* symtab.cc (Symbol_table::define_default_version): New function,
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "demangle.h"   // needed for --dynamic-list-cpp-new
42 #include "plugin.h"
43
44 namespace gold
45 {
46
47 // Class Symbol.
48
49 // Initialize fields in Symbol.  This initializes everything except u_
50 // and source_.
51
52 void
53 Symbol::init_fields(const char* name, const char* version,
54                     elfcpp::STT type, elfcpp::STB binding,
55                     elfcpp::STV visibility, unsigned char nonvis)
56 {
57   this->name_ = name;
58   this->version_ = version;
59   this->symtab_index_ = 0;
60   this->dynsym_index_ = 0;
61   this->got_offsets_.init();
62   this->plt_offset_ = 0;
63   this->type_ = type;
64   this->binding_ = binding;
65   this->visibility_ = visibility;
66   this->nonvis_ = nonvis;
67   this->is_target_special_ = false;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_plt_offset_ = false;
75   this->has_warning_ = false;
76   this->is_copied_from_dynobj_ = false;
77   this->is_forced_local_ = false;
78   this->is_ordinary_shndx_ = false;
79   this->in_real_elf_ = false;
80 }
81
82 // Return the demangled version of the symbol's name, but only
83 // if the --demangle flag was set.
84
85 static std::string
86 demangle(const char* name)
87 {
88   if (!parameters->options().do_demangle())
89     return name;
90
91   // cplus_demangle allocates memory for the result it returns,
92   // and returns NULL if the name is already demangled.
93   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
94   if (demangled_name == NULL)
95     return name;
96
97   std::string retval(demangled_name);
98   free(demangled_name);
99   return retval;
100 }
101
102 std::string
103 Symbol::demangled_name() const
104 {
105   return demangle(this->name());
106 }
107
108 // Initialize the fields in the base class Symbol for SYM in OBJECT.
109
110 template<int size, bool big_endian>
111 void
112 Symbol::init_base_object(const char* name, const char* version, Object* object,
113                          const elfcpp::Sym<size, big_endian>& sym,
114                          unsigned int st_shndx, bool is_ordinary)
115 {
116   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
117                     sym.get_st_visibility(), sym.get_st_nonvis());
118   this->u_.from_object.object = object;
119   this->u_.from_object.shndx = st_shndx;
120   this->is_ordinary_shndx_ = is_ordinary;
121   this->source_ = FROM_OBJECT;
122   this->in_reg_ = !object->is_dynamic();
123   this->in_dyn_ = object->is_dynamic();
124   this->in_real_elf_ = object->pluginobj() == NULL;
125 }
126
127 // Initialize the fields in the base class Symbol for a symbol defined
128 // in an Output_data.
129
130 void
131 Symbol::init_base_output_data(const char* name, const char* version,
132                               Output_data* od, elfcpp::STT type,
133                               elfcpp::STB binding, elfcpp::STV visibility,
134                               unsigned char nonvis, bool offset_is_from_end)
135 {
136   this->init_fields(name, version, type, binding, visibility, nonvis);
137   this->u_.in_output_data.output_data = od;
138   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
139   this->source_ = IN_OUTPUT_DATA;
140   this->in_reg_ = true;
141   this->in_real_elf_ = true;
142 }
143
144 // Initialize the fields in the base class Symbol for a symbol defined
145 // in an Output_segment.
146
147 void
148 Symbol::init_base_output_segment(const char* name, const char* version,
149                                  Output_segment* os, elfcpp::STT type,
150                                  elfcpp::STB binding, elfcpp::STV visibility,
151                                  unsigned char nonvis,
152                                  Segment_offset_base offset_base)
153 {
154   this->init_fields(name, version, type, binding, visibility, nonvis);
155   this->u_.in_output_segment.output_segment = os;
156   this->u_.in_output_segment.offset_base = offset_base;
157   this->source_ = IN_OUTPUT_SEGMENT;
158   this->in_reg_ = true;
159   this->in_real_elf_ = true;
160 }
161
162 // Initialize the fields in the base class Symbol for a symbol defined
163 // as a constant.
164
165 void
166 Symbol::init_base_constant(const char* name, const char* version,
167                            elfcpp::STT type, elfcpp::STB binding,
168                            elfcpp::STV visibility, unsigned char nonvis)
169 {
170   this->init_fields(name, version, type, binding, visibility, nonvis);
171   this->source_ = IS_CONSTANT;
172   this->in_reg_ = true;
173   this->in_real_elf_ = true;
174 }
175
176 // Initialize the fields in the base class Symbol for an undefined
177 // symbol.
178
179 void
180 Symbol::init_base_undefined(const char* name, const char* version,
181                             elfcpp::STT type, elfcpp::STB binding,
182                             elfcpp::STV visibility, unsigned char nonvis)
183 {
184   this->init_fields(name, version, type, binding, visibility, nonvis);
185   this->dynsym_index_ = -1U;
186   this->source_ = IS_UNDEFINED;
187   this->in_reg_ = true;
188   this->in_real_elf_ = true;
189 }
190
191 // Allocate a common symbol in the base.
192
193 void
194 Symbol::allocate_base_common(Output_data* od)
195 {
196   gold_assert(this->is_common());
197   this->source_ = IN_OUTPUT_DATA;
198   this->u_.in_output_data.output_data = od;
199   this->u_.in_output_data.offset_is_from_end = false;
200 }
201
202 // Initialize the fields in Sized_symbol for SYM in OBJECT.
203
204 template<int size>
205 template<bool big_endian>
206 void
207 Sized_symbol<size>::init_object(const char* name, const char* version,
208                                 Object* object,
209                                 const elfcpp::Sym<size, big_endian>& sym,
210                                 unsigned int st_shndx, bool is_ordinary)
211 {
212   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
213   this->value_ = sym.get_st_value();
214   this->symsize_ = sym.get_st_size();
215 }
216
217 // Initialize the fields in Sized_symbol for a symbol defined in an
218 // Output_data.
219
220 template<int size>
221 void
222 Sized_symbol<size>::init_output_data(const char* name, const char* version,
223                                      Output_data* od, Value_type value,
224                                      Size_type symsize, elfcpp::STT type,
225                                      elfcpp::STB binding,
226                                      elfcpp::STV visibility,
227                                      unsigned char nonvis,
228                                      bool offset_is_from_end)
229 {
230   this->init_base_output_data(name, version, od, type, binding, visibility,
231                               nonvis, offset_is_from_end);
232   this->value_ = value;
233   this->symsize_ = symsize;
234 }
235
236 // Initialize the fields in Sized_symbol for a symbol defined in an
237 // Output_segment.
238
239 template<int size>
240 void
241 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
242                                         Output_segment* os, Value_type value,
243                                         Size_type symsize, elfcpp::STT type,
244                                         elfcpp::STB binding,
245                                         elfcpp::STV visibility,
246                                         unsigned char nonvis,
247                                         Segment_offset_base offset_base)
248 {
249   this->init_base_output_segment(name, version, os, type, binding, visibility,
250                                  nonvis, offset_base);
251   this->value_ = value;
252   this->symsize_ = symsize;
253 }
254
255 // Initialize the fields in Sized_symbol for a symbol defined as a
256 // constant.
257
258 template<int size>
259 void
260 Sized_symbol<size>::init_constant(const char* name, const char* version,
261                                   Value_type value, Size_type symsize,
262                                   elfcpp::STT type, elfcpp::STB binding,
263                                   elfcpp::STV visibility, unsigned char nonvis)
264 {
265   this->init_base_constant(name, version, type, binding, visibility, nonvis);
266   this->value_ = value;
267   this->symsize_ = symsize;
268 }
269
270 // Initialize the fields in Sized_symbol for an undefined symbol.
271
272 template<int size>
273 void
274 Sized_symbol<size>::init_undefined(const char* name, const char* version,
275                                    elfcpp::STT type, elfcpp::STB binding,
276                                    elfcpp::STV visibility, unsigned char nonvis)
277 {
278   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
279   this->value_ = 0;
280   this->symsize_ = 0;
281 }
282
283 // Allocate a common symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
288 {
289   this->allocate_base_common(od);
290   this->value_ = value;
291 }
292
293 // The ""'s around str ensure str is a string literal, so sizeof works.
294 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
295
296 // Return true if this symbol should be added to the dynamic symbol
297 // table.
298
299 inline bool
300 Symbol::should_add_dynsym_entry() const
301 {
302   // If the symbol is used by a dynamic relocation, we need to add it.
303   if (this->needs_dynsym_entry())
304     return true;
305
306   // If this symbol's section is not added, the symbol need not be added. 
307   // The section may have been GCed.  Note that export_dynamic is being 
308   // overridden here.  This should not be done for shared objects.
309   if (parameters->options().gc_sections() 
310       && !parameters->options().shared()
311       && this->source() == Symbol::FROM_OBJECT
312       && !this->object()->is_dynamic())
313     {
314       Relobj* relobj = static_cast<Relobj*>(this->object());
315       bool is_ordinary;
316       unsigned int shndx = this->shndx(&is_ordinary);
317       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
318           && !relobj->is_section_included(shndx))
319         return false;
320     }
321
322   // If the symbol was forced local in a version script, do not add it.
323   if (this->is_forced_local())
324     return false;
325
326   // If the symbol was forced dynamic in a --dynamic-list file, add it.
327   if (parameters->options().in_dynamic_list(this->name()))
328     return true;
329
330   // If dynamic-list-data was specified, add any STT_OBJECT.
331   if (parameters->options().dynamic_list_data()
332       && !this->is_from_dynobj()
333       && this->type() == elfcpp::STT_OBJECT)
334     return true;
335
336   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
337   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
338   if ((parameters->options().dynamic_list_cpp_new()
339        || parameters->options().dynamic_list_cpp_typeinfo())
340       && !this->is_from_dynobj())
341     {
342       // TODO(csilvers): We could probably figure out if we're an operator
343       //                 new/delete or typeinfo without the need to demangle.
344       char* demangled_name = cplus_demangle(this->name(),
345                                             DMGL_ANSI | DMGL_PARAMS);
346       if (demangled_name == NULL)
347         {
348           // Not a C++ symbol, so it can't satisfy these flags
349         }
350       else if (parameters->options().dynamic_list_cpp_new()
351                && (strprefix(demangled_name, "operator new")
352                    || strprefix(demangled_name, "operator delete")))
353         {
354           free(demangled_name);
355           return true;
356         }
357       else if (parameters->options().dynamic_list_cpp_typeinfo()
358                && (strprefix(demangled_name, "typeinfo name for")
359                    || strprefix(demangled_name, "typeinfo for")))
360         {
361           free(demangled_name);
362           return true;
363         }
364       else
365         free(demangled_name);
366     }
367
368   // If exporting all symbols or building a shared library,
369   // and the symbol is defined in a regular object and is
370   // externally visible, we need to add it.
371   if ((parameters->options().export_dynamic() || parameters->options().shared())
372       && !this->is_from_dynobj()
373       && this->is_externally_visible())
374     return true;
375
376   return false;
377 }
378
379 // Return true if the final value of this symbol is known at link
380 // time.
381
382 bool
383 Symbol::final_value_is_known() const
384 {
385   // If we are not generating an executable, then no final values are
386   // known, since they will change at runtime.
387   if (parameters->options().shared() || parameters->options().relocatable())
388     return false;
389
390   // If the symbol is not from an object file, and is not undefined,
391   // then it is defined, and known.
392   if (this->source_ != FROM_OBJECT)
393     {
394       if (this->source_ != IS_UNDEFINED)
395         return true;
396     }
397   else
398     {
399       // If the symbol is from a dynamic object, then the final value
400       // is not known.
401       if (this->object()->is_dynamic())
402         return false;
403
404       // If the symbol is not undefined (it is defined or common),
405       // then the final value is known.
406       if (!this->is_undefined())
407         return true;
408     }
409
410   // If the symbol is undefined, then whether the final value is known
411   // depends on whether we are doing a static link.  If we are doing a
412   // dynamic link, then the final value could be filled in at runtime.
413   // This could reasonably be the case for a weak undefined symbol.
414   return parameters->doing_static_link();
415 }
416
417 // Return the output section where this symbol is defined.
418
419 Output_section*
420 Symbol::output_section() const
421 {
422   switch (this->source_)
423     {
424     case FROM_OBJECT:
425       {
426         unsigned int shndx = this->u_.from_object.shndx;
427         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
428           {
429             gold_assert(!this->u_.from_object.object->is_dynamic());
430             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
431             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
432             return relobj->output_section(shndx);
433           }
434         return NULL;
435       }
436
437     case IN_OUTPUT_DATA:
438       return this->u_.in_output_data.output_data->output_section();
439
440     case IN_OUTPUT_SEGMENT:
441     case IS_CONSTANT:
442     case IS_UNDEFINED:
443       return NULL;
444
445     default:
446       gold_unreachable();
447     }
448 }
449
450 // Set the symbol's output section.  This is used for symbols defined
451 // in scripts.  This should only be called after the symbol table has
452 // been finalized.
453
454 void
455 Symbol::set_output_section(Output_section* os)
456 {
457   switch (this->source_)
458     {
459     case FROM_OBJECT:
460     case IN_OUTPUT_DATA:
461       gold_assert(this->output_section() == os);
462       break;
463     case IS_CONSTANT:
464       this->source_ = IN_OUTPUT_DATA;
465       this->u_.in_output_data.output_data = os;
466       this->u_.in_output_data.offset_is_from_end = false;
467       break;
468     case IN_OUTPUT_SEGMENT:
469     case IS_UNDEFINED:
470     default:
471       gold_unreachable();
472     }
473 }
474
475 // Class Symbol_table.
476
477 Symbol_table::Symbol_table(unsigned int count,
478                            const Version_script_info& version_script)
479   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
480     forwarders_(), commons_(), tls_commons_(), forced_locals_(), warnings_(),
481     version_script_(version_script), gc_(NULL)
482 {
483   namepool_.reserve(count);
484 }
485
486 Symbol_table::~Symbol_table()
487 {
488 }
489
490 // The hash function.  The key values are Stringpool keys.
491
492 inline size_t
493 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
494 {
495   return key.first ^ key.second;
496 }
497
498 // The symbol table key equality function.  This is called with
499 // Stringpool keys.
500
501 inline bool
502 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
503                                           const Symbol_table_key& k2) const
504 {
505   return k1.first == k2.first && k1.second == k2.second;
506 }
507
508 // For symbols that have been listed with -u option, add them to the
509 // work list to avoid gc'ing them.
510
511 void 
512 Symbol_table::gc_mark_undef_symbols()
513 {
514   for (options::String_set::const_iterator p =
515          parameters->options().undefined_begin();
516        p != parameters->options().undefined_end();
517        ++p)
518     {
519       const char* name = p->c_str();
520       Symbol* sym = this->lookup(name);
521       gold_assert (sym != NULL);
522       if (sym->source() == Symbol::FROM_OBJECT 
523           && !sym->object()->is_dynamic())
524         {
525           Relobj* obj = static_cast<Relobj*>(sym->object());
526           bool is_ordinary;
527           unsigned int shndx = sym->shndx(&is_ordinary);
528           if (is_ordinary)
529             {
530               gold_assert(this->gc_ != NULL);
531               this->gc_->worklist().push(Section_id(obj, shndx));
532             }
533         }
534     }
535 }
536
537 void
538 Symbol_table::gc_mark_symbol_for_shlib(Symbol* sym)
539 {
540   if (!sym->is_from_dynobj() 
541       && sym->is_externally_visible())
542     {
543       //Add the object and section to the work list.
544       Relobj* obj = static_cast<Relobj*>(sym->object());
545       bool is_ordinary;
546       unsigned int shndx = sym->shndx(&is_ordinary);
547       if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
548         {
549           gold_assert(this->gc_!= NULL);
550           this->gc_->worklist().push(Section_id(obj, shndx));
551         }
552     }
553 }
554
555 // When doing garbage collection, keep symbols that have been seen in
556 // dynamic objects.
557 inline void 
558 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
559 {
560   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
561       && !sym->object()->is_dynamic())
562     {
563       Relobj *obj = static_cast<Relobj*>(sym->object()); 
564       bool is_ordinary;
565       unsigned int shndx = sym->shndx(&is_ordinary);
566       if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
567         {
568           gold_assert(this->gc_ != NULL);
569           this->gc_->worklist().push(Section_id(obj, shndx));
570         }
571     }
572 }
573
574 // Make TO a symbol which forwards to FROM.
575
576 void
577 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
578 {
579   gold_assert(from != to);
580   gold_assert(!from->is_forwarder() && !to->is_forwarder());
581   this->forwarders_[from] = to;
582   from->set_forwarder();
583 }
584
585 // Resolve the forwards from FROM, returning the real symbol.
586
587 Symbol*
588 Symbol_table::resolve_forwards(const Symbol* from) const
589 {
590   gold_assert(from->is_forwarder());
591   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
592     this->forwarders_.find(from);
593   gold_assert(p != this->forwarders_.end());
594   return p->second;
595 }
596
597 // Look up a symbol by name.
598
599 Symbol*
600 Symbol_table::lookup(const char* name, const char* version) const
601 {
602   Stringpool::Key name_key;
603   name = this->namepool_.find(name, &name_key);
604   if (name == NULL)
605     return NULL;
606
607   Stringpool::Key version_key = 0;
608   if (version != NULL)
609     {
610       version = this->namepool_.find(version, &version_key);
611       if (version == NULL)
612         return NULL;
613     }
614
615   Symbol_table_key key(name_key, version_key);
616   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
617   if (p == this->table_.end())
618     return NULL;
619   return p->second;
620 }
621
622 // Resolve a Symbol with another Symbol.  This is only used in the
623 // unusual case where there are references to both an unversioned
624 // symbol and a symbol with a version, and we then discover that that
625 // version is the default version.  Because this is unusual, we do
626 // this the slow way, by converting back to an ELF symbol.
627
628 template<int size, bool big_endian>
629 void
630 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
631 {
632   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
633   elfcpp::Sym_write<size, big_endian> esym(buf);
634   // We don't bother to set the st_name or the st_shndx field.
635   esym.put_st_value(from->value());
636   esym.put_st_size(from->symsize());
637   esym.put_st_info(from->binding(), from->type());
638   esym.put_st_other(from->visibility(), from->nonvis());
639   bool is_ordinary;
640   unsigned int shndx = from->shndx(&is_ordinary);
641   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
642                 from->version());
643   if (from->in_reg())
644     to->set_in_reg();
645   if (from->in_dyn())
646     to->set_in_dyn();
647   if (parameters->options().gc_sections())
648     this->gc_mark_dyn_syms(to);
649 }
650
651 // Record that a symbol is forced to be local by a version script or
652 // by visibility.
653
654 void
655 Symbol_table::force_local(Symbol* sym)
656 {
657   if (!sym->is_defined() && !sym->is_common())
658     return;
659   if (sym->is_forced_local())
660     {
661       // We already got this one.
662       return;
663     }
664   sym->set_is_forced_local();
665   this->forced_locals_.push_back(sym);
666 }
667
668 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
669 // is only called for undefined symbols, when at least one --wrap
670 // option was used.
671
672 const char*
673 Symbol_table::wrap_symbol(Object* object, const char* name,
674                           Stringpool::Key* name_key)
675 {
676   // For some targets, we need to ignore a specific character when
677   // wrapping, and add it back later.
678   char prefix = '\0';
679   if (name[0] == object->target()->wrap_char())
680     {
681       prefix = name[0];
682       ++name;
683     }
684
685   if (parameters->options().is_wrap(name))
686     {
687       // Turn NAME into __wrap_NAME.
688       std::string s;
689       if (prefix != '\0')
690         s += prefix;
691       s += "__wrap_";
692       s += name;
693
694       // This will give us both the old and new name in NAMEPOOL_, but
695       // that is OK.  Only the versions we need will wind up in the
696       // real string table in the output file.
697       return this->namepool_.add(s.c_str(), true, name_key);
698     }
699
700   const char* const real_prefix = "__real_";
701   const size_t real_prefix_length = strlen(real_prefix);
702   if (strncmp(name, real_prefix, real_prefix_length) == 0
703       && parameters->options().is_wrap(name + real_prefix_length))
704     {
705       // Turn __real_NAME into NAME.
706       std::string s;
707       if (prefix != '\0')
708         s += prefix;
709       s += name + real_prefix_length;
710       return this->namepool_.add(s.c_str(), true, name_key);
711     }
712
713   return name;
714 }
715
716 // This is called when we see a symbol NAME/VERSION, and the symbol
717 // already exists in the symbol table, and VERSION is marked as being
718 // the default version.  SYM is the NAME/VERSION symbol we just added.
719 // DEFAULT_IS_NEW is true if this is the first time we have seen the
720 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
721
722 template<int size, bool big_endian>
723 void
724 Symbol_table::define_default_version(Sized_symbol<size>* sym,
725                                      bool default_is_new,
726                                      Symbol_table_type::iterator pdef)
727 {
728   if (default_is_new)
729     {
730       // This is the first time we have seen NAME/NULL.  Make
731       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
732       // version.
733       pdef->second = sym;
734       sym->set_is_default();
735     }
736   else if (pdef->second == sym)
737     {
738       // NAME/NULL already points to NAME/VERSION.  Don't mark the
739       // symbol as the default if it is not already the default.
740     }
741   else
742     {
743       // This is the unfortunate case where we already have entries
744       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
745       // NAME/VERSION where VERSION is the default version.  We have
746       // already resolved this new symbol with the existing
747       // NAME/VERSION symbol.
748
749       // It's possible that NAME/NULL and NAME/VERSION are both
750       // defined in regular objects.  This can only happen if one
751       // object file defines foo and another defines foo@@ver.  This
752       // is somewhat obscure, but we call it a multiple definition
753       // error.
754
755       // It's possible that NAME/NULL actually has a version, in which
756       // case it won't be the same as VERSION.  This happens with
757       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
758       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
759       // then see an unadorned t2_2 in an object file and give it
760       // version VER1 from the version script.  This looks like a
761       // default definition for VER1, so it looks like we should merge
762       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
763       // not obvious that this is an error, either.  So we just punt.
764
765       // If one of the symbols has non-default visibility, and the
766       // other is defined in a shared object, then they are different
767       // symbols.
768
769       // Otherwise, we just resolve the symbols as though they were
770       // the same.
771
772       if (pdef->second->version() != NULL)
773         gold_assert(pdef->second->version() != sym->version());
774       else if (sym->visibility() != elfcpp::STV_DEFAULT
775                && pdef->second->is_from_dynobj())
776         ;
777       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
778                && sym->is_from_dynobj())
779         ;
780       else
781         {
782           const Sized_symbol<size>* symdef;
783           symdef = this->get_sized_symbol<size>(pdef->second);
784           Symbol_table::resolve<size, big_endian>(sym, symdef);
785           this->make_forwarder(pdef->second, sym);
786           pdef->second = sym;
787           sym->set_is_default();
788         }
789     }
790 }
791
792 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
793 // name and VERSION is the version; both are canonicalized.  DEF is
794 // whether this is the default version.  ST_SHNDX is the symbol's
795 // section index; IS_ORDINARY is whether this is a normal section
796 // rather than a special code.
797
798 // If DEF is true, then this is the definition of a default version of
799 // a symbol.  That means that any lookup of NAME/NULL and any lookup
800 // of NAME/VERSION should always return the same symbol.  This is
801 // obvious for references, but in particular we want to do this for
802 // definitions: overriding NAME/NULL should also override
803 // NAME/VERSION.  If we don't do that, it would be very hard to
804 // override functions in a shared library which uses versioning.
805
806 // We implement this by simply making both entries in the hash table
807 // point to the same Symbol structure.  That is easy enough if this is
808 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
809 // that we have seen both already, in which case they will both have
810 // independent entries in the symbol table.  We can't simply change
811 // the symbol table entry, because we have pointers to the entries
812 // attached to the object files.  So we mark the entry attached to the
813 // object file as a forwarder, and record it in the forwarders_ map.
814 // Note that entries in the hash table will never be marked as
815 // forwarders.
816 //
817 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
818 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
819 // for a special section code.  ST_SHNDX may be modified if the symbol
820 // is defined in a section being discarded.
821
822 template<int size, bool big_endian>
823 Sized_symbol<size>*
824 Symbol_table::add_from_object(Object* object,
825                               const char *name,
826                               Stringpool::Key name_key,
827                               const char *version,
828                               Stringpool::Key version_key,
829                               bool def,
830                               const elfcpp::Sym<size, big_endian>& sym,
831                               unsigned int st_shndx,
832                               bool is_ordinary,
833                               unsigned int orig_st_shndx)
834 {
835   // Print a message if this symbol is being traced.
836   if (parameters->options().is_trace_symbol(name))
837     {
838       if (orig_st_shndx == elfcpp::SHN_UNDEF)
839         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
840       else
841         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
842     }
843
844   // For an undefined symbol, we may need to adjust the name using
845   // --wrap.
846   if (orig_st_shndx == elfcpp::SHN_UNDEF
847       && parameters->options().any_wrap())
848     {
849       const char* wrap_name = this->wrap_symbol(object, name, &name_key);
850       if (wrap_name != name)
851         {
852           // If we see a reference to malloc with version GLIBC_2.0,
853           // and we turn it into a reference to __wrap_malloc, then we
854           // discard the version number.  Otherwise the user would be
855           // required to specify the correct version for
856           // __wrap_malloc.
857           version = NULL;
858           version_key = 0;
859           name = wrap_name;
860         }
861     }
862
863   Symbol* const snull = NULL;
864   std::pair<typename Symbol_table_type::iterator, bool> ins =
865     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
866                                        snull));
867
868   std::pair<typename Symbol_table_type::iterator, bool> insdef =
869     std::make_pair(this->table_.end(), false);
870   if (def)
871     {
872       const Stringpool::Key vnull_key = 0;
873       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
874                                                                  vnull_key),
875                                                   snull));
876     }
877
878   // ins.first: an iterator, which is a pointer to a pair.
879   // ins.first->first: the key (a pair of name and version).
880   // ins.first->second: the value (Symbol*).
881   // ins.second: true if new entry was inserted, false if not.
882
883   Sized_symbol<size>* ret;
884   bool was_undefined;
885   bool was_common;
886   if (!ins.second)
887     {
888       // We already have an entry for NAME/VERSION.
889       ret = this->get_sized_symbol<size>(ins.first->second);
890       gold_assert(ret != NULL);
891
892       was_undefined = ret->is_undefined();
893       was_common = ret->is_common();
894
895       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
896                     version);
897       if (parameters->options().gc_sections())
898         this->gc_mark_dyn_syms(ret);
899
900       if (def)
901         this->define_default_version<size, big_endian>(ret, insdef.second,
902                                                        insdef.first);
903     }
904   else
905     {
906       // This is the first time we have seen NAME/VERSION.
907       gold_assert(ins.first->second == NULL);
908
909       if (def && !insdef.second)
910         {
911           // We already have an entry for NAME/NULL.  If we override
912           // it, then change it to NAME/VERSION.
913           ret = this->get_sized_symbol<size>(insdef.first->second);
914
915           was_undefined = ret->is_undefined();
916           was_common = ret->is_common();
917
918           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
919                         version);
920           if (parameters->options().gc_sections())
921             this->gc_mark_dyn_syms(ret);
922           ins.first->second = ret;
923         }
924       else
925         {
926           was_undefined = false;
927           was_common = false;
928
929           Sized_target<size, big_endian>* target =
930             object->sized_target<size, big_endian>();
931           if (!target->has_make_symbol())
932             ret = new Sized_symbol<size>();
933           else
934             {
935               ret = target->make_symbol();
936               if (ret == NULL)
937                 {
938                   // This means that we don't want a symbol table
939                   // entry after all.
940                   if (!def)
941                     this->table_.erase(ins.first);
942                   else
943                     {
944                       this->table_.erase(insdef.first);
945                       // Inserting insdef invalidated ins.
946                       this->table_.erase(std::make_pair(name_key,
947                                                         version_key));
948                     }
949                   return NULL;
950                 }
951             }
952
953           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
954
955           ins.first->second = ret;
956           if (def)
957             {
958               // This is the first time we have seen NAME/NULL.  Point
959               // it at the new entry for NAME/VERSION.
960               gold_assert(insdef.second);
961               insdef.first->second = ret;
962             }
963         }
964
965       if (def)
966         ret->set_is_default();
967     }
968
969   // Record every time we see a new undefined symbol, to speed up
970   // archive groups.
971   if (!was_undefined && ret->is_undefined())
972     ++this->saw_undefined_;
973
974   // Keep track of common symbols, to speed up common symbol
975   // allocation.
976   if (!was_common && ret->is_common())
977     {
978       if (ret->type() != elfcpp::STT_TLS)
979         this->commons_.push_back(ret);
980       else
981         this->tls_commons_.push_back(ret);
982     }
983
984   // If we're not doing a relocatable link, then any symbol with
985   // hidden or internal visibility is local.
986   if ((ret->visibility() == elfcpp::STV_HIDDEN
987        || ret->visibility() == elfcpp::STV_INTERNAL)
988       && (ret->binding() == elfcpp::STB_GLOBAL
989           || ret->binding() == elfcpp::STB_WEAK)
990       && !parameters->options().relocatable())
991     this->force_local(ret);
992
993   return ret;
994 }
995
996 // Add all the symbols in a relocatable object to the hash table.
997
998 template<int size, bool big_endian>
999 void
1000 Symbol_table::add_from_relobj(
1001     Sized_relobj<size, big_endian>* relobj,
1002     const unsigned char* syms,
1003     size_t count,
1004     size_t symndx_offset,
1005     const char* sym_names,
1006     size_t sym_name_size,
1007     typename Sized_relobj<size, big_endian>::Symbols* sympointers,
1008     size_t *defined)
1009 {
1010   *defined = 0;
1011
1012   gold_assert(size == relobj->target()->get_size());
1013   gold_assert(size == parameters->target().get_size());
1014
1015   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1016
1017   const bool just_symbols = relobj->just_symbols();
1018
1019   const unsigned char* p = syms;
1020   for (size_t i = 0; i < count; ++i, p += sym_size)
1021     {
1022       (*sympointers)[i] = NULL;
1023
1024       elfcpp::Sym<size, big_endian> sym(p);
1025
1026       unsigned int st_name = sym.get_st_name();
1027       if (st_name >= sym_name_size)
1028         {
1029           relobj->error(_("bad global symbol name offset %u at %zu"),
1030                         st_name, i);
1031           continue;
1032         }
1033
1034       const char* name = sym_names + st_name;
1035
1036       bool is_ordinary;
1037       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1038                                                        sym.get_st_shndx(),
1039                                                        &is_ordinary);
1040       unsigned int orig_st_shndx = st_shndx;
1041       if (!is_ordinary)
1042         orig_st_shndx = elfcpp::SHN_UNDEF;
1043
1044       if (st_shndx != elfcpp::SHN_UNDEF)
1045         ++*defined;
1046
1047       // A symbol defined in a section which we are not including must
1048       // be treated as an undefined symbol.
1049       if (st_shndx != elfcpp::SHN_UNDEF
1050           && is_ordinary
1051           && !relobj->is_section_included(st_shndx))
1052         st_shndx = elfcpp::SHN_UNDEF;
1053
1054       // In an object file, an '@' in the name separates the symbol
1055       // name from the version name.  If there are two '@' characters,
1056       // this is the default version.
1057       const char* ver = strchr(name, '@');
1058       Stringpool::Key ver_key = 0;
1059       int namelen = 0;
1060       // DEF: is the version default?  LOCAL: is the symbol forced local?
1061       bool def = false;
1062       bool local = false;
1063
1064       if (ver != NULL)
1065         {
1066           // The symbol name is of the form foo@VERSION or foo@@VERSION
1067           namelen = ver - name;
1068           ++ver;
1069           if (*ver == '@')
1070             {
1071               def = true;
1072               ++ver;
1073             }
1074           ver = this->namepool_.add(ver, true, &ver_key);
1075         }
1076       // We don't want to assign a version to an undefined symbol,
1077       // even if it is listed in the version script.  FIXME: What
1078       // about a common symbol?
1079       else
1080         {
1081           namelen = strlen(name);
1082           if (!this->version_script_.empty()
1083               && st_shndx != elfcpp::SHN_UNDEF)
1084             {
1085               // The symbol name did not have a version, but the
1086               // version script may assign a version anyway.
1087               std::string version;
1088               if (this->version_script_.get_symbol_version(name, &version))
1089                 {
1090                   // The version can be empty if the version script is
1091                   // only used to force some symbols to be local.
1092                   if (!version.empty())
1093                     {
1094                       ver = this->namepool_.add_with_length(version.c_str(),
1095                                                             version.length(),
1096                                                             true,
1097                                                             &ver_key);
1098                       def = true;
1099                     }
1100                 }
1101               else if (this->version_script_.symbol_is_local(name))
1102                 local = true;
1103             }
1104         }
1105
1106       elfcpp::Sym<size, big_endian>* psym = &sym;
1107       unsigned char symbuf[sym_size];
1108       elfcpp::Sym<size, big_endian> sym2(symbuf);
1109       if (just_symbols)
1110         {
1111           memcpy(symbuf, p, sym_size);
1112           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1113           if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
1114             {
1115               // Symbol values in object files are section relative.
1116               // This is normally what we want, but since here we are
1117               // converting the symbol to absolute we need to add the
1118               // section address.  The section address in an object
1119               // file is normally zero, but people can use a linker
1120               // script to change it.
1121               sw.put_st_value(sym.get_st_value()
1122                               + relobj->section_address(orig_st_shndx));
1123             }
1124           st_shndx = elfcpp::SHN_ABS;
1125           is_ordinary = false;
1126           psym = &sym2;
1127         }
1128
1129       Stringpool::Key name_key;
1130       name = this->namepool_.add_with_length(name, namelen, true,
1131                                              &name_key);
1132
1133       Sized_symbol<size>* res;
1134       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1135                                   def, *psym, st_shndx, is_ordinary,
1136                                   orig_st_shndx);
1137       
1138       // If building a shared library using garbage collection, do not 
1139       // treat externally visible symbols as garbage.
1140       if (parameters->options().gc_sections() 
1141           && parameters->options().shared())
1142         this->gc_mark_symbol_for_shlib(res);
1143
1144       if (local)
1145         this->force_local(res);
1146
1147       (*sympointers)[i] = res;
1148     }
1149 }
1150
1151 // Add a symbol from a plugin-claimed file.
1152
1153 template<int size, bool big_endian>
1154 Symbol*
1155 Symbol_table::add_from_pluginobj(
1156     Sized_pluginobj<size, big_endian>* obj,
1157     const char* name,
1158     const char* ver,
1159     elfcpp::Sym<size, big_endian>* sym)
1160 {
1161   unsigned int st_shndx = sym->get_st_shndx();
1162
1163   Stringpool::Key ver_key = 0;
1164   bool def = false;
1165   bool local = false;
1166
1167   if (ver != NULL)
1168     {
1169       ver = this->namepool_.add(ver, true, &ver_key);
1170     }
1171   // We don't want to assign a version to an undefined symbol,
1172   // even if it is listed in the version script.  FIXME: What
1173   // about a common symbol?
1174   else
1175     {
1176       if (!this->version_script_.empty()
1177           && st_shndx != elfcpp::SHN_UNDEF)
1178         {
1179           // The symbol name did not have a version, but the
1180           // version script may assign a version anyway.
1181           std::string version;
1182           if (this->version_script_.get_symbol_version(name, &version))
1183             {
1184               // The version can be empty if the version script is
1185               // only used to force some symbols to be local.
1186               if (!version.empty())
1187                 {
1188                   ver = this->namepool_.add_with_length(version.c_str(),
1189                                                         version.length(),
1190                                                         true,
1191                                                         &ver_key);
1192                   def = true;
1193                 }
1194             }
1195           else if (this->version_script_.symbol_is_local(name))
1196             local = true;
1197         }
1198     }
1199
1200   Stringpool::Key name_key;
1201   name = this->namepool_.add(name, true, &name_key);
1202
1203   Sized_symbol<size>* res;
1204   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1205                               def, *sym, st_shndx, true, st_shndx);
1206
1207   if (local)
1208     this->force_local(res);
1209
1210   return res;
1211 }
1212
1213 // Add all the symbols in a dynamic object to the hash table.
1214
1215 template<int size, bool big_endian>
1216 void
1217 Symbol_table::add_from_dynobj(
1218     Sized_dynobj<size, big_endian>* dynobj,
1219     const unsigned char* syms,
1220     size_t count,
1221     const char* sym_names,
1222     size_t sym_name_size,
1223     const unsigned char* versym,
1224     size_t versym_size,
1225     const std::vector<const char*>* version_map,
1226     typename Sized_relobj<size, big_endian>::Symbols* sympointers,
1227     size_t* defined)
1228 {
1229   *defined = 0;
1230
1231   gold_assert(size == dynobj->target()->get_size());
1232   gold_assert(size == parameters->target().get_size());
1233
1234   if (dynobj->just_symbols())
1235     {
1236       gold_error(_("--just-symbols does not make sense with a shared object"));
1237       return;
1238     }
1239
1240   if (versym != NULL && versym_size / 2 < count)
1241     {
1242       dynobj->error(_("too few symbol versions"));
1243       return;
1244     }
1245
1246   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1247
1248   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1249   // weak aliases.  This is necessary because if the dynamic object
1250   // provides the same variable under two names, one of which is a
1251   // weak definition, and the regular object refers to the weak
1252   // definition, we have to put both the weak definition and the
1253   // strong definition into the dynamic symbol table.  Given a weak
1254   // definition, the only way that we can find the corresponding
1255   // strong definition, if any, is to search the symbol table.
1256   std::vector<Sized_symbol<size>*> object_symbols;
1257
1258   const unsigned char* p = syms;
1259   const unsigned char* vs = versym;
1260   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1261     {
1262       elfcpp::Sym<size, big_endian> sym(p);
1263
1264       if (sympointers != NULL)
1265         (*sympointers)[i] = NULL;
1266
1267       // Ignore symbols with local binding or that have
1268       // internal or hidden visibility.
1269       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1270           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1271           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1272         continue;
1273
1274       // A protected symbol in a shared library must be treated as a
1275       // normal symbol when viewed from outside the shared library.
1276       // Implement this by overriding the visibility here.
1277       elfcpp::Sym<size, big_endian>* psym = &sym;
1278       unsigned char symbuf[sym_size];
1279       elfcpp::Sym<size, big_endian> sym2(symbuf);
1280       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1281         {
1282           memcpy(symbuf, p, sym_size);
1283           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1284           sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1285           psym = &sym2;
1286         }
1287
1288       unsigned int st_name = psym->get_st_name();
1289       if (st_name >= sym_name_size)
1290         {
1291           dynobj->error(_("bad symbol name offset %u at %zu"),
1292                         st_name, i);
1293           continue;
1294         }
1295
1296       const char* name = sym_names + st_name;
1297
1298       bool is_ordinary;
1299       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1300                                                        &is_ordinary);
1301
1302       if (st_shndx != elfcpp::SHN_UNDEF)
1303         ++*defined;
1304
1305       Sized_symbol<size>* res;
1306
1307       if (versym == NULL)
1308         {
1309           Stringpool::Key name_key;
1310           name = this->namepool_.add(name, true, &name_key);
1311           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1312                                       false, *psym, st_shndx, is_ordinary,
1313                                       st_shndx);
1314         }
1315       else
1316         {
1317           // Read the version information.
1318
1319           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1320
1321           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1322           v &= elfcpp::VERSYM_VERSION;
1323
1324           // The Sun documentation says that V can be VER_NDX_LOCAL,
1325           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1326           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1327           // The old GNU linker will happily generate VER_NDX_LOCAL
1328           // for an undefined symbol.  I don't know what the Sun
1329           // linker will generate.
1330
1331           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1332               && st_shndx != elfcpp::SHN_UNDEF)
1333             {
1334               // This symbol should not be visible outside the object.
1335               continue;
1336             }
1337
1338           // At this point we are definitely going to add this symbol.
1339           Stringpool::Key name_key;
1340           name = this->namepool_.add(name, true, &name_key);
1341
1342           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1343               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1344             {
1345               // This symbol does not have a version.
1346               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1347                                           false, *psym, st_shndx, is_ordinary,
1348                                           st_shndx);
1349             }
1350           else
1351             {
1352               if (v >= version_map->size())
1353                 {
1354                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1355                                 i, v);
1356                   continue;
1357                 }
1358
1359               const char* version = (*version_map)[v];
1360               if (version == NULL)
1361                 {
1362                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1363                                 i, v);
1364                   continue;
1365                 }
1366
1367               Stringpool::Key version_key;
1368               version = this->namepool_.add(version, true, &version_key);
1369
1370               // If this is an absolute symbol, and the version name
1371               // and symbol name are the same, then this is the
1372               // version definition symbol.  These symbols exist to
1373               // support using -u to pull in particular versions.  We
1374               // do not want to record a version for them.
1375               if (st_shndx == elfcpp::SHN_ABS
1376                   && !is_ordinary
1377                   && name_key == version_key)
1378                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1379                                             false, *psym, st_shndx, is_ordinary,
1380                                             st_shndx);
1381               else
1382                 {
1383                   const bool def = (!hidden
1384                                     && st_shndx != elfcpp::SHN_UNDEF);
1385                   res = this->add_from_object(dynobj, name, name_key, version,
1386                                               version_key, def, *psym, st_shndx,
1387                                               is_ordinary, st_shndx);
1388                 }
1389             }
1390         }
1391
1392       // Note that it is possible that RES was overridden by an
1393       // earlier object, in which case it can't be aliased here.
1394       if (st_shndx != elfcpp::SHN_UNDEF
1395           && is_ordinary
1396           && psym->get_st_type() == elfcpp::STT_OBJECT
1397           && res->source() == Symbol::FROM_OBJECT
1398           && res->object() == dynobj)
1399         object_symbols.push_back(res);
1400
1401       if (sympointers != NULL)
1402         (*sympointers)[i] = res;
1403     }
1404
1405   this->record_weak_aliases(&object_symbols);
1406 }
1407
1408 // This is used to sort weak aliases.  We sort them first by section
1409 // index, then by offset, then by weak ahead of strong.
1410
1411 template<int size>
1412 class Weak_alias_sorter
1413 {
1414  public:
1415   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1416 };
1417
1418 template<int size>
1419 bool
1420 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1421                                     const Sized_symbol<size>* s2) const
1422 {
1423   bool is_ordinary;
1424   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1425   gold_assert(is_ordinary);
1426   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1427   gold_assert(is_ordinary);
1428   if (s1_shndx != s2_shndx)
1429     return s1_shndx < s2_shndx;
1430
1431   if (s1->value() != s2->value())
1432     return s1->value() < s2->value();
1433   if (s1->binding() != s2->binding())
1434     {
1435       if (s1->binding() == elfcpp::STB_WEAK)
1436         return true;
1437       if (s2->binding() == elfcpp::STB_WEAK)
1438         return false;
1439     }
1440   return std::string(s1->name()) < std::string(s2->name());
1441 }
1442
1443 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1444 // for any weak aliases, and record them so that if we add the weak
1445 // alias to the dynamic symbol table, we also add the corresponding
1446 // strong symbol.
1447
1448 template<int size>
1449 void
1450 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1451 {
1452   // Sort the vector by section index, then by offset, then by weak
1453   // ahead of strong.
1454   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1455
1456   // Walk through the vector.  For each weak definition, record
1457   // aliases.
1458   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1459          symbols->begin();
1460        p != symbols->end();
1461        ++p)
1462     {
1463       if ((*p)->binding() != elfcpp::STB_WEAK)
1464         continue;
1465
1466       // Build a circular list of weak aliases.  Each symbol points to
1467       // the next one in the circular list.
1468
1469       Sized_symbol<size>* from_sym = *p;
1470       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1471       for (q = p + 1; q != symbols->end(); ++q)
1472         {
1473           bool dummy;
1474           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1475               || (*q)->value() != from_sym->value())
1476             break;
1477
1478           this->weak_aliases_[from_sym] = *q;
1479           from_sym->set_has_alias();
1480           from_sym = *q;
1481         }
1482
1483       if (from_sym != *p)
1484         {
1485           this->weak_aliases_[from_sym] = *p;
1486           from_sym->set_has_alias();
1487         }
1488
1489       p = q - 1;
1490     }
1491 }
1492
1493 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1494 // true, then only create the symbol if there is a reference to it.
1495 // If this does not return NULL, it sets *POLDSYM to the existing
1496 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1497 // resolve the newly created symbol to the old one.  This
1498 // canonicalizes *PNAME and *PVERSION.
1499
1500 template<int size, bool big_endian>
1501 Sized_symbol<size>*
1502 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1503                                     bool only_if_ref,
1504                                     Sized_symbol<size>** poldsym,
1505                                     bool *resolve_oldsym)
1506 {
1507   *resolve_oldsym = false;
1508
1509   // If the caller didn't give us a version, see if we get one from
1510   // the version script.
1511   std::string v;
1512   bool is_default_version = false;
1513   if (*pversion == NULL)
1514     {
1515       if (this->version_script_.get_symbol_version(*pname, &v))
1516         {
1517           if (!v.empty())
1518             *pversion = v.c_str();
1519
1520           // If we get the version from a version script, then we are
1521           // also the default version.
1522           is_default_version = true;
1523         }
1524     }
1525
1526   Symbol* oldsym;
1527   Sized_symbol<size>* sym;
1528
1529   bool add_to_table = false;
1530   typename Symbol_table_type::iterator add_loc = this->table_.end();
1531   bool add_def_to_table = false;
1532   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1533
1534   if (only_if_ref)
1535     {
1536       oldsym = this->lookup(*pname, *pversion);
1537       if (oldsym == NULL && is_default_version)
1538         oldsym = this->lookup(*pname, NULL);
1539       if (oldsym == NULL || !oldsym->is_undefined())
1540         return NULL;
1541
1542       *pname = oldsym->name();
1543       if (!is_default_version)
1544         *pversion = oldsym->version();
1545     }
1546   else
1547     {
1548       // Canonicalize NAME and VERSION.
1549       Stringpool::Key name_key;
1550       *pname = this->namepool_.add(*pname, true, &name_key);
1551
1552       Stringpool::Key version_key = 0;
1553       if (*pversion != NULL)
1554         *pversion = this->namepool_.add(*pversion, true, &version_key);
1555
1556       Symbol* const snull = NULL;
1557       std::pair<typename Symbol_table_type::iterator, bool> ins =
1558         this->table_.insert(std::make_pair(std::make_pair(name_key,
1559                                                           version_key),
1560                                            snull));
1561
1562       std::pair<typename Symbol_table_type::iterator, bool> insdef =
1563         std::make_pair(this->table_.end(), false);
1564       if (is_default_version)
1565         {
1566           const Stringpool::Key vnull = 0;
1567           insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
1568                                                                      vnull),
1569                                                       snull));
1570         }
1571
1572       if (!ins.second)
1573         {
1574           // We already have a symbol table entry for NAME/VERSION.
1575           oldsym = ins.first->second;
1576           gold_assert(oldsym != NULL);
1577
1578           if (is_default_version)
1579             {
1580               Sized_symbol<size>* soldsym =
1581                 this->get_sized_symbol<size>(oldsym);
1582               this->define_default_version<size, big_endian>(soldsym,
1583                                                              insdef.second,
1584                                                              insdef.first);
1585             }
1586         }
1587       else
1588         {
1589           // We haven't seen this symbol before.
1590           gold_assert(ins.first->second == NULL);
1591
1592           add_to_table = true;
1593           add_loc = ins.first;
1594
1595           if (is_default_version && !insdef.second)
1596             {
1597               // We are adding NAME/VERSION, and it is the default
1598               // version.  We already have an entry for NAME/NULL.
1599               oldsym = insdef.first->second;
1600               *resolve_oldsym = true;
1601             }
1602           else
1603             {
1604               oldsym = NULL;
1605
1606               if (is_default_version)
1607                 {
1608                   add_def_to_table = true;
1609                   add_def_loc = insdef.first;
1610                 }
1611             }
1612         }
1613     }
1614
1615   const Target& target = parameters->target();
1616   if (!target.has_make_symbol())
1617     sym = new Sized_symbol<size>();
1618   else
1619     {
1620       gold_assert(target.get_size() == size);
1621       gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1622       typedef Sized_target<size, big_endian> My_target;
1623       const My_target* sized_target =
1624           static_cast<const My_target*>(&target);
1625       sym = sized_target->make_symbol();
1626       if (sym == NULL)
1627         return NULL;
1628     }
1629
1630   if (add_to_table)
1631     add_loc->second = sym;
1632   else
1633     gold_assert(oldsym != NULL);
1634
1635   if (add_def_to_table)
1636     add_def_loc->second = sym;
1637
1638   *poldsym = this->get_sized_symbol<size>(oldsym);
1639
1640   return sym;
1641 }
1642
1643 // Define a symbol based on an Output_data.
1644
1645 Symbol*
1646 Symbol_table::define_in_output_data(const char* name,
1647                                     const char* version,
1648                                     Output_data* od,
1649                                     uint64_t value,
1650                                     uint64_t symsize,
1651                                     elfcpp::STT type,
1652                                     elfcpp::STB binding,
1653                                     elfcpp::STV visibility,
1654                                     unsigned char nonvis,
1655                                     bool offset_is_from_end,
1656                                     bool only_if_ref)
1657 {
1658   if (parameters->target().get_size() == 32)
1659     {
1660 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1661       return this->do_define_in_output_data<32>(name, version, od,
1662                                                 value, symsize, type, binding,
1663                                                 visibility, nonvis,
1664                                                 offset_is_from_end,
1665                                                 only_if_ref);
1666 #else
1667       gold_unreachable();
1668 #endif
1669     }
1670   else if (parameters->target().get_size() == 64)
1671     {
1672 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1673       return this->do_define_in_output_data<64>(name, version, od,
1674                                                 value, symsize, type, binding,
1675                                                 visibility, nonvis,
1676                                                 offset_is_from_end,
1677                                                 only_if_ref);
1678 #else
1679       gold_unreachable();
1680 #endif
1681     }
1682   else
1683     gold_unreachable();
1684 }
1685
1686 // Define a symbol in an Output_data, sized version.
1687
1688 template<int size>
1689 Sized_symbol<size>*
1690 Symbol_table::do_define_in_output_data(
1691     const char* name,
1692     const char* version,
1693     Output_data* od,
1694     typename elfcpp::Elf_types<size>::Elf_Addr value,
1695     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1696     elfcpp::STT type,
1697     elfcpp::STB binding,
1698     elfcpp::STV visibility,
1699     unsigned char nonvis,
1700     bool offset_is_from_end,
1701     bool only_if_ref)
1702 {
1703   Sized_symbol<size>* sym;
1704   Sized_symbol<size>* oldsym;
1705   bool resolve_oldsym;
1706
1707   if (parameters->target().is_big_endian())
1708     {
1709 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1710       sym = this->define_special_symbol<size, true>(&name, &version,
1711                                                     only_if_ref, &oldsym,
1712                                                     &resolve_oldsym);
1713 #else
1714       gold_unreachable();
1715 #endif
1716     }
1717   else
1718     {
1719 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1720       sym = this->define_special_symbol<size, false>(&name, &version,
1721                                                      only_if_ref, &oldsym,
1722                                                      &resolve_oldsym);
1723 #else
1724       gold_unreachable();
1725 #endif
1726     }
1727
1728   if (sym == NULL)
1729     return NULL;
1730
1731   sym->init_output_data(name, version, od, value, symsize, type, binding,
1732                         visibility, nonvis, offset_is_from_end);
1733
1734   if (oldsym == NULL)
1735     {
1736       if (binding == elfcpp::STB_LOCAL
1737           || this->version_script_.symbol_is_local(name))
1738         this->force_local(sym);
1739       else if (version != NULL)
1740         sym->set_is_default();
1741       return sym;
1742     }
1743
1744   if (Symbol_table::should_override_with_special(oldsym))
1745     this->override_with_special(oldsym, sym);
1746
1747   if (resolve_oldsym)
1748     return sym;
1749   else
1750     {
1751       delete sym;
1752       return oldsym;
1753     }
1754 }
1755
1756 // Define a symbol based on an Output_segment.
1757
1758 Symbol*
1759 Symbol_table::define_in_output_segment(const char* name,
1760                                        const char* version, Output_segment* os,
1761                                        uint64_t value,
1762                                        uint64_t symsize,
1763                                        elfcpp::STT type,
1764                                        elfcpp::STB binding,
1765                                        elfcpp::STV visibility,
1766                                        unsigned char nonvis,
1767                                        Symbol::Segment_offset_base offset_base,
1768                                        bool only_if_ref)
1769 {
1770   if (parameters->target().get_size() == 32)
1771     {
1772 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1773       return this->do_define_in_output_segment<32>(name, version, os,
1774                                                    value, symsize, type,
1775                                                    binding, visibility, nonvis,
1776                                                    offset_base, only_if_ref);
1777 #else
1778       gold_unreachable();
1779 #endif
1780     }
1781   else if (parameters->target().get_size() == 64)
1782     {
1783 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1784       return this->do_define_in_output_segment<64>(name, version, os,
1785                                                    value, symsize, type,
1786                                                    binding, visibility, nonvis,
1787                                                    offset_base, only_if_ref);
1788 #else
1789       gold_unreachable();
1790 #endif
1791     }
1792   else
1793     gold_unreachable();
1794 }
1795
1796 // Define a symbol in an Output_segment, sized version.
1797
1798 template<int size>
1799 Sized_symbol<size>*
1800 Symbol_table::do_define_in_output_segment(
1801     const char* name,
1802     const char* version,
1803     Output_segment* os,
1804     typename elfcpp::Elf_types<size>::Elf_Addr value,
1805     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1806     elfcpp::STT type,
1807     elfcpp::STB binding,
1808     elfcpp::STV visibility,
1809     unsigned char nonvis,
1810     Symbol::Segment_offset_base offset_base,
1811     bool only_if_ref)
1812 {
1813   Sized_symbol<size>* sym;
1814   Sized_symbol<size>* oldsym;
1815   bool resolve_oldsym;
1816
1817   if (parameters->target().is_big_endian())
1818     {
1819 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1820       sym = this->define_special_symbol<size, true>(&name, &version,
1821                                                     only_if_ref, &oldsym,
1822                                                     &resolve_oldsym);
1823 #else
1824       gold_unreachable();
1825 #endif
1826     }
1827   else
1828     {
1829 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1830       sym = this->define_special_symbol<size, false>(&name, &version,
1831                                                      only_if_ref, &oldsym,
1832                                                      &resolve_oldsym);
1833 #else
1834       gold_unreachable();
1835 #endif
1836     }
1837
1838   if (sym == NULL)
1839     return NULL;
1840
1841   sym->init_output_segment(name, version, os, value, symsize, type, binding,
1842                            visibility, nonvis, offset_base);
1843
1844   if (oldsym == NULL)
1845     {
1846       if (binding == elfcpp::STB_LOCAL
1847           || this->version_script_.symbol_is_local(name))
1848         this->force_local(sym);
1849       else if (version != NULL)
1850         sym->set_is_default();
1851       return sym;
1852     }
1853
1854   if (Symbol_table::should_override_with_special(oldsym))
1855     this->override_with_special(oldsym, sym);
1856
1857   if (resolve_oldsym)
1858     return sym;
1859   else
1860     {
1861       delete sym;
1862       return oldsym;
1863     }
1864 }
1865
1866 // Define a special symbol with a constant value.  It is a multiple
1867 // definition error if this symbol is already defined.
1868
1869 Symbol*
1870 Symbol_table::define_as_constant(const char* name,
1871                                  const char* version,
1872                                  uint64_t value,
1873                                  uint64_t symsize,
1874                                  elfcpp::STT type,
1875                                  elfcpp::STB binding,
1876                                  elfcpp::STV visibility,
1877                                  unsigned char nonvis,
1878                                  bool only_if_ref,
1879                                  bool force_override)
1880 {
1881   if (parameters->target().get_size() == 32)
1882     {
1883 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1884       return this->do_define_as_constant<32>(name, version, value,
1885                                              symsize, type, binding,
1886                                              visibility, nonvis, only_if_ref,
1887                                              force_override);
1888 #else
1889       gold_unreachable();
1890 #endif
1891     }
1892   else if (parameters->target().get_size() == 64)
1893     {
1894 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1895       return this->do_define_as_constant<64>(name, version, value,
1896                                              symsize, type, binding,
1897                                              visibility, nonvis, only_if_ref,
1898                                              force_override);
1899 #else
1900       gold_unreachable();
1901 #endif
1902     }
1903   else
1904     gold_unreachable();
1905 }
1906
1907 // Define a symbol as a constant, sized version.
1908
1909 template<int size>
1910 Sized_symbol<size>*
1911 Symbol_table::do_define_as_constant(
1912     const char* name,
1913     const char* version,
1914     typename elfcpp::Elf_types<size>::Elf_Addr value,
1915     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1916     elfcpp::STT type,
1917     elfcpp::STB binding,
1918     elfcpp::STV visibility,
1919     unsigned char nonvis,
1920     bool only_if_ref,
1921     bool force_override)
1922 {
1923   Sized_symbol<size>* sym;
1924   Sized_symbol<size>* oldsym;
1925   bool resolve_oldsym;
1926
1927   if (parameters->target().is_big_endian())
1928     {
1929 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1930       sym = this->define_special_symbol<size, true>(&name, &version,
1931                                                     only_if_ref, &oldsym,
1932                                                     &resolve_oldsym);
1933 #else
1934       gold_unreachable();
1935 #endif
1936     }
1937   else
1938     {
1939 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1940       sym = this->define_special_symbol<size, false>(&name, &version,
1941                                                      only_if_ref, &oldsym,
1942                                                      &resolve_oldsym);
1943 #else
1944       gold_unreachable();
1945 #endif
1946     }
1947
1948   if (sym == NULL)
1949     return NULL;
1950
1951   sym->init_constant(name, version, value, symsize, type, binding, visibility,
1952                      nonvis);
1953
1954   if (oldsym == NULL)
1955     {
1956       // Version symbols are absolute symbols with name == version.
1957       // We don't want to force them to be local.
1958       if ((version == NULL
1959            || name != version
1960            || value != 0)
1961           && (binding == elfcpp::STB_LOCAL
1962               || this->version_script_.symbol_is_local(name)))
1963         this->force_local(sym);
1964       else if (version != NULL
1965                && (name != version || value != 0))
1966         sym->set_is_default();
1967       return sym;
1968     }
1969
1970   if (force_override || Symbol_table::should_override_with_special(oldsym))
1971     this->override_with_special(oldsym, sym);
1972
1973   if (resolve_oldsym)
1974     return sym;
1975   else
1976     {
1977       delete sym;
1978       return oldsym;
1979     }
1980 }
1981
1982 // Define a set of symbols in output sections.
1983
1984 void
1985 Symbol_table::define_symbols(const Layout* layout, int count,
1986                              const Define_symbol_in_section* p,
1987                              bool only_if_ref)
1988 {
1989   for (int i = 0; i < count; ++i, ++p)
1990     {
1991       Output_section* os = layout->find_output_section(p->output_section);
1992       if (os != NULL)
1993         this->define_in_output_data(p->name, NULL, os, p->value,
1994                                     p->size, p->type, p->binding,
1995                                     p->visibility, p->nonvis,
1996                                     p->offset_is_from_end,
1997                                     only_if_ref || p->only_if_ref);
1998       else
1999         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
2000                                  p->binding, p->visibility, p->nonvis,
2001                                  only_if_ref || p->only_if_ref,
2002                                  false);
2003     }
2004 }
2005
2006 // Define a set of symbols in output segments.
2007
2008 void
2009 Symbol_table::define_symbols(const Layout* layout, int count,
2010                              const Define_symbol_in_segment* p,
2011                              bool only_if_ref)
2012 {
2013   for (int i = 0; i < count; ++i, ++p)
2014     {
2015       Output_segment* os = layout->find_output_segment(p->segment_type,
2016                                                        p->segment_flags_set,
2017                                                        p->segment_flags_clear);
2018       if (os != NULL)
2019         this->define_in_output_segment(p->name, NULL, os, p->value,
2020                                        p->size, p->type, p->binding,
2021                                        p->visibility, p->nonvis,
2022                                        p->offset_base,
2023                                        only_if_ref || p->only_if_ref);
2024       else
2025         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
2026                                  p->binding, p->visibility, p->nonvis,
2027                                  only_if_ref || p->only_if_ref,
2028                                  false);
2029     }
2030 }
2031
2032 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2033 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2034 // the offset within POSD.
2035
2036 template<int size>
2037 void
2038 Symbol_table::define_with_copy_reloc(
2039     Sized_symbol<size>* csym,
2040     Output_data* posd,
2041     typename elfcpp::Elf_types<size>::Elf_Addr value)
2042 {
2043   gold_assert(csym->is_from_dynobj());
2044   gold_assert(!csym->is_copied_from_dynobj());
2045   Object* object = csym->object();
2046   gold_assert(object->is_dynamic());
2047   Dynobj* dynobj = static_cast<Dynobj*>(object);
2048
2049   // Our copied variable has to override any variable in a shared
2050   // library.
2051   elfcpp::STB binding = csym->binding();
2052   if (binding == elfcpp::STB_WEAK)
2053     binding = elfcpp::STB_GLOBAL;
2054
2055   this->define_in_output_data(csym->name(), csym->version(),
2056                               posd, value, csym->symsize(),
2057                               csym->type(), binding,
2058                               csym->visibility(), csym->nonvis(),
2059                               false, false);
2060
2061   csym->set_is_copied_from_dynobj();
2062   csym->set_needs_dynsym_entry();
2063
2064   this->copied_symbol_dynobjs_[csym] = dynobj;
2065
2066   // We have now defined all aliases, but we have not entered them all
2067   // in the copied_symbol_dynobjs_ map.
2068   if (csym->has_alias())
2069     {
2070       Symbol* sym = csym;
2071       while (true)
2072         {
2073           sym = this->weak_aliases_[sym];
2074           if (sym == csym)
2075             break;
2076           gold_assert(sym->output_data() == posd);
2077
2078           sym->set_is_copied_from_dynobj();
2079           this->copied_symbol_dynobjs_[sym] = dynobj;
2080         }
2081     }
2082 }
2083
2084 // SYM is defined using a COPY reloc.  Return the dynamic object where
2085 // the original definition was found.
2086
2087 Dynobj*
2088 Symbol_table::get_copy_source(const Symbol* sym) const
2089 {
2090   gold_assert(sym->is_copied_from_dynobj());
2091   Copied_symbol_dynobjs::const_iterator p =
2092     this->copied_symbol_dynobjs_.find(sym);
2093   gold_assert(p != this->copied_symbol_dynobjs_.end());
2094   return p->second;
2095 }
2096
2097 // Add any undefined symbols named on the command line.
2098
2099 void
2100 Symbol_table::add_undefined_symbols_from_command_line()
2101 {
2102   if (parameters->options().any_undefined())
2103     {
2104       if (parameters->target().get_size() == 32)
2105         {
2106 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2107           this->do_add_undefined_symbols_from_command_line<32>();
2108 #else
2109           gold_unreachable();
2110 #endif
2111         }
2112       else if (parameters->target().get_size() == 64)
2113         {
2114 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2115           this->do_add_undefined_symbols_from_command_line<64>();
2116 #else
2117           gold_unreachable();
2118 #endif
2119         }
2120       else
2121         gold_unreachable();
2122     }
2123 }
2124
2125 template<int size>
2126 void
2127 Symbol_table::do_add_undefined_symbols_from_command_line()
2128 {
2129   for (options::String_set::const_iterator p =
2130          parameters->options().undefined_begin();
2131        p != parameters->options().undefined_end();
2132        ++p)
2133     {
2134       const char* name = p->c_str();
2135
2136       if (this->lookup(name) != NULL)
2137         continue;
2138
2139       const char* version = NULL;
2140
2141       Sized_symbol<size>* sym;
2142       Sized_symbol<size>* oldsym;
2143       bool resolve_oldsym;
2144       if (parameters->target().is_big_endian())
2145         {
2146 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2147           sym = this->define_special_symbol<size, true>(&name, &version,
2148                                                         false, &oldsym,
2149                                                         &resolve_oldsym);
2150 #else
2151           gold_unreachable();
2152 #endif
2153         }
2154       else
2155         {
2156 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2157           sym = this->define_special_symbol<size, false>(&name, &version,
2158                                                          false, &oldsym,
2159                                                          &resolve_oldsym);
2160 #else
2161           gold_unreachable();
2162 #endif
2163         }
2164
2165       gold_assert(oldsym == NULL);
2166
2167       sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2168                           elfcpp::STV_DEFAULT, 0);
2169       ++this->saw_undefined_;
2170     }
2171 }
2172
2173 // Set the dynamic symbol indexes.  INDEX is the index of the first
2174 // global dynamic symbol.  Pointers to the symbols are stored into the
2175 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2176 // updated dynamic symbol index.
2177
2178 unsigned int
2179 Symbol_table::set_dynsym_indexes(unsigned int index,
2180                                  std::vector<Symbol*>* syms,
2181                                  Stringpool* dynpool,
2182                                  Versions* versions)
2183 {
2184   for (Symbol_table_type::iterator p = this->table_.begin();
2185        p != this->table_.end();
2186        ++p)
2187     {
2188       Symbol* sym = p->second;
2189
2190       // Note that SYM may already have a dynamic symbol index, since
2191       // some symbols appear more than once in the symbol table, with
2192       // and without a version.
2193
2194       if (!sym->should_add_dynsym_entry())
2195         sym->set_dynsym_index(-1U);
2196       else if (!sym->has_dynsym_index())
2197         {
2198           sym->set_dynsym_index(index);
2199           ++index;
2200           syms->push_back(sym);
2201           dynpool->add(sym->name(), false, NULL);
2202
2203           // Record any version information.
2204           if (sym->version() != NULL)
2205             versions->record_version(this, dynpool, sym);
2206         }
2207     }
2208
2209   // Finish up the versions.  In some cases this may add new dynamic
2210   // symbols.
2211   index = versions->finalize(this, index, syms);
2212
2213   return index;
2214 }
2215
2216 // Set the final values for all the symbols.  The index of the first
2217 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2218 // file offset OFF.  Add their names to POOL.  Return the new file
2219 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2220
2221 off_t
2222 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2223                        size_t dyncount, Stringpool* pool,
2224                        unsigned int *plocal_symcount)
2225 {
2226   off_t ret;
2227
2228   gold_assert(*plocal_symcount != 0);
2229   this->first_global_index_ = *plocal_symcount;
2230
2231   this->dynamic_offset_ = dynoff;
2232   this->first_dynamic_global_index_ = dyn_global_index;
2233   this->dynamic_count_ = dyncount;
2234
2235   if (parameters->target().get_size() == 32)
2236     {
2237 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2238       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2239 #else
2240       gold_unreachable();
2241 #endif
2242     }
2243   else if (parameters->target().get_size() == 64)
2244     {
2245 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2246       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2247 #else
2248       gold_unreachable();
2249 #endif
2250     }
2251   else
2252     gold_unreachable();
2253
2254   // Now that we have the final symbol table, we can reliably note
2255   // which symbols should get warnings.
2256   this->warnings_.note_warnings(this);
2257
2258   return ret;
2259 }
2260
2261 // SYM is going into the symbol table at *PINDEX.  Add the name to
2262 // POOL, update *PINDEX and *POFF.
2263
2264 template<int size>
2265 void
2266 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2267                                   unsigned int* pindex, off_t* poff)
2268 {
2269   sym->set_symtab_index(*pindex);
2270   pool->add(sym->name(), false, NULL);
2271   ++*pindex;
2272   *poff += elfcpp::Elf_sizes<size>::sym_size;
2273 }
2274
2275 // Set the final value for all the symbols.  This is called after
2276 // Layout::finalize, so all the output sections have their final
2277 // address.
2278
2279 template<int size>
2280 off_t
2281 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2282                              unsigned int* plocal_symcount)
2283 {
2284   off = align_address(off, size >> 3);
2285   this->offset_ = off;
2286
2287   unsigned int index = *plocal_symcount;
2288   const unsigned int orig_index = index;
2289
2290   // First do all the symbols which have been forced to be local, as
2291   // they must appear before all global symbols.
2292   for (Forced_locals::iterator p = this->forced_locals_.begin();
2293        p != this->forced_locals_.end();
2294        ++p)
2295     {
2296       Symbol* sym = *p;
2297       gold_assert(sym->is_forced_local());
2298       if (this->sized_finalize_symbol<size>(sym))
2299         {
2300           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2301           ++*plocal_symcount;
2302         }
2303     }
2304
2305   // Now do all the remaining symbols.
2306   for (Symbol_table_type::iterator p = this->table_.begin();
2307        p != this->table_.end();
2308        ++p)
2309     {
2310       Symbol* sym = p->second;
2311       if (this->sized_finalize_symbol<size>(sym))
2312         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2313     }
2314
2315   this->output_count_ = index - orig_index;
2316
2317   return off;
2318 }
2319
2320 // Finalize the symbol SYM.  This returns true if the symbol should be
2321 // added to the symbol table, false otherwise.
2322
2323 template<int size>
2324 bool
2325 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2326 {
2327   typedef typename Sized_symbol<size>::Value_type Value_type;
2328
2329   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2330
2331   // The default version of a symbol may appear twice in the symbol
2332   // table.  We only need to finalize it once.
2333   if (sym->has_symtab_index())
2334     return false;
2335
2336   if (!sym->in_reg())
2337     {
2338       gold_assert(!sym->has_symtab_index());
2339       sym->set_symtab_index(-1U);
2340       gold_assert(sym->dynsym_index() == -1U);
2341       return false;
2342     }
2343
2344   Value_type value;
2345
2346   switch (sym->source())
2347     {
2348     case Symbol::FROM_OBJECT:
2349       {
2350         bool is_ordinary;
2351         unsigned int shndx = sym->shndx(&is_ordinary);
2352
2353         // FIXME: We need some target specific support here.
2354         if (!is_ordinary
2355             && shndx != elfcpp::SHN_ABS
2356             && shndx != elfcpp::SHN_COMMON)
2357           {
2358             gold_error(_("%s: unsupported symbol section 0x%x"),
2359                        sym->demangled_name().c_str(), shndx);
2360             shndx = elfcpp::SHN_UNDEF;
2361           }
2362
2363         Object* symobj = sym->object();
2364         if (symobj->is_dynamic())
2365           {
2366             value = 0;
2367             shndx = elfcpp::SHN_UNDEF;
2368           }
2369         else if (symobj->pluginobj() != NULL)
2370           {
2371             value = 0;
2372             shndx = elfcpp::SHN_UNDEF;
2373           }
2374         else if (shndx == elfcpp::SHN_UNDEF)
2375           value = 0;
2376         else if (!is_ordinary
2377                  && (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON))
2378           value = sym->value();
2379         else
2380           {
2381             Relobj* relobj = static_cast<Relobj*>(symobj);
2382             Output_section* os = relobj->output_section(shndx);
2383
2384             if (os == NULL)
2385               {
2386                 sym->set_symtab_index(-1U);
2387                 bool static_or_reloc = (parameters->doing_static_link() ||
2388                                         parameters->options().relocatable());
2389                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2390
2391                 return false;
2392               }
2393
2394             uint64_t secoff64 = relobj->output_section_offset(shndx);
2395             if (secoff64 == -1ULL)
2396               {
2397                 // The section needs special handling (e.g., a merge section).
2398                 value = os->output_address(relobj, shndx, sym->value());
2399               }
2400             else
2401               {
2402                 Value_type secoff =
2403                   convert_types<Value_type, uint64_t>(secoff64);
2404                 if (sym->type() == elfcpp::STT_TLS)
2405                   value = sym->value() + os->tls_offset() + secoff;
2406                 else
2407                   value = sym->value() + os->address() + secoff;
2408               }
2409           }
2410       }
2411       break;
2412
2413     case Symbol::IN_OUTPUT_DATA:
2414       {
2415         Output_data* od = sym->output_data();
2416         value = sym->value();
2417         if (sym->type() != elfcpp::STT_TLS)
2418           value += od->address();
2419         else
2420           {
2421             Output_section* os = od->output_section();
2422             gold_assert(os != NULL);
2423             value += os->tls_offset() + (od->address() - os->address());
2424           }
2425         if (sym->offset_is_from_end())
2426           value += od->data_size();
2427       }
2428       break;
2429
2430     case Symbol::IN_OUTPUT_SEGMENT:
2431       {
2432         Output_segment* os = sym->output_segment();
2433         value = sym->value();
2434         if (sym->type() != elfcpp::STT_TLS)
2435           value += os->vaddr();
2436         switch (sym->offset_base())
2437           {
2438           case Symbol::SEGMENT_START:
2439             break;
2440           case Symbol::SEGMENT_END:
2441             value += os->memsz();
2442             break;
2443           case Symbol::SEGMENT_BSS:
2444             value += os->filesz();
2445             break;
2446           default:
2447             gold_unreachable();
2448           }
2449       }
2450       break;
2451
2452     case Symbol::IS_CONSTANT:
2453       value = sym->value();
2454       break;
2455
2456     case Symbol::IS_UNDEFINED:
2457       value = 0;
2458       break;
2459
2460     default:
2461       gold_unreachable();
2462     }
2463
2464   sym->set_value(value);
2465
2466   if (parameters->options().strip_all())
2467     {
2468       sym->set_symtab_index(-1U);
2469       return false;
2470     }
2471
2472   return true;
2473 }
2474
2475 // Write out the global symbols.
2476
2477 void
2478 Symbol_table::write_globals(const Stringpool* sympool,
2479                             const Stringpool* dynpool,
2480                             Output_symtab_xindex* symtab_xindex,
2481                             Output_symtab_xindex* dynsym_xindex,
2482                             Output_file* of) const
2483 {
2484   switch (parameters->size_and_endianness())
2485     {
2486 #ifdef HAVE_TARGET_32_LITTLE
2487     case Parameters::TARGET_32_LITTLE:
2488       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2489                                            dynsym_xindex, of);
2490       break;
2491 #endif
2492 #ifdef HAVE_TARGET_32_BIG
2493     case Parameters::TARGET_32_BIG:
2494       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2495                                           dynsym_xindex, of);
2496       break;
2497 #endif
2498 #ifdef HAVE_TARGET_64_LITTLE
2499     case Parameters::TARGET_64_LITTLE:
2500       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2501                                            dynsym_xindex, of);
2502       break;
2503 #endif
2504 #ifdef HAVE_TARGET_64_BIG
2505     case Parameters::TARGET_64_BIG:
2506       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2507                                           dynsym_xindex, of);
2508       break;
2509 #endif
2510     default:
2511       gold_unreachable();
2512     }
2513 }
2514
2515 // Write out the global symbols.
2516
2517 template<int size, bool big_endian>
2518 void
2519 Symbol_table::sized_write_globals(const Stringpool* sympool,
2520                                   const Stringpool* dynpool,
2521                                   Output_symtab_xindex* symtab_xindex,
2522                                   Output_symtab_xindex* dynsym_xindex,
2523                                   Output_file* of) const
2524 {
2525   const Target& target = parameters->target();
2526
2527   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2528
2529   const unsigned int output_count = this->output_count_;
2530   const section_size_type oview_size = output_count * sym_size;
2531   const unsigned int first_global_index = this->first_global_index_;
2532   unsigned char* psyms;
2533   if (this->offset_ == 0 || output_count == 0)
2534     psyms = NULL;
2535   else
2536     psyms = of->get_output_view(this->offset_, oview_size);
2537
2538   const unsigned int dynamic_count = this->dynamic_count_;
2539   const section_size_type dynamic_size = dynamic_count * sym_size;
2540   const unsigned int first_dynamic_global_index =
2541     this->first_dynamic_global_index_;
2542   unsigned char* dynamic_view;
2543   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2544     dynamic_view = NULL;
2545   else
2546     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2547
2548   for (Symbol_table_type::const_iterator p = this->table_.begin();
2549        p != this->table_.end();
2550        ++p)
2551     {
2552       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2553
2554       // Possibly warn about unresolved symbols in shared libraries.
2555       this->warn_about_undefined_dynobj_symbol(sym);
2556
2557       unsigned int sym_index = sym->symtab_index();
2558       unsigned int dynsym_index;
2559       if (dynamic_view == NULL)
2560         dynsym_index = -1U;
2561       else
2562         dynsym_index = sym->dynsym_index();
2563
2564       if (sym_index == -1U && dynsym_index == -1U)
2565         {
2566           // This symbol is not included in the output file.
2567           continue;
2568         }
2569
2570       unsigned int shndx;
2571       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2572       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2573       switch (sym->source())
2574         {
2575         case Symbol::FROM_OBJECT:
2576           {
2577             bool is_ordinary;
2578             unsigned int in_shndx = sym->shndx(&is_ordinary);
2579
2580             // FIXME: We need some target specific support here.
2581             if (!is_ordinary
2582                 && in_shndx != elfcpp::SHN_ABS
2583                 && in_shndx != elfcpp::SHN_COMMON)
2584               {
2585                 gold_error(_("%s: unsupported symbol section 0x%x"),
2586                            sym->demangled_name().c_str(), in_shndx);
2587                 shndx = in_shndx;
2588               }
2589             else
2590               {
2591                 Object* symobj = sym->object();
2592                 if (symobj->is_dynamic())
2593                   {
2594                     if (sym->needs_dynsym_value())
2595                       dynsym_value = target.dynsym_value(sym);
2596                     shndx = elfcpp::SHN_UNDEF;
2597                   }
2598                 else if (symobj->pluginobj() != NULL)
2599                   shndx = elfcpp::SHN_UNDEF;
2600                 else if (in_shndx == elfcpp::SHN_UNDEF
2601                          || (!is_ordinary
2602                              && (in_shndx == elfcpp::SHN_ABS
2603                                  || in_shndx == elfcpp::SHN_COMMON)))
2604                   shndx = in_shndx;
2605                 else
2606                   {
2607                     Relobj* relobj = static_cast<Relobj*>(symobj);
2608                     Output_section* os = relobj->output_section(in_shndx);
2609                     gold_assert(os != NULL);
2610                     shndx = os->out_shndx();
2611
2612                     if (shndx >= elfcpp::SHN_LORESERVE)
2613                       {
2614                         if (sym_index != -1U)
2615                           symtab_xindex->add(sym_index, shndx);
2616                         if (dynsym_index != -1U)
2617                           dynsym_xindex->add(dynsym_index, shndx);
2618                         shndx = elfcpp::SHN_XINDEX;
2619                       }
2620
2621                     // In object files symbol values are section
2622                     // relative.
2623                     if (parameters->options().relocatable())
2624                       sym_value -= os->address();
2625                   }
2626               }
2627           }
2628           break;
2629
2630         case Symbol::IN_OUTPUT_DATA:
2631           shndx = sym->output_data()->out_shndx();
2632           if (shndx >= elfcpp::SHN_LORESERVE)
2633             {
2634               if (sym_index != -1U)
2635                 symtab_xindex->add(sym_index, shndx);
2636               if (dynsym_index != -1U)
2637                 dynsym_xindex->add(dynsym_index, shndx);
2638               shndx = elfcpp::SHN_XINDEX;
2639             }
2640           break;
2641
2642         case Symbol::IN_OUTPUT_SEGMENT:
2643           shndx = elfcpp::SHN_ABS;
2644           break;
2645
2646         case Symbol::IS_CONSTANT:
2647           shndx = elfcpp::SHN_ABS;
2648           break;
2649
2650         case Symbol::IS_UNDEFINED:
2651           shndx = elfcpp::SHN_UNDEF;
2652           break;
2653
2654         default:
2655           gold_unreachable();
2656         }
2657
2658       if (sym_index != -1U)
2659         {
2660           sym_index -= first_global_index;
2661           gold_assert(sym_index < output_count);
2662           unsigned char* ps = psyms + (sym_index * sym_size);
2663           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2664                                                      sympool, ps);
2665         }
2666
2667       if (dynsym_index != -1U)
2668         {
2669           dynsym_index -= first_dynamic_global_index;
2670           gold_assert(dynsym_index < dynamic_count);
2671           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2672           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2673                                                      dynpool, pd);
2674         }
2675     }
2676
2677   of->write_output_view(this->offset_, oview_size, psyms);
2678   if (dynamic_view != NULL)
2679     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2680 }
2681
2682 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
2683 // strtab holding the name.
2684
2685 template<int size, bool big_endian>
2686 void
2687 Symbol_table::sized_write_symbol(
2688     Sized_symbol<size>* sym,
2689     typename elfcpp::Elf_types<size>::Elf_Addr value,
2690     unsigned int shndx,
2691     const Stringpool* pool,
2692     unsigned char* p) const
2693 {
2694   elfcpp::Sym_write<size, big_endian> osym(p);
2695   osym.put_st_name(pool->get_offset(sym->name()));
2696   osym.put_st_value(value);
2697   // Use a symbol size of zero for undefined symbols from shared libraries.
2698   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2699     osym.put_st_size(0);
2700   else
2701     osym.put_st_size(sym->symsize());
2702   // A version script may have overridden the default binding.
2703   if (sym->is_forced_local())
2704     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2705   else
2706     osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
2707   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2708   osym.put_st_shndx(shndx);
2709 }
2710
2711 // Check for unresolved symbols in shared libraries.  This is
2712 // controlled by the --allow-shlib-undefined option.
2713
2714 // We only warn about libraries for which we have seen all the
2715 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
2716 // which were not seen in this link.  If we didn't see a DT_NEEDED
2717 // entry, we aren't going to be able to reliably report whether the
2718 // symbol is undefined.
2719
2720 // We also don't warn about libraries found in a system library
2721 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2722 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
2723 // can have undefined references satisfied by ld-linux.so.
2724
2725 inline void
2726 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
2727 {
2728   bool dummy;
2729   if (sym->source() == Symbol::FROM_OBJECT
2730       && sym->object()->is_dynamic()
2731       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2732       && sym->binding() != elfcpp::STB_WEAK
2733       && !parameters->options().allow_shlib_undefined()
2734       && !parameters->target().is_defined_by_abi(sym)
2735       && !sym->object()->is_in_system_directory())
2736     {
2737       // A very ugly cast.
2738       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2739       if (!dynobj->has_unknown_needed_entries())
2740         gold_undefined_symbol(sym);
2741     }
2742 }
2743
2744 // Write out a section symbol.  Return the update offset.
2745
2746 void
2747 Symbol_table::write_section_symbol(const Output_section *os,
2748                                    Output_symtab_xindex* symtab_xindex,
2749                                    Output_file* of,
2750                                    off_t offset) const
2751 {
2752   switch (parameters->size_and_endianness())
2753     {
2754 #ifdef HAVE_TARGET_32_LITTLE
2755     case Parameters::TARGET_32_LITTLE:
2756       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
2757                                                   offset);
2758       break;
2759 #endif
2760 #ifdef HAVE_TARGET_32_BIG
2761     case Parameters::TARGET_32_BIG:
2762       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
2763                                                  offset);
2764       break;
2765 #endif
2766 #ifdef HAVE_TARGET_64_LITTLE
2767     case Parameters::TARGET_64_LITTLE:
2768       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
2769                                                   offset);
2770       break;
2771 #endif
2772 #ifdef HAVE_TARGET_64_BIG
2773     case Parameters::TARGET_64_BIG:
2774       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
2775                                                  offset);
2776       break;
2777 #endif
2778     default:
2779       gold_unreachable();
2780     }
2781 }
2782
2783 // Write out a section symbol, specialized for size and endianness.
2784
2785 template<int size, bool big_endian>
2786 void
2787 Symbol_table::sized_write_section_symbol(const Output_section* os,
2788                                          Output_symtab_xindex* symtab_xindex,
2789                                          Output_file* of,
2790                                          off_t offset) const
2791 {
2792   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2793
2794   unsigned char* pov = of->get_output_view(offset, sym_size);
2795
2796   elfcpp::Sym_write<size, big_endian> osym(pov);
2797   osym.put_st_name(0);
2798   if (parameters->options().relocatable())
2799     osym.put_st_value(0);
2800   else
2801     osym.put_st_value(os->address());
2802   osym.put_st_size(0);
2803   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2804                                        elfcpp::STT_SECTION));
2805   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2806
2807   unsigned int shndx = os->out_shndx();
2808   if (shndx >= elfcpp::SHN_LORESERVE)
2809     {
2810       symtab_xindex->add(os->symtab_index(), shndx);
2811       shndx = elfcpp::SHN_XINDEX;
2812     }
2813   osym.put_st_shndx(shndx);
2814
2815   of->write_output_view(offset, sym_size, pov);
2816 }
2817
2818 // Print statistical information to stderr.  This is used for --stats.
2819
2820 void
2821 Symbol_table::print_stats() const
2822 {
2823 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2824   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2825           program_name, this->table_.size(), this->table_.bucket_count());
2826 #else
2827   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2828           program_name, this->table_.size());
2829 #endif
2830   this->namepool_.print_stats("symbol table stringpool");
2831 }
2832
2833 // We check for ODR violations by looking for symbols with the same
2834 // name for which the debugging information reports that they were
2835 // defined in different source locations.  When comparing the source
2836 // location, we consider instances with the same base filename and
2837 // line number to be the same.  This is because different object
2838 // files/shared libraries can include the same header file using
2839 // different paths, and we don't want to report an ODR violation in
2840 // that case.
2841
2842 // This struct is used to compare line information, as returned by
2843 // Dwarf_line_info::one_addr2line.  It implements a < comparison
2844 // operator used with std::set.
2845
2846 struct Odr_violation_compare
2847 {
2848   bool
2849   operator()(const std::string& s1, const std::string& s2) const
2850   {
2851     std::string::size_type pos1 = s1.rfind('/');
2852     std::string::size_type pos2 = s2.rfind('/');
2853     if (pos1 == std::string::npos
2854         || pos2 == std::string::npos)
2855       return s1 < s2;
2856     return s1.compare(pos1, std::string::npos,
2857                       s2, pos2, std::string::npos) < 0;
2858   }
2859 };
2860
2861 // Check candidate_odr_violations_ to find symbols with the same name
2862 // but apparently different definitions (different source-file/line-no).
2863
2864 void
2865 Symbol_table::detect_odr_violations(const Task* task,
2866                                     const char* output_file_name) const
2867 {
2868   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2869        it != candidate_odr_violations_.end();
2870        ++it)
2871     {
2872       const char* symbol_name = it->first;
2873       // We use a sorted set so the output is deterministic.
2874       std::set<std::string, Odr_violation_compare> line_nums;
2875
2876       for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2877                locs = it->second.begin();
2878            locs != it->second.end();
2879            ++locs)
2880         {
2881           // We need to lock the object in order to read it.  This
2882           // means that we have to run in a singleton Task.  If we
2883           // want to run this in a general Task for better
2884           // performance, we will need one Task for object, plus
2885           // appropriate locking to ensure that we don't conflict with
2886           // other uses of the object.  Also note, one_addr2line is not
2887           // currently thread-safe.
2888           Task_lock_obj<Object> tl(task, locs->object);
2889           // 16 is the size of the object-cache that one_addr2line should use.
2890           std::string lineno = Dwarf_line_info::one_addr2line(
2891               locs->object, locs->shndx, locs->offset, 16);
2892           if (!lineno.empty())
2893             line_nums.insert(lineno);
2894         }
2895
2896       if (line_nums.size() > 1)
2897         {
2898           gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2899                          "places (possible ODR violation):"),
2900                        output_file_name, demangle(symbol_name).c_str());
2901           for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2902                it2 != line_nums.end();
2903                ++it2)
2904             fprintf(stderr, "  %s\n", it2->c_str());
2905         }
2906     }
2907   // We only call one_addr2line() in this function, so we can clear its cache.
2908   Dwarf_line_info::clear_addr2line_cache();
2909 }
2910
2911 // Warnings functions.
2912
2913 // Add a new warning.
2914
2915 void
2916 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2917                       const std::string& warning)
2918 {
2919   name = symtab->canonicalize_name(name);
2920   this->warnings_[name].set(obj, warning);
2921 }
2922
2923 // Look through the warnings and mark the symbols for which we should
2924 // warn.  This is called during Layout::finalize when we know the
2925 // sources for all the symbols.
2926
2927 void
2928 Warnings::note_warnings(Symbol_table* symtab)
2929 {
2930   for (Warning_table::iterator p = this->warnings_.begin();
2931        p != this->warnings_.end();
2932        ++p)
2933     {
2934       Symbol* sym = symtab->lookup(p->first, NULL);
2935       if (sym != NULL
2936           && sym->source() == Symbol::FROM_OBJECT
2937           && sym->object() == p->second.object)
2938         sym->set_has_warning();
2939     }
2940 }
2941
2942 // Issue a warning.  This is called when we see a relocation against a
2943 // symbol for which has a warning.
2944
2945 template<int size, bool big_endian>
2946 void
2947 Warnings::issue_warning(const Symbol* sym,
2948                         const Relocate_info<size, big_endian>* relinfo,
2949                         size_t relnum, off_t reloffset) const
2950 {
2951   gold_assert(sym->has_warning());
2952   Warning_table::const_iterator p = this->warnings_.find(sym->name());
2953   gold_assert(p != this->warnings_.end());
2954   gold_warning_at_location(relinfo, relnum, reloffset,
2955                            "%s", p->second.text.c_str());
2956 }
2957
2958 // Instantiate the templates we need.  We could use the configure
2959 // script to restrict this to only the ones needed for implemented
2960 // targets.
2961
2962 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2963 template
2964 void
2965 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2966 #endif
2967
2968 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2969 template
2970 void
2971 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2972 #endif
2973
2974 #ifdef HAVE_TARGET_32_LITTLE
2975 template
2976 void
2977 Symbol_table::add_from_relobj<32, false>(
2978     Sized_relobj<32, false>* relobj,
2979     const unsigned char* syms,
2980     size_t count,
2981     size_t symndx_offset,
2982     const char* sym_names,
2983     size_t sym_name_size,
2984     Sized_relobj<32, false>::Symbols* sympointers,
2985     size_t* defined);
2986 #endif
2987
2988 #ifdef HAVE_TARGET_32_BIG
2989 template
2990 void
2991 Symbol_table::add_from_relobj<32, true>(
2992     Sized_relobj<32, true>* relobj,
2993     const unsigned char* syms,
2994     size_t count,
2995     size_t symndx_offset,
2996     const char* sym_names,
2997     size_t sym_name_size,
2998     Sized_relobj<32, true>::Symbols* sympointers,
2999     size_t* defined);
3000 #endif
3001
3002 #ifdef HAVE_TARGET_64_LITTLE
3003 template
3004 void
3005 Symbol_table::add_from_relobj<64, false>(
3006     Sized_relobj<64, false>* relobj,
3007     const unsigned char* syms,
3008     size_t count,
3009     size_t symndx_offset,
3010     const char* sym_names,
3011     size_t sym_name_size,
3012     Sized_relobj<64, false>::Symbols* sympointers,
3013     size_t* defined);
3014 #endif
3015
3016 #ifdef HAVE_TARGET_64_BIG
3017 template
3018 void
3019 Symbol_table::add_from_relobj<64, true>(
3020     Sized_relobj<64, true>* relobj,
3021     const unsigned char* syms,
3022     size_t count,
3023     size_t symndx_offset,
3024     const char* sym_names,
3025     size_t sym_name_size,
3026     Sized_relobj<64, true>::Symbols* sympointers,
3027     size_t* defined);
3028 #endif
3029
3030 #ifdef HAVE_TARGET_32_LITTLE
3031 template
3032 Symbol*
3033 Symbol_table::add_from_pluginobj<32, false>(
3034     Sized_pluginobj<32, false>* obj,
3035     const char* name,
3036     const char* ver,
3037     elfcpp::Sym<32, false>* sym);
3038 #endif
3039
3040 #ifdef HAVE_TARGET_32_BIG
3041 template
3042 Symbol*
3043 Symbol_table::add_from_pluginobj<32, true>(
3044     Sized_pluginobj<32, true>* obj,
3045     const char* name,
3046     const char* ver,
3047     elfcpp::Sym<32, true>* sym);
3048 #endif
3049
3050 #ifdef HAVE_TARGET_64_LITTLE
3051 template
3052 Symbol*
3053 Symbol_table::add_from_pluginobj<64, false>(
3054     Sized_pluginobj<64, false>* obj,
3055     const char* name,
3056     const char* ver,
3057     elfcpp::Sym<64, false>* sym);
3058 #endif
3059
3060 #ifdef HAVE_TARGET_64_BIG
3061 template
3062 Symbol*
3063 Symbol_table::add_from_pluginobj<64, true>(
3064     Sized_pluginobj<64, true>* obj,
3065     const char* name,
3066     const char* ver,
3067     elfcpp::Sym<64, true>* sym);
3068 #endif
3069
3070 #ifdef HAVE_TARGET_32_LITTLE
3071 template
3072 void
3073 Symbol_table::add_from_dynobj<32, false>(
3074     Sized_dynobj<32, false>* dynobj,
3075     const unsigned char* syms,
3076     size_t count,
3077     const char* sym_names,
3078     size_t sym_name_size,
3079     const unsigned char* versym,
3080     size_t versym_size,
3081     const std::vector<const char*>* version_map,
3082     Sized_relobj<32, false>::Symbols* sympointers,
3083     size_t* defined);
3084 #endif
3085
3086 #ifdef HAVE_TARGET_32_BIG
3087 template
3088 void
3089 Symbol_table::add_from_dynobj<32, true>(
3090     Sized_dynobj<32, true>* dynobj,
3091     const unsigned char* syms,
3092     size_t count,
3093     const char* sym_names,
3094     size_t sym_name_size,
3095     const unsigned char* versym,
3096     size_t versym_size,
3097     const std::vector<const char*>* version_map,
3098     Sized_relobj<32, true>::Symbols* sympointers,
3099     size_t* defined);
3100 #endif
3101
3102 #ifdef HAVE_TARGET_64_LITTLE
3103 template
3104 void
3105 Symbol_table::add_from_dynobj<64, false>(
3106     Sized_dynobj<64, false>* dynobj,
3107     const unsigned char* syms,
3108     size_t count,
3109     const char* sym_names,
3110     size_t sym_name_size,
3111     const unsigned char* versym,
3112     size_t versym_size,
3113     const std::vector<const char*>* version_map,
3114     Sized_relobj<64, false>::Symbols* sympointers,
3115     size_t* defined);
3116 #endif
3117
3118 #ifdef HAVE_TARGET_64_BIG
3119 template
3120 void
3121 Symbol_table::add_from_dynobj<64, true>(
3122     Sized_dynobj<64, true>* dynobj,
3123     const unsigned char* syms,
3124     size_t count,
3125     const char* sym_names,
3126     size_t sym_name_size,
3127     const unsigned char* versym,
3128     size_t versym_size,
3129     const std::vector<const char*>* version_map,
3130     Sized_relobj<64, true>::Symbols* sympointers,
3131     size_t* defined);
3132 #endif
3133
3134 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3135 template
3136 void
3137 Symbol_table::define_with_copy_reloc<32>(
3138     Sized_symbol<32>* sym,
3139     Output_data* posd,
3140     elfcpp::Elf_types<32>::Elf_Addr value);
3141 #endif
3142
3143 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3144 template
3145 void
3146 Symbol_table::define_with_copy_reloc<64>(
3147     Sized_symbol<64>* sym,
3148     Output_data* posd,
3149     elfcpp::Elf_types<64>::Elf_Addr value);
3150 #endif
3151
3152 #ifdef HAVE_TARGET_32_LITTLE
3153 template
3154 void
3155 Warnings::issue_warning<32, false>(const Symbol* sym,
3156                                    const Relocate_info<32, false>* relinfo,
3157                                    size_t relnum, off_t reloffset) const;
3158 #endif
3159
3160 #ifdef HAVE_TARGET_32_BIG
3161 template
3162 void
3163 Warnings::issue_warning<32, true>(const Symbol* sym,
3164                                   const Relocate_info<32, true>* relinfo,
3165                                   size_t relnum, off_t reloffset) const;
3166 #endif
3167
3168 #ifdef HAVE_TARGET_64_LITTLE
3169 template
3170 void
3171 Warnings::issue_warning<64, false>(const Symbol* sym,
3172                                    const Relocate_info<64, false>* relinfo,
3173                                    size_t relnum, off_t reloffset) const;
3174 #endif
3175
3176 #ifdef HAVE_TARGET_64_BIG
3177 template
3178 void
3179 Warnings::issue_warning<64, true>(const Symbol* sym,
3180                                   const Relocate_info<64, true>* relinfo,
3181                                   size_t relnum, off_t reloffset) const;
3182 #endif
3183
3184 } // End namespace gold.