_size,
2725     const std::vector<const char*>* version_map,
2726     Sized_relobj<32, true>::Symbols* sympointers,
2727     size_t* defined);
2728 #endif
2729
2730 #ifdef HAVE_TARGET_64_LITTLE
2731 template
2732 void
2733 Symbol_table::add_from_dynobj<64, false>(
2734     Sized_dynobj<64, false>* dynobj,
2735     const unsigned char* syms,
2736     size_t count,
2737     const char* sym_names,
2738     size_t sym_name_size,
2739     const unsigned char* versym,
2740     size_t versym_size,
2741     const std::vector<const char*>* version_map,
2742     Sized_relobj<64, false>::Symbols* sympointers,
2743     size_t* defined);
2744 #endif
2745
2746 #ifdef HAVE_TARGET_64_BIG
2747 template
2748 void
2749 Symbol_table::add_from_dynobj<64, true>(
2750     Sized_dynobj<64, true>* dynobj,
2751     const unsigned char* syms,
2752     size_t count,
2753     const char* sym_names,
2754     size_t sym_name_size,
2755     const unsigned char* versym,
2756     size_t versym_size,
2757     const std::vector<const char*>* version_map,
2758     Sized_relobj<64, true>::Symbols* sympointers,
2759     size_t* defined);
2760 #endif
2761
2762 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2763 template
2764 void
2765 Symbol_table::define_with_copy_reloc<32>(
2766     Sized_symbol<32>* sym,
2767     Output_data* posd,
2768     elfcpp::Elf_types<32>::Elf_Addr value);
2769 #endif
2770
2771 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2772 template
2773 void
2774 Symbol_table::define_with_copy_reloc<64>(
2775     Sized_symbol<64>* sym,
2776     Output_data* posd,
2777     elfcpp::Elf_types<64>::Elf_Addr value);
2778 #endif
2779
2780 #ifdef HAVE_TARGET_32_LITTLE
2781 template
2782 void
2783 Warnings::issue_warning<32, false>(const Symbol* sym,
2784                                    const Relocate_info<32, false>* relinfo,
2785                                    size_t relnum, off_t reloffset) const;
2786 #endif
2787
2788 #ifdef HAVE_TARGET_32_BIG
2789 template
2790 void
2791 Warnings::issue_warning<32, true>(const Symbol* sym,
2792                                   const Relocate_info<32, true>* relinfo,
2793                                   size_t relnum, off_t reloffset) const;
2794 #endif
2795
2796 #ifdef HAVE_TARGET_64_LITTLE
2797 template
2798 void
2799 Warnings::issue_warning<64, false>(const Symbol* sym,
2800                                    const Relocate_info<64, false>* relinfo,
2801                                    size_t relnum, off_t reloffset) const;
2802 #endif
2803
2804 #ifdef HAVE_TARGET_64_BIG
2805 template
2806 void
2807 Warnings::issue_warning<64, true>(const Symbol* sym,
2808                                   const Relocate_info<64, true>* relinfo,
2809                                   size_t relnum, off_t reloffset) const;
2810 #endif
2811
2812 } // End namespace gold.