Fix undefined symbol errors introduced with previous commit.
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol.  This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55                     elfcpp::STT type, elfcpp::STB binding,
56                     elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91   if (!parameters->options().do_demangle())
92     return name;
93
94   // cplus_demangle allocates memory for the result it returns,
95   // and returns NULL if the name is already demangled.
96   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97   if (demangled_name == NULL)
98     return name;
99
100   std::string retval(demangled_name);
101   free(demangled_name);
102   return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108   return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116                          const elfcpp::Sym<size, big_endian>& sym,
117                          unsigned int st_shndx, bool is_ordinary)
118 {
119   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120                     sym.get_st_visibility(), sym.get_st_nonvis());
121   this->u_.from_object.object = object;
122   this->u_.from_object.shndx = st_shndx;
123   this->is_ordinary_shndx_ = is_ordinary;
124   this->source_ = FROM_OBJECT;
125   this->in_reg_ = !object->is_dynamic();
126   this->in_dyn_ = object->is_dynamic();
127   this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135                               Output_data* od, elfcpp::STT type,
136                               elfcpp::STB binding, elfcpp::STV visibility,
137                               unsigned char nonvis, bool offset_is_from_end,
138                               bool is_predefined)
139 {
140   this->init_fields(name, version, type, binding, visibility, nonvis);
141   this->u_.in_output_data.output_data = od;
142   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143   this->source_ = IN_OUTPUT_DATA;
144   this->in_reg_ = true;
145   this->in_real_elf_ = true;
146   this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154                                  Output_segment* os, elfcpp::STT type,
155                                  elfcpp::STB binding, elfcpp::STV visibility,
156                                  unsigned char nonvis,
157                                  Segment_offset_base offset_base,
158                                  bool is_predefined)
159 {
160   this->init_fields(name, version, type, binding, visibility, nonvis);
161   this->u_.in_output_segment.output_segment = os;
162   this->u_.in_output_segment.offset_base = offset_base;
163   this->source_ = IN_OUTPUT_SEGMENT;
164   this->in_reg_ = true;
165   this->in_real_elf_ = true;
166   this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174                            elfcpp::STT type, elfcpp::STB binding,
175                            elfcpp::STV visibility, unsigned char nonvis,
176                            bool is_predefined)
177 {
178   this->init_fields(name, version, type, binding, visibility, nonvis);
179   this->source_ = IS_CONSTANT;
180   this->in_reg_ = true;
181   this->in_real_elf_ = true;
182   this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190                             elfcpp::STT type, elfcpp::STB binding,
191                             elfcpp::STV visibility, unsigned char nonvis)
192 {
193   this->init_fields(name, version, type, binding, visibility, nonvis);
194   this->dynsym_index_ = -1U;
195   this->source_ = IS_UNDEFINED;
196   this->in_reg_ = true;
197   this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205   gold_assert(this->is_common());
206   this->source_ = IN_OUTPUT_DATA;
207   this->u_.in_output_data.output_data = od;
208   this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217                                 Object* object,
218                                 const elfcpp::Sym<size, big_endian>& sym,
219                                 unsigned int st_shndx, bool is_ordinary)
220 {
221   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222   this->value_ = sym.get_st_value();
223   this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232                                      Output_data* od, Value_type value,
233                                      Size_type symsize, elfcpp::STT type,
234                                      elfcpp::STB binding,
235                                      elfcpp::STV visibility,
236                                      unsigned char nonvis,
237                                      bool offset_is_from_end,
238                                      bool is_predefined)
239 {
240   this->init_base_output_data(name, version, od, type, binding, visibility,
241                               nonvis, offset_is_from_end, is_predefined);
242   this->value_ = value;
243   this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252                                         Output_segment* os, Value_type value,
253                                         Size_type symsize, elfcpp::STT type,
254                                         elfcpp::STB binding,
255                                         elfcpp::STV visibility,
256                                         unsigned char nonvis,
257                                         Segment_offset_base offset_base,
258                                         bool is_predefined)
259 {
260   this->init_base_output_segment(name, version, os, type, binding, visibility,
261                                  nonvis, offset_base, is_predefined);
262   this->value_ = value;
263   this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272                                   Value_type value, Size_type symsize,
273                                   elfcpp::STT type, elfcpp::STB binding,
274                                   elfcpp::STV visibility, unsigned char nonvis,
275                                   bool is_predefined)
276 {
277   this->init_base_constant(name, version, type, binding, visibility, nonvis,
278                            is_predefined);
279   this->value_ = value;
280   this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288                                    Value_type value, elfcpp::STT type,
289                                    elfcpp::STB binding, elfcpp::STV visibility,
290                                    unsigned char nonvis)
291 {
292   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
293   this->value_ = value;
294   this->symsize_ = 0;
295 }
296
297 // Return an allocated string holding the symbol's name as
298 // name@version.  This is used for relocatable links.
299
300 std::string
301 Symbol::versioned_name() const
302 {
303   gold_assert(this->version_ != NULL);
304   std::string ret = this->name_;
305   ret.push_back('@');
306   if (this->is_def_)
307     ret.push_back('@');
308   ret += this->version_;
309   return ret;
310 }
311
312 // Return true if SHNDX represents a common symbol.
313
314 bool
315 Symbol::is_common_shndx(unsigned int shndx)
316 {
317   return (shndx == elfcpp::SHN_COMMON
318           || shndx == parameters->target().small_common_shndx()
319           || shndx == parameters->target().large_common_shndx());
320 }
321
322 // Allocate a common symbol.
323
324 template<int size>
325 void
326 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
327 {
328   this->allocate_base_common(od);
329   this->value_ = value;
330 }
331
332 // The ""'s around str ensure str is a string literal, so sizeof works.
333 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
334
335 // Return true if this symbol should be added to the dynamic symbol
336 // table.
337
338 bool
339 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
340 {
341   // If the symbol is only present on plugin files, the plugin decided we
342   // don't need it.
343   if (!this->in_real_elf())
344     return false;
345
346   // If the symbol is used by a dynamic relocation, we need to add it.
347   if (this->needs_dynsym_entry())
348     return true;
349
350   // If this symbol's section is not added, the symbol need not be added. 
351   // The section may have been GCed.  Note that export_dynamic is being 
352   // overridden here.  This should not be done for shared objects.
353   if (parameters->options().gc_sections() 
354       && !parameters->options().shared()
355       && this->source() == Symbol::FROM_OBJECT
356       && !this->object()->is_dynamic())
357     {
358       Relobj* relobj = static_cast<Relobj*>(this->object());
359       bool is_ordinary;
360       unsigned int shndx = this->shndx(&is_ordinary);
361       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
362           && !relobj->is_section_included(shndx)
363           && !symtab->is_section_folded(relobj, shndx))
364         return false;
365     }
366
367   // If the symbol was forced dynamic in a --dynamic-list file
368   // or an --export-dynamic-symbol option, add it.
369   if (!this->is_from_dynobj()
370       && (parameters->options().in_dynamic_list(this->name())
371           || parameters->options().is_export_dynamic_symbol(this->name())))
372     {
373       if (!this->is_forced_local())
374         return true;
375       gold_warning(_("Cannot export local symbol '%s'"),
376                    this->demangled_name().c_str());
377       return false;
378     }
379
380   // If the symbol was forced local in a version script, do not add it.
381   if (this->is_forced_local())
382     return false;
383
384   // If dynamic-list-data was specified, add any STT_OBJECT.
385   if (parameters->options().dynamic_list_data()
386       && !this->is_from_dynobj()
387       && this->type() == elfcpp::STT_OBJECT)
388     return true;
389
390   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
391   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
392   if ((parameters->options().dynamic_list_cpp_new()
393        || parameters->options().dynamic_list_cpp_typeinfo())
394       && !this->is_from_dynobj())
395     {
396       // TODO(csilvers): We could probably figure out if we're an operator
397       //                 new/delete or typeinfo without the need to demangle.
398       char* demangled_name = cplus_demangle(this->name(),
399                                             DMGL_ANSI | DMGL_PARAMS);
400       if (demangled_name == NULL)
401         {
402           // Not a C++ symbol, so it can't satisfy these flags
403         }
404       else if (parameters->options().dynamic_list_cpp_new()
405                && (strprefix(demangled_name, "operator new")
406                    || strprefix(demangled_name, "operator delete")))
407         {
408           free(demangled_name);
409           return true;
410         }
411       else if (parameters->options().dynamic_list_cpp_typeinfo()
412                && (strprefix(demangled_name, "typeinfo name for")
413                    || strprefix(demangled_name, "typeinfo for")))
414         {
415           free(demangled_name);
416           return true;
417         }
418       else
419         free(demangled_name);
420     }
421
422   // If exporting all symbols or building a shared library,
423   // or the symbol should be globally unique (GNU_UNIQUE),
424   // and the symbol is defined in a regular object and is
425   // externally visible, we need to add it.
426   if ((parameters->options().export_dynamic()
427        || parameters->options().shared()
428        || (parameters->options().gnu_unique()
429            && this->binding() == elfcpp::STB_GNU_UNIQUE))
430       && !this->is_from_dynobj()
431       && !this->is_undefined()
432       && this->is_externally_visible())
433     return true;
434
435   return false;
436 }
437
438 // Return true if the final value of this symbol is known at link
439 // time.
440
441 bool
442 Symbol::final_value_is_known() const
443 {
444   // If we are not generating an executable, then no final values are
445   // known, since they will change at runtime, with the exception of
446   // TLS symbols in a position-independent executable.
447   if ((parameters->options().output_is_position_independent()
448        || parameters->options().relocatable())
449       && !(this->type() == elfcpp::STT_TLS
450            && parameters->options().pie()))
451     return false;
452
453   // If the symbol is not from an object file, and is not undefined,
454   // then it is defined, and known.
455   if (this->source_ != FROM_OBJECT)
456     {
457       if (this->source_ != IS_UNDEFINED)
458         return true;
459     }
460   else
461     {
462       // If the symbol is from a dynamic object, then the final value
463       // is not known.
464       if (this->object()->is_dynamic())
465         return false;
466
467       // If the symbol is not undefined (it is defined or common),
468       // then the final value is known.
469       if (!this->is_undefined())
470         return true;
471     }
472
473   // If the symbol is undefined, then whether the final value is known
474   // depends on whether we are doing a static link.  If we are doing a
475   // dynamic link, then the final value could be filled in at runtime.
476   // This could reasonably be the case for a weak undefined symbol.
477   return parameters->doing_static_link();
478 }
479
480 // Return the output section where this symbol is defined.
481
482 Output_section*
483 Symbol::output_section() const
484 {
485   switch (this->source_)
486     {
487     case FROM_OBJECT:
488       {
489         unsigned int shndx = this->u_.from_object.shndx;
490         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
491           {
492             gold_assert(!this->u_.from_object.object->is_dynamic());
493             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
494             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
495             return relobj->output_section(shndx);
496           }
497         return NULL;
498       }
499
500     case IN_OUTPUT_DATA:
501       return this->u_.in_output_data.output_data->output_section();
502
503     case IN_OUTPUT_SEGMENT:
504     case IS_CONSTANT:
505     case IS_UNDEFINED:
506       return NULL;
507
508     default:
509       gold_unreachable();
510     }
511 }
512
513 // Set the symbol's output section.  This is used for symbols defined
514 // in scripts.  This should only be called after the symbol table has
515 // been finalized.
516
517 void
518 Symbol::set_output_section(Output_section* os)
519 {
520   switch (this->source_)
521     {
522     case FROM_OBJECT:
523     case IN_OUTPUT_DATA:
524       gold_assert(this->output_section() == os);
525       break;
526     case IS_CONSTANT:
527       this->source_ = IN_OUTPUT_DATA;
528       this->u_.in_output_data.output_data = os;
529       this->u_.in_output_data.offset_is_from_end = false;
530       break;
531     case IN_OUTPUT_SEGMENT:
532     case IS_UNDEFINED:
533     default:
534       gold_unreachable();
535     }
536 }
537
538 // Set the symbol's output segment.  This is used for pre-defined
539 // symbols whose segments aren't known until after layout is done
540 // (e.g., __ehdr_start).
541
542 void
543 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
544 {
545   gold_assert(this->is_predefined_);
546   this->source_ = IN_OUTPUT_SEGMENT;
547   this->u_.in_output_segment.output_segment = os;
548   this->u_.in_output_segment.offset_base = base;
549 }
550
551 // Set the symbol to undefined.  This is used for pre-defined
552 // symbols whose segments aren't known until after layout is done
553 // (e.g., __ehdr_start).
554
555 void
556 Symbol::set_undefined()
557 {
558   this->source_ = IS_UNDEFINED;
559   this->is_predefined_ = false;
560 }
561
562 // Class Symbol_table.
563
564 Symbol_table::Symbol_table(unsigned int count,
565                            const Version_script_info& version_script)
566   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
567     forwarders_(), commons_(), tls_commons_(), small_commons_(),
568     large_commons_(), forced_locals_(), warnings_(),
569     version_script_(version_script), gc_(NULL), icf_(NULL),
570     target_symbols_()
571 {
572   namepool_.reserve(count);
573 }
574
575 Symbol_table::~Symbol_table()
576 {
577 }
578
579 // The symbol table key equality function.  This is called with
580 // Stringpool keys.
581
582 inline bool
583 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
584                                           const Symbol_table_key& k2) const
585 {
586   return k1.first == k2.first && k1.second == k2.second;
587 }
588
589 bool
590 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
591 {
592   return (parameters->options().icf_enabled()
593           && this->icf_->is_section_folded(obj, shndx));
594 }
595
596 // For symbols that have been listed with a -u or --export-dynamic-symbol
597 // option, add them to the work list to avoid gc'ing them.
598
599 void 
600 Symbol_table::gc_mark_undef_symbols(Layout* layout)
601 {
602   for (options::String_set::const_iterator p =
603          parameters->options().undefined_begin();
604        p != parameters->options().undefined_end();
605        ++p)
606     {
607       const char* name = p->c_str();
608       Symbol* sym = this->lookup(name);
609       gold_assert(sym != NULL);
610       if (sym->source() == Symbol::FROM_OBJECT 
611           && !sym->object()->is_dynamic())
612         {
613           this->gc_mark_symbol(sym);
614         }
615     }
616
617   for (options::String_set::const_iterator p =
618          parameters->options().export_dynamic_symbol_begin();
619        p != parameters->options().export_dynamic_symbol_end();
620        ++p)
621     {
622       const char* name = p->c_str();
623       Symbol* sym = this->lookup(name);
624       // It's not an error if a symbol named by --export-dynamic-symbol
625       // is undefined.
626       if (sym != NULL
627           && sym->source() == Symbol::FROM_OBJECT 
628           && !sym->object()->is_dynamic())
629         {
630           this->gc_mark_symbol(sym);
631         }
632     }
633
634   for (Script_options::referenced_const_iterator p =
635          layout->script_options()->referenced_begin();
636        p != layout->script_options()->referenced_end();
637        ++p)
638     {
639       Symbol* sym = this->lookup(p->c_str());
640       gold_assert(sym != NULL);
641       if (sym->source() == Symbol::FROM_OBJECT
642           && !sym->object()->is_dynamic())
643         {
644           this->gc_mark_symbol(sym);
645         }
646     }
647 }
648
649 void
650 Symbol_table::gc_mark_symbol(Symbol* sym)
651 {
652   // Add the object and section to the work list.
653   bool is_ordinary;
654   unsigned int shndx = sym->shndx(&is_ordinary);
655   if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
656     {
657       gold_assert(this->gc_!= NULL);
658       Relobj* relobj = static_cast<Relobj*>(sym->object());
659       this->gc_->worklist().push_back(Section_id(relobj, shndx));
660     }
661   parameters->target().gc_mark_symbol(this, sym);
662 }
663
664 // When doing garbage collection, keep symbols that have been seen in
665 // dynamic objects.
666 inline void 
667 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
668 {
669   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
670       && !sym->object()->is_dynamic())
671     this->gc_mark_symbol(sym);
672 }
673
674 // Make TO a symbol which forwards to FROM.
675
676 void
677 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
678 {
679   gold_assert(from != to);
680   gold_assert(!from->is_forwarder() && !to->is_forwarder());
681   this->forwarders_[from] = to;
682   from->set_forwarder();
683 }
684
685 // Resolve the forwards from FROM, returning the real symbol.
686
687 Symbol*
688 Symbol_table::resolve_forwards(const Symbol* from) const
689 {
690   gold_assert(from->is_forwarder());
691   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
692     this->forwarders_.find(from);
693   gold_assert(p != this->forwarders_.end());
694   return p->second;
695 }
696
697 // Look up a symbol by name.
698
699 Symbol*
700 Symbol_table::lookup(const char* name, const char* version) const
701 {
702   Stringpool::Key name_key;
703   name = this->namepool_.find(name, &name_key);
704   if (name == NULL)
705     return NULL;
706
707   Stringpool::Key version_key = 0;
708   if (version != NULL)
709     {
710       version = this->namepool_.find(version, &version_key);
711       if (version == NULL)
712         return NULL;
713     }
714
715   Symbol_table_key key(name_key, version_key);
716   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
717   if (p == this->table_.end())
718     return NULL;
719   return p->second;
720 }
721
722 // Resolve a Symbol with another Symbol.  This is only used in the
723 // unusual case where there are references to both an unversioned
724 // symbol and a symbol with a version, and we then discover that that
725 // version is the default version.  Because this is unusual, we do
726 // this the slow way, by converting back to an ELF symbol.
727
728 template<int size, bool big_endian>
729 void
730 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
731 {
732   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
733   elfcpp::Sym_write<size, big_endian> esym(buf);
734   // We don't bother to set the st_name or the st_shndx field.
735   esym.put_st_value(from->value());
736   esym.put_st_size(from->symsize());
737   esym.put_st_info(from->binding(), from->type());
738   esym.put_st_other(from->visibility(), from->nonvis());
739   bool is_ordinary;
740   unsigned int shndx = from->shndx(&is_ordinary);
741   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
742                 from->version(), true);
743   if (from->in_reg())
744     to->set_in_reg();
745   if (from->in_dyn())
746     to->set_in_dyn();
747   if (parameters->options().gc_sections())
748     this->gc_mark_dyn_syms(to);
749 }
750
751 // Record that a symbol is forced to be local by a version script or
752 // by visibility.
753
754 void
755 Symbol_table::force_local(Symbol* sym)
756 {
757   if (!sym->is_defined() && !sym->is_common())
758     return;
759   if (sym->is_forced_local())
760     {
761       // We already got this one.
762       return;
763     }
764   sym->set_is_forced_local();
765   this->forced_locals_.push_back(sym);
766 }
767
768 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
769 // is only called for undefined symbols, when at least one --wrap
770 // option was used.
771
772 const char*
773 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
774 {
775   // For some targets, we need to ignore a specific character when
776   // wrapping, and add it back later.
777   char prefix = '\0';
778   if (name[0] == parameters->target().wrap_char())
779     {
780       prefix = name[0];
781       ++name;
782     }
783
784   if (parameters->options().is_wrap(name))
785     {
786       // Turn NAME into __wrap_NAME.
787       std::string s;
788       if (prefix != '\0')
789         s += prefix;
790       s += "__wrap_";
791       s += name;
792
793       // This will give us both the old and new name in NAMEPOOL_, but
794       // that is OK.  Only the versions we need will wind up in the
795       // real string table in the output file.
796       return this->namepool_.add(s.c_str(), true, name_key);
797     }
798
799   const char* const real_prefix = "__real_";
800   const size_t real_prefix_length = strlen(real_prefix);
801   if (strncmp(name, real_prefix, real_prefix_length) == 0
802       && parameters->options().is_wrap(name + real_prefix_length))
803     {
804       // Turn __real_NAME into NAME.
805       std::string s;
806       if (prefix != '\0')
807         s += prefix;
808       s += name + real_prefix_length;
809       return this->namepool_.add(s.c_str(), true, name_key);
810     }
811
812   return name;
813 }
814
815 // This is called when we see a symbol NAME/VERSION, and the symbol
816 // already exists in the symbol table, and VERSION is marked as being
817 // the default version.  SYM is the NAME/VERSION symbol we just added.
818 // DEFAULT_IS_NEW is true if this is the first time we have seen the
819 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
820
821 template<int size, bool big_endian>
822 void
823 Symbol_table::define_default_version(Sized_symbol<size>* sym,
824                                      bool default_is_new,
825                                      Symbol_table_type::iterator pdef)
826 {
827   if (default_is_new)
828     {
829       // This is the first time we have seen NAME/NULL.  Make
830       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
831       // version.
832       pdef->second = sym;
833       sym->set_is_default();
834     }
835   else if (pdef->second == sym)
836     {
837       // NAME/NULL already points to NAME/VERSION.  Don't mark the
838       // symbol as the default if it is not already the default.
839     }
840   else
841     {
842       // This is the unfortunate case where we already have entries
843       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
844       // NAME/VERSION where VERSION is the default version.  We have
845       // already resolved this new symbol with the existing
846       // NAME/VERSION symbol.
847
848       // It's possible that NAME/NULL and NAME/VERSION are both
849       // defined in regular objects.  This can only happen if one
850       // object file defines foo and another defines foo@@ver.  This
851       // is somewhat obscure, but we call it a multiple definition
852       // error.
853
854       // It's possible that NAME/NULL actually has a version, in which
855       // case it won't be the same as VERSION.  This happens with
856       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
857       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
858       // then see an unadorned t2_2 in an object file and give it
859       // version VER1 from the version script.  This looks like a
860       // default definition for VER1, so it looks like we should merge
861       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
862       // not obvious that this is an error, either.  So we just punt.
863
864       // If one of the symbols has non-default visibility, and the
865       // other is defined in a shared object, then they are different
866       // symbols.
867
868       // Otherwise, we just resolve the symbols as though they were
869       // the same.
870
871       if (pdef->second->version() != NULL)
872         gold_assert(pdef->second->version() != sym->version());
873       else if (sym->visibility() != elfcpp::STV_DEFAULT
874                && pdef->second->is_from_dynobj())
875         ;
876       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
877                && sym->is_from_dynobj())
878         ;
879       else
880         {
881           const Sized_symbol<size>* symdef;
882           symdef = this->get_sized_symbol<size>(pdef->second);
883           Symbol_table::resolve<size, big_endian>(sym, symdef);
884           this->make_forwarder(pdef->second, sym);
885           pdef->second = sym;
886           sym->set_is_default();
887         }
888     }
889 }
890
891 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
892 // name and VERSION is the version; both are canonicalized.  DEF is
893 // whether this is the default version.  ST_SHNDX is the symbol's
894 // section index; IS_ORDINARY is whether this is a normal section
895 // rather than a special code.
896
897 // If IS_DEFAULT_VERSION is true, then this is the definition of a
898 // default version of a symbol.  That means that any lookup of
899 // NAME/NULL and any lookup of NAME/VERSION should always return the
900 // same symbol.  This is obvious for references, but in particular we
901 // want to do this for definitions: overriding NAME/NULL should also
902 // override NAME/VERSION.  If we don't do that, it would be very hard
903 // to override functions in a shared library which uses versioning.
904
905 // We implement this by simply making both entries in the hash table
906 // point to the same Symbol structure.  That is easy enough if this is
907 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
908 // that we have seen both already, in which case they will both have
909 // independent entries in the symbol table.  We can't simply change
910 // the symbol table entry, because we have pointers to the entries
911 // attached to the object files.  So we mark the entry attached to the
912 // object file as a forwarder, and record it in the forwarders_ map.
913 // Note that entries in the hash table will never be marked as
914 // forwarders.
915 //
916 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
917 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
918 // for a special section code.  ST_SHNDX may be modified if the symbol
919 // is defined in a section being discarded.
920
921 template<int size, bool big_endian>
922 Sized_symbol<size>*
923 Symbol_table::add_from_object(Object* object,
924                               const char* name,
925                               Stringpool::Key name_key,
926                               const char* version,
927                               Stringpool::Key version_key,
928                               bool is_default_version,
929                               const elfcpp::Sym<size, big_endian>& sym,
930                               unsigned int st_shndx,
931                               bool is_ordinary,
932                               unsigned int orig_st_shndx)
933 {
934   // Print a message if this symbol is being traced.
935   if (parameters->options().is_trace_symbol(name))
936     {
937       if (orig_st_shndx == elfcpp::SHN_UNDEF)
938         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
939       else
940         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
941     }
942
943   // For an undefined symbol, we may need to adjust the name using
944   // --wrap.
945   if (orig_st_shndx == elfcpp::SHN_UNDEF
946       && parameters->options().any_wrap())
947     {
948       const char* wrap_name = this->wrap_symbol(name, &name_key);
949       if (wrap_name != name)
950         {
951           // If we see a reference to malloc with version GLIBC_2.0,
952           // and we turn it into a reference to __wrap_malloc, then we
953           // discard the version number.  Otherwise the user would be
954           // required to specify the correct version for
955           // __wrap_malloc.
956           version = NULL;
957           version_key = 0;
958           name = wrap_name;
959         }
960     }
961
962   Symbol* const snull = NULL;
963   std::pair<typename Symbol_table_type::iterator, bool> ins =
964     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
965                                        snull));
966
967   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
968     std::make_pair(this->table_.end(), false);
969   if (is_default_version)
970     {
971       const Stringpool::Key vnull_key = 0;
972       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
973                                                                      vnull_key),
974                                                       snull));
975     }
976
977   // ins.first: an iterator, which is a pointer to a pair.
978   // ins.first->first: the key (a pair of name and version).
979   // ins.first->second: the value (Symbol*).
980   // ins.second: true if new entry was inserted, false if not.
981
982   Sized_symbol<size>* ret;
983   bool was_undefined;
984   bool was_common;
985   if (!ins.second)
986     {
987       // We already have an entry for NAME/VERSION.
988       ret = this->get_sized_symbol<size>(ins.first->second);
989       gold_assert(ret != NULL);
990
991       was_undefined = ret->is_undefined();
992       // Commons from plugins are just placeholders.
993       was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
994
995       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
996                     version, is_default_version);
997       if (parameters->options().gc_sections())
998         this->gc_mark_dyn_syms(ret);
999
1000       if (is_default_version)
1001         this->define_default_version<size, big_endian>(ret, insdefault.second,
1002                                                        insdefault.first);
1003       else
1004         {
1005           bool dummy;
1006           if (version != NULL
1007               && ret->source() == Symbol::FROM_OBJECT
1008               && ret->object() == object
1009               && is_ordinary
1010               && ret->shndx(&dummy) == st_shndx
1011               && ret->is_default())
1012             {
1013               // We have seen NAME/VERSION already, and marked it as the
1014               // default version, but now we see a definition for
1015               // NAME/VERSION that is not the default version. This can
1016               // happen when the assembler generates two symbols for
1017               // a symbol as a result of a ".symver foo,foo@VER"
1018               // directive. We see the first unversioned symbol and
1019               // we may mark it as the default version (from a
1020               // version script); then we see the second versioned
1021               // symbol and we need to override the first.
1022               // In any other case, the two symbols should have generated
1023               // a multiple definition error.
1024               // (See PR gold/18703.)
1025               ret->set_is_not_default();
1026               const Stringpool::Key vnull_key = 0;
1027               this->table_.erase(std::make_pair(name_key, vnull_key));
1028             }
1029         }
1030     }
1031   else
1032     {
1033       // This is the first time we have seen NAME/VERSION.
1034       gold_assert(ins.first->second == NULL);
1035
1036       if (is_default_version && !insdefault.second)
1037         {
1038           // We already have an entry for NAME/NULL.  If we override
1039           // it, then change it to NAME/VERSION.
1040           ret = this->get_sized_symbol<size>(insdefault.first->second);
1041
1042           was_undefined = ret->is_undefined();
1043           // Commons from plugins are just placeholders.
1044           was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1045
1046           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1047                         version, is_default_version);
1048           if (parameters->options().gc_sections())
1049             this->gc_mark_dyn_syms(ret);
1050           ins.first->second = ret;
1051         }
1052       else
1053         {
1054           was_undefined = false;
1055           was_common = false;
1056
1057           Sized_target<size, big_endian>* target =
1058             parameters->sized_target<size, big_endian>();
1059           if (!target->has_make_symbol())
1060             ret = new Sized_symbol<size>();
1061           else
1062             {
1063               ret = target->make_symbol(name, sym.get_st_type(), object,
1064                                         st_shndx, sym.get_st_value());
1065               if (ret == NULL)
1066                 {
1067                   // This means that we don't want a symbol table
1068                   // entry after all.
1069                   if (!is_default_version)
1070                     this->table_.erase(ins.first);
1071                   else
1072                     {
1073                       this->table_.erase(insdefault.first);
1074                       // Inserting INSDEFAULT invalidated INS.
1075                       this->table_.erase(std::make_pair(name_key,
1076                                                         version_key));
1077                     }
1078                   return NULL;
1079                 }
1080             }
1081
1082           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1083
1084           ins.first->second = ret;
1085           if (is_default_version)
1086             {
1087               // This is the first time we have seen NAME/NULL.  Point
1088               // it at the new entry for NAME/VERSION.
1089               gold_assert(insdefault.second);
1090               insdefault.first->second = ret;
1091             }
1092         }
1093
1094       if (is_default_version)
1095         ret->set_is_default();
1096     }
1097
1098   // Record every time we see a new undefined symbol, to speed up
1099   // archive groups.
1100   if (!was_undefined && ret->is_undefined())
1101     {
1102       ++this->saw_undefined_;
1103       if (parameters->options().has_plugins())
1104         parameters->options().plugins()->new_undefined_symbol(ret);
1105     }
1106
1107   // Keep track of common symbols, to speed up common symbol
1108   // allocation.  Don't record commons from plugin objects;
1109   // we need to wait until we see the real symbol in the
1110   // replacement file.
1111   if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1112     {
1113       if (ret->type() == elfcpp::STT_TLS)
1114         this->tls_commons_.push_back(ret);
1115       else if (!is_ordinary
1116                && st_shndx == parameters->target().small_common_shndx())
1117         this->small_commons_.push_back(ret);
1118       else if (!is_ordinary
1119                && st_shndx == parameters->target().large_common_shndx())
1120         this->large_commons_.push_back(ret);
1121       else
1122         this->commons_.push_back(ret);
1123     }
1124
1125   // If we're not doing a relocatable link, then any symbol with
1126   // hidden or internal visibility is local.
1127   if ((ret->visibility() == elfcpp::STV_HIDDEN
1128        || ret->visibility() == elfcpp::STV_INTERNAL)
1129       && (ret->binding() == elfcpp::STB_GLOBAL
1130           || ret->binding() == elfcpp::STB_GNU_UNIQUE
1131           || ret->binding() == elfcpp::STB_WEAK)
1132       && !parameters->options().relocatable())
1133     this->force_local(ret);
1134
1135   return ret;
1136 }
1137
1138 // Add all the symbols in a relocatable object to the hash table.
1139
1140 template<int size, bool big_endian>
1141 void
1142 Symbol_table::add_from_relobj(
1143     Sized_relobj_file<size, big_endian>* relobj,
1144     const unsigned char* syms,
1145     size_t count,
1146     size_t symndx_offset,
1147     const char* sym_names,
1148     size_t sym_name_size,
1149     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1150     size_t* defined)
1151 {
1152   *defined = 0;
1153
1154   gold_assert(size == parameters->target().get_size());
1155
1156   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1157
1158   const bool just_symbols = relobj->just_symbols();
1159
1160   const unsigned char* p = syms;
1161   for (size_t i = 0; i < count; ++i, p += sym_size)
1162     {
1163       (*sympointers)[i] = NULL;
1164
1165       elfcpp::Sym<size, big_endian> sym(p);
1166
1167       unsigned int st_name = sym.get_st_name();
1168       if (st_name >= sym_name_size)
1169         {
1170           relobj->error(_("bad global symbol name offset %u at %zu"),
1171                         st_name, i);
1172           continue;
1173         }
1174
1175       const char* name = sym_names + st_name;
1176
1177       if (!parameters->options().relocatable()
1178           && strcmp (name, "__gnu_lto_slim") == 0)
1179         gold_info(_("%s: plugin needed to handle lto object"),
1180                   relobj->name().c_str());
1181
1182       bool is_ordinary;
1183       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1184                                                        sym.get_st_shndx(),
1185                                                        &is_ordinary);
1186       unsigned int orig_st_shndx = st_shndx;
1187       if (!is_ordinary)
1188         orig_st_shndx = elfcpp::SHN_UNDEF;
1189
1190       if (st_shndx != elfcpp::SHN_UNDEF)
1191         ++*defined;
1192
1193       // A symbol defined in a section which we are not including must
1194       // be treated as an undefined symbol.
1195       bool is_defined_in_discarded_section = false;
1196       if (st_shndx != elfcpp::SHN_UNDEF
1197           && is_ordinary
1198           && !relobj->is_section_included(st_shndx)
1199           && !this->is_section_folded(relobj, st_shndx))
1200         {
1201           st_shndx = elfcpp::SHN_UNDEF;
1202           is_defined_in_discarded_section = true;
1203         }
1204
1205       // In an object file, an '@' in the name separates the symbol
1206       // name from the version name.  If there are two '@' characters,
1207       // this is the default version.
1208       const char* ver = strchr(name, '@');
1209       Stringpool::Key ver_key = 0;
1210       int namelen = 0;
1211       // IS_DEFAULT_VERSION: is the version default?
1212       // IS_FORCED_LOCAL: is the symbol forced local?
1213       bool is_default_version = false;
1214       bool is_forced_local = false;
1215
1216       // FIXME: For incremental links, we don't store version information,
1217       // so we need to ignore version symbols for now.
1218       if (parameters->incremental_update() && ver != NULL)
1219         {
1220           namelen = ver - name;
1221           ver = NULL;
1222         }
1223
1224       if (ver != NULL)
1225         {
1226           // The symbol name is of the form foo@VERSION or foo@@VERSION
1227           namelen = ver - name;
1228           ++ver;
1229           if (*ver == '@')
1230             {
1231               is_default_version = true;
1232               ++ver;
1233             }
1234           ver = this->namepool_.add(ver, true, &ver_key);
1235         }
1236       // We don't want to assign a version to an undefined symbol,
1237       // even if it is listed in the version script.  FIXME: What
1238       // about a common symbol?
1239       else
1240         {
1241           namelen = strlen(name);
1242           if (!this->version_script_.empty()
1243               && st_shndx != elfcpp::SHN_UNDEF)
1244             {
1245               // The symbol name did not have a version, but the
1246               // version script may assign a version anyway.
1247               std::string version;
1248               bool is_global;
1249               if (this->version_script_.get_symbol_version(name, &version,
1250                                                            &is_global))
1251                 {
1252                   if (!is_global)
1253                     is_forced_local = true;
1254                   else if (!version.empty())
1255                     {
1256                       ver = this->namepool_.add_with_length(version.c_str(),
1257                                                             version.length(),
1258                                                             true,
1259                                                             &ver_key);
1260                       is_default_version = true;
1261                     }
1262                 }
1263             }
1264         }
1265
1266       elfcpp::Sym<size, big_endian>* psym = &sym;
1267       unsigned char symbuf[sym_size];
1268       elfcpp::Sym<size, big_endian> sym2(symbuf);
1269       if (just_symbols)
1270         {
1271           memcpy(symbuf, p, sym_size);
1272           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1273           if (orig_st_shndx != elfcpp::SHN_UNDEF
1274               && is_ordinary
1275               && relobj->e_type() == elfcpp::ET_REL)
1276             {
1277               // Symbol values in relocatable object files are section
1278               // relative.  This is normally what we want, but since here
1279               // we are converting the symbol to absolute we need to add
1280               // the section address.  The section address in an object
1281               // file is normally zero, but people can use a linker
1282               // script to change it.
1283               sw.put_st_value(sym.get_st_value()
1284                               + relobj->section_address(orig_st_shndx));
1285             }
1286           st_shndx = elfcpp::SHN_ABS;
1287           is_ordinary = false;
1288           psym = &sym2;
1289         }
1290
1291       // Fix up visibility if object has no-export set.
1292       if (relobj->no_export()
1293           && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1294         {
1295           // We may have copied symbol already above.
1296           if (psym != &sym2)
1297             {
1298               memcpy(symbuf, p, sym_size);
1299               psym = &sym2;
1300             }
1301
1302           elfcpp::STV visibility = sym2.get_st_visibility();
1303           if (visibility == elfcpp::STV_DEFAULT
1304               || visibility == elfcpp::STV_PROTECTED)
1305             {
1306               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1307               unsigned char nonvis = sym2.get_st_nonvis();
1308               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1309             }
1310         }
1311
1312       Stringpool::Key name_key;
1313       name = this->namepool_.add_with_length(name, namelen, true,
1314                                              &name_key);
1315
1316       Sized_symbol<size>* res;
1317       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1318                                   is_default_version, *psym, st_shndx,
1319                                   is_ordinary, orig_st_shndx);
1320       
1321       if (is_forced_local)
1322         this->force_local(res);
1323
1324       // Do not treat this symbol as garbage if this symbol will be
1325       // exported to the dynamic symbol table.  This is true when
1326       // building a shared library or using --export-dynamic and
1327       // the symbol is externally visible.
1328       if (parameters->options().gc_sections()
1329           && res->is_externally_visible()
1330           && !res->is_from_dynobj()
1331           && (parameters->options().shared()
1332               || parameters->options().export_dynamic()
1333               || parameters->options().in_dynamic_list(res->name())))
1334         this->gc_mark_symbol(res);
1335
1336       if (is_defined_in_discarded_section)
1337         res->set_is_defined_in_discarded_section();
1338
1339       (*sympointers)[i] = res;
1340     }
1341 }
1342
1343 // Add a symbol from a plugin-claimed file.
1344
1345 template<int size, bool big_endian>
1346 Symbol*
1347 Symbol_table::add_from_pluginobj(
1348     Sized_pluginobj<size, big_endian>* obj,
1349     const char* name,
1350     const char* ver,
1351     elfcpp::Sym<size, big_endian>* sym)
1352 {
1353   unsigned int st_shndx = sym->get_st_shndx();
1354   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1355
1356   Stringpool::Key ver_key = 0;
1357   bool is_default_version = false;
1358   bool is_forced_local = false;
1359
1360   if (ver != NULL)
1361     {
1362       ver = this->namepool_.add(ver, true, &ver_key);
1363     }
1364   // We don't want to assign a version to an undefined symbol,
1365   // even if it is listed in the version script.  FIXME: What
1366   // about a common symbol?
1367   else
1368     {
1369       if (!this->version_script_.empty()
1370           && st_shndx != elfcpp::SHN_UNDEF)
1371         {
1372           // The symbol name did not have a version, but the
1373           // version script may assign a version anyway.
1374           std::string version;
1375           bool is_global;
1376           if (this->version_script_.get_symbol_version(name, &version,
1377                                                        &is_global))
1378             {
1379               if (!is_global)
1380                 is_forced_local = true;
1381               else if (!version.empty())
1382                 {
1383                   ver = this->namepool_.add_with_length(version.c_str(),
1384                                                         version.length(),
1385                                                         true,
1386                                                         &ver_key);
1387                   is_default_version = true;
1388                 }
1389             }
1390         }
1391     }
1392
1393   Stringpool::Key name_key;
1394   name = this->namepool_.add(name, true, &name_key);
1395
1396   Sized_symbol<size>* res;
1397   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1398                               is_default_version, *sym, st_shndx,
1399                               is_ordinary, st_shndx);
1400
1401   if (is_forced_local)
1402     this->force_local(res);
1403
1404   return res;
1405 }
1406
1407 // Add all the symbols in a dynamic object to the hash table.
1408
1409 template<int size, bool big_endian>
1410 void
1411 Symbol_table::add_from_dynobj(
1412     Sized_dynobj<size, big_endian>* dynobj,
1413     const unsigned char* syms,
1414     size_t count,
1415     const char* sym_names,
1416     size_t sym_name_size,
1417     const unsigned char* versym,
1418     size_t versym_size,
1419     const std::vector<const char*>* version_map,
1420     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1421     size_t* defined)
1422 {
1423   *defined = 0;
1424
1425   gold_assert(size == parameters->target().get_size());
1426
1427   if (dynobj->just_symbols())
1428     {
1429       gold_error(_("--just-symbols does not make sense with a shared object"));
1430       return;
1431     }
1432
1433   // FIXME: For incremental links, we don't store version information,
1434   // so we need to ignore version symbols for now.
1435   if (parameters->incremental_update())
1436     versym = NULL;
1437
1438   if (versym != NULL && versym_size / 2 < count)
1439     {
1440       dynobj->error(_("too few symbol versions"));
1441       return;
1442     }
1443
1444   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1445
1446   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1447   // weak aliases.  This is necessary because if the dynamic object
1448   // provides the same variable under two names, one of which is a
1449   // weak definition, and the regular object refers to the weak
1450   // definition, we have to put both the weak definition and the
1451   // strong definition into the dynamic symbol table.  Given a weak
1452   // definition, the only way that we can find the corresponding
1453   // strong definition, if any, is to search the symbol table.
1454   std::vector<Sized_symbol<size>*> object_symbols;
1455
1456   const unsigned char* p = syms;
1457   const unsigned char* vs = versym;
1458   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1459     {
1460       elfcpp::Sym<size, big_endian> sym(p);
1461
1462       if (sympointers != NULL)
1463         (*sympointers)[i] = NULL;
1464
1465       // Ignore symbols with local binding or that have
1466       // internal or hidden visibility.
1467       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1468           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1469           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1470         continue;
1471
1472       // A protected symbol in a shared library must be treated as a
1473       // normal symbol when viewed from outside the shared library.
1474       // Implement this by overriding the visibility here.
1475       // Likewise, an IFUNC symbol in a shared library must be treated
1476       // as a normal FUNC symbol.
1477       elfcpp::Sym<size, big_endian>* psym = &sym;
1478       unsigned char symbuf[sym_size];
1479       elfcpp::Sym<size, big_endian> sym2(symbuf);
1480       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1481           || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1482         {
1483           memcpy(symbuf, p, sym_size);
1484           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1485           if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1486             sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1487           if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1488             sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1489           psym = &sym2;
1490         }
1491
1492       unsigned int st_name = psym->get_st_name();
1493       if (st_name >= sym_name_size)
1494         {
1495           dynobj->error(_("bad symbol name offset %u at %zu"),
1496                         st_name, i);
1497           continue;
1498         }
1499
1500       const char* name = sym_names + st_name;
1501
1502       bool is_ordinary;
1503       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1504                                                        &is_ordinary);
1505
1506       if (st_shndx != elfcpp::SHN_UNDEF)
1507         ++*defined;
1508
1509       Sized_symbol<size>* res;
1510
1511       if (versym == NULL)
1512         {
1513           Stringpool::Key name_key;
1514           name = this->namepool_.add(name, true, &name_key);
1515           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1516                                       false, *psym, st_shndx, is_ordinary,
1517                                       st_shndx);
1518         }
1519       else
1520         {
1521           // Read the version information.
1522
1523           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1524
1525           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1526           v &= elfcpp::VERSYM_VERSION;
1527
1528           // The Sun documentation says that V can be VER_NDX_LOCAL,
1529           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1530           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1531           // The old GNU linker will happily generate VER_NDX_LOCAL
1532           // for an undefined symbol.  I don't know what the Sun
1533           // linker will generate.
1534
1535           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1536               && st_shndx != elfcpp::SHN_UNDEF)
1537             {
1538               // This symbol should not be visible outside the object.
1539               continue;
1540             }
1541
1542           // At this point we are definitely going to add this symbol.
1543           Stringpool::Key name_key;
1544           name = this->namepool_.add(name, true, &name_key);
1545
1546           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1547               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1548             {
1549               // This symbol does not have a version.
1550               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1551                                           false, *psym, st_shndx, is_ordinary,
1552                                           st_shndx);
1553             }
1554           else
1555             {
1556               if (v >= version_map->size())
1557                 {
1558                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1559                                 i, v);
1560                   continue;
1561                 }
1562
1563               const char* version = (*version_map)[v];
1564               if (version == NULL)
1565                 {
1566                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1567                                 i, v);
1568                   continue;
1569                 }
1570
1571               Stringpool::Key version_key;
1572               version = this->namepool_.add(version, true, &version_key);
1573
1574               // If this is an absolute symbol, and the version name
1575               // and symbol name are the same, then this is the
1576               // version definition symbol.  These symbols exist to
1577               // support using -u to pull in particular versions.  We
1578               // do not want to record a version for them.
1579               if (st_shndx == elfcpp::SHN_ABS
1580                   && !is_ordinary
1581                   && name_key == version_key)
1582                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1583                                             false, *psym, st_shndx, is_ordinary,
1584                                             st_shndx);
1585               else
1586                 {
1587                   const bool is_default_version =
1588                     !hidden && st_shndx != elfcpp::SHN_UNDEF;
1589                   res = this->add_from_object(dynobj, name, name_key, version,
1590                                               version_key, is_default_version,
1591                                               *psym, st_shndx,
1592                                               is_ordinary, st_shndx);
1593                 }
1594             }
1595         }
1596
1597       // Note that it is possible that RES was overridden by an
1598       // earlier object, in which case it can't be aliased here.
1599       if (st_shndx != elfcpp::SHN_UNDEF
1600           && is_ordinary
1601           && psym->get_st_type() == elfcpp::STT_OBJECT
1602           && res->source() == Symbol::FROM_OBJECT
1603           && res->object() == dynobj)
1604         object_symbols.push_back(res);
1605
1606       if (sympointers != NULL)
1607         (*sympointers)[i] = res;
1608     }
1609
1610   this->record_weak_aliases(&object_symbols);
1611 }
1612
1613 // Add a symbol from a incremental object file.
1614
1615 template<int size, bool big_endian>
1616 Sized_symbol<size>*
1617 Symbol_table::add_from_incrobj(
1618     Object* obj,
1619     const char* name,
1620     const char* ver,
1621     elfcpp::Sym<size, big_endian>* sym)
1622 {
1623   unsigned int st_shndx = sym->get_st_shndx();
1624   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1625
1626   Stringpool::Key ver_key = 0;
1627   bool is_default_version = false;
1628   bool is_forced_local = false;
1629
1630   Stringpool::Key name_key;
1631   name = this->namepool_.add(name, true, &name_key);
1632
1633   Sized_symbol<size>* res;
1634   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1635                               is_default_version, *sym, st_shndx,
1636                               is_ordinary, st_shndx);
1637
1638   if (is_forced_local)
1639     this->force_local(res);
1640
1641   return res;
1642 }
1643
1644 // This is used to sort weak aliases.  We sort them first by section
1645 // index, then by offset, then by weak ahead of strong.
1646
1647 template<int size>
1648 class Weak_alias_sorter
1649 {
1650  public:
1651   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1652 };
1653
1654 template<int size>
1655 bool
1656 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1657                                     const Sized_symbol<size>* s2) const
1658 {
1659   bool is_ordinary;
1660   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1661   gold_assert(is_ordinary);
1662   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1663   gold_assert(is_ordinary);
1664   if (s1_shndx != s2_shndx)
1665     return s1_shndx < s2_shndx;
1666
1667   if (s1->value() != s2->value())
1668     return s1->value() < s2->value();
1669   if (s1->binding() != s2->binding())
1670     {
1671       if (s1->binding() == elfcpp::STB_WEAK)
1672         return true;
1673       if (s2->binding() == elfcpp::STB_WEAK)
1674         return false;
1675     }
1676   return std::string(s1->name()) < std::string(s2->name());
1677 }
1678
1679 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1680 // for any weak aliases, and record them so that if we add the weak
1681 // alias to the dynamic symbol table, we also add the corresponding
1682 // strong symbol.
1683
1684 template<int size>
1685 void
1686 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1687 {
1688   // Sort the vector by section index, then by offset, then by weak
1689   // ahead of strong.
1690   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1691
1692   // Walk through the vector.  For each weak definition, record
1693   // aliases.
1694   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1695          symbols->begin();
1696        p != symbols->end();
1697        ++p)
1698     {
1699       if ((*p)->binding() != elfcpp::STB_WEAK)
1700         continue;
1701
1702       // Build a circular list of weak aliases.  Each symbol points to
1703       // the next one in the circular list.
1704
1705       Sized_symbol<size>* from_sym = *p;
1706       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1707       for (q = p + 1; q != symbols->end(); ++q)
1708         {
1709           bool dummy;
1710           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1711               || (*q)->value() != from_sym->value())
1712             break;
1713
1714           this->weak_aliases_[from_sym] = *q;
1715           from_sym->set_has_alias();
1716           from_sym = *q;
1717         }
1718
1719       if (from_sym != *p)
1720         {
1721           this->weak_aliases_[from_sym] = *p;
1722           from_sym->set_has_alias();
1723         }
1724
1725       p = q - 1;
1726     }
1727 }
1728
1729 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1730 // true, then only create the symbol if there is a reference to it.
1731 // If this does not return NULL, it sets *POLDSYM to the existing
1732 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1733 // resolve the newly created symbol to the old one.  This
1734 // canonicalizes *PNAME and *PVERSION.
1735
1736 template<int size, bool big_endian>
1737 Sized_symbol<size>*
1738 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1739                                     bool only_if_ref,
1740                                     Sized_symbol<size>** poldsym,
1741                                     bool* resolve_oldsym)
1742 {
1743   *resolve_oldsym = false;
1744   *poldsym = NULL;
1745
1746   // If the caller didn't give us a version, see if we get one from
1747   // the version script.
1748   std::string v;
1749   bool is_default_version = false;
1750   if (*pversion == NULL)
1751     {
1752       bool is_global;
1753       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1754         {
1755           if (is_global && !v.empty())
1756             {
1757               *pversion = v.c_str();
1758               // If we get the version from a version script, then we
1759               // are also the default version.
1760               is_default_version = true;
1761             }
1762         }
1763     }
1764
1765   Symbol* oldsym;
1766   Sized_symbol<size>* sym;
1767
1768   bool add_to_table = false;
1769   typename Symbol_table_type::iterator add_loc = this->table_.end();
1770   bool add_def_to_table = false;
1771   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1772
1773   if (only_if_ref)
1774     {
1775       oldsym = this->lookup(*pname, *pversion);
1776       if (oldsym == NULL && is_default_version)
1777         oldsym = this->lookup(*pname, NULL);
1778       if (oldsym == NULL || !oldsym->is_undefined())
1779         return NULL;
1780
1781       *pname = oldsym->name();
1782       if (is_default_version)
1783         *pversion = this->namepool_.add(*pversion, true, NULL);
1784       else
1785         *pversion = oldsym->version();
1786     }
1787   else
1788     {
1789       // Canonicalize NAME and VERSION.
1790       Stringpool::Key name_key;
1791       *pname = this->namepool_.add(*pname, true, &name_key);
1792
1793       Stringpool::Key version_key = 0;
1794       if (*pversion != NULL)
1795         *pversion = this->namepool_.add(*pversion, true, &version_key);
1796
1797       Symbol* const snull = NULL;
1798       std::pair<typename Symbol_table_type::iterator, bool> ins =
1799         this->table_.insert(std::make_pair(std::make_pair(name_key,
1800                                                           version_key),
1801                                            snull));
1802
1803       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1804         std::make_pair(this->table_.end(), false);
1805       if (is_default_version)
1806         {
1807           const Stringpool::Key vnull = 0;
1808           insdefault =
1809             this->table_.insert(std::make_pair(std::make_pair(name_key,
1810                                                               vnull),
1811                                                snull));
1812         }
1813
1814       if (!ins.second)
1815         {
1816           // We already have a symbol table entry for NAME/VERSION.
1817           oldsym = ins.first->second;
1818           gold_assert(oldsym != NULL);
1819
1820           if (is_default_version)
1821             {
1822               Sized_symbol<size>* soldsym =
1823                 this->get_sized_symbol<size>(oldsym);
1824               this->define_default_version<size, big_endian>(soldsym,
1825                                                              insdefault.second,
1826                                                              insdefault.first);
1827             }
1828         }
1829       else
1830         {
1831           // We haven't seen this symbol before.
1832           gold_assert(ins.first->second == NULL);
1833
1834           add_to_table = true;
1835           add_loc = ins.first;
1836
1837           if (is_default_version && !insdefault.second)
1838             {
1839               // We are adding NAME/VERSION, and it is the default
1840               // version.  We already have an entry for NAME/NULL.
1841               oldsym = insdefault.first->second;
1842               *resolve_oldsym = true;
1843             }
1844           else
1845             {
1846               oldsym = NULL;
1847
1848               if (is_default_version)
1849                 {
1850                   add_def_to_table = true;
1851                   add_def_loc = insdefault.first;
1852                 }
1853             }
1854         }
1855     }
1856
1857   const Target& target = parameters->target();
1858   if (!target.has_make_symbol())
1859     sym = new Sized_symbol<size>();
1860   else
1861     {
1862       Sized_target<size, big_endian>* sized_target =
1863         parameters->sized_target<size, big_endian>();
1864       sym = sized_target->make_symbol(*pname, elfcpp::STT_NOTYPE,
1865                                       NULL, elfcpp::SHN_UNDEF, 0);
1866       if (sym == NULL)
1867         return NULL;
1868     }
1869
1870   if (add_to_table)
1871     add_loc->second = sym;
1872   else
1873     gold_assert(oldsym != NULL);
1874
1875   if (add_def_to_table)
1876     add_def_loc->second = sym;
1877
1878   *poldsym = this->get_sized_symbol<size>(oldsym);
1879
1880   return sym;
1881 }
1882
1883 // Define a symbol based on an Output_data.
1884
1885 Symbol*
1886 Symbol_table::define_in_output_data(const char* name,
1887                                     const char* version,
1888                                     Defined defined,
1889                                     Output_data* od,
1890                                     uint64_t value,
1891                                     uint64_t symsize,
1892                                     elfcpp::STT type,
1893                                     elfcpp::STB binding,
1894                                     elfcpp::STV visibility,
1895                                     unsigned char nonvis,
1896                                     bool offset_is_from_end,
1897                                     bool only_if_ref)
1898 {
1899   if (parameters->target().get_size() == 32)
1900     {
1901 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1902       return this->do_define_in_output_data<32>(name, version, defined, od,
1903                                                 value, symsize, type, binding,
1904                                                 visibility, nonvis,
1905                                                 offset_is_from_end,
1906                                                 only_if_ref);
1907 #else
1908       gold_unreachable();
1909 #endif
1910     }
1911   else if (parameters->target().get_size() == 64)
1912     {
1913 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1914       return this->do_define_in_output_data<64>(name, version, defined, od,
1915                                                 value, symsize, type, binding,
1916                                                 visibility, nonvis,
1917                                                 offset_is_from_end,
1918                                                 only_if_ref);
1919 #else
1920       gold_unreachable();
1921 #endif
1922     }
1923   else
1924     gold_unreachable();
1925 }
1926
1927 // Define a symbol in an Output_data, sized version.
1928
1929 template<int size>
1930 Sized_symbol<size>*
1931 Symbol_table::do_define_in_output_data(
1932     const char* name,
1933     const char* version,
1934     Defined defined,
1935     Output_data* od,
1936     typename elfcpp::Elf_types<size>::Elf_Addr value,
1937     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1938     elfcpp::STT type,
1939     elfcpp::STB binding,
1940     elfcpp::STV visibility,
1941     unsigned char nonvis,
1942     bool offset_is_from_end,
1943     bool only_if_ref)
1944 {
1945   Sized_symbol<size>* sym;
1946   Sized_symbol<size>* oldsym;
1947   bool resolve_oldsym;
1948
1949   if (parameters->target().is_big_endian())
1950     {
1951 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1952       sym = this->define_special_symbol<size, true>(&name, &version,
1953                                                     only_if_ref, &oldsym,
1954                                                     &resolve_oldsym);
1955 #else
1956       gold_unreachable();
1957 #endif
1958     }
1959   else
1960     {
1961 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1962       sym = this->define_special_symbol<size, false>(&name, &version,
1963                                                      only_if_ref, &oldsym,
1964                                                      &resolve_oldsym);
1965 #else
1966       gold_unreachable();
1967 #endif
1968     }
1969
1970   if (sym == NULL)
1971     return NULL;
1972
1973   sym->init_output_data(name, version, od, value, symsize, type, binding,
1974                         visibility, nonvis, offset_is_from_end,
1975                         defined == PREDEFINED);
1976
1977   if (oldsym == NULL)
1978     {
1979       if (binding == elfcpp::STB_LOCAL
1980           || this->version_script_.symbol_is_local(name))
1981         this->force_local(sym);
1982       else if (version != NULL)
1983         sym->set_is_default();
1984       return sym;
1985     }
1986
1987   if (Symbol_table::should_override_with_special(oldsym, type, defined))
1988     this->override_with_special(oldsym, sym);
1989
1990   if (resolve_oldsym)
1991     return sym;
1992   else
1993     {
1994       if (defined == PREDEFINED
1995           && (binding == elfcpp::STB_LOCAL
1996               || this->version_script_.symbol_is_local(name)))
1997         this->force_local(oldsym);
1998       delete sym;
1999       return oldsym;
2000     }
2001 }
2002
2003 // Define a symbol based on an Output_segment.
2004
2005 Symbol*
2006 Symbol_table::define_in_output_segment(const char* name,
2007                                        const char* version,
2008                                        Defined defined,
2009                                        Output_segment* os,
2010                                        uint64_t value,
2011                                        uint64_t symsize,
2012                                        elfcpp::STT type,
2013                                        elfcpp::STB binding,
2014                                        elfcpp::STV visibility,
2015                                        unsigned char nonvis,
2016                                        Symbol::Segment_offset_base offset_base,
2017                                        bool only_if_ref)
2018 {
2019   if (parameters->target().get_size() == 32)
2020     {
2021 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2022       return this->do_define_in_output_segment<32>(name, version, defined, os,
2023                                                    value, symsize, type,
2024                                                    binding, visibility, nonvis,
2025                                                    offset_base, only_if_ref);
2026 #else
2027       gold_unreachable();
2028 #endif
2029     }
2030   else if (parameters->target().get_size() == 64)
2031     {
2032 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2033       return this->do_define_in_output_segment<64>(name, version, defined, os,
2034                                                    value, symsize, type,
2035                                                    binding, visibility, nonvis,
2036                                                    offset_base, only_if_ref);
2037 #else
2038       gold_unreachable();
2039 #endif
2040     }
2041   else
2042     gold_unreachable();
2043 }
2044
2045 // Define a symbol in an Output_segment, sized version.
2046
2047 template<int size>
2048 Sized_symbol<size>*
2049 Symbol_table::do_define_in_output_segment(
2050     const char* name,
2051     const char* version,
2052     Defined defined,
2053     Output_segment* os,
2054     typename elfcpp::Elf_types<size>::Elf_Addr value,
2055     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2056     elfcpp::STT type,
2057     elfcpp::STB binding,
2058     elfcpp::STV visibility,
2059     unsigned char nonvis,
2060     Symbol::Segment_offset_base offset_base,
2061     bool only_if_ref)
2062 {
2063   Sized_symbol<size>* sym;
2064   Sized_symbol<size>* oldsym;
2065   bool resolve_oldsym;
2066
2067   if (parameters->target().is_big_endian())
2068     {
2069 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2070       sym = this->define_special_symbol<size, true>(&name, &version,
2071                                                     only_if_ref, &oldsym,
2072                                                     &resolve_oldsym);
2073 #else
2074       gold_unreachable();
2075 #endif
2076     }
2077   else
2078     {
2079 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2080       sym = this->define_special_symbol<size, false>(&name, &version,
2081                                                      only_if_ref, &oldsym,
2082                                                      &resolve_oldsym);
2083 #else
2084       gold_unreachable();
2085 #endif
2086     }
2087
2088   if (sym == NULL)
2089     return NULL;
2090
2091   sym->init_output_segment(name, version, os, value, symsize, type, binding,
2092                            visibility, nonvis, offset_base,
2093                            defined == PREDEFINED);
2094
2095   if (oldsym == NULL)
2096     {
2097       if (binding == elfcpp::STB_LOCAL
2098           || this->version_script_.symbol_is_local(name))
2099         this->force_local(sym);
2100       else if (version != NULL)
2101         sym->set_is_default();
2102       return sym;
2103     }
2104
2105   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2106     this->override_with_special(oldsym, sym);
2107
2108   if (resolve_oldsym)
2109     return sym;
2110   else
2111     {
2112       if (binding == elfcpp::STB_LOCAL
2113           || this->version_script_.symbol_is_local(name))
2114         this->force_local(oldsym);
2115       delete sym;
2116       return oldsym;
2117     }
2118 }
2119
2120 // Define a special symbol with a constant value.  It is a multiple
2121 // definition error if this symbol is already defined.
2122
2123 Symbol*
2124 Symbol_table::define_as_constant(const char* name,
2125                                  const char* version,
2126                                  Defined defined,
2127                                  uint64_t value,
2128                                  uint64_t symsize,
2129                                  elfcpp::STT type,
2130                                  elfcpp::STB binding,
2131                                  elfcpp::STV visibility,
2132                                  unsigned char nonvis,
2133                                  bool only_if_ref,
2134                                  bool force_override)
2135 {
2136   if (parameters->target().get_size() == 32)
2137     {
2138 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2139       return this->do_define_as_constant<32>(name, version, defined, value,
2140                                              symsize, type, binding,
2141                                              visibility, nonvis, only_if_ref,
2142                                              force_override);
2143 #else
2144       gold_unreachable();
2145 #endif
2146     }
2147   else if (parameters->target().get_size() == 64)
2148     {
2149 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2150       return this->do_define_as_constant<64>(name, version, defined, value,
2151                                              symsize, type, binding,
2152                                              visibility, nonvis, only_if_ref,
2153                                              force_override);
2154 #else
2155       gold_unreachable();
2156 #endif
2157     }
2158   else
2159     gold_unreachable();
2160 }
2161
2162 // Define a symbol as a constant, sized version.
2163
2164 template<int size>
2165 Sized_symbol<size>*
2166 Symbol_table::do_define_as_constant(
2167     const char* name,
2168     const char* version,
2169     Defined defined,
2170     typename elfcpp::Elf_types<size>::Elf_Addr value,
2171     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2172     elfcpp::STT type,
2173     elfcpp::STB binding,
2174     elfcpp::STV visibility,
2175     unsigned char nonvis,
2176     bool only_if_ref,
2177     bool force_override)
2178 {
2179   Sized_symbol<size>* sym;
2180   Sized_symbol<size>* oldsym;
2181   bool resolve_oldsym;
2182
2183   if (parameters->target().is_big_endian())
2184     {
2185 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2186       sym = this->define_special_symbol<size, true>(&name, &version,
2187                                                     only_if_ref, &oldsym,
2188                                                     &resolve_oldsym);
2189 #else
2190       gold_unreachable();
2191 #endif
2192     }
2193   else
2194     {
2195 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2196       sym = this->define_special_symbol<size, false>(&name, &version,
2197                                                      only_if_ref, &oldsym,
2198                                                      &resolve_oldsym);
2199 #else
2200       gold_unreachable();
2201 #endif
2202     }
2203
2204   if (sym == NULL)
2205     return NULL;
2206
2207   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2208                      nonvis, defined == PREDEFINED);
2209
2210   if (oldsym == NULL)
2211     {
2212       // Version symbols are absolute symbols with name == version.
2213       // We don't want to force them to be local.
2214       if ((version == NULL
2215            || name != version
2216            || value != 0)
2217           && (binding == elfcpp::STB_LOCAL
2218               || this->version_script_.symbol_is_local(name)))
2219         this->force_local(sym);
2220       else if (version != NULL
2221                && (name != version || value != 0))
2222         sym->set_is_default();
2223       return sym;
2224     }
2225
2226   if (force_override
2227       || Symbol_table::should_override_with_special(oldsym, type, defined))
2228     this->override_with_special(oldsym, sym);
2229
2230   if (resolve_oldsym)
2231     return sym;
2232   else
2233     {
2234       if (binding == elfcpp::STB_LOCAL
2235           || this->version_script_.symbol_is_local(name))
2236         this->force_local(oldsym);
2237       delete sym;
2238       return oldsym;
2239     }
2240 }
2241
2242 // Define a set of symbols in output sections.
2243
2244 void
2245 Symbol_table::define_symbols(const Layout* layout, int count,
2246                              const Define_symbol_in_section* p,
2247                              bool only_if_ref)
2248 {
2249   for (int i = 0; i < count; ++i, ++p)
2250     {
2251       Output_section* os = layout->find_output_section(p->output_section);
2252       if (os != NULL)
2253         this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2254                                     p->size, p->type, p->binding,
2255                                     p->visibility, p->nonvis,
2256                                     p->offset_is_from_end,
2257                                     only_if_ref || p->only_if_ref);
2258       else
2259         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2260                                  p->type, p->binding, p->visibility, p->nonvis,
2261                                  only_if_ref || p->only_if_ref,
2262                                  false);
2263     }
2264 }
2265
2266 // Define a set of symbols in output segments.
2267
2268 void
2269 Symbol_table::define_symbols(const Layout* layout, int count,
2270                              const Define_symbol_in_segment* p,
2271                              bool only_if_ref)
2272 {
2273   for (int i = 0; i < count; ++i, ++p)
2274     {
2275       Output_segment* os = layout->find_output_segment(p->segment_type,
2276                                                        p->segment_flags_set,
2277                                                        p->segment_flags_clear);
2278       if (os != NULL)
2279         this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2280                                        p->size, p->type, p->binding,
2281                                        p->visibility, p->nonvis,
2282                                        p->offset_base,
2283                                        only_if_ref || p->only_if_ref);
2284       else
2285         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2286                                  p->type, p->binding, p->visibility, p->nonvis,
2287                                  only_if_ref || p->only_if_ref,
2288                                  false);
2289     }
2290 }
2291
2292 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2293 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2294 // the offset within POSD.
2295
2296 template<int size>
2297 void
2298 Symbol_table::define_with_copy_reloc(
2299     Sized_symbol<size>* csym,
2300     Output_data* posd,
2301     typename elfcpp::Elf_types<size>::Elf_Addr value)
2302 {
2303   gold_assert(csym->is_from_dynobj());
2304   gold_assert(!csym->is_copied_from_dynobj());
2305   Object* object = csym->object();
2306   gold_assert(object->is_dynamic());
2307   Dynobj* dynobj = static_cast<Dynobj*>(object);
2308
2309   // Our copied variable has to override any variable in a shared
2310   // library.
2311   elfcpp::STB binding = csym->binding();
2312   if (binding == elfcpp::STB_WEAK)
2313     binding = elfcpp::STB_GLOBAL;
2314
2315   this->define_in_output_data(csym->name(), csym->version(), COPY,
2316                               posd, value, csym->symsize(),
2317                               csym->type(), binding,
2318                               csym->visibility(), csym->nonvis(),
2319                               false, false);
2320
2321   csym->set_is_copied_from_dynobj();
2322   csym->set_needs_dynsym_entry();
2323
2324   this->copied_symbol_dynobjs_[csym] = dynobj;
2325
2326   // We have now defined all aliases, but we have not entered them all
2327   // in the copied_symbol_dynobjs_ map.
2328   if (csym->has_alias())
2329     {
2330       Symbol* sym = csym;
2331       while (true)
2332         {
2333           sym = this->weak_aliases_[sym];
2334           if (sym == csym)
2335             break;
2336           gold_assert(sym->output_data() == posd);
2337
2338           sym->set_is_copied_from_dynobj();
2339           this->copied_symbol_dynobjs_[sym] = dynobj;
2340         }
2341     }
2342 }
2343
2344 // SYM is defined using a COPY reloc.  Return the dynamic object where
2345 // the original definition was found.
2346
2347 Dynobj*
2348 Symbol_table::get_copy_source(const Symbol* sym) const
2349 {
2350   gold_assert(sym->is_copied_from_dynobj());
2351   Copied_symbol_dynobjs::const_iterator p =
2352     this->copied_symbol_dynobjs_.find(sym);
2353   gold_assert(p != this->copied_symbol_dynobjs_.end());
2354   return p->second;
2355 }
2356
2357 // Add any undefined symbols named on the command line.
2358
2359 void
2360 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2361 {
2362   if (parameters->options().any_undefined()
2363       || layout->script_options()->any_unreferenced())
2364     {
2365       if (parameters->target().get_size() == 32)
2366         {
2367 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2368           this->do_add_undefined_symbols_from_command_line<32>(layout);
2369 #else
2370           gold_unreachable();
2371 #endif
2372         }
2373       else if (parameters->target().get_size() == 64)
2374         {
2375 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2376           this->do_add_undefined_symbols_from_command_line<64>(layout);
2377 #else
2378           gold_unreachable();
2379 #endif
2380         }
2381       else
2382         gold_unreachable();
2383     }
2384 }
2385
2386 template<int size>
2387 void
2388 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2389 {
2390   for (options::String_set::const_iterator p =
2391          parameters->options().undefined_begin();
2392        p != parameters->options().undefined_end();
2393        ++p)
2394     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2395
2396   for (options::String_set::const_iterator p =
2397          parameters->options().export_dynamic_symbol_begin();
2398        p != parameters->options().export_dynamic_symbol_end();
2399        ++p)
2400     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2401
2402   for (Script_options::referenced_const_iterator p =
2403          layout->script_options()->referenced_begin();
2404        p != layout->script_options()->referenced_end();
2405        ++p)
2406     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2407 }
2408
2409 template<int size>
2410 void
2411 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2412 {
2413   if (this->lookup(name) != NULL)
2414     return;
2415
2416   const char* version = NULL;
2417
2418   Sized_symbol<size>* sym;
2419   Sized_symbol<size>* oldsym;
2420   bool resolve_oldsym;
2421   if (parameters->target().is_big_endian())
2422     {
2423 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2424       sym = this->define_special_symbol<size, true>(&name, &version,
2425                                                     false, &oldsym,
2426                                                     &resolve_oldsym);
2427 #else
2428       gold_unreachable();
2429 #endif
2430     }
2431   else
2432     {
2433 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2434       sym = this->define_special_symbol<size, false>(&name, &version,
2435                                                      false, &oldsym,
2436                                                      &resolve_oldsym);
2437 #else
2438       gold_unreachable();
2439 #endif
2440     }
2441
2442   gold_assert(oldsym == NULL);
2443
2444   sym->init_undefined(name, version, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2445                       elfcpp::STV_DEFAULT, 0);
2446   ++this->saw_undefined_;
2447 }
2448
2449 // Set the dynamic symbol indexes.  INDEX is the index of the first
2450 // global dynamic symbol.  Pointers to the symbols are stored into the
2451 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2452 // updated dynamic symbol index.
2453
2454 unsigned int
2455 Symbol_table::set_dynsym_indexes(unsigned int index,
2456                                  std::vector<Symbol*>* syms,
2457                                  Stringpool* dynpool,
2458                                  Versions* versions)
2459 {
2460   std::vector<Symbol*> as_needed_sym;
2461
2462   // Allow a target to set dynsym indexes.
2463   if (parameters->target().has_custom_set_dynsym_indexes())
2464     {
2465       std::vector<Symbol*> dyn_symbols;
2466       for (Symbol_table_type::iterator p = this->table_.begin();
2467            p != this->table_.end();
2468            ++p)
2469         {
2470           Symbol* sym = p->second;
2471           if (!sym->should_add_dynsym_entry(this))
2472             sym->set_dynsym_index(-1U);
2473           else
2474             dyn_symbols.push_back(sym);
2475         }
2476
2477       return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2478                                                      dynpool, versions, this);
2479     }
2480
2481   for (Symbol_table_type::iterator p = this->table_.begin();
2482        p != this->table_.end();
2483        ++p)
2484     {
2485       Symbol* sym = p->second;
2486
2487       // Note that SYM may already have a dynamic symbol index, since
2488       // some symbols appear more than once in the symbol table, with
2489       // and without a version.
2490
2491       if (!sym->should_add_dynsym_entry(this))
2492         sym->set_dynsym_index(-1U);
2493       else if (!sym->has_dynsym_index())
2494         {
2495           sym->set_dynsym_index(index);
2496           ++index;
2497           syms->push_back(sym);
2498           dynpool->add(sym->name(), false, NULL);
2499
2500           // If the symbol is defined in a dynamic object and is
2501           // referenced strongly in a regular object, then mark the
2502           // dynamic object as needed.  This is used to implement
2503           // --as-needed.
2504           if (sym->is_from_dynobj()
2505               && sym->in_reg()
2506               && !sym->is_undef_binding_weak())
2507             sym->object()->set_is_needed();
2508
2509           // Record any version information, except those from
2510           // as-needed libraries not seen to be needed.  Note that the
2511           // is_needed state for such libraries can change in this loop.
2512           if (sym->version() != NULL)
2513             {
2514               if (!sym->is_from_dynobj()
2515                   || !sym->object()->as_needed()
2516                   || sym->object()->is_needed())
2517                 versions->record_version(this, dynpool, sym);
2518               else
2519                 as_needed_sym.push_back(sym);
2520             }
2521         }
2522     }
2523
2524   // Process version information for symbols from as-needed libraries.
2525   for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2526        p != as_needed_sym.end();
2527        ++p)
2528     {
2529       Symbol* sym = *p;
2530
2531       if (sym->object()->is_needed())
2532         versions->record_version(this, dynpool, sym);
2533       else
2534         sym->clear_version();
2535     }
2536
2537   // Finish up the versions.  In some cases this may add new dynamic
2538   // symbols.
2539   index = versions->finalize(this, index, syms);
2540
2541   // Process target-specific symbols.
2542   for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2543        p != this->target_symbols_.end();
2544        ++p)
2545     {
2546       (*p)->set_dynsym_index(index);
2547       ++index;
2548       syms->push_back(*p);
2549       dynpool->add((*p)->name(), false, NULL);
2550     }
2551
2552   return index;
2553 }
2554
2555 // Set the final values for all the symbols.  The index of the first
2556 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2557 // file offset OFF.  Add their names to POOL.  Return the new file
2558 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2559
2560 off_t
2561 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2562                        size_t dyncount, Stringpool* pool,
2563                        unsigned int* plocal_symcount)
2564 {
2565   off_t ret;
2566
2567   gold_assert(*plocal_symcount != 0);
2568   this->first_global_index_ = *plocal_symcount;
2569
2570   this->dynamic_offset_ = dynoff;
2571   this->first_dynamic_global_index_ = dyn_global_index;
2572   this->dynamic_count_ = dyncount;
2573
2574   if (parameters->target().get_size() == 32)
2575     {
2576 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2577       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2578 #else
2579       gold_unreachable();
2580 #endif
2581     }
2582   else if (parameters->target().get_size() == 64)
2583     {
2584 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2585       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2586 #else
2587       gold_unreachable();
2588 #endif
2589     }
2590   else
2591     gold_unreachable();
2592
2593   // Now that we have the final symbol table, we can reliably note
2594   // which symbols should get warnings.
2595   this->warnings_.note_warnings(this);
2596
2597   return ret;
2598 }
2599
2600 // SYM is going into the symbol table at *PINDEX.  Add the name to
2601 // POOL, update *PINDEX and *POFF.
2602
2603 template<int size>
2604 void
2605 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2606                                   unsigned int* pindex, off_t* poff)
2607 {
2608   sym->set_symtab_index(*pindex);
2609   if (sym->version() == NULL || !parameters->options().relocatable())
2610     pool->add(sym->name(), false, NULL);
2611   else
2612     pool->add(sym->versioned_name(), true, NULL);
2613   ++*pindex;
2614   *poff += elfcpp::Elf_sizes<size>::sym_size;
2615 }
2616
2617 // Set the final value for all the symbols.  This is called after
2618 // Layout::finalize, so all the output sections have their final
2619 // address.
2620
2621 template<int size>
2622 off_t
2623 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2624                              unsigned int* plocal_symcount)
2625 {
2626   off = align_address(off, size >> 3);
2627   this->offset_ = off;
2628
2629   unsigned int index = *plocal_symcount;
2630   const unsigned int orig_index = index;
2631
2632   // First do all the symbols which have been forced to be local, as
2633   // they must appear before all global symbols.
2634   for (Forced_locals::iterator p = this->forced_locals_.begin();
2635        p != this->forced_locals_.end();
2636        ++p)
2637     {
2638       Symbol* sym = *p;
2639       gold_assert(sym->is_forced_local());
2640       if (this->sized_finalize_symbol<size>(sym))
2641         {
2642           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2643           ++*plocal_symcount;
2644         }
2645     }
2646
2647   // Now do all the remaining symbols.
2648   for (Symbol_table_type::iterator p = this->table_.begin();
2649        p != this->table_.end();
2650        ++p)
2651     {
2652       Symbol* sym = p->second;
2653       if (this->sized_finalize_symbol<size>(sym))
2654         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2655     }
2656
2657   // Now do target-specific symbols.
2658   for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2659        p != this->target_symbols_.end();
2660        ++p)
2661     {
2662       this->add_to_final_symtab<size>(*p, pool, &index, &off);
2663     }
2664
2665   this->output_count_ = index - orig_index;
2666
2667   return off;
2668 }
2669
2670 // Compute the final value of SYM and store status in location PSTATUS.
2671 // During relaxation, this may be called multiple times for a symbol to
2672 // compute its would-be final value in each relaxation pass.
2673
2674 template<int size>
2675 typename Sized_symbol<size>::Value_type
2676 Symbol_table::compute_final_value(
2677     const Sized_symbol<size>* sym,
2678     Compute_final_value_status* pstatus) const
2679 {
2680   typedef typename Sized_symbol<size>::Value_type Value_type;
2681   Value_type value;
2682
2683   switch (sym->source())
2684     {
2685     case Symbol::FROM_OBJECT:
2686       {
2687         bool is_ordinary;
2688         unsigned int shndx = sym->shndx(&is_ordinary);
2689
2690         if (!is_ordinary
2691             && shndx != elfcpp::SHN_ABS
2692             && !Symbol::is_common_shndx(shndx))
2693           {
2694             *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2695             return 0;
2696           }
2697
2698         Object* symobj = sym->object();
2699         if (symobj->is_dynamic())
2700           {
2701             value = 0;
2702             shndx = elfcpp::SHN_UNDEF;
2703           }
2704         else if (symobj->pluginobj() != NULL)
2705           {
2706             value = 0;
2707             shndx = elfcpp::SHN_UNDEF;
2708           }
2709         else if (shndx == elfcpp::SHN_UNDEF)
2710           value = 0;
2711         else if (!is_ordinary
2712                  && (shndx == elfcpp::SHN_ABS
2713                      || Symbol::is_common_shndx(shndx)))
2714           value = sym->value();
2715         else
2716           {
2717             Relobj* relobj = static_cast<Relobj*>(symobj);
2718             Output_section* os = relobj->output_section(shndx);
2719
2720             if (this->is_section_folded(relobj, shndx))
2721               {
2722                 gold_assert(os == NULL);
2723                 // Get the os of the section it is folded onto.
2724                 Section_id folded = this->icf_->get_folded_section(relobj,
2725                                                                    shndx);
2726                 gold_assert(folded.first != NULL);
2727                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2728                 unsigned folded_shndx = folded.second;
2729
2730                 os = folded_obj->output_section(folded_shndx);  
2731                 gold_assert(os != NULL);
2732
2733                 // Replace (relobj, shndx) with canonical ICF input section.
2734                 shndx = folded_shndx;
2735                 relobj = folded_obj;
2736               }
2737
2738             uint64_t secoff64 = relobj->output_section_offset(shndx);
2739             if (os == NULL)
2740               {
2741                 bool static_or_reloc = (parameters->doing_static_link() ||
2742                                         parameters->options().relocatable());
2743                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2744
2745                 *pstatus = CFVS_NO_OUTPUT_SECTION;
2746                 return 0;
2747               }
2748
2749             if (secoff64 == -1ULL)
2750               {
2751                 // The section needs special handling (e.g., a merge section).
2752
2753                 value = os->output_address(relobj, shndx, sym->value());
2754               }
2755             else
2756               {
2757                 Value_type secoff =
2758                   convert_types<Value_type, uint64_t>(secoff64);
2759                 if (sym->type() == elfcpp::STT_TLS)
2760                   value = sym->value() + os->tls_offset() + secoff;
2761                 else
2762                   value = sym->value() + os->address() + secoff;
2763               }
2764           }
2765       }
2766       break;
2767
2768     case Symbol::IN_OUTPUT_DATA:
2769       {
2770         Output_data* od = sym->output_data();
2771         value = sym->value();
2772         if (sym->type() != elfcpp::STT_TLS)
2773           value += od->address();
2774         else
2775           {
2776             Output_section* os = od->output_section();
2777             gold_assert(os != NULL);
2778             value += os->tls_offset() + (od->address() - os->address());
2779           }
2780         if (sym->offset_is_from_end())
2781           value += od->data_size();
2782       }
2783       break;
2784
2785     case Symbol::IN_OUTPUT_SEGMENT:
2786       {
2787         Output_segment* os = sym->output_segment();
2788         value = sym->value();
2789         if (sym->type() != elfcpp::STT_TLS)
2790           value += os->vaddr();
2791         switch (sym->offset_base())
2792           {
2793           case Symbol::SEGMENT_START:
2794             break;
2795           case Symbol::SEGMENT_END:
2796             value += os->memsz();
2797             break;
2798           case Symbol::SEGMENT_BSS:
2799             value += os->filesz();
2800             break;
2801           default:
2802             gold_unreachable();
2803           }
2804       }
2805       break;
2806
2807     case Symbol::IS_CONSTANT:
2808       value = sym->value();
2809       break;
2810
2811     case Symbol::IS_UNDEFINED:
2812       value = 0;
2813       break;
2814
2815     default:
2816       gold_unreachable();
2817     }
2818
2819   *pstatus = CFVS_OK;
2820   return value;
2821 }
2822
2823 // Finalize the symbol SYM.  This returns true if the symbol should be
2824 // added to the symbol table, false otherwise.
2825
2826 template<int size>
2827 bool
2828 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2829 {
2830   typedef typename Sized_symbol<size>::Value_type Value_type;
2831
2832   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2833
2834   // The default version of a symbol may appear twice in the symbol
2835   // table.  We only need to finalize it once.
2836   if (sym->has_symtab_index())
2837     return false;
2838
2839   if (!sym->in_reg())
2840     {
2841       gold_assert(!sym->has_symtab_index());
2842       sym->set_symtab_index(-1U);
2843       gold_assert(sym->dynsym_index() == -1U);
2844       return false;
2845     }
2846
2847   // If the symbol is only present on plugin files, the plugin decided we
2848   // don't need it.
2849   if (!sym->in_real_elf())
2850     {
2851       gold_assert(!sym->has_symtab_index());
2852       sym->set_symtab_index(-1U);
2853       return false;
2854     }
2855
2856   // Compute final symbol value.
2857   Compute_final_value_status status;
2858   Value_type value = this->compute_final_value(sym, &status);
2859
2860   switch (status)
2861     {
2862     case CFVS_OK:
2863       break;
2864     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2865       {
2866         bool is_ordinary;
2867         unsigned int shndx = sym->shndx(&is_ordinary);
2868         gold_error(_("%s: unsupported symbol section 0x%x"),
2869                    sym->demangled_name().c_str(), shndx);
2870       }
2871       break;
2872     case CFVS_NO_OUTPUT_SECTION:
2873       sym->set_symtab_index(-1U);
2874       return false;
2875     default:
2876       gold_unreachable();
2877     }
2878
2879   sym->set_value(value);
2880
2881   if (parameters->options().strip_all()
2882       || !parameters->options().should_retain_symbol(sym->name()))
2883     {
2884       sym->set_symtab_index(-1U);
2885       return false;
2886     }
2887
2888   return true;
2889 }
2890
2891 // Write out the global symbols.
2892
2893 void
2894 Symbol_table::write_globals(const Stringpool* sympool,
2895                             const Stringpool* dynpool,
2896                             Output_symtab_xindex* symtab_xindex,
2897                             Output_symtab_xindex* dynsym_xindex,
2898                             Output_file* of) const
2899 {
2900   switch (parameters->size_and_endianness())
2901     {
2902 #ifdef HAVE_TARGET_32_LITTLE
2903     case Parameters::TARGET_32_LITTLE:
2904       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2905                                            dynsym_xindex, of);
2906       break;
2907 #endif
2908 #ifdef HAVE_TARGET_32_BIG
2909     case Parameters::TARGET_32_BIG:
2910       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2911                                           dynsym_xindex, of);
2912       break;
2913 #endif
2914 #ifdef HAVE_TARGET_64_LITTLE
2915     case Parameters::TARGET_64_LITTLE:
2916       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2917                                            dynsym_xindex, of);
2918       break;
2919 #endif
2920 #ifdef HAVE_TARGET_64_BIG
2921     case Parameters::TARGET_64_BIG:
2922       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2923                                           dynsym_xindex, of);
2924       break;
2925 #endif
2926     default:
2927       gold_unreachable();
2928     }
2929 }
2930
2931 // Write out the global symbols.
2932
2933 template<int size, bool big_endian>
2934 void
2935 Symbol_table::sized_write_globals(const Stringpool* sympool,
2936                                   const Stringpool* dynpool,
2937                                   Output_symtab_xindex* symtab_xindex,
2938                                   Output_symtab_xindex* dynsym_xindex,
2939                                   Output_file* of) const
2940 {
2941   const Target& target = parameters->target();
2942
2943   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2944
2945   const unsigned int output_count = this->output_count_;
2946   const section_size_type oview_size = output_count * sym_size;
2947   const unsigned int first_global_index = this->first_global_index_;
2948   unsigned char* psyms;
2949   if (this->offset_ == 0 || output_count == 0)
2950     psyms = NULL;
2951   else
2952     psyms = of->get_output_view(this->offset_, oview_size);
2953
2954   const unsigned int dynamic_count = this->dynamic_count_;
2955   const section_size_type dynamic_size = dynamic_count * sym_size;
2956   const unsigned int first_dynamic_global_index =
2957     this->first_dynamic_global_index_;
2958   unsigned char* dynamic_view;
2959   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2960     dynamic_view = NULL;
2961   else
2962     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2963
2964   for (Symbol_table_type::const_iterator p = this->table_.begin();
2965        p != this->table_.end();
2966        ++p)
2967     {
2968       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2969
2970       // Possibly warn about unresolved symbols in shared libraries.
2971       this->warn_about_undefined_dynobj_symbol(sym);
2972
2973       unsigned int sym_index = sym->symtab_index();
2974       unsigned int dynsym_index;
2975       if (dynamic_view == NULL)
2976         dynsym_index = -1U;
2977       else
2978         dynsym_index = sym->dynsym_index();
2979
2980       if (sym_index == -1U && dynsym_index == -1U)
2981         {
2982           // This symbol is not included in the output file.
2983           continue;
2984         }
2985
2986       unsigned int shndx;
2987       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2988       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2989       elfcpp::STB binding = sym->binding();
2990
2991       // If --weak-unresolved-symbols is set, change binding of unresolved
2992       // global symbols to STB_WEAK.
2993       if (parameters->options().weak_unresolved_symbols()
2994           && binding == elfcpp::STB_GLOBAL
2995           && sym->is_undefined())
2996         binding = elfcpp::STB_WEAK;
2997
2998       // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2999       if (binding == elfcpp::STB_GNU_UNIQUE
3000           && !parameters->options().gnu_unique())
3001         binding = elfcpp::STB_GLOBAL;
3002
3003       switch (sym->source())
3004         {
3005         case Symbol::FROM_OBJECT:
3006           {
3007             bool is_ordinary;
3008             unsigned int in_shndx = sym->shndx(&is_ordinary);
3009
3010             if (!is_ordinary
3011                 && in_shndx != elfcpp::SHN_ABS
3012                 && !Symbol::is_common_shndx(in_shndx))
3013               {
3014                 gold_error(_("%s: unsupported symbol section 0x%x"),
3015                            sym->demangled_name().c_str(), in_shndx);
3016                 shndx = in_shndx;
3017               }
3018             else
3019               {
3020                 Object* symobj = sym->object();
3021                 if (symobj->is_dynamic())
3022                   {
3023                     if (sym->needs_dynsym_value())
3024                       dynsym_value = target.dynsym_value(sym);
3025                     shndx = elfcpp::SHN_UNDEF;
3026                     if (sym->is_undef_binding_weak())
3027                       binding = elfcpp::STB_WEAK;
3028                     else
3029                       binding = elfcpp::STB_GLOBAL;
3030                   }
3031                 else if (symobj->pluginobj() != NULL)
3032                   shndx = elfcpp::SHN_UNDEF;
3033                 else if (in_shndx == elfcpp::SHN_UNDEF
3034                          || (!is_ordinary
3035                              && (in_shndx == elfcpp::SHN_ABS
3036                                  || Symbol::is_common_shndx(in_shndx))))
3037                   shndx = in_shndx;
3038                 else
3039                   {
3040                     Relobj* relobj = static_cast<Relobj*>(symobj);
3041                     Output_section* os = relobj->output_section(in_shndx);
3042                     if (this->is_section_folded(relobj, in_shndx))
3043                       {
3044                         // This global symbol must be written out even though
3045                         // it is folded.
3046                         // Get the os of the section it is folded onto.
3047                         Section_id folded =
3048                              this->icf_->get_folded_section(relobj, in_shndx);
3049                         gold_assert(folded.first !=NULL);
3050                         Relobj* folded_obj = 
3051                           reinterpret_cast<Relobj*>(folded.first);
3052                         os = folded_obj->output_section(folded.second);  
3053                         gold_assert(os != NULL);
3054                       }
3055                     gold_assert(os != NULL);
3056                     shndx = os->out_shndx();
3057
3058                     if (shndx >= elfcpp::SHN_LORESERVE)
3059                       {
3060                         if (sym_index != -1U)
3061                           symtab_xindex->add(sym_index, shndx);
3062                         if (dynsym_index != -1U)
3063                           dynsym_xindex->add(dynsym_index, shndx);
3064                         shndx = elfcpp::SHN_XINDEX;
3065                       }
3066
3067                     // In object files symbol values are section
3068                     // relative.
3069                     if (parameters->options().relocatable())
3070                       sym_value -= os->address();
3071                   }
3072               }
3073           }
3074           break;
3075
3076         case Symbol::IN_OUTPUT_DATA:
3077           {
3078             Output_data* od = sym->output_data();
3079
3080             shndx = od->out_shndx();
3081             if (shndx >= elfcpp::SHN_LORESERVE)
3082               {
3083                 if (sym_index != -1U)
3084                   symtab_xindex->add(sym_index, shndx);
3085                 if (dynsym_index != -1U)
3086                   dynsym_xindex->add(dynsym_index, shndx);
3087                 shndx = elfcpp::SHN_XINDEX;
3088               }
3089
3090             // In object files symbol values are section
3091             // relative.
3092             if (parameters->options().relocatable())
3093               sym_value -= od->address();
3094           }
3095           break;
3096
3097         case Symbol::IN_OUTPUT_SEGMENT:
3098           shndx = elfcpp::SHN_ABS;
3099           break;
3100
3101         case Symbol::IS_CONSTANT:
3102           shndx = elfcpp::SHN_ABS;
3103           break;
3104
3105         case Symbol::IS_UNDEFINED:
3106           shndx = elfcpp::SHN_UNDEF;
3107           break;
3108
3109         default:
3110           gold_unreachable();
3111         }
3112
3113       if (sym_index != -1U)
3114         {
3115           sym_index -= first_global_index;
3116           gold_assert(sym_index < output_count);
3117           unsigned char* ps = psyms + (sym_index * sym_size);
3118           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3119                                                      binding, sympool, ps);
3120         }
3121
3122       if (dynsym_index != -1U)
3123         {
3124           dynsym_index -= first_dynamic_global_index;
3125           gold_assert(dynsym_index < dynamic_count);
3126           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3127           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3128                                                      binding, dynpool, pd);
3129           // Allow a target to adjust dynamic symbol value.
3130           parameters->target().adjust_dyn_symbol(sym, pd);
3131         }
3132     }
3133
3134   // Write the target-specific symbols.
3135   for (std::vector<Symbol*>::const_iterator p = this->target_symbols_.begin();
3136        p != this->target_symbols_.end();
3137        ++p)
3138     {
3139       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(*p);
3140
3141       unsigned int sym_index = sym->symtab_index();
3142       unsigned int dynsym_index;
3143       if (dynamic_view == NULL)
3144         dynsym_index = -1U;
3145       else
3146         dynsym_index = sym->dynsym_index();
3147
3148       unsigned int shndx;
3149       switch (sym->source())
3150         {
3151         case Symbol::IS_CONSTANT:
3152           shndx = elfcpp::SHN_ABS;
3153           break;
3154         case Symbol::IS_UNDEFINED:
3155           shndx = elfcpp::SHN_UNDEF;
3156           break;
3157         default:
3158           gold_unreachable();
3159         }
3160
3161       if (sym_index != -1U)
3162         {
3163           sym_index -= first_global_index;
3164           gold_assert(sym_index < output_count);
3165           unsigned char* ps = psyms + (sym_index * sym_size);
3166           this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3167                                                      sym->binding(), sympool,
3168                                                      ps);
3169         }
3170
3171       if (dynsym_index != -1U)
3172         {
3173           dynsym_index -= first_dynamic_global_index;
3174           gold_assert(dynsym_index < dynamic_count);
3175           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3176           this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3177                                                      sym->binding(), dynpool,
3178                                                      pd);
3179         }
3180     }
3181
3182   of->write_output_view(this->offset_, oview_size, psyms);
3183   if (dynamic_view != NULL)
3184     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3185 }
3186
3187 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
3188 // strtab holding the name.
3189
3190 template<int size, bool big_endian>
3191 void
3192 Symbol_table::sized_write_symbol(
3193     Sized_symbol<size>* sym,
3194     typename elfcpp::Elf_types<size>::Elf_Addr value,
3195     unsigned int shndx,
3196     elfcpp::STB binding,
3197     const Stringpool* pool,
3198     unsigned char* p) const
3199 {
3200   elfcpp::Sym_write<size, big_endian> osym(p);
3201   if (sym->version() == NULL || !parameters->options().relocatable())
3202     osym.put_st_name(pool->get_offset(sym->name()));
3203   else
3204     osym.put_st_name(pool->get_offset(sym->versioned_name()));
3205   osym.put_st_value(value);
3206   // Use a symbol size of zero for undefined symbols from shared libraries.
3207   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3208     osym.put_st_size(0);
3209   else
3210     osym.put_st_size(sym->symsize());
3211   elfcpp::STT type = sym->type();
3212   gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3213   // A version script may have overridden the default binding.
3214   if (sym->is_forced_local())
3215     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3216   else
3217     osym.put_st_info(elfcpp::elf_st_info(binding, type));
3218   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3219   osym.put_st_shndx(shndx);
3220 }
3221
3222 // Check for unresolved symbols in shared libraries.  This is
3223 // controlled by the --allow-shlib-undefined option.
3224
3225 // We only warn about libraries for which we have seen all the
3226 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
3227 // which were not seen in this link.  If we didn't see a DT_NEEDED
3228 // entry, we aren't going to be able to reliably report whether the
3229 // symbol is undefined.
3230
3231 // We also don't warn about libraries found in a system library
3232 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3233 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
3234 // can have undefined references satisfied by ld-linux.so.
3235
3236 inline void
3237 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3238 {
3239   bool dummy;
3240   if (sym->source() == Symbol::FROM_OBJECT
3241       && sym->object()->is_dynamic()
3242       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3243       && sym->binding() != elfcpp::STB_WEAK
3244       && !parameters->options().allow_shlib_undefined()
3245       && !parameters->target().is_defined_by_abi(sym)
3246       && !sym->object()->is_in_system_directory())
3247     {
3248       // A very ugly cast.
3249       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3250       if (!dynobj->has_unknown_needed_entries())
3251         gold_undefined_symbol(sym);
3252     }
3253 }
3254
3255 // Write out a section symbol.  Return the update offset.
3256
3257 void
3258 Symbol_table::write_section_symbol(const Output_section* os,
3259                                    Output_symtab_xindex* symtab_xindex,
3260                                    Output_file* of,
3261                                    off_t offset) const
3262 {
3263   switch (parameters->size_and_endianness())
3264     {
3265 #ifdef HAVE_TARGET_32_LITTLE
3266     case Parameters::TARGET_32_LITTLE:
3267       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3268                                                   offset);
3269       break;
3270 #endif
3271 #ifdef HAVE_TARGET_32_BIG
3272     case Parameters::TARGET_32_BIG:
3273       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3274                                                  offset);
3275       break;
3276 #endif
3277 #ifdef HAVE_TARGET_64_LITTLE
3278     case Parameters::TARGET_64_LITTLE:
3279       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3280                                                   offset);
3281       break;
3282 #endif
3283 #ifdef HAVE_TARGET_64_BIG
3284     case Parameters::TARGET_64_BIG:
3285       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3286                                                  offset);
3287       break;
3288 #endif
3289     default:
3290       gold_unreachable();
3291     }
3292 }
3293
3294 // Write out a section symbol, specialized for size and endianness.
3295
3296 template<int size, bool big_endian>
3297 void
3298 Symbol_table::sized_write_section_symbol(const Output_section* os,
3299                                          Output_symtab_xindex* symtab_xindex,
3300                                          Output_file* of,
3301                                          off_t offset) const
3302 {
3303   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3304
3305   unsigned char* pov = of->get_output_view(offset, sym_size);
3306
3307   elfcpp::Sym_write<size, big_endian> osym(pov);
3308   osym.put_st_name(0);
3309   if (parameters->options().relocatable())
3310     osym.put_st_value(0);
3311   else
3312     osym.put_st_value(os->address());
3313   osym.put_st_size(0);
3314   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3315                                        elfcpp::STT_SECTION));
3316   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3317
3318   unsigned int shndx = os->out_shndx();
3319   if (shndx >= elfcpp::SHN_LORESERVE)
3320     {
3321       symtab_xindex->add(os->symtab_index(), shndx);
3322       shndx = elfcpp::SHN_XINDEX;
3323     }
3324   osym.put_st_shndx(shndx);
3325
3326   of->write_output_view(offset, sym_size, pov);
3327 }
3328
3329 // Print statistical information to stderr.  This is used for --stats.
3330
3331 void
3332 Symbol_table::print_stats() const
3333 {
3334 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3335   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3336           program_name, this->table_.size(), this->table_.bucket_count());
3337 #else
3338   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3339           program_name, this->table_.size());
3340 #endif
3341   this->namepool_.print_stats("symbol table stringpool");
3342 }
3343
3344 // We check for ODR violations by looking for symbols with the same
3345 // name for which the debugging information reports that they were
3346 // defined in disjoint source locations.  When comparing the source
3347 // location, we consider instances with the same base filename to be
3348 // the same.  This is because different object files/shared libraries
3349 // can include the same header file using different paths, and
3350 // different optimization settings can make the line number appear to
3351 // be a couple lines off, and we don't want to report an ODR violation
3352 // in those cases.
3353
3354 // This struct is used to compare line information, as returned by
3355 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3356 // operator used with std::sort.
3357
3358 struct Odr_violation_compare
3359 {
3360   bool
3361   operator()(const std::string& s1, const std::string& s2) const
3362   {
3363     // Inputs should be of the form "dirname/filename:linenum" where
3364     // "dirname/" is optional.  We want to compare just the filename:linenum.
3365
3366     // Find the last '/' in each string.
3367     std::string::size_type s1begin = s1.rfind('/');
3368     std::string::size_type s2begin = s2.rfind('/');
3369     // If there was no '/' in a string, start at the beginning.
3370     if (s1begin == std::string::npos)
3371       s1begin = 0;
3372     if (s2begin == std::string::npos)
3373       s2begin = 0;
3374     return s1.compare(s1begin, std::string::npos,
3375                       s2, s2begin, std::string::npos) < 0;
3376   }
3377 };
3378
3379 // Returns all of the lines attached to LOC, not just the one the
3380 // instruction actually came from.
3381 std::vector<std::string>
3382 Symbol_table::linenos_from_loc(const Task* task,
3383                                const Symbol_location& loc)
3384 {
3385   // We need to lock the object in order to read it.  This
3386   // means that we have to run in a singleton Task.  If we
3387   // want to run this in a general Task for better
3388   // performance, we will need one Task for object, plus
3389   // appropriate locking to ensure that we don't conflict with
3390   // other uses of the object.  Also note, one_addr2line is not
3391   // currently thread-safe.
3392   Task_lock_obj<Object> tl(task, loc.object);
3393
3394   std::vector<std::string> result;
3395   Symbol_location code_loc = loc;
3396   parameters->target().function_location(&code_loc);
3397   // 16 is the size of the object-cache that one_addr2line should use.
3398   std::string canonical_result = Dwarf_line_info::one_addr2line(
3399       code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3400   if (!canonical_result.empty())
3401     result.push_back(canonical_result);
3402   return result;
3403 }
3404
3405 // OutputIterator that records if it was ever assigned to.  This
3406 // allows it to be used with std::set_intersection() to check for
3407 // intersection rather than computing the intersection.
3408 struct Check_intersection
3409 {
3410   Check_intersection()
3411     : value_(false)
3412   {}
3413
3414   bool had_intersection() const
3415   { return this->value_; }
3416
3417   Check_intersection& operator++()
3418   { return *this; }
3419
3420   Check_intersection& operator*()
3421   { return *this; }
3422
3423   template<typename T>
3424   Check_intersection& operator=(const T&)
3425   {
3426     this->value_ = true;
3427     return *this;
3428   }
3429
3430  private:
3431   bool value_;
3432 };
3433
3434 // Check candidate_odr_violations_ to find symbols with the same name
3435 // but apparently different definitions (different source-file/line-no
3436 // for each line assigned to the first instruction).
3437
3438 void
3439 Symbol_table::detect_odr_violations(const Task* task,
3440                                     const char* output_file_name) const
3441 {
3442   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3443        it != candidate_odr_violations_.end();
3444        ++it)
3445     {
3446       const char* const symbol_name = it->first;
3447
3448       std::string first_object_name;
3449       std::vector<std::string> first_object_linenos;
3450
3451       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3452           locs = it->second.begin();
3453       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3454           locs_end = it->second.end();
3455       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3456         {
3457           // Save the line numbers from the first definition to
3458           // compare to the other definitions.  Ideally, we'd compare
3459           // every definition to every other, but we don't want to
3460           // take O(N^2) time to do this.  This shortcut may cause
3461           // false negatives that appear or disappear depending on the
3462           // link order, but it won't cause false positives.
3463           first_object_name = locs->object->name();
3464           first_object_linenos = this->linenos_from_loc(task, *locs);
3465         }
3466       if (first_object_linenos.empty())
3467         continue;
3468
3469       // Sort by Odr_violation_compare to make std::set_intersection work.
3470       std::string first_object_canonical_result = first_object_linenos.back();
3471       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3472                 Odr_violation_compare());
3473
3474       for (; locs != locs_end; ++locs)
3475         {
3476           std::vector<std::string> linenos =
3477               this->linenos_from_loc(task, *locs);
3478           // linenos will be empty if we couldn't parse the debug info.
3479           if (linenos.empty())
3480             continue;
3481           // Sort by Odr_violation_compare to make std::set_intersection work.
3482           gold_assert(!linenos.empty());
3483           std::string second_object_canonical_result = linenos.back();
3484           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3485
3486           Check_intersection intersection_result =
3487               std::set_intersection(first_object_linenos.begin(),
3488                                     first_object_linenos.end(),
3489                                     linenos.begin(),
3490                                     linenos.end(),
3491                                     Check_intersection(),
3492                                     Odr_violation_compare());
3493           if (!intersection_result.had_intersection())
3494             {
3495               gold_warning(_("while linking %s: symbol '%s' defined in "
3496                              "multiple places (possible ODR violation):"),
3497                            output_file_name, demangle(symbol_name).c_str());
3498               // This only prints one location from each definition,
3499               // which may not be the location we expect to intersect
3500               // with another definition.  We could print the whole
3501               // set of locations, but that seems too verbose.
3502               fprintf(stderr, _("  %s from %s\n"),
3503                       first_object_canonical_result.c_str(),
3504                       first_object_name.c_str());
3505               fprintf(stderr, _("  %s from %s\n"),
3506                       second_object_canonical_result.c_str(),
3507                       locs->object->name().c_str());
3508               // Only print one broken pair, to avoid needing to
3509               // compare against a list of the disjoint definition
3510               // locations we've found so far.  (If we kept comparing
3511               // against just the first one, we'd get a lot of
3512               // redundant complaints about the second definition
3513               // location.)
3514               break;
3515             }
3516         }
3517     }
3518   // We only call one_addr2line() in this function, so we can clear its cache.
3519   Dwarf_line_info::clear_addr2line_cache();
3520 }
3521
3522 // Warnings functions.
3523
3524 // Add a new warning.
3525
3526 void
3527 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3528                       const std::string& warning)
3529 {
3530   name = symtab->canonicalize_name(name);
3531   this->warnings_[name].set(obj, warning);
3532 }
3533
3534 // Look through the warnings and mark the symbols for which we should
3535 // warn.  This is called during Layout::finalize when we know the
3536 // sources for all the symbols.
3537
3538 void
3539 Warnings::note_warnings(Symbol_table* symtab)
3540 {
3541   for (Warning_table::iterator p = this->warnings_.begin();
3542        p != this->warnings_.end();
3543        ++p)
3544     {
3545       Symbol* sym = symtab->lookup(p->first, NULL);
3546       if (sym != NULL
3547           && sym->source() == Symbol::FROM_OBJECT
3548           && sym->object() == p->second.object)
3549         sym->set_has_warning();
3550     }
3551 }
3552
3553 // Issue a warning.  This is called when we see a relocation against a
3554 // symbol for which has a warning.
3555
3556 template<int size, bool big_endian>
3557 void
3558 Warnings::issue_warning(const Symbol* sym,
3559                         const Relocate_info<size, big_endian>* relinfo,
3560                         size_t relnum, off_t reloffset) const
3561 {
3562   gold_assert(sym->has_warning());
3563
3564   // We don't want to issue a warning for a relocation against the
3565   // symbol in the same object file in which the symbol is defined.
3566   if (sym->object() == relinfo->object)
3567     return;
3568
3569   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3570   gold_assert(p != this->warnings_.end());
3571   gold_warning_at_location(relinfo, relnum, reloffset,
3572                            "%s", p->second.text.c_str());
3573 }
3574
3575 // Instantiate the templates we need.  We could use the configure
3576 // script to restrict this to only the ones needed for implemented
3577 // targets.
3578
3579 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3580 template
3581 void
3582 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3583 #endif
3584
3585 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3586 template
3587 void
3588 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3589 #endif
3590
3591 #ifdef HAVE_TARGET_32_LITTLE
3592 template
3593 void
3594 Symbol_table::add_from_relobj<32, false>(
3595     Sized_relobj_file<32, false>* relobj,
3596     const unsigned char* syms,
3597     size_t count,
3598     size_t symndx_offset,
3599     const char* sym_names,
3600     size_t sym_name_size,
3601     Sized_relobj_file<32, false>::Symbols* sympointers,
3602     size_t* defined);
3603 #endif
3604
3605 #ifdef HAVE_TARGET_32_BIG
3606 template
3607 void
3608 Symbol_table::add_from_relobj<32, true>(
3609     Sized_relobj_file<32, true>* relobj,
3610     const unsigned char* syms,
3611     size_t count,
3612     size_t symndx_offset,
3613     const char* sym_names,
3614     size_t sym_name_size,
3615     Sized_relobj_file<32, true>::Symbols* sympointers,
3616     size_t* defined);
3617 #endif
3618
3619 #ifdef HAVE_TARGET_64_LITTLE
3620 template
3621 void
3622 Symbol_table::add_from_relobj<64, false>(
3623     Sized_relobj_file<64, false>* relobj,
3624     const unsigned char* syms,
3625     size_t count,
3626     size_t symndx_offset,
3627     const char* sym_names,
3628     size_t sym_name_size,
3629     Sized_relobj_file<64, false>::Symbols* sympointers,
3630     size_t* defined);
3631 #endif
3632
3633 #ifdef HAVE_TARGET_64_BIG
3634 template
3635 void
3636 Symbol_table::add_from_relobj<64, true>(
3637     Sized_relobj_file<64, true>* relobj,
3638     const unsigned char* syms,
3639     size_t count,
3640     size_t symndx_offset,
3641     const char* sym_names,
3642     size_t sym_name_size,
3643     Sized_relobj_file<64, true>::Symbols* sympointers,
3644     size_t* defined);
3645 #endif
3646
3647 #ifdef HAVE_TARGET_32_LITTLE
3648 template
3649 Symbol*
3650 Symbol_table::add_from_pluginobj<32, false>(
3651     Sized_pluginobj<32, false>* obj,
3652     const char* name,
3653     const char* ver,
3654     elfcpp::Sym<32, false>* sym);
3655 #endif
3656
3657 #ifdef HAVE_TARGET_32_BIG
3658 template
3659 Symbol*
3660 Symbol_table::add_from_pluginobj<32, true>(
3661     Sized_pluginobj<32, true>* obj,
3662     const char* name,
3663     const char* ver,
3664     elfcpp::Sym<32, true>* sym);
3665 #endif
3666
3667 #ifdef HAVE_TARGET_64_LITTLE
3668 template
3669 Symbol*
3670 Symbol_table::add_from_pluginobj<64, false>(
3671     Sized_pluginobj<64, false>* obj,
3672     const char* name,
3673     const char* ver,
3674     elfcpp::Sym<64, false>* sym);
3675 #endif
3676
3677 #ifdef HAVE_TARGET_64_BIG
3678 template
3679 Symbol*
3680 Symbol_table::add_from_pluginobj<64, true>(
3681     Sized_pluginobj<64, true>* obj,
3682     const char* name,
3683     const char* ver,
3684     elfcpp::Sym<64, true>* sym);
3685 #endif
3686
3687 #ifdef HAVE_TARGET_32_LITTLE
3688 template
3689 void
3690 Symbol_table::add_from_dynobj<32, false>(
3691     Sized_dynobj<32, false>* dynobj,
3692     const unsigned char* syms,
3693     size_t count,
3694     const char* sym_names,
3695     size_t sym_name_size,
3696     const unsigned char* versym,
3697     size_t versym_size,
3698     const std::vector<const char*>* version_map,
3699     Sized_relobj_file<32, false>::Symbols* sympointers,
3700     size_t* defined);
3701 #endif
3702
3703 #ifdef HAVE_TARGET_32_BIG
3704 template
3705 void
3706 Symbol_table::add_from_dynobj<32, true>(
3707     Sized_dynobj<32, true>* dynobj,
3708     const unsigned char* syms,
3709     size_t count,
3710     const char* sym_names,
3711     size_t sym_name_size,
3712     const unsigned char* versym,
3713     size_t versym_size,
3714     const std::vector<const char*>* version_map,
3715     Sized_relobj_file<32, true>::Symbols* sympointers,
3716     size_t* defined);
3717 #endif
3718
3719 #ifdef HAVE_TARGET_64_LITTLE
3720 template
3721 void
3722 Symbol_table::add_from_dynobj<64, false>(
3723     Sized_dynobj<64, false>* dynobj,
3724     const unsigned char* syms,
3725     size_t count,
3726     const char* sym_names,
3727     size_t sym_name_size,
3728     const unsigned char* versym,
3729     size_t versym_size,
3730     const std::vector<const char*>* version_map,
3731     Sized_relobj_file<64, false>::Symbols* sympointers,
3732     size_t* defined);
3733 #endif
3734
3735 #ifdef HAVE_TARGET_64_BIG
3736 template
3737 void
3738 Symbol_table::add_from_dynobj<64, true>(
3739     Sized_dynobj<64, true>* dynobj,
3740     const unsigned char* syms,
3741     size_t count,
3742     const char* sym_names,
3743     size_t sym_name_size,
3744     const unsigned char* versym,
3745     size_t versym_size,
3746     const std::vector<const char*>* version_map,
3747     Sized_relobj_file<64, true>::Symbols* sympointers,
3748     size_t* defined);
3749 #endif
3750
3751 #ifdef HAVE_TARGET_32_LITTLE
3752 template
3753 Sized_symbol<32>*
3754 Symbol_table::add_from_incrobj(
3755     Object* obj,
3756     const char* name,
3757     const char* ver,
3758     elfcpp::Sym<32, false>* sym);
3759 #endif
3760
3761 #ifdef HAVE_TARGET_32_BIG
3762 template
3763 Sized_symbol<32>*
3764 Symbol_table::add_from_incrobj(
3765     Object* obj,
3766     const char* name,
3767     const char* ver,
3768     elfcpp::Sym<32, true>* sym);
3769 #endif
3770
3771 #ifdef HAVE_TARGET_64_LITTLE
3772 template
3773 Sized_symbol<64>*
3774 Symbol_table::add_from_incrobj(
3775     Object* obj,
3776     const char* name,
3777     const char* ver,
3778     elfcpp::Sym<64, false>* sym);
3779 #endif
3780
3781 #ifdef HAVE_TARGET_64_BIG
3782 template
3783 Sized_symbol<64>*
3784 Symbol_table::add_from_incrobj(
3785     Object* obj,
3786     const char* name,
3787     const char* ver,
3788     elfcpp::Sym<64, true>* sym);
3789 #endif
3790
3791 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3792 template
3793 void
3794 Symbol_table::define_with_copy_reloc<32>(
3795     Sized_symbol<32>* sym,
3796     Output_data* posd,
3797     elfcpp::Elf_types<32>::Elf_Addr value);
3798 #endif
3799
3800 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3801 template
3802 void
3803 Symbol_table::define_with_copy_reloc<64>(
3804     Sized_symbol<64>* sym,
3805     Output_data* posd,
3806     elfcpp::Elf_types<64>::Elf_Addr value);
3807 #endif
3808
3809 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3810 template
3811 void
3812 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3813                                    Output_data* od, Value_type value,
3814                                    Size_type symsize, elfcpp::STT type,
3815                                    elfcpp::STB binding,
3816                                    elfcpp::STV visibility,
3817                                    unsigned char nonvis,
3818                                    bool offset_is_from_end,
3819                                    bool is_predefined);
3820
3821 template
3822 void
3823 Sized_symbol<32>::init_constant(const char* name, const char* version,
3824                                 Value_type value, Size_type symsize,
3825                                 elfcpp::STT type, elfcpp::STB binding,
3826                                 elfcpp::STV visibility, unsigned char nonvis,
3827                                 bool is_predefined);
3828
3829 template
3830 void
3831 Sized_symbol<32>::init_undefined(const char* name, const char* version,
3832                                  Value_type value, elfcpp::STT type,
3833                                  elfcpp::STB binding, elfcpp::STV visibility,
3834                                  unsigned char nonvis);
3835 #endif
3836
3837 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3838 template
3839 void
3840 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3841                                    Output_data* od, Value_type value,
3842                                    Size_type symsize, elfcpp::STT type,
3843                                    elfcpp::STB binding,
3844                                    elfcpp::STV visibility,
3845                                    unsigned char nonvis,
3846                                    bool offset_is_from_end,
3847                                    bool is_predefined);
3848
3849 template
3850 void
3851 Sized_symbol<64>::init_constant(const char* name, const char* version,
3852                                 Value_type value, Size_type symsize,
3853                                 elfcpp::STT type, elfcpp::STB binding,
3854                                 elfcpp::STV visibility, unsigned char nonvis,
3855                                 bool is_predefined);
3856
3857 template
3858 void
3859 Sized_symbol<64>::init_undefined(const char* name, const char* version,
3860                                  Value_type value, elfcpp::STT type,
3861                                  elfcpp::STB binding, elfcpp::STV visibility,
3862                                  unsigned char nonvis);
3863 #endif
3864
3865 #ifdef HAVE_TARGET_32_LITTLE
3866 template
3867 void
3868 Warnings::issue_warning<32, false>(const Symbol* sym,
3869                                    const Relocate_info<32, false>* relinfo,
3870                                    size_t relnum, off_t reloffset) const;
3871 #endif
3872
3873 #ifdef HAVE_TARGET_32_BIG
3874 template
3875 void
3876 Warnings::issue_warning<32, true>(const Symbol* sym,
3877                                   const Relocate_info<32, true>* relinfo,
3878                                   size_t relnum, off_t reloffset) const;
3879 #endif
3880
3881 #ifdef HAVE_TARGET_64_LITTLE
3882 template
3883 void
3884 Warnings::issue_warning<64, false>(const Symbol* sym,
3885                                    const Relocate_info<64, false>* relinfo,
3886                                    size_t relnum, off_t reloffset) const;
3887 #endif
3888
3889 #ifdef HAVE_TARGET_64_BIG
3890 template
3891 void
3892 Warnings::issue_warning<64, true>(const Symbol* sym,
3893                                   const Relocate_info<64, true>* relinfo,
3894                                   size_t relnum, off_t reloffset) const;
3895 #endif
3896
3897 } // End namespace gold.