Add plugin functionality for link-time optimization (LTO).
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "object.h"
34 #include "dwarf_reader.h"
35 #include "dynobj.h"
36 #include "output.h"
37 #include "target.h"
38 #include "workqueue.h"
39 #include "symtab.h"
40 #include "plugin.h"
41
42 namespace gold
43 {
44
45 // Class Symbol.
46
47 // Initialize fields in Symbol.  This initializes everything except u_
48 // and source_.
49
50 void
51 Symbol::init_fields(const char* name, const char* version,
52                     elfcpp::STT type, elfcpp::STB binding,
53                     elfcpp::STV visibility, unsigned char nonvis)
54 {
55   this->name_ = name;
56   this->version_ = version;
57   this->symtab_index_ = 0;
58   this->dynsym_index_ = 0;
59   this->got_offsets_.init();
60   this->plt_offset_ = 0;
61   this->type_ = type;
62   this->binding_ = binding;
63   this->visibility_ = visibility;
64   this->nonvis_ = nonvis;
65   this->is_target_special_ = false;
66   this->is_def_ = false;
67   this->is_forwarder_ = false;
68   this->has_alias_ = false;
69   this->needs_dynsym_entry_ = false;
70   this->in_reg_ = false;
71   this->in_dyn_ = false;
72   this->has_plt_offset_ = false;
73   this->has_warning_ = false;
74   this->is_copied_from_dynobj_ = false;
75   this->is_forced_local_ = false;
76   this->is_ordinary_shndx_ = false;
77   this->in_real_elf_ = false;
78 }
79
80 // Return the demangled version of the symbol's name, but only
81 // if the --demangle flag was set.
82
83 static std::string
84 demangle(const char* name)
85 {
86   if (!parameters->options().do_demangle())
87     return name;
88
89   // cplus_demangle allocates memory for the result it returns,
90   // and returns NULL if the name is already demangled.
91   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
92   if (demangled_name == NULL)
93     return name;
94
95   std::string retval(demangled_name);
96   free(demangled_name);
97   return retval;
98 }
99
100 std::string
101 Symbol::demangled_name() const
102 {
103   return demangle(this->name());
104 }
105
106 // Initialize the fields in the base class Symbol for SYM in OBJECT.
107
108 template<int size, bool big_endian>
109 void
110 Symbol::init_base_object(const char* name, const char* version, Object* object,
111                          const elfcpp::Sym<size, big_endian>& sym,
112                          unsigned int st_shndx, bool is_ordinary)
113 {
114   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
115                     sym.get_st_visibility(), sym.get_st_nonvis());
116   this->u_.from_object.object = object;
117   this->u_.from_object.shndx = st_shndx;
118   this->is_ordinary_shndx_ = is_ordinary;
119   this->source_ = FROM_OBJECT;
120   this->in_reg_ = !object->is_dynamic();
121   this->in_dyn_ = object->is_dynamic();
122   this->in_real_elf_ = object->pluginobj() == NULL;
123 }
124
125 // Initialize the fields in the base class Symbol for a symbol defined
126 // in an Output_data.
127
128 void
129 Symbol::init_base_output_data(const char* name, const char* version,
130                               Output_data* od, elfcpp::STT type,
131                               elfcpp::STB binding, elfcpp::STV visibility,
132                               unsigned char nonvis, bool offset_is_from_end)
133 {
134   this->init_fields(name, version, type, binding, visibility, nonvis);
135   this->u_.in_output_data.output_data = od;
136   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
137   this->source_ = IN_OUTPUT_DATA;
138   this->in_reg_ = true;
139   this->in_real_elf_ = true;
140 }
141
142 // Initialize the fields in the base class Symbol for a symbol defined
143 // in an Output_segment.
144
145 void
146 Symbol::init_base_output_segment(const char* name, const char* version,
147                                  Output_segment* os, elfcpp::STT type,
148                                  elfcpp::STB binding, elfcpp::STV visibility,
149                                  unsigned char nonvis,
150                                  Segment_offset_base offset_base)
151 {
152   this->init_fields(name, version, type, binding, visibility, nonvis);
153   this->u_.in_output_segment.output_segment = os;
154   this->u_.in_output_segment.offset_base = offset_base;
155   this->source_ = IN_OUTPUT_SEGMENT;
156   this->in_reg_ = true;
157   this->in_real_elf_ = true;
158 }
159
160 // Initialize the fields in the base class Symbol for a symbol defined
161 // as a constant.
162
163 void
164 Symbol::init_base_constant(const char* name, const char* version,
165                            elfcpp::STT type, elfcpp::STB binding,
166                            elfcpp::STV visibility, unsigned char nonvis)
167 {
168   this->init_fields(name, version, type, binding, visibility, nonvis);
169   this->source_ = IS_CONSTANT;
170   this->in_reg_ = true;
171   this->in_real_elf_ = true;
172 }
173
174 // Initialize the fields in the base class Symbol for an undefined
175 // symbol.
176
177 void
178 Symbol::init_base_undefined(const char* name, const char* version,
179                             elfcpp::STT type, elfcpp::STB binding,
180                             elfcpp::STV visibility, unsigned char nonvis)
181 {
182   this->init_fields(name, version, type, binding, visibility, nonvis);
183   this->dynsym_index_ = -1U;
184   this->source_ = IS_UNDEFINED;
185   this->in_reg_ = true;
186   this->in_real_elf_ = true;
187 }
188
189 // Allocate a common symbol in the base.
190
191 void
192 Symbol::allocate_base_common(Output_data* od)
193 {
194   gold_assert(this->is_common());
195   this->source_ = IN_OUTPUT_DATA;
196   this->u_.in_output_data.output_data = od;
197   this->u_.in_output_data.offset_is_from_end = false;
198 }
199
200 // Initialize the fields in Sized_symbol for SYM in OBJECT.
201
202 template<int size>
203 template<bool big_endian>
204 void
205 Sized_symbol<size>::init_object(const char* name, const char* version,
206                                 Object* object,
207                                 const elfcpp::Sym<size, big_endian>& sym,
208                                 unsigned int st_shndx, bool is_ordinary)
209 {
210   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
211   this->value_ = sym.get_st_value();
212   this->symsize_ = sym.get_st_size();
213 }
214
215 // Initialize the fields in Sized_symbol for a symbol defined in an
216 // Output_data.
217
218 template<int size>
219 void
220 Sized_symbol<size>::init_output_data(const char* name, const char* version,
221                                      Output_data* od, Value_type value,
222                                      Size_type symsize, elfcpp::STT type,
223                                      elfcpp::STB binding,
224                                      elfcpp::STV visibility,
225                                      unsigned char nonvis,
226                                      bool offset_is_from_end)
227 {
228   this->init_base_output_data(name, version, od, type, binding, visibility,
229                               nonvis, offset_is_from_end);
230   this->value_ = value;
231   this->symsize_ = symsize;
232 }
233
234 // Initialize the fields in Sized_symbol for a symbol defined in an
235 // Output_segment.
236
237 template<int size>
238 void
239 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
240                                         Output_segment* os, Value_type value,
241                                         Size_type symsize, elfcpp::STT type,
242                                         elfcpp::STB binding,
243                                         elfcpp::STV visibility,
244                                         unsigned char nonvis,
245                                         Segment_offset_base offset_base)
246 {
247   this->init_base_output_segment(name, version, os, type, binding, visibility,
248                                  nonvis, offset_base);
249   this->value_ = value;
250   this->symsize_ = symsize;
251 }
252
253 // Initialize the fields in Sized_symbol for a symbol defined as a
254 // constant.
255
256 template<int size>
257 void
258 Sized_symbol<size>::init_constant(const char* name, const char* version,
259                                   Value_type value, Size_type symsize,
260                                   elfcpp::STT type, elfcpp::STB binding,
261                                   elfcpp::STV visibility, unsigned char nonvis)
262 {
263   this->init_base_constant(name, version, type, binding, visibility, nonvis);
264   this->value_ = value;
265   this->symsize_ = symsize;
266 }
267
268 // Initialize the fields in Sized_symbol for an undefined symbol.
269
270 template<int size>
271 void
272 Sized_symbol<size>::init_undefined(const char* name, const char* version,
273                                    elfcpp::STT type, elfcpp::STB binding,
274                                    elfcpp::STV visibility, unsigned char nonvis)
275 {
276   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
277   this->value_ = 0;
278   this->symsize_ = 0;
279 }
280
281 // Allocate a common symbol.
282
283 template<int size>
284 void
285 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
286 {
287   this->allocate_base_common(od);
288   this->value_ = value;
289 }
290
291 // Return true if this symbol should be added to the dynamic symbol
292 // table.
293
294 inline bool
295 Symbol::should_add_dynsym_entry() const
296 {
297   // If the symbol is used by a dynamic relocation, we need to add it.
298   if (this->needs_dynsym_entry())
299     return true;
300
301   // If the symbol was forced local in a version script, do not add it.
302   if (this->is_forced_local())
303     return false;
304
305   // If exporting all symbols or building a shared library,
306   // and the symbol is defined in a regular object and is
307   // externally visible, we need to add it.
308   if ((parameters->options().export_dynamic() || parameters->options().shared())
309       && !this->is_from_dynobj()
310       && this->is_externally_visible())
311     return true;
312
313   return false;
314 }
315
316 // Return true if the final value of this symbol is known at link
317 // time.
318
319 bool
320 Symbol::final_value_is_known() const
321 {
322   // If we are not generating an executable, then no final values are
323   // known, since they will change at runtime.
324   if (parameters->options().shared() || parameters->options().relocatable())
325     return false;
326
327   // If the symbol is not from an object file, and is not undefined,
328   // then it is defined, and known.
329   if (this->source_ != FROM_OBJECT)
330     {
331       if (this->source_ != IS_UNDEFINED)
332         return true;
333     }
334   else
335     {
336       // If the symbol is from a dynamic object, then the final value
337       // is not known.
338       if (this->object()->is_dynamic())
339         return false;
340
341       // If the symbol is not undefined (it is defined or common),
342       // then the final value is known.
343       if (!this->is_undefined())
344         return true;
345     }
346
347   // If the symbol is undefined, then whether the final value is known
348   // depends on whether we are doing a static link.  If we are doing a
349   // dynamic link, then the final value could be filled in at runtime.
350   // This could reasonably be the case for a weak undefined symbol.
351   return parameters->doing_static_link();
352 }
353
354 // Return the output section where this symbol is defined.
355
356 Output_section*
357 Symbol::output_section() const
358 {
359   switch (this->source_)
360     {
361     case FROM_OBJECT:
362       {
363         unsigned int shndx = this->u_.from_object.shndx;
364         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
365           {
366             gold_assert(!this->u_.from_object.object->is_dynamic());
367             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
368             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
369             return relobj->output_section(shndx);
370           }
371         return NULL;
372       }
373
374     case IN_OUTPUT_DATA:
375       return this->u_.in_output_data.output_data->output_section();
376
377     case IN_OUTPUT_SEGMENT:
378     case IS_CONSTANT:
379     case IS_UNDEFINED:
380       return NULL;
381
382     default:
383       gold_unreachable();
384     }
385 }
386
387 // Set the symbol's output section.  This is used for symbols defined
388 // in scripts.  This should only be called after the symbol table has
389 // been finalized.
390
391 void
392 Symbol::set_output_section(Output_section* os)
393 {
394   switch (this->source_)
395     {
396     case FROM_OBJECT:
397     case IN_OUTPUT_DATA:
398       gold_assert(this->output_section() == os);
399       break;
400     case IS_CONSTANT:
401       this->source_ = IN_OUTPUT_DATA;
402       this->u_.in_output_data.output_data = os;
403       this->u_.in_output_data.offset_is_from_end = false;
404       break;
405     case IN_OUTPUT_SEGMENT:
406     case IS_UNDEFINED:
407     default:
408       gold_unreachable();
409     }
410 }
411
412 // Class Symbol_table.
413
414 Symbol_table::Symbol_table(unsigned int count,
415                            const Version_script_info& version_script)
416   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
417     forwarders_(), commons_(), tls_commons_(), forced_locals_(), warnings_(),
418     version_script_(version_script)
419 {
420   namepool_.reserve(count);
421 }
422
423 Symbol_table::~Symbol_table()
424 {
425 }
426
427 // The hash function.  The key values are Stringpool keys.
428
429 inline size_t
430 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
431 {
432   return key.first ^ key.second;
433 }
434
435 // The symbol table key equality function.  This is called with
436 // Stringpool keys.
437
438 inline bool
439 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
440                                           const Symbol_table_key& k2) const
441 {
442   return k1.first == k2.first && k1.second == k2.second;
443 }
444
445 // Make TO a symbol which forwards to FROM.
446
447 void
448 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
449 {
450   gold_assert(from != to);
451   gold_assert(!from->is_forwarder() && !to->is_forwarder());
452   this->forwarders_[from] = to;
453   from->set_forwarder();
454 }
455
456 // Resolve the forwards from FROM, returning the real symbol.
457
458 Symbol*
459 Symbol_table::resolve_forwards(const Symbol* from) const
460 {
461   gold_assert(from->is_forwarder());
462   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
463     this->forwarders_.find(from);
464   gold_assert(p != this->forwarders_.end());
465   return p->second;
466 }
467
468 // Look up a symbol by name.
469
470 Symbol*
471 Symbol_table::lookup(const char* name, const char* version) const
472 {
473   Stringpool::Key name_key;
474   name = this->namepool_.find(name, &name_key);
475   if (name == NULL)
476     return NULL;
477
478   Stringpool::Key version_key = 0;
479   if (version != NULL)
480     {
481       version = this->namepool_.find(version, &version_key);
482       if (version == NULL)
483         return NULL;
484     }
485
486   Symbol_table_key key(name_key, version_key);
487   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
488   if (p == this->table_.end())
489     return NULL;
490   return p->second;
491 }
492
493 // Resolve a Symbol with another Symbol.  This is only used in the
494 // unusual case where there are references to both an unversioned
495 // symbol and a symbol with a version, and we then discover that that
496 // version is the default version.  Because this is unusual, we do
497 // this the slow way, by converting back to an ELF symbol.
498
499 template<int size, bool big_endian>
500 void
501 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
502 {
503   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
504   elfcpp::Sym_write<size, big_endian> esym(buf);
505   // We don't bother to set the st_name or the st_shndx field.
506   esym.put_st_value(from->value());
507   esym.put_st_size(from->symsize());
508   esym.put_st_info(from->binding(), from->type());
509   esym.put_st_other(from->visibility(), from->nonvis());
510   bool is_ordinary;
511   unsigned int shndx = from->shndx(&is_ordinary);
512   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
513                 from->version());
514   if (from->in_reg())
515     to->set_in_reg();
516   if (from->in_dyn())
517     to->set_in_dyn();
518 }
519
520 // Record that a symbol is forced to be local by a version script.
521
522 void
523 Symbol_table::force_local(Symbol* sym)
524 {
525   if (!sym->is_defined() && !sym->is_common())
526     return;
527   if (sym->is_forced_local())
528     {
529       // We already got this one.
530       return;
531     }
532   sym->set_is_forced_local();
533   this->forced_locals_.push_back(sym);
534 }
535
536 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
537 // is only called for undefined symbols, when at least one --wrap
538 // option was used.
539
540 const char*
541 Symbol_table::wrap_symbol(Object* object, const char* name,
542                           Stringpool::Key* name_key)
543 {
544   // For some targets, we need to ignore a specific character when
545   // wrapping, and add it back later.
546   char prefix = '\0';
547   if (name[0] == object->target()->wrap_char())
548     {
549       prefix = name[0];
550       ++name;
551     }
552
553   if (parameters->options().is_wrap(name))
554     {
555       // Turn NAME into __wrap_NAME.
556       std::string s;
557       if (prefix != '\0')
558         s += prefix;
559       s += "__wrap_";
560       s += name;
561
562       // This will give us both the old and new name in NAMEPOOL_, but
563       // that is OK.  Only the versions we need will wind up in the
564       // real string table in the output file.
565       return this->namepool_.add(s.c_str(), true, name_key);
566     }
567
568   const char* const real_prefix = "__real_";
569   const size_t real_prefix_length = strlen(real_prefix);
570   if (strncmp(name, real_prefix, real_prefix_length) == 0
571       && parameters->options().is_wrap(name + real_prefix_length))
572     {
573       // Turn __real_NAME into NAME.
574       std::string s;
575       if (prefix != '\0')
576         s += prefix;
577       s += name + real_prefix_length;
578       return this->namepool_.add(s.c_str(), true, name_key);
579     }
580
581   return name;
582 }
583
584 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
585 // name and VERSION is the version; both are canonicalized.  DEF is
586 // whether this is the default version.  ST_SHNDX is the symbol's
587 // section index; IS_ORDINARY is whether this is a normal section
588 // rather than a special code.
589
590 // If DEF is true, then this is the definition of a default version of
591 // a symbol.  That means that any lookup of NAME/NULL and any lookup
592 // of NAME/VERSION should always return the same symbol.  This is
593 // obvious for references, but in particular we want to do this for
594 // definitions: overriding NAME/NULL should also override
595 // NAME/VERSION.  If we don't do that, it would be very hard to
596 // override functions in a shared library which uses versioning.
597
598 // We implement this by simply making both entries in the hash table
599 // point to the same Symbol structure.  That is easy enough if this is
600 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
601 // that we have seen both already, in which case they will both have
602 // independent entries in the symbol table.  We can't simply change
603 // the symbol table entry, because we have pointers to the entries
604 // attached to the object files.  So we mark the entry attached to the
605 // object file as a forwarder, and record it in the forwarders_ map.
606 // Note that entries in the hash table will never be marked as
607 // forwarders.
608 //
609 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
610 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
611 // for a special section code.  ST_SHNDX may be modified if the symbol
612 // is defined in a section being discarded.
613
614 template<int size, bool big_endian>
615 Sized_symbol<size>*
616 Symbol_table::add_from_object(Object* object,
617                               const char *name,
618                               Stringpool::Key name_key,
619                               const char *version,
620                               Stringpool::Key version_key,
621                               bool def,
622                               const elfcpp::Sym<size, big_endian>& sym,
623                               unsigned int st_shndx,
624                               bool is_ordinary,
625                               unsigned int orig_st_shndx)
626 {
627   // Print a message if this symbol is being traced.
628   if (parameters->options().is_trace_symbol(name))
629     {
630       if (orig_st_shndx == elfcpp::SHN_UNDEF)
631         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
632       else
633         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
634     }
635
636   // For an undefined symbol, we may need to adjust the name using
637   // --wrap.
638   if (orig_st_shndx == elfcpp::SHN_UNDEF
639       && parameters->options().any_wrap())
640     {
641       const char* wrap_name = this->wrap_symbol(object, name, &name_key);
642       if (wrap_name != name)
643         {
644           // If we see a reference to malloc with version GLIBC_2.0,
645           // and we turn it into a reference to __wrap_malloc, then we
646           // discard the version number.  Otherwise the user would be
647           // required to specify the correct version for
648           // __wrap_malloc.
649           version = NULL;
650           version_key = 0;
651           name = wrap_name;
652         }
653     }
654
655   Symbol* const snull = NULL;
656   std::pair<typename Symbol_table_type::iterator, bool> ins =
657     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
658                                        snull));
659
660   std::pair<typename Symbol_table_type::iterator, bool> insdef =
661     std::make_pair(this->table_.end(), false);
662   if (def)
663     {
664       const Stringpool::Key vnull_key = 0;
665       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
666                                                                  vnull_key),
667                                                   snull));
668     }
669
670   // ins.first: an iterator, which is a pointer to a pair.
671   // ins.first->first: the key (a pair of name and version).
672   // ins.first->second: the value (Symbol*).
673   // ins.second: true if new entry was inserted, false if not.
674
675   Sized_symbol<size>* ret;
676   bool was_undefined;
677   bool was_common;
678   if (!ins.second)
679     {
680       // We already have an entry for NAME/VERSION.
681       ret = this->get_sized_symbol<size>(ins.first->second);
682       gold_assert(ret != NULL);
683
684       was_undefined = ret->is_undefined();
685       was_common = ret->is_common();
686
687       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
688                     version);
689
690       if (def)
691         {
692           if (insdef.second)
693             {
694               // This is the first time we have seen NAME/NULL.  Make
695               // NAME/NULL point to NAME/VERSION.
696               insdef.first->second = ret;
697             }
698           else if (insdef.first->second != ret)
699             {
700               // This is the unfortunate case where we already have
701               // entries for both NAME/VERSION and NAME/NULL.  We now
702               // see a symbol NAME/VERSION where VERSION is the
703               // default version.  We have already resolved this new
704               // symbol with the existing NAME/VERSION symbol.
705
706               // It's possible that NAME/NULL and NAME/VERSION are
707               // both defined in regular objects.  This can only
708               // happen if one object file defines foo and another
709               // defines foo@@ver.  This is somewhat obscure, but we
710               // call it a multiple definition error.
711
712               // It's possible that NAME/NULL actually has a version,
713               // in which case it won't be the same as VERSION.  This
714               // happens with ver_test_7.so in the testsuite for the
715               // symbol t2_2.  We see t2_2@@VER2, so we define both
716               // t2_2/VER2 and t2_2/NULL.  We then see an unadorned
717               // t2_2 in an object file and give it version VER1 from
718               // the version script.  This looks like a default
719               // definition for VER1, so it looks like we should merge
720               // t2_2/NULL with t2_2/VER1.  That doesn't make sense,
721               // but it's not obvious that this is an error, either.
722               // So we just punt.
723
724               // If one of the symbols has non-default visibility, and
725               // the other is defined in a shared object, then they
726               // are different symbols.
727
728               // Otherwise, we just resolve the symbols as though they
729               // were the same.
730
731               if (insdef.first->second->version() != NULL)
732                 {
733                   gold_assert(insdef.first->second->version() != version);
734                   def = false;
735                 }
736               else if (ret->visibility() != elfcpp::STV_DEFAULT
737                   && insdef.first->second->is_from_dynobj())
738                 def = false;
739               else if (insdef.first->second->visibility() != elfcpp::STV_DEFAULT
740                        && ret->is_from_dynobj())
741                 def = false;
742               else
743                 {
744                   const Sized_symbol<size>* sym2;
745                   sym2 = this->get_sized_symbol<size>(insdef.first->second);
746                   Symbol_table::resolve<size, big_endian>(ret, sym2);
747                   this->make_forwarder(insdef.first->second, ret);
748                   insdef.first->second = ret;
749                 }
750             }
751           else
752             def = false;
753         }
754     }
755   else
756     {
757       // This is the first time we have seen NAME/VERSION.
758       gold_assert(ins.first->second == NULL);
759
760       if (def && !insdef.second)
761         {
762           // We already have an entry for NAME/NULL.  If we override
763           // it, then change it to NAME/VERSION.
764           ret = this->get_sized_symbol<size>(insdef.first->second);
765
766           was_undefined = ret->is_undefined();
767           was_common = ret->is_common();
768
769           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
770                         version);
771           ins.first->second = ret;
772         }
773       else
774         {
775           was_undefined = false;
776           was_common = false;
777
778           Sized_target<size, big_endian>* target =
779             object->sized_target<size, big_endian>();
780           if (!target->has_make_symbol())
781             ret = new Sized_symbol<size>();
782           else
783             {
784               ret = target->make_symbol();
785               if (ret == NULL)
786                 {
787                   // This means that we don't want a symbol table
788                   // entry after all.
789                   if (!def)
790                     this->table_.erase(ins.first);
791                   else
792                     {
793                       this->table_.erase(insdef.first);
794                       // Inserting insdef invalidated ins.
795                       this->table_.erase(std::make_pair(name_key,
796                                                         version_key));
797                     }
798                   return NULL;
799                 }
800             }
801
802           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
803
804           ins.first->second = ret;
805           if (def)
806             {
807               // This is the first time we have seen NAME/NULL.  Point
808               // it at the new entry for NAME/VERSION.
809               gold_assert(insdef.second);
810               insdef.first->second = ret;
811             }
812         }
813     }
814
815   // Record every time we see a new undefined symbol, to speed up
816   // archive groups.
817   if (!was_undefined && ret->is_undefined())
818     ++this->saw_undefined_;
819
820   // Keep track of common symbols, to speed up common symbol
821   // allocation.
822   if (!was_common && ret->is_common())
823     {
824       if (ret->type() != elfcpp::STT_TLS)
825         this->commons_.push_back(ret);
826       else
827         this->tls_commons_.push_back(ret);
828     }
829
830   if (def)
831     ret->set_is_default();
832   return ret;
833 }
834
835 // Add all the symbols in a relocatable object to the hash table.
836
837 template<int size, bool big_endian>
838 void
839 Symbol_table::add_from_relobj(
840     Sized_relobj<size, big_endian>* relobj,
841     const unsigned char* syms,
842     size_t count,
843     size_t symndx_offset,
844     const char* sym_names,
845     size_t sym_name_size,
846     typename Sized_relobj<size, big_endian>::Symbols* sympointers,
847     size_t *defined)
848 {
849   *defined = 0;
850
851   gold_assert(size == relobj->target()->get_size());
852   gold_assert(size == parameters->target().get_size());
853
854   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
855
856   const bool just_symbols = relobj->just_symbols();
857
858   const unsigned char* p = syms;
859   for (size_t i = 0; i < count; ++i, p += sym_size)
860     {
861       (*sympointers)[i] = NULL;
862
863       elfcpp::Sym<size, big_endian> sym(p);
864
865       unsigned int st_name = sym.get_st_name();
866       if (st_name >= sym_name_size)
867         {
868           relobj->error(_("bad global symbol name offset %u at %zu"),
869                         st_name, i);
870           continue;
871         }
872
873       const char* name = sym_names + st_name;
874
875       bool is_ordinary;
876       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
877                                                        sym.get_st_shndx(),
878                                                        &is_ordinary);
879       unsigned int orig_st_shndx = st_shndx;
880       if (!is_ordinary)
881         orig_st_shndx = elfcpp::SHN_UNDEF;
882
883       if (st_shndx != elfcpp::SHN_UNDEF)
884         ++*defined;
885
886       // A symbol defined in a section which we are not including must
887       // be treated as an undefined symbol.
888       if (st_shndx != elfcpp::SHN_UNDEF
889           && is_ordinary
890           && !relobj->is_section_included(st_shndx))
891         st_shndx = elfcpp::SHN_UNDEF;
892
893       // In an object file, an '@' in the name separates the symbol
894       // name from the version name.  If there are two '@' characters,
895       // this is the default version.
896       const char* ver = strchr(name, '@');
897       Stringpool::Key ver_key = 0;
898       int namelen = 0;
899       // DEF: is the version default?  LOCAL: is the symbol forced local?
900       bool def = false;
901       bool local = false;
902
903       if (ver != NULL)
904         {
905           // The symbol name is of the form foo@VERSION or foo@@VERSION
906           namelen = ver - name;
907           ++ver;
908           if (*ver == '@')
909             {
910               def = true;
911               ++ver;
912             }
913           ver = this->namepool_.add(ver, true, &ver_key);
914         }
915       // We don't want to assign a version to an undefined symbol,
916       // even if it is listed in the version script.  FIXME: What
917       // about a common symbol?
918       else
919         {
920           namelen = strlen(name);
921           if (!this->version_script_.empty()
922               && st_shndx != elfcpp::SHN_UNDEF)
923             {
924               // The symbol name did not have a version, but the
925               // version script may assign a version anyway.
926               std::string version;
927               if (this->version_script_.get_symbol_version(name, &version))
928                 {
929                   // The version can be empty if the version script is
930                   // only used to force some symbols to be local.
931                   if (!version.empty())
932                     {
933                       ver = this->namepool_.add_with_length(version.c_str(),
934                                                             version.length(),
935                                                             true,
936                                                             &ver_key);
937                       def = true;
938                     }
939                 }
940               else if (this->version_script_.symbol_is_local(name))
941                 local = true;
942             }
943         }
944
945       elfcpp::Sym<size, big_endian>* psym = &sym;
946       unsigned char symbuf[sym_size];
947       elfcpp::Sym<size, big_endian> sym2(symbuf);
948       if (just_symbols)
949         {
950           memcpy(symbuf, p, sym_size);
951           elfcpp::Sym_write<size, big_endian> sw(symbuf);
952           if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
953             {
954               // Symbol values in object files are section relative.
955               // This is normally what we want, but since here we are
956               // converting the symbol to absolute we need to add the
957               // section address.  The section address in an object
958               // file is normally zero, but people can use a linker
959               // script to change it.
960               sw.put_st_value(sym.get_st_value()
961                               + relobj->section_address(orig_st_shndx));
962             }
963           st_shndx = elfcpp::SHN_ABS;
964           is_ordinary = false;
965           psym = &sym2;
966         }
967
968       Stringpool::Key name_key;
969       name = this->namepool_.add_with_length(name, namelen, true,
970                                              &name_key);
971
972       Sized_symbol<size>* res;
973       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
974                                   def, *psym, st_shndx, is_ordinary,
975                                   orig_st_shndx);
976
977       if (local)
978         this->force_local(res);
979
980       (*sympointers)[i] = res;
981     }
982 }
983
984 // Add a symbol from a plugin-claimed file.
985
986 template<int size, bool big_endian>
987 Symbol*
988 Symbol_table::add_from_pluginobj(
989     Sized_pluginobj<size, big_endian>* obj,
990     const char* name,
991     const char* ver,
992     elfcpp::Sym<size, big_endian>* sym)
993 {
994   unsigned int st_shndx = sym->get_st_shndx();
995
996   Stringpool::Key ver_key = 0;
997   bool def = false;
998   bool local = false;
999
1000   if (ver != NULL)
1001     {
1002       ver = this->namepool_.add(ver, true, &ver_key);
1003     }
1004   // We don't want to assign a version to an undefined symbol,
1005   // even if it is listed in the version script.  FIXME: What
1006   // about a common symbol?
1007   else
1008     {
1009       if (!this->version_script_.empty()
1010           && st_shndx != elfcpp::SHN_UNDEF)
1011         {
1012           // The symbol name did not have a version, but the
1013           // version script may assign a version anyway.
1014           std::string version;
1015           if (this->version_script_.get_symbol_version(name, &version))
1016             {
1017               // The version can be empty if the version script is
1018               // only used to force some symbols to be local.
1019               if (!version.empty())
1020                 {
1021                   ver = this->namepool_.add_with_length(version.c_str(),
1022                                                         version.length(),
1023                                                         true,
1024                                                         &ver_key);
1025                   def = true;
1026                 }
1027             }
1028           else if (this->version_script_.symbol_is_local(name))
1029             local = true;
1030         }
1031     }
1032
1033   Stringpool::Key name_key;
1034   name = this->namepool_.add(name, true, &name_key);
1035
1036   Sized_symbol<size>* res;
1037   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1038                               def, *sym, st_shndx, true, st_shndx);
1039
1040   if (local)
1041         this->force_local(res);
1042
1043   return res;
1044 }
1045
1046 // Add all the symbols in a dynamic object to the hash table.
1047
1048 template<int size, bool big_endian>
1049 void
1050 Symbol_table::add_from_dynobj(
1051     Sized_dynobj<size, big_endian>* dynobj,
1052     const unsigned char* syms,
1053     size_t count,
1054     const char* sym_names,
1055     size_t sym_name_size,
1056     const unsigned char* versym,
1057     size_t versym_size,
1058     const std::vector<const char*>* version_map,
1059     typename Sized_relobj<size, big_endian>::Symbols* sympointers,
1060     size_t* defined)
1061 {
1062   *defined = 0;
1063
1064   gold_assert(size == dynobj->target()->get_size());
1065   gold_assert(size == parameters->target().get_size());
1066
1067   if (dynobj->just_symbols())
1068     {
1069       gold_error(_("--just-symbols does not make sense with a shared object"));
1070       return;
1071     }
1072
1073   if (versym != NULL && versym_size / 2 < count)
1074     {
1075       dynobj->error(_("too few symbol versions"));
1076       return;
1077     }
1078
1079   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1080
1081   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1082   // weak aliases.  This is necessary because if the dynamic object
1083   // provides the same variable under two names, one of which is a
1084   // weak definition, and the regular object refers to the weak
1085   // definition, we have to put both the weak definition and the
1086   // strong definition into the dynamic symbol table.  Given a weak
1087   // definition, the only way that we can find the corresponding
1088   // strong definition, if any, is to search the symbol table.
1089   std::vector<Sized_symbol<size>*> object_symbols;
1090
1091   const unsigned char* p = syms;
1092   const unsigned char* vs = versym;
1093   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1094     {
1095       elfcpp::Sym<size, big_endian> sym(p);
1096
1097       if (sympointers != NULL)
1098         (*sympointers)[i] = NULL;
1099
1100       // Ignore symbols with local binding or that have
1101       // internal or hidden visibility.
1102       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1103           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1104           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1105         continue;
1106
1107       // A protected symbol in a shared library must be treated as a
1108       // normal symbol when viewed from outside the shared library.
1109       // Implement this by overriding the visibility here.
1110       elfcpp::Sym<size, big_endian>* psym = &sym;
1111       unsigned char symbuf[sym_size];
1112       elfcpp::Sym<size, big_endian> sym2(symbuf);
1113       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1114         {
1115           memcpy(symbuf, p, sym_size);
1116           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1117           sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1118           psym = &sym2;
1119         }
1120
1121       unsigned int st_name = psym->get_st_name();
1122       if (st_name >= sym_name_size)
1123         {
1124           dynobj->error(_("bad symbol name offset %u at %zu"),
1125                         st_name, i);
1126           continue;
1127         }
1128
1129       const char* name = sym_names + st_name;
1130
1131       bool is_ordinary;
1132       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1133                                                        &is_ordinary);
1134
1135       if (st_shndx != elfcpp::SHN_UNDEF)
1136         ++*defined;
1137
1138       Sized_symbol<size>* res;
1139
1140       if (versym == NULL)
1141         {
1142           Stringpool::Key name_key;
1143           name = this->namepool_.add(name, true, &name_key);
1144           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1145                                       false, *psym, st_shndx, is_ordinary,
1146                                       st_shndx);
1147         }
1148       else
1149         {
1150           // Read the version information.
1151
1152           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1153
1154           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1155           v &= elfcpp::VERSYM_VERSION;
1156
1157           // The Sun documentation says that V can be VER_NDX_LOCAL,
1158           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1159           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1160           // The old GNU linker will happily generate VER_NDX_LOCAL
1161           // for an undefined symbol.  I don't know what the Sun
1162           // linker will generate.
1163
1164           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1165               && st_shndx != elfcpp::SHN_UNDEF)
1166             {
1167               // This symbol should not be visible outside the object.
1168               continue;
1169             }
1170
1171           // At this point we are definitely going to add this symbol.
1172           Stringpool::Key name_key;
1173           name = this->namepool_.add(name, true, &name_key);
1174
1175           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1176               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1177             {
1178               // This symbol does not have a version.
1179               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1180                                           false, *psym, st_shndx, is_ordinary,
1181                                           st_shndx);
1182             }
1183           else
1184             {
1185               if (v >= version_map->size())
1186                 {
1187                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1188                                 i, v);
1189                   continue;
1190                 }
1191
1192               const char* version = (*version_map)[v];
1193               if (version == NULL)
1194                 {
1195                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1196                                 i, v);
1197                   continue;
1198                 }
1199
1200               Stringpool::Key version_key;
1201               version = this->namepool_.add(version, true, &version_key);
1202
1203               // If this is an absolute symbol, and the version name
1204               // and symbol name are the same, then this is the
1205               // version definition symbol.  These symbols exist to
1206               // support using -u to pull in particular versions.  We
1207               // do not want to record a version for them.
1208               if (st_shndx == elfcpp::SHN_ABS
1209                   && !is_ordinary
1210                   && name_key == version_key)
1211                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1212                                             false, *psym, st_shndx, is_ordinary,
1213                                             st_shndx);
1214               else
1215                 {
1216                   const bool def = (!hidden
1217                                     && st_shndx != elfcpp::SHN_UNDEF);
1218                   res = this->add_from_object(dynobj, name, name_key, version,
1219                                               version_key, def, *psym, st_shndx,
1220                                               is_ordinary, st_shndx);
1221                 }
1222             }
1223         }
1224
1225       // Note that it is possible that RES was overridden by an
1226       // earlier object, in which case it can't be aliased here.
1227       if (st_shndx != elfcpp::SHN_UNDEF
1228           && is_ordinary
1229           && psym->get_st_type() == elfcpp::STT_OBJECT
1230           && res->source() == Symbol::FROM_OBJECT
1231           && res->object() == dynobj)
1232         object_symbols.push_back(res);
1233
1234       if (sympointers != NULL)
1235         (*sympointers)[i] = res;
1236     }
1237
1238   this->record_weak_aliases(&object_symbols);
1239 }
1240
1241 // This is used to sort weak aliases.  We sort them first by section
1242 // index, then by offset, then by weak ahead of strong.
1243
1244 template<int size>
1245 class Weak_alias_sorter
1246 {
1247  public:
1248   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1249 };
1250
1251 template<int size>
1252 bool
1253 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1254                                     const Sized_symbol<size>* s2) const
1255 {
1256   bool is_ordinary;
1257   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1258   gold_assert(is_ordinary);
1259   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1260   gold_assert(is_ordinary);
1261   if (s1_shndx != s2_shndx)
1262     return s1_shndx < s2_shndx;
1263
1264   if (s1->value() != s2->value())
1265     return s1->value() < s2->value();
1266   if (s1->binding() != s2->binding())
1267     {
1268       if (s1->binding() == elfcpp::STB_WEAK)
1269         return true;
1270       if (s2->binding() == elfcpp::STB_WEAK)
1271         return false;
1272     }
1273   return std::string(s1->name()) < std::string(s2->name());
1274 }
1275
1276 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1277 // for any weak aliases, and record them so that if we add the weak
1278 // alias to the dynamic symbol table, we also add the corresponding
1279 // strong symbol.
1280
1281 template<int size>
1282 void
1283 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1284 {
1285   // Sort the vector by section index, then by offset, then by weak
1286   // ahead of strong.
1287   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1288
1289   // Walk through the vector.  For each weak definition, record
1290   // aliases.
1291   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1292          symbols->begin();
1293        p != symbols->end();
1294        ++p)
1295     {
1296       if ((*p)->binding() != elfcpp::STB_WEAK)
1297         continue;
1298
1299       // Build a circular list of weak aliases.  Each symbol points to
1300       // the next one in the circular list.
1301
1302       Sized_symbol<size>* from_sym = *p;
1303       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1304       for (q = p + 1; q != symbols->end(); ++q)
1305         {
1306           bool dummy;
1307           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1308               || (*q)->value() != from_sym->value())
1309             break;
1310
1311           this->weak_aliases_[from_sym] = *q;
1312           from_sym->set_has_alias();
1313           from_sym = *q;
1314         }
1315
1316       if (from_sym != *p)
1317         {
1318           this->weak_aliases_[from_sym] = *p;
1319           from_sym->set_has_alias();
1320         }
1321
1322       p = q - 1;
1323     }
1324 }
1325
1326 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1327 // true, then only create the symbol if there is a reference to it.
1328 // If this does not return NULL, it sets *POLDSYM to the existing
1329 // symbol if there is one.  This canonicalizes *PNAME and *PVERSION.
1330
1331 template<int size, bool big_endian>
1332 Sized_symbol<size>*
1333 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1334                                     bool only_if_ref,
1335                                     Sized_symbol<size>** poldsym)
1336 {
1337   Symbol* oldsym;
1338   Sized_symbol<size>* sym;
1339   bool add_to_table = false;
1340   typename Symbol_table_type::iterator add_loc = this->table_.end();
1341
1342   // If the caller didn't give us a version, see if we get one from
1343   // the version script.
1344   std::string v;
1345   if (*pversion == NULL)
1346     {
1347       if (this->version_script_.get_symbol_version(*pname, &v))
1348         {
1349           if (!v.empty())
1350             *pversion = v.c_str();
1351         }
1352     }
1353
1354   if (only_if_ref)
1355     {
1356       oldsym = this->lookup(*pname, *pversion);
1357       if (oldsym == NULL || !oldsym->is_undefined())
1358         return NULL;
1359
1360       *pname = oldsym->name();
1361       *pversion = oldsym->version();
1362     }
1363   else
1364     {
1365       // Canonicalize NAME and VERSION.
1366       Stringpool::Key name_key;
1367       *pname = this->namepool_.add(*pname, true, &name_key);
1368
1369       Stringpool::Key version_key = 0;
1370       if (*pversion != NULL)
1371         *pversion = this->namepool_.add(*pversion, true, &version_key);
1372
1373       Symbol* const snull = NULL;
1374       std::pair<typename Symbol_table_type::iterator, bool> ins =
1375         this->table_.insert(std::make_pair(std::make_pair(name_key,
1376                                                           version_key),
1377                                            snull));
1378
1379       if (!ins.second)
1380         {
1381           // We already have a symbol table entry for NAME/VERSION.
1382           oldsym = ins.first->second;
1383           gold_assert(oldsym != NULL);
1384         }
1385       else
1386         {
1387           // We haven't seen this symbol before.
1388           gold_assert(ins.first->second == NULL);
1389           add_to_table = true;
1390           add_loc = ins.first;
1391           oldsym = NULL;
1392         }
1393     }
1394
1395   const Target& target = parameters->target();
1396   if (!target.has_make_symbol())
1397     sym = new Sized_symbol<size>();
1398   else
1399     {
1400       gold_assert(target.get_size() == size);
1401       gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1402       typedef Sized_target<size, big_endian> My_target;
1403       const My_target* sized_target =
1404           static_cast<const My_target*>(&target);
1405       sym = sized_target->make_symbol();
1406       if (sym == NULL)
1407         return NULL;
1408     }
1409
1410   if (add_to_table)
1411     add_loc->second = sym;
1412   else
1413     gold_assert(oldsym != NULL);
1414
1415   *poldsym = this->get_sized_symbol<size>(oldsym);
1416
1417   return sym;
1418 }
1419
1420 // Define a symbol based on an Output_data.
1421
1422 Symbol*
1423 Symbol_table::define_in_output_data(const char* name,
1424                                     const char* version,
1425                                     Output_data* od,
1426                                     uint64_t value,
1427                                     uint64_t symsize,
1428                                     elfcpp::STT type,
1429                                     elfcpp::STB binding,
1430                                     elfcpp::STV visibility,
1431                                     unsigned char nonvis,
1432                                     bool offset_is_from_end,
1433                                     bool only_if_ref)
1434 {
1435   if (parameters->target().get_size() == 32)
1436     {
1437 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1438       return this->do_define_in_output_data<32>(name, version, od,
1439                                                 value, symsize, type, binding,
1440                                                 visibility, nonvis,
1441                                                 offset_is_from_end,
1442                                                 only_if_ref);
1443 #else
1444       gold_unreachable();
1445 #endif
1446     }
1447   else if (parameters->target().get_size() == 64)
1448     {
1449 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1450       return this->do_define_in_output_data<64>(name, version, od,
1451                                                 value, symsize, type, binding,
1452                                                 visibility, nonvis,
1453                                                 offset_is_from_end,
1454                                                 only_if_ref);
1455 #else
1456       gold_unreachable();
1457 #endif
1458     }
1459   else
1460     gold_unreachable();
1461 }
1462
1463 // Define a symbol in an Output_data, sized version.
1464
1465 template<int size>
1466 Sized_symbol<size>*
1467 Symbol_table::do_define_in_output_data(
1468     const char* name,
1469     const char* version,
1470     Output_data* od,
1471     typename elfcpp::Elf_types<size>::Elf_Addr value,
1472     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1473     elfcpp::STT type,
1474     elfcpp::STB binding,
1475     elfcpp::STV visibility,
1476     unsigned char nonvis,
1477     bool offset_is_from_end,
1478     bool only_if_ref)
1479 {
1480   Sized_symbol<size>* sym;
1481   Sized_symbol<size>* oldsym;
1482
1483   if (parameters->target().is_big_endian())
1484     {
1485 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1486       sym = this->define_special_symbol<size, true>(&name, &version,
1487                                                     only_if_ref, &oldsym);
1488 #else
1489       gold_unreachable();
1490 #endif
1491     }
1492   else
1493     {
1494 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1495       sym = this->define_special_symbol<size, false>(&name, &version,
1496                                                      only_if_ref, &oldsym);
1497 #else
1498       gold_unreachable();
1499 #endif
1500     }
1501
1502   if (sym == NULL)
1503     return NULL;
1504
1505   sym->init_output_data(name, version, od, value, symsize, type, binding,
1506                         visibility, nonvis, offset_is_from_end);
1507
1508   if (oldsym == NULL)
1509     {
1510       if (binding == elfcpp::STB_LOCAL
1511           || this->version_script_.symbol_is_local(name))
1512         this->force_local(sym);
1513       else if (version != NULL)
1514         sym->set_is_default();
1515       return sym;
1516     }
1517
1518   if (Symbol_table::should_override_with_special(oldsym))
1519     this->override_with_special(oldsym, sym);
1520   delete sym;
1521   return oldsym;
1522 }
1523
1524 // Define a symbol based on an Output_segment.
1525
1526 Symbol*
1527 Symbol_table::define_in_output_segment(const char* name,
1528                                        const char* version, Output_segment* os,
1529                                        uint64_t value,
1530                                        uint64_t symsize,
1531                                        elfcpp::STT type,
1532                                        elfcpp::STB binding,
1533                                        elfcpp::STV visibility,
1534                                        unsigned char nonvis,
1535                                        Symbol::Segment_offset_base offset_base,
1536                                        bool only_if_ref)
1537 {
1538   if (parameters->target().get_size() == 32)
1539     {
1540 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1541       return this->do_define_in_output_segment<32>(name, version, os,
1542                                                    value, symsize, type,
1543                                                    binding, visibility, nonvis,
1544                                                    offset_base, only_if_ref);
1545 #else
1546       gold_unreachable();
1547 #endif
1548     }
1549   else if (parameters->target().get_size() == 64)
1550     {
1551 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1552       return this->do_define_in_output_segment<64>(name, version, os,
1553                                                    value, symsize, type,
1554                                                    binding, visibility, nonvis,
1555                                                    offset_base, only_if_ref);
1556 #else
1557       gold_unreachable();
1558 #endif
1559     }
1560   else
1561     gold_unreachable();
1562 }
1563
1564 // Define a symbol in an Output_segment, sized version.
1565
1566 template<int size>
1567 Sized_symbol<size>*
1568 Symbol_table::do_define_in_output_segment(
1569     const char* name,
1570     const char* version,
1571     Output_segment* os,
1572     typename elfcpp::Elf_types<size>::Elf_Addr value,
1573     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1574     elfcpp::STT type,
1575     elfcpp::STB binding,
1576     elfcpp::STV visibility,
1577     unsigned char nonvis,
1578     Symbol::Segment_offset_base offset_base,
1579     bool only_if_ref)
1580 {
1581   Sized_symbol<size>* sym;
1582   Sized_symbol<size>* oldsym;
1583
1584   if (parameters->target().is_big_endian())
1585     {
1586 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1587       sym = this->define_special_symbol<size, true>(&name, &version,
1588                                                     only_if_ref, &oldsym);
1589 #else
1590       gold_unreachable();
1591 #endif
1592     }
1593   else
1594     {
1595 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1596       sym = this->define_special_symbol<size, false>(&name, &version,
1597                                                      only_if_ref, &oldsym);
1598 #else
1599       gold_unreachable();
1600 #endif
1601     }
1602
1603   if (sym == NULL)
1604     return NULL;
1605
1606   sym->init_output_segment(name, version, os, value, symsize, type, binding,
1607                            visibility, nonvis, offset_base);
1608
1609   if (oldsym == NULL)
1610     {
1611       if (binding == elfcpp::STB_LOCAL
1612           || this->version_script_.symbol_is_local(name))
1613         this->force_local(sym);
1614       else if (version != NULL)
1615         sym->set_is_default();
1616       return sym;
1617     }
1618
1619   if (Symbol_table::should_override_with_special(oldsym))
1620     this->override_with_special(oldsym, sym);
1621   delete sym;
1622   return oldsym;
1623 }
1624
1625 // Define a special symbol with a constant value.  It is a multiple
1626 // definition error if this symbol is already defined.
1627
1628 Symbol*
1629 Symbol_table::define_as_constant(const char* name,
1630                                  const char* version,
1631                                  uint64_t value,
1632                                  uint64_t symsize,
1633                                  elfcpp::STT type,
1634                                  elfcpp::STB binding,
1635                                  elfcpp::STV visibility,
1636                                  unsigned char nonvis,
1637                                  bool only_if_ref,
1638                                  bool force_override)
1639 {
1640   if (parameters->target().get_size() == 32)
1641     {
1642 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1643       return this->do_define_as_constant<32>(name, version, value,
1644                                              symsize, type, binding,
1645                                              visibility, nonvis, only_if_ref,
1646                                              force_override);
1647 #else
1648       gold_unreachable();
1649 #endif
1650     }
1651   else if (parameters->target().get_size() == 64)
1652     {
1653 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1654       return this->do_define_as_constant<64>(name, version, value,
1655                                              symsize, type, binding,
1656                                              visibility, nonvis, only_if_ref,
1657                                              force_override);
1658 #else
1659       gold_unreachable();
1660 #endif
1661     }
1662   else
1663     gold_unreachable();
1664 }
1665
1666 // Define a symbol as a constant, sized version.
1667
1668 template<int size>
1669 Sized_symbol<size>*
1670 Symbol_table::do_define_as_constant(
1671     const char* name,
1672     const char* version,
1673     typename elfcpp::Elf_types<size>::Elf_Addr value,
1674     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1675     elfcpp::STT type,
1676     elfcpp::STB binding,
1677     elfcpp::STV visibility,
1678     unsigned char nonvis,
1679     bool only_if_ref,
1680     bool force_override)
1681 {
1682   Sized_symbol<size>* sym;
1683   Sized_symbol<size>* oldsym;
1684
1685   if (parameters->target().is_big_endian())
1686     {
1687 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1688       sym = this->define_special_symbol<size, true>(&name, &version,
1689                                                     only_if_ref, &oldsym);
1690 #else
1691       gold_unreachable();
1692 #endif
1693     }
1694   else
1695     {
1696 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1697       sym = this->define_special_symbol<size, false>(&name, &version,
1698                                                      only_if_ref, &oldsym);
1699 #else
1700       gold_unreachable();
1701 #endif
1702     }
1703
1704   if (sym == NULL)
1705     return NULL;
1706
1707   sym->init_constant(name, version, value, symsize, type, binding, visibility,
1708                      nonvis);
1709
1710   if (oldsym == NULL)
1711     {
1712       // Version symbols are absolute symbols with name == version.
1713       // We don't want to force them to be local.
1714       if ((version == NULL
1715            || name != version
1716            || value != 0)
1717           && (binding == elfcpp::STB_LOCAL
1718               || this->version_script_.symbol_is_local(name)))
1719         this->force_local(sym);
1720       else if (version != NULL
1721                && (name != version || value != 0))
1722         sym->set_is_default();
1723       return sym;
1724     }
1725
1726   if (force_override || Symbol_table::should_override_with_special(oldsym))
1727     this->override_with_special(oldsym, sym);
1728   delete sym;
1729   return oldsym;
1730 }
1731
1732 // Define a set of symbols in output sections.
1733
1734 void
1735 Symbol_table::define_symbols(const Layout* layout, int count,
1736                              const Define_symbol_in_section* p,
1737                              bool only_if_ref)
1738 {
1739   for (int i = 0; i < count; ++i, ++p)
1740     {
1741       Output_section* os = layout->find_output_section(p->output_section);
1742       if (os != NULL)
1743         this->define_in_output_data(p->name, NULL, os, p->value,
1744                                     p->size, p->type, p->binding,
1745                                     p->visibility, p->nonvis,
1746                                     p->offset_is_from_end,
1747                                     only_if_ref || p->only_if_ref);
1748       else
1749         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1750                                  p->binding, p->visibility, p->nonvis,
1751                                  only_if_ref || p->only_if_ref,
1752                                  false);
1753     }
1754 }
1755
1756 // Define a set of symbols in output segments.
1757
1758 void
1759 Symbol_table::define_symbols(const Layout* layout, int count,
1760                              const Define_symbol_in_segment* p,
1761                              bool only_if_ref)
1762 {
1763   for (int i = 0; i < count; ++i, ++p)
1764     {
1765       Output_segment* os = layout->find_output_segment(p->segment_type,
1766                                                        p->segment_flags_set,
1767                                                        p->segment_flags_clear);
1768       if (os != NULL)
1769         this->define_in_output_segment(p->name, NULL, os, p->value,
1770                                        p->size, p->type, p->binding,
1771                                        p->visibility, p->nonvis,
1772                                        p->offset_base,
1773                                        only_if_ref || p->only_if_ref);
1774       else
1775         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1776                                  p->binding, p->visibility, p->nonvis,
1777                                  only_if_ref || p->only_if_ref,
1778                                  false);
1779     }
1780 }
1781
1782 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
1783 // symbol should be defined--typically a .dyn.bss section.  VALUE is
1784 // the offset within POSD.
1785
1786 template<int size>
1787 void
1788 Symbol_table::define_with_copy_reloc(
1789     Sized_symbol<size>* csym,
1790     Output_data* posd,
1791     typename elfcpp::Elf_types<size>::Elf_Addr value)
1792 {
1793   gold_assert(csym->is_from_dynobj());
1794   gold_assert(!csym->is_copied_from_dynobj());
1795   Object* object = csym->object();
1796   gold_assert(object->is_dynamic());
1797   Dynobj* dynobj = static_cast<Dynobj*>(object);
1798
1799   // Our copied variable has to override any variable in a shared
1800   // library.
1801   elfcpp::STB binding = csym->binding();
1802   if (binding == elfcpp::STB_WEAK)
1803     binding = elfcpp::STB_GLOBAL;
1804
1805   this->define_in_output_data(csym->name(), csym->version(),
1806                               posd, value, csym->symsize(),
1807                               csym->type(), binding,
1808                               csym->visibility(), csym->nonvis(),
1809                               false, false);
1810
1811   csym->set_is_copied_from_dynobj();
1812   csym->set_needs_dynsym_entry();
1813
1814   this->copied_symbol_dynobjs_[csym] = dynobj;
1815
1816   // We have now defined all aliases, but we have not entered them all
1817   // in the copied_symbol_dynobjs_ map.
1818   if (csym->has_alias())
1819     {
1820       Symbol* sym = csym;
1821       while (true)
1822         {
1823           sym = this->weak_aliases_[sym];
1824           if (sym == csym)
1825             break;
1826           gold_assert(sym->output_data() == posd);
1827
1828           sym->set_is_copied_from_dynobj();
1829           this->copied_symbol_dynobjs_[sym] = dynobj;
1830         }
1831     }
1832 }
1833
1834 // SYM is defined using a COPY reloc.  Return the dynamic object where
1835 // the original definition was found.
1836
1837 Dynobj*
1838 Symbol_table::get_copy_source(const Symbol* sym) const
1839 {
1840   gold_assert(sym->is_copied_from_dynobj());
1841   Copied_symbol_dynobjs::const_iterator p =
1842     this->copied_symbol_dynobjs_.find(sym);
1843   gold_assert(p != this->copied_symbol_dynobjs_.end());
1844   return p->second;
1845 }
1846
1847 // Add any undefined symbols named on the command line.
1848
1849 void
1850 Symbol_table::add_undefined_symbols_from_command_line()
1851 {
1852   if (parameters->options().any_undefined())
1853     {
1854       if (parameters->target().get_size() == 32)
1855         {
1856 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1857           this->do_add_undefined_symbols_from_command_line<32>();
1858 #else
1859           gold_unreachable();
1860 #endif
1861         }
1862       else if (parameters->target().get_size() == 64)
1863         {
1864 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1865           this->do_add_undefined_symbols_from_command_line<64>();
1866 #else
1867           gold_unreachable();
1868 #endif
1869         }
1870       else
1871         gold_unreachable();
1872     }
1873 }
1874
1875 template<int size>
1876 void
1877 Symbol_table::do_add_undefined_symbols_from_command_line()
1878 {
1879   for (options::String_set::const_iterator p =
1880          parameters->options().undefined_begin();
1881        p != parameters->options().undefined_end();
1882        ++p)
1883     {
1884       const char* name = p->c_str();
1885
1886       if (this->lookup(name) != NULL)
1887         continue;
1888
1889       const char* version = NULL;
1890
1891       Sized_symbol<size>* sym;
1892       Sized_symbol<size>* oldsym;
1893       if (parameters->target().is_big_endian())
1894         {
1895 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1896           sym = this->define_special_symbol<size, true>(&name, &version,
1897                                                         false, &oldsym);
1898 #else
1899           gold_unreachable();
1900 #endif
1901         }
1902       else
1903         {
1904 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1905           sym = this->define_special_symbol<size, false>(&name, &version,
1906                                                          false, &oldsym);
1907 #else
1908           gold_unreachable();
1909 #endif
1910         }
1911
1912       gold_assert(oldsym == NULL);
1913
1914       sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1915                           elfcpp::STV_DEFAULT, 0);
1916       ++this->saw_undefined_;
1917     }
1918 }
1919
1920 // Set the dynamic symbol indexes.  INDEX is the index of the first
1921 // global dynamic symbol.  Pointers to the symbols are stored into the
1922 // vector SYMS.  The names are added to DYNPOOL.  This returns an
1923 // updated dynamic symbol index.
1924
1925 unsigned int
1926 Symbol_table::set_dynsym_indexes(unsigned int index,
1927                                  std::vector<Symbol*>* syms,
1928                                  Stringpool* dynpool,
1929                                  Versions* versions)
1930 {
1931   for (Symbol_table_type::iterator p = this->table_.begin();
1932        p != this->table_.end();
1933        ++p)
1934     {
1935       Symbol* sym = p->second;
1936
1937       // Note that SYM may already have a dynamic symbol index, since
1938       // some symbols appear more than once in the symbol table, with
1939       // and without a version.
1940
1941       if (!sym->should_add_dynsym_entry())
1942         sym->set_dynsym_index(-1U);
1943       else if (!sym->has_dynsym_index())
1944         {
1945           sym->set_dynsym_index(index);
1946           ++index;
1947           syms->push_back(sym);
1948           dynpool->add(sym->name(), false, NULL);
1949
1950           // Record any version information.
1951           if (sym->version() != NULL)
1952             versions->record_version(this, dynpool, sym);
1953         }
1954     }
1955
1956   // Finish up the versions.  In some cases this may add new dynamic
1957   // symbols.
1958   index = versions->finalize(this, index, syms);
1959
1960   return index;
1961 }
1962
1963 // Set the final values for all the symbols.  The index of the first
1964 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
1965 // file offset OFF.  Add their names to POOL.  Return the new file
1966 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
1967
1968 off_t
1969 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1970                        size_t dyncount, Stringpool* pool,
1971                        unsigned int *plocal_symcount)
1972 {
1973   off_t ret;
1974
1975   gold_assert(*plocal_symcount != 0);
1976   this->first_global_index_ = *plocal_symcount;
1977
1978   this->dynamic_offset_ = dynoff;
1979   this->first_dynamic_global_index_ = dyn_global_index;
1980   this->dynamic_count_ = dyncount;
1981
1982   if (parameters->target().get_size() == 32)
1983     {
1984 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1985       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
1986 #else
1987       gold_unreachable();
1988 #endif
1989     }
1990   else if (parameters->target().get_size() == 64)
1991     {
1992 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1993       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
1994 #else
1995       gold_unreachable();
1996 #endif
1997     }
1998   else
1999     gold_unreachable();
2000
2001   // Now that we have the final symbol table, we can reliably note
2002   // which symbols should get warnings.
2003   this->warnings_.note_warnings(this);
2004
2005   return ret;
2006 }
2007
2008 // SYM is going into the symbol table at *PINDEX.  Add the name to
2009 // POOL, update *PINDEX and *POFF.
2010
2011 template<int size>
2012 void
2013 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2014                                   unsigned int* pindex, off_t* poff)
2015 {
2016   sym->set_symtab_index(*pindex);
2017   pool->add(sym->name(), false, NULL);
2018   ++*pindex;
2019   *poff += elfcpp::Elf_sizes<size>::sym_size;
2020 }
2021
2022 // Set the final value for all the symbols.  This is called after
2023 // Layout::finalize, so all the output sections have their final
2024 // address.
2025
2026 template<int size>
2027 off_t
2028 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2029                              unsigned int* plocal_symcount)
2030 {
2031   off = align_address(off, size >> 3);
2032   this->offset_ = off;
2033
2034   unsigned int index = *plocal_symcount;
2035   const unsigned int orig_index = index;
2036
2037   // First do all the symbols which have been forced to be local, as
2038   // they must appear before all global symbols.
2039   for (Forced_locals::iterator p = this->forced_locals_.begin();
2040        p != this->forced_locals_.end();
2041        ++p)
2042     {
2043       Symbol* sym = *p;
2044       gold_assert(sym->is_forced_local());
2045       if (this->sized_finalize_symbol<size>(sym))
2046         {
2047           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2048           ++*plocal_symcount;
2049         }
2050     }
2051
2052   // Now do all the remaining symbols.
2053   for (Symbol_table_type::iterator p = this->table_.begin();
2054        p != this->table_.end();
2055        ++p)
2056     {
2057       Symbol* sym = p->second;
2058       if (this->sized_finalize_symbol<size>(sym))
2059         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2060     }
2061
2062   this->output_count_ = index - orig_index;
2063
2064   return off;
2065 }
2066
2067 // Finalize the symbol SYM.  This returns true if the symbol should be
2068 // added to the symbol table, false otherwise.
2069
2070 template<int size>
2071 bool
2072 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2073 {
2074   typedef typename Sized_symbol<size>::Value_type Value_type;
2075
2076   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2077
2078   // The default version of a symbol may appear twice in the symbol
2079   // table.  We only need to finalize it once.
2080   if (sym->has_symtab_index())
2081     return false;
2082
2083   if (!sym->in_reg())
2084     {
2085       gold_assert(!sym->has_symtab_index());
2086       sym->set_symtab_index(-1U);
2087       gold_assert(sym->dynsym_index() == -1U);
2088       return false;
2089     }
2090
2091   Value_type value;
2092
2093   switch (sym->source())
2094     {
2095     case Symbol::FROM_OBJECT:
2096       {
2097         bool is_ordinary;
2098         unsigned int shndx = sym->shndx(&is_ordinary);
2099
2100         // FIXME: We need some target specific support here.
2101         if (!is_ordinary
2102             && shndx != elfcpp::SHN_ABS
2103             && shndx != elfcpp::SHN_COMMON)
2104           {
2105             gold_error(_("%s: unsupported symbol section 0x%x"),
2106                        sym->demangled_name().c_str(), shndx);
2107             shndx = elfcpp::SHN_UNDEF;
2108           }
2109
2110         Object* symobj = sym->object();
2111         if (symobj->is_dynamic())
2112           {
2113             value = 0;
2114             shndx = elfcpp::SHN_UNDEF;
2115           }
2116         else if (symobj->pluginobj() != NULL)
2117           {
2118             value = 0;
2119             shndx = elfcpp::SHN_UNDEF;
2120           }
2121         else if (shndx == elfcpp::SHN_UNDEF)
2122           value = 0;
2123         else if (!is_ordinary
2124                  && (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON))
2125           value = sym->value();
2126         else
2127           {
2128             Relobj* relobj = static_cast<Relobj*>(symobj);
2129             Output_section* os = relobj->output_section(shndx);
2130
2131             if (os == NULL)
2132               {
2133                 sym->set_symtab_index(-1U);
2134                 gold_assert(sym->dynsym_index() == -1U);
2135                 return false;
2136               }
2137
2138             uint64_t secoff64 = relobj->output_section_offset(shndx);
2139             Value_type secoff = convert_types<Value_type, uint64_t>(secoff64);
2140             if (sym->type() == elfcpp::STT_TLS)
2141               value = sym->value() + os->tls_offset() + secoff;
2142             else
2143               value = sym->value() + os->address() + secoff;
2144           }
2145       }
2146       break;
2147
2148     case Symbol::IN_OUTPUT_DATA:
2149       {
2150         Output_data* od = sym->output_data();
2151         value = sym->value();
2152         if (sym->type() != elfcpp::STT_TLS)
2153           value += od->address();
2154         else
2155           {
2156             Output_section* os = od->output_section();
2157             gold_assert(os != NULL);
2158             value += os->tls_offset() + (od->address() - os->address());
2159           }
2160         if (sym->offset_is_from_end())
2161           value += od->data_size();
2162       }
2163       break;
2164
2165     case Symbol::IN_OUTPUT_SEGMENT:
2166       {
2167         Output_segment* os = sym->output_segment();
2168         value = sym->value();
2169         if (sym->type() != elfcpp::STT_TLS)
2170           value += os->vaddr();
2171         switch (sym->offset_base())
2172           {
2173           case Symbol::SEGMENT_START:
2174             break;
2175           case Symbol::SEGMENT_END:
2176             value += os->memsz();
2177             break;
2178           case Symbol::SEGMENT_BSS:
2179             value += os->filesz();
2180             break;
2181           default:
2182             gold_unreachable();
2183           }
2184       }
2185       break;
2186
2187     case Symbol::IS_CONSTANT:
2188       value = sym->value();
2189       break;
2190
2191     case Symbol::IS_UNDEFINED:
2192       value = 0;
2193       break;
2194
2195     default:
2196       gold_unreachable();
2197     }
2198
2199   sym->set_value(value);
2200
2201   if (parameters->options().strip_all())
2202     {
2203       sym->set_symtab_index(-1U);
2204       return false;
2205     }
2206
2207   return true;
2208 }
2209
2210 // Write out the global symbols.
2211
2212 void
2213 Symbol_table::write_globals(const Input_objects* input_objects,
2214                             const Stringpool* sympool,
2215                             const Stringpool* dynpool,
2216                             Output_symtab_xindex* symtab_xindex,
2217                             Output_symtab_xindex* dynsym_xindex,
2218                             Output_file* of) const
2219 {
2220   switch (parameters->size_and_endianness())
2221     {
2222 #ifdef HAVE_TARGET_32_LITTLE
2223     case Parameters::TARGET_32_LITTLE:
2224       this->sized_write_globals<32, false>(input_objects, sympool,
2225                                            dynpool, symtab_xindex,
2226                                            dynsym_xindex, of);
2227       break;
2228 #endif
2229 #ifdef HAVE_TARGET_32_BIG
2230     case Parameters::TARGET_32_BIG:
2231       this->sized_write_globals<32, true>(input_objects, sympool,
2232                                           dynpool, symtab_xindex,
2233                                           dynsym_xindex, of);
2234       break;
2235 #endif
2236 #ifdef HAVE_TARGET_64_LITTLE
2237     case Parameters::TARGET_64_LITTLE:
2238       this->sized_write_globals<64, false>(input_objects, sympool,
2239                                            dynpool, symtab_xindex,
2240                                            dynsym_xindex, of);
2241       break;
2242 #endif
2243 #ifdef HAVE_TARGET_64_BIG
2244     case Parameters::TARGET_64_BIG:
2245       this->sized_write_globals<64, true>(input_objects, sympool,
2246                                           dynpool, symtab_xindex,
2247                                           dynsym_xindex, of);
2248       break;
2249 #endif
2250     default:
2251       gold_unreachable();
2252     }
2253 }
2254
2255 // Write out the global symbols.
2256
2257 template<int size, bool big_endian>
2258 void
2259 Symbol_table::sized_write_globals(const Input_objects* input_objects,
2260                                   const Stringpool* sympool,
2261                                   const Stringpool* dynpool,
2262                                   Output_symtab_xindex* symtab_xindex,
2263                                   Output_symtab_xindex* dynsym_xindex,
2264                                   Output_file* of) const
2265 {
2266   const Target& target = parameters->target();
2267
2268   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2269
2270   const unsigned int output_count = this->output_count_;
2271   const section_size_type oview_size = output_count * sym_size;
2272   const unsigned int first_global_index = this->first_global_index_;
2273   unsigned char* psyms;
2274   if (this->offset_ == 0 || output_count == 0)
2275     psyms = NULL;
2276   else
2277     psyms = of->get_output_view(this->offset_, oview_size);
2278
2279   const unsigned int dynamic_count = this->dynamic_count_;
2280   const section_size_type dynamic_size = dynamic_count * sym_size;
2281   const unsigned int first_dynamic_global_index =
2282     this->first_dynamic_global_index_;
2283   unsigned char* dynamic_view;
2284   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2285     dynamic_view = NULL;
2286   else
2287     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2288
2289   for (Symbol_table_type::const_iterator p = this->table_.begin();
2290        p != this->table_.end();
2291        ++p)
2292     {
2293       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2294
2295       // Possibly warn about unresolved symbols in shared libraries.
2296       this->warn_about_undefined_dynobj_symbol(input_objects, sym);
2297
2298       unsigned int sym_index = sym->symtab_index();
2299       unsigned int dynsym_index;
2300       if (dynamic_view == NULL)
2301         dynsym_index = -1U;
2302       else
2303         dynsym_index = sym->dynsym_index();
2304
2305       if (sym_index == -1U && dynsym_index == -1U)
2306         {
2307           // This symbol is not included in the output file.
2308           continue;
2309         }
2310
2311       unsigned int shndx;
2312       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2313       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2314       switch (sym->source())
2315         {
2316         case Symbol::FROM_OBJECT:
2317           {
2318             bool is_ordinary;
2319             unsigned int in_shndx = sym->shndx(&is_ordinary);
2320
2321             // FIXME: We need some target specific support here.
2322             if (!is_ordinary
2323                 && in_shndx != elfcpp::SHN_ABS
2324                 && in_shndx != elfcpp::SHN_COMMON)
2325               {
2326                 gold_error(_("%s: unsupported symbol section 0x%x"),
2327                            sym->demangled_name().c_str(), in_shndx);
2328                 shndx = in_shndx;
2329               }
2330             else
2331               {
2332                 Object* symobj = sym->object();
2333                 if (symobj->is_dynamic())
2334                   {
2335                     if (sym->needs_dynsym_value())
2336                       dynsym_value = target.dynsym_value(sym);
2337                     shndx = elfcpp::SHN_UNDEF;
2338                   }
2339                 else if (symobj->pluginobj() != NULL)
2340                   shndx = elfcpp::SHN_UNDEF;
2341                 else if (in_shndx == elfcpp::SHN_UNDEF
2342                          || (!is_ordinary
2343                              && (in_shndx == elfcpp::SHN_ABS
2344                                  || in_shndx == elfcpp::SHN_COMMON)))
2345                   shndx = in_shndx;
2346                 else
2347                   {
2348                     Relobj* relobj = static_cast<Relobj*>(symobj);
2349                     Output_section* os = relobj->output_section(in_shndx);
2350                     gold_assert(os != NULL);
2351                     shndx = os->out_shndx();
2352
2353                     if (shndx >= elfcpp::SHN_LORESERVE)
2354                       {
2355                         if (sym_index != -1U)
2356                           symtab_xindex->add(sym_index, shndx);
2357                         if (dynsym_index != -1U)
2358                           dynsym_xindex->add(dynsym_index, shndx);
2359                         shndx = elfcpp::SHN_XINDEX;
2360                       }
2361
2362                     // In object files symbol values are section
2363                     // relative.
2364                     if (parameters->options().relocatable())
2365                       sym_value -= os->address();
2366                   }
2367               }
2368           }
2369           break;
2370
2371         case Symbol::IN_OUTPUT_DATA:
2372           shndx = sym->output_data()->out_shndx();
2373           if (shndx >= elfcpp::SHN_LORESERVE)
2374             {
2375               if (sym_index != -1U)
2376                 symtab_xindex->add(sym_index, shndx);
2377               if (dynsym_index != -1U)
2378                 dynsym_xindex->add(dynsym_index, shndx);
2379               shndx = elfcpp::SHN_XINDEX;
2380             }
2381           break;
2382
2383         case Symbol::IN_OUTPUT_SEGMENT:
2384           shndx = elfcpp::SHN_ABS;
2385           break;
2386
2387         case Symbol::IS_CONSTANT:
2388           shndx = elfcpp::SHN_ABS;
2389           break;
2390
2391         case Symbol::IS_UNDEFINED:
2392           shndx = elfcpp::SHN_UNDEF;
2393           break;
2394
2395         default:
2396           gold_unreachable();
2397         }
2398
2399       if (sym_index != -1U)
2400         {
2401           sym_index -= first_global_index;
2402           gold_assert(sym_index < output_count);
2403           unsigned char* ps = psyms + (sym_index * sym_size);
2404           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2405                                                      sympool, ps);
2406         }
2407
2408       if (dynsym_index != -1U)
2409         {
2410           dynsym_index -= first_dynamic_global_index;
2411           gold_assert(dynsym_index < dynamic_count);
2412           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2413           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2414                                                      dynpool, pd);
2415         }
2416     }
2417
2418   of->write_output_view(this->offset_, oview_size, psyms);
2419   if (dynamic_view != NULL)
2420     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2421 }
2422
2423 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
2424 // strtab holding the name.
2425
2426 template<int size, bool big_endian>
2427 void
2428 Symbol_table::sized_write_symbol(
2429     Sized_symbol<size>* sym,
2430     typename elfcpp::Elf_types<size>::Elf_Addr value,
2431     unsigned int shndx,
2432     const Stringpool* pool,
2433     unsigned char* p) const
2434 {
2435   elfcpp::Sym_write<size, big_endian> osym(p);
2436   osym.put_st_name(pool->get_offset(sym->name()));
2437   osym.put_st_value(value);
2438   // Use a symbol size of zero for undefined symbols from shared libraries.
2439   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2440     osym.put_st_size(0);
2441   else
2442     osym.put_st_size(sym->symsize());
2443   // A version script may have overridden the default binding.
2444   if (sym->is_forced_local())
2445     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2446   else
2447     osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
2448   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2449   osym.put_st_shndx(shndx);
2450 }
2451
2452 // Check for unresolved symbols in shared libraries.  This is
2453 // controlled by the --allow-shlib-undefined option.
2454
2455 // We only warn about libraries for which we have seen all the
2456 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
2457 // which were not seen in this link.  If we didn't see a DT_NEEDED
2458 // entry, we aren't going to be able to reliably report whether the
2459 // symbol is undefined.
2460
2461 // We also don't warn about libraries found in the system library
2462 // directory (the directory were we find libc.so); we assume that
2463 // those libraries are OK.  This heuristic avoids problems in
2464 // GNU/Linux, in which -ldl can have undefined references satisfied by
2465 // ld-linux.so.
2466
2467 inline void
2468 Symbol_table::warn_about_undefined_dynobj_symbol(
2469     const Input_objects* input_objects,
2470     Symbol* sym) const
2471 {
2472   bool dummy;
2473   if (sym->source() == Symbol::FROM_OBJECT
2474       && sym->object()->is_dynamic()
2475       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2476       && sym->binding() != elfcpp::STB_WEAK
2477       && !parameters->options().allow_shlib_undefined()
2478       && !parameters->target().is_defined_by_abi(sym)
2479       && !input_objects->found_in_system_library_directory(sym->object()))
2480     {
2481       // A very ugly cast.
2482       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2483       if (!dynobj->has_unknown_needed_entries())
2484         {
2485           if (sym->version())
2486             gold_error(_("%s: undefined reference to '%s', version '%s'"),
2487                        sym->object()->name().c_str(),
2488                        sym->demangled_name().c_str(),
2489                        sym->version());
2490           else
2491             gold_error(_("%s: undefined reference to '%s'"),
2492                        sym->object()->name().c_str(),
2493                        sym->demangled_name().c_str());
2494         }
2495     }
2496 }
2497
2498 // Write out a section symbol.  Return the update offset.
2499
2500 void
2501 Symbol_table::write_section_symbol(const Output_section *os,
2502                                    Output_symtab_xindex* symtab_xindex,
2503                                    Output_file* of,
2504                                    off_t offset) const
2505 {
2506   switch (parameters->size_and_endianness())
2507     {
2508 #ifdef HAVE_TARGET_32_LITTLE
2509     case Parameters::TARGET_32_LITTLE:
2510       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
2511                                                   offset);
2512       break;
2513 #endif
2514 #ifdef HAVE_TARGET_32_BIG
2515     case Parameters::TARGET_32_BIG:
2516       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
2517                                                  offset);
2518       break;
2519 #endif
2520 #ifdef HAVE_TARGET_64_LITTLE
2521     case Parameters::TARGET_64_LITTLE:
2522       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
2523                                                   offset);
2524       break;
2525 #endif
2526 #ifdef HAVE_TARGET_64_BIG
2527     case Parameters::TARGET_64_BIG:
2528       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
2529                                                  offset);
2530       break;
2531 #endif
2532     default:
2533       gold_unreachable();
2534     }
2535 }
2536
2537 // Write out a section symbol, specialized for size and endianness.
2538
2539 template<int size, bool big_endian>
2540 void
2541 Symbol_table::sized_write_section_symbol(const Output_section* os,
2542                                          Output_symtab_xindex* symtab_xindex,
2543                                          Output_file* of,
2544                                          off_t offset) const
2545 {
2546   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2547
2548   unsigned char* pov = of->get_output_view(offset, sym_size);
2549
2550   elfcpp::Sym_write<size, big_endian> osym(pov);
2551   osym.put_st_name(0);
2552   osym.put_st_value(os->address());
2553   osym.put_st_size(0);
2554   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2555                                        elfcpp::STT_SECTION));
2556   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2557
2558   unsigned int shndx = os->out_shndx();
2559   if (shndx >= elfcpp::SHN_LORESERVE)
2560     {
2561       symtab_xindex->add(os->symtab_index(), shndx);
2562       shndx = elfcpp::SHN_XINDEX;
2563     }
2564   osym.put_st_shndx(shndx);
2565
2566   of->write_output_view(offset, sym_size, pov);
2567 }
2568
2569 // Print statistical information to stderr.  This is used for --stats.
2570
2571 void
2572 Symbol_table::print_stats() const
2573 {
2574 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2575   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2576           program_name, this->table_.size(), this->table_.bucket_count());
2577 #else
2578   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2579           program_name, this->table_.size());
2580 #endif
2581   this->namepool_.print_stats("symbol table stringpool");
2582 }
2583
2584 // We check for ODR violations by looking for symbols with the same
2585 // name for which the debugging information reports that they were
2586 // defined in different source locations.  When comparing the source
2587 // location, we consider instances with the same base filename and
2588 // line number to be the same.  This is because different object
2589 // files/shared libraries can include the same header file using
2590 // different paths, and we don't want to report an ODR violation in
2591 // that case.
2592
2593 // This struct is used to compare line information, as returned by
2594 // Dwarf_line_info::one_addr2line.  It implements a < comparison
2595 // operator used with std::set.
2596
2597 struct Odr_violation_compare
2598 {
2599   bool
2600   operator()(const std::string& s1, const std::string& s2) const
2601   {
2602     std::string::size_type pos1 = s1.rfind('/');
2603     std::string::size_type pos2 = s2.rfind('/');
2604     if (pos1 == std::string::npos
2605         || pos2 == std::string::npos)
2606       return s1 < s2;
2607     return s1.compare(pos1, std::string::npos,
2608                       s2, pos2, std::string::npos) < 0;
2609   }
2610 };
2611
2612 // Check candidate_odr_violations_ to find symbols with the same name
2613 // but apparently different definitions (different source-file/line-no).
2614
2615 void
2616 Symbol_table::detect_odr_violations(const Task* task,
2617                                     const char* output_file_name) const
2618 {
2619   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2620        it != candidate_odr_violations_.end();
2621        ++it)
2622     {
2623       const char* symbol_name = it->first;
2624       // We use a sorted set so the output is deterministic.
2625       std::set<std::string, Odr_violation_compare> line_nums;
2626
2627       for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2628                locs = it->second.begin();
2629            locs != it->second.end();
2630            ++locs)
2631         {
2632           // We need to lock the object in order to read it.  This
2633           // means that we have to run in a singleton Task.  If we
2634           // want to run this in a general Task for better
2635           // performance, we will need one Task for object, plus
2636           // appropriate locking to ensure that we don't conflict with
2637           // other uses of the object.  Also note, one_addr2line is not
2638           // currently thread-safe.
2639           Task_lock_obj<Object> tl(task, locs->object);
2640           // 16 is the size of the object-cache that one_addr2line should use.
2641           std::string lineno = Dwarf_line_info::one_addr2line(
2642               locs->object, locs->shndx, locs->offset, 16);
2643           if (!lineno.empty())
2644             line_nums.insert(lineno);
2645         }
2646
2647       if (line_nums.size() > 1)
2648         {
2649           gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2650                          "places (possible ODR violation):"),
2651                        output_file_name, demangle(symbol_name).c_str());
2652           for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2653                it2 != line_nums.end();
2654                ++it2)
2655             fprintf(stderr, "  %s\n", it2->c_str());
2656         }
2657     }
2658   // We only call one_addr2line() in this function, so we can clear its cache.
2659   Dwarf_line_info::clear_addr2line_cache();
2660 }
2661
2662 // Warnings functions.
2663
2664 // Add a new warning.
2665
2666 void
2667 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2668                       const std::string& warning)
2669 {
2670   name = symtab->canonicalize_name(name);
2671   this->warnings_[name].set(obj, warning);
2672 }
2673
2674 // Look through the warnings and mark the symbols for which we should
2675 // warn.  This is called during Layout::finalize when we know the
2676 // sources for all the symbols.
2677
2678 void
2679 Warnings::note_warnings(Symbol_table* symtab)
2680 {
2681   for (Warning_table::iterator p = this->warnings_.begin();
2682        p != this->warnings_.end();
2683        ++p)
2684     {
2685       Symbol* sym = symtab->lookup(p->first, NULL);
2686       if (sym != NULL
2687           && sym->source() == Symbol::FROM_OBJECT
2688           && sym->object() == p->second.object)
2689         sym->set_has_warning();
2690     }
2691 }
2692
2693 // Issue a warning.  This is called when we see a relocation against a
2694 // symbol for which has a warning.
2695
2696 template<int size, bool big_endian>
2697 void
2698 Warnings::issue_warning(const Symbol* sym,
2699                         const Relocate_info<size, big_endian>* relinfo,
2700                         size_t relnum, off_t reloffset) const
2701 {
2702   gold_assert(sym->has_warning());
2703   Warning_table::const_iterator p = this->warnings_.find(sym->name());
2704   gold_assert(p != this->warnings_.end());
2705   gold_warning_at_location(relinfo, relnum, reloffset,
2706                            "%s", p->second.text.c_str());
2707 }
2708
2709 // Instantiate the templates we need.  We could use the configure
2710 // script to restrict this to only the ones needed for implemented
2711 // targets.
2712
2713 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2714 template
2715 void
2716 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2717 #endif
2718
2719 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2720 template
2721 void
2722 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2723 #endif
2724
2725 #ifdef HAVE_TARGET_32_LITTLE
2726 template
2727 void
2728 Symbol_table::add_from_relobj<32, false>(
2729     Sized_relobj<32, false>* relobj,
2730     const unsigned char* syms,
2731     size_t count,
2732     size_t symndx_offset,
2733     const char* sym_names,
2734     size_t sym_name_size,
2735     Sized_relobj<32, false>::Symbols* sympointers,
2736     size_t* defined);
2737 #endif
2738
2739 #ifdef HAVE_TARGET_32_BIG
2740 template
2741 void
2742 Symbol_table::add_from_relobj<32, true>(
2743     Sized_relobj<32, true>* relobj,
2744     const unsigned char* syms,
2745     size_t count,
2746     size_t symndx_offset,
2747     const char* sym_names,
2748     size_t sym_name_size,
2749     Sized_relobj<32, true>::Symbols* sympointers,
2750     size_t* defined);
2751 #endif
2752
2753 #ifdef HAVE_TARGET_64_LITTLE
2754 template
2755 void
2756 Symbol_table::add_from_relobj<64, false>(
2757     Sized_relobj<64, false>* relobj,
2758     const unsigned char* syms,
2759     size_t count,
2760     size_t symndx_offset,
2761     const char* sym_names,
2762     size_t sym_name_size,
2763     Sized_relobj<64, false>::Symbols* sympointers,
2764     size_t* defined);
2765 #endif
2766
2767 #ifdef HAVE_TARGET_64_BIG
2768 template
2769 void
2770 Symbol_table::add_from_relobj<64, true>(
2771     Sized_relobj<64, true>* relobj,
2772     const unsigned char* syms,
2773     size_t count,
2774     size_t symndx_offset,
2775     const char* sym_names,
2776     size_t sym_name_size,
2777     Sized_relobj<64, true>::Symbols* sympointers,
2778     size_t* defined);
2779 #endif
2780
2781 #ifdef HAVE_TARGET_32_LITTLE
2782 template
2783 Symbol*
2784 Symbol_table::add_from_pluginobj<32, false>(
2785     Sized_pluginobj<32, false>* obj,
2786     const char* name,
2787     const char* ver,
2788     elfcpp::Sym<32, false>* sym);
2789 #endif
2790
2791 #ifdef HAVE_TARGET_32_BIG
2792 template
2793 Symbol*
2794 Symbol_table::add_from_pluginobj<32, true>(
2795     Sized_pluginobj<32, true>* obj,
2796     const char* name,
2797     const char* ver,
2798     elfcpp::Sym<32, true>* sym);
2799 #endif
2800
2801 #ifdef HAVE_TARGET_64_LITTLE
2802 template
2803 Symbol*
2804 Symbol_table::add_from_pluginobj<64, false>(
2805     Sized_pluginobj<64, false>* obj,
2806     const char* name,
2807     const char* ver,
2808     elfcpp::Sym<64, false>* sym);
2809 #endif
2810
2811 #ifdef HAVE_TARGET_64_BIG
2812 template
2813 Symbol*
2814 Symbol_table::add_from_pluginobj<64, true>(
2815     Sized_pluginobj<64, true>* obj,
2816     const char* name,
2817     const char* ver,
2818     elfcpp::Sym<64, true>* sym);
2819 #endif
2820
2821 #ifdef HAVE_TARGET_32_LITTLE
2822 template
2823 void
2824 Symbol_table::add_from_dynobj<32, false>(
2825     Sized_dynobj<32, false>* dynobj,
2826     const unsigned char* syms,
2827     size_t count,
2828     const char* sym_names,
2829     size_t sym_name_size,
2830     const unsigned char* versym,
2831     size_t versym_size,
2832     const std::vector<const char*>* version_map,
2833     Sized_relobj<32, false>::Symbols* sympointers,
2834     size_t* defined);
2835 #endif
2836
2837 #ifdef HAVE_TARGET_32_BIG
2838 template
2839 void
2840 Symbol_table::add_from_dynobj<32, true>(
2841     Sized_dynobj<32, true>* dynobj,
2842     const unsigned char* syms,
2843     size_t count,
2844     const char* sym_names,
2845     size_t sym_name_size,
2846     const unsigned char* versym,
2847     size_t versym_size,
2848     const std::vector<const char*>* version_map,
2849     Sized_relobj<32, true>::Symbols* sympointers,
2850     size_t* defined);
2851 #endif
2852
2853 #ifdef HAVE_TARGET_64_LITTLE
2854 template
2855 void
2856 Symbol_table::add_from_dynobj<64, false>(
2857     Sized_dynobj<64, false>* dynobj,
2858     const unsigned char* syms,
2859     size_t count,
2860     const char* sym_names,
2861     size_t sym_name_size,
2862     const unsigned char* versym,
2863     size_t versym_size,
2864     const std::vector<const char*>* version_map,
2865     Sized_relobj<64, false>::Symbols* sympointers,
2866     size_t* defined);
2867 #endif
2868
2869 #ifdef HAVE_TARGET_64_BIG
2870 template
2871 void
2872 Symbol_table::add_from_dynobj<64, true>(
2873     Sized_dynobj<64, true>* dynobj,
2874     const unsigned char* syms,
2875     size_t count,
2876     const char* sym_names,
2877     size_t sym_name_size,
2878     const unsigned char* versym,
2879     size_t versym_size,
2880     const std::vector<const char*>* version_map,
2881     Sized_relobj<64, true>::Symbols* sympointers,
2882     size_t* defined);
2883 #endif
2884
2885 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2886 template
2887 void
2888 Symbol_table::define_with_copy_reloc<32>(
2889     Sized_symbol<32>* sym,
2890     Output_data* posd,
2891     elfcpp::Elf_types<32>::Elf_Addr value);
2892 #endif
2893
2894 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2895 template
2896 void
2897 Symbol_table::define_with_copy_reloc<64>(
2898     Sized_symbol<64>* sym,
2899     Output_data* posd,
2900     elfcpp::Elf_types<64>::Elf_Addr value);
2901 #endif
2902
2903 #ifdef HAVE_TARGET_32_LITTLE
2904 template
2905 void
2906 Warnings::issue_warning<32, false>(const Symbol* sym,
2907                                    const Relocate_info<32, false>* relinfo,
2908                                    size_t relnum, off_t reloffset) const;
2909 #endif
2910
2911 #ifdef HAVE_TARGET_32_BIG
2912 template
2913 void
2914 Warnings::issue_warning<32, true>(const Symbol* sym,
2915                                   const Relocate_info<32, true>* relinfo,
2916                                   size_t relnum, off_t reloffset) const;
2917 #endif
2918
2919 #ifdef HAVE_TARGET_64_LITTLE
2920 template
2921 void
2922 Warnings::issue_warning<64, false>(const Symbol* sym,
2923                                    const Relocate_info<64, false>* relinfo,
2924                                    size_t relnum, off_t reloffset) const;
2925 #endif
2926
2927 #ifdef HAVE_TARGET_64_BIG
2928 template
2929 void
2930 Warnings::issue_warning<64, true>(const Symbol* sym,
2931                                   const Relocate_info<64, true>* relinfo,
2932                                   size_t relnum, off_t reloffset) const;
2933 #endif
2934
2935 } // End namespace gold.