* object.cc (Sized_relobj::do_count): Test should_retain_symbol map.
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "demangle.h"   // needed for --dynamic-list-cpp-new
42 #include "plugin.h"
43
44 namespace gold
45 {
46
47 // Class Symbol.
48
49 // Initialize fields in Symbol.  This initializes everything except u_
50 // and source_.
51
52 void
53 Symbol::init_fields(const char* name, const char* version,
54                     elfcpp::STT type, elfcpp::STB binding,
55                     elfcpp::STV visibility, unsigned char nonvis)
56 {
57   this->name_ = name;
58   this->version_ = version;
59   this->symtab_index_ = 0;
60   this->dynsym_index_ = 0;
61   this->got_offsets_.init();
62   this->plt_offset_ = 0;
63   this->type_ = type;
64   this->binding_ = binding;
65   this->visibility_ = visibility;
66   this->nonvis_ = nonvis;
67   this->is_target_special_ = false;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_plt_offset_ = false;
75   this->has_warning_ = false;
76   this->is_copied_from_dynobj_ = false;
77   this->is_forced_local_ = false;
78   this->is_ordinary_shndx_ = false;
79   this->in_real_elf_ = false;
80 }
81
82 // Return the demangled version of the symbol's name, but only
83 // if the --demangle flag was set.
84
85 static std::string
86 demangle(const char* name)
87 {
88   if (!parameters->options().do_demangle())
89     return name;
90
91   // cplus_demangle allocates memory for the result it returns,
92   // and returns NULL if the name is already demangled.
93   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
94   if (demangled_name == NULL)
95     return name;
96
97   std::string retval(demangled_name);
98   free(demangled_name);
99   return retval;
100 }
101
102 std::string
103 Symbol::demangled_name() const
104 {
105   return demangle(this->name());
106 }
107
108 // Initialize the fields in the base class Symbol for SYM in OBJECT.
109
110 template<int size, bool big_endian>
111 void
112 Symbol::init_base_object(const char* name, const char* version, Object* object,
113                          const elfcpp::Sym<size, big_endian>& sym,
114                          unsigned int st_shndx, bool is_ordinary)
115 {
116   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
117                     sym.get_st_visibility(), sym.get_st_nonvis());
118   this->u_.from_object.object = object;
119   this->u_.from_object.shndx = st_shndx;
120   this->is_ordinary_shndx_ = is_ordinary;
121   this->source_ = FROM_OBJECT;
122   this->in_reg_ = !object->is_dynamic();
123   this->in_dyn_ = object->is_dynamic();
124   this->in_real_elf_ = object->pluginobj() == NULL;
125 }
126
127 // Initialize the fields in the base class Symbol for a symbol defined
128 // in an Output_data.
129
130 void
131 Symbol::init_base_output_data(const char* name, const char* version,
132                               Output_data* od, elfcpp::STT type,
133                               elfcpp::STB binding, elfcpp::STV visibility,
134                               unsigned char nonvis, bool offset_is_from_end)
135 {
136   this->init_fields(name, version, type, binding, visibility, nonvis);
137   this->u_.in_output_data.output_data = od;
138   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
139   this->source_ = IN_OUTPUT_DATA;
140   this->in_reg_ = true;
141   this->in_real_elf_ = true;
142 }
143
144 // Initialize the fields in the base class Symbol for a symbol defined
145 // in an Output_segment.
146
147 void
148 Symbol::init_base_output_segment(const char* name, const char* version,
149                                  Output_segment* os, elfcpp::STT type,
150                                  elfcpp::STB binding, elfcpp::STV visibility,
151                                  unsigned char nonvis,
152                                  Segment_offset_base offset_base)
153 {
154   this->init_fields(name, version, type, binding, visibility, nonvis);
155   this->u_.in_output_segment.output_segment = os;
156   this->u_.in_output_segment.offset_base = offset_base;
157   this->source_ = IN_OUTPUT_SEGMENT;
158   this->in_reg_ = true;
159   this->in_real_elf_ = true;
160 }
161
162 // Initialize the fields in the base class Symbol for a symbol defined
163 // as a constant.
164
165 void
166 Symbol::init_base_constant(const char* name, const char* version,
167                            elfcpp::STT type, elfcpp::STB binding,
168                            elfcpp::STV visibility, unsigned char nonvis)
169 {
170   this->init_fields(name, version, type, binding, visibility, nonvis);
171   this->source_ = IS_CONSTANT;
172   this->in_reg_ = true;
173   this->in_real_elf_ = true;
174 }
175
176 // Initialize the fields in the base class Symbol for an undefined
177 // symbol.
178
179 void
180 Symbol::init_base_undefined(const char* name, const char* version,
181                             elfcpp::STT type, elfcpp::STB binding,
182                             elfcpp::STV visibility, unsigned char nonvis)
183 {
184   this->init_fields(name, version, type, binding, visibility, nonvis);
185   this->dynsym_index_ = -1U;
186   this->source_ = IS_UNDEFINED;
187   this->in_reg_ = true;
188   this->in_real_elf_ = true;
189 }
190
191 // Allocate a common symbol in the base.
192
193 void
194 Symbol::allocate_base_common(Output_data* od)
195 {
196   gold_assert(this->is_common());
197   this->source_ = IN_OUTPUT_DATA;
198   this->u_.in_output_data.output_data = od;
199   this->u_.in_output_data.offset_is_from_end = false;
200 }
201
202 // Initialize the fields in Sized_symbol for SYM in OBJECT.
203
204 template<int size>
205 template<bool big_endian>
206 void
207 Sized_symbol<size>::init_object(const char* name, const char* version,
208                                 Object* object,
209                                 const elfcpp::Sym<size, big_endian>& sym,
210                                 unsigned int st_shndx, bool is_ordinary)
211 {
212   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
213   this->value_ = sym.get_st_value();
214   this->symsize_ = sym.get_st_size();
215 }
216
217 // Initialize the fields in Sized_symbol for a symbol defined in an
218 // Output_data.
219
220 template<int size>
221 void
222 Sized_symbol<size>::init_output_data(const char* name, const char* version,
223                                      Output_data* od, Value_type value,
224                                      Size_type symsize, elfcpp::STT type,
225                                      elfcpp::STB binding,
226                                      elfcpp::STV visibility,
227                                      unsigned char nonvis,
228                                      bool offset_is_from_end)
229 {
230   this->init_base_output_data(name, version, od, type, binding, visibility,
231                               nonvis, offset_is_from_end);
232   this->value_ = value;
233   this->symsize_ = symsize;
234 }
235
236 // Initialize the fields in Sized_symbol for a symbol defined in an
237 // Output_segment.
238
239 template<int size>
240 void
241 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
242                                         Output_segment* os, Value_type value,
243                                         Size_type symsize, elfcpp::STT type,
244                                         elfcpp::STB binding,
245                                         elfcpp::STV visibility,
246                                         unsigned char nonvis,
247                                         Segment_offset_base offset_base)
248 {
249   this->init_base_output_segment(name, version, os, type, binding, visibility,
250                                  nonvis, offset_base);
251   this->value_ = value;
252   this->symsize_ = symsize;
253 }
254
255 // Initialize the fields in Sized_symbol for a symbol defined as a
256 // constant.
257
258 template<int size>
259 void
260 Sized_symbol<size>::init_constant(const char* name, const char* version,
261                                   Value_type value, Size_type symsize,
262                                   elfcpp::STT type, elfcpp::STB binding,
263                                   elfcpp::STV visibility, unsigned char nonvis)
264 {
265   this->init_base_constant(name, version, type, binding, visibility, nonvis);
266   this->value_ = value;
267   this->symsize_ = symsize;
268 }
269
270 // Initialize the fields in Sized_symbol for an undefined symbol.
271
272 template<int size>
273 void
274 Sized_symbol<size>::init_undefined(const char* name, const char* version,
275                                    elfcpp::STT type, elfcpp::STB binding,
276                                    elfcpp::STV visibility, unsigned char nonvis)
277 {
278   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
279   this->value_ = 0;
280   this->symsize_ = 0;
281 }
282
283 // Return true if SHNDX represents a common symbol.
284
285 bool
286 Symbol::is_common_shndx(unsigned int shndx)
287 {
288   return (shndx == elfcpp::SHN_COMMON
289           || shndx == parameters->target().small_common_shndx()
290           || shndx == parameters->target().large_common_shndx());
291 }
292
293 // Allocate a common symbol.
294
295 template<int size>
296 void
297 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
298 {
299   this->allocate_base_common(od);
300   this->value_ = value;
301 }
302
303 // The ""'s around str ensure str is a string literal, so sizeof works.
304 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
305
306 // Return true if this symbol should be added to the dynamic symbol
307 // table.
308
309 inline bool
310 Symbol::should_add_dynsym_entry() const
311 {
312   // If the symbol is used by a dynamic relocation, we need to add it.
313   if (this->needs_dynsym_entry())
314     return true;
315
316   // If this symbol's section is not added, the symbol need not be added. 
317   // The section may have been GCed.  Note that export_dynamic is being 
318   // overridden here.  This should not be done for shared objects.
319   if (parameters->options().gc_sections() 
320       && !parameters->options().shared()
321       && this->source() == Symbol::FROM_OBJECT
322       && !this->object()->is_dynamic())
323     {
324       Relobj* relobj = static_cast<Relobj*>(this->object());
325       bool is_ordinary;
326       unsigned int shndx = this->shndx(&is_ordinary);
327       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
328           && !relobj->is_section_included(shndx))
329         return false;
330     }
331
332   // If the symbol was forced local in a version script, do not add it.
333   if (this->is_forced_local())
334     return false;
335
336   // If the symbol was forced dynamic in a --dynamic-list file, add it.
337   if (parameters->options().in_dynamic_list(this->name()))
338     return true;
339
340   // If dynamic-list-data was specified, add any STT_OBJECT.
341   if (parameters->options().dynamic_list_data()
342       && !this->is_from_dynobj()
343       && this->type() == elfcpp::STT_OBJECT)
344     return true;
345
346   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
347   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
348   if ((parameters->options().dynamic_list_cpp_new()
349        || parameters->options().dynamic_list_cpp_typeinfo())
350       && !this->is_from_dynobj())
351     {
352       // TODO(csilvers): We could probably figure out if we're an operator
353       //                 new/delete or typeinfo without the need to demangle.
354       char* demangled_name = cplus_demangle(this->name(),
355                                             DMGL_ANSI | DMGL_PARAMS);
356       if (demangled_name == NULL)
357         {
358           // Not a C++ symbol, so it can't satisfy these flags
359         }
360       else if (parameters->options().dynamic_list_cpp_new()
361                && (strprefix(demangled_name, "operator new")
362                    || strprefix(demangled_name, "operator delete")))
363         {
364           free(demangled_name);
365           return true;
366         }
367       else if (parameters->options().dynamic_list_cpp_typeinfo()
368                && (strprefix(demangled_name, "typeinfo name for")
369                    || strprefix(demangled_name, "typeinfo for")))
370         {
371           free(demangled_name);
372           return true;
373         }
374       else
375         free(demangled_name);
376     }
377
378   // If exporting all symbols or building a shared library,
379   // and the symbol is defined in a regular object and is
380   // externally visible, we need to add it.
381   if ((parameters->options().export_dynamic() || parameters->options().shared())
382       && !this->is_from_dynobj()
383       && this->is_externally_visible())
384     return true;
385
386   return false;
387 }
388
389 // Return true if the final value of this symbol is known at link
390 // time.
391
392 bool
393 Symbol::final_value_is_known() const
394 {
395   // If we are not generating an executable, then no final values are
396   // known, since they will change at runtime.
397   if (parameters->options().shared() || parameters->options().relocatable())
398     return false;
399
400   // If the symbol is not from an object file, and is not undefined,
401   // then it is defined, and known.
402   if (this->source_ != FROM_OBJECT)
403     {
404       if (this->source_ != IS_UNDEFINED)
405         return true;
406     }
407   else
408     {
409       // If the symbol is from a dynamic object, then the final value
410       // is not known.
411       if (this->object()->is_dynamic())
412         return false;
413
414       // If the symbol is not undefined (it is defined or common),
415       // then the final value is known.
416       if (!this->is_undefined())
417         return true;
418     }
419
420   // If the symbol is undefined, then whether the final value is known
421   // depends on whether we are doing a static link.  If we are doing a
422   // dynamic link, then the final value could be filled in at runtime.
423   // This could reasonably be the case for a weak undefined symbol.
424   return parameters->doing_static_link();
425 }
426
427 // Return the output section where this symbol is defined.
428
429 Output_section*
430 Symbol::output_section() const
431 {
432   switch (this->source_)
433     {
434     case FROM_OBJECT:
435       {
436         unsigned int shndx = this->u_.from_object.shndx;
437         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
438           {
439             gold_assert(!this->u_.from_object.object->is_dynamic());
440             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
441             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
442             return relobj->output_section(shndx);
443           }
444         return NULL;
445       }
446
447     case IN_OUTPUT_DATA:
448       return this->u_.in_output_data.output_data->output_section();
449
450     case IN_OUTPUT_SEGMENT:
451     case IS_CONSTANT:
452     case IS_UNDEFINED:
453       return NULL;
454
455     default:
456       gold_unreachable();
457     }
458 }
459
460 // Set the symbol's output section.  This is used for symbols defined
461 // in scripts.  This should only be called after the symbol table has
462 // been finalized.
463
464 void
465 Symbol::set_output_section(Output_section* os)
466 {
467   switch (this->source_)
468     {
469     case FROM_OBJECT:
470     case IN_OUTPUT_DATA:
471       gold_assert(this->output_section() == os);
472       break;
473     case IS_CONSTANT:
474       this->source_ = IN_OUTPUT_DATA;
475       this->u_.in_output_data.output_data = os;
476       this->u_.in_output_data.offset_is_from_end = false;
477       break;
478     case IN_OUTPUT_SEGMENT:
479     case IS_UNDEFINED:
480     default:
481       gold_unreachable();
482     }
483 }
484
485 // Class Symbol_table.
486
487 Symbol_table::Symbol_table(unsigned int count,
488                            const Version_script_info& version_script)
489   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
490     forwarders_(), commons_(), tls_commons_(), small_commons_(),
491     large_commons_(), forced_locals_(), warnings_(),
492     version_script_(version_script), gc_(NULL), icf_(NULL)
493 {
494   namepool_.reserve(count);
495 }
496
497 Symbol_table::~Symbol_table()
498 {
499 }
500
501 // The hash function.  The key values are Stringpool keys.
502
503 inline size_t
504 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
505 {
506   return key.first ^ key.second;
507 }
508
509 // The symbol table key equality function.  This is called with
510 // Stringpool keys.
511
512 inline bool
513 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
514                                           const Symbol_table_key& k2) const
515 {
516   return k1.first == k2.first && k1.second == k2.second;
517 }
518
519 bool
520 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
521 {
522   return (parameters->options().icf()
523           && this->icf_->is_section_folded(obj, shndx));
524 }
525
526 // For symbols that have been listed with -u option, add them to the
527 // work list to avoid gc'ing them.
528
529 void 
530 Symbol_table::gc_mark_undef_symbols()
531 {
532   for (options::String_set::const_iterator p =
533          parameters->options().undefined_begin();
534        p != parameters->options().undefined_end();
535        ++p)
536     {
537       const char* name = p->c_str();
538       Symbol* sym = this->lookup(name);
539       gold_assert (sym != NULL);
540       if (sym->source() == Symbol::FROM_OBJECT 
541           && !sym->object()->is_dynamic())
542         {
543           Relobj* obj = static_cast<Relobj*>(sym->object());
544           bool is_ordinary;
545           unsigned int shndx = sym->shndx(&is_ordinary);
546           if (is_ordinary)
547             {
548               gold_assert(this->gc_ != NULL);
549               this->gc_->worklist().push(Section_id(obj, shndx));
550             }
551         }
552     }
553 }
554
555 void
556 Symbol_table::gc_mark_symbol_for_shlib(Symbol* sym)
557 {
558   if (!sym->is_from_dynobj() 
559       && sym->is_externally_visible())
560     {
561       //Add the object and section to the work list.
562       Relobj* obj = static_cast<Relobj*>(sym->object());
563       bool is_ordinary;
564       unsigned int shndx = sym->shndx(&is_ordinary);
565       if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
566         {
567           gold_assert(this->gc_!= NULL);
568           this->gc_->worklist().push(Section_id(obj, shndx));
569         }
570     }
571 }
572
573 // When doing garbage collection, keep symbols that have been seen in
574 // dynamic objects.
575 inline void 
576 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
577 {
578   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
579       && !sym->object()->is_dynamic())
580     {
581       Relobj *obj = static_cast<Relobj*>(sym->object()); 
582       bool is_ordinary;
583       unsigned int shndx = sym->shndx(&is_ordinary);
584       if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
585         {
586           gold_assert(this->gc_ != NULL);
587           this->gc_->worklist().push(Section_id(obj, shndx));
588         }
589     }
590 }
591
592 // Make TO a symbol which forwards to FROM.
593
594 void
595 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
596 {
597   gold_assert(from != to);
598   gold_assert(!from->is_forwarder() && !to->is_forwarder());
599   this->forwarders_[from] = to;
600   from->set_forwarder();
601 }
602
603 // Resolve the forwards from FROM, returning the real symbol.
604
605 Symbol*
606 Symbol_table::resolve_forwards(const Symbol* from) const
607 {
608   gold_assert(from->is_forwarder());
609   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
610     this->forwarders_.find(from);
611   gold_assert(p != this->forwarders_.end());
612   return p->second;
613 }
614
615 // Look up a symbol by name.
616
617 Symbol*
618 Symbol_table::lookup(const char* name, const char* version) const
619 {
620   Stringpool::Key name_key;
621   name = this->namepool_.find(name, &name_key);
622   if (name == NULL)
623     return NULL;
624
625   Stringpool::Key version_key = 0;
626   if (version != NULL)
627     {
628       version = this->namepool_.find(version, &version_key);
629       if (version == NULL)
630         return NULL;
631     }
632
633   Symbol_table_key key(name_key, version_key);
634   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
635   if (p == this->table_.end())
636     return NULL;
637   return p->second;
638 }
639
640 // Resolve a Symbol with another Symbol.  This is only used in the
641 // unusual case where there are references to both an unversioned
642 // symbol and a symbol with a version, and we then discover that that
643 // version is the default version.  Because this is unusual, we do
644 // this the slow way, by converting back to an ELF symbol.
645
646 template<int size, bool big_endian>
647 void
648 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
649 {
650   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
651   elfcpp::Sym_write<size, big_endian> esym(buf);
652   // We don't bother to set the st_name or the st_shndx field.
653   esym.put_st_value(from->value());
654   esym.put_st_size(from->symsize());
655   esym.put_st_info(from->binding(), from->type());
656   esym.put_st_other(from->visibility(), from->nonvis());
657   bool is_ordinary;
658   unsigned int shndx = from->shndx(&is_ordinary);
659   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
660                 from->version());
661   if (from->in_reg())
662     to->set_in_reg();
663   if (from->in_dyn())
664     to->set_in_dyn();
665   if (parameters->options().gc_sections())
666     this->gc_mark_dyn_syms(to);
667 }
668
669 // Record that a symbol is forced to be local by a version script or
670 // by visibility.
671
672 void
673 Symbol_table::force_local(Symbol* sym)
674 {
675   if (!sym->is_defined() && !sym->is_common())
676     return;
677   if (sym->is_forced_local())
678     {
679       // We already got this one.
680       return;
681     }
682   sym->set_is_forced_local();
683   this->forced_locals_.push_back(sym);
684 }
685
686 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
687 // is only called for undefined symbols, when at least one --wrap
688 // option was used.
689
690 const char*
691 Symbol_table::wrap_symbol(Object* object, const char* name,
692                           Stringpool::Key* name_key)
693 {
694   // For some targets, we need to ignore a specific character when
695   // wrapping, and add it back later.
696   char prefix = '\0';
697   if (name[0] == object->target()->wrap_char())
698     {
699       prefix = name[0];
700       ++name;
701     }
702
703   if (parameters->options().is_wrap(name))
704     {
705       // Turn NAME into __wrap_NAME.
706       std::string s;
707       if (prefix != '\0')
708         s += prefix;
709       s += "__wrap_";
710       s += name;
711
712       // This will give us both the old and new name in NAMEPOOL_, but
713       // that is OK.  Only the versions we need will wind up in the
714       // real string table in the output file.
715       return this->namepool_.add(s.c_str(), true, name_key);
716     }
717
718   const char* const real_prefix = "__real_";
719   const size_t real_prefix_length = strlen(real_prefix);
720   if (strncmp(name, real_prefix, real_prefix_length) == 0
721       && parameters->options().is_wrap(name + real_prefix_length))
722     {
723       // Turn __real_NAME into NAME.
724       std::string s;
725       if (prefix != '\0')
726         s += prefix;
727       s += name + real_prefix_length;
728       return this->namepool_.add(s.c_str(), true, name_key);
729     }
730
731   return name;
732 }
733
734 // This is called when we see a symbol NAME/VERSION, and the symbol
735 // already exists in the symbol table, and VERSION is marked as being
736 // the default version.  SYM is the NAME/VERSION symbol we just added.
737 // DEFAULT_IS_NEW is true if this is the first time we have seen the
738 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
739
740 template<int size, bool big_endian>
741 void
742 Symbol_table::define_default_version(Sized_symbol<size>* sym,
743                                      bool default_is_new,
744                                      Symbol_table_type::iterator pdef)
745 {
746   if (default_is_new)
747     {
748       // This is the first time we have seen NAME/NULL.  Make
749       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
750       // version.
751       pdef->second = sym;
752       sym->set_is_default();
753     }
754   else if (pdef->second == sym)
755     {
756       // NAME/NULL already points to NAME/VERSION.  Don't mark the
757       // symbol as the default if it is not already the default.
758     }
759   else
760     {
761       // This is the unfortunate case where we already have entries
762       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
763       // NAME/VERSION where VERSION is the default version.  We have
764       // already resolved this new symbol with the existing
765       // NAME/VERSION symbol.
766
767       // It's possible that NAME/NULL and NAME/VERSION are both
768       // defined in regular objects.  This can only happen if one
769       // object file defines foo and another defines foo@@ver.  This
770       // is somewhat obscure, but we call it a multiple definition
771       // error.
772
773       // It's possible that NAME/NULL actually has a version, in which
774       // case it won't be the same as VERSION.  This happens with
775       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
776       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
777       // then see an unadorned t2_2 in an object file and give it
778       // version VER1 from the version script.  This looks like a
779       // default definition for VER1, so it looks like we should merge
780       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
781       // not obvious that this is an error, either.  So we just punt.
782
783       // If one of the symbols has non-default visibility, and the
784       // other is defined in a shared object, then they are different
785       // symbols.
786
787       // Otherwise, we just resolve the symbols as though they were
788       // the same.
789
790       if (pdef->second->version() != NULL)
791         gold_assert(pdef->second->version() != sym->version());
792       else if (sym->visibility() != elfcpp::STV_DEFAULT
793                && pdef->second->is_from_dynobj())
794         ;
795       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
796                && sym->is_from_dynobj())
797         ;
798       else
799         {
800           const Sized_symbol<size>* symdef;
801           symdef = this->get_sized_symbol<size>(pdef->second);
802           Symbol_table::resolve<size, big_endian>(sym, symdef);
803           this->make_forwarder(pdef->second, sym);
804           pdef->second = sym;
805           sym->set_is_default();
806         }
807     }
808 }
809
810 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
811 // name and VERSION is the version; both are canonicalized.  DEF is
812 // whether this is the default version.  ST_SHNDX is the symbol's
813 // section index; IS_ORDINARY is whether this is a normal section
814 // rather than a special code.
815
816 // If DEF is true, then this is the definition of a default version of
817 // a symbol.  That means that any lookup of NAME/NULL and any lookup
818 // of NAME/VERSION should always return the same symbol.  This is
819 // obvious for references, but in particular we want to do this for
820 // definitions: overriding NAME/NULL should also override
821 // NAME/VERSION.  If we don't do that, it would be very hard to
822 // override functions in a shared library which uses versioning.
823
824 // We implement this by simply making both entries in the hash table
825 // point to the same Symbol structure.  That is easy enough if this is
826 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
827 // that we have seen both already, in which case they will both have
828 // independent entries in the symbol table.  We can't simply change
829 // the symbol table entry, because we have pointers to the entries
830 // attached to the object files.  So we mark the entry attached to the
831 // object file as a forwarder, and record it in the forwarders_ map.
832 // Note that entries in the hash table will never be marked as
833 // forwarders.
834 //
835 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
836 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
837 // for a special section code.  ST_SHNDX may be modified if the symbol
838 // is defined in a section being discarded.
839
840 template<int size, bool big_endian>
841 Sized_symbol<size>*
842 Symbol_table::add_from_object(Object* object,
843                               const char *name,
844                               Stringpool::Key name_key,
845                               const char *version,
846                               Stringpool::Key version_key,
847                               bool def,
848                               const elfcpp::Sym<size, big_endian>& sym,
849                               unsigned int st_shndx,
850                               bool is_ordinary,
851                               unsigned int orig_st_shndx)
852 {
853   // Print a message if this symbol is being traced.
854   if (parameters->options().is_trace_symbol(name))
855     {
856       if (orig_st_shndx == elfcpp::SHN_UNDEF)
857         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
858       else
859         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
860     }
861
862   // For an undefined symbol, we may need to adjust the name using
863   // --wrap.
864   if (orig_st_shndx == elfcpp::SHN_UNDEF
865       && parameters->options().any_wrap())
866     {
867       const char* wrap_name = this->wrap_symbol(object, name, &name_key);
868       if (wrap_name != name)
869         {
870           // If we see a reference to malloc with version GLIBC_2.0,
871           // and we turn it into a reference to __wrap_malloc, then we
872           // discard the version number.  Otherwise the user would be
873           // required to specify the correct version for
874           // __wrap_malloc.
875           version = NULL;
876           version_key = 0;
877           name = wrap_name;
878         }
879     }
880
881   Symbol* const snull = NULL;
882   std::pair<typename Symbol_table_type::iterator, bool> ins =
883     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
884                                        snull));
885
886   std::pair<typename Symbol_table_type::iterator, bool> insdef =
887     std::make_pair(this->table_.end(), false);
888   if (def)
889     {
890       const Stringpool::Key vnull_key = 0;
891       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
892                                                                  vnull_key),
893                                                   snull));
894     }
895
896   // ins.first: an iterator, which is a pointer to a pair.
897   // ins.first->first: the key (a pair of name and version).
898   // ins.first->second: the value (Symbol*).
899   // ins.second: true if new entry was inserted, false if not.
900
901   Sized_symbol<size>* ret;
902   bool was_undefined;
903   bool was_common;
904   if (!ins.second)
905     {
906       // We already have an entry for NAME/VERSION.
907       ret = this->get_sized_symbol<size>(ins.first->second);
908       gold_assert(ret != NULL);
909
910       was_undefined = ret->is_undefined();
911       was_common = ret->is_common();
912
913       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
914                     version);
915       if (parameters->options().gc_sections())
916         this->gc_mark_dyn_syms(ret);
917
918       if (def)
919         this->define_default_version<size, big_endian>(ret, insdef.second,
920                                                        insdef.first);
921     }
922   else
923     {
924       // This is the first time we have seen NAME/VERSION.
925       gold_assert(ins.first->second == NULL);
926
927       if (def && !insdef.second)
928         {
929           // We already have an entry for NAME/NULL.  If we override
930           // it, then change it to NAME/VERSION.
931           ret = this->get_sized_symbol<size>(insdef.first->second);
932
933           was_undefined = ret->is_undefined();
934           was_common = ret->is_common();
935
936           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
937                         version);
938           if (parameters->options().gc_sections())
939             this->gc_mark_dyn_syms(ret);
940           ins.first->second = ret;
941         }
942       else
943         {
944           was_undefined = false;
945           was_common = false;
946
947           Sized_target<size, big_endian>* target =
948             object->sized_target<size, big_endian>();
949           if (!target->has_make_symbol())
950             ret = new Sized_symbol<size>();
951           else
952             {
953               ret = target->make_symbol();
954               if (ret == NULL)
955                 {
956                   // This means that we don't want a symbol table
957                   // entry after all.
958                   if (!def)
959                     this->table_.erase(ins.first);
960                   else
961                     {
962                       this->table_.erase(insdef.first);
963                       // Inserting insdef invalidated ins.
964                       this->table_.erase(std::make_pair(name_key,
965                                                         version_key));
966                     }
967                   return NULL;
968                 }
969             }
970
971           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
972
973           ins.first->second = ret;
974           if (def)
975             {
976               // This is the first time we have seen NAME/NULL.  Point
977               // it at the new entry for NAME/VERSION.
978               gold_assert(insdef.second);
979               insdef.first->second = ret;
980             }
981         }
982
983       if (def)
984         ret->set_is_default();
985     }
986
987   // Record every time we see a new undefined symbol, to speed up
988   // archive groups.
989   if (!was_undefined && ret->is_undefined())
990     ++this->saw_undefined_;
991
992   // Keep track of common symbols, to speed up common symbol
993   // allocation.
994   if (!was_common && ret->is_common())
995     {
996       if (ret->type() == elfcpp::STT_TLS)
997         this->tls_commons_.push_back(ret);
998       else if (!is_ordinary
999                && st_shndx == parameters->target().small_common_shndx())
1000         this->small_commons_.push_back(ret);
1001       else if (!is_ordinary
1002                && st_shndx == parameters->target().large_common_shndx())
1003         this->large_commons_.push_back(ret);
1004       else
1005         this->commons_.push_back(ret);
1006     }
1007
1008   // If we're not doing a relocatable link, then any symbol with
1009   // hidden or internal visibility is local.
1010   if ((ret->visibility() == elfcpp::STV_HIDDEN
1011        || ret->visibility() == elfcpp::STV_INTERNAL)
1012       && (ret->binding() == elfcpp::STB_GLOBAL
1013           || ret->binding() == elfcpp::STB_WEAK)
1014       && !parameters->options().relocatable())
1015     this->force_local(ret);
1016
1017   return ret;
1018 }
1019
1020 // Add all the symbols in a relocatable object to the hash table.
1021
1022 template<int size, bool big_endian>
1023 void
1024 Symbol_table::add_from_relobj(
1025     Sized_relobj<size, big_endian>* relobj,
1026     const unsigned char* syms,
1027     size_t count,
1028     size_t symndx_offset,
1029     const char* sym_names,
1030     size_t sym_name_size,
1031     typename Sized_relobj<size, big_endian>::Symbols* sympointers,
1032     size_t *defined)
1033 {
1034   *defined = 0;
1035
1036   gold_assert(size == relobj->target()->get_size());
1037   gold_assert(size == parameters->target().get_size());
1038
1039   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1040
1041   const bool just_symbols = relobj->just_symbols();
1042
1043   const unsigned char* p = syms;
1044   for (size_t i = 0; i < count; ++i, p += sym_size)
1045     {
1046       (*sympointers)[i] = NULL;
1047
1048       elfcpp::Sym<size, big_endian> sym(p);
1049
1050       unsigned int st_name = sym.get_st_name();
1051       if (st_name >= sym_name_size)
1052         {
1053           relobj->error(_("bad global symbol name offset %u at %zu"),
1054                         st_name, i);
1055           continue;
1056         }
1057
1058       const char* name = sym_names + st_name;
1059
1060       bool is_ordinary;
1061       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1062                                                        sym.get_st_shndx(),
1063                                                        &is_ordinary);
1064       unsigned int orig_st_shndx = st_shndx;
1065       if (!is_ordinary)
1066         orig_st_shndx = elfcpp::SHN_UNDEF;
1067
1068       if (st_shndx != elfcpp::SHN_UNDEF)
1069         ++*defined;
1070
1071       // A symbol defined in a section which we are not including must
1072       // be treated as an undefined symbol.
1073       if (st_shndx != elfcpp::SHN_UNDEF
1074           && is_ordinary
1075           && !relobj->is_section_included(st_shndx))
1076         st_shndx = elfcpp::SHN_UNDEF;
1077
1078       // In an object file, an '@' in the name separates the symbol
1079       // name from the version name.  If there are two '@' characters,
1080       // this is the default version.
1081       const char* ver = strchr(name, '@');
1082       Stringpool::Key ver_key = 0;
1083       int namelen = 0;
1084       // DEF: is the version default?  LOCAL: is the symbol forced local?
1085       bool def = false;
1086       bool local = false;
1087
1088       if (ver != NULL)
1089         {
1090           // The symbol name is of the form foo@VERSION or foo@@VERSION
1091           namelen = ver - name;
1092           ++ver;
1093           if (*ver == '@')
1094             {
1095               def = true;
1096               ++ver;
1097             }
1098           ver = this->namepool_.add(ver, true, &ver_key);
1099         }
1100       // We don't want to assign a version to an undefined symbol,
1101       // even if it is listed in the version script.  FIXME: What
1102       // about a common symbol?
1103       else
1104         {
1105           namelen = strlen(name);
1106           if (!this->version_script_.empty()
1107               && st_shndx != elfcpp::SHN_UNDEF)
1108             {
1109               // The symbol name did not have a version, but the
1110               // version script may assign a version anyway.
1111               std::string version;
1112               if (this->version_script_.get_symbol_version(name, &version))
1113                 {
1114                   // The version can be empty if the version script is
1115                   // only used to force some symbols to be local.
1116                   if (!version.empty())
1117                     {
1118                       ver = this->namepool_.add_with_length(version.c_str(),
1119                                                             version.length(),
1120                                                             true,
1121                                                             &ver_key);
1122                       def = true;
1123                     }
1124                 }
1125               else if (this->version_script_.symbol_is_local(name))
1126                 local = true;
1127             }
1128         }
1129
1130       elfcpp::Sym<size, big_endian>* psym = &sym;
1131       unsigned char symbuf[sym_size];
1132       elfcpp::Sym<size, big_endian> sym2(symbuf);
1133       if (just_symbols)
1134         {
1135           memcpy(symbuf, p, sym_size);
1136           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1137           if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
1138             {
1139               // Symbol values in object files are section relative.
1140               // This is normally what we want, but since here we are
1141               // converting the symbol to absolute we need to add the
1142               // section address.  The section address in an object
1143               // file is normally zero, but people can use a linker
1144               // script to change it.
1145               sw.put_st_value(sym.get_st_value()
1146                               + relobj->section_address(orig_st_shndx));
1147             }
1148           st_shndx = elfcpp::SHN_ABS;
1149           is_ordinary = false;
1150           psym = &sym2;
1151         }
1152
1153       // Fix up visibility if object has no-export set.
1154       if (relobj->no_export())
1155         {
1156           // We may have copied symbol already above.
1157           if (psym != &sym2)
1158             {
1159               memcpy(symbuf, p, sym_size);
1160               psym = &sym2;
1161             }
1162
1163           elfcpp::STV visibility = sym2.get_st_visibility();
1164           if (visibility == elfcpp::STV_DEFAULT
1165               || visibility == elfcpp::STV_PROTECTED)
1166             {
1167               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1168               unsigned char nonvis = sym2.get_st_nonvis();
1169               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1170             }
1171         }
1172
1173       Stringpool::Key name_key;
1174       name = this->namepool_.add_with_length(name, namelen, true,
1175                                              &name_key);
1176
1177       Sized_symbol<size>* res;
1178       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1179                                   def, *psym, st_shndx, is_ordinary,
1180                                   orig_st_shndx);
1181       
1182       // If building a shared library using garbage collection, do not 
1183       // treat externally visible symbols as garbage.
1184       if (parameters->options().gc_sections() 
1185           && parameters->options().shared())
1186         this->gc_mark_symbol_for_shlib(res);
1187
1188       if (local)
1189         this->force_local(res);
1190
1191       (*sympointers)[i] = res;
1192     }
1193 }
1194
1195 // Add a symbol from a plugin-claimed file.
1196
1197 template<int size, bool big_endian>
1198 Symbol*
1199 Symbol_table::add_from_pluginobj(
1200     Sized_pluginobj<size, big_endian>* obj,
1201     const char* name,
1202     const char* ver,
1203     elfcpp::Sym<size, big_endian>* sym)
1204 {
1205   unsigned int st_shndx = sym->get_st_shndx();
1206
1207   Stringpool::Key ver_key = 0;
1208   bool def = false;
1209   bool local = false;
1210
1211   if (ver != NULL)
1212     {
1213       ver = this->namepool_.add(ver, true, &ver_key);
1214     }
1215   // We don't want to assign a version to an undefined symbol,
1216   // even if it is listed in the version script.  FIXME: What
1217   // about a common symbol?
1218   else
1219     {
1220       if (!this->version_script_.empty()
1221           && st_shndx != elfcpp::SHN_UNDEF)
1222         {
1223           // The symbol name did not have a version, but the
1224           // version script may assign a version anyway.
1225           std::string version;
1226           if (this->version_script_.get_symbol_version(name, &version))
1227             {
1228               // The version can be empty if the version script is
1229               // only used to force some symbols to be local.
1230               if (!version.empty())
1231                 {
1232                   ver = this->namepool_.add_with_length(version.c_str(),
1233                                                         version.length(),
1234                                                         true,
1235                                                         &ver_key);
1236                   def = true;
1237                 }
1238             }
1239           else if (this->version_script_.symbol_is_local(name))
1240             local = true;
1241         }
1242     }
1243
1244   Stringpool::Key name_key;
1245   name = this->namepool_.add(name, true, &name_key);
1246
1247   Sized_symbol<size>* res;
1248   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1249                               def, *sym, st_shndx, true, st_shndx);
1250
1251   if (local)
1252     this->force_local(res);
1253
1254   return res;
1255 }
1256
1257 // Add all the symbols in a dynamic object to the hash table.
1258
1259 template<int size, bool big_endian>
1260 void
1261 Symbol_table::add_from_dynobj(
1262     Sized_dynobj<size, big_endian>* dynobj,
1263     const unsigned char* syms,
1264     size_t count,
1265     const char* sym_names,
1266     size_t sym_name_size,
1267     const unsigned char* versym,
1268     size_t versym_size,
1269     const std::vector<const char*>* version_map,
1270     typename Sized_relobj<size, big_endian>::Symbols* sympointers,
1271     size_t* defined)
1272 {
1273   *defined = 0;
1274
1275   gold_assert(size == dynobj->target()->get_size());
1276   gold_assert(size == parameters->target().get_size());
1277
1278   if (dynobj->just_symbols())
1279     {
1280       gold_error(_("--just-symbols does not make sense with a shared object"));
1281       return;
1282     }
1283
1284   if (versym != NULL && versym_size / 2 < count)
1285     {
1286       dynobj->error(_("too few symbol versions"));
1287       return;
1288     }
1289
1290   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1291
1292   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1293   // weak aliases.  This is necessary because if the dynamic object
1294   // provides the same variable under two names, one of which is a
1295   // weak definition, and the regular object refers to the weak
1296   // definition, we have to put both the weak definition and the
1297   // strong definition into the dynamic symbol table.  Given a weak
1298   // definition, the only way that we can find the corresponding
1299   // strong definition, if any, is to search the symbol table.
1300   std::vector<Sized_symbol<size>*> object_symbols;
1301
1302   const unsigned char* p = syms;
1303   const unsigned char* vs = versym;
1304   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1305     {
1306       elfcpp::Sym<size, big_endian> sym(p);
1307
1308       if (sympointers != NULL)
1309         (*sympointers)[i] = NULL;
1310
1311       // Ignore symbols with local binding or that have
1312       // internal or hidden visibility.
1313       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1314           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1315           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1316         continue;
1317
1318       // A protected symbol in a shared library must be treated as a
1319       // normal symbol when viewed from outside the shared library.
1320       // Implement this by overriding the visibility here.
1321       elfcpp::Sym<size, big_endian>* psym = &sym;
1322       unsigned char symbuf[sym_size];
1323       elfcpp::Sym<size, big_endian> sym2(symbuf);
1324       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1325         {
1326           memcpy(symbuf, p, sym_size);
1327           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1328           sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1329           psym = &sym2;
1330         }
1331
1332       unsigned int st_name = psym->get_st_name();
1333       if (st_name >= sym_name_size)
1334         {
1335           dynobj->error(_("bad symbol name offset %u at %zu"),
1336                         st_name, i);
1337           continue;
1338         }
1339
1340       const char* name = sym_names + st_name;
1341
1342       bool is_ordinary;
1343       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1344                                                        &is_ordinary);
1345
1346       if (st_shndx != elfcpp::SHN_UNDEF)
1347         ++*defined;
1348
1349       Sized_symbol<size>* res;
1350
1351       if (versym == NULL)
1352         {
1353           Stringpool::Key name_key;
1354           name = this->namepool_.add(name, true, &name_key);
1355           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1356                                       false, *psym, st_shndx, is_ordinary,
1357                                       st_shndx);
1358         }
1359       else
1360         {
1361           // Read the version information.
1362
1363           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1364
1365           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1366           v &= elfcpp::VERSYM_VERSION;
1367
1368           // The Sun documentation says that V can be VER_NDX_LOCAL,
1369           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1370           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1371           // The old GNU linker will happily generate VER_NDX_LOCAL
1372           // for an undefined symbol.  I don't know what the Sun
1373           // linker will generate.
1374
1375           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1376               && st_shndx != elfcpp::SHN_UNDEF)
1377             {
1378               // This symbol should not be visible outside the object.
1379               continue;
1380             }
1381
1382           // At this point we are definitely going to add this symbol.
1383           Stringpool::Key name_key;
1384           name = this->namepool_.add(name, true, &name_key);
1385
1386           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1387               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1388             {
1389               // This symbol does not have a version.
1390               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1391                                           false, *psym, st_shndx, is_ordinary,
1392                                           st_shndx);
1393             }
1394           else
1395             {
1396               if (v >= version_map->size())
1397                 {
1398                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1399                                 i, v);
1400                   continue;
1401                 }
1402
1403               const char* version = (*version_map)[v];
1404               if (version == NULL)
1405                 {
1406                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1407                                 i, v);
1408                   continue;
1409                 }
1410
1411               Stringpool::Key version_key;
1412               version = this->namepool_.add(version, true, &version_key);
1413
1414               // If this is an absolute symbol, and the version name
1415               // and symbol name are the same, then this is the
1416               // version definition symbol.  These symbols exist to
1417               // support using -u to pull in particular versions.  We
1418               // do not want to record a version for them.
1419               if (st_shndx == elfcpp::SHN_ABS
1420                   && !is_ordinary
1421                   && name_key == version_key)
1422                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1423                                             false, *psym, st_shndx, is_ordinary,
1424                                             st_shndx);
1425               else
1426                 {
1427                   const bool def = (!hidden
1428                                     && st_shndx != elfcpp::SHN_UNDEF);
1429                   res = this->add_from_object(dynobj, name, name_key, version,
1430                                               version_key, def, *psym, st_shndx,
1431                                               is_ordinary, st_shndx);
1432                 }
1433             }
1434         }
1435
1436       // Note that it is possible that RES was overridden by an
1437       // earlier object, in which case it can't be aliased here.
1438       if (st_shndx != elfcpp::SHN_UNDEF
1439           && is_ordinary
1440           && psym->get_st_type() == elfcpp::STT_OBJECT
1441           && res->source() == Symbol::FROM_OBJECT
1442           && res->object() == dynobj)
1443         object_symbols.push_back(res);
1444
1445       if (sympointers != NULL)
1446         (*sympointers)[i] = res;
1447     }
1448
1449   this->record_weak_aliases(&object_symbols);
1450 }
1451
1452 // This is used to sort weak aliases.  We sort them first by section
1453 // index, then by offset, then by weak ahead of strong.
1454
1455 template<int size>
1456 class Weak_alias_sorter
1457 {
1458  public:
1459   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1460 };
1461
1462 template<int size>
1463 bool
1464 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1465                                     const Sized_symbol<size>* s2) const
1466 {
1467   bool is_ordinary;
1468   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1469   gold_assert(is_ordinary);
1470   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1471   gold_assert(is_ordinary);
1472   if (s1_shndx != s2_shndx)
1473     return s1_shndx < s2_shndx;
1474
1475   if (s1->value() != s2->value())
1476     return s1->value() < s2->value();
1477   if (s1->binding() != s2->binding())
1478     {
1479       if (s1->binding() == elfcpp::STB_WEAK)
1480         return true;
1481       if (s2->binding() == elfcpp::STB_WEAK)
1482         return false;
1483     }
1484   return std::string(s1->name()) < std::string(s2->name());
1485 }
1486
1487 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1488 // for any weak aliases, and record them so that if we add the weak
1489 // alias to the dynamic symbol table, we also add the corresponding
1490 // strong symbol.
1491
1492 template<int size>
1493 void
1494 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1495 {
1496   // Sort the vector by section index, then by offset, then by weak
1497   // ahead of strong.
1498   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1499
1500   // Walk through the vector.  For each weak definition, record
1501   // aliases.
1502   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1503          symbols->begin();
1504        p != symbols->end();
1505        ++p)
1506     {
1507       if ((*p)->binding() != elfcpp::STB_WEAK)
1508         continue;
1509
1510       // Build a circular list of weak aliases.  Each symbol points to
1511       // the next one in the circular list.
1512
1513       Sized_symbol<size>* from_sym = *p;
1514       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1515       for (q = p + 1; q != symbols->end(); ++q)
1516         {
1517           bool dummy;
1518           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1519               || (*q)->value() != from_sym->value())
1520             break;
1521
1522           this->weak_aliases_[from_sym] = *q;
1523           from_sym->set_has_alias();
1524           from_sym = *q;
1525         }
1526
1527       if (from_sym != *p)
1528         {
1529           this->weak_aliases_[from_sym] = *p;
1530           from_sym->set_has_alias();
1531         }
1532
1533       p = q - 1;
1534     }
1535 }
1536
1537 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1538 // true, then only create the symbol if there is a reference to it.
1539 // If this does not return NULL, it sets *POLDSYM to the existing
1540 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1541 // resolve the newly created symbol to the old one.  This
1542 // canonicalizes *PNAME and *PVERSION.
1543
1544 template<int size, bool big_endian>
1545 Sized_symbol<size>*
1546 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1547                                     bool only_if_ref,
1548                                     Sized_symbol<size>** poldsym,
1549                                     bool *resolve_oldsym)
1550 {
1551   *resolve_oldsym = false;
1552
1553   // If the caller didn't give us a version, see if we get one from
1554   // the version script.
1555   std::string v;
1556   bool is_default_version = false;
1557   if (*pversion == NULL)
1558     {
1559       if (this->version_script_.get_symbol_version(*pname, &v))
1560         {
1561           if (!v.empty())
1562             *pversion = v.c_str();
1563
1564           // If we get the version from a version script, then we are
1565           // also the default version.
1566           is_default_version = true;
1567         }
1568     }
1569
1570   Symbol* oldsym;
1571   Sized_symbol<size>* sym;
1572
1573   bool add_to_table = false;
1574   typename Symbol_table_type::iterator add_loc = this->table_.end();
1575   bool add_def_to_table = false;
1576   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1577
1578   if (only_if_ref)
1579     {
1580       oldsym = this->lookup(*pname, *pversion);
1581       if (oldsym == NULL && is_default_version)
1582         oldsym = this->lookup(*pname, NULL);
1583       if (oldsym == NULL || !oldsym->is_undefined())
1584         return NULL;
1585
1586       *pname = oldsym->name();
1587       if (!is_default_version)
1588         *pversion = oldsym->version();
1589     }
1590   else
1591     {
1592       // Canonicalize NAME and VERSION.
1593       Stringpool::Key name_key;
1594       *pname = this->namepool_.add(*pname, true, &name_key);
1595
1596       Stringpool::Key version_key = 0;
1597       if (*pversion != NULL)
1598         *pversion = this->namepool_.add(*pversion, true, &version_key);
1599
1600       Symbol* const snull = NULL;
1601       std::pair<typename Symbol_table_type::iterator, bool> ins =
1602         this->table_.insert(std::make_pair(std::make_pair(name_key,
1603                                                           version_key),
1604                                            snull));
1605
1606       std::pair<typename Symbol_table_type::iterator, bool> insdef =
1607         std::make_pair(this->table_.end(), false);
1608       if (is_default_version)
1609         {
1610           const Stringpool::Key vnull = 0;
1611           insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
1612                                                                      vnull),
1613                                                       snull));
1614         }
1615
1616       if (!ins.second)
1617         {
1618           // We already have a symbol table entry for NAME/VERSION.
1619           oldsym = ins.first->second;
1620           gold_assert(oldsym != NULL);
1621
1622           if (is_default_version)
1623             {
1624               Sized_symbol<size>* soldsym =
1625                 this->get_sized_symbol<size>(oldsym);
1626               this->define_default_version<size, big_endian>(soldsym,
1627                                                              insdef.second,
1628                                                              insdef.first);
1629             }
1630         }
1631       else
1632         {
1633           // We haven't seen this symbol before.
1634           gold_assert(ins.first->second == NULL);
1635
1636           add_to_table = true;
1637           add_loc = ins.first;
1638
1639           if (is_default_version && !insdef.second)
1640             {
1641               // We are adding NAME/VERSION, and it is the default
1642               // version.  We already have an entry for NAME/NULL.
1643               oldsym = insdef.first->second;
1644               *resolve_oldsym = true;
1645             }
1646           else
1647             {
1648               oldsym = NULL;
1649
1650               if (is_default_version)
1651                 {
1652                   add_def_to_table = true;
1653                   add_def_loc = insdef.first;
1654                 }
1655             }
1656         }
1657     }
1658
1659   const Target& target = parameters->target();
1660   if (!target.has_make_symbol())
1661     sym = new Sized_symbol<size>();
1662   else
1663     {
1664       gold_assert(target.get_size() == size);
1665       gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1666       typedef Sized_target<size, big_endian> My_target;
1667       const My_target* sized_target =
1668           static_cast<const My_target*>(&target);
1669       sym = sized_target->make_symbol();
1670       if (sym == NULL)
1671         return NULL;
1672     }
1673
1674   if (add_to_table)
1675     add_loc->second = sym;
1676   else
1677     gold_assert(oldsym != NULL);
1678
1679   if (add_def_to_table)
1680     add_def_loc->second = sym;
1681
1682   *poldsym = this->get_sized_symbol<size>(oldsym);
1683
1684   return sym;
1685 }
1686
1687 // Define a symbol based on an Output_data.
1688
1689 Symbol*
1690 Symbol_table::define_in_output_data(const char* name,
1691                                     const char* version,
1692                                     Output_data* od,
1693                                     uint64_t value,
1694                                     uint64_t symsize,
1695                                     elfcpp::STT type,
1696                                     elfcpp::STB binding,
1697                                     elfcpp::STV visibility,
1698                                     unsigned char nonvis,
1699                                     bool offset_is_from_end,
1700                                     bool only_if_ref)
1701 {
1702   if (parameters->target().get_size() == 32)
1703     {
1704 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1705       return this->do_define_in_output_data<32>(name, version, od,
1706                                                 value, symsize, type, binding,
1707                                                 visibility, nonvis,
1708                                                 offset_is_from_end,
1709                                                 only_if_ref);
1710 #else
1711       gold_unreachable();
1712 #endif
1713     }
1714   else if (parameters->target().get_size() == 64)
1715     {
1716 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1717       return this->do_define_in_output_data<64>(name, version, od,
1718                                                 value, symsize, type, binding,
1719                                                 visibility, nonvis,
1720                                                 offset_is_from_end,
1721                                                 only_if_ref);
1722 #else
1723       gold_unreachable();
1724 #endif
1725     }
1726   else
1727     gold_unreachable();
1728 }
1729
1730 // Define a symbol in an Output_data, sized version.
1731
1732 template<int size>
1733 Sized_symbol<size>*
1734 Symbol_table::do_define_in_output_data(
1735     const char* name,
1736     const char* version,
1737     Output_data* od,
1738     typename elfcpp::Elf_types<size>::Elf_Addr value,
1739     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1740     elfcpp::STT type,
1741     elfcpp::STB binding,
1742     elfcpp::STV visibility,
1743     unsigned char nonvis,
1744     bool offset_is_from_end,
1745     bool only_if_ref)
1746 {
1747   Sized_symbol<size>* sym;
1748   Sized_symbol<size>* oldsym;
1749   bool resolve_oldsym;
1750
1751   if (parameters->target().is_big_endian())
1752     {
1753 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1754       sym = this->define_special_symbol<size, true>(&name, &version,
1755                                                     only_if_ref, &oldsym,
1756                                                     &resolve_oldsym);
1757 #else
1758       gold_unreachable();
1759 #endif
1760     }
1761   else
1762     {
1763 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1764       sym = this->define_special_symbol<size, false>(&name, &version,
1765                                                      only_if_ref, &oldsym,
1766                                                      &resolve_oldsym);
1767 #else
1768       gold_unreachable();
1769 #endif
1770     }
1771
1772   if (sym == NULL)
1773     return NULL;
1774
1775   sym->init_output_data(name, version, od, value, symsize, type, binding,
1776                         visibility, nonvis, offset_is_from_end);
1777
1778   if (oldsym == NULL)
1779     {
1780       if (binding == elfcpp::STB_LOCAL
1781           || this->version_script_.symbol_is_local(name))
1782         this->force_local(sym);
1783       else if (version != NULL)
1784         sym->set_is_default();
1785       return sym;
1786     }
1787
1788   if (Symbol_table::should_override_with_special(oldsym))
1789     this->override_with_special(oldsym, sym);
1790
1791   if (resolve_oldsym)
1792     return sym;
1793   else
1794     {
1795       delete sym;
1796       return oldsym;
1797     }
1798 }
1799
1800 // Define a symbol based on an Output_segment.
1801
1802 Symbol*
1803 Symbol_table::define_in_output_segment(const char* name,
1804                                        const char* version, Output_segment* os,
1805                                        uint64_t value,
1806                                        uint64_t symsize,
1807                                        elfcpp::STT type,
1808                                        elfcpp::STB binding,
1809                                        elfcpp::STV visibility,
1810                                        unsigned char nonvis,
1811                                        Symbol::Segment_offset_base offset_base,
1812                                        bool only_if_ref)
1813 {
1814   if (parameters->target().get_size() == 32)
1815     {
1816 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1817       return this->do_define_in_output_segment<32>(name, version, os,
1818                                                    value, symsize, type,
1819                                                    binding, visibility, nonvis,
1820                                                    offset_base, only_if_ref);
1821 #else
1822       gold_unreachable();
1823 #endif
1824     }
1825   else if (parameters->target().get_size() == 64)
1826     {
1827 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1828       return this->do_define_in_output_segment<64>(name, version, os,
1829                                                    value, symsize, type,
1830                                                    binding, visibility, nonvis,
1831                                                    offset_base, only_if_ref);
1832 #else
1833       gold_unreachable();
1834 #endif
1835     }
1836   else
1837     gold_unreachable();
1838 }
1839
1840 // Define a symbol in an Output_segment, sized version.
1841
1842 template<int size>
1843 Sized_symbol<size>*
1844 Symbol_table::do_define_in_output_segment(
1845     const char* name,
1846     const char* version,
1847     Output_segment* os,
1848     typename elfcpp::Elf_types<size>::Elf_Addr value,
1849     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1850     elfcpp::STT type,
1851     elfcpp::STB binding,
1852     elfcpp::STV visibility,
1853     unsigned char nonvis,
1854     Symbol::Segment_offset_base offset_base,
1855     bool only_if_ref)
1856 {
1857   Sized_symbol<size>* sym;
1858   Sized_symbol<size>* oldsym;
1859   bool resolve_oldsym;
1860
1861   if (parameters->target().is_big_endian())
1862     {
1863 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1864       sym = this->define_special_symbol<size, true>(&name, &version,
1865                                                     only_if_ref, &oldsym,
1866                                                     &resolve_oldsym);
1867 #else
1868       gold_unreachable();
1869 #endif
1870     }
1871   else
1872     {
1873 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1874       sym = this->define_special_symbol<size, false>(&name, &version,
1875                                                      only_if_ref, &oldsym,
1876                                                      &resolve_oldsym);
1877 #else
1878       gold_unreachable();
1879 #endif
1880     }
1881
1882   if (sym == NULL)
1883     return NULL;
1884
1885   sym->init_output_segment(name, version, os, value, symsize, type, binding,
1886                            visibility, nonvis, offset_base);
1887
1888   if (oldsym == NULL)
1889     {
1890       if (binding == elfcpp::STB_LOCAL
1891           || this->version_script_.symbol_is_local(name))
1892         this->force_local(sym);
1893       else if (version != NULL)
1894         sym->set_is_default();
1895       return sym;
1896     }
1897
1898   if (Symbol_table::should_override_with_special(oldsym))
1899     this->override_with_special(oldsym, sym);
1900
1901   if (resolve_oldsym)
1902     return sym;
1903   else
1904     {
1905       delete sym;
1906       return oldsym;
1907     }
1908 }
1909
1910 // Define a special symbol with a constant value.  It is a multiple
1911 // definition error if this symbol is already defined.
1912
1913 Symbol*
1914 Symbol_table::define_as_constant(const char* name,
1915                                  const char* version,
1916                                  uint64_t value,
1917                                  uint64_t symsize,
1918                                  elfcpp::STT type,
1919                                  elfcpp::STB binding,
1920                                  elfcpp::STV visibility,
1921                                  unsigned char nonvis,
1922                                  bool only_if_ref,
1923                                  bool force_override)
1924 {
1925   if (parameters->target().get_size() == 32)
1926     {
1927 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1928       return this->do_define_as_constant<32>(name, version, value,
1929                                              symsize, type, binding,
1930                                              visibility, nonvis, only_if_ref,
1931                                              force_override);
1932 #else
1933       gold_unreachable();
1934 #endif
1935     }
1936   else if (parameters->target().get_size() == 64)
1937     {
1938 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1939       return this->do_define_as_constant<64>(name, version, value,
1940                                              symsize, type, binding,
1941                                              visibility, nonvis, only_if_ref,
1942                                              force_override);
1943 #else
1944       gold_unreachable();
1945 #endif
1946     }
1947   else
1948     gold_unreachable();
1949 }
1950
1951 // Define a symbol as a constant, sized version.
1952
1953 template<int size>
1954 Sized_symbol<size>*
1955 Symbol_table::do_define_as_constant(
1956     const char* name,
1957     const char* version,
1958     typename elfcpp::Elf_types<size>::Elf_Addr value,
1959     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1960     elfcpp::STT type,
1961     elfcpp::STB binding,
1962     elfcpp::STV visibility,
1963     unsigned char nonvis,
1964     bool only_if_ref,
1965     bool force_override)
1966 {
1967   Sized_symbol<size>* sym;
1968   Sized_symbol<size>* oldsym;
1969   bool resolve_oldsym;
1970
1971   if (parameters->target().is_big_endian())
1972     {
1973 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1974       sym = this->define_special_symbol<size, true>(&name, &version,
1975                                                     only_if_ref, &oldsym,
1976                                                     &resolve_oldsym);
1977 #else
1978       gold_unreachable();
1979 #endif
1980     }
1981   else
1982     {
1983 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1984       sym = this->define_special_symbol<size, false>(&name, &version,
1985                                                      only_if_ref, &oldsym,
1986                                                      &resolve_oldsym);
1987 #else
1988       gold_unreachable();
1989 #endif
1990     }
1991
1992   if (sym == NULL)
1993     return NULL;
1994
1995   sym->init_constant(name, version, value, symsize, type, binding, visibility,
1996                      nonvis);
1997
1998   if (oldsym == NULL)
1999     {
2000       // Version symbols are absolute symbols with name == version.
2001       // We don't want to force them to be local.
2002       if ((version == NULL
2003            || name != version
2004            || value != 0)
2005           && (binding == elfcpp::STB_LOCAL
2006               || this->version_script_.symbol_is_local(name)))
2007         this->force_local(sym);
2008       else if (version != NULL
2009                && (name != version || value != 0))
2010         sym->set_is_default();
2011       return sym;
2012     }
2013
2014   if (force_override || Symbol_table::should_override_with_special(oldsym))
2015     this->override_with_special(oldsym, sym);
2016
2017   if (resolve_oldsym)
2018     return sym;
2019   else
2020     {
2021       delete sym;
2022       return oldsym;
2023     }
2024 }
2025
2026 // Define a set of symbols in output sections.
2027
2028 void
2029 Symbol_table::define_symbols(const Layout* layout, int count,
2030                              const Define_symbol_in_section* p,
2031                              bool only_if_ref)
2032 {
2033   for (int i = 0; i < count; ++i, ++p)
2034     {
2035       Output_section* os = layout->find_output_section(p->output_section);
2036       if (os != NULL)
2037         this->define_in_output_data(p->name, NULL, os, p->value,
2038                                     p->size, p->type, p->binding,
2039                                     p->visibility, p->nonvis,
2040                                     p->offset_is_from_end,
2041                                     only_if_ref || p->only_if_ref);
2042       else
2043         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
2044                                  p->binding, p->visibility, p->nonvis,
2045                                  only_if_ref || p->only_if_ref,
2046                                  false);
2047     }
2048 }
2049
2050 // Define a set of symbols in output segments.
2051
2052 void
2053 Symbol_table::define_symbols(const Layout* layout, int count,
2054                              const Define_symbol_in_segment* p,
2055                              bool only_if_ref)
2056 {
2057   for (int i = 0; i < count; ++i, ++p)
2058     {
2059       Output_segment* os = layout->find_output_segment(p->segment_type,
2060                                                        p->segment_flags_set,
2061                                                        p->segment_flags_clear);
2062       if (os != NULL)
2063         this->define_in_output_segment(p->name, NULL, os, p->value,
2064                                        p->size, p->type, p->binding,
2065                                        p->visibility, p->nonvis,
2066                                        p->offset_base,
2067                                        only_if_ref || p->only_if_ref);
2068       else
2069         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
2070                                  p->binding, p->visibility, p->nonvis,
2071                                  only_if_ref || p->only_if_ref,
2072                                  false);
2073     }
2074 }
2075
2076 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2077 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2078 // the offset within POSD.
2079
2080 template<int size>
2081 void
2082 Symbol_table::define_with_copy_reloc(
2083     Sized_symbol<size>* csym,
2084     Output_data* posd,
2085     typename elfcpp::Elf_types<size>::Elf_Addr value)
2086 {
2087   gold_assert(csym->is_from_dynobj());
2088   gold_assert(!csym->is_copied_from_dynobj());
2089   Object* object = csym->object();
2090   gold_assert(object->is_dynamic());
2091   Dynobj* dynobj = static_cast<Dynobj*>(object);
2092
2093   // Our copied variable has to override any variable in a shared
2094   // library.
2095   elfcpp::STB binding = csym->binding();
2096   if (binding == elfcpp::STB_WEAK)
2097     binding = elfcpp::STB_GLOBAL;
2098
2099   this->define_in_output_data(csym->name(), csym->version(),
2100                               posd, value, csym->symsize(),
2101                               csym->type(), binding,
2102                               csym->visibility(), csym->nonvis(),
2103                               false, false);
2104
2105   csym->set_is_copied_from_dynobj();
2106   csym->set_needs_dynsym_entry();
2107
2108   this->copied_symbol_dynobjs_[csym] = dynobj;
2109
2110   // We have now defined all aliases, but we have not entered them all
2111   // in the copied_symbol_dynobjs_ map.
2112   if (csym->has_alias())
2113     {
2114       Symbol* sym = csym;
2115       while (true)
2116         {
2117           sym = this->weak_aliases_[sym];
2118           if (sym == csym)
2119             break;
2120           gold_assert(sym->output_data() == posd);
2121
2122           sym->set_is_copied_from_dynobj();
2123           this->copied_symbol_dynobjs_[sym] = dynobj;
2124         }
2125     }
2126 }
2127
2128 // SYM is defined using a COPY reloc.  Return the dynamic object where
2129 // the original definition was found.
2130
2131 Dynobj*
2132 Symbol_table::get_copy_source(const Symbol* sym) const
2133 {
2134   gold_assert(sym->is_copied_from_dynobj());
2135   Copied_symbol_dynobjs::const_iterator p =
2136     this->copied_symbol_dynobjs_.find(sym);
2137   gold_assert(p != this->copied_symbol_dynobjs_.end());
2138   return p->second;
2139 }
2140
2141 // Add any undefined symbols named on the command line.
2142
2143 void
2144 Symbol_table::add_undefined_symbols_from_command_line()
2145 {
2146   if (parameters->options().any_undefined())
2147     {
2148       if (parameters->target().get_size() == 32)
2149         {
2150 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2151           this->do_add_undefined_symbols_from_command_line<32>();
2152 #else
2153           gold_unreachable();
2154 #endif
2155         }
2156       else if (parameters->target().get_size() == 64)
2157         {
2158 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2159           this->do_add_undefined_symbols_from_command_line<64>();
2160 #else
2161           gold_unreachable();
2162 #endif
2163         }
2164       else
2165         gold_unreachable();
2166     }
2167 }
2168
2169 template<int size>
2170 void
2171 Symbol_table::do_add_undefined_symbols_from_command_line()
2172 {
2173   for (options::String_set::const_iterator p =
2174          parameters->options().undefined_begin();
2175        p != parameters->options().undefined_end();
2176        ++p)
2177     {
2178       const char* name = p->c_str();
2179
2180       if (this->lookup(name) != NULL)
2181         continue;
2182
2183       const char* version = NULL;
2184
2185       Sized_symbol<size>* sym;
2186       Sized_symbol<size>* oldsym;
2187       bool resolve_oldsym;
2188       if (parameters->target().is_big_endian())
2189         {
2190 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2191           sym = this->define_special_symbol<size, true>(&name, &version,
2192                                                         false, &oldsym,
2193                                                         &resolve_oldsym);
2194 #else
2195           gold_unreachable();
2196 #endif
2197         }
2198       else
2199         {
2200 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2201           sym = this->define_special_symbol<size, false>(&name, &version,
2202                                                          false, &oldsym,
2203                                                          &resolve_oldsym);
2204 #else
2205           gold_unreachable();
2206 #endif
2207         }
2208
2209       gold_assert(oldsym == NULL);
2210
2211       sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2212                           elfcpp::STV_DEFAULT, 0);
2213       ++this->saw_undefined_;
2214     }
2215 }
2216
2217 // Set the dynamic symbol indexes.  INDEX is the index of the first
2218 // global dynamic symbol.  Pointers to the symbols are stored into the
2219 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2220 // updated dynamic symbol index.
2221
2222 unsigned int
2223 Symbol_table::set_dynsym_indexes(unsigned int index,
2224                                  std::vector<Symbol*>* syms,
2225                                  Stringpool* dynpool,
2226                                  Versions* versions)
2227 {
2228   for (Symbol_table_type::iterator p = this->table_.begin();
2229        p != this->table_.end();
2230        ++p)
2231     {
2232       Symbol* sym = p->second;
2233
2234       // Note that SYM may already have a dynamic symbol index, since
2235       // some symbols appear more than once in the symbol table, with
2236       // and without a version.
2237
2238       if (!sym->should_add_dynsym_entry())
2239         sym->set_dynsym_index(-1U);
2240       else if (!sym->has_dynsym_index())
2241         {
2242           sym->set_dynsym_index(index);
2243           ++index;
2244           syms->push_back(sym);
2245           dynpool->add(sym->name(), false, NULL);
2246
2247           // Record any version information.
2248           if (sym->version() != NULL)
2249             versions->record_version(this, dynpool, sym);
2250         }
2251     }
2252
2253   // Finish up the versions.  In some cases this may add new dynamic
2254   // symbols.
2255   index = versions->finalize(this, index, syms);
2256
2257   return index;
2258 }
2259
2260 // Set the final values for all the symbols.  The index of the first
2261 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2262 // file offset OFF.  Add their names to POOL.  Return the new file
2263 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2264
2265 off_t
2266 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2267                        size_t dyncount, Stringpool* pool,
2268                        unsigned int *plocal_symcount)
2269 {
2270   off_t ret;
2271
2272   gold_assert(*plocal_symcount != 0);
2273   this->first_global_index_ = *plocal_symcount;
2274
2275   this->dynamic_offset_ = dynoff;
2276   this->first_dynamic_global_index_ = dyn_global_index;
2277   this->dynamic_count_ = dyncount;
2278
2279   if (parameters->target().get_size() == 32)
2280     {
2281 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2282       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2283 #else
2284       gold_unreachable();
2285 #endif
2286     }
2287   else if (parameters->target().get_size() == 64)
2288     {
2289 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2290       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2291 #else
2292       gold_unreachable();
2293 #endif
2294     }
2295   else
2296     gold_unreachable();
2297
2298   // Now that we have the final symbol table, we can reliably note
2299   // which symbols should get warnings.
2300   this->warnings_.note_warnings(this);
2301
2302   return ret;
2303 }
2304
2305 // SYM is going into the symbol table at *PINDEX.  Add the name to
2306 // POOL, update *PINDEX and *POFF.
2307
2308 template<int size>
2309 void
2310 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2311                                   unsigned int* pindex, off_t* poff)
2312 {
2313   sym->set_symtab_index(*pindex);
2314   pool->add(sym->name(), false, NULL);
2315   ++*pindex;
2316   *poff += elfcpp::Elf_sizes<size>::sym_size;
2317 }
2318
2319 // Set the final value for all the symbols.  This is called after
2320 // Layout::finalize, so all the output sections have their final
2321 // address.
2322
2323 template<int size>
2324 off_t
2325 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2326                              unsigned int* plocal_symcount)
2327 {
2328   off = align_address(off, size >> 3);
2329   this->offset_ = off;
2330
2331   unsigned int index = *plocal_symcount;
2332   const unsigned int orig_index = index;
2333
2334   // First do all the symbols which have been forced to be local, as
2335   // they must appear before all global symbols.
2336   for (Forced_locals::iterator p = this->forced_locals_.begin();
2337        p != this->forced_locals_.end();
2338        ++p)
2339     {
2340       Symbol* sym = *p;
2341       gold_assert(sym->is_forced_local());
2342       if (this->sized_finalize_symbol<size>(sym))
2343         {
2344           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2345           ++*plocal_symcount;
2346         }
2347     }
2348
2349   // Now do all the remaining symbols.
2350   for (Symbol_table_type::iterator p = this->table_.begin();
2351        p != this->table_.end();
2352        ++p)
2353     {
2354       Symbol* sym = p->second;
2355       if (this->sized_finalize_symbol<size>(sym))
2356         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2357     }
2358
2359   this->output_count_ = index - orig_index;
2360
2361   return off;
2362 }
2363
2364 // Finalize the symbol SYM.  This returns true if the symbol should be
2365 // added to the symbol table, false otherwise.
2366
2367 template<int size>
2368 bool
2369 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2370 {
2371   typedef typename Sized_symbol<size>::Value_type Value_type;
2372
2373   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2374
2375   // The default version of a symbol may appear twice in the symbol
2376   // table.  We only need to finalize it once.
2377   if (sym->has_symtab_index())
2378     return false;
2379
2380   if (!sym->in_reg())
2381     {
2382       gold_assert(!sym->has_symtab_index());
2383       sym->set_symtab_index(-1U);
2384       gold_assert(sym->dynsym_index() == -1U);
2385       return false;
2386     }
2387
2388   Value_type value;
2389
2390   switch (sym->source())
2391     {
2392     case Symbol::FROM_OBJECT:
2393       {
2394         bool is_ordinary;
2395         unsigned int shndx = sym->shndx(&is_ordinary);
2396
2397         if (!is_ordinary
2398             && shndx != elfcpp::SHN_ABS
2399             && !Symbol::is_common_shndx(shndx))
2400           {
2401             gold_error(_("%s: unsupported symbol section 0x%x"),
2402                        sym->demangled_name().c_str(), shndx);
2403             shndx = elfcpp::SHN_UNDEF;
2404           }
2405
2406         Object* symobj = sym->object();
2407         if (symobj->is_dynamic())
2408           {
2409             value = 0;
2410             shndx = elfcpp::SHN_UNDEF;
2411           }
2412         else if (symobj->pluginobj() != NULL)
2413           {
2414             value = 0;
2415             shndx = elfcpp::SHN_UNDEF;
2416           }
2417         else if (shndx == elfcpp::SHN_UNDEF)
2418           value = 0;
2419         else if (!is_ordinary
2420                  && (shndx == elfcpp::SHN_ABS
2421                      || Symbol::is_common_shndx(shndx)))
2422           value = sym->value();
2423         else
2424           {
2425             Relobj* relobj = static_cast<Relobj*>(symobj);
2426             Output_section* os = relobj->output_section(shndx);
2427             uint64_t secoff64 = relobj->output_section_offset(shndx);
2428
2429             if (this->is_section_folded(relobj, shndx))
2430               {
2431                 gold_assert(os == NULL);
2432                 // Get the os of the section it is folded onto.
2433                 Section_id folded = this->icf_->get_folded_section(relobj,
2434                                                                    shndx);
2435                 gold_assert(folded.first != NULL);
2436                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2437                 os = folded_obj->output_section(folded.second);  
2438                 gold_assert(os != NULL);
2439                 secoff64 = folded_obj->output_section_offset(folded.second);
2440               }
2441
2442             if (os == NULL)
2443               {
2444                 sym->set_symtab_index(-1U);
2445                 bool static_or_reloc = (parameters->doing_static_link() ||
2446                                         parameters->options().relocatable());
2447                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2448
2449                 return false;
2450               }
2451
2452             if (secoff64 == -1ULL)
2453               {
2454                 // The section needs special handling (e.g., a merge section).
2455
2456                 value = os->output_address(relobj, shndx, sym->value());
2457               }
2458             else
2459               {
2460                 Value_type secoff =
2461                   convert_types<Value_type, uint64_t>(secoff64);
2462                 if (sym->type() == elfcpp::STT_TLS)
2463                   value = sym->value() + os->tls_offset() + secoff;
2464                 else
2465                   value = sym->value() + os->address() + secoff;
2466               }
2467           }
2468       }
2469       break;
2470
2471     case Symbol::IN_OUTPUT_DATA:
2472       {
2473         Output_data* od = sym->output_data();
2474         value = sym->value();
2475         if (sym->type() != elfcpp::STT_TLS)
2476           value += od->address();
2477         else
2478           {
2479             Output_section* os = od->output_section();
2480             gold_assert(os != NULL);
2481             value += os->tls_offset() + (od->address() - os->address());
2482           }
2483         if (sym->offset_is_from_end())
2484           value += od->data_size();
2485       }
2486       break;
2487
2488     case Symbol::IN_OUTPUT_SEGMENT:
2489       {
2490         Output_segment* os = sym->output_segment();
2491         value = sym->value();
2492         if (sym->type() != elfcpp::STT_TLS)
2493           value += os->vaddr();
2494         switch (sym->offset_base())
2495           {
2496           case Symbol::SEGMENT_START:
2497             break;
2498           case Symbol::SEGMENT_END:
2499             value += os->memsz();
2500             break;
2501           case Symbol::SEGMENT_BSS:
2502             value += os->filesz();
2503             break;
2504           default:
2505             gold_unreachable();
2506           }
2507       }
2508       break;
2509
2510     case Symbol::IS_CONSTANT:
2511       value = sym->value();
2512       break;
2513
2514     case Symbol::IS_UNDEFINED:
2515       value = 0;
2516       break;
2517
2518     default:
2519       gold_unreachable();
2520     }
2521
2522   sym->set_value(value);
2523
2524   if (parameters->options().strip_all()
2525       || !parameters->options().should_retain_symbol(sym->name()))
2526     {
2527       sym->set_symtab_index(-1U);
2528       return false;
2529     }
2530
2531   return true;
2532 }
2533
2534 // Write out the global symbols.
2535
2536 void
2537 Symbol_table::write_globals(const Stringpool* sympool,
2538                             const Stringpool* dynpool,
2539                             Output_symtab_xindex* symtab_xindex,
2540                             Output_symtab_xindex* dynsym_xindex,
2541                             Output_file* of) const
2542 {
2543   switch (parameters->size_and_endianness())
2544     {
2545 #ifdef HAVE_TARGET_32_LITTLE
2546     case Parameters::TARGET_32_LITTLE:
2547       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2548                                            dynsym_xindex, of);
2549       break;
2550 #endif
2551 #ifdef HAVE_TARGET_32_BIG
2552     case Parameters::TARGET_32_BIG:
2553       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2554                                           dynsym_xindex, of);
2555       break;
2556 #endif
2557 #ifdef HAVE_TARGET_64_LITTLE
2558     case Parameters::TARGET_64_LITTLE:
2559       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2560                                            dynsym_xindex, of);
2561       break;
2562 #endif
2563 #ifdef HAVE_TARGET_64_BIG
2564     case Parameters::TARGET_64_BIG:
2565       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2566                                           dynsym_xindex, of);
2567       break;
2568 #endif
2569     default:
2570       gold_unreachable();
2571     }
2572 }
2573
2574 // Write out the global symbols.
2575
2576 template<int size, bool big_endian>
2577 void
2578 Symbol_table::sized_write_globals(const Stringpool* sympool,
2579                                   const Stringpool* dynpool,
2580                                   Output_symtab_xindex* symtab_xindex,
2581                                   Output_symtab_xindex* dynsym_xindex,
2582                                   Output_file* of) const
2583 {
2584   const Target& target = parameters->target();
2585
2586   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2587
2588   const unsigned int output_count = this->output_count_;
2589   const section_size_type oview_size = output_count * sym_size;
2590   const unsigned int first_global_index = this->first_global_index_;
2591   unsigned char* psyms;
2592   if (this->offset_ == 0 || output_count == 0)
2593     psyms = NULL;
2594   else
2595     psyms = of->get_output_view(this->offset_, oview_size);
2596
2597   const unsigned int dynamic_count = this->dynamic_count_;
2598   const section_size_type dynamic_size = dynamic_count * sym_size;
2599   const unsigned int first_dynamic_global_index =
2600     this->first_dynamic_global_index_;
2601   unsigned char* dynamic_view;
2602   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2603     dynamic_view = NULL;
2604   else
2605     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2606
2607   for (Symbol_table_type::const_iterator p = this->table_.begin();
2608        p != this->table_.end();
2609        ++p)
2610     {
2611       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2612
2613       // Possibly warn about unresolved symbols in shared libraries.
2614       this->warn_about_undefined_dynobj_symbol(sym);
2615
2616       unsigned int sym_index = sym->symtab_index();
2617       unsigned int dynsym_index;
2618       if (dynamic_view == NULL)
2619         dynsym_index = -1U;
2620       else
2621         dynsym_index = sym->dynsym_index();
2622
2623       if (sym_index == -1U && dynsym_index == -1U)
2624         {
2625           // This symbol is not included in the output file.
2626           continue;
2627         }
2628
2629       unsigned int shndx;
2630       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2631       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2632       switch (sym->source())
2633         {
2634         case Symbol::FROM_OBJECT:
2635           {
2636             bool is_ordinary;
2637             unsigned int in_shndx = sym->shndx(&is_ordinary);
2638
2639             if (!is_ordinary
2640                 && in_shndx != elfcpp::SHN_ABS
2641                 && !Symbol::is_common_shndx(in_shndx))
2642               {
2643                 gold_error(_("%s: unsupported symbol section 0x%x"),
2644                            sym->demangled_name().c_str(), in_shndx);
2645                 shndx = in_shndx;
2646               }
2647             else
2648               {
2649                 Object* symobj = sym->object();
2650                 if (symobj->is_dynamic())
2651                   {
2652                     if (sym->needs_dynsym_value())
2653                       dynsym_value = target.dynsym_value(sym);
2654                     shndx = elfcpp::SHN_UNDEF;
2655                   }
2656                 else if (symobj->pluginobj() != NULL)
2657                   shndx = elfcpp::SHN_UNDEF;
2658                 else if (in_shndx == elfcpp::SHN_UNDEF
2659                          || (!is_ordinary
2660                              && (in_shndx == elfcpp::SHN_ABS
2661                                  || Symbol::is_common_shndx(in_shndx))))
2662                   shndx = in_shndx;
2663                 else
2664                   {
2665                     Relobj* relobj = static_cast<Relobj*>(symobj);
2666                     Output_section* os = relobj->output_section(in_shndx);
2667                     if (this->is_section_folded(relobj, in_shndx))
2668                       {
2669                         // This global symbol must be written out even though
2670                         // it is folded.
2671                         // Get the os of the section it is folded onto.
2672                         Section_id folded =
2673                              this->icf_->get_folded_section(relobj, in_shndx);
2674                         gold_assert(folded.first !=NULL);
2675                         Relobj* folded_obj = 
2676                           reinterpret_cast<Relobj*>(folded.first);
2677                         os = folded_obj->output_section(folded.second);  
2678                         gold_assert(os != NULL);
2679                       }
2680                     gold_assert(os != NULL);
2681                     shndx = os->out_shndx();
2682
2683                     if (shndx >= elfcpp::SHN_LORESERVE)
2684                       {
2685                         if (sym_index != -1U)
2686                           symtab_xindex->add(sym_index, shndx);
2687                         if (dynsym_index != -1U)
2688                           dynsym_xindex->add(dynsym_index, shndx);
2689                         shndx = elfcpp::SHN_XINDEX;
2690                       }
2691
2692                     // In object files symbol values are section
2693                     // relative.
2694                     if (parameters->options().relocatable())
2695                       sym_value -= os->address();
2696                   }
2697               }
2698           }
2699           break;
2700
2701         case Symbol::IN_OUTPUT_DATA:
2702           shndx = sym->output_data()->out_shndx();
2703           if (shndx >= elfcpp::SHN_LORESERVE)
2704             {
2705               if (sym_index != -1U)
2706                 symtab_xindex->add(sym_index, shndx);
2707               if (dynsym_index != -1U)
2708                 dynsym_xindex->add(dynsym_index, shndx);
2709               shndx = elfcpp::SHN_XINDEX;
2710             }
2711           break;
2712
2713         case Symbol::IN_OUTPUT_SEGMENT:
2714           shndx = elfcpp::SHN_ABS;
2715           break;
2716
2717         case Symbol::IS_CONSTANT:
2718           shndx = elfcpp::SHN_ABS;
2719           break;
2720
2721         case Symbol::IS_UNDEFINED:
2722           shndx = elfcpp::SHN_UNDEF;
2723           break;
2724
2725         default:
2726           gold_unreachable();
2727         }
2728
2729       if (sym_index != -1U)
2730         {
2731           sym_index -= first_global_index;
2732           gold_assert(sym_index < output_count);
2733           unsigned char* ps = psyms + (sym_index * sym_size);
2734           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2735                                                      sympool, ps);
2736         }
2737
2738       if (dynsym_index != -1U)
2739         {
2740           dynsym_index -= first_dynamic_global_index;
2741           gold_assert(dynsym_index < dynamic_count);
2742           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2743           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2744                                                      dynpool, pd);
2745         }
2746     }
2747
2748   of->write_output_view(this->offset_, oview_size, psyms);
2749   if (dynamic_view != NULL)
2750     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2751 }
2752
2753 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
2754 // strtab holding the name.
2755
2756 template<int size, bool big_endian>
2757 void
2758 Symbol_table::sized_write_symbol(
2759     Sized_symbol<size>* sym,
2760     typename elfcpp::Elf_types<size>::Elf_Addr value,
2761     unsigned int shndx,
2762     const Stringpool* pool,
2763     unsigned char* p) const
2764 {
2765   elfcpp::Sym_write<size, big_endian> osym(p);
2766   osym.put_st_name(pool->get_offset(sym->name()));
2767   osym.put_st_value(value);
2768   // Use a symbol size of zero for undefined symbols from shared libraries.
2769   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2770     osym.put_st_size(0);
2771   else
2772     osym.put_st_size(sym->symsize());
2773   // A version script may have overridden the default binding.
2774   if (sym->is_forced_local())
2775     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2776   else
2777     osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
2778   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2779   osym.put_st_shndx(shndx);
2780 }
2781
2782 // Check for unresolved symbols in shared libraries.  This is
2783 // controlled by the --allow-shlib-undefined option.
2784
2785 // We only warn about libraries for which we have seen all the
2786 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
2787 // which were not seen in this link.  If we didn't see a DT_NEEDED
2788 // entry, we aren't going to be able to reliably report whether the
2789 // symbol is undefined.
2790
2791 // We also don't warn about libraries found in a system library
2792 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2793 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
2794 // can have undefined references satisfied by ld-linux.so.
2795
2796 inline void
2797 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
2798 {
2799   bool dummy;
2800   if (sym->source() == Symbol::FROM_OBJECT
2801       && sym->object()->is_dynamic()
2802       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2803       && sym->binding() != elfcpp::STB_WEAK
2804       && !parameters->options().allow_shlib_undefined()
2805       && !parameters->target().is_defined_by_abi(sym)
2806       && !sym->object()->is_in_system_directory())
2807     {
2808       // A very ugly cast.
2809       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2810       if (!dynobj->has_unknown_needed_entries())
2811         gold_undefined_symbol(sym);
2812     }
2813 }
2814
2815 // Write out a section symbol.  Return the update offset.
2816
2817 void
2818 Symbol_table::write_section_symbol(const Output_section *os,
2819                                    Output_symtab_xindex* symtab_xindex,
2820                                    Output_file* of,
2821                                    off_t offset) const
2822 {
2823   switch (parameters->size_and_endianness())
2824     {
2825 #ifdef HAVE_TARGET_32_LITTLE
2826     case Parameters::TARGET_32_LITTLE:
2827       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
2828                                                   offset);
2829       break;
2830 #endif
2831 #ifdef HAVE_TARGET_32_BIG
2832     case Parameters::TARGET_32_BIG:
2833       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
2834                                                  offset);
2835       break;
2836 #endif
2837 #ifdef HAVE_TARGET_64_LITTLE
2838     case Parameters::TARGET_64_LITTLE:
2839       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
2840                                                   offset);
2841       break;
2842 #endif
2843 #ifdef HAVE_TARGET_64_BIG
2844     case Parameters::TARGET_64_BIG:
2845       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
2846                                                  offset);
2847       break;
2848 #endif
2849     default:
2850       gold_unreachable();
2851     }
2852 }
2853
2854 // Write out a section symbol, specialized for size and endianness.
2855
2856 template<int size, bool big_endian>
2857 void
2858 Symbol_table::sized_write_section_symbol(const Output_section* os,
2859                                          Output_symtab_xindex* symtab_xindex,
2860                                          Output_file* of,
2861                                          off_t offset) const
2862 {
2863   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2864
2865   unsigned char* pov = of->get_output_view(offset, sym_size);
2866
2867   elfcpp::Sym_write<size, big_endian> osym(pov);
2868   osym.put_st_name(0);
2869   if (parameters->options().relocatable())
2870     osym.put_st_value(0);
2871   else
2872     osym.put_st_value(os->address());
2873   osym.put_st_size(0);
2874   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2875                                        elfcpp::STT_SECTION));
2876   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2877
2878   unsigned int shndx = os->out_shndx();
2879   if (shndx >= elfcpp::SHN_LORESERVE)
2880     {
2881       symtab_xindex->add(os->symtab_index(), shndx);
2882       shndx = elfcpp::SHN_XINDEX;
2883     }
2884   osym.put_st_shndx(shndx);
2885
2886   of->write_output_view(offset, sym_size, pov);
2887 }
2888
2889 // Print statistical information to stderr.  This is used for --stats.
2890
2891 void
2892 Symbol_table::print_stats() const
2893 {
2894 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2895   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2896           program_name, this->table_.size(), this->table_.bucket_count());
2897 #else
2898   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2899           program_name, this->table_.size());
2900 #endif
2901   this->namepool_.print_stats("symbol table stringpool");
2902 }
2903
2904 // We check for ODR violations by looking for symbols with the same
2905 // name for which the debugging information reports that they were
2906 // defined in different source locations.  When comparing the source
2907 // location, we consider instances with the same base filename and
2908 // line number to be the same.  This is because different object
2909 // files/shared libraries can include the same header file using
2910 // different paths, and we don't want to report an ODR violation in
2911 // that case.
2912
2913 // This struct is used to compare line information, as returned by
2914 // Dwarf_line_info::one_addr2line.  It implements a < comparison
2915 // operator used with std::set.
2916
2917 struct Odr_violation_compare
2918 {
2919   bool
2920   operator()(const std::string& s1, const std::string& s2) const
2921   {
2922     std::string::size_type pos1 = s1.rfind('/');
2923     std::string::size_type pos2 = s2.rfind('/');
2924     if (pos1 == std::string::npos
2925         || pos2 == std::string::npos)
2926       return s1 < s2;
2927     return s1.compare(pos1, std::string::npos,
2928                       s2, pos2, std::string::npos) < 0;
2929   }
2930 };
2931
2932 // Check candidate_odr_violations_ to find symbols with the same name
2933 // but apparently different definitions (different source-file/line-no).
2934
2935 void
2936 Symbol_table::detect_odr_violations(const Task* task,
2937                                     const char* output_file_name) const
2938 {
2939   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2940        it != candidate_odr_violations_.end();
2941        ++it)
2942     {
2943       const char* symbol_name = it->first;
2944       // We use a sorted set so the output is deterministic.
2945       std::set<std::string, Odr_violation_compare> line_nums;
2946
2947       for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2948                locs = it->second.begin();
2949            locs != it->second.end();
2950            ++locs)
2951         {
2952           // We need to lock the object in order to read it.  This
2953           // means that we have to run in a singleton Task.  If we
2954           // want to run this in a general Task for better
2955           // performance, we will need one Task for object, plus
2956           // appropriate locking to ensure that we don't conflict with
2957           // other uses of the object.  Also note, one_addr2line is not
2958           // currently thread-safe.
2959           Task_lock_obj<Object> tl(task, locs->object);
2960           // 16 is the size of the object-cache that one_addr2line should use.
2961           std::string lineno = Dwarf_line_info::one_addr2line(
2962               locs->object, locs->shndx, locs->offset, 16);
2963           if (!lineno.empty())
2964             line_nums.insert(lineno);
2965         }
2966
2967       if (line_nums.size() > 1)
2968         {
2969           gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2970                          "places (possible ODR violation):"),
2971                        output_file_name, demangle(symbol_name).c_str());
2972           for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2973                it2 != line_nums.end();
2974                ++it2)
2975             fprintf(stderr, "  %s\n", it2->c_str());
2976         }
2977     }
2978   // We only call one_addr2line() in this function, so we can clear its cache.
2979   Dwarf_line_info::clear_addr2line_cache();
2980 }
2981
2982 // Warnings functions.
2983
2984 // Add a new warning.
2985
2986 void
2987 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2988                       const std::string& warning)
2989 {
2990   name = symtab->canonicalize_name(name);
2991   this->warnings_[name].set(obj, warning);
2992 }
2993
2994 // Look through the warnings and mark the symbols for which we should
2995 // warn.  This is called during Layout::finalize when we know the
2996 // sources for all the symbols.
2997
2998 void
2999 Warnings::note_warnings(Symbol_table* symtab)
3000 {
3001   for (Warning_table::iterator p = this->warnings_.begin();
3002        p != this->warnings_.end();
3003        ++p)
3004     {
3005       Symbol* sym = symtab->lookup(p->first, NULL);
3006       if (sym != NULL
3007           && sym->source() == Symbol::FROM_OBJECT
3008           && sym->object() == p->second.object)
3009         sym->set_has_warning();
3010     }
3011 }
3012
3013 // Issue a warning.  This is called when we see a relocation against a
3014 // symbol for which has a warning.
3015
3016 template<int size, bool big_endian>
3017 void
3018 Warnings::issue_warning(const Symbol* sym,
3019                         const Relocate_info<size, big_endian>* relinfo,
3020                         size_t relnum, off_t reloffset) const
3021 {
3022   gold_assert(sym->has_warning());
3023   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3024   gold_assert(p != this->warnings_.end());
3025   gold_warning_at_location(relinfo, relnum, reloffset,
3026                            "%s", p->second.text.c_str());
3027 }
3028
3029 // Instantiate the templates we need.  We could use the configure
3030 // script to restrict this to only the ones needed for implemented
3031 // targets.
3032
3033 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3034 template
3035 void
3036 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3037 #endif
3038
3039 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3040 template
3041 void
3042 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3043 #endif
3044
3045 #ifdef HAVE_TARGET_32_LITTLE
3046 template
3047 void
3048 Symbol_table::add_from_relobj<32, false>(
3049     Sized_relobj<32, false>* relobj,
3050     const unsigned char* syms,
3051     size_t count,
3052     size_t symndx_offset,
3053     const char* sym_names,
3054     size_t sym_name_size,
3055     Sized_relobj<32, false>::Symbols* sympointers,
3056     size_t* defined);
3057 #endif
3058
3059 #ifdef HAVE_TARGET_32_BIG
3060 template
3061 void
3062 Symbol_table::add_from_relobj<32, true>(
3063     Sized_relobj<32, true>* relobj,
3064     const unsigned char* syms,
3065     size_t count,
3066     size_t symndx_offset,
3067     const char* sym_names,
3068     size_t sym_name_size,
3069     Sized_relobj<32, true>::Symbols* sympointers,
3070     size_t* defined);
3071 #endif
3072
3073 #ifdef HAVE_TARGET_64_LITTLE
3074 template
3075 void
3076 Symbol_table::add_from_relobj<64, false>(
3077     Sized_relobj<64, false>* relobj,
3078     const unsigned char* syms,
3079     size_t count,
3080     size_t symndx_offset,
3081     const char* sym_names,
3082     size_t sym_name_size,
3083     Sized_relobj<64, false>::Symbols* sympointers,
3084     size_t* defined);
3085 #endif
3086
3087 #ifdef HAVE_TARGET_64_BIG
3088 template
3089 void
3090 Symbol_table::add_from_relobj<64, true>(
3091     Sized_relobj<64, true>* relobj,
3092     const unsigned char* syms,
3093     size_t count,
3094     size_t symndx_offset,
3095     const char* sym_names,
3096     size_t sym_name_size,
3097     Sized_relobj<64, true>::Symbols* sympointers,
3098     size_t* defined);
3099 #endif
3100
3101 #ifdef HAVE_TARGET_32_LITTLE
3102 template
3103 Symbol*
3104 Symbol_table::add_from_pluginobj<32, false>(
3105     Sized_pluginobj<32, false>* obj,
3106     const char* name,
3107     const char* ver,
3108     elfcpp::Sym<32, false>* sym);
3109 #endif
3110
3111 #ifdef HAVE_TARGET_32_BIG
3112 template
3113 Symbol*
3114 Symbol_table::add_from_pluginobj<32, true>(
3115     Sized_pluginobj<32, true>* obj,
3116     const char* name,
3117     const char* ver,
3118     elfcpp::Sym<32, true>* sym);
3119 #endif
3120
3121 #ifdef HAVE_TARGET_64_LITTLE
3122 template
3123 Symbol*
3124 Symbol_table::add_from_pluginobj<64, false>(
3125     Sized_pluginobj<64, false>* obj,
3126     const char* name,
3127     const char* ver,
3128     elfcpp::Sym<64, false>* sym);
3129 #endif
3130
3131 #ifdef HAVE_TARGET_64_BIG
3132 template
3133 Symbol*
3134 Symbol_table::add_from_pluginobj<64, true>(
3135     Sized_pluginobj<64, true>* obj,
3136     const char* name,
3137     const char* ver,
3138     elfcpp::Sym<64, true>* sym);
3139 #endif
3140
3141 #ifdef HAVE_TARGET_32_LITTLE
3142 template
3143 void
3144 Symbol_table::add_from_dynobj<32, false>(
3145     Sized_dynobj<32, false>* dynobj,
3146     const unsigned char* syms,
3147     size_t count,
3148     const char* sym_names,
3149     size_t sym_name_size,
3150     const unsigned char* versym,
3151     size_t versym_size,
3152     const std::vector<const char*>* version_map,
3153     Sized_relobj<32, false>::Symbols* sympointers,
3154     size_t* defined);
3155 #endif
3156
3157 #ifdef HAVE_TARGET_32_BIG
3158 template
3159 void
3160 Symbol_table::add_from_dynobj<32, true>(
3161     Sized_dynobj<32, true>* dynobj,
3162     const unsigned char* syms,
3163     size_t count,
3164     const char* sym_names,
3165     size_t sym_name_size,
3166     const unsigned char* versym,
3167     size_t versym_size,
3168     const std::vector<const char*>* version_map,
3169     Sized_relobj<32, true>::Symbols* sympointers,
3170     size_t* defined);
3171 #endif
3172
3173 #ifdef HAVE_TARGET_64_LITTLE
3174 template
3175 void
3176 Symbol_table::add_from_dynobj<64, false>(
3177     Sized_dynobj<64, false>* dynobj,
3178     const unsigned char* syms,
3179     size_t count,
3180     const char* sym_names,
3181     size_t sym_name_size,
3182     const unsigned char* versym,
3183     size_t versym_size,
3184     const std::vector<const char*>* version_map,
3185     Sized_relobj<64, false>::Symbols* sympointers,
3186     size_t* defined);
3187 #endif
3188
3189 #ifdef HAVE_TARGET_64_BIG
3190 template
3191 void
3192 Symbol_table::add_from_dynobj<64, true>(
3193     Sized_dynobj<64, true>* dynobj,
3194     const unsigned char* syms,
3195     size_t count,
3196     const char* sym_names,
3197     size_t sym_name_size,
3198     const unsigned char* versym,
3199     size_t versym_size,
3200     const std::vector<const char*>* version_map,
3201     Sized_relobj<64, true>::Symbols* sympointers,
3202     size_t* defined);
3203 #endif
3204
3205 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3206 template
3207 void
3208 Symbol_table::define_with_copy_reloc<32>(
3209     Sized_symbol<32>* sym,
3210     Output_data* posd,
3211     elfcpp::Elf_types<32>::Elf_Addr value);
3212 #endif
3213
3214 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3215 template
3216 void
3217 Symbol_table::define_with_copy_reloc<64>(
3218     Sized_symbol<64>* sym,
3219     Output_data* posd,
3220     elfcpp::Elf_types<64>::Elf_Addr value);
3221 #endif
3222
3223 #ifdef HAVE_TARGET_32_LITTLE
3224 template
3225 void
3226 Warnings::issue_warning<32, false>(const Symbol* sym,
3227                                    const Relocate_info<32, false>* relinfo,
3228                                    size_t relnum, off_t reloffset) const;
3229 #endif
3230
3231 #ifdef HAVE_TARGET_32_BIG
3232 template
3233 void
3234 Warnings::issue_warning<32, true>(const Symbol* sym,
3235                                   const Relocate_info<32, true>* relinfo,
3236                                   size_t relnum, off_t reloffset) const;
3237 #endif
3238
3239 #ifdef HAVE_TARGET_64_LITTLE
3240 template
3241 void
3242 Warnings::issue_warning<64, false>(const Symbol* sym,
3243                                    const Relocate_info<64, false>* relinfo,
3244                                    size_t relnum, off_t reloffset) const;
3245 #endif
3246
3247 #ifdef HAVE_TARGET_64_BIG
3248 template
3249 void
3250 Warnings::issue_warning<64, true>(const Symbol* sym,
3251                                   const Relocate_info<64, true>* relinfo,
3252                                   size_t relnum, off_t reloffset) const;
3253 #endif
3254
3255 } // End namespace gold.