Warn for gold on lto objects without plugin
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol.  This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55                     elfcpp::STT type, elfcpp::STB binding,
56                     elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91   if (!parameters->options().do_demangle())
92     return name;
93
94   // cplus_demangle allocates memory for the result it returns,
95   // and returns NULL if the name is already demangled.
96   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97   if (demangled_name == NULL)
98     return name;
99
100   std::string retval(demangled_name);
101   free(demangled_name);
102   return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108   return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116                          const elfcpp::Sym<size, big_endian>& sym,
117                          unsigned int st_shndx, bool is_ordinary)
118 {
119   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120                     sym.get_st_visibility(), sym.get_st_nonvis());
121   this->u_.from_object.object = object;
122   this->u_.from_object.shndx = st_shndx;
123   this->is_ordinary_shndx_ = is_ordinary;
124   this->source_ = FROM_OBJECT;
125   this->in_reg_ = !object->is_dynamic();
126   this->in_dyn_ = object->is_dynamic();
127   this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135                               Output_data* od, elfcpp::STT type,
136                               elfcpp::STB binding, elfcpp::STV visibility,
137                               unsigned char nonvis, bool offset_is_from_end,
138                               bool is_predefined)
139 {
140   this->init_fields(name, version, type, binding, visibility, nonvis);
141   this->u_.in_output_data.output_data = od;
142   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143   this->source_ = IN_OUTPUT_DATA;
144   this->in_reg_ = true;
145   this->in_real_elf_ = true;
146   this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154                                  Output_segment* os, elfcpp::STT type,
155                                  elfcpp::STB binding, elfcpp::STV visibility,
156                                  unsigned char nonvis,
157                                  Segment_offset_base offset_base,
158                                  bool is_predefined)
159 {
160   this->init_fields(name, version, type, binding, visibility, nonvis);
161   this->u_.in_output_segment.output_segment = os;
162   this->u_.in_output_segment.offset_base = offset_base;
163   this->source_ = IN_OUTPUT_SEGMENT;
164   this->in_reg_ = true;
165   this->in_real_elf_ = true;
166   this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174                            elfcpp::STT type, elfcpp::STB binding,
175                            elfcpp::STV visibility, unsigned char nonvis,
176                            bool is_predefined)
177 {
178   this->init_fields(name, version, type, binding, visibility, nonvis);
179   this->source_ = IS_CONSTANT;
180   this->in_reg_ = true;
181   this->in_real_elf_ = true;
182   this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190                             elfcpp::STT type, elfcpp::STB binding,
191                             elfcpp::STV visibility, unsigned char nonvis)
192 {
193   this->init_fields(name, version, type, binding, visibility, nonvis);
194   this->dynsym_index_ = -1U;
195   this->source_ = IS_UNDEFINED;
196   this->in_reg_ = true;
197   this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205   gold_assert(this->is_common());
206   this->source_ = IN_OUTPUT_DATA;
207   this->u_.in_output_data.output_data = od;
208   this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217                                 Object* object,
218                                 const elfcpp::Sym<size, big_endian>& sym,
219                                 unsigned int st_shndx, bool is_ordinary)
220 {
221   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222   this->value_ = sym.get_st_value();
223   this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232                                      Output_data* od, Value_type value,
233                                      Size_type symsize, elfcpp::STT type,
234                                      elfcpp::STB binding,
235                                      elfcpp::STV visibility,
236                                      unsigned char nonvis,
237                                      bool offset_is_from_end,
238                                      bool is_predefined)
239 {
240   this->init_base_output_data(name, version, od, type, binding, visibility,
241                               nonvis, offset_is_from_end, is_predefined);
242   this->value_ = value;
243   this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252                                         Output_segment* os, Value_type value,
253                                         Size_type symsize, elfcpp::STT type,
254                                         elfcpp::STB binding,
255                                         elfcpp::STV visibility,
256                                         unsigned char nonvis,
257                                         Segment_offset_base offset_base,
258                                         bool is_predefined)
259 {
260   this->init_base_output_segment(name, version, os, type, binding, visibility,
261                                  nonvis, offset_base, is_predefined);
262   this->value_ = value;
263   this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272                                   Value_type value, Size_type symsize,
273                                   elfcpp::STT type, elfcpp::STB binding,
274                                   elfcpp::STV visibility, unsigned char nonvis,
275                                   bool is_predefined)
276 {
277   this->init_base_constant(name, version, type, binding, visibility, nonvis,
278                            is_predefined);
279   this->value_ = value;
280   this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288                                    elfcpp::STT type, elfcpp::STB binding,
289                                    elfcpp::STV visibility, unsigned char nonvis)
290 {
291   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292   this->value_ = 0;
293   this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version.  This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302   gold_assert(this->version_ != NULL);
303   std::string ret = this->name_;
304   ret.push_back('@');
305   if (this->is_def_)
306     ret.push_back('@');
307   ret += this->version_;
308   return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316   return (shndx == elfcpp::SHN_COMMON
317           || shndx == parameters->target().small_common_shndx()
318           || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327   this->allocate_base_common(od);
328   this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340   // If the symbol is only present on plugin files, the plugin decided we
341   // don't need it.
342   if (!this->in_real_elf())
343     return false;
344
345   // If the symbol is used by a dynamic relocation, we need to add it.
346   if (this->needs_dynsym_entry())
347     return true;
348
349   // If this symbol's section is not added, the symbol need not be added. 
350   // The section may have been GCed.  Note that export_dynamic is being 
351   // overridden here.  This should not be done for shared objects.
352   if (parameters->options().gc_sections() 
353       && !parameters->options().shared()
354       && this->source() == Symbol::FROM_OBJECT
355       && !this->object()->is_dynamic())
356     {
357       Relobj* relobj = static_cast<Relobj*>(this->object());
358       bool is_ordinary;
359       unsigned int shndx = this->shndx(&is_ordinary);
360       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361           && !relobj->is_section_included(shndx)
362           && !symtab->is_section_folded(relobj, shndx))
363         return false;
364     }
365
366   // If the symbol was forced dynamic in a --dynamic-list file
367   // or an --export-dynamic-symbol option, add it.
368   if (!this->is_from_dynobj()
369       && (parameters->options().in_dynamic_list(this->name())
370           || parameters->options().is_export_dynamic_symbol(this->name())))
371     {
372       if (!this->is_forced_local())
373         return true;
374       gold_warning(_("Cannot export local symbol '%s'"),
375                    this->demangled_name().c_str());
376       return false;
377     }
378
379   // If the symbol was forced local in a version script, do not add it.
380   if (this->is_forced_local())
381     return false;
382
383   // If dynamic-list-data was specified, add any STT_OBJECT.
384   if (parameters->options().dynamic_list_data()
385       && !this->is_from_dynobj()
386       && this->type() == elfcpp::STT_OBJECT)
387     return true;
388
389   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391   if ((parameters->options().dynamic_list_cpp_new()
392        || parameters->options().dynamic_list_cpp_typeinfo())
393       && !this->is_from_dynobj())
394     {
395       // TODO(csilvers): We could probably figure out if we're an operator
396       //                 new/delete or typeinfo without the need to demangle.
397       char* demangled_name = cplus_demangle(this->name(),
398                                             DMGL_ANSI | DMGL_PARAMS);
399       if (demangled_name == NULL)
400         {
401           // Not a C++ symbol, so it can't satisfy these flags
402         }
403       else if (parameters->options().dynamic_list_cpp_new()
404                && (strprefix(demangled_name, "operator new")
405                    || strprefix(demangled_name, "operator delete")))
406         {
407           free(demangled_name);
408           return true;
409         }
410       else if (parameters->options().dynamic_list_cpp_typeinfo()
411                && (strprefix(demangled_name, "typeinfo name for")
412                    || strprefix(demangled_name, "typeinfo for")))
413         {
414           free(demangled_name);
415           return true;
416         }
417       else
418         free(demangled_name);
419     }
420
421   // If exporting all symbols or building a shared library,
422   // and the symbol is defined in a regular object and is
423   // externally visible, we need to add it.
424   if ((parameters->options().export_dynamic() || parameters->options().shared())
425       && !this->is_from_dynobj()
426       && !this->is_undefined()
427       && this->is_externally_visible())
428     return true;
429
430   return false;
431 }
432
433 // Return true if the final value of this symbol is known at link
434 // time.
435
436 bool
437 Symbol::final_value_is_known() const
438 {
439   // If we are not generating an executable, then no final values are
440   // known, since they will change at runtime.
441   if (parameters->options().output_is_position_independent()
442       || parameters->options().relocatable())
443     return false;
444
445   // If the symbol is not from an object file, and is not undefined,
446   // then it is defined, and known.
447   if (this->source_ != FROM_OBJECT)
448     {
449       if (this->source_ != IS_UNDEFINED)
450         return true;
451     }
452   else
453     {
454       // If the symbol is from a dynamic object, then the final value
455       // is not known.
456       if (this->object()->is_dynamic())
457         return false;
458
459       // If the symbol is not undefined (it is defined or common),
460       // then the final value is known.
461       if (!this->is_undefined())
462         return true;
463     }
464
465   // If the symbol is undefined, then whether the final value is known
466   // depends on whether we are doing a static link.  If we are doing a
467   // dynamic link, then the final value could be filled in at runtime.
468   // This could reasonably be the case for a weak undefined symbol.
469   return parameters->doing_static_link();
470 }
471
472 // Return the output section where this symbol is defined.
473
474 Output_section*
475 Symbol::output_section() const
476 {
477   switch (this->source_)
478     {
479     case FROM_OBJECT:
480       {
481         unsigned int shndx = this->u_.from_object.shndx;
482         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
483           {
484             gold_assert(!this->u_.from_object.object->is_dynamic());
485             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
486             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
487             return relobj->output_section(shndx);
488           }
489         return NULL;
490       }
491
492     case IN_OUTPUT_DATA:
493       return this->u_.in_output_data.output_data->output_section();
494
495     case IN_OUTPUT_SEGMENT:
496     case IS_CONSTANT:
497     case IS_UNDEFINED:
498       return NULL;
499
500     default:
501       gold_unreachable();
502     }
503 }
504
505 // Set the symbol's output section.  This is used for symbols defined
506 // in scripts.  This should only be called after the symbol table has
507 // been finalized.
508
509 void
510 Symbol::set_output_section(Output_section* os)
511 {
512   switch (this->source_)
513     {
514     case FROM_OBJECT:
515     case IN_OUTPUT_DATA:
516       gold_assert(this->output_section() == os);
517       break;
518     case IS_CONSTANT:
519       this->source_ = IN_OUTPUT_DATA;
520       this->u_.in_output_data.output_data = os;
521       this->u_.in_output_data.offset_is_from_end = false;
522       break;
523     case IN_OUTPUT_SEGMENT:
524     case IS_UNDEFINED:
525     default:
526       gold_unreachable();
527     }
528 }
529
530 // Set the symbol's output segment.  This is used for pre-defined
531 // symbols whose segments aren't known until after layout is done
532 // (e.g., __ehdr_start).
533
534 void
535 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
536 {
537   gold_assert(this->is_predefined_);
538   this->source_ = IN_OUTPUT_SEGMENT;
539   this->u_.in_output_segment.output_segment = os;
540   this->u_.in_output_segment.offset_base = base;
541 }
542
543 // Set the symbol to undefined.  This is used for pre-defined
544 // symbols whose segments aren't known until after layout is done
545 // (e.g., __ehdr_start).
546
547 void
548 Symbol::set_undefined()
549 {
550   gold_assert(this->is_predefined_);
551   this->source_ = IS_UNDEFINED;
552   this->is_predefined_ = false;
553 }
554
555 // Class Symbol_table.
556
557 Symbol_table::Symbol_table(unsigned int count,
558                            const Version_script_info& version_script)
559   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
560     forwarders_(), commons_(), tls_commons_(), small_commons_(),
561     large_commons_(), forced_locals_(), warnings_(),
562     version_script_(version_script), gc_(NULL), icf_(NULL)
563 {
564   namepool_.reserve(count);
565 }
566
567 Symbol_table::~Symbol_table()
568 {
569 }
570
571 // The symbol table key equality function.  This is called with
572 // Stringpool keys.
573
574 inline bool
575 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
576                                           const Symbol_table_key& k2) const
577 {
578   return k1.first == k2.first && k1.second == k2.second;
579 }
580
581 bool
582 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
583 {
584   return (parameters->options().icf_enabled()
585           && this->icf_->is_section_folded(obj, shndx));
586 }
587
588 // For symbols that have been listed with a -u or --export-dynamic-symbol
589 // option, add them to the work list to avoid gc'ing them.
590
591 void 
592 Symbol_table::gc_mark_undef_symbols(Layout* layout)
593 {
594   for (options::String_set::const_iterator p =
595          parameters->options().undefined_begin();
596        p != parameters->options().undefined_end();
597        ++p)
598     {
599       const char* name = p->c_str();
600       Symbol* sym = this->lookup(name);
601       gold_assert(sym != NULL);
602       if (sym->source() == Symbol::FROM_OBJECT 
603           && !sym->object()->is_dynamic())
604         {
605           this->gc_mark_symbol(sym);
606         }
607     }
608
609   for (options::String_set::const_iterator p =
610          parameters->options().export_dynamic_symbol_begin();
611        p != parameters->options().export_dynamic_symbol_end();
612        ++p)
613     {
614       const char* name = p->c_str();
615       Symbol* sym = this->lookup(name);
616       // It's not an error if a symbol named by --export-dynamic-symbol
617       // is undefined.
618       if (sym != NULL
619           && sym->source() == Symbol::FROM_OBJECT 
620           && !sym->object()->is_dynamic())
621         {
622           this->gc_mark_symbol(sym);
623         }
624     }
625
626   for (Script_options::referenced_const_iterator p =
627          layout->script_options()->referenced_begin();
628        p != layout->script_options()->referenced_end();
629        ++p)
630     {
631       Symbol* sym = this->lookup(p->c_str());
632       gold_assert(sym != NULL);
633       if (sym->source() == Symbol::FROM_OBJECT
634           && !sym->object()->is_dynamic())
635         {
636           this->gc_mark_symbol(sym);
637         }
638     }
639 }
640
641 void
642 Symbol_table::gc_mark_symbol(Symbol* sym)
643 {
644   // Add the object and section to the work list.
645   bool is_ordinary;
646   unsigned int shndx = sym->shndx(&is_ordinary);
647   if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
648     {
649       gold_assert(this->gc_!= NULL);
650       this->gc_->worklist().push(Section_id(sym->object(), shndx));
651     }
652   parameters->target().gc_mark_symbol(this, sym);
653 }
654
655 // When doing garbage collection, keep symbols that have been seen in
656 // dynamic objects.
657 inline void 
658 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
659 {
660   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
661       && !sym->object()->is_dynamic())
662     this->gc_mark_symbol(sym);
663 }
664
665 // Make TO a symbol which forwards to FROM.
666
667 void
668 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
669 {
670   gold_assert(from != to);
671   gold_assert(!from->is_forwarder() && !to->is_forwarder());
672   this->forwarders_[from] = to;
673   from->set_forwarder();
674 }
675
676 // Resolve the forwards from FROM, returning the real symbol.
677
678 Symbol*
679 Symbol_table::resolve_forwards(const Symbol* from) const
680 {
681   gold_assert(from->is_forwarder());
682   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
683     this->forwarders_.find(from);
684   gold_assert(p != this->forwarders_.end());
685   return p->second;
686 }
687
688 // Look up a symbol by name.
689
690 Symbol*
691 Symbol_table::lookup(const char* name, const char* version) const
692 {
693   Stringpool::Key name_key;
694   name = this->namepool_.find(name, &name_key);
695   if (name == NULL)
696     return NULL;
697
698   Stringpool::Key version_key = 0;
699   if (version != NULL)
700     {
701       version = this->namepool_.find(version, &version_key);
702       if (version == NULL)
703         return NULL;
704     }
705
706   Symbol_table_key key(name_key, version_key);
707   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
708   if (p == this->table_.end())
709     return NULL;
710   return p->second;
711 }
712
713 // Resolve a Symbol with another Symbol.  This is only used in the
714 // unusual case where there are references to both an unversioned
715 // symbol and a symbol with a version, and we then discover that that
716 // version is the default version.  Because this is unusual, we do
717 // this the slow way, by converting back to an ELF symbol.
718
719 template<int size, bool big_endian>
720 void
721 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
722 {
723   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
724   elfcpp::Sym_write<size, big_endian> esym(buf);
725   // We don't bother to set the st_name or the st_shndx field.
726   esym.put_st_value(from->value());
727   esym.put_st_size(from->symsize());
728   esym.put_st_info(from->binding(), from->type());
729   esym.put_st_other(from->visibility(), from->nonvis());
730   bool is_ordinary;
731   unsigned int shndx = from->shndx(&is_ordinary);
732   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
733                 from->version());
734   if (from->in_reg())
735     to->set_in_reg();
736   if (from->in_dyn())
737     to->set_in_dyn();
738   if (parameters->options().gc_sections())
739     this->gc_mark_dyn_syms(to);
740 }
741
742 // Record that a symbol is forced to be local by a version script or
743 // by visibility.
744
745 void
746 Symbol_table::force_local(Symbol* sym)
747 {
748   if (!sym->is_defined() && !sym->is_common())
749     return;
750   if (sym->is_forced_local())
751     {
752       // We already got this one.
753       return;
754     }
755   sym->set_is_forced_local();
756   this->forced_locals_.push_back(sym);
757 }
758
759 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
760 // is only called for undefined symbols, when at least one --wrap
761 // option was used.
762
763 const char*
764 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
765 {
766   // For some targets, we need to ignore a specific character when
767   // wrapping, and add it back later.
768   char prefix = '\0';
769   if (name[0] == parameters->target().wrap_char())
770     {
771       prefix = name[0];
772       ++name;
773     }
774
775   if (parameters->options().is_wrap(name))
776     {
777       // Turn NAME into __wrap_NAME.
778       std::string s;
779       if (prefix != '\0')
780         s += prefix;
781       s += "__wrap_";
782       s += name;
783
784       // This will give us both the old and new name in NAMEPOOL_, but
785       // that is OK.  Only the versions we need will wind up in the
786       // real string table in the output file.
787       return this->namepool_.add(s.c_str(), true, name_key);
788     }
789
790   const char* const real_prefix = "__real_";
791   const size_t real_prefix_length = strlen(real_prefix);
792   if (strncmp(name, real_prefix, real_prefix_length) == 0
793       && parameters->options().is_wrap(name + real_prefix_length))
794     {
795       // Turn __real_NAME into NAME.
796       std::string s;
797       if (prefix != '\0')
798         s += prefix;
799       s += name + real_prefix_length;
800       return this->namepool_.add(s.c_str(), true, name_key);
801     }
802
803   return name;
804 }
805
806 // This is called when we see a symbol NAME/VERSION, and the symbol
807 // already exists in the symbol table, and VERSION is marked as being
808 // the default version.  SYM is the NAME/VERSION symbol we just added.
809 // DEFAULT_IS_NEW is true if this is the first time we have seen the
810 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
811
812 template<int size, bool big_endian>
813 void
814 Symbol_table::define_default_version(Sized_symbol<size>* sym,
815                                      bool default_is_new,
816                                      Symbol_table_type::iterator pdef)
817 {
818   if (default_is_new)
819     {
820       // This is the first time we have seen NAME/NULL.  Make
821       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
822       // version.
823       pdef->second = sym;
824       sym->set_is_default();
825     }
826   else if (pdef->second == sym)
827     {
828       // NAME/NULL already points to NAME/VERSION.  Don't mark the
829       // symbol as the default if it is not already the default.
830     }
831   else
832     {
833       // This is the unfortunate case where we already have entries
834       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
835       // NAME/VERSION where VERSION is the default version.  We have
836       // already resolved this new symbol with the existing
837       // NAME/VERSION symbol.
838
839       // It's possible that NAME/NULL and NAME/VERSION are both
840       // defined in regular objects.  This can only happen if one
841       // object file defines foo and another defines foo@@ver.  This
842       // is somewhat obscure, but we call it a multiple definition
843       // error.
844
845       // It's possible that NAME/NULL actually has a version, in which
846       // case it won't be the same as VERSION.  This happens with
847       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
848       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
849       // then see an unadorned t2_2 in an object file and give it
850       // version VER1 from the version script.  This looks like a
851       // default definition for VER1, so it looks like we should merge
852       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
853       // not obvious that this is an error, either.  So we just punt.
854
855       // If one of the symbols has non-default visibility, and the
856       // other is defined in a shared object, then they are different
857       // symbols.
858
859       // Otherwise, we just resolve the symbols as though they were
860       // the same.
861
862       if (pdef->second->version() != NULL)
863         gold_assert(pdef->second->version() != sym->version());
864       else if (sym->visibility() != elfcpp::STV_DEFAULT
865                && pdef->second->is_from_dynobj())
866         ;
867       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
868                && sym->is_from_dynobj())
869         ;
870       else
871         {
872           const Sized_symbol<size>* symdef;
873           symdef = this->get_sized_symbol<size>(pdef->second);
874           Symbol_table::resolve<size, big_endian>(sym, symdef);
875           this->make_forwarder(pdef->second, sym);
876           pdef->second = sym;
877           sym->set_is_default();
878         }
879     }
880 }
881
882 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
883 // name and VERSION is the version; both are canonicalized.  DEF is
884 // whether this is the default version.  ST_SHNDX is the symbol's
885 // section index; IS_ORDINARY is whether this is a normal section
886 // rather than a special code.
887
888 // If IS_DEFAULT_VERSION is true, then this is the definition of a
889 // default version of a symbol.  That means that any lookup of
890 // NAME/NULL and any lookup of NAME/VERSION should always return the
891 // same symbol.  This is obvious for references, but in particular we
892 // want to do this for definitions: overriding NAME/NULL should also
893 // override NAME/VERSION.  If we don't do that, it would be very hard
894 // to override functions in a shared library which uses versioning.
895
896 // We implement this by simply making both entries in the hash table
897 // point to the same Symbol structure.  That is easy enough if this is
898 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
899 // that we have seen both already, in which case they will both have
900 // independent entries in the symbol table.  We can't simply change
901 // the symbol table entry, because we have pointers to the entries
902 // attached to the object files.  So we mark the entry attached to the
903 // object file as a forwarder, and record it in the forwarders_ map.
904 // Note that entries in the hash table will never be marked as
905 // forwarders.
906 //
907 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
908 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
909 // for a special section code.  ST_SHNDX may be modified if the symbol
910 // is defined in a section being discarded.
911
912 template<int size, bool big_endian>
913 Sized_symbol<size>*
914 Symbol_table::add_from_object(Object* object,
915                               const char* name,
916                               Stringpool::Key name_key,
917                               const char* version,
918                               Stringpool::Key version_key,
919                               bool is_default_version,
920                               const elfcpp::Sym<size, big_endian>& sym,
921                               unsigned int st_shndx,
922                               bool is_ordinary,
923                               unsigned int orig_st_shndx)
924 {
925   // Print a message if this symbol is being traced.
926   if (parameters->options().is_trace_symbol(name))
927     {
928       if (orig_st_shndx == elfcpp::SHN_UNDEF)
929         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
930       else
931         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
932     }
933
934   // For an undefined symbol, we may need to adjust the name using
935   // --wrap.
936   if (orig_st_shndx == elfcpp::SHN_UNDEF
937       && parameters->options().any_wrap())
938     {
939       const char* wrap_name = this->wrap_symbol(name, &name_key);
940       if (wrap_name != name)
941         {
942           // If we see a reference to malloc with version GLIBC_2.0,
943           // and we turn it into a reference to __wrap_malloc, then we
944           // discard the version number.  Otherwise the user would be
945           // required to specify the correct version for
946           // __wrap_malloc.
947           version = NULL;
948           version_key = 0;
949           name = wrap_name;
950         }
951     }
952
953   Symbol* const snull = NULL;
954   std::pair<typename Symbol_table_type::iterator, bool> ins =
955     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
956                                        snull));
957
958   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
959     std::make_pair(this->table_.end(), false);
960   if (is_default_version)
961     {
962       const Stringpool::Key vnull_key = 0;
963       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
964                                                                      vnull_key),
965                                                       snull));
966     }
967
968   // ins.first: an iterator, which is a pointer to a pair.
969   // ins.first->first: the key (a pair of name and version).
970   // ins.first->second: the value (Symbol*).
971   // ins.second: true if new entry was inserted, false if not.
972
973   Sized_symbol<size>* ret;
974   bool was_undefined;
975   bool was_common;
976   if (!ins.second)
977     {
978       // We already have an entry for NAME/VERSION.
979       ret = this->get_sized_symbol<size>(ins.first->second);
980       gold_assert(ret != NULL);
981
982       was_undefined = ret->is_undefined();
983       was_common = ret->is_common();
984
985       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
986                     version);
987       if (parameters->options().gc_sections())
988         this->gc_mark_dyn_syms(ret);
989
990       if (is_default_version)
991         this->define_default_version<size, big_endian>(ret, insdefault.second,
992                                                        insdefault.first);
993     }
994   else
995     {
996       // This is the first time we have seen NAME/VERSION.
997       gold_assert(ins.first->second == NULL);
998
999       if (is_default_version && !insdefault.second)
1000         {
1001           // We already have an entry for NAME/NULL.  If we override
1002           // it, then change it to NAME/VERSION.
1003           ret = this->get_sized_symbol<size>(insdefault.first->second);
1004
1005           was_undefined = ret->is_undefined();
1006           was_common = ret->is_common();
1007
1008           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1009                         version);
1010           if (parameters->options().gc_sections())
1011             this->gc_mark_dyn_syms(ret);
1012           ins.first->second = ret;
1013         }
1014       else
1015         {
1016           was_undefined = false;
1017           was_common = false;
1018
1019           Sized_target<size, big_endian>* target =
1020             parameters->sized_target<size, big_endian>();
1021           if (!target->has_make_symbol())
1022             ret = new Sized_symbol<size>();
1023           else
1024             {
1025               ret = target->make_symbol();
1026               if (ret == NULL)
1027                 {
1028                   // This means that we don't want a symbol table
1029                   // entry after all.
1030                   if (!is_default_version)
1031                     this->table_.erase(ins.first);
1032                   else
1033                     {
1034                       this->table_.erase(insdefault.first);
1035                       // Inserting INSDEFAULT invalidated INS.
1036                       this->table_.erase(std::make_pair(name_key,
1037                                                         version_key));
1038                     }
1039                   return NULL;
1040                 }
1041             }
1042
1043           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1044
1045           ins.first->second = ret;
1046           if (is_default_version)
1047             {
1048               // This is the first time we have seen NAME/NULL.  Point
1049               // it at the new entry for NAME/VERSION.
1050               gold_assert(insdefault.second);
1051               insdefault.first->second = ret;
1052             }
1053         }
1054
1055       if (is_default_version)
1056         ret->set_is_default();
1057     }
1058
1059   // Record every time we see a new undefined symbol, to speed up
1060   // archive groups.
1061   if (!was_undefined && ret->is_undefined())
1062     {
1063       ++this->saw_undefined_;
1064       if (parameters->options().has_plugins())
1065         parameters->options().plugins()->new_undefined_symbol(ret);
1066     }
1067
1068   // Keep track of common symbols, to speed up common symbol
1069   // allocation.
1070   if (!was_common && ret->is_common())
1071     {
1072       if (ret->type() == elfcpp::STT_TLS)
1073         this->tls_commons_.push_back(ret);
1074       else if (!is_ordinary
1075                && st_shndx == parameters->target().small_common_shndx())
1076         this->small_commons_.push_back(ret);
1077       else if (!is_ordinary
1078                && st_shndx == parameters->target().large_common_shndx())
1079         this->large_commons_.push_back(ret);
1080       else
1081         this->commons_.push_back(ret);
1082     }
1083
1084   // If we're not doing a relocatable link, then any symbol with
1085   // hidden or internal visibility is local.
1086   if ((ret->visibility() == elfcpp::STV_HIDDEN
1087        || ret->visibility() == elfcpp::STV_INTERNAL)
1088       && (ret->binding() == elfcpp::STB_GLOBAL
1089           || ret->binding() == elfcpp::STB_GNU_UNIQUE
1090           || ret->binding() == elfcpp::STB_WEAK)
1091       && !parameters->options().relocatable())
1092     this->force_local(ret);
1093
1094   return ret;
1095 }
1096
1097 // Add all the symbols in a relocatable object to the hash table.
1098
1099 template<int size, bool big_endian>
1100 void
1101 Symbol_table::add_from_relobj(
1102     Sized_relobj_file<size, big_endian>* relobj,
1103     const unsigned char* syms,
1104     size_t count,
1105     size_t symndx_offset,
1106     const char* sym_names,
1107     size_t sym_name_size,
1108     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1109     size_t* defined)
1110 {
1111   *defined = 0;
1112
1113   gold_assert(size == parameters->target().get_size());
1114
1115   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1116
1117   const bool just_symbols = relobj->just_symbols();
1118
1119   const unsigned char* p = syms;
1120   for (size_t i = 0; i < count; ++i, p += sym_size)
1121     {
1122       (*sympointers)[i] = NULL;
1123
1124       elfcpp::Sym<size, big_endian> sym(p);
1125
1126       unsigned int st_name = sym.get_st_name();
1127       if (st_name >= sym_name_size)
1128         {
1129           relobj->error(_("bad global symbol name offset %u at %zu"),
1130                         st_name, i);
1131           continue;
1132         }
1133
1134       const char* name = sym_names + st_name;
1135
1136       if (strcmp (name, "__gnu_lto_slim") == 0)
1137         gold_info(_("%s: plugin needed to handle lto object"),
1138                   relobj->name().c_str());
1139
1140       bool is_ordinary;
1141       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1142                                                        sym.get_st_shndx(),
1143                                                        &is_ordinary);
1144       unsigned int orig_st_shndx = st_shndx;
1145       if (!is_ordinary)
1146         orig_st_shndx = elfcpp::SHN_UNDEF;
1147
1148       if (st_shndx != elfcpp::SHN_UNDEF)
1149         ++*defined;
1150
1151       // A symbol defined in a section which we are not including must
1152       // be treated as an undefined symbol.
1153       bool is_defined_in_discarded_section = false;
1154       if (st_shndx != elfcpp::SHN_UNDEF
1155           && is_ordinary
1156           && !relobj->is_section_included(st_shndx)
1157           && !this->is_section_folded(relobj, st_shndx))
1158         {
1159           st_shndx = elfcpp::SHN_UNDEF;
1160           is_defined_in_discarded_section = true;
1161         }
1162
1163       // In an object file, an '@' in the name separates the symbol
1164       // name from the version name.  If there are two '@' characters,
1165       // this is the default version.
1166       const char* ver = strchr(name, '@');
1167       Stringpool::Key ver_key = 0;
1168       int namelen = 0;
1169       // IS_DEFAULT_VERSION: is the version default?
1170       // IS_FORCED_LOCAL: is the symbol forced local?
1171       bool is_default_version = false;
1172       bool is_forced_local = false;
1173
1174       // FIXME: For incremental links, we don't store version information,
1175       // so we need to ignore version symbols for now.
1176       if (parameters->incremental_update() && ver != NULL)
1177         {
1178           namelen = ver - name;
1179           ver = NULL;
1180         }
1181
1182       if (ver != NULL)
1183         {
1184           // The symbol name is of the form foo@VERSION or foo@@VERSION
1185           namelen = ver - name;
1186           ++ver;
1187           if (*ver == '@')
1188             {
1189               is_default_version = true;
1190               ++ver;
1191             }
1192           ver = this->namepool_.add(ver, true, &ver_key);
1193         }
1194       // We don't want to assign a version to an undefined symbol,
1195       // even if it is listed in the version script.  FIXME: What
1196       // about a common symbol?
1197       else
1198         {
1199           namelen = strlen(name);
1200           if (!this->version_script_.empty()
1201               && st_shndx != elfcpp::SHN_UNDEF)
1202             {
1203               // The symbol name did not have a version, but the
1204               // version script may assign a version anyway.
1205               std::string version;
1206               bool is_global;
1207               if (this->version_script_.get_symbol_version(name, &version,
1208                                                            &is_global))
1209                 {
1210                   if (!is_global)
1211                     is_forced_local = true;
1212                   else if (!version.empty())
1213                     {
1214                       ver = this->namepool_.add_with_length(version.c_str(),
1215                                                             version.length(),
1216                                                             true,
1217                                                             &ver_key);
1218                       is_default_version = true;
1219                     }
1220                 }
1221             }
1222         }
1223
1224       elfcpp::Sym<size, big_endian>* psym = &sym;
1225       unsigned char symbuf[sym_size];
1226       elfcpp::Sym<size, big_endian> sym2(symbuf);
1227       if (just_symbols)
1228         {
1229           memcpy(symbuf, p, sym_size);
1230           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1231           if (orig_st_shndx != elfcpp::SHN_UNDEF
1232               && is_ordinary
1233               && relobj->e_type() == elfcpp::ET_REL)
1234             {
1235               // Symbol values in relocatable object files are section
1236               // relative.  This is normally what we want, but since here
1237               // we are converting the symbol to absolute we need to add
1238               // the section address.  The section address in an object
1239               // file is normally zero, but people can use a linker
1240               // script to change it.
1241               sw.put_st_value(sym.get_st_value()
1242                               + relobj->section_address(orig_st_shndx));
1243             }
1244           st_shndx = elfcpp::SHN_ABS;
1245           is_ordinary = false;
1246           psym = &sym2;
1247         }
1248
1249       // Fix up visibility if object has no-export set.
1250       if (relobj->no_export()
1251           && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1252         {
1253           // We may have copied symbol already above.
1254           if (psym != &sym2)
1255             {
1256               memcpy(symbuf, p, sym_size);
1257               psym = &sym2;
1258             }
1259
1260           elfcpp::STV visibility = sym2.get_st_visibility();
1261           if (visibility == elfcpp::STV_DEFAULT
1262               || visibility == elfcpp::STV_PROTECTED)
1263             {
1264               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1265               unsigned char nonvis = sym2.get_st_nonvis();
1266               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1267             }
1268         }
1269
1270       Stringpool::Key name_key;
1271       name = this->namepool_.add_with_length(name, namelen, true,
1272                                              &name_key);
1273
1274       Sized_symbol<size>* res;
1275       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1276                                   is_default_version, *psym, st_shndx,
1277                                   is_ordinary, orig_st_shndx);
1278       
1279       if (is_forced_local)
1280         this->force_local(res);
1281
1282       // Do not treat this symbol as garbage if this symbol will be
1283       // exported to the dynamic symbol table.  This is true when
1284       // building a shared library or using --export-dynamic and
1285       // the symbol is externally visible.
1286       if (parameters->options().gc_sections()
1287           && res->is_externally_visible()
1288           && !res->is_from_dynobj()
1289           && (parameters->options().shared()
1290               || parameters->options().export_dynamic()
1291               || parameters->options().in_dynamic_list(res->name())))
1292         this->gc_mark_symbol(res);
1293
1294       if (is_defined_in_discarded_section)
1295         res->set_is_defined_in_discarded_section();
1296
1297       (*sympointers)[i] = res;
1298     }
1299 }
1300
1301 // Add a symbol from a plugin-claimed file.
1302
1303 template<int size, bool big_endian>
1304 Symbol*
1305 Symbol_table::add_from_pluginobj(
1306     Sized_pluginobj<size, big_endian>* obj,
1307     const char* name,
1308     const char* ver,
1309     elfcpp::Sym<size, big_endian>* sym)
1310 {
1311   unsigned int st_shndx = sym->get_st_shndx();
1312   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1313
1314   Stringpool::Key ver_key = 0;
1315   bool is_default_version = false;
1316   bool is_forced_local = false;
1317
1318   if (ver != NULL)
1319     {
1320       ver = this->namepool_.add(ver, true, &ver_key);
1321     }
1322   // We don't want to assign a version to an undefined symbol,
1323   // even if it is listed in the version script.  FIXME: What
1324   // about a common symbol?
1325   else
1326     {
1327       if (!this->version_script_.empty()
1328           && st_shndx != elfcpp::SHN_UNDEF)
1329         {
1330           // The symbol name did not have a version, but the
1331           // version script may assign a version anyway.
1332           std::string version;
1333           bool is_global;
1334           if (this->version_script_.get_symbol_version(name, &version,
1335                                                        &is_global))
1336             {
1337               if (!is_global)
1338                 is_forced_local = true;
1339               else if (!version.empty())
1340                 {
1341                   ver = this->namepool_.add_with_length(version.c_str(),
1342                                                         version.length(),
1343                                                         true,
1344                                                         &ver_key);
1345                   is_default_version = true;
1346                 }
1347             }
1348         }
1349     }
1350
1351   Stringpool::Key name_key;
1352   name = this->namepool_.add(name, true, &name_key);
1353
1354   Sized_symbol<size>* res;
1355   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1356                               is_default_version, *sym, st_shndx,
1357                               is_ordinary, st_shndx);
1358
1359   if (is_forced_local)
1360     this->force_local(res);
1361
1362   return res;
1363 }
1364
1365 // Add all the symbols in a dynamic object to the hash table.
1366
1367 template<int size, bool big_endian>
1368 void
1369 Symbol_table::add_from_dynobj(
1370     Sized_dynobj<size, big_endian>* dynobj,
1371     const unsigned char* syms,
1372     size_t count,
1373     const char* sym_names,
1374     size_t sym_name_size,
1375     const unsigned char* versym,
1376     size_t versym_size,
1377     const std::vector<const char*>* version_map,
1378     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1379     size_t* defined)
1380 {
1381   *defined = 0;
1382
1383   gold_assert(size == parameters->target().get_size());
1384
1385   if (dynobj->just_symbols())
1386     {
1387       gold_error(_("--just-symbols does not make sense with a shared object"));
1388       return;
1389     }
1390
1391   // FIXME: For incremental links, we don't store version information,
1392   // so we need to ignore version symbols for now.
1393   if (parameters->incremental_update())
1394     versym = NULL;
1395
1396   if (versym != NULL && versym_size / 2 < count)
1397     {
1398       dynobj->error(_("too few symbol versions"));
1399       return;
1400     }
1401
1402   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1403
1404   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1405   // weak aliases.  This is necessary because if the dynamic object
1406   // provides the same variable under two names, one of which is a
1407   // weak definition, and the regular object refers to the weak
1408   // definition, we have to put both the weak definition and the
1409   // strong definition into the dynamic symbol table.  Given a weak
1410   // definition, the only way that we can find the corresponding
1411   // strong definition, if any, is to search the symbol table.
1412   std::vector<Sized_symbol<size>*> object_symbols;
1413
1414   const unsigned char* p = syms;
1415   const unsigned char* vs = versym;
1416   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1417     {
1418       elfcpp::Sym<size, big_endian> sym(p);
1419
1420       if (sympointers != NULL)
1421         (*sympointers)[i] = NULL;
1422
1423       // Ignore symbols with local binding or that have
1424       // internal or hidden visibility.
1425       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1426           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1427           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1428         continue;
1429
1430       // A protected symbol in a shared library must be treated as a
1431       // normal symbol when viewed from outside the shared library.
1432       // Implement this by overriding the visibility here.
1433       elfcpp::Sym<size, big_endian>* psym = &sym;
1434       unsigned char symbuf[sym_size];
1435       elfcpp::Sym<size, big_endian> sym2(symbuf);
1436       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1437         {
1438           memcpy(symbuf, p, sym_size);
1439           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1440           sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1441           psym = &sym2;
1442         }
1443
1444       unsigned int st_name = psym->get_st_name();
1445       if (st_name >= sym_name_size)
1446         {
1447           dynobj->error(_("bad symbol name offset %u at %zu"),
1448                         st_name, i);
1449           continue;
1450         }
1451
1452       const char* name = sym_names + st_name;
1453
1454       bool is_ordinary;
1455       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1456                                                        &is_ordinary);
1457
1458       if (st_shndx != elfcpp::SHN_UNDEF)
1459         ++*defined;
1460
1461       Sized_symbol<size>* res;
1462
1463       if (versym == NULL)
1464         {
1465           Stringpool::Key name_key;
1466           name = this->namepool_.add(name, true, &name_key);
1467           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1468                                       false, *psym, st_shndx, is_ordinary,
1469                                       st_shndx);
1470         }
1471       else
1472         {
1473           // Read the version information.
1474
1475           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1476
1477           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1478           v &= elfcpp::VERSYM_VERSION;
1479
1480           // The Sun documentation says that V can be VER_NDX_LOCAL,
1481           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1482           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1483           // The old GNU linker will happily generate VER_NDX_LOCAL
1484           // for an undefined symbol.  I don't know what the Sun
1485           // linker will generate.
1486
1487           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1488               && st_shndx != elfcpp::SHN_UNDEF)
1489             {
1490               // This symbol should not be visible outside the object.
1491               continue;
1492             }
1493
1494           // At this point we are definitely going to add this symbol.
1495           Stringpool::Key name_key;
1496           name = this->namepool_.add(name, true, &name_key);
1497
1498           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1499               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1500             {
1501               // This symbol does not have a version.
1502               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1503                                           false, *psym, st_shndx, is_ordinary,
1504                                           st_shndx);
1505             }
1506           else
1507             {
1508               if (v >= version_map->size())
1509                 {
1510                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1511                                 i, v);
1512                   continue;
1513                 }
1514
1515               const char* version = (*version_map)[v];
1516               if (version == NULL)
1517                 {
1518                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1519                                 i, v);
1520                   continue;
1521                 }
1522
1523               Stringpool::Key version_key;
1524               version = this->namepool_.add(version, true, &version_key);
1525
1526               // If this is an absolute symbol, and the version name
1527               // and symbol name are the same, then this is the
1528               // version definition symbol.  These symbols exist to
1529               // support using -u to pull in particular versions.  We
1530               // do not want to record a version for them.
1531               if (st_shndx == elfcpp::SHN_ABS
1532                   && !is_ordinary
1533                   && name_key == version_key)
1534                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1535                                             false, *psym, st_shndx, is_ordinary,
1536                                             st_shndx);
1537               else
1538                 {
1539                   const bool is_default_version =
1540                     !hidden && st_shndx != elfcpp::SHN_UNDEF;
1541                   res = this->add_from_object(dynobj, name, name_key, version,
1542                                               version_key, is_default_version,
1543                                               *psym, st_shndx,
1544                                               is_ordinary, st_shndx);
1545                 }
1546             }
1547         }
1548
1549       // Note that it is possible that RES was overridden by an
1550       // earlier object, in which case it can't be aliased here.
1551       if (st_shndx != elfcpp::SHN_UNDEF
1552           && is_ordinary
1553           && psym->get_st_type() == elfcpp::STT_OBJECT
1554           && res->source() == Symbol::FROM_OBJECT
1555           && res->object() == dynobj)
1556         object_symbols.push_back(res);
1557
1558       if (sympointers != NULL)
1559         (*sympointers)[i] = res;
1560     }
1561
1562   this->record_weak_aliases(&object_symbols);
1563 }
1564
1565 // Add a symbol from a incremental object file.
1566
1567 template<int size, bool big_endian>
1568 Sized_symbol<size>*
1569 Symbol_table::add_from_incrobj(
1570     Object* obj,
1571     const char* name,
1572     const char* ver,
1573     elfcpp::Sym<size, big_endian>* sym)
1574 {
1575   unsigned int st_shndx = sym->get_st_shndx();
1576   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1577
1578   Stringpool::Key ver_key = 0;
1579   bool is_default_version = false;
1580   bool is_forced_local = false;
1581
1582   Stringpool::Key name_key;
1583   name = this->namepool_.add(name, true, &name_key);
1584
1585   Sized_symbol<size>* res;
1586   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1587                               is_default_version, *sym, st_shndx,
1588                               is_ordinary, st_shndx);
1589
1590   if (is_forced_local)
1591     this->force_local(res);
1592
1593   return res;
1594 }
1595
1596 // This is used to sort weak aliases.  We sort them first by section
1597 // index, then by offset, then by weak ahead of strong.
1598
1599 template<int size>
1600 class Weak_alias_sorter
1601 {
1602  public:
1603   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1604 };
1605
1606 template<int size>
1607 bool
1608 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1609                                     const Sized_symbol<size>* s2) const
1610 {
1611   bool is_ordinary;
1612   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1613   gold_assert(is_ordinary);
1614   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1615   gold_assert(is_ordinary);
1616   if (s1_shndx != s2_shndx)
1617     return s1_shndx < s2_shndx;
1618
1619   if (s1->value() != s2->value())
1620     return s1->value() < s2->value();
1621   if (s1->binding() != s2->binding())
1622     {
1623       if (s1->binding() == elfcpp::STB_WEAK)
1624         return true;
1625       if (s2->binding() == elfcpp::STB_WEAK)
1626         return false;
1627     }
1628   return std::string(s1->name()) < std::string(s2->name());
1629 }
1630
1631 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1632 // for any weak aliases, and record them so that if we add the weak
1633 // alias to the dynamic symbol table, we also add the corresponding
1634 // strong symbol.
1635
1636 template<int size>
1637 void
1638 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1639 {
1640   // Sort the vector by section index, then by offset, then by weak
1641   // ahead of strong.
1642   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1643
1644   // Walk through the vector.  For each weak definition, record
1645   // aliases.
1646   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1647          symbols->begin();
1648        p != symbols->end();
1649        ++p)
1650     {
1651       if ((*p)->binding() != elfcpp::STB_WEAK)
1652         continue;
1653
1654       // Build a circular list of weak aliases.  Each symbol points to
1655       // the next one in the circular list.
1656
1657       Sized_symbol<size>* from_sym = *p;
1658       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1659       for (q = p + 1; q != symbols->end(); ++q)
1660         {
1661           bool dummy;
1662           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1663               || (*q)->value() != from_sym->value())
1664             break;
1665
1666           this->weak_aliases_[from_sym] = *q;
1667           from_sym->set_has_alias();
1668           from_sym = *q;
1669         }
1670
1671       if (from_sym != *p)
1672         {
1673           this->weak_aliases_[from_sym] = *p;
1674           from_sym->set_has_alias();
1675         }
1676
1677       p = q - 1;
1678     }
1679 }
1680
1681 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1682 // true, then only create the symbol if there is a reference to it.
1683 // If this does not return NULL, it sets *POLDSYM to the existing
1684 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1685 // resolve the newly created symbol to the old one.  This
1686 // canonicalizes *PNAME and *PVERSION.
1687
1688 template<int size, bool big_endian>
1689 Sized_symbol<size>*
1690 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1691                                     bool only_if_ref,
1692                                     Sized_symbol<size>** poldsym,
1693                                     bool* resolve_oldsym)
1694 {
1695   *resolve_oldsym = false;
1696   *poldsym = NULL;
1697
1698   // If the caller didn't give us a version, see if we get one from
1699   // the version script.
1700   std::string v;
1701   bool is_default_version = false;
1702   if (*pversion == NULL)
1703     {
1704       bool is_global;
1705       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1706         {
1707           if (is_global && !v.empty())
1708             {
1709               *pversion = v.c_str();
1710               // If we get the version from a version script, then we
1711               // are also the default version.
1712               is_default_version = true;
1713             }
1714         }
1715     }
1716
1717   Symbol* oldsym;
1718   Sized_symbol<size>* sym;
1719
1720   bool add_to_table = false;
1721   typename Symbol_table_type::iterator add_loc = this->table_.end();
1722   bool add_def_to_table = false;
1723   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1724
1725   if (only_if_ref)
1726     {
1727       oldsym = this->lookup(*pname, *pversion);
1728       if (oldsym == NULL && is_default_version)
1729         oldsym = this->lookup(*pname, NULL);
1730       if (oldsym == NULL || !oldsym->is_undefined())
1731         return NULL;
1732
1733       *pname = oldsym->name();
1734       if (is_default_version)
1735         *pversion = this->namepool_.add(*pversion, true, NULL);
1736       else
1737         *pversion = oldsym->version();
1738     }
1739   else
1740     {
1741       // Canonicalize NAME and VERSION.
1742       Stringpool::Key name_key;
1743       *pname = this->namepool_.add(*pname, true, &name_key);
1744
1745       Stringpool::Key version_key = 0;
1746       if (*pversion != NULL)
1747         *pversion = this->namepool_.add(*pversion, true, &version_key);
1748
1749       Symbol* const snull = NULL;
1750       std::pair<typename Symbol_table_type::iterator, bool> ins =
1751         this->table_.insert(std::make_pair(std::make_pair(name_key,
1752                                                           version_key),
1753                                            snull));
1754
1755       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1756         std::make_pair(this->table_.end(), false);
1757       if (is_default_version)
1758         {
1759           const Stringpool::Key vnull = 0;
1760           insdefault =
1761             this->table_.insert(std::make_pair(std::make_pair(name_key,
1762                                                               vnull),
1763                                                snull));
1764         }
1765
1766       if (!ins.second)
1767         {
1768           // We already have a symbol table entry for NAME/VERSION.
1769           oldsym = ins.first->second;
1770           gold_assert(oldsym != NULL);
1771
1772           if (is_default_version)
1773             {
1774               Sized_symbol<size>* soldsym =
1775                 this->get_sized_symbol<size>(oldsym);
1776               this->define_default_version<size, big_endian>(soldsym,
1777                                                              insdefault.second,
1778                                                              insdefault.first);
1779             }
1780         }
1781       else
1782         {
1783           // We haven't seen this symbol before.
1784           gold_assert(ins.first->second == NULL);
1785
1786           add_to_table = true;
1787           add_loc = ins.first;
1788
1789           if (is_default_version && !insdefault.second)
1790             {
1791               // We are adding NAME/VERSION, and it is the default
1792               // version.  We already have an entry for NAME/NULL.
1793               oldsym = insdefault.first->second;
1794               *resolve_oldsym = true;
1795             }
1796           else
1797             {
1798               oldsym = NULL;
1799
1800               if (is_default_version)
1801                 {
1802                   add_def_to_table = true;
1803                   add_def_loc = insdefault.first;
1804                 }
1805             }
1806         }
1807     }
1808
1809   const Target& target = parameters->target();
1810   if (!target.has_make_symbol())
1811     sym = new Sized_symbol<size>();
1812   else
1813     {
1814       Sized_target<size, big_endian>* sized_target =
1815         parameters->sized_target<size, big_endian>();
1816       sym = sized_target->make_symbol();
1817       if (sym == NULL)
1818         return NULL;
1819     }
1820
1821   if (add_to_table)
1822     add_loc->second = sym;
1823   else
1824     gold_assert(oldsym != NULL);
1825
1826   if (add_def_to_table)
1827     add_def_loc->second = sym;
1828
1829   *poldsym = this->get_sized_symbol<size>(oldsym);
1830
1831   return sym;
1832 }
1833
1834 // Define a symbol based on an Output_data.
1835
1836 Symbol*
1837 Symbol_table::define_in_output_data(const char* name,
1838                                     const char* version,
1839                                     Defined defined,
1840                                     Output_data* od,
1841                                     uint64_t value,
1842                                     uint64_t symsize,
1843                                     elfcpp::STT type,
1844                                     elfcpp::STB binding,
1845                                     elfcpp::STV visibility,
1846                                     unsigned char nonvis,
1847                                     bool offset_is_from_end,
1848                                     bool only_if_ref)
1849 {
1850   if (parameters->target().get_size() == 32)
1851     {
1852 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1853       return this->do_define_in_output_data<32>(name, version, defined, od,
1854                                                 value, symsize, type, binding,
1855                                                 visibility, nonvis,
1856                                                 offset_is_from_end,
1857                                                 only_if_ref);
1858 #else
1859       gold_unreachable();
1860 #endif
1861     }
1862   else if (parameters->target().get_size() == 64)
1863     {
1864 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1865       return this->do_define_in_output_data<64>(name, version, defined, od,
1866                                                 value, symsize, type, binding,
1867                                                 visibility, nonvis,
1868                                                 offset_is_from_end,
1869                                                 only_if_ref);
1870 #else
1871       gold_unreachable();
1872 #endif
1873     }
1874   else
1875     gold_unreachable();
1876 }
1877
1878 // Define a symbol in an Output_data, sized version.
1879
1880 template<int size>
1881 Sized_symbol<size>*
1882 Symbol_table::do_define_in_output_data(
1883     const char* name,
1884     const char* version,
1885     Defined defined,
1886     Output_data* od,
1887     typename elfcpp::Elf_types<size>::Elf_Addr value,
1888     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1889     elfcpp::STT type,
1890     elfcpp::STB binding,
1891     elfcpp::STV visibility,
1892     unsigned char nonvis,
1893     bool offset_is_from_end,
1894     bool only_if_ref)
1895 {
1896   Sized_symbol<size>* sym;
1897   Sized_symbol<size>* oldsym;
1898   bool resolve_oldsym;
1899
1900   if (parameters->target().is_big_endian())
1901     {
1902 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1903       sym = this->define_special_symbol<size, true>(&name, &version,
1904                                                     only_if_ref, &oldsym,
1905                                                     &resolve_oldsym);
1906 #else
1907       gold_unreachable();
1908 #endif
1909     }
1910   else
1911     {
1912 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1913       sym = this->define_special_symbol<size, false>(&name, &version,
1914                                                      only_if_ref, &oldsym,
1915                                                      &resolve_oldsym);
1916 #else
1917       gold_unreachable();
1918 #endif
1919     }
1920
1921   if (sym == NULL)
1922     return NULL;
1923
1924   sym->init_output_data(name, version, od, value, symsize, type, binding,
1925                         visibility, nonvis, offset_is_from_end,
1926                         defined == PREDEFINED);
1927
1928   if (oldsym == NULL)
1929     {
1930       if (binding == elfcpp::STB_LOCAL
1931           || this->version_script_.symbol_is_local(name))
1932         this->force_local(sym);
1933       else if (version != NULL)
1934         sym->set_is_default();
1935       return sym;
1936     }
1937
1938   if (Symbol_table::should_override_with_special(oldsym, type, defined))
1939     this->override_with_special(oldsym, sym);
1940
1941   if (resolve_oldsym)
1942     return sym;
1943   else
1944     {
1945       delete sym;
1946       return oldsym;
1947     }
1948 }
1949
1950 // Define a symbol based on an Output_segment.
1951
1952 Symbol*
1953 Symbol_table::define_in_output_segment(const char* name,
1954                                        const char* version,
1955                                        Defined defined,
1956                                        Output_segment* os,
1957                                        uint64_t value,
1958                                        uint64_t symsize,
1959                                        elfcpp::STT type,
1960                                        elfcpp::STB binding,
1961                                        elfcpp::STV visibility,
1962                                        unsigned char nonvis,
1963                                        Symbol::Segment_offset_base offset_base,
1964                                        bool only_if_ref)
1965 {
1966   if (parameters->target().get_size() == 32)
1967     {
1968 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1969       return this->do_define_in_output_segment<32>(name, version, defined, os,
1970                                                    value, symsize, type,
1971                                                    binding, visibility, nonvis,
1972                                                    offset_base, only_if_ref);
1973 #else
1974       gold_unreachable();
1975 #endif
1976     }
1977   else if (parameters->target().get_size() == 64)
1978     {
1979 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1980       return this->do_define_in_output_segment<64>(name, version, defined, os,
1981                                                    value, symsize, type,
1982                                                    binding, visibility, nonvis,
1983                                                    offset_base, only_if_ref);
1984 #else
1985       gold_unreachable();
1986 #endif
1987     }
1988   else
1989     gold_unreachable();
1990 }
1991
1992 // Define a symbol in an Output_segment, sized version.
1993
1994 template<int size>
1995 Sized_symbol<size>*
1996 Symbol_table::do_define_in_output_segment(
1997     const char* name,
1998     const char* version,
1999     Defined defined,
2000     Output_segment* os,
2001     typename elfcpp::Elf_types<size>::Elf_Addr value,
2002     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2003     elfcpp::STT type,
2004     elfcpp::STB binding,
2005     elfcpp::STV visibility,
2006     unsigned char nonvis,
2007     Symbol::Segment_offset_base offset_base,
2008     bool only_if_ref)
2009 {
2010   Sized_symbol<size>* sym;
2011   Sized_symbol<size>* oldsym;
2012   bool resolve_oldsym;
2013
2014   if (parameters->target().is_big_endian())
2015     {
2016 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2017       sym = this->define_special_symbol<size, true>(&name, &version,
2018                                                     only_if_ref, &oldsym,
2019                                                     &resolve_oldsym);
2020 #else
2021       gold_unreachable();
2022 #endif
2023     }
2024   else
2025     {
2026 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2027       sym = this->define_special_symbol<size, false>(&name, &version,
2028                                                      only_if_ref, &oldsym,
2029                                                      &resolve_oldsym);
2030 #else
2031       gold_unreachable();
2032 #endif
2033     }
2034
2035   if (sym == NULL)
2036     return NULL;
2037
2038   sym->init_output_segment(name, version, os, value, symsize, type, binding,
2039                            visibility, nonvis, offset_base,
2040                            defined == PREDEFINED);
2041
2042   if (oldsym == NULL)
2043     {
2044       if (binding == elfcpp::STB_LOCAL
2045           || this->version_script_.symbol_is_local(name))
2046         this->force_local(sym);
2047       else if (version != NULL)
2048         sym->set_is_default();
2049       return sym;
2050     }
2051
2052   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2053     this->override_with_special(oldsym, sym);
2054
2055   if (resolve_oldsym)
2056     return sym;
2057   else
2058     {
2059       delete sym;
2060       return oldsym;
2061     }
2062 }
2063
2064 // Define a special symbol with a constant value.  It is a multiple
2065 // definition error if this symbol is already defined.
2066
2067 Symbol*
2068 Symbol_table::define_as_constant(const char* name,
2069                                  const char* version,
2070                                  Defined defined,
2071                                  uint64_t value,
2072                                  uint64_t symsize,
2073                                  elfcpp::STT type,
2074                                  elfcpp::STB binding,
2075                                  elfcpp::STV visibility,
2076                                  unsigned char nonvis,
2077                                  bool only_if_ref,
2078                                  bool force_override)
2079 {
2080   if (parameters->target().get_size() == 32)
2081     {
2082 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2083       return this->do_define_as_constant<32>(name, version, defined, value,
2084                                              symsize, type, binding,
2085                                              visibility, nonvis, only_if_ref,
2086                                              force_override);
2087 #else
2088       gold_unreachable();
2089 #endif
2090     }
2091   else if (parameters->target().get_size() == 64)
2092     {
2093 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2094       return this->do_define_as_constant<64>(name, version, defined, value,
2095                                              symsize, type, binding,
2096                                              visibility, nonvis, only_if_ref,
2097                                              force_override);
2098 #else
2099       gold_unreachable();
2100 #endif
2101     }
2102   else
2103     gold_unreachable();
2104 }
2105
2106 // Define a symbol as a constant, sized version.
2107
2108 template<int size>
2109 Sized_symbol<size>*
2110 Symbol_table::do_define_as_constant(
2111     const char* name,
2112     const char* version,
2113     Defined defined,
2114     typename elfcpp::Elf_types<size>::Elf_Addr value,
2115     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2116     elfcpp::STT type,
2117     elfcpp::STB binding,
2118     elfcpp::STV visibility,
2119     unsigned char nonvis,
2120     bool only_if_ref,
2121     bool force_override)
2122 {
2123   Sized_symbol<size>* sym;
2124   Sized_symbol<size>* oldsym;
2125   bool resolve_oldsym;
2126
2127   if (parameters->target().is_big_endian())
2128     {
2129 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2130       sym = this->define_special_symbol<size, true>(&name, &version,
2131                                                     only_if_ref, &oldsym,
2132                                                     &resolve_oldsym);
2133 #else
2134       gold_unreachable();
2135 #endif
2136     }
2137   else
2138     {
2139 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2140       sym = this->define_special_symbol<size, false>(&name, &version,
2141                                                      only_if_ref, &oldsym,
2142                                                      &resolve_oldsym);
2143 #else
2144       gold_unreachable();
2145 #endif
2146     }
2147
2148   if (sym == NULL)
2149     return NULL;
2150
2151   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2152                      nonvis, defined == PREDEFINED);
2153
2154   if (oldsym == NULL)
2155     {
2156       // Version symbols are absolute symbols with name == version.
2157       // We don't want to force them to be local.
2158       if ((version == NULL
2159            || name != version
2160            || value != 0)
2161           && (binding == elfcpp::STB_LOCAL
2162               || this->version_script_.symbol_is_local(name)))
2163         this->force_local(sym);
2164       else if (version != NULL
2165                && (name != version || value != 0))
2166         sym->set_is_default();
2167       return sym;
2168     }
2169
2170   if (force_override
2171       || Symbol_table::should_override_with_special(oldsym, type, defined))
2172     this->override_with_special(oldsym, sym);
2173
2174   if (resolve_oldsym)
2175     return sym;
2176   else
2177     {
2178       delete sym;
2179       return oldsym;
2180     }
2181 }
2182
2183 // Define a set of symbols in output sections.
2184
2185 void
2186 Symbol_table::define_symbols(const Layout* layout, int count,
2187                              const Define_symbol_in_section* p,
2188                              bool only_if_ref)
2189 {
2190   for (int i = 0; i < count; ++i, ++p)
2191     {
2192       Output_section* os = layout->find_output_section(p->output_section);
2193       if (os != NULL)
2194         this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2195                                     p->size, p->type, p->binding,
2196                                     p->visibility, p->nonvis,
2197                                     p->offset_is_from_end,
2198                                     only_if_ref || p->only_if_ref);
2199       else
2200         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2201                                  p->type, p->binding, p->visibility, p->nonvis,
2202                                  only_if_ref || p->only_if_ref,
2203                                  false);
2204     }
2205 }
2206
2207 // Define a set of symbols in output segments.
2208
2209 void
2210 Symbol_table::define_symbols(const Layout* layout, int count,
2211                              const Define_symbol_in_segment* p,
2212                              bool only_if_ref)
2213 {
2214   for (int i = 0; i < count; ++i, ++p)
2215     {
2216       Output_segment* os = layout->find_output_segment(p->segment_type,
2217                                                        p->segment_flags_set,
2218                                                        p->segment_flags_clear);
2219       if (os != NULL)
2220         this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2221                                        p->size, p->type, p->binding,
2222                                        p->visibility, p->nonvis,
2223                                        p->offset_base,
2224                                        only_if_ref || p->only_if_ref);
2225       else
2226         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2227                                  p->type, p->binding, p->visibility, p->nonvis,
2228                                  only_if_ref || p->only_if_ref,
2229                                  false);
2230     }
2231 }
2232
2233 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2234 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2235 // the offset within POSD.
2236
2237 template<int size>
2238 void
2239 Symbol_table::define_with_copy_reloc(
2240     Sized_symbol<size>* csym,
2241     Output_data* posd,
2242     typename elfcpp::Elf_types<size>::Elf_Addr value)
2243 {
2244   gold_assert(csym->is_from_dynobj());
2245   gold_assert(!csym->is_copied_from_dynobj());
2246   Object* object = csym->object();
2247   gold_assert(object->is_dynamic());
2248   Dynobj* dynobj = static_cast<Dynobj*>(object);
2249
2250   // Our copied variable has to override any variable in a shared
2251   // library.
2252   elfcpp::STB binding = csym->binding();
2253   if (binding == elfcpp::STB_WEAK)
2254     binding = elfcpp::STB_GLOBAL;
2255
2256   this->define_in_output_data(csym->name(), csym->version(), COPY,
2257                               posd, value, csym->symsize(),
2258                               csym->type(), binding,
2259                               csym->visibility(), csym->nonvis(),
2260                               false, false);
2261
2262   csym->set_is_copied_from_dynobj();
2263   csym->set_needs_dynsym_entry();
2264
2265   this->copied_symbol_dynobjs_[csym] = dynobj;
2266
2267   // We have now defined all aliases, but we have not entered them all
2268   // in the copied_symbol_dynobjs_ map.
2269   if (csym->has_alias())
2270     {
2271       Symbol* sym = csym;
2272       while (true)
2273         {
2274           sym = this->weak_aliases_[sym];
2275           if (sym == csym)
2276             break;
2277           gold_assert(sym->output_data() == posd);
2278
2279           sym->set_is_copied_from_dynobj();
2280           this->copied_symbol_dynobjs_[sym] = dynobj;
2281         }
2282     }
2283 }
2284
2285 // SYM is defined using a COPY reloc.  Return the dynamic object where
2286 // the original definition was found.
2287
2288 Dynobj*
2289 Symbol_table::get_copy_source(const Symbol* sym) const
2290 {
2291   gold_assert(sym->is_copied_from_dynobj());
2292   Copied_symbol_dynobjs::const_iterator p =
2293     this->copied_symbol_dynobjs_.find(sym);
2294   gold_assert(p != this->copied_symbol_dynobjs_.end());
2295   return p->second;
2296 }
2297
2298 // Add any undefined symbols named on the command line.
2299
2300 void
2301 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2302 {
2303   if (parameters->options().any_undefined()
2304       || layout->script_options()->any_unreferenced())
2305     {
2306       if (parameters->target().get_size() == 32)
2307         {
2308 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2309           this->do_add_undefined_symbols_from_command_line<32>(layout);
2310 #else
2311           gold_unreachable();
2312 #endif
2313         }
2314       else if (parameters->target().get_size() == 64)
2315         {
2316 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2317           this->do_add_undefined_symbols_from_command_line<64>(layout);
2318 #else
2319           gold_unreachable();
2320 #endif
2321         }
2322       else
2323         gold_unreachable();
2324     }
2325 }
2326
2327 template<int size>
2328 void
2329 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2330 {
2331   for (options::String_set::const_iterator p =
2332          parameters->options().undefined_begin();
2333        p != parameters->options().undefined_end();
2334        ++p)
2335     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2336
2337   for (options::String_set::const_iterator p =
2338          parameters->options().export_dynamic_symbol_begin();
2339        p != parameters->options().export_dynamic_symbol_end();
2340        ++p)
2341     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2342
2343   for (Script_options::referenced_const_iterator p =
2344          layout->script_options()->referenced_begin();
2345        p != layout->script_options()->referenced_end();
2346        ++p)
2347     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2348 }
2349
2350 template<int size>
2351 void
2352 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2353 {
2354   if (this->lookup(name) != NULL)
2355     return;
2356
2357   const char* version = NULL;
2358
2359   Sized_symbol<size>* sym;
2360   Sized_symbol<size>* oldsym;
2361   bool resolve_oldsym;
2362   if (parameters->target().is_big_endian())
2363     {
2364 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2365       sym = this->define_special_symbol<size, true>(&name, &version,
2366                                                     false, &oldsym,
2367                                                     &resolve_oldsym);
2368 #else
2369       gold_unreachable();
2370 #endif
2371     }
2372   else
2373     {
2374 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2375       sym = this->define_special_symbol<size, false>(&name, &version,
2376                                                      false, &oldsym,
2377                                                      &resolve_oldsym);
2378 #else
2379       gold_unreachable();
2380 #endif
2381     }
2382
2383   gold_assert(oldsym == NULL);
2384
2385   sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2386                       elfcpp::STV_DEFAULT, 0);
2387   ++this->saw_undefined_;
2388 }
2389
2390 // Set the dynamic symbol indexes.  INDEX is the index of the first
2391 // global dynamic symbol.  Pointers to the symbols are stored into the
2392 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2393 // updated dynamic symbol index.
2394
2395 unsigned int
2396 Symbol_table::set_dynsym_indexes(unsigned int index,
2397                                  std::vector<Symbol*>* syms,
2398                                  Stringpool* dynpool,
2399                                  Versions* versions)
2400 {
2401   std::vector<Symbol*> as_needed_sym;
2402
2403   // Allow a target to set dynsym indexes.
2404   if (parameters->target().has_custom_set_dynsym_indexes())
2405     {
2406       std::vector<Symbol*> dyn_symbols;
2407       for (Symbol_table_type::iterator p = this->table_.begin();
2408            p != this->table_.end();
2409            ++p)
2410         {
2411           Symbol* sym = p->second;
2412           if (!sym->should_add_dynsym_entry(this))
2413             sym->set_dynsym_index(-1U);
2414           else
2415             dyn_symbols.push_back(sym);
2416         }
2417
2418       return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2419                                                      dynpool, versions, this);
2420     }
2421
2422   for (Symbol_table_type::iterator p = this->table_.begin();
2423        p != this->table_.end();
2424        ++p)
2425     {
2426       Symbol* sym = p->second;
2427
2428       // Note that SYM may already have a dynamic symbol index, since
2429       // some symbols appear more than once in the symbol table, with
2430       // and without a version.
2431
2432       if (!sym->should_add_dynsym_entry(this))
2433         sym->set_dynsym_index(-1U);
2434       else if (!sym->has_dynsym_index())
2435         {
2436           sym->set_dynsym_index(index);
2437           ++index;
2438           syms->push_back(sym);
2439           dynpool->add(sym->name(), false, NULL);
2440
2441           // If the symbol is defined in a dynamic object and is
2442           // referenced strongly in a regular object, then mark the
2443           // dynamic object as needed.  This is used to implement
2444           // --as-needed.
2445           if (sym->is_from_dynobj()
2446               && sym->in_reg()
2447               && !sym->is_undef_binding_weak())
2448             sym->object()->set_is_needed();
2449
2450           // Record any version information, except those from
2451           // as-needed libraries not seen to be needed.  Note that the
2452           // is_needed state for such libraries can change in this loop.
2453           if (sym->version() != NULL)
2454             {
2455               if (!sym->is_from_dynobj()
2456                   || !sym->object()->as_needed()
2457                   || sym->object()->is_needed())
2458                 versions->record_version(this, dynpool, sym);
2459               else
2460                 as_needed_sym.push_back(sym);
2461             }
2462         }
2463     }
2464
2465   // Process version information for symbols from as-needed libraries.
2466   for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2467        p != as_needed_sym.end();
2468        ++p)
2469     {
2470       Symbol* sym = *p;
2471
2472       if (sym->object()->is_needed())
2473         versions->record_version(this, dynpool, sym);
2474       else
2475         sym->clear_version();
2476     }
2477
2478   // Finish up the versions.  In some cases this may add new dynamic
2479   // symbols.
2480   index = versions->finalize(this, index, syms);
2481
2482   return index;
2483 }
2484
2485 // Set the final values for all the symbols.  The index of the first
2486 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2487 // file offset OFF.  Add their names to POOL.  Return the new file
2488 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2489
2490 off_t
2491 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2492                        size_t dyncount, Stringpool* pool,
2493                        unsigned int* plocal_symcount)
2494 {
2495   off_t ret;
2496
2497   gold_assert(*plocal_symcount != 0);
2498   this->first_global_index_ = *plocal_symcount;
2499
2500   this->dynamic_offset_ = dynoff;
2501   this->first_dynamic_global_index_ = dyn_global_index;
2502   this->dynamic_count_ = dyncount;
2503
2504   if (parameters->target().get_size() == 32)
2505     {
2506 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2507       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2508 #else
2509       gold_unreachable();
2510 #endif
2511     }
2512   else if (parameters->target().get_size() == 64)
2513     {
2514 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2515       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2516 #else
2517       gold_unreachable();
2518 #endif
2519     }
2520   else
2521     gold_unreachable();
2522
2523   // Now that we have the final symbol table, we can reliably note
2524   // which symbols should get warnings.
2525   this->warnings_.note_warnings(this);
2526
2527   return ret;
2528 }
2529
2530 // SYM is going into the symbol table at *PINDEX.  Add the name to
2531 // POOL, update *PINDEX and *POFF.
2532
2533 template<int size>
2534 void
2535 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2536                                   unsigned int* pindex, off_t* poff)
2537 {
2538   sym->set_symtab_index(*pindex);
2539   if (sym->version() == NULL || !parameters->options().relocatable())
2540     pool->add(sym->name(), false, NULL);
2541   else
2542     pool->add(sym->versioned_name(), true, NULL);
2543   ++*pindex;
2544   *poff += elfcpp::Elf_sizes<size>::sym_size;
2545 }
2546
2547 // Set the final value for all the symbols.  This is called after
2548 // Layout::finalize, so all the output sections have their final
2549 // address.
2550
2551 template<int size>
2552 off_t
2553 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2554                              unsigned int* plocal_symcount)
2555 {
2556   off = align_address(off, size >> 3);
2557   this->offset_ = off;
2558
2559   unsigned int index = *plocal_symcount;
2560   const unsigned int orig_index = index;
2561
2562   // First do all the symbols which have been forced to be local, as
2563   // they must appear before all global symbols.
2564   for (Forced_locals::iterator p = this->forced_locals_.begin();
2565        p != this->forced_locals_.end();
2566        ++p)
2567     {
2568       Symbol* sym = *p;
2569       gold_assert(sym->is_forced_local());
2570       if (this->sized_finalize_symbol<size>(sym))
2571         {
2572           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2573           ++*plocal_symcount;
2574         }
2575     }
2576
2577   // Now do all the remaining symbols.
2578   for (Symbol_table_type::iterator p = this->table_.begin();
2579        p != this->table_.end();
2580        ++p)
2581     {
2582       Symbol* sym = p->second;
2583       if (this->sized_finalize_symbol<size>(sym))
2584         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2585     }
2586
2587   this->output_count_ = index - orig_index;
2588
2589   return off;
2590 }
2591
2592 // Compute the final value of SYM and store status in location PSTATUS.
2593 // During relaxation, this may be called multiple times for a symbol to
2594 // compute its would-be final value in each relaxation pass.
2595
2596 template<int size>
2597 typename Sized_symbol<size>::Value_type
2598 Symbol_table::compute_final_value(
2599     const Sized_symbol<size>* sym,
2600     Compute_final_value_status* pstatus) const
2601 {
2602   typedef typename Sized_symbol<size>::Value_type Value_type;
2603   Value_type value;
2604
2605   switch (sym->source())
2606     {
2607     case Symbol::FROM_OBJECT:
2608       {
2609         bool is_ordinary;
2610         unsigned int shndx = sym->shndx(&is_ordinary);
2611
2612         if (!is_ordinary
2613             && shndx != elfcpp::SHN_ABS
2614             && !Symbol::is_common_shndx(shndx))
2615           {
2616             *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2617             return 0;
2618           }
2619
2620         Object* symobj = sym->object();
2621         if (symobj->is_dynamic())
2622           {
2623             value = 0;
2624             shndx = elfcpp::SHN_UNDEF;
2625           }
2626         else if (symobj->pluginobj() != NULL)
2627           {
2628             value = 0;
2629             shndx = elfcpp::SHN_UNDEF;
2630           }
2631         else if (shndx == elfcpp::SHN_UNDEF)
2632           value = 0;
2633         else if (!is_ordinary
2634                  && (shndx == elfcpp::SHN_ABS
2635                      || Symbol::is_common_shndx(shndx)))
2636           value = sym->value();
2637         else
2638           {
2639             Relobj* relobj = static_cast<Relobj*>(symobj);
2640             Output_section* os = relobj->output_section(shndx);
2641
2642             if (this->is_section_folded(relobj, shndx))
2643               {
2644                 gold_assert(os == NULL);
2645                 // Get the os of the section it is folded onto.
2646                 Section_id folded = this->icf_->get_folded_section(relobj,
2647                                                                    shndx);
2648                 gold_assert(folded.first != NULL);
2649                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2650                 unsigned folded_shndx = folded.second;
2651
2652                 os = folded_obj->output_section(folded_shndx);  
2653                 gold_assert(os != NULL);
2654
2655                 // Replace (relobj, shndx) with canonical ICF input section.
2656                 shndx = folded_shndx;
2657                 relobj = folded_obj;
2658               }
2659
2660             uint64_t secoff64 = relobj->output_section_offset(shndx);
2661             if (os == NULL)
2662               {
2663                 bool static_or_reloc = (parameters->doing_static_link() ||
2664                                         parameters->options().relocatable());
2665                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2666
2667                 *pstatus = CFVS_NO_OUTPUT_SECTION;
2668                 return 0;
2669               }
2670
2671             if (secoff64 == -1ULL)
2672               {
2673                 // The section needs special handling (e.g., a merge section).
2674
2675                 value = os->output_address(relobj, shndx, sym->value());
2676               }
2677             else
2678               {
2679                 Value_type secoff =
2680                   convert_types<Value_type, uint64_t>(secoff64);
2681                 if (sym->type() == elfcpp::STT_TLS)
2682                   value = sym->value() + os->tls_offset() + secoff;
2683                 else
2684                   value = sym->value() + os->address() + secoff;
2685               }
2686           }
2687       }
2688       break;
2689
2690     case Symbol::IN_OUTPUT_DATA:
2691       {
2692         Output_data* od = sym->output_data();
2693         value = sym->value();
2694         if (sym->type() != elfcpp::STT_TLS)
2695           value += od->address();
2696         else
2697           {
2698             Output_section* os = od->output_section();
2699             gold_assert(os != NULL);
2700             value += os->tls_offset() + (od->address() - os->address());
2701           }
2702         if (sym->offset_is_from_end())
2703           value += od->data_size();
2704       }
2705       break;
2706
2707     case Symbol::IN_OUTPUT_SEGMENT:
2708       {
2709         Output_segment* os = sym->output_segment();
2710         value = sym->value();
2711         if (sym->type() != elfcpp::STT_TLS)
2712           value += os->vaddr();
2713         switch (sym->offset_base())
2714           {
2715           case Symbol::SEGMENT_START:
2716             break;
2717           case Symbol::SEGMENT_END:
2718             value += os->memsz();
2719             break;
2720           case Symbol::SEGMENT_BSS:
2721             value += os->filesz();
2722             break;
2723           default:
2724             gold_unreachable();
2725           }
2726       }
2727       break;
2728
2729     case Symbol::IS_CONSTANT:
2730       value = sym->value();
2731       break;
2732
2733     case Symbol::IS_UNDEFINED:
2734       value = 0;
2735       break;
2736
2737     default:
2738       gold_unreachable();
2739     }
2740
2741   *pstatus = CFVS_OK;
2742   return value;
2743 }
2744
2745 // Finalize the symbol SYM.  This returns true if the symbol should be
2746 // added to the symbol table, false otherwise.
2747
2748 template<int size>
2749 bool
2750 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2751 {
2752   typedef typename Sized_symbol<size>::Value_type Value_type;
2753
2754   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2755
2756   // The default version of a symbol may appear twice in the symbol
2757   // table.  We only need to finalize it once.
2758   if (sym->has_symtab_index())
2759     return false;
2760
2761   if (!sym->in_reg())
2762     {
2763       gold_assert(!sym->has_symtab_index());
2764       sym->set_symtab_index(-1U);
2765       gold_assert(sym->dynsym_index() == -1U);
2766       return false;
2767     }
2768
2769   // If the symbol is only present on plugin files, the plugin decided we
2770   // don't need it.
2771   if (!sym->in_real_elf())
2772     {
2773       gold_assert(!sym->has_symtab_index());
2774       sym->set_symtab_index(-1U);
2775       return false;
2776     }
2777
2778   // Compute final symbol value.
2779   Compute_final_value_status status;
2780   Value_type value = this->compute_final_value(sym, &status);
2781
2782   switch (status)
2783     {
2784     case CFVS_OK:
2785       break;
2786     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2787       {
2788         bool is_ordinary;
2789         unsigned int shndx = sym->shndx(&is_ordinary);
2790         gold_error(_("%s: unsupported symbol section 0x%x"),
2791                    sym->demangled_name().c_str(), shndx);
2792       }
2793       break;
2794     case CFVS_NO_OUTPUT_SECTION:
2795       sym->set_symtab_index(-1U);
2796       return false;
2797     default:
2798       gold_unreachable();
2799     }
2800
2801   sym->set_value(value);
2802
2803   if (parameters->options().strip_all()
2804       || !parameters->options().should_retain_symbol(sym->name()))
2805     {
2806       sym->set_symtab_index(-1U);
2807       return false;
2808     }
2809
2810   return true;
2811 }
2812
2813 // Write out the global symbols.
2814
2815 void
2816 Symbol_table::write_globals(const Stringpool* sympool,
2817                             const Stringpool* dynpool,
2818                             Output_symtab_xindex* symtab_xindex,
2819                             Output_symtab_xindex* dynsym_xindex,
2820                             Output_file* of) const
2821 {
2822   switch (parameters->size_and_endianness())
2823     {
2824 #ifdef HAVE_TARGET_32_LITTLE
2825     case Parameters::TARGET_32_LITTLE:
2826       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2827                                            dynsym_xindex, of);
2828       break;
2829 #endif
2830 #ifdef HAVE_TARGET_32_BIG
2831     case Parameters::TARGET_32_BIG:
2832       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2833                                           dynsym_xindex, of);
2834       break;
2835 #endif
2836 #ifdef HAVE_TARGET_64_LITTLE
2837     case Parameters::TARGET_64_LITTLE:
2838       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2839                                            dynsym_xindex, of);
2840       break;
2841 #endif
2842 #ifdef HAVE_TARGET_64_BIG
2843     case Parameters::TARGET_64_BIG:
2844       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2845                                           dynsym_xindex, of);
2846       break;
2847 #endif
2848     default:
2849       gold_unreachable();
2850     }
2851 }
2852
2853 // Write out the global symbols.
2854
2855 template<int size, bool big_endian>
2856 void
2857 Symbol_table::sized_write_globals(const Stringpool* sympool,
2858                                   const Stringpool* dynpool,
2859                                   Output_symtab_xindex* symtab_xindex,
2860                                   Output_symtab_xindex* dynsym_xindex,
2861                                   Output_file* of) const
2862 {
2863   const Target& target = parameters->target();
2864
2865   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2866
2867   const unsigned int output_count = this->output_count_;
2868   const section_size_type oview_size = output_count * sym_size;
2869   const unsigned int first_global_index = this->first_global_index_;
2870   unsigned char* psyms;
2871   if (this->offset_ == 0 || output_count == 0)
2872     psyms = NULL;
2873   else
2874     psyms = of->get_output_view(this->offset_, oview_size);
2875
2876   const unsigned int dynamic_count = this->dynamic_count_;
2877   const section_size_type dynamic_size = dynamic_count * sym_size;
2878   const unsigned int first_dynamic_global_index =
2879     this->first_dynamic_global_index_;
2880   unsigned char* dynamic_view;
2881   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2882     dynamic_view = NULL;
2883   else
2884     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2885
2886   for (Symbol_table_type::const_iterator p = this->table_.begin();
2887        p != this->table_.end();
2888        ++p)
2889     {
2890       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2891
2892       // Possibly warn about unresolved symbols in shared libraries.
2893       this->warn_about_undefined_dynobj_symbol(sym);
2894
2895       unsigned int sym_index = sym->symtab_index();
2896       unsigned int dynsym_index;
2897       if (dynamic_view == NULL)
2898         dynsym_index = -1U;
2899       else
2900         dynsym_index = sym->dynsym_index();
2901
2902       if (sym_index == -1U && dynsym_index == -1U)
2903         {
2904           // This symbol is not included in the output file.
2905           continue;
2906         }
2907
2908       unsigned int shndx;
2909       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2910       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2911       elfcpp::STB binding = sym->binding();
2912
2913       // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2914       if (binding == elfcpp::STB_GNU_UNIQUE
2915           && !parameters->options().gnu_unique())
2916         binding = elfcpp::STB_GLOBAL;
2917
2918       switch (sym->source())
2919         {
2920         case Symbol::FROM_OBJECT:
2921           {
2922             bool is_ordinary;
2923             unsigned int in_shndx = sym->shndx(&is_ordinary);
2924
2925             if (!is_ordinary
2926                 && in_shndx != elfcpp::SHN_ABS
2927                 && !Symbol::is_common_shndx(in_shndx))
2928               {
2929                 gold_error(_("%s: unsupported symbol section 0x%x"),
2930                            sym->demangled_name().c_str(), in_shndx);
2931                 shndx = in_shndx;
2932               }
2933             else
2934               {
2935                 Object* symobj = sym->object();
2936                 if (symobj->is_dynamic())
2937                   {
2938                     if (sym->needs_dynsym_value())
2939                       dynsym_value = target.dynsym_value(sym);
2940                     shndx = elfcpp::SHN_UNDEF;
2941                     if (sym->is_undef_binding_weak())
2942                       binding = elfcpp::STB_WEAK;
2943                     else
2944                       binding = elfcpp::STB_GLOBAL;
2945                   }
2946                 else if (symobj->pluginobj() != NULL)
2947                   shndx = elfcpp::SHN_UNDEF;
2948                 else if (in_shndx == elfcpp::SHN_UNDEF
2949                          || (!is_ordinary
2950                              && (in_shndx == elfcpp::SHN_ABS
2951                                  || Symbol::is_common_shndx(in_shndx))))
2952                   shndx = in_shndx;
2953                 else
2954                   {
2955                     Relobj* relobj = static_cast<Relobj*>(symobj);
2956                     Output_section* os = relobj->output_section(in_shndx);
2957                     if (this->is_section_folded(relobj, in_shndx))
2958                       {
2959                         // This global symbol must be written out even though
2960                         // it is folded.
2961                         // Get the os of the section it is folded onto.
2962                         Section_id folded =
2963                              this->icf_->get_folded_section(relobj, in_shndx);
2964                         gold_assert(folded.first !=NULL);
2965                         Relobj* folded_obj = 
2966                           reinterpret_cast<Relobj*>(folded.first);
2967                         os = folded_obj->output_section(folded.second);  
2968                         gold_assert(os != NULL);
2969                       }
2970                     gold_assert(os != NULL);
2971                     shndx = os->out_shndx();
2972
2973                     if (shndx >= elfcpp::SHN_LORESERVE)
2974                       {
2975                         if (sym_index != -1U)
2976                           symtab_xindex->add(sym_index, shndx);
2977                         if (dynsym_index != -1U)
2978                           dynsym_xindex->add(dynsym_index, shndx);
2979                         shndx = elfcpp::SHN_XINDEX;
2980                       }
2981
2982                     // In object files symbol values are section
2983                     // relative.
2984                     if (parameters->options().relocatable())
2985                       sym_value -= os->address();
2986                   }
2987               }
2988           }
2989           break;
2990
2991         case Symbol::IN_OUTPUT_DATA:
2992           {
2993             Output_data* od = sym->output_data();
2994
2995             shndx = od->out_shndx();
2996             if (shndx >= elfcpp::SHN_LORESERVE)
2997               {
2998                 if (sym_index != -1U)
2999                   symtab_xindex->add(sym_index, shndx);
3000                 if (dynsym_index != -1U)
3001                   dynsym_xindex->add(dynsym_index, shndx);
3002                 shndx = elfcpp::SHN_XINDEX;
3003               }
3004
3005             // In object files symbol values are section
3006             // relative.
3007             if (parameters->options().relocatable())
3008               sym_value -= od->address();
3009           }
3010           break;
3011
3012         case Symbol::IN_OUTPUT_SEGMENT:
3013           shndx = elfcpp::SHN_ABS;
3014           break;
3015
3016         case Symbol::IS_CONSTANT:
3017           shndx = elfcpp::SHN_ABS;
3018           break;
3019
3020         case Symbol::IS_UNDEFINED:
3021           shndx = elfcpp::SHN_UNDEF;
3022           break;
3023
3024         default:
3025           gold_unreachable();
3026         }
3027
3028       if (sym_index != -1U)
3029         {
3030           sym_index -= first_global_index;
3031           gold_assert(sym_index < output_count);
3032           unsigned char* ps = psyms + (sym_index * sym_size);
3033           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3034                                                      binding, sympool, ps);
3035         }
3036
3037       if (dynsym_index != -1U)
3038         {
3039           dynsym_index -= first_dynamic_global_index;
3040           gold_assert(dynsym_index < dynamic_count);
3041           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3042           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3043                                                      binding, dynpool, pd);
3044           // Allow a target to adjust dynamic symbol value.
3045           parameters->target().adjust_dyn_symbol(sym, pd);
3046         }
3047     }
3048
3049   of->write_output_view(this->offset_, oview_size, psyms);
3050   if (dynamic_view != NULL)
3051     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3052 }
3053
3054 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
3055 // strtab holding the name.
3056
3057 template<int size, bool big_endian>
3058 void
3059 Symbol_table::sized_write_symbol(
3060     Sized_symbol<size>* sym,
3061     typename elfcpp::Elf_types<size>::Elf_Addr value,
3062     unsigned int shndx,
3063     elfcpp::STB binding,
3064     const Stringpool* pool,
3065     unsigned char* p) const
3066 {
3067   elfcpp::Sym_write<size, big_endian> osym(p);
3068   if (sym->version() == NULL || !parameters->options().relocatable())
3069     osym.put_st_name(pool->get_offset(sym->name()));
3070   else
3071     osym.put_st_name(pool->get_offset(sym->versioned_name()));
3072   osym.put_st_value(value);
3073   // Use a symbol size of zero for undefined symbols from shared libraries.
3074   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3075     osym.put_st_size(0);
3076   else
3077     osym.put_st_size(sym->symsize());
3078   elfcpp::STT type = sym->type();
3079   // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3080   if (type == elfcpp::STT_GNU_IFUNC
3081       && sym->is_from_dynobj())
3082     type = elfcpp::STT_FUNC;
3083   // A version script may have overridden the default binding.
3084   if (sym->is_forced_local())
3085     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3086   else
3087     osym.put_st_info(elfcpp::elf_st_info(binding, type));
3088   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3089   osym.put_st_shndx(shndx);
3090 }
3091
3092 // Check for unresolved symbols in shared libraries.  This is
3093 // controlled by the --allow-shlib-undefined option.
3094
3095 // We only warn about libraries for which we have seen all the
3096 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
3097 // which were not seen in this link.  If we didn't see a DT_NEEDED
3098 // entry, we aren't going to be able to reliably report whether the
3099 // symbol is undefined.
3100
3101 // We also don't warn about libraries found in a system library
3102 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3103 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
3104 // can have undefined references satisfied by ld-linux.so.
3105
3106 inline void
3107 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3108 {
3109   bool dummy;
3110   if (sym->source() == Symbol::FROM_OBJECT
3111       && sym->object()->is_dynamic()
3112       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3113       && sym->binding() != elfcpp::STB_WEAK
3114       && !parameters->options().allow_shlib_undefined()
3115       && !parameters->target().is_defined_by_abi(sym)
3116       && !sym->object()->is_in_system_directory())
3117     {
3118       // A very ugly cast.
3119       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3120       if (!dynobj->has_unknown_needed_entries())
3121         gold_undefined_symbol(sym);
3122     }
3123 }
3124
3125 // Write out a section symbol.  Return the update offset.
3126
3127 void
3128 Symbol_table::write_section_symbol(const Output_section* os,
3129                                    Output_symtab_xindex* symtab_xindex,
3130                                    Output_file* of,
3131                                    off_t offset) const
3132 {
3133   switch (parameters->size_and_endianness())
3134     {
3135 #ifdef HAVE_TARGET_32_LITTLE
3136     case Parameters::TARGET_32_LITTLE:
3137       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3138                                                   offset);
3139       break;
3140 #endif
3141 #ifdef HAVE_TARGET_32_BIG
3142     case Parameters::TARGET_32_BIG:
3143       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3144                                                  offset);
3145       break;
3146 #endif
3147 #ifdef HAVE_TARGET_64_LITTLE
3148     case Parameters::TARGET_64_LITTLE:
3149       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3150                                                   offset);
3151       break;
3152 #endif
3153 #ifdef HAVE_TARGET_64_BIG
3154     case Parameters::TARGET_64_BIG:
3155       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3156                                                  offset);
3157       break;
3158 #endif
3159     default:
3160       gold_unreachable();
3161     }
3162 }
3163
3164 // Write out a section symbol, specialized for size and endianness.
3165
3166 template<int size, bool big_endian>
3167 void
3168 Symbol_table::sized_write_section_symbol(const Output_section* os,
3169                                          Output_symtab_xindex* symtab_xindex,
3170                                          Output_file* of,
3171                                          off_t offset) const
3172 {
3173   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3174
3175   unsigned char* pov = of->get_output_view(offset, sym_size);
3176
3177   elfcpp::Sym_write<size, big_endian> osym(pov);
3178   osym.put_st_name(0);
3179   if (parameters->options().relocatable())
3180     osym.put_st_value(0);
3181   else
3182     osym.put_st_value(os->address());
3183   osym.put_st_size(0);
3184   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3185                                        elfcpp::STT_SECTION));
3186   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3187
3188   unsigned int shndx = os->out_shndx();
3189   if (shndx >= elfcpp::SHN_LORESERVE)
3190     {
3191       symtab_xindex->add(os->symtab_index(), shndx);
3192       shndx = elfcpp::SHN_XINDEX;
3193     }
3194   osym.put_st_shndx(shndx);
3195
3196   of->write_output_view(offset, sym_size, pov);
3197 }
3198
3199 // Print statistical information to stderr.  This is used for --stats.
3200
3201 void
3202 Symbol_table::print_stats() const
3203 {
3204 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3205   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3206           program_name, this->table_.size(), this->table_.bucket_count());
3207 #else
3208   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3209           program_name, this->table_.size());
3210 #endif
3211   this->namepool_.print_stats("symbol table stringpool");
3212 }
3213
3214 // We check for ODR violations by looking for symbols with the same
3215 // name for which the debugging information reports that they were
3216 // defined in disjoint source locations.  When comparing the source
3217 // location, we consider instances with the same base filename to be
3218 // the same.  This is because different object files/shared libraries
3219 // can include the same header file using different paths, and
3220 // different optimization settings can make the line number appear to
3221 // be a couple lines off, and we don't want to report an ODR violation
3222 // in those cases.
3223
3224 // This struct is used to compare line information, as returned by
3225 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3226 // operator used with std::sort.
3227
3228 struct Odr_violation_compare
3229 {
3230   bool
3231   operator()(const std::string& s1, const std::string& s2) const
3232   {
3233     // Inputs should be of the form "dirname/filename:linenum" where
3234     // "dirname/" is optional.  We want to compare just the filename:linenum.
3235
3236     // Find the last '/' in each string.
3237     std::string::size_type s1begin = s1.rfind('/');
3238     std::string::size_type s2begin = s2.rfind('/');
3239     // If there was no '/' in a string, start at the beginning.
3240     if (s1begin == std::string::npos)
3241       s1begin = 0;
3242     if (s2begin == std::string::npos)
3243       s2begin = 0;
3244     return s1.compare(s1begin, std::string::npos,
3245                       s2, s2begin, std::string::npos) < 0;
3246   }
3247 };
3248
3249 // Returns all of the lines attached to LOC, not just the one the
3250 // instruction actually came from.
3251 std::vector<std::string>
3252 Symbol_table::linenos_from_loc(const Task* task,
3253                                const Symbol_location& loc)
3254 {
3255   // We need to lock the object in order to read it.  This
3256   // means that we have to run in a singleton Task.  If we
3257   // want to run this in a general Task for better
3258   // performance, we will need one Task for object, plus
3259   // appropriate locking to ensure that we don't conflict with
3260   // other uses of the object.  Also note, one_addr2line is not
3261   // currently thread-safe.
3262   Task_lock_obj<Object> tl(task, loc.object);
3263
3264   std::vector<std::string> result;
3265   Symbol_location code_loc = loc;
3266   parameters->target().function_location(&code_loc);
3267   // 16 is the size of the object-cache that one_addr2line should use.
3268   std::string canonical_result = Dwarf_line_info::one_addr2line(
3269       code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3270   if (!canonical_result.empty())
3271     result.push_back(canonical_result);
3272   return result;
3273 }
3274
3275 // OutputIterator that records if it was ever assigned to.  This
3276 // allows it to be used with std::set_intersection() to check for
3277 // intersection rather than computing the intersection.
3278 struct Check_intersection
3279 {
3280   Check_intersection()
3281     : value_(false)
3282   {}
3283
3284   bool had_intersection() const
3285   { return this->value_; }
3286
3287   Check_intersection& operator++()
3288   { return *this; }
3289
3290   Check_intersection& operator*()
3291   { return *this; }
3292
3293   template<typename T>
3294   Check_intersection& operator=(const T&)
3295   {
3296     this->value_ = true;
3297     return *this;
3298   }
3299
3300  private:
3301   bool value_;
3302 };
3303
3304 // Check candidate_odr_violations_ to find symbols with the same name
3305 // but apparently different definitions (different source-file/line-no
3306 // for each line assigned to the first instruction).
3307
3308 void
3309 Symbol_table::detect_odr_violations(const Task* task,
3310                                     const char* output_file_name) const
3311 {
3312   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3313        it != candidate_odr_violations_.end();
3314        ++it)
3315     {
3316       const char* const symbol_name = it->first;
3317
3318       std::string first_object_name;
3319       std::vector<std::string> first_object_linenos;
3320
3321       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3322           locs = it->second.begin();
3323       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3324           locs_end = it->second.end();
3325       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3326         {
3327           // Save the line numbers from the first definition to
3328           // compare to the other definitions.  Ideally, we'd compare
3329           // every definition to every other, but we don't want to
3330           // take O(N^2) time to do this.  This shortcut may cause
3331           // false negatives that appear or disappear depending on the
3332           // link order, but it won't cause false positives.
3333           first_object_name = locs->object->name();
3334           first_object_linenos = this->linenos_from_loc(task, *locs);
3335         }
3336
3337       // Sort by Odr_violation_compare to make std::set_intersection work.
3338       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3339                 Odr_violation_compare());
3340
3341       for (; locs != locs_end; ++locs)
3342         {
3343           std::vector<std::string> linenos =
3344               this->linenos_from_loc(task, *locs);
3345           // linenos will be empty if we couldn't parse the debug info.
3346           if (linenos.empty())
3347             continue;
3348           // Sort by Odr_violation_compare to make std::set_intersection work.
3349           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3350
3351           Check_intersection intersection_result =
3352               std::set_intersection(first_object_linenos.begin(),
3353                                     first_object_linenos.end(),
3354                                     linenos.begin(),
3355                                     linenos.end(),
3356                                     Check_intersection(),
3357                                     Odr_violation_compare());
3358           if (!intersection_result.had_intersection())
3359             {
3360               gold_warning(_("while linking %s: symbol '%s' defined in "
3361                              "multiple places (possible ODR violation):"),
3362                            output_file_name, demangle(symbol_name).c_str());
3363               // This only prints one location from each definition,
3364               // which may not be the location we expect to intersect
3365               // with another definition.  We could print the whole
3366               // set of locations, but that seems too verbose.
3367               gold_assert(!first_object_linenos.empty());
3368               gold_assert(!linenos.empty());
3369               fprintf(stderr, _("  %s from %s\n"),
3370                       first_object_linenos[0].c_str(),
3371                       first_object_name.c_str());
3372               fprintf(stderr, _("  %s from %s\n"),
3373                       linenos[0].c_str(),
3374                       locs->object->name().c_str());
3375               // Only print one broken pair, to avoid needing to
3376               // compare against a list of the disjoint definition
3377               // locations we've found so far.  (If we kept comparing
3378               // against just the first one, we'd get a lot of
3379               // redundant complaints about the second definition
3380               // location.)
3381               break;
3382             }
3383         }
3384     }
3385   // We only call one_addr2line() in this function, so we can clear its cache.
3386   Dwarf_line_info::clear_addr2line_cache();
3387 }
3388
3389 // Warnings functions.
3390
3391 // Add a new warning.
3392
3393 void
3394 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3395                       const std::string& warning)
3396 {
3397   name = symtab->canonicalize_name(name);
3398   this->warnings_[name].set(obj, warning);
3399 }
3400
3401 // Look through the warnings and mark the symbols for which we should
3402 // warn.  This is called during Layout::finalize when we know the
3403 // sources for all the symbols.
3404
3405 void
3406 Warnings::note_warnings(Symbol_table* symtab)
3407 {
3408   for (Warning_table::iterator p = this->warnings_.begin();
3409        p != this->warnings_.end();
3410        ++p)
3411     {
3412       Symbol* sym = symtab->lookup(p->first, NULL);
3413       if (sym != NULL
3414           && sym->source() == Symbol::FROM_OBJECT
3415           && sym->object() == p->second.object)
3416         sym->set_has_warning();
3417     }
3418 }
3419
3420 // Issue a warning.  This is called when we see a relocation against a
3421 // symbol for which has a warning.
3422
3423 template<int size, bool big_endian>
3424 void
3425 Warnings::issue_warning(const Symbol* sym,
3426                         const Relocate_info<size, big_endian>* relinfo,
3427                         size_t relnum, off_t reloffset) const
3428 {
3429   gold_assert(sym->has_warning());
3430
3431   // We don't want to issue a warning for a relocation against the
3432   // symbol in the same object file in which the symbol is defined.
3433   if (sym->object() == relinfo->object)
3434     return;
3435
3436   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3437   gold_assert(p != this->warnings_.end());
3438   gold_warning_at_location(relinfo, relnum, reloffset,
3439                            "%s", p->second.text.c_str());
3440 }
3441
3442 // Instantiate the templates we need.  We could use the configure
3443 // script to restrict this to only the ones needed for implemented
3444 // targets.
3445
3446 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3447 template
3448 void
3449 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3450 #endif
3451
3452 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3453 template
3454 void
3455 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3456 #endif
3457
3458 #ifdef HAVE_TARGET_32_LITTLE
3459 template
3460 void
3461 Symbol_table::add_from_relobj<32, false>(
3462     Sized_relobj_file<32, false>* relobj,
3463     const unsigned char* syms,
3464     size_t count,
3465     size_t symndx_offset,
3466     const char* sym_names,
3467     size_t sym_name_size,
3468     Sized_relobj_file<32, false>::Symbols* sympointers,
3469     size_t* defined);
3470 #endif
3471
3472 #ifdef HAVE_TARGET_32_BIG
3473 template
3474 void
3475 Symbol_table::add_from_relobj<32, true>(
3476     Sized_relobj_file<32, true>* relobj,
3477     const unsigned char* syms,
3478     size_t count,
3479     size_t symndx_offset,
3480     const char* sym_names,
3481     size_t sym_name_size,
3482     Sized_relobj_file<32, true>::Symbols* sympointers,
3483     size_t* defined);
3484 #endif
3485
3486 #ifdef HAVE_TARGET_64_LITTLE
3487 template
3488 void
3489 Symbol_table::add_from_relobj<64, false>(
3490     Sized_relobj_file<64, false>* relobj,
3491     const unsigned char* syms,
3492     size_t count,
3493     size_t symndx_offset,
3494     const char* sym_names,
3495     size_t sym_name_size,
3496     Sized_relobj_file<64, false>::Symbols* sympointers,
3497     size_t* defined);
3498 #endif
3499
3500 #ifdef HAVE_TARGET_64_BIG
3501 template
3502 void
3503 Symbol_table::add_from_relobj<64, true>(
3504     Sized_relobj_file<64, true>* relobj,
3505     const unsigned char* syms,
3506     size_t count,
3507     size_t symndx_offset,
3508     const char* sym_names,
3509     size_t sym_name_size,
3510     Sized_relobj_file<64, true>::Symbols* sympointers,
3511     size_t* defined);
3512 #endif
3513
3514 #ifdef HAVE_TARGET_32_LITTLE
3515 template
3516 Symbol*
3517 Symbol_table::add_from_pluginobj<32, false>(
3518     Sized_pluginobj<32, false>* obj,
3519     const char* name,
3520     const char* ver,
3521     elfcpp::Sym<32, false>* sym);
3522 #endif
3523
3524 #ifdef HAVE_TARGET_32_BIG
3525 template
3526 Symbol*
3527 Symbol_table::add_from_pluginobj<32, true>(
3528     Sized_pluginobj<32, true>* obj,
3529     const char* name,
3530     const char* ver,
3531     elfcpp::Sym<32, true>* sym);
3532 #endif
3533
3534 #ifdef HAVE_TARGET_64_LITTLE
3535 template
3536 Symbol*
3537 Symbol_table::add_from_pluginobj<64, false>(
3538     Sized_pluginobj<64, false>* obj,
3539     const char* name,
3540     const char* ver,
3541     elfcpp::Sym<64, false>* sym);
3542 #endif
3543
3544 #ifdef HAVE_TARGET_64_BIG
3545 template
3546 Symbol*
3547 Symbol_table::add_from_pluginobj<64, true>(
3548     Sized_pluginobj<64, true>* obj,
3549     const char* name,
3550     const char* ver,
3551     elfcpp::Sym<64, true>* sym);
3552 #endif
3553
3554 #ifdef HAVE_TARGET_32_LITTLE
3555 template
3556 void
3557 Symbol_table::add_from_dynobj<32, false>(
3558     Sized_dynobj<32, false>* dynobj,
3559     const unsigned char* syms,
3560     size_t count,
3561     const char* sym_names,
3562     size_t sym_name_size,
3563     const unsigned char* versym,
3564     size_t versym_size,
3565     const std::vector<const char*>* version_map,
3566     Sized_relobj_file<32, false>::Symbols* sympointers,
3567     size_t* defined);
3568 #endif
3569
3570 #ifdef HAVE_TARGET_32_BIG
3571 template
3572 void
3573 Symbol_table::add_from_dynobj<32, true>(
3574     Sized_dynobj<32, true>* dynobj,
3575     const unsigned char* syms,
3576     size_t count,
3577     const char* sym_names,
3578     size_t sym_name_size,
3579     const unsigned char* versym,
3580     size_t versym_size,
3581     const std::vector<const char*>* version_map,
3582     Sized_relobj_file<32, true>::Symbols* sympointers,
3583     size_t* defined);
3584 #endif
3585
3586 #ifdef HAVE_TARGET_64_LITTLE
3587 template
3588 void
3589 Symbol_table::add_from_dynobj<64, false>(
3590     Sized_dynobj<64, false>* dynobj,
3591     const unsigned char* syms,
3592     size_t count,
3593     const char* sym_names,
3594     size_t sym_name_size,
3595     const unsigned char* versym,
3596     size_t versym_size,
3597     const std::vector<const char*>* version_map,
3598     Sized_relobj_file<64, false>::Symbols* sympointers,
3599     size_t* defined);
3600 #endif
3601
3602 #ifdef HAVE_TARGET_64_BIG
3603 template
3604 void
3605 Symbol_table::add_from_dynobj<64, true>(
3606     Sized_dynobj<64, true>* dynobj,
3607     const unsigned char* syms,
3608     size_t count,
3609     const char* sym_names,
3610     size_t sym_name_size,
3611     const unsigned char* versym,
3612     size_t versym_size,
3613     const std::vector<const char*>* version_map,
3614     Sized_relobj_file<64, true>::Symbols* sympointers,
3615     size_t* defined);
3616 #endif
3617
3618 #ifdef HAVE_TARGET_32_LITTLE
3619 template
3620 Sized_symbol<32>*
3621 Symbol_table::add_from_incrobj(
3622     Object* obj,
3623     const char* name,
3624     const char* ver,
3625     elfcpp::Sym<32, false>* sym);
3626 #endif
3627
3628 #ifdef HAVE_TARGET_32_BIG
3629 template
3630 Sized_symbol<32>*
3631 Symbol_table::add_from_incrobj(
3632     Object* obj,
3633     const char* name,
3634     const char* ver,
3635     elfcpp::Sym<32, true>* sym);
3636 #endif
3637
3638 #ifdef HAVE_TARGET_64_LITTLE
3639 template
3640 Sized_symbol<64>*
3641 Symbol_table::add_from_incrobj(
3642     Object* obj,
3643     const char* name,
3644     const char* ver,
3645     elfcpp::Sym<64, false>* sym);
3646 #endif
3647
3648 #ifdef HAVE_TARGET_64_BIG
3649 template
3650 Sized_symbol<64>*
3651 Symbol_table::add_from_incrobj(
3652     Object* obj,
3653     const char* name,
3654     const char* ver,
3655     elfcpp::Sym<64, true>* sym);
3656 #endif
3657
3658 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3659 template
3660 void
3661 Symbol_table::define_with_copy_reloc<32>(
3662     Sized_symbol<32>* sym,
3663     Output_data* posd,
3664     elfcpp::Elf_types<32>::Elf_Addr value);
3665 #endif
3666
3667 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3668 template
3669 void
3670 Symbol_table::define_with_copy_reloc<64>(
3671     Sized_symbol<64>* sym,
3672     Output_data* posd,
3673     elfcpp::Elf_types<64>::Elf_Addr value);
3674 #endif
3675
3676 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3677 template
3678 void
3679 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3680                                    Output_data* od, Value_type value,
3681                                    Size_type symsize, elfcpp::STT type,
3682                                    elfcpp::STB binding,
3683                                    elfcpp::STV visibility,
3684                                    unsigned char nonvis,
3685                                    bool offset_is_from_end,
3686                                    bool is_predefined);
3687 #endif
3688
3689 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3690 template
3691 void
3692 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3693                                    Output_data* od, Value_type value,
3694                                    Size_type symsize, elfcpp::STT type,
3695                                    elfcpp::STB binding,
3696                                    elfcpp::STV visibility,
3697                                    unsigned char nonvis,
3698                                    bool offset_is_from_end,
3699                                    bool is_predefined);
3700 #endif
3701
3702 #ifdef HAVE_TARGET_32_LITTLE
3703 template
3704 void
3705 Warnings::issue_warning<32, false>(const Symbol* sym,
3706                                    const Relocate_info<32, false>* relinfo,
3707                                    size_t relnum, off_t reloffset) const;
3708 #endif
3709
3710 #ifdef HAVE_TARGET_32_BIG
3711 template
3712 void
3713 Warnings::issue_warning<32, true>(const Symbol* sym,
3714                                   const Relocate_info<32, true>* relinfo,
3715                                   size_t relnum, off_t reloffset) const;
3716 #endif
3717
3718 #ifdef HAVE_TARGET_64_LITTLE
3719 template
3720 void
3721 Warnings::issue_warning<64, false>(const Symbol* sym,
3722                                    const Relocate_info<64, false>* relinfo,
3723                                    size_t relnum, off_t reloffset) const;
3724 #endif
3725
3726 #ifdef HAVE_TARGET_64_BIG
3727 template
3728 void
3729 Warnings::issue_warning<64, true>(const Symbol* sym,
3730                                   const Relocate_info<64, true>* relinfo,
3731                                   size_t relnum, off_t reloffset) const;
3732 #endif
3733
3734 } // End namespace gold.