From Cary Coutant: More support for generating shared libraries.
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <stdint.h>
26 #include <set>
27 #include <string>
28 #include <utility>
29 #include "demangle.h"
30
31 #include "object.h"
32 #include "dwarf_reader.h"
33 #include "dynobj.h"
34 #include "output.h"
35 #include "target.h"
36 #include "workqueue.h"
37 #include "symtab.h"
38
39 namespace gold
40 {
41
42 // Class Symbol.
43
44 // Initialize fields in Symbol.  This initializes everything except u_
45 // and source_.
46
47 void
48 Symbol::init_fields(const char* name, const char* version,
49                     elfcpp::STT type, elfcpp::STB binding,
50                     elfcpp::STV visibility, unsigned char nonvis)
51 {
52   this->name_ = name;
53   this->version_ = version;
54   this->symtab_index_ = 0;
55   this->dynsym_index_ = 0;
56   this->got_offset_ = 0;
57   this->plt_offset_ = 0;
58   this->type_ = type;
59   this->binding_ = binding;
60   this->visibility_ = visibility;
61   this->nonvis_ = nonvis;
62   this->is_target_special_ = false;
63   this->is_def_ = false;
64   this->is_forwarder_ = false;
65   this->has_alias_ = false;
66   this->needs_dynsym_entry_ = false;
67   this->in_reg_ = false;
68   this->in_dyn_ = false;
69   this->has_got_offset_ = false;
70   this->has_plt_offset_ = false;
71   this->has_warning_ = false;
72   this->is_copied_from_dynobj_ = false;
73   this->needs_value_in_got_ = false;
74 }
75
76 // Return the demangled version of the symbol's name, but only
77 // if the --demangle flag was set.
78
79 static std::string
80 demangle(const char* name)
81 {
82   if (!parameters->demangle())
83     return name;
84
85   // cplus_demangle allocates memory for the result it returns,
86   // and returns NULL if the name is already demangled.
87   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
88   if (demangled_name == NULL)
89     return name;
90
91   std::string retval(demangled_name);
92   free(demangled_name);
93   return retval;
94 }
95
96 std::string
97 Symbol::demangled_name() const
98 {
99   return demangle(this->name());
100 }
101
102 // Initialize the fields in the base class Symbol for SYM in OBJECT.
103
104 template<int size, bool big_endian>
105 void
106 Symbol::init_base(const char* name, const char* version, Object* object,
107                   const elfcpp::Sym<size, big_endian>& sym)
108 {
109   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
110                     sym.get_st_visibility(), sym.get_st_nonvis());
111   this->u_.from_object.object = object;
112   // FIXME: Handle SHN_XINDEX.
113   this->u_.from_object.shndx = sym.get_st_shndx();
114   this->source_ = FROM_OBJECT;
115   this->in_reg_ = !object->is_dynamic();
116   this->in_dyn_ = object->is_dynamic();
117 }
118
119 // Initialize the fields in the base class Symbol for a symbol defined
120 // in an Output_data.
121
122 void
123 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
124                   elfcpp::STB binding, elfcpp::STV visibility,
125                   unsigned char nonvis, bool offset_is_from_end)
126 {
127   this->init_fields(name, NULL, type, binding, visibility, nonvis);
128   this->u_.in_output_data.output_data = od;
129   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
130   this->source_ = IN_OUTPUT_DATA;
131   this->in_reg_ = true;
132 }
133
134 // Initialize the fields in the base class Symbol for a symbol defined
135 // in an Output_segment.
136
137 void
138 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
139                   elfcpp::STB binding, elfcpp::STV visibility,
140                   unsigned char nonvis, Segment_offset_base offset_base)
141 {
142   this->init_fields(name, NULL, type, binding, visibility, nonvis);
143   this->u_.in_output_segment.output_segment = os;
144   this->u_.in_output_segment.offset_base = offset_base;
145   this->source_ = IN_OUTPUT_SEGMENT;
146   this->in_reg_ = true;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // as a constant.
151
152 void
153 Symbol::init_base(const char* name, elfcpp::STT type,
154                   elfcpp::STB binding, elfcpp::STV visibility,
155                   unsigned char nonvis)
156 {
157   this->init_fields(name, NULL, type, binding, visibility, nonvis);
158   this->source_ = CONSTANT;
159   this->in_reg_ = true;
160 }
161
162 // Allocate a common symbol in the base.
163
164 void
165 Symbol::allocate_base_common(Output_data* od)
166 {
167   gold_assert(this->is_common());
168   this->source_ = IN_OUTPUT_DATA;
169   this->u_.in_output_data.output_data = od;
170   this->u_.in_output_data.offset_is_from_end = false;
171 }
172
173 // Initialize the fields in Sized_symbol for SYM in OBJECT.
174
175 template<int size>
176 template<bool big_endian>
177 void
178 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
179                          const elfcpp::Sym<size, big_endian>& sym)
180 {
181   this->init_base(name, version, object, sym);
182   this->value_ = sym.get_st_value();
183   this->symsize_ = sym.get_st_size();
184 }
185
186 // Initialize the fields in Sized_symbol for a symbol defined in an
187 // Output_data.
188
189 template<int size>
190 void
191 Sized_symbol<size>::init(const char* name, Output_data* od,
192                          Value_type value, Size_type symsize,
193                          elfcpp::STT type, elfcpp::STB binding,
194                          elfcpp::STV visibility, unsigned char nonvis,
195                          bool offset_is_from_end)
196 {
197   this->init_base(name, od, type, binding, visibility, nonvis,
198                   offset_is_from_end);
199   this->value_ = value;
200   this->symsize_ = symsize;
201 }
202
203 // Initialize the fields in Sized_symbol for a symbol defined in an
204 // Output_segment.
205
206 template<int size>
207 void
208 Sized_symbol<size>::init(const char* name, Output_segment* os,
209                          Value_type value, Size_type symsize,
210                          elfcpp::STT type, elfcpp::STB binding,
211                          elfcpp::STV visibility, unsigned char nonvis,
212                          Segment_offset_base offset_base)
213 {
214   this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
215   this->value_ = value;
216   this->symsize_ = symsize;
217 }
218
219 // Initialize the fields in Sized_symbol for a symbol defined as a
220 // constant.
221
222 template<int size>
223 void
224 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
225                          elfcpp::STT type, elfcpp::STB binding,
226                          elfcpp::STV visibility, unsigned char nonvis)
227 {
228   this->init_base(name, type, binding, visibility, nonvis);
229   this->value_ = value;
230   this->symsize_ = symsize;
231 }
232
233 // Allocate a common symbol.
234
235 template<int size>
236 void
237 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
238 {
239   this->allocate_base_common(od);
240   this->value_ = value;
241 }
242
243 // Return true if this symbol should be added to the dynamic symbol
244 // table.
245
246 inline bool
247 Symbol::should_add_dynsym_entry() const
248 {
249   // If the symbol is used by a dynamic relocation, we need to add it.
250   if (this->needs_dynsym_entry())
251     return true;
252
253   // If exporting all symbols or building a shared library,
254   // and the symbol is defined in a regular object and is
255   // externally visible, we need to add it.
256   if ((parameters->export_dynamic() || parameters->output_is_shared())
257       && !this->is_from_dynobj()
258       && this->is_externally_visible())
259     return true;
260
261   return false;
262 }
263
264 // Return true if the final value of this symbol is known at link
265 // time.
266
267 bool
268 Symbol::final_value_is_known() const
269 {
270   // If we are not generating an executable, then no final values are
271   // known, since they will change at runtime.
272   if (!parameters->output_is_executable())
273     return false;
274
275   // If the symbol is not from an object file, then it is defined, and
276   // known.
277   if (this->source_ != FROM_OBJECT)
278     return true;
279
280   // If the symbol is from a dynamic object, then the final value is
281   // not known.
282   if (this->object()->is_dynamic())
283     return false;
284
285   // If the symbol is not undefined (it is defined or common), then
286   // the final value is known.
287   if (!this->is_undefined())
288     return true;
289
290   // If the symbol is undefined, then whether the final value is known
291   // depends on whether we are doing a static link.  If we are doing a
292   // dynamic link, then the final value could be filled in at runtime.
293   // This could reasonably be the case for a weak undefined symbol.
294   return parameters->doing_static_link();
295 }
296
297 // Class Symbol_table.
298
299 Symbol_table::Symbol_table()
300   : saw_undefined_(0), offset_(0), table_(), namepool_(),
301     forwarders_(), commons_(), warnings_()
302 {
303 }
304
305 Symbol_table::~Symbol_table()
306 {
307 }
308
309 // The hash function.  The key values are Stringpool keys.
310
311 inline size_t
312 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
313 {
314   return key.first ^ key.second;
315 }
316
317 // The symbol table key equality function.  This is called with
318 // Stringpool keys.
319
320 inline bool
321 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
322                                           const Symbol_table_key& k2) const
323 {
324   return k1.first == k2.first && k1.second == k2.second;
325 }
326
327 // Make TO a symbol which forwards to FROM.
328
329 void
330 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
331 {
332   gold_assert(from != to);
333   gold_assert(!from->is_forwarder() && !to->is_forwarder());
334   this->forwarders_[from] = to;
335   from->set_forwarder();
336 }
337
338 // Resolve the forwards from FROM, returning the real symbol.
339
340 Symbol*
341 Symbol_table::resolve_forwards(const Symbol* from) const
342 {
343   gold_assert(from->is_forwarder());
344   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
345     this->forwarders_.find(from);
346   gold_assert(p != this->forwarders_.end());
347   return p->second;
348 }
349
350 // Look up a symbol by name.
351
352 Symbol*
353 Symbol_table::lookup(const char* name, const char* version) const
354 {
355   Stringpool::Key name_key;
356   name = this->namepool_.find(name, &name_key);
357   if (name == NULL)
358     return NULL;
359
360   Stringpool::Key version_key = 0;
361   if (version != NULL)
362     {
363       version = this->namepool_.find(version, &version_key);
364       if (version == NULL)
365         return NULL;
366     }
367
368   Symbol_table_key key(name_key, version_key);
369   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
370   if (p == this->table_.end())
371     return NULL;
372   return p->second;
373 }
374
375 // Resolve a Symbol with another Symbol.  This is only used in the
376 // unusual case where there are references to both an unversioned
377 // symbol and a symbol with a version, and we then discover that that
378 // version is the default version.  Because this is unusual, we do
379 // this the slow way, by converting back to an ELF symbol.
380
381 template<int size, bool big_endian>
382 void
383 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
384                       const char* version ACCEPT_SIZE_ENDIAN)
385 {
386   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
387   elfcpp::Sym_write<size, big_endian> esym(buf);
388   // We don't bother to set the st_name field.
389   esym.put_st_value(from->value());
390   esym.put_st_size(from->symsize());
391   esym.put_st_info(from->binding(), from->type());
392   esym.put_st_other(from->visibility(), from->nonvis());
393   esym.put_st_shndx(from->shndx());
394   this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
395   if (from->in_reg())
396     to->set_in_reg();
397   if (from->in_dyn())
398     to->set_in_dyn();
399 }
400
401 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
402 // name and VERSION is the version; both are canonicalized.  DEF is
403 // whether this is the default version.
404
405 // If DEF is true, then this is the definition of a default version of
406 // a symbol.  That means that any lookup of NAME/NULL and any lookup
407 // of NAME/VERSION should always return the same symbol.  This is
408 // obvious for references, but in particular we want to do this for
409 // definitions: overriding NAME/NULL should also override
410 // NAME/VERSION.  If we don't do that, it would be very hard to
411 // override functions in a shared library which uses versioning.
412
413 // We implement this by simply making both entries in the hash table
414 // point to the same Symbol structure.  That is easy enough if this is
415 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
416 // that we have seen both already, in which case they will both have
417 // independent entries in the symbol table.  We can't simply change
418 // the symbol table entry, because we have pointers to the entries
419 // attached to the object files.  So we mark the entry attached to the
420 // object file as a forwarder, and record it in the forwarders_ map.
421 // Note that entries in the hash table will never be marked as
422 // forwarders.
423 //
424 // SYM and ORIG_SYM are almost always the same.  ORIG_SYM is the
425 // symbol exactly as it existed in the input file.  SYM is usually
426 // that as well, but can be modified, for instance if we determine
427 // it's in a to-be-discarded section.
428
429 template<int size, bool big_endian>
430 Sized_symbol<size>*
431 Symbol_table::add_from_object(Object* object,
432                               const char *name,
433                               Stringpool::Key name_key,
434                               const char *version,
435                               Stringpool::Key version_key,
436                               bool def,
437                               const elfcpp::Sym<size, big_endian>& sym,
438                               const elfcpp::Sym<size, big_endian>& orig_sym)
439 {
440   Symbol* const snull = NULL;
441   std::pair<typename Symbol_table_type::iterator, bool> ins =
442     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
443                                        snull));
444
445   std::pair<typename Symbol_table_type::iterator, bool> insdef =
446     std::make_pair(this->table_.end(), false);
447   if (def)
448     {
449       const Stringpool::Key vnull_key = 0;
450       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
451                                                                  vnull_key),
452                                                   snull));
453     }
454
455   // ins.first: an iterator, which is a pointer to a pair.
456   // ins.first->first: the key (a pair of name and version).
457   // ins.first->second: the value (Symbol*).
458   // ins.second: true if new entry was inserted, false if not.
459
460   Sized_symbol<size>* ret;
461   bool was_undefined;
462   bool was_common;
463   if (!ins.second)
464     {
465       // We already have an entry for NAME/VERSION.
466       ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
467                                                            SELECT_SIZE(size));
468       gold_assert(ret != NULL);
469
470       was_undefined = ret->is_undefined();
471       was_common = ret->is_common();
472
473       this->resolve(ret, sym, orig_sym, object, version);
474
475       if (def)
476         {
477           if (insdef.second)
478             {
479               // This is the first time we have seen NAME/NULL.  Make
480               // NAME/NULL point to NAME/VERSION.
481               insdef.first->second = ret;
482             }
483           else if (insdef.first->second != ret)
484             {
485               // This is the unfortunate case where we already have
486               // entries for both NAME/VERSION and NAME/NULL.
487               const Sized_symbol<size>* sym2;
488               sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
489                 insdef.first->second
490                 SELECT_SIZE(size));
491               Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
492                 ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian));
493               this->make_forwarder(insdef.first->second, ret);
494               insdef.first->second = ret;
495             }
496         }
497     }
498   else
499     {
500       // This is the first time we have seen NAME/VERSION.
501       gold_assert(ins.first->second == NULL);
502
503       was_undefined = false;
504       was_common = false;
505
506       if (def && !insdef.second)
507         {
508           // We already have an entry for NAME/NULL.  If we override
509           // it, then change it to NAME/VERSION.
510           ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
511               insdef.first->second
512               SELECT_SIZE(size));
513           this->resolve(ret, sym, orig_sym, object, version);
514           ins.first->second = ret;
515         }
516       else
517         {
518           Sized_target<size, big_endian>* target =
519             object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
520                 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
521           if (!target->has_make_symbol())
522             ret = new Sized_symbol<size>();
523           else
524             {
525               ret = target->make_symbol();
526               if (ret == NULL)
527                 {
528                   // This means that we don't want a symbol table
529                   // entry after all.
530                   if (!def)
531                     this->table_.erase(ins.first);
532                   else
533                     {
534                       this->table_.erase(insdef.first);
535                       // Inserting insdef invalidated ins.
536                       this->table_.erase(std::make_pair(name_key,
537                                                         version_key));
538                     }
539                   return NULL;
540                 }
541             }
542
543           ret->init(name, version, object, sym);
544
545           ins.first->second = ret;
546           if (def)
547             {
548               // This is the first time we have seen NAME/NULL.  Point
549               // it at the new entry for NAME/VERSION.
550               gold_assert(insdef.second);
551               insdef.first->second = ret;
552             }
553         }
554     }
555
556   // Record every time we see a new undefined symbol, to speed up
557   // archive groups.
558   if (!was_undefined && ret->is_undefined())
559     ++this->saw_undefined_;
560
561   // Keep track of common symbols, to speed up common symbol
562   // allocation.
563   if (!was_common && ret->is_common())
564     this->commons_.push_back(ret);
565
566   return ret;
567 }
568
569 // Add all the symbols in a relocatable object to the hash table.
570
571 template<int size, bool big_endian>
572 void
573 Symbol_table::add_from_relobj(
574     Sized_relobj<size, big_endian>* relobj,
575     const unsigned char* syms,
576     size_t count,
577     const char* sym_names,
578     size_t sym_name_size,
579     typename Sized_relobj<size, big_endian>::Symbols* sympointers)
580 {
581   gold_assert(size == relobj->target()->get_size());
582   gold_assert(size == parameters->get_size());
583
584   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
585
586   const unsigned char* p = syms;
587   for (size_t i = 0; i < count; ++i, p += sym_size)
588     {
589       elfcpp::Sym<size, big_endian> sym(p);
590       elfcpp::Sym<size, big_endian>* psym = &sym;
591
592       unsigned int st_name = psym->get_st_name();
593       if (st_name >= sym_name_size)
594         {
595           relobj->error(_("bad global symbol name offset %u at %zu"),
596                         st_name, i);
597           continue;
598         }
599
600       const char* name = sym_names + st_name;
601
602       // A symbol defined in a section which we are not including must
603       // be treated as an undefined symbol.
604       unsigned char symbuf[sym_size];
605       elfcpp::Sym<size, big_endian> sym2(symbuf);
606       unsigned int st_shndx = psym->get_st_shndx();
607       if (st_shndx != elfcpp::SHN_UNDEF
608           && st_shndx < elfcpp::SHN_LORESERVE
609           && !relobj->is_section_included(st_shndx))
610         {
611           memcpy(symbuf, p, sym_size);
612           elfcpp::Sym_write<size, big_endian> sw(symbuf);
613           sw.put_st_shndx(elfcpp::SHN_UNDEF);
614           psym = &sym2;
615         }
616
617       // In an object file, an '@' in the name separates the symbol
618       // name from the version name.  If there are two '@' characters,
619       // this is the default version.
620       const char* ver = strchr(name, '@');
621
622       Sized_symbol<size>* res;
623       if (ver == NULL)
624         {
625           Stringpool::Key name_key;
626           name = this->namepool_.add(name, true, &name_key);
627           res = this->add_from_object(relobj, name, name_key, NULL, 0,
628                                       false, *psym, sym);
629         }
630       else
631         {
632           Stringpool::Key name_key;
633           name = this->namepool_.add_prefix(name, ver - name, &name_key);
634
635           bool def = false;
636           ++ver;
637           if (*ver == '@')
638             {
639               def = true;
640               ++ver;
641             }
642
643           Stringpool::Key ver_key;
644           ver = this->namepool_.add(ver, true, &ver_key);
645
646           res = this->add_from_object(relobj, name, name_key, ver, ver_key,
647                                       def, *psym, sym);
648         }
649
650       (*sympointers)[i] = res;
651     }
652 }
653
654 // Add all the symbols in a dynamic object to the hash table.
655
656 template<int size, bool big_endian>
657 void
658 Symbol_table::add_from_dynobj(
659     Sized_dynobj<size, big_endian>* dynobj,
660     const unsigned char* syms,
661     size_t count,
662     const char* sym_names,
663     size_t sym_name_size,
664     const unsigned char* versym,
665     size_t versym_size,
666     const std::vector<const char*>* version_map)
667 {
668   gold_assert(size == dynobj->target()->get_size());
669   gold_assert(size == parameters->get_size());
670
671   if (versym != NULL && versym_size / 2 < count)
672     {
673       dynobj->error(_("too few symbol versions"));
674       return;
675     }
676
677   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
678
679   // We keep a list of all STT_OBJECT symbols, so that we can resolve
680   // weak aliases.  This is necessary because if the dynamic object
681   // provides the same variable under two names, one of which is a
682   // weak definition, and the regular object refers to the weak
683   // definition, we have to put both the weak definition and the
684   // strong definition into the dynamic symbol table.  Given a weak
685   // definition, the only way that we can find the corresponding
686   // strong definition, if any, is to search the symbol table.
687   std::vector<Sized_symbol<size>*> object_symbols;
688
689   const unsigned char* p = syms;
690   const unsigned char* vs = versym;
691   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
692     {
693       elfcpp::Sym<size, big_endian> sym(p);
694
695       // Ignore symbols with local binding.
696       if (sym.get_st_bind() == elfcpp::STB_LOCAL)
697         continue;
698
699       unsigned int st_name = sym.get_st_name();
700       if (st_name >= sym_name_size)
701         {
702           dynobj->error(_("bad symbol name offset %u at %zu"),
703                         st_name, i);
704           continue;
705         }
706
707       const char* name = sym_names + st_name;
708
709       Sized_symbol<size>* res;
710
711       if (versym == NULL)
712         {
713           Stringpool::Key name_key;
714           name = this->namepool_.add(name, true, &name_key);
715           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
716                                       false, sym, sym);
717         }
718       else
719         {
720           // Read the version information.
721
722           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
723
724           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
725           v &= elfcpp::VERSYM_VERSION;
726
727           // The Sun documentation says that V can be VER_NDX_LOCAL,
728           // or VER_NDX_GLOBAL, or a version index.  The meaning of
729           // VER_NDX_LOCAL is defined as "Symbol has local scope."
730           // The old GNU linker will happily generate VER_NDX_LOCAL
731           // for an undefined symbol.  I don't know what the Sun
732           // linker will generate.
733
734           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
735               && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
736             {
737               // This symbol should not be visible outside the object.
738               continue;
739             }
740
741           // At this point we are definitely going to add this symbol.
742           Stringpool::Key name_key;
743           name = this->namepool_.add(name, true, &name_key);
744
745           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
746               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
747             {
748               // This symbol does not have a version.
749               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
750                                           false, sym, sym);
751             }
752           else
753             {
754               if (v >= version_map->size())
755                 {
756                   dynobj->error(_("versym for symbol %zu out of range: %u"),
757                                 i, v);
758                   continue;
759                 }
760
761               const char* version = (*version_map)[v];
762               if (version == NULL)
763                 {
764                   dynobj->error(_("versym for symbol %zu has no name: %u"),
765                                 i, v);
766                   continue;
767                 }
768
769               Stringpool::Key version_key;
770               version = this->namepool_.add(version, true, &version_key);
771
772               // If this is an absolute symbol, and the version name
773               // and symbol name are the same, then this is the
774               // version definition symbol.  These symbols exist to
775               // support using -u to pull in particular versions.  We
776               // do not want to record a version for them.
777               if (sym.get_st_shndx() == elfcpp::SHN_ABS
778                   && name_key == version_key)
779                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
780                                             false, sym, sym);
781               else
782                 {
783                   const bool def = (!hidden
784                                     && (sym.get_st_shndx()
785                                         != elfcpp::SHN_UNDEF));
786                   res = this->add_from_object(dynobj, name, name_key, version,
787                                               version_key, def, sym, sym);
788                 }
789             }
790         }
791
792       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
793           && sym.get_st_type() == elfcpp::STT_OBJECT)
794         object_symbols.push_back(res);
795     }
796
797   this->record_weak_aliases(&object_symbols);
798 }
799
800 // This is used to sort weak aliases.  We sort them first by section
801 // index, then by offset, then by weak ahead of strong.
802
803 template<int size>
804 class Weak_alias_sorter
805 {
806  public:
807   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
808 };
809
810 template<int size>
811 bool
812 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
813                                     const Sized_symbol<size>* s2) const
814 {
815   if (s1->shndx() != s2->shndx())
816     return s1->shndx() < s2->shndx();
817   if (s1->value() != s2->value())
818     return s1->value() < s2->value();
819   if (s1->binding() != s2->binding())
820     {
821       if (s1->binding() == elfcpp::STB_WEAK)
822         return true;
823       if (s2->binding() == elfcpp::STB_WEAK)
824         return false;
825     }
826   return std::string(s1->name()) < std::string(s2->name());
827 }
828
829 // SYMBOLS is a list of object symbols from a dynamic object.  Look
830 // for any weak aliases, and record them so that if we add the weak
831 // alias to the dynamic symbol table, we also add the corresponding
832 // strong symbol.
833
834 template<int size>
835 void
836 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
837 {
838   // Sort the vector by section index, then by offset, then by weak
839   // ahead of strong.
840   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
841
842   // Walk through the vector.  For each weak definition, record
843   // aliases.
844   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
845          symbols->begin();
846        p != symbols->end();
847        ++p)
848     {
849       if ((*p)->binding() != elfcpp::STB_WEAK)
850         continue;
851
852       // Build a circular list of weak aliases.  Each symbol points to
853       // the next one in the circular list.
854
855       Sized_symbol<size>* from_sym = *p;
856       typename std::vector<Sized_symbol<size>*>::const_iterator q;
857       for (q = p + 1; q != symbols->end(); ++q)
858         {
859           if ((*q)->shndx() != from_sym->shndx()
860               || (*q)->value() != from_sym->value())
861             break;
862
863           this->weak_aliases_[from_sym] = *q;
864           from_sym->set_has_alias();
865           from_sym = *q;
866         }
867
868       if (from_sym != *p)
869         {
870           this->weak_aliases_[from_sym] = *p;
871           from_sym->set_has_alias();
872         }
873
874       p = q - 1;
875     }
876 }
877
878 // Create and return a specially defined symbol.  If ONLY_IF_REF is
879 // true, then only create the symbol if there is a reference to it.
880 // If this does not return NULL, it sets *POLDSYM to the existing
881 // symbol if there is one.  This canonicalizes *PNAME and *PVERSION.
882
883 template<int size, bool big_endian>
884 Sized_symbol<size>*
885 Symbol_table::define_special_symbol(const Target* target, const char** pname,
886                                     const char** pversion, bool only_if_ref,
887                                     Sized_symbol<size>** poldsym
888                                     ACCEPT_SIZE_ENDIAN)
889 {
890   Symbol* oldsym;
891   Sized_symbol<size>* sym;
892   bool add_to_table = false;
893   typename Symbol_table_type::iterator add_loc = this->table_.end();
894
895   if (only_if_ref)
896     {
897       oldsym = this->lookup(*pname, *pversion);
898       if (oldsym == NULL || !oldsym->is_undefined())
899         return NULL;
900
901       *pname = oldsym->name();
902       *pversion = oldsym->version();
903     }
904   else
905     {
906       // Canonicalize NAME and VERSION.
907       Stringpool::Key name_key;
908       *pname = this->namepool_.add(*pname, true, &name_key);
909
910       Stringpool::Key version_key = 0;
911       if (*pversion != NULL)
912         *pversion = this->namepool_.add(*pversion, true, &version_key);
913
914       Symbol* const snull = NULL;
915       std::pair<typename Symbol_table_type::iterator, bool> ins =
916         this->table_.insert(std::make_pair(std::make_pair(name_key,
917                                                           version_key),
918                                            snull));
919
920       if (!ins.second)
921         {
922           // We already have a symbol table entry for NAME/VERSION.
923           oldsym = ins.first->second;
924           gold_assert(oldsym != NULL);
925         }
926       else
927         {
928           // We haven't seen this symbol before.
929           gold_assert(ins.first->second == NULL);
930           add_to_table = true;
931           add_loc = ins.first;
932           oldsym = NULL;
933         }
934     }
935
936   if (!target->has_make_symbol())
937     sym = new Sized_symbol<size>();
938   else
939     {
940       gold_assert(target->get_size() == size);
941       gold_assert(target->is_big_endian() ? big_endian : !big_endian);
942       typedef Sized_target<size, big_endian> My_target;
943       const My_target* sized_target =
944           static_cast<const My_target*>(target);
945       sym = sized_target->make_symbol();
946       if (sym == NULL)
947         return NULL;
948     }
949
950   if (add_to_table)
951     add_loc->second = sym;
952   else
953     gold_assert(oldsym != NULL);
954
955   *poldsym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
956                                                             SELECT_SIZE(size));
957
958   return sym;
959 }
960
961 // Define a symbol based on an Output_data.
962
963 Symbol*
964 Symbol_table::define_in_output_data(const Target* target, const char* name,
965                                     const char* version, Output_data* od,
966                                     uint64_t value, uint64_t symsize,
967                                     elfcpp::STT type, elfcpp::STB binding,
968                                     elfcpp::STV visibility,
969                                     unsigned char nonvis,
970                                     bool offset_is_from_end,
971                                     bool only_if_ref)
972 {
973   if (parameters->get_size() == 32)
974     {
975 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
976       return this->do_define_in_output_data<32>(target, name, version, od,
977                                                 value, symsize, type, binding,
978                                                 visibility, nonvis,
979                                                 offset_is_from_end,
980                                                 only_if_ref);
981 #else
982       gold_unreachable();
983 #endif
984     }
985   else if (parameters->get_size() == 64)
986     {
987 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
988       return this->do_define_in_output_data<64>(target, name, version, od,
989                                                 value, symsize, type, binding,
990                                                 visibility, nonvis,
991                                                 offset_is_from_end,
992                                                 only_if_ref);
993 #else
994       gold_unreachable();
995 #endif
996     }
997   else
998     gold_unreachable();
999 }
1000
1001 // Define a symbol in an Output_data, sized version.
1002
1003 template<int size>
1004 Sized_symbol<size>*
1005 Symbol_table::do_define_in_output_data(
1006     const Target* target,
1007     const char* name,
1008     const char* version,
1009     Output_data* od,
1010     typename elfcpp::Elf_types<size>::Elf_Addr value,
1011     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1012     elfcpp::STT type,
1013     elfcpp::STB binding,
1014     elfcpp::STV visibility,
1015     unsigned char nonvis,
1016     bool offset_is_from_end,
1017     bool only_if_ref)
1018 {
1019   Sized_symbol<size>* sym;
1020   Sized_symbol<size>* oldsym;
1021
1022   if (parameters->is_big_endian())
1023     {
1024 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1025       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1026           target, &name, &version, only_if_ref, &oldsym
1027           SELECT_SIZE_ENDIAN(size, true));
1028 #else
1029       gold_unreachable();
1030 #endif
1031     }
1032   else
1033     {
1034 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1035       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1036           target, &name, &version, only_if_ref, &oldsym
1037           SELECT_SIZE_ENDIAN(size, false));
1038 #else
1039       gold_unreachable();
1040 #endif
1041     }
1042
1043   if (sym == NULL)
1044     return NULL;
1045
1046   gold_assert(version == NULL || oldsym != NULL);
1047   sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1048             offset_is_from_end);
1049
1050   if (oldsym != NULL
1051       && Symbol_table::should_override_with_special(oldsym))
1052     this->override_with_special(oldsym, sym);
1053
1054   return sym;
1055 }
1056
1057 // Define a symbol based on an Output_segment.
1058
1059 Symbol*
1060 Symbol_table::define_in_output_segment(const Target* target, const char* name,
1061                                        const char* version, Output_segment* os,
1062                                        uint64_t value, uint64_t symsize,
1063                                        elfcpp::STT type, elfcpp::STB binding,
1064                                        elfcpp::STV visibility,
1065                                        unsigned char nonvis,
1066                                        Symbol::Segment_offset_base offset_base,
1067                                        bool only_if_ref)
1068 {
1069   if (parameters->get_size() == 32)
1070     {
1071 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1072       return this->do_define_in_output_segment<32>(target, name, version, os,
1073                                                    value, symsize, type,
1074                                                    binding, visibility, nonvis,
1075                                                    offset_base, only_if_ref);
1076 #else
1077       gold_unreachable();
1078 #endif
1079     }
1080   else if (parameters->get_size() == 64)
1081     {
1082 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1083       return this->do_define_in_output_segment<64>(target, name, version, os,
1084                                                    value, symsize, type,
1085                                                    binding, visibility, nonvis,
1086                                                    offset_base, only_if_ref);
1087 #else
1088       gold_unreachable();
1089 #endif
1090     }
1091   else
1092     gold_unreachable();
1093 }
1094
1095 // Define a symbol in an Output_segment, sized version.
1096
1097 template<int size>
1098 Sized_symbol<size>*
1099 Symbol_table::do_define_in_output_segment(
1100     const Target* target,
1101     const char* name,
1102     const char* version,
1103     Output_segment* os,
1104     typename elfcpp::Elf_types<size>::Elf_Addr value,
1105     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1106     elfcpp::STT type,
1107     elfcpp::STB binding,
1108     elfcpp::STV visibility,
1109     unsigned char nonvis,
1110     Symbol::Segment_offset_base offset_base,
1111     bool only_if_ref)
1112 {
1113   Sized_symbol<size>* sym;
1114   Sized_symbol<size>* oldsym;
1115
1116   if (parameters->is_big_endian())
1117     {
1118 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1119       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1120           target, &name, &version, only_if_ref, &oldsym
1121           SELECT_SIZE_ENDIAN(size, true));
1122 #else
1123       gold_unreachable();
1124 #endif
1125     }
1126   else
1127     {
1128 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1129       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1130           target, &name, &version, only_if_ref, &oldsym
1131           SELECT_SIZE_ENDIAN(size, false));
1132 #else
1133       gold_unreachable();
1134 #endif
1135     }
1136
1137   if (sym == NULL)
1138     return NULL;
1139
1140   gold_assert(version == NULL || oldsym != NULL);
1141   sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1142             offset_base);
1143
1144   if (oldsym != NULL
1145       && Symbol_table::should_override_with_special(oldsym))
1146     this->override_with_special(oldsym, sym);
1147
1148   return sym;
1149 }
1150
1151 // Define a special symbol with a constant value.  It is a multiple
1152 // definition error if this symbol is already defined.
1153
1154 Symbol*
1155 Symbol_table::define_as_constant(const Target* target, const char* name,
1156                                  const char* version, uint64_t value,
1157                                  uint64_t symsize, elfcpp::STT type,
1158                                  elfcpp::STB binding, elfcpp::STV visibility,
1159                                  unsigned char nonvis, bool only_if_ref)
1160 {
1161   if (parameters->get_size() == 32)
1162     {
1163 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1164       return this->do_define_as_constant<32>(target, name, version, value,
1165                                              symsize, type, binding,
1166                                              visibility, nonvis, only_if_ref);
1167 #else
1168       gold_unreachable();
1169 #endif
1170     }
1171   else if (parameters->get_size() == 64)
1172     {
1173 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1174       return this->do_define_as_constant<64>(target, name, version, value,
1175                                              symsize, type, binding,
1176                                              visibility, nonvis, only_if_ref);
1177 #else
1178       gold_unreachable();
1179 #endif
1180     }
1181   else
1182     gold_unreachable();
1183 }
1184
1185 // Define a symbol as a constant, sized version.
1186
1187 template<int size>
1188 Sized_symbol<size>*
1189 Symbol_table::do_define_as_constant(
1190     const Target* target,
1191     const char* name,
1192     const char* version,
1193     typename elfcpp::Elf_types<size>::Elf_Addr value,
1194     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1195     elfcpp::STT type,
1196     elfcpp::STB binding,
1197     elfcpp::STV visibility,
1198     unsigned char nonvis,
1199     bool only_if_ref)
1200 {
1201   Sized_symbol<size>* sym;
1202   Sized_symbol<size>* oldsym;
1203
1204   if (parameters->is_big_endian())
1205     {
1206 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1207       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1208           target, &name, &version, only_if_ref, &oldsym
1209           SELECT_SIZE_ENDIAN(size, true));
1210 #else
1211       gold_unreachable();
1212 #endif
1213     }
1214   else
1215     {
1216 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1217       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1218           target, &name, &version, only_if_ref, &oldsym
1219           SELECT_SIZE_ENDIAN(size, false));
1220 #else
1221       gold_unreachable();
1222 #endif
1223     }
1224
1225   if (sym == NULL)
1226     return NULL;
1227
1228   gold_assert(version == NULL || oldsym != NULL);
1229   sym->init(name, value, symsize, type, binding, visibility, nonvis);
1230
1231   if (oldsym != NULL
1232       && Symbol_table::should_override_with_special(oldsym))
1233     this->override_with_special(oldsym, sym);
1234
1235   return sym;
1236 }
1237
1238 // Define a set of symbols in output sections.
1239
1240 void
1241 Symbol_table::define_symbols(const Layout* layout, const Target* target,
1242                              int count, const Define_symbol_in_section* p)
1243 {
1244   for (int i = 0; i < count; ++i, ++p)
1245     {
1246       Output_section* os = layout->find_output_section(p->output_section);
1247       if (os != NULL)
1248         this->define_in_output_data(target, p->name, NULL, os, p->value,
1249                                     p->size, p->type, p->binding,
1250                                     p->visibility, p->nonvis,
1251                                     p->offset_is_from_end, p->only_if_ref);
1252       else
1253         this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1254                                  p->binding, p->visibility, p->nonvis,
1255                                  p->only_if_ref);
1256     }
1257 }
1258
1259 // Define a set of symbols in output segments.
1260
1261 void
1262 Symbol_table::define_symbols(const Layout* layout, const Target* target,
1263                              int count, const Define_symbol_in_segment* p)
1264 {
1265   for (int i = 0; i < count; ++i, ++p)
1266     {
1267       Output_segment* os = layout->find_output_segment(p->segment_type,
1268                                                        p->segment_flags_set,
1269                                                        p->segment_flags_clear);
1270       if (os != NULL)
1271         this->define_in_output_segment(target, p->name, NULL, os, p->value,
1272                                        p->size, p->type, p->binding,
1273                                        p->visibility, p->nonvis,
1274                                        p->offset_base, p->only_if_ref);
1275       else
1276         this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1277                                  p->binding, p->visibility, p->nonvis,
1278                                  p->only_if_ref);
1279     }
1280 }
1281
1282 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
1283 // symbol should be defined--typically a .dyn.bss section.  VALUE is
1284 // the offset within POSD.
1285
1286 template<int size>
1287 void
1288 Symbol_table::define_with_copy_reloc(const Target* target,
1289                                      Sized_symbol<size>* csym,
1290                                      Output_data* posd, uint64_t value)
1291 {
1292   gold_assert(csym->is_from_dynobj());
1293   gold_assert(!csym->is_copied_from_dynobj());
1294   Object* object = csym->object();
1295   gold_assert(object->is_dynamic());
1296   Dynobj* dynobj = static_cast<Dynobj*>(object);
1297
1298   // Our copied variable has to override any variable in a shared
1299   // library.
1300   elfcpp::STB binding = csym->binding();
1301   if (binding == elfcpp::STB_WEAK)
1302     binding = elfcpp::STB_GLOBAL;
1303
1304   this->define_in_output_data(target, csym->name(), csym->version(),
1305                               posd, value, csym->symsize(),
1306                               csym->type(), binding,
1307                               csym->visibility(), csym->nonvis(),
1308                               false, false);
1309
1310   csym->set_is_copied_from_dynobj();
1311   csym->set_needs_dynsym_entry();
1312
1313   this->copied_symbol_dynobjs_[csym] = dynobj;
1314
1315   // We have now defined all aliases, but we have not entered them all
1316   // in the copied_symbol_dynobjs_ map.
1317   if (csym->has_alias())
1318     {
1319       Symbol* sym = csym;
1320       while (true)
1321         {
1322           sym = this->weak_aliases_[sym];
1323           if (sym == csym)
1324             break;
1325           gold_assert(sym->output_data() == posd);
1326
1327           sym->set_is_copied_from_dynobj();
1328           this->copied_symbol_dynobjs_[sym] = dynobj;
1329         }
1330     }
1331 }
1332
1333 // SYM is defined using a COPY reloc.  Return the dynamic object where
1334 // the original definition was found.
1335
1336 Dynobj*
1337 Symbol_table::get_copy_source(const Symbol* sym) const
1338 {
1339   gold_assert(sym->is_copied_from_dynobj());
1340   Copied_symbol_dynobjs::const_iterator p =
1341     this->copied_symbol_dynobjs_.find(sym);
1342   gold_assert(p != this->copied_symbol_dynobjs_.end());
1343   return p->second;
1344 }
1345
1346 // Set the dynamic symbol indexes.  INDEX is the index of the first
1347 // global dynamic symbol.  Pointers to the symbols are stored into the
1348 // vector SYMS.  The names are added to DYNPOOL.  This returns an
1349 // updated dynamic symbol index.
1350
1351 unsigned int
1352 Symbol_table::set_dynsym_indexes(const Target* target,
1353                                  unsigned int index,
1354                                  std::vector<Symbol*>* syms,
1355                                  Stringpool* dynpool,
1356                                  Versions* versions)
1357 {
1358   for (Symbol_table_type::iterator p = this->table_.begin();
1359        p != this->table_.end();
1360        ++p)
1361     {
1362       Symbol* sym = p->second;
1363
1364       // Note that SYM may already have a dynamic symbol index, since
1365       // some symbols appear more than once in the symbol table, with
1366       // and without a version.
1367
1368       if (!sym->should_add_dynsym_entry())
1369         sym->set_dynsym_index(-1U);
1370       else if (!sym->has_dynsym_index())
1371         {
1372           sym->set_dynsym_index(index);
1373           ++index;
1374           syms->push_back(sym);
1375           dynpool->add(sym->name(), false, NULL);
1376
1377           // Record any version information.
1378           if (sym->version() != NULL)
1379             versions->record_version(this, dynpool, sym);
1380         }
1381     }
1382
1383   // Finish up the versions.  In some cases this may add new dynamic
1384   // symbols.
1385   index = versions->finalize(target, this, index, syms);
1386
1387   return index;
1388 }
1389
1390 // Set the final values for all the symbols.  The index of the first
1391 // global symbol in the output file is INDEX.  Record the file offset
1392 // OFF.  Add their names to POOL.  Return the new file offset.
1393
1394 off_t
1395 Symbol_table::finalize(unsigned int index, off_t off, off_t dynoff,
1396                        size_t dyn_global_index, size_t dyncount,
1397                        Stringpool* pool)
1398 {
1399   off_t ret;
1400
1401   gold_assert(index != 0);
1402   this->first_global_index_ = index;
1403
1404   this->dynamic_offset_ = dynoff;
1405   this->first_dynamic_global_index_ = dyn_global_index;
1406   this->dynamic_count_ = dyncount;
1407
1408   if (parameters->get_size() == 32)
1409     {
1410 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1411       ret = this->sized_finalize<32>(index, off, pool);
1412 #else
1413       gold_unreachable();
1414 #endif
1415     }
1416   else if (parameters->get_size() == 64)
1417     {
1418 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1419       ret = this->sized_finalize<64>(index, off, pool);
1420 #else
1421       gold_unreachable();
1422 #endif
1423     }
1424   else
1425     gold_unreachable();
1426
1427   // Now that we have the final symbol table, we can reliably note
1428   // which symbols should get warnings.
1429   this->warnings_.note_warnings(this);
1430
1431   return ret;
1432 }
1433
1434 // Set the final value for all the symbols.  This is called after
1435 // Layout::finalize, so all the output sections have their final
1436 // address.
1437
1438 template<int size>
1439 off_t
1440 Symbol_table::sized_finalize(unsigned index, off_t off, Stringpool* pool)
1441 {
1442   off = align_address(off, size >> 3);
1443   this->offset_ = off;
1444
1445   size_t orig_index = index;
1446
1447   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1448   for (Symbol_table_type::iterator p = this->table_.begin();
1449        p != this->table_.end();
1450        ++p)
1451     {
1452       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1453
1454       // FIXME: Here we need to decide which symbols should go into
1455       // the output file, based on --strip.
1456
1457       // The default version of a symbol may appear twice in the
1458       // symbol table.  We only need to finalize it once.
1459       if (sym->has_symtab_index())
1460         continue;
1461
1462       if (!sym->in_reg())
1463         {
1464           gold_assert(!sym->has_symtab_index());
1465           sym->set_symtab_index(-1U);
1466           gold_assert(sym->dynsym_index() == -1U);
1467           continue;
1468         }
1469
1470       typename Sized_symbol<size>::Value_type value;
1471
1472       switch (sym->source())
1473         {
1474         case Symbol::FROM_OBJECT:
1475           {
1476             unsigned int shndx = sym->shndx();
1477
1478             // FIXME: We need some target specific support here.
1479             if (shndx >= elfcpp::SHN_LORESERVE
1480                 && shndx != elfcpp::SHN_ABS)
1481               {
1482                 gold_error(_("%s: unsupported symbol section 0x%x"),
1483                            sym->demangled_name().c_str(), shndx);
1484                 shndx = elfcpp::SHN_UNDEF;
1485               }
1486
1487             Object* symobj = sym->object();
1488             if (symobj->is_dynamic())
1489               {
1490                 value = 0;
1491                 shndx = elfcpp::SHN_UNDEF;
1492               }
1493             else if (shndx == elfcpp::SHN_UNDEF)
1494               value = 0;
1495             else if (shndx == elfcpp::SHN_ABS)
1496               value = sym->value();
1497             else
1498               {
1499                 Relobj* relobj = static_cast<Relobj*>(symobj);
1500                 off_t secoff;
1501                 Output_section* os = relobj->output_section(shndx, &secoff);
1502
1503                 if (os == NULL)
1504                   {
1505                     sym->set_symtab_index(-1U);
1506                     gold_assert(sym->dynsym_index() == -1U);
1507                     continue;
1508                   }
1509
1510                 if (sym->type() == elfcpp::STT_TLS)
1511                   value = sym->value() + os->tls_offset() + secoff;
1512                 else
1513                   value = sym->value() + os->address() + secoff;
1514               }
1515           }
1516           break;
1517
1518         case Symbol::IN_OUTPUT_DATA:
1519           {
1520             Output_data* od = sym->output_data();
1521             value = sym->value() + od->address();
1522             if (sym->offset_is_from_end())
1523               value += od->data_size();
1524           }
1525           break;
1526
1527         case Symbol::IN_OUTPUT_SEGMENT:
1528           {
1529             Output_segment* os = sym->output_segment();
1530             value = sym->value() + os->vaddr();
1531             switch (sym->offset_base())
1532               {
1533               case Symbol::SEGMENT_START:
1534                 break;
1535               case Symbol::SEGMENT_END:
1536                 value += os->memsz();
1537                 break;
1538               case Symbol::SEGMENT_BSS:
1539                 value += os->filesz();
1540                 break;
1541               default:
1542                 gold_unreachable();
1543               }
1544           }
1545           break;
1546
1547         case Symbol::CONSTANT:
1548           value = sym->value();
1549           break;
1550
1551         default:
1552           gold_unreachable();
1553         }
1554
1555       sym->set_value(value);
1556
1557       if (parameters->strip_all())
1558         sym->set_symtab_index(-1U);
1559       else
1560         {
1561           sym->set_symtab_index(index);
1562           pool->add(sym->name(), false, NULL);
1563           ++index;
1564           off += sym_size;
1565         }
1566     }
1567
1568   this->output_count_ = index - orig_index;
1569
1570   return off;
1571 }
1572
1573 // Write out the global symbols.
1574
1575 void
1576 Symbol_table::write_globals(const Input_objects* input_objects,
1577                             const Stringpool* sympool,
1578                             const Stringpool* dynpool, Output_file* of) const
1579 {
1580   if (parameters->get_size() == 32)
1581     {
1582       if (parameters->is_big_endian())
1583         {
1584 #ifdef HAVE_TARGET_32_BIG
1585           this->sized_write_globals<32, true>(input_objects, sympool,
1586                                               dynpool, of);
1587 #else
1588           gold_unreachable();
1589 #endif
1590         }
1591       else
1592         {
1593 #ifdef HAVE_TARGET_32_LITTLE
1594           this->sized_write_globals<32, false>(input_objects, sympool,
1595                                                dynpool, of);
1596 #else
1597           gold_unreachable();
1598 #endif
1599         }
1600     }
1601   else if (parameters->get_size() == 64)
1602     {
1603       if (parameters->is_big_endian())
1604         {
1605 #ifdef HAVE_TARGET_64_BIG
1606           this->sized_write_globals<64, true>(input_objects, sympool,
1607                                               dynpool, of);
1608 #else
1609           gold_unreachable();
1610 #endif
1611         }
1612       else
1613         {
1614 #ifdef HAVE_TARGET_64_LITTLE
1615           this->sized_write_globals<64, false>(input_objects, sympool,
1616                                                dynpool, of);
1617 #else
1618           gold_unreachable();
1619 #endif
1620         }
1621     }
1622   else
1623     gold_unreachable();
1624 }
1625
1626 // Write out the global symbols.
1627
1628 template<int size, bool big_endian>
1629 void
1630 Symbol_table::sized_write_globals(const Input_objects* input_objects,
1631                                   const Stringpool* sympool,
1632                                   const Stringpool* dynpool,
1633                                   Output_file* of) const
1634 {
1635   const Target* const target = input_objects->target();
1636
1637   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1638   unsigned int index = this->first_global_index_;
1639   const off_t oview_size = this->output_count_ * sym_size;
1640   unsigned char* const psyms = of->get_output_view(this->offset_, oview_size);
1641
1642   unsigned int dynamic_count = this->dynamic_count_;
1643   off_t dynamic_size = dynamic_count * sym_size;
1644   unsigned int first_dynamic_global_index = this->first_dynamic_global_index_;
1645   unsigned char* dynamic_view;
1646   if (this->dynamic_offset_ == 0)
1647     dynamic_view = NULL;
1648   else
1649     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1650
1651   unsigned char* ps = psyms;
1652   for (Symbol_table_type::const_iterator p = this->table_.begin();
1653        p != this->table_.end();
1654        ++p)
1655     {
1656       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1657
1658       // Possibly warn about unresolved symbols in shared libraries.
1659       this->warn_about_undefined_dynobj_symbol(input_objects, sym);
1660
1661       unsigned int sym_index = sym->symtab_index();
1662       unsigned int dynsym_index;
1663       if (dynamic_view == NULL)
1664         dynsym_index = -1U;
1665       else
1666         dynsym_index = sym->dynsym_index();
1667
1668       if (sym_index == -1U && dynsym_index == -1U)
1669         {
1670           // This symbol is not included in the output file.
1671           continue;
1672         }
1673
1674       if (sym_index == index)
1675         ++index;
1676       else if (sym_index != -1U)
1677         {
1678           // We have already seen this symbol, because it has a
1679           // default version.
1680           gold_assert(sym_index < index);
1681           if (dynsym_index == -1U)
1682             continue;
1683           sym_index = -1U;
1684         }
1685
1686       unsigned int shndx;
1687       typename elfcpp::Elf_types<32>::Elf_Addr value = sym->value();
1688       switch (sym->source())
1689         {
1690         case Symbol::FROM_OBJECT:
1691           {
1692             unsigned int in_shndx = sym->shndx();
1693
1694             // FIXME: We need some target specific support here.
1695             if (in_shndx >= elfcpp::SHN_LORESERVE
1696                 && in_shndx != elfcpp::SHN_ABS)
1697               {
1698                 gold_error(_("%s: unsupported symbol section 0x%x"),
1699                            sym->demangled_name().c_str(), in_shndx);
1700                 shndx = in_shndx;
1701               }
1702             else
1703               {
1704                 Object* symobj = sym->object();
1705                 if (symobj->is_dynamic())
1706                   {
1707                     if (sym->needs_dynsym_value())
1708                       value = target->dynsym_value(sym);
1709                     shndx = elfcpp::SHN_UNDEF;
1710                   }
1711                 else if (in_shndx == elfcpp::SHN_UNDEF
1712                          || in_shndx == elfcpp::SHN_ABS)
1713                   shndx = in_shndx;
1714                 else
1715                   {
1716                     Relobj* relobj = static_cast<Relobj*>(symobj);
1717                     off_t secoff;
1718                     Output_section* os = relobj->output_section(in_shndx,
1719                                                                 &secoff);
1720                     gold_assert(os != NULL);
1721                     shndx = os->out_shndx();
1722                   }
1723               }
1724           }
1725           break;
1726
1727         case Symbol::IN_OUTPUT_DATA:
1728           shndx = sym->output_data()->out_shndx();
1729           break;
1730
1731         case Symbol::IN_OUTPUT_SEGMENT:
1732           shndx = elfcpp::SHN_ABS;
1733           break;
1734
1735         case Symbol::CONSTANT:
1736           shndx = elfcpp::SHN_ABS;
1737           break;
1738
1739         default:
1740           gold_unreachable();
1741         }
1742
1743       if (sym_index != -1U)
1744         {
1745           this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1746               sym, sym->value(), shndx, sympool, ps
1747               SELECT_SIZE_ENDIAN(size, big_endian));
1748           ps += sym_size;
1749         }
1750
1751       if (dynsym_index != -1U)
1752         {
1753           dynsym_index -= first_dynamic_global_index;
1754           gold_assert(dynsym_index < dynamic_count);
1755           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1756           this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1757               sym, value, shndx, dynpool, pd
1758               SELECT_SIZE_ENDIAN(size, big_endian));
1759         }
1760     }
1761
1762   gold_assert(ps - psyms == oview_size);
1763
1764   of->write_output_view(this->offset_, oview_size, psyms);
1765   if (dynamic_view != NULL)
1766     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1767 }
1768
1769 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
1770 // strtab holding the name.
1771
1772 template<int size, bool big_endian>
1773 void
1774 Symbol_table::sized_write_symbol(
1775     Sized_symbol<size>* sym,
1776     typename elfcpp::Elf_types<size>::Elf_Addr value,
1777     unsigned int shndx,
1778     const Stringpool* pool,
1779     unsigned char* p
1780     ACCEPT_SIZE_ENDIAN) const
1781 {
1782   elfcpp::Sym_write<size, big_endian> osym(p);
1783   osym.put_st_name(pool->get_offset(sym->name()));
1784   osym.put_st_value(value);
1785   osym.put_st_size(sym->symsize());
1786   osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1787   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1788   osym.put_st_shndx(shndx);
1789 }
1790
1791 // Check for unresolved symbols in shared libraries.  This is
1792 // controlled by the --allow-shlib-undefined option.
1793
1794 // We only warn about libraries for which we have seen all the
1795 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
1796 // which were not seen in this link.  If we didn't see a DT_NEEDED
1797 // entry, we aren't going to be able to reliably report whether the
1798 // symbol is undefined.
1799
1800 // We also don't warn about libraries found in the system library
1801 // directory (the directory were we find libc.so); we assume that
1802 // those libraries are OK.  This heuristic avoids problems in
1803 // GNU/Linux, in which -ldl can have undefined references satisfied by
1804 // ld-linux.so.
1805
1806 inline void
1807 Symbol_table::warn_about_undefined_dynobj_symbol(
1808     const Input_objects* input_objects,
1809     Symbol* sym) const
1810 {
1811   if (sym->source() == Symbol::FROM_OBJECT
1812       && sym->object()->is_dynamic()
1813       && sym->shndx() == elfcpp::SHN_UNDEF
1814       && sym->binding() != elfcpp::STB_WEAK
1815       && !parameters->allow_shlib_undefined()
1816       && !input_objects->target()->is_defined_by_abi(sym)
1817       && !input_objects->found_in_system_library_directory(sym->object()))
1818     {
1819       // A very ugly cast.
1820       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
1821       if (!dynobj->has_unknown_needed_entries())
1822         gold_error(_("%s: undefined reference to '%s'"),
1823                    sym->object()->name().c_str(),
1824                    sym->demangled_name().c_str());
1825     }
1826 }
1827
1828 // Write out a section symbol.  Return the update offset.
1829
1830 void
1831 Symbol_table::write_section_symbol(const Output_section *os,
1832                                    Output_file* of,
1833                                    off_t offset) const
1834 {
1835   if (parameters->get_size() == 32)
1836     {
1837       if (parameters->is_big_endian())
1838         {
1839 #ifdef HAVE_TARGET_32_BIG
1840           this->sized_write_section_symbol<32, true>(os, of, offset);
1841 #else
1842           gold_unreachable();
1843 #endif
1844         }
1845       else
1846         {
1847 #ifdef HAVE_TARGET_32_LITTLE
1848           this->sized_write_section_symbol<32, false>(os, of, offset);
1849 #else
1850           gold_unreachable();
1851 #endif
1852         }
1853     }
1854   else if (parameters->get_size() == 64)
1855     {
1856       if (parameters->is_big_endian())
1857         {
1858 #ifdef HAVE_TARGET_64_BIG
1859           this->sized_write_section_symbol<64, true>(os, of, offset);
1860 #else
1861           gold_unreachable();
1862 #endif
1863         }
1864       else
1865         {
1866 #ifdef HAVE_TARGET_64_LITTLE
1867           this->sized_write_section_symbol<64, false>(os, of, offset);
1868 #else
1869           gold_unreachable();
1870 #endif
1871         }
1872     }
1873   else
1874     gold_unreachable();
1875 }
1876
1877 // Write out a section symbol, specialized for size and endianness.
1878
1879 template<int size, bool big_endian>
1880 void
1881 Symbol_table::sized_write_section_symbol(const Output_section* os,
1882                                          Output_file* of,
1883                                          off_t offset) const
1884 {
1885   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1886
1887   unsigned char* pov = of->get_output_view(offset, sym_size);
1888
1889   elfcpp::Sym_write<size, big_endian> osym(pov);
1890   osym.put_st_name(0);
1891   osym.put_st_value(os->address());
1892   osym.put_st_size(0);
1893   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
1894                                        elfcpp::STT_SECTION));
1895   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
1896   osym.put_st_shndx(os->out_shndx());
1897
1898   of->write_output_view(offset, sym_size, pov);
1899 }
1900
1901 // Print statistical information to stderr.  This is used for --stats.
1902
1903 void
1904 Symbol_table::print_stats() const
1905 {
1906 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
1907   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
1908           program_name, this->table_.size(), this->table_.bucket_count());
1909 #else
1910   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
1911           program_name, this->table_.size());
1912 #endif
1913   this->namepool_.print_stats("symbol table stringpool");
1914 }
1915
1916 // We check for ODR violations by looking for symbols with the same
1917 // name for which the debugging information reports that they were
1918 // defined in different source locations.  When comparing the source
1919 // location, we consider instances with the same base filename and
1920 // line number to be the same.  This is because different object
1921 // files/shared libraries can include the same header file using
1922 // different paths, and we don't want to report an ODR violation in
1923 // that case.
1924
1925 // This struct is used to compare line information, as returned by
1926 // Dwarf_line_info::one_addr2line.  It implements a < comparison
1927 // operator used with std::set.
1928
1929 struct Odr_violation_compare
1930 {
1931   bool
1932   operator()(const std::string& s1, const std::string& s2) const
1933   {
1934     std::string::size_type pos1 = s1.rfind('/');
1935     std::string::size_type pos2 = s2.rfind('/');
1936     if (pos1 == std::string::npos
1937         || pos2 == std::string::npos)
1938       return s1 < s2;
1939     return s1.compare(pos1, std::string::npos,
1940                       s2, pos2, std::string::npos) < 0;
1941   }
1942 };
1943
1944 // Check candidate_odr_violations_ to find symbols with the same name
1945 // but apparently different definitions (different source-file/line-no).
1946
1947 void
1948 Symbol_table::detect_odr_violations(const char* output_file_name) const
1949 {
1950   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
1951        it != candidate_odr_violations_.end();
1952        ++it)
1953     {
1954       const char* symbol_name = it->first;
1955       // We use a sorted set so the output is deterministic.
1956       std::set<std::string, Odr_violation_compare> line_nums;
1957
1958       for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
1959                locs = it->second.begin();
1960            locs != it->second.end();
1961            ++locs)
1962         {
1963           // We need to lock the object in order to read it.  This
1964           // means that we can not run inside a Task.  If we want to
1965           // run this in a Task for better performance, we will need
1966           // one Task for object, plus appropriate locking to ensure
1967           // that we don't conflict with other uses of the object.
1968           locs->object->lock();
1969           std::string lineno = Dwarf_line_info::one_addr2line(
1970               locs->object, locs->shndx, locs->offset);
1971           locs->object->unlock();
1972           if (!lineno.empty())
1973             line_nums.insert(lineno);
1974         }
1975
1976       if (line_nums.size() > 1)
1977         {
1978           gold_warning(_("while linking %s: symbol '%s' defined in multiple "
1979                          "places (possible ODR violation):"),
1980                        output_file_name, demangle(symbol_name).c_str());
1981           for (std::set<std::string>::const_iterator it2 = line_nums.begin();
1982                it2 != line_nums.end();
1983                ++it2)
1984             fprintf(stderr, "  %s\n", it2->c_str());
1985         }
1986     }
1987 }
1988
1989 // Warnings functions.
1990
1991 // Add a new warning.
1992
1993 void
1994 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
1995                       unsigned int shndx)
1996 {
1997   name = symtab->canonicalize_name(name);
1998   this->warnings_[name].set(obj, shndx);
1999 }
2000
2001 // Look through the warnings and mark the symbols for which we should
2002 // warn.  This is called during Layout::finalize when we know the
2003 // sources for all the symbols.
2004
2005 void
2006 Warnings::note_warnings(Symbol_table* symtab)
2007 {
2008   for (Warning_table::iterator p = this->warnings_.begin();
2009        p != this->warnings_.end();
2010        ++p)
2011     {
2012       Symbol* sym = symtab->lookup(p->first, NULL);
2013       if (sym != NULL
2014           && sym->source() == Symbol::FROM_OBJECT
2015           && sym->object() == p->second.object)
2016         {
2017           sym->set_has_warning();
2018
2019           // Read the section contents to get the warning text.  It
2020           // would be nicer if we only did this if we have to actually
2021           // issue a warning.  Unfortunately, warnings are issued as
2022           // we relocate sections.  That means that we can not lock
2023           // the object then, as we might try to issue the same
2024           // warning multiple times simultaneously.
2025           {
2026             Task_locker_obj<Object> tl(*p->second.object);
2027             const unsigned char* c;
2028             off_t len;
2029             c = p->second.object->section_contents(p->second.shndx, &len,
2030                                                    false);
2031             p->second.set_text(reinterpret_cast<const char*>(c), len);
2032           }
2033         }
2034     }
2035 }
2036
2037 // Issue a warning.  This is called when we see a relocation against a
2038 // symbol for which has a warning.
2039
2040 template<int size, bool big_endian>
2041 void
2042 Warnings::issue_warning(const Symbol* sym,
2043                         const Relocate_info<size, big_endian>* relinfo,
2044                         size_t relnum, off_t reloffset) const
2045 {
2046   gold_assert(sym->has_warning());
2047   Warning_table::const_iterator p = this->warnings_.find(sym->name());
2048   gold_assert(p != this->warnings_.end());
2049   gold_warning_at_location(relinfo, relnum, reloffset,
2050                            "%s", p->second.text.c_str());
2051 }
2052
2053 // Instantiate the templates we need.  We could use the configure
2054 // script to restrict this to only the ones needed for implemented
2055 // targets.
2056
2057 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2058 template
2059 void
2060 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2061 #endif
2062
2063 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2064 template
2065 void
2066 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2067 #endif
2068
2069 #ifdef HAVE_TARGET_32_LITTLE
2070 template
2071 void
2072 Symbol_table::add_from_relobj<32, false>(
2073     Sized_relobj<32, false>* relobj,
2074     const unsigned char* syms,
2075     size_t count,
2076     const char* sym_names,
2077     size_t sym_name_size,
2078     Sized_relobj<32, true>::Symbols* sympointers);
2079 #endif
2080
2081 #ifdef HAVE_TARGET_32_BIG
2082 template
2083 void
2084 Symbol_table::add_from_relobj<32, true>(
2085     Sized_relobj<32, true>* relobj,
2086     const unsigned char* syms,
2087     size_t count,
2088     const char* sym_names,
2089     size_t sym_name_size,
2090     Sized_relobj<32, false>::Symbols* sympointers);
2091 #endif
2092
2093 #ifdef HAVE_TARGET_64_LITTLE
2094 template
2095 void
2096 Symbol_table::add_from_relobj<64, false>(
2097     Sized_relobj<64, false>* relobj,
2098     const unsigned char* syms,
2099     size_t count,
2100     const char* sym_names,
2101     size_t sym_name_size,
2102     Sized_relobj<64, true>::Symbols* sympointers);
2103 #endif
2104
2105 #ifdef HAVE_TARGET_64_BIG
2106 template
2107 void
2108 Symbol_table::add_from_relobj<64, true>(
2109     Sized_relobj<64, true>* relobj,
2110     const unsigned char* syms,
2111     size_t count,
2112     const char* sym_names,
2113     size_t sym_name_size,
2114     Sized_relobj<64, false>::Symbols* sympointers);
2115 #endif
2116
2117 #ifdef HAVE_TARGET_32_LITTLE
2118 template
2119 void
2120 Symbol_table::add_from_dynobj<32, false>(
2121     Sized_dynobj<32, false>* dynobj,
2122     const unsigned char* syms,
2123     size_t count,
2124     const char* sym_names,
2125     size_t sym_name_size,
2126     const unsigned char* versym,
2127     size_t versym_size,
2128     const std::vector<const char*>* version_map);
2129 #endif
2130
2131 #ifdef HAVE_TARGET_32_BIG
2132 template
2133 void
2134 Symbol_table::add_from_dynobj<32, true>(
2135     Sized_dynobj<32, true>* dynobj,
2136     const unsigned char* syms,
2137     size_t count,
2138     const char* sym_names,
2139     size_t sym_name_size,
2140     const unsigned char* versym,
2141     size_t versym_size,
2142     const std::vector<const char*>* version_map);
2143 #endif
2144
2145 #ifdef HAVE_TARGET_64_LITTLE
2146 template
2147 void
2148 Symbol_table::add_from_dynobj<64, false>(
2149     Sized_dynobj<64, false>* dynobj,
2150     const unsigned char* syms,
2151     size_t count,
2152     const char* sym_names,
2153     size_t sym_name_size,
2154     const unsigned char* versym,
2155     size_t versym_size,
2156     const std::vector<const char*>* version_map);
2157 #endif
2158
2159 #ifdef HAVE_TARGET_64_BIG
2160 template
2161 void
2162 Symbol_table::add_from_dynobj<64, true>(
2163     Sized_dynobj<64, true>* dynobj,
2164     const unsigned char* syms,
2165     size_t count,
2166     const char* sym_names,
2167     size_t sym_name_size,
2168     const unsigned char* versym,
2169     size_t versym_size,
2170     const std::vector<const char*>* version_map);
2171 #endif
2172
2173 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2174 template
2175 void
2176 Symbol_table::define_with_copy_reloc<32>(const Target* target,
2177                                          Sized_symbol<32>* sym,
2178                                          Output_data* posd, uint64_t value);
2179 #endif
2180
2181 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2182 template
2183 void
2184 Symbol_table::define_with_copy_reloc<64>(const Target* target,
2185                                          Sized_symbol<64>* sym,
2186                                          Output_data* posd, uint64_t value);
2187 #endif
2188
2189 #ifdef HAVE_TARGET_32_LITTLE
2190 template
2191 void
2192 Warnings::issue_warning<32, false>(const Symbol* sym,
2193                                    const Relocate_info<32, false>* relinfo,
2194                                    size_t relnum, off_t reloffset) const;
2195 #endif
2196
2197 #ifdef HAVE_TARGET_32_BIG
2198 template
2199 void
2200 Warnings::issue_warning<32, true>(const Symbol* sym,
2201                                   const Relocate_info<32, true>* relinfo,
2202                                   size_t relnum, off_t reloffset) const;
2203 #endif
2204
2205 #ifdef HAVE_TARGET_64_LITTLE
2206 template
2207 void
2208 Warnings::issue_warning<64, false>(const Symbol* sym,
2209                                    const Relocate_info<64, false>* relinfo,
2210                                    size_t relnum, off_t reloffset) const;
2211 #endif
2212
2213 #ifdef HAVE_TARGET_64_BIG
2214 template
2215 void
2216 Warnings::issue_warning<64, true>(const Symbol* sym,
2217                                   const Relocate_info<64, true>* relinfo,
2218                                   size_t relnum, off_t reloffset) const;
2219 #endif
2220
2221 } // End namespace gold.