Track sections for expressions.
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <stdint.h>
26 #include <set>
27 #include <string>
28 #include <utility>
29 #include "demangle.h"
30
31 #include "object.h"
32 #include "dwarf_reader.h"
33 #include "dynobj.h"
34 #include "output.h"
35 #include "target.h"
36 #include "workqueue.h"
37 #include "symtab.h"
38
39 namespace gold
40 {
41
42 // Class Symbol.
43
44 // Initialize fields in Symbol.  This initializes everything except u_
45 // and source_.
46
47 void
48 Symbol::init_fields(const char* name, const char* version,
49                     elfcpp::STT type, elfcpp::STB binding,
50                     elfcpp::STV visibility, unsigned char nonvis)
51 {
52   this->name_ = name;
53   this->version_ = version;
54   this->symtab_index_ = 0;
55   this->dynsym_index_ = 0;
56   this->got_offset_ = 0;
57   this->plt_offset_ = 0;
58   this->type_ = type;
59   this->binding_ = binding;
60   this->visibility_ = visibility;
61   this->nonvis_ = nonvis;
62   this->is_target_special_ = false;
63   this->is_def_ = false;
64   this->is_forwarder_ = false;
65   this->has_alias_ = false;
66   this->needs_dynsym_entry_ = false;
67   this->in_reg_ = false;
68   this->in_dyn_ = false;
69   this->has_got_offset_ = false;
70   this->has_plt_offset_ = false;
71   this->has_warning_ = false;
72   this->is_copied_from_dynobj_ = false;
73   this->is_forced_local_ = false;
74 }
75
76 // Return the demangled version of the symbol's name, but only
77 // if the --demangle flag was set.
78
79 static std::string
80 demangle(const char* name)
81 {
82   if (!parameters->demangle())
83     return name;
84
85   // cplus_demangle allocates memory for the result it returns,
86   // and returns NULL if the name is already demangled.
87   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
88   if (demangled_name == NULL)
89     return name;
90
91   std::string retval(demangled_name);
92   free(demangled_name);
93   return retval;
94 }
95
96 std::string
97 Symbol::demangled_name() const
98 {
99   return demangle(this->name());
100 }
101
102 // Initialize the fields in the base class Symbol for SYM in OBJECT.
103
104 template<int size, bool big_endian>
105 void
106 Symbol::init_base(const char* name, const char* version, Object* object,
107                   const elfcpp::Sym<size, big_endian>& sym)
108 {
109   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
110                     sym.get_st_visibility(), sym.get_st_nonvis());
111   this->u_.from_object.object = object;
112   // FIXME: Handle SHN_XINDEX.
113   this->u_.from_object.shndx = sym.get_st_shndx();
114   this->source_ = FROM_OBJECT;
115   this->in_reg_ = !object->is_dynamic();
116   this->in_dyn_ = object->is_dynamic();
117 }
118
119 // Initialize the fields in the base class Symbol for a symbol defined
120 // in an Output_data.
121
122 void
123 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
124                   elfcpp::STB binding, elfcpp::STV visibility,
125                   unsigned char nonvis, bool offset_is_from_end)
126 {
127   this->init_fields(name, NULL, type, binding, visibility, nonvis);
128   this->u_.in_output_data.output_data = od;
129   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
130   this->source_ = IN_OUTPUT_DATA;
131   this->in_reg_ = true;
132 }
133
134 // Initialize the fields in the base class Symbol for a symbol defined
135 // in an Output_segment.
136
137 void
138 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
139                   elfcpp::STB binding, elfcpp::STV visibility,
140                   unsigned char nonvis, Segment_offset_base offset_base)
141 {
142   this->init_fields(name, NULL, type, binding, visibility, nonvis);
143   this->u_.in_output_segment.output_segment = os;
144   this->u_.in_output_segment.offset_base = offset_base;
145   this->source_ = IN_OUTPUT_SEGMENT;
146   this->in_reg_ = true;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // as a constant.
151
152 void
153 Symbol::init_base(const char* name, elfcpp::STT type,
154                   elfcpp::STB binding, elfcpp::STV visibility,
155                   unsigned char nonvis)
156 {
157   this->init_fields(name, NULL, type, binding, visibility, nonvis);
158   this->source_ = CONSTANT;
159   this->in_reg_ = true;
160 }
161
162 // Allocate a common symbol in the base.
163
164 void
165 Symbol::allocate_base_common(Output_data* od)
166 {
167   gold_assert(this->is_common());
168   this->source_ = IN_OUTPUT_DATA;
169   this->u_.in_output_data.output_data = od;
170   this->u_.in_output_data.offset_is_from_end = false;
171 }
172
173 // Initialize the fields in Sized_symbol for SYM in OBJECT.
174
175 template<int size>
176 template<bool big_endian>
177 void
178 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
179                          const elfcpp::Sym<size, big_endian>& sym)
180 {
181   this->init_base(name, version, object, sym);
182   this->value_ = sym.get_st_value();
183   this->symsize_ = sym.get_st_size();
184 }
185
186 // Initialize the fields in Sized_symbol for a symbol defined in an
187 // Output_data.
188
189 template<int size>
190 void
191 Sized_symbol<size>::init(const char* name, Output_data* od,
192                          Value_type value, Size_type symsize,
193                          elfcpp::STT type, elfcpp::STB binding,
194                          elfcpp::STV visibility, unsigned char nonvis,
195                          bool offset_is_from_end)
196 {
197   this->init_base(name, od, type, binding, visibility, nonvis,
198                   offset_is_from_end);
199   this->value_ = value;
200   this->symsize_ = symsize;
201 }
202
203 // Initialize the fields in Sized_symbol for a symbol defined in an
204 // Output_segment.
205
206 template<int size>
207 void
208 Sized_symbol<size>::init(const char* name, Output_segment* os,
209                          Value_type value, Size_type symsize,
210                          elfcpp::STT type, elfcpp::STB binding,
211                          elfcpp::STV visibility, unsigned char nonvis,
212                          Segment_offset_base offset_base)
213 {
214   this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
215   this->value_ = value;
216   this->symsize_ = symsize;
217 }
218
219 // Initialize the fields in Sized_symbol for a symbol defined as a
220 // constant.
221
222 template<int size>
223 void
224 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
225                          elfcpp::STT type, elfcpp::STB binding,
226                          elfcpp::STV visibility, unsigned char nonvis)
227 {
228   this->init_base(name, type, binding, visibility, nonvis);
229   this->value_ = value;
230   this->symsize_ = symsize;
231 }
232
233 // Allocate a common symbol.
234
235 template<int size>
236 void
237 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
238 {
239   this->allocate_base_common(od);
240   this->value_ = value;
241 }
242
243 // Return true if this symbol should be added to the dynamic symbol
244 // table.
245
246 inline bool
247 Symbol::should_add_dynsym_entry() const
248 {
249   // If the symbol is used by a dynamic relocation, we need to add it.
250   if (this->needs_dynsym_entry())
251     return true;
252
253   // If the symbol was forced local in a version script, do not add it.
254   if (this->is_forced_local())
255     return false;
256
257   // If exporting all symbols or building a shared library,
258   // and the symbol is defined in a regular object and is
259   // externally visible, we need to add it.
260   if ((parameters->export_dynamic() || parameters->output_is_shared())
261       && !this->is_from_dynobj()
262       && this->is_externally_visible())
263     return true;
264
265   return false;
266 }
267
268 // Return true if the final value of this symbol is known at link
269 // time.
270
271 bool
272 Symbol::final_value_is_known() const
273 {
274   // If we are not generating an executable, then no final values are
275   // known, since they will change at runtime.
276   if (!parameters->output_is_executable())
277     return false;
278
279   // If the symbol is not from an object file, then it is defined, and
280   // known.
281   if (this->source_ != FROM_OBJECT)
282     return true;
283
284   // If the symbol is from a dynamic object, then the final value is
285   // not known.
286   if (this->object()->is_dynamic())
287     return false;
288
289   // If the symbol is not undefined (it is defined or common), then
290   // the final value is known.
291   if (!this->is_undefined())
292     return true;
293
294   // If the symbol is undefined, then whether the final value is known
295   // depends on whether we are doing a static link.  If we are doing a
296   // dynamic link, then the final value could be filled in at runtime.
297   // This could reasonably be the case for a weak undefined symbol.
298   return parameters->doing_static_link();
299 }
300
301 // Return the output section where this symbol is defined.
302
303 Output_section*
304 Symbol::output_section() const
305 {
306   switch (this->source_)
307     {
308     case FROM_OBJECT:
309       {
310         unsigned int shndx = this->u_.from_object.shndx;
311         if (shndx != elfcpp::SHN_UNDEF && shndx < elfcpp::SHN_LORESERVE)
312           {
313             gold_assert(!this->u_.from_object.object->is_dynamic());
314             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
315             section_offset_type dummy;
316             return relobj->output_section(shndx, &dummy);
317           }
318         return NULL;
319       }
320
321     case IN_OUTPUT_DATA:
322       return this->u_.in_output_data.output_data->output_section();
323
324     case IN_OUTPUT_SEGMENT:
325     case CONSTANT:
326       return NULL;
327
328     default:
329       gold_unreachable();
330     }
331 }
332
333 // Set the symbol's output section.  This is used for symbols defined
334 // in scripts.  This should only be called after the symbol table has
335 // been finalized.
336
337 void
338 Symbol::set_output_section(Output_section* os)
339 {
340   switch (this->source_)
341     {
342     case FROM_OBJECT:
343     case IN_OUTPUT_DATA:
344       gold_assert(this->output_section() == os);
345       break;
346     case CONSTANT:
347       this->source_ = IN_OUTPUT_DATA;
348       this->u_.in_output_data.output_data = os;
349       this->u_.in_output_data.offset_is_from_end = false;
350       break;
351     case IN_OUTPUT_SEGMENT:
352     default:
353       gold_unreachable();
354     }
355 }
356
357 // Class Symbol_table.
358
359 Symbol_table::Symbol_table(unsigned int count,
360                            const Version_script_info& version_script)
361   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
362     forwarders_(), commons_(), forced_locals_(), warnings_(),
363     version_script_(version_script)
364 {
365   namepool_.reserve(count);
366 }
367
368 Symbol_table::~Symbol_table()
369 {
370 }
371
372 // The hash function.  The key values are Stringpool keys.
373
374 inline size_t
375 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
376 {
377   return key.first ^ key.second;
378 }
379
380 // The symbol table key equality function.  This is called with
381 // Stringpool keys.
382
383 inline bool
384 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
385                                           const Symbol_table_key& k2) const
386 {
387   return k1.first == k2.first && k1.second == k2.second;
388 }
389
390 // Make TO a symbol which forwards to FROM.
391
392 void
393 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
394 {
395   gold_assert(from != to);
396   gold_assert(!from->is_forwarder() && !to->is_forwarder());
397   this->forwarders_[from] = to;
398   from->set_forwarder();
399 }
400
401 // Resolve the forwards from FROM, returning the real symbol.
402
403 Symbol*
404 Symbol_table::resolve_forwards(const Symbol* from) const
405 {
406   gold_assert(from->is_forwarder());
407   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
408     this->forwarders_.find(from);
409   gold_assert(p != this->forwarders_.end());
410   return p->second;
411 }
412
413 // Look up a symbol by name.
414
415 Symbol*
416 Symbol_table::lookup(const char* name, const char* version) const
417 {
418   Stringpool::Key name_key;
419   name = this->namepool_.find(name, &name_key);
420   if (name == NULL)
421     return NULL;
422
423   Stringpool::Key version_key = 0;
424   if (version != NULL)
425     {
426       version = this->namepool_.find(version, &version_key);
427       if (version == NULL)
428         return NULL;
429     }
430
431   Symbol_table_key key(name_key, version_key);
432   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
433   if (p == this->table_.end())
434     return NULL;
435   return p->second;
436 }
437
438 // Resolve a Symbol with another Symbol.  This is only used in the
439 // unusual case where there are references to both an unversioned
440 // symbol and a symbol with a version, and we then discover that that
441 // version is the default version.  Because this is unusual, we do
442 // this the slow way, by converting back to an ELF symbol.
443
444 template<int size, bool big_endian>
445 void
446 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
447                       const char* version ACCEPT_SIZE_ENDIAN)
448 {
449   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
450   elfcpp::Sym_write<size, big_endian> esym(buf);
451   // We don't bother to set the st_name field.
452   esym.put_st_value(from->value());
453   esym.put_st_size(from->symsize());
454   esym.put_st_info(from->binding(), from->type());
455   esym.put_st_other(from->visibility(), from->nonvis());
456   esym.put_st_shndx(from->shndx());
457   this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
458   if (from->in_reg())
459     to->set_in_reg();
460   if (from->in_dyn())
461     to->set_in_dyn();
462 }
463
464 // Record that a symbol is forced to be local by a version script.
465
466 void
467 Symbol_table::force_local(Symbol* sym)
468 {
469   if (!sym->is_defined() && !sym->is_common())
470     return;
471   if (sym->is_forced_local())
472     {
473       // We already got this one.
474       return;
475     }
476   sym->set_is_forced_local();
477   this->forced_locals_.push_back(sym);
478 }
479
480 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
481 // name and VERSION is the version; both are canonicalized.  DEF is
482 // whether this is the default version.
483
484 // If DEF is true, then this is the definition of a default version of
485 // a symbol.  That means that any lookup of NAME/NULL and any lookup
486 // of NAME/VERSION should always return the same symbol.  This is
487 // obvious for references, but in particular we want to do this for
488 // definitions: overriding NAME/NULL should also override
489 // NAME/VERSION.  If we don't do that, it would be very hard to
490 // override functions in a shared library which uses versioning.
491
492 // We implement this by simply making both entries in the hash table
493 // point to the same Symbol structure.  That is easy enough if this is
494 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
495 // that we have seen both already, in which case they will both have
496 // independent entries in the symbol table.  We can't simply change
497 // the symbol table entry, because we have pointers to the entries
498 // attached to the object files.  So we mark the entry attached to the
499 // object file as a forwarder, and record it in the forwarders_ map.
500 // Note that entries in the hash table will never be marked as
501 // forwarders.
502 //
503 // SYM and ORIG_SYM are almost always the same.  ORIG_SYM is the
504 // symbol exactly as it existed in the input file.  SYM is usually
505 // that as well, but can be modified, for instance if we determine
506 // it's in a to-be-discarded section.
507
508 template<int size, bool big_endian>
509 Sized_symbol<size>*
510 Symbol_table::add_from_object(Object* object,
511                               const char *name,
512                               Stringpool::Key name_key,
513                               const char *version,
514                               Stringpool::Key version_key,
515                               bool def,
516                               const elfcpp::Sym<size, big_endian>& sym,
517                               const elfcpp::Sym<size, big_endian>& orig_sym)
518 {
519   Symbol* const snull = NULL;
520   std::pair<typename Symbol_table_type::iterator, bool> ins =
521     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
522                                        snull));
523
524   std::pair<typename Symbol_table_type::iterator, bool> insdef =
525     std::make_pair(this->table_.end(), false);
526   if (def)
527     {
528       const Stringpool::Key vnull_key = 0;
529       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
530                                                                  vnull_key),
531                                                   snull));
532     }
533
534   // ins.first: an iterator, which is a pointer to a pair.
535   // ins.first->first: the key (a pair of name and version).
536   // ins.first->second: the value (Symbol*).
537   // ins.second: true if new entry was inserted, false if not.
538
539   Sized_symbol<size>* ret;
540   bool was_undefined;
541   bool was_common;
542   if (!ins.second)
543     {
544       // We already have an entry for NAME/VERSION.
545       ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
546                                                            SELECT_SIZE(size));
547       gold_assert(ret != NULL);
548
549       was_undefined = ret->is_undefined();
550       was_common = ret->is_common();
551
552       this->resolve(ret, sym, orig_sym, object, version);
553
554       if (def)
555         {
556           if (insdef.second)
557             {
558               // This is the first time we have seen NAME/NULL.  Make
559               // NAME/NULL point to NAME/VERSION.
560               insdef.first->second = ret;
561             }
562           else if (insdef.first->second != ret
563                    && insdef.first->second->is_undefined())
564             {
565               // This is the unfortunate case where we already have
566               // entries for both NAME/VERSION and NAME/NULL.  Note
567               // that we don't want to combine them if the existing
568               // symbol is going to override the new one.  FIXME: We
569               // currently just test is_undefined, but this may not do
570               // the right thing if the existing symbol is from a
571               // shared library and the new one is from a regular
572               // object.
573
574               const Sized_symbol<size>* sym2;
575               sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
576                 insdef.first->second
577                 SELECT_SIZE(size));
578               Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
579                 ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian));
580               this->make_forwarder(insdef.first->second, ret);
581               insdef.first->second = ret;
582             }
583         }
584     }
585   else
586     {
587       // This is the first time we have seen NAME/VERSION.
588       gold_assert(ins.first->second == NULL);
589
590       was_undefined = false;
591       was_common = false;
592
593       if (def && !insdef.second)
594         {
595           // We already have an entry for NAME/NULL.  If we override
596           // it, then change it to NAME/VERSION.
597           ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
598               insdef.first->second
599               SELECT_SIZE(size));
600           this->resolve(ret, sym, orig_sym, object, version);
601           ins.first->second = ret;
602         }
603       else
604         {
605           Sized_target<size, big_endian>* target =
606             object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
607                 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
608           if (!target->has_make_symbol())
609             ret = new Sized_symbol<size>();
610           else
611             {
612               ret = target->make_symbol();
613               if (ret == NULL)
614                 {
615                   // This means that we don't want a symbol table
616                   // entry after all.
617                   if (!def)
618                     this->table_.erase(ins.first);
619                   else
620                     {
621                       this->table_.erase(insdef.first);
622                       // Inserting insdef invalidated ins.
623                       this->table_.erase(std::make_pair(name_key,
624                                                         version_key));
625                     }
626                   return NULL;
627                 }
628             }
629
630           ret->init(name, version, object, sym);
631
632           ins.first->second = ret;
633           if (def)
634             {
635               // This is the first time we have seen NAME/NULL.  Point
636               // it at the new entry for NAME/VERSION.
637               gold_assert(insdef.second);
638               insdef.first->second = ret;
639             }
640         }
641     }
642
643   // Record every time we see a new undefined symbol, to speed up
644   // archive groups.
645   if (!was_undefined && ret->is_undefined())
646     ++this->saw_undefined_;
647
648   // Keep track of common symbols, to speed up common symbol
649   // allocation.
650   if (!was_common && ret->is_common())
651     this->commons_.push_back(ret);
652
653   ret->set_is_default(def);
654   return ret;
655 }
656
657 // Add all the symbols in a relocatable object to the hash table.
658
659 template<int size, bool big_endian>
660 void
661 Symbol_table::add_from_relobj(
662     Sized_relobj<size, big_endian>* relobj,
663     const unsigned char* syms,
664     size_t count,
665     const char* sym_names,
666     size_t sym_name_size,
667     typename Sized_relobj<size, big_endian>::Symbols* sympointers)
668 {
669   gold_assert(size == relobj->target()->get_size());
670   gold_assert(size == parameters->get_size());
671
672   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
673
674   const bool just_symbols = relobj->just_symbols();
675
676   const unsigned char* p = syms;
677   for (size_t i = 0; i < count; ++i, p += sym_size)
678     {
679       elfcpp::Sym<size, big_endian> sym(p);
680       elfcpp::Sym<size, big_endian>* psym = &sym;
681
682       unsigned int st_name = psym->get_st_name();
683       if (st_name >= sym_name_size)
684         {
685           relobj->error(_("bad global symbol name offset %u at %zu"),
686                         st_name, i);
687           continue;
688         }
689
690       const char* name = sym_names + st_name;
691
692       // A symbol defined in a section which we are not including must
693       // be treated as an undefined symbol.
694       unsigned char symbuf[sym_size];
695       elfcpp::Sym<size, big_endian> sym2(symbuf);
696       unsigned int st_shndx = psym->get_st_shndx();
697       if (st_shndx != elfcpp::SHN_UNDEF
698           && st_shndx < elfcpp::SHN_LORESERVE
699           && !relobj->is_section_included(st_shndx))
700         {
701           memcpy(symbuf, p, sym_size);
702           elfcpp::Sym_write<size, big_endian> sw(symbuf);
703           sw.put_st_shndx(elfcpp::SHN_UNDEF);
704           psym = &sym2;
705         }
706
707       // In an object file, an '@' in the name separates the symbol
708       // name from the version name.  If there are two '@' characters,
709       // this is the default version.
710       const char* ver = strchr(name, '@');
711       int namelen = 0;
712       // DEF: is the version default?  LOCAL: is the symbol forced local?
713       bool def = false;
714       bool local = false;
715
716       if (ver != NULL)
717         {
718           // The symbol name is of the form foo@VERSION or foo@@VERSION
719           namelen = ver - name;
720           ++ver;
721           if (*ver == '@')
722             {
723               def = true;
724               ++ver;
725             }
726         }
727       else if (!version_script_.empty())
728         {
729           // The symbol name did not have a version, but
730           // the version script may assign a version anyway.
731           namelen = strlen(name);
732           def = true;
733           // Check the global: entries from the version script.
734           const std::string& version =
735               version_script_.get_symbol_version(name);
736           if (!version.empty())
737             ver = version.c_str();
738           // Check the local: entries from the version script
739           if (version_script_.symbol_is_local(name))
740             local = true;
741         }
742
743       if (just_symbols)
744         {
745           if (psym != &sym2)
746             memcpy(symbuf, p, sym_size);
747           elfcpp::Sym_write<size, big_endian> sw(symbuf);
748           sw.put_st_shndx(elfcpp::SHN_ABS);
749           if (st_shndx != elfcpp::SHN_UNDEF
750               && st_shndx < elfcpp::SHN_LORESERVE)
751             {
752               // Symbol values in object files are section relative.
753               // This is normally what we want, but since here we are
754               // converting the symbol to absolute we need to add the
755               // section address.  The section address in an object
756               // file is normally zero, but people can use a linker
757               // script to change it.
758               sw.put_st_value(sym2.get_st_value()
759                               + relobj->section_address(st_shndx));
760             }
761           psym = &sym2;
762         }
763
764       Sized_symbol<size>* res;
765       if (ver == NULL)
766         {
767           Stringpool::Key name_key;
768           name = this->namepool_.add(name, true, &name_key);
769           res = this->add_from_object(relobj, name, name_key, NULL, 0,
770                                       false, *psym, sym);
771           if (local)
772             this->force_local(res);
773         }
774       else
775         {
776           Stringpool::Key name_key;
777           name = this->namepool_.add_with_length(name, namelen, true,
778                                                  &name_key);
779           Stringpool::Key ver_key;
780           ver = this->namepool_.add(ver, true, &ver_key);
781
782           res = this->add_from_object(relobj, name, name_key, ver, ver_key,
783                                       def, *psym, sym);
784         }
785
786       (*sympointers)[i] = res;
787     }
788 }
789
790 // Add all the symbols in a dynamic object to the hash table.
791
792 template<int size, bool big_endian>
793 void
794 Symbol_table::add_from_dynobj(
795     Sized_dynobj<size, big_endian>* dynobj,
796     const unsigned char* syms,
797     size_t count,
798     const char* sym_names,
799     size_t sym_name_size,
800     const unsigned char* versym,
801     size_t versym_size,
802     const std::vector<const char*>* version_map)
803 {
804   gold_assert(size == dynobj->target()->get_size());
805   gold_assert(size == parameters->get_size());
806
807   if (dynobj->just_symbols())
808     {
809       gold_error(_("--just-symbols does not make sense with a shared object"));
810       return;
811     }
812
813   if (versym != NULL && versym_size / 2 < count)
814     {
815       dynobj->error(_("too few symbol versions"));
816       return;
817     }
818
819   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
820
821   // We keep a list of all STT_OBJECT symbols, so that we can resolve
822   // weak aliases.  This is necessary because if the dynamic object
823   // provides the same variable under two names, one of which is a
824   // weak definition, and the regular object refers to the weak
825   // definition, we have to put both the weak definition and the
826   // strong definition into the dynamic symbol table.  Given a weak
827   // definition, the only way that we can find the corresponding
828   // strong definition, if any, is to search the symbol table.
829   std::vector<Sized_symbol<size>*> object_symbols;
830
831   const unsigned char* p = syms;
832   const unsigned char* vs = versym;
833   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
834     {
835       elfcpp::Sym<size, big_endian> sym(p);
836
837       // Ignore symbols with local binding or that have
838       // internal or hidden visibility.
839       if (sym.get_st_bind() == elfcpp::STB_LOCAL
840           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
841           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
842         continue;
843
844       unsigned int st_name = sym.get_st_name();
845       if (st_name >= sym_name_size)
846         {
847           dynobj->error(_("bad symbol name offset %u at %zu"),
848                         st_name, i);
849           continue;
850         }
851
852       const char* name = sym_names + st_name;
853
854       Sized_symbol<size>* res;
855
856       if (versym == NULL)
857         {
858           Stringpool::Key name_key;
859           name = this->namepool_.add(name, true, &name_key);
860           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
861                                       false, sym, sym);
862         }
863       else
864         {
865           // Read the version information.
866
867           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
868
869           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
870           v &= elfcpp::VERSYM_VERSION;
871
872           // The Sun documentation says that V can be VER_NDX_LOCAL,
873           // or VER_NDX_GLOBAL, or a version index.  The meaning of
874           // VER_NDX_LOCAL is defined as "Symbol has local scope."
875           // The old GNU linker will happily generate VER_NDX_LOCAL
876           // for an undefined symbol.  I don't know what the Sun
877           // linker will generate.
878
879           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
880               && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
881             {
882               // This symbol should not be visible outside the object.
883               continue;
884             }
885
886           // At this point we are definitely going to add this symbol.
887           Stringpool::Key name_key;
888           name = this->namepool_.add(name, true, &name_key);
889
890           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
891               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
892             {
893               // This symbol does not have a version.
894               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
895                                           false, sym, sym);
896             }
897           else
898             {
899               if (v >= version_map->size())
900                 {
901                   dynobj->error(_("versym for symbol %zu out of range: %u"),
902                                 i, v);
903                   continue;
904                 }
905
906               const char* version = (*version_map)[v];
907               if (version == NULL)
908                 {
909                   dynobj->error(_("versym for symbol %zu has no name: %u"),
910                                 i, v);
911                   continue;
912                 }
913
914               Stringpool::Key version_key;
915               version = this->namepool_.add(version, true, &version_key);
916
917               // If this is an absolute symbol, and the version name
918               // and symbol name are the same, then this is the
919               // version definition symbol.  These symbols exist to
920               // support using -u to pull in particular versions.  We
921               // do not want to record a version for them.
922               if (sym.get_st_shndx() == elfcpp::SHN_ABS
923                   && name_key == version_key)
924                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
925                                             false, sym, sym);
926               else
927                 {
928                   const bool def = (!hidden
929                                     && (sym.get_st_shndx()
930                                         != elfcpp::SHN_UNDEF));
931                   res = this->add_from_object(dynobj, name, name_key, version,
932                                               version_key, def, sym, sym);
933                 }
934             }
935         }
936
937       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
938           && sym.get_st_type() == elfcpp::STT_OBJECT)
939         object_symbols.push_back(res);
940     }
941
942   this->record_weak_aliases(&object_symbols);
943 }
944
945 // This is used to sort weak aliases.  We sort them first by section
946 // index, then by offset, then by weak ahead of strong.
947
948 template<int size>
949 class Weak_alias_sorter
950 {
951  public:
952   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
953 };
954
955 template<int size>
956 bool
957 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
958                                     const Sized_symbol<size>* s2) const
959 {
960   if (s1->shndx() != s2->shndx())
961     return s1->shndx() < s2->shndx();
962   if (s1->value() != s2->value())
963     return s1->value() < s2->value();
964   if (s1->binding() != s2->binding())
965     {
966       if (s1->binding() == elfcpp::STB_WEAK)
967         return true;
968       if (s2->binding() == elfcpp::STB_WEAK)
969         return false;
970     }
971   return std::string(s1->name()) < std::string(s2->name());
972 }
973
974 // SYMBOLS is a list of object symbols from a dynamic object.  Look
975 // for any weak aliases, and record them so that if we add the weak
976 // alias to the dynamic symbol table, we also add the corresponding
977 // strong symbol.
978
979 template<int size>
980 void
981 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
982 {
983   // Sort the vector by section index, then by offset, then by weak
984   // ahead of strong.
985   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
986
987   // Walk through the vector.  For each weak definition, record
988   // aliases.
989   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
990          symbols->begin();
991        p != symbols->end();
992        ++p)
993     {
994       if ((*p)->binding() != elfcpp::STB_WEAK)
995         continue;
996
997       // Build a circular list of weak aliases.  Each symbol points to
998       // the next one in the circular list.
999
1000       Sized_symbol<size>* from_sym = *p;
1001       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1002       for (q = p + 1; q != symbols->end(); ++q)
1003         {
1004           if ((*q)->shndx() != from_sym->shndx()
1005               || (*q)->value() != from_sym->value())
1006             break;
1007
1008           this->weak_aliases_[from_sym] = *q;
1009           from_sym->set_has_alias();
1010           from_sym = *q;
1011         }
1012
1013       if (from_sym != *p)
1014         {
1015           this->weak_aliases_[from_sym] = *p;
1016           from_sym->set_has_alias();
1017         }
1018
1019       p = q - 1;
1020     }
1021 }
1022
1023 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1024 // true, then only create the symbol if there is a reference to it.
1025 // If this does not return NULL, it sets *POLDSYM to the existing
1026 // symbol if there is one.  This canonicalizes *PNAME and *PVERSION.
1027
1028 template<int size, bool big_endian>
1029 Sized_symbol<size>*
1030 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1031                                     bool only_if_ref,
1032                                     Sized_symbol<size>** poldsym
1033                                     ACCEPT_SIZE_ENDIAN)
1034 {
1035   Symbol* oldsym;
1036   Sized_symbol<size>* sym;
1037   bool add_to_table = false;
1038   typename Symbol_table_type::iterator add_loc = this->table_.end();
1039
1040   // If the caller didn't give us a version, see if we get one from
1041   // the version script.
1042   if (*pversion == NULL)
1043     {
1044       const std::string& v(this->version_script_.get_symbol_version(*pname));
1045       if (!v.empty())
1046         *pversion = v.c_str();
1047     }
1048
1049   if (only_if_ref)
1050     {
1051       oldsym = this->lookup(*pname, *pversion);
1052       if (oldsym == NULL || !oldsym->is_undefined())
1053         return NULL;
1054
1055       *pname = oldsym->name();
1056       *pversion = oldsym->version();
1057     }
1058   else
1059     {
1060       // Canonicalize NAME and VERSION.
1061       Stringpool::Key name_key;
1062       *pname = this->namepool_.add(*pname, true, &name_key);
1063
1064       Stringpool::Key version_key = 0;
1065       if (*pversion != NULL)
1066         *pversion = this->namepool_.add(*pversion, true, &version_key);
1067
1068       Symbol* const snull = NULL;
1069       std::pair<typename Symbol_table_type::iterator, bool> ins =
1070         this->table_.insert(std::make_pair(std::make_pair(name_key,
1071                                                           version_key),
1072                                            snull));
1073
1074       if (!ins.second)
1075         {
1076           // We already have a symbol table entry for NAME/VERSION.
1077           oldsym = ins.first->second;
1078           gold_assert(oldsym != NULL);
1079         }
1080       else
1081         {
1082           // We haven't seen this symbol before.
1083           gold_assert(ins.first->second == NULL);
1084           add_to_table = true;
1085           add_loc = ins.first;
1086           oldsym = NULL;
1087         }
1088     }
1089
1090   const Target* target = parameters->target();
1091   if (!target->has_make_symbol())
1092     sym = new Sized_symbol<size>();
1093   else
1094     {
1095       gold_assert(target->get_size() == size);
1096       gold_assert(target->is_big_endian() ? big_endian : !big_endian);
1097       typedef Sized_target<size, big_endian> My_target;
1098       const My_target* sized_target =
1099           static_cast<const My_target*>(target);
1100       sym = sized_target->make_symbol();
1101       if (sym == NULL)
1102         return NULL;
1103     }
1104
1105   if (add_to_table)
1106     add_loc->second = sym;
1107   else
1108     gold_assert(oldsym != NULL);
1109
1110   *poldsym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
1111                                                             SELECT_SIZE(size));
1112
1113   return sym;
1114 }
1115
1116 // Define a symbol based on an Output_data.
1117
1118 Symbol*
1119 Symbol_table::define_in_output_data(const char* name,
1120                                     const char* version,
1121                                     Output_data* od,
1122                                     uint64_t value,
1123                                     uint64_t symsize,
1124                                     elfcpp::STT type,
1125                                     elfcpp::STB binding,
1126                                     elfcpp::STV visibility,
1127                                     unsigned char nonvis,
1128                                     bool offset_is_from_end,
1129                                     bool only_if_ref)
1130 {
1131   if (parameters->get_size() == 32)
1132     {
1133 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1134       return this->do_define_in_output_data<32>(name, version, od,
1135                                                 value, symsize, type, binding,
1136                                                 visibility, nonvis,
1137                                                 offset_is_from_end,
1138                                                 only_if_ref);
1139 #else
1140       gold_unreachable();
1141 #endif
1142     }
1143   else if (parameters->get_size() == 64)
1144     {
1145 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1146       return this->do_define_in_output_data<64>(name, version, od,
1147                                                 value, symsize, type, binding,
1148                                                 visibility, nonvis,
1149                                                 offset_is_from_end,
1150                                                 only_if_ref);
1151 #else
1152       gold_unreachable();
1153 #endif
1154     }
1155   else
1156     gold_unreachable();
1157 }
1158
1159 // Define a symbol in an Output_data, sized version.
1160
1161 template<int size>
1162 Sized_symbol<size>*
1163 Symbol_table::do_define_in_output_data(
1164     const char* name,
1165     const char* version,
1166     Output_data* od,
1167     typename elfcpp::Elf_types<size>::Elf_Addr value,
1168     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1169     elfcpp::STT type,
1170     elfcpp::STB binding,
1171     elfcpp::STV visibility,
1172     unsigned char nonvis,
1173     bool offset_is_from_end,
1174     bool only_if_ref)
1175 {
1176   Sized_symbol<size>* sym;
1177   Sized_symbol<size>* oldsym;
1178
1179   if (parameters->is_big_endian())
1180     {
1181 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1182       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1183           &name, &version, only_if_ref, &oldsym
1184           SELECT_SIZE_ENDIAN(size, true));
1185 #else
1186       gold_unreachable();
1187 #endif
1188     }
1189   else
1190     {
1191 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1192       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1193           &name, &version, only_if_ref, &oldsym
1194           SELECT_SIZE_ENDIAN(size, false));
1195 #else
1196       gold_unreachable();
1197 #endif
1198     }
1199
1200   if (sym == NULL)
1201     return NULL;
1202
1203   gold_assert(version == NULL || oldsym != NULL);
1204   sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1205             offset_is_from_end);
1206
1207   if (oldsym == NULL)
1208     {
1209       if (binding == elfcpp::STB_LOCAL
1210           || this->version_script_.symbol_is_local(name))
1211         this->force_local(sym);
1212       return sym;
1213     }
1214
1215   if (Symbol_table::should_override_with_special(oldsym))
1216     this->override_with_special(oldsym, sym);
1217   delete sym;
1218   return oldsym;
1219 }
1220
1221 // Define a symbol based on an Output_segment.
1222
1223 Symbol*
1224 Symbol_table::define_in_output_segment(const char* name,
1225                                        const char* version, Output_segment* os,
1226                                        uint64_t value,
1227                                        uint64_t symsize,
1228                                        elfcpp::STT type,
1229                                        elfcpp::STB binding,
1230                                        elfcpp::STV visibility,
1231                                        unsigned char nonvis,
1232                                        Symbol::Segment_offset_base offset_base,
1233                                        bool only_if_ref)
1234 {
1235   if (parameters->get_size() == 32)
1236     {
1237 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1238       return this->do_define_in_output_segment<32>(name, version, os,
1239                                                    value, symsize, type,
1240                                                    binding, visibility, nonvis,
1241                                                    offset_base, only_if_ref);
1242 #else
1243       gold_unreachable();
1244 #endif
1245     }
1246   else if (parameters->get_size() == 64)
1247     {
1248 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1249       return this->do_define_in_output_segment<64>(name, version, os,
1250                                                    value, symsize, type,
1251                                                    binding, visibility, nonvis,
1252                                                    offset_base, only_if_ref);
1253 #else
1254       gold_unreachable();
1255 #endif
1256     }
1257   else
1258     gold_unreachable();
1259 }
1260
1261 // Define a symbol in an Output_segment, sized version.
1262
1263 template<int size>
1264 Sized_symbol<size>*
1265 Symbol_table::do_define_in_output_segment(
1266     const char* name,
1267     const char* version,
1268     Output_segment* os,
1269     typename elfcpp::Elf_types<size>::Elf_Addr value,
1270     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1271     elfcpp::STT type,
1272     elfcpp::STB binding,
1273     elfcpp::STV visibility,
1274     unsigned char nonvis,
1275     Symbol::Segment_offset_base offset_base,
1276     bool only_if_ref)
1277 {
1278   Sized_symbol<size>* sym;
1279   Sized_symbol<size>* oldsym;
1280
1281   if (parameters->is_big_endian())
1282     {
1283 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1284       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1285           &name, &version, only_if_ref, &oldsym
1286           SELECT_SIZE_ENDIAN(size, true));
1287 #else
1288       gold_unreachable();
1289 #endif
1290     }
1291   else
1292     {
1293 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1294       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1295           &name, &version, only_if_ref, &oldsym
1296           SELECT_SIZE_ENDIAN(size, false));
1297 #else
1298       gold_unreachable();
1299 #endif
1300     }
1301
1302   if (sym == NULL)
1303     return NULL;
1304
1305   gold_assert(version == NULL || oldsym != NULL);
1306   sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1307             offset_base);
1308
1309   if (oldsym == NULL)
1310     {
1311       if (binding == elfcpp::STB_LOCAL
1312           || this->version_script_.symbol_is_local(name))
1313         this->force_local(sym);
1314       return sym;
1315     }
1316
1317   if (Symbol_table::should_override_with_special(oldsym))
1318     this->override_with_special(oldsym, sym);
1319   delete sym;
1320   return oldsym;
1321 }
1322
1323 // Define a special symbol with a constant value.  It is a multiple
1324 // definition error if this symbol is already defined.
1325
1326 Symbol*
1327 Symbol_table::define_as_constant(const char* name,
1328                                  const char* version,
1329                                  uint64_t value,
1330                                  uint64_t symsize,
1331                                  elfcpp::STT type,
1332                                  elfcpp::STB binding,
1333                                  elfcpp::STV visibility,
1334                                  unsigned char nonvis,
1335                                  bool only_if_ref)
1336 {
1337   if (parameters->get_size() == 32)
1338     {
1339 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1340       return this->do_define_as_constant<32>(name, version, value,
1341                                              symsize, type, binding,
1342                                              visibility, nonvis, only_if_ref);
1343 #else
1344       gold_unreachable();
1345 #endif
1346     }
1347   else if (parameters->get_size() == 64)
1348     {
1349 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1350       return this->do_define_as_constant<64>(name, version, value,
1351                                              symsize, type, binding,
1352                                              visibility, nonvis, only_if_ref);
1353 #else
1354       gold_unreachable();
1355 #endif
1356     }
1357   else
1358     gold_unreachable();
1359 }
1360
1361 // Define a symbol as a constant, sized version.
1362
1363 template<int size>
1364 Sized_symbol<size>*
1365 Symbol_table::do_define_as_constant(
1366     const char* name,
1367     const char* version,
1368     typename elfcpp::Elf_types<size>::Elf_Addr value,
1369     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1370     elfcpp::STT type,
1371     elfcpp::STB binding,
1372     elfcpp::STV visibility,
1373     unsigned char nonvis,
1374     bool only_if_ref)
1375 {
1376   Sized_symbol<size>* sym;
1377   Sized_symbol<size>* oldsym;
1378
1379   if (parameters->is_big_endian())
1380     {
1381 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1382       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1383           &name, &version, only_if_ref, &oldsym
1384           SELECT_SIZE_ENDIAN(size, true));
1385 #else
1386       gold_unreachable();
1387 #endif
1388     }
1389   else
1390     {
1391 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1392       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1393           &name, &version, only_if_ref, &oldsym
1394           SELECT_SIZE_ENDIAN(size, false));
1395 #else
1396       gold_unreachable();
1397 #endif
1398     }
1399
1400   if (sym == NULL)
1401     return NULL;
1402
1403   gold_assert(version == NULL || version == name || oldsym != NULL);
1404   sym->init(name, value, symsize, type, binding, visibility, nonvis);
1405
1406   if (oldsym == NULL)
1407     {
1408       if (binding == elfcpp::STB_LOCAL
1409           || this->version_script_.symbol_is_local(name))
1410         this->force_local(sym);
1411       return sym;
1412     }
1413
1414   if (Symbol_table::should_override_with_special(oldsym))
1415     this->override_with_special(oldsym, sym);
1416   delete sym;
1417   return oldsym;
1418 }
1419
1420 // Define a set of symbols in output sections.
1421
1422 void
1423 Symbol_table::define_symbols(const Layout* layout, int count,
1424                              const Define_symbol_in_section* p,
1425                              bool only_if_ref)
1426 {
1427   for (int i = 0; i < count; ++i, ++p)
1428     {
1429       Output_section* os = layout->find_output_section(p->output_section);
1430       if (os != NULL)
1431         this->define_in_output_data(p->name, NULL, os, p->value,
1432                                     p->size, p->type, p->binding,
1433                                     p->visibility, p->nonvis,
1434                                     p->offset_is_from_end,
1435                                     only_if_ref || p->only_if_ref);
1436       else
1437         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1438                                  p->binding, p->visibility, p->nonvis,
1439                                  only_if_ref || p->only_if_ref);
1440     }
1441 }
1442
1443 // Define a set of symbols in output segments.
1444
1445 void
1446 Symbol_table::define_symbols(const Layout* layout, int count,
1447                              const Define_symbol_in_segment* p,
1448                              bool only_if_ref)
1449 {
1450   for (int i = 0; i < count; ++i, ++p)
1451     {
1452       Output_segment* os = layout->find_output_segment(p->segment_type,
1453                                                        p->segment_flags_set,
1454                                                        p->segment_flags_clear);
1455       if (os != NULL)
1456         this->define_in_output_segment(p->name, NULL, os, p->value,
1457                                        p->size, p->type, p->binding,
1458                                        p->visibility, p->nonvis,
1459                                        p->offset_base,
1460                                        only_if_ref || p->only_if_ref);
1461       else
1462         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1463                                  p->binding, p->visibility, p->nonvis,
1464                                  only_if_ref || p->only_if_ref);
1465     }
1466 }
1467
1468 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
1469 // symbol should be defined--typically a .dyn.bss section.  VALUE is
1470 // the offset within POSD.
1471
1472 template<int size>
1473 void
1474 Symbol_table::define_with_copy_reloc(
1475     Sized_symbol<size>* csym,
1476     Output_data* posd,
1477     typename elfcpp::Elf_types<size>::Elf_Addr value)
1478 {
1479   gold_assert(csym->is_from_dynobj());
1480   gold_assert(!csym->is_copied_from_dynobj());
1481   Object* object = csym->object();
1482   gold_assert(object->is_dynamic());
1483   Dynobj* dynobj = static_cast<Dynobj*>(object);
1484
1485   // Our copied variable has to override any variable in a shared
1486   // library.
1487   elfcpp::STB binding = csym->binding();
1488   if (binding == elfcpp::STB_WEAK)
1489     binding = elfcpp::STB_GLOBAL;
1490
1491   this->define_in_output_data(csym->name(), csym->version(),
1492                               posd, value, csym->symsize(),
1493                               csym->type(), binding,
1494                               csym->visibility(), csym->nonvis(),
1495                               false, false);
1496
1497   csym->set_is_copied_from_dynobj();
1498   csym->set_needs_dynsym_entry();
1499
1500   this->copied_symbol_dynobjs_[csym] = dynobj;
1501
1502   // We have now defined all aliases, but we have not entered them all
1503   // in the copied_symbol_dynobjs_ map.
1504   if (csym->has_alias())
1505     {
1506       Symbol* sym = csym;
1507       while (true)
1508         {
1509           sym = this->weak_aliases_[sym];
1510           if (sym == csym)
1511             break;
1512           gold_assert(sym->output_data() == posd);
1513
1514           sym->set_is_copied_from_dynobj();
1515           this->copied_symbol_dynobjs_[sym] = dynobj;
1516         }
1517     }
1518 }
1519
1520 // SYM is defined using a COPY reloc.  Return the dynamic object where
1521 // the original definition was found.
1522
1523 Dynobj*
1524 Symbol_table::get_copy_source(const Symbol* sym) const
1525 {
1526   gold_assert(sym->is_copied_from_dynobj());
1527   Copied_symbol_dynobjs::const_iterator p =
1528     this->copied_symbol_dynobjs_.find(sym);
1529   gold_assert(p != this->copied_symbol_dynobjs_.end());
1530   return p->second;
1531 }
1532
1533 // Set the dynamic symbol indexes.  INDEX is the index of the first
1534 // global dynamic symbol.  Pointers to the symbols are stored into the
1535 // vector SYMS.  The names are added to DYNPOOL.  This returns an
1536 // updated dynamic symbol index.
1537
1538 unsigned int
1539 Symbol_table::set_dynsym_indexes(unsigned int index,
1540                                  std::vector<Symbol*>* syms,
1541                                  Stringpool* dynpool,
1542                                  Versions* versions)
1543 {
1544   for (Symbol_table_type::iterator p = this->table_.begin();
1545        p != this->table_.end();
1546        ++p)
1547     {
1548       Symbol* sym = p->second;
1549
1550       // Note that SYM may already have a dynamic symbol index, since
1551       // some symbols appear more than once in the symbol table, with
1552       // and without a version.
1553
1554       if (!sym->should_add_dynsym_entry())
1555         sym->set_dynsym_index(-1U);
1556       else if (!sym->has_dynsym_index())
1557         {
1558           sym->set_dynsym_index(index);
1559           ++index;
1560           syms->push_back(sym);
1561           dynpool->add(sym->name(), false, NULL);
1562
1563           // Record any version information.
1564           if (sym->version() != NULL)
1565             versions->record_version(this, dynpool, sym);
1566         }
1567     }
1568
1569   // Finish up the versions.  In some cases this may add new dynamic
1570   // symbols.
1571   index = versions->finalize(this, index, syms);
1572
1573   return index;
1574 }
1575
1576 // Set the final values for all the symbols.  The index of the first
1577 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
1578 // file offset OFF.  Add their names to POOL.  Return the new file
1579 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
1580
1581 off_t
1582 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1583                        size_t dyncount, Stringpool* pool,
1584                        unsigned int *plocal_symcount)
1585 {
1586   off_t ret;
1587
1588   gold_assert(*plocal_symcount != 0);
1589   this->first_global_index_ = *plocal_symcount;
1590
1591   this->dynamic_offset_ = dynoff;
1592   this->first_dynamic_global_index_ = dyn_global_index;
1593   this->dynamic_count_ = dyncount;
1594
1595   if (parameters->get_size() == 32)
1596     {
1597 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1598       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
1599 #else
1600       gold_unreachable();
1601 #endif
1602     }
1603   else if (parameters->get_size() == 64)
1604     {
1605 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1606       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
1607 #else
1608       gold_unreachable();
1609 #endif
1610     }
1611   else
1612     gold_unreachable();
1613
1614   // Now that we have the final symbol table, we can reliably note
1615   // which symbols should get warnings.
1616   this->warnings_.note_warnings(this);
1617
1618   return ret;
1619 }
1620
1621 // SYM is going into the symbol table at *PINDEX.  Add the name to
1622 // POOL, update *PINDEX and *POFF.
1623
1624 template<int size>
1625 void
1626 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1627                                   unsigned int* pindex, off_t* poff)
1628 {
1629   sym->set_symtab_index(*pindex);
1630   pool->add(sym->name(), false, NULL);
1631   ++*pindex;
1632   *poff += elfcpp::Elf_sizes<size>::sym_size;
1633 }
1634
1635 // Set the final value for all the symbols.  This is called after
1636 // Layout::finalize, so all the output sections have their final
1637 // address.
1638
1639 template<int size>
1640 off_t
1641 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1642                              unsigned int* plocal_symcount)
1643 {
1644   off = align_address(off, size >> 3);
1645   this->offset_ = off;
1646
1647   unsigned int index = *plocal_symcount;
1648   const unsigned int orig_index = index;
1649
1650   // First do all the symbols which have been forced to be local, as
1651   // they must appear before all global symbols.
1652   for (Forced_locals::iterator p = this->forced_locals_.begin();
1653        p != this->forced_locals_.end();
1654        ++p)
1655     {
1656       Symbol* sym = *p;
1657       gold_assert(sym->is_forced_local());
1658       if (this->sized_finalize_symbol<size>(sym))
1659         {
1660           this->add_to_final_symtab<size>(sym, pool, &index, &off);
1661           ++*plocal_symcount;
1662         }
1663     }
1664
1665   // Now do all the remaining symbols.
1666   for (Symbol_table_type::iterator p = this->table_.begin();
1667        p != this->table_.end();
1668        ++p)
1669     {
1670       Symbol* sym = p->second;
1671       if (this->sized_finalize_symbol<size>(sym))
1672         this->add_to_final_symtab<size>(sym, pool, &index, &off);
1673     }
1674
1675   this->output_count_ = index - orig_index;
1676
1677   return off;
1678 }
1679
1680 // Finalize the symbol SYM.  This returns true if the symbol should be
1681 // added to the symbol table, false otherwise.
1682
1683 template<int size>
1684 bool
1685 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
1686 {
1687   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
1688
1689   // The default version of a symbol may appear twice in the symbol
1690   // table.  We only need to finalize it once.
1691   if (sym->has_symtab_index())
1692     return false;
1693
1694   if (!sym->in_reg())
1695     {
1696       gold_assert(!sym->has_symtab_index());
1697       sym->set_symtab_index(-1U);
1698       gold_assert(sym->dynsym_index() == -1U);
1699       return false;
1700     }
1701
1702   typename Sized_symbol<size>::Value_type value;
1703
1704   switch (sym->source())
1705     {
1706     case Symbol::FROM_OBJECT:
1707       {
1708         unsigned int shndx = sym->shndx();
1709
1710         // FIXME: We need some target specific support here.
1711         if (shndx >= elfcpp::SHN_LORESERVE
1712             && shndx != elfcpp::SHN_ABS)
1713           {
1714             gold_error(_("%s: unsupported symbol section 0x%x"),
1715                        sym->demangled_name().c_str(), shndx);
1716             shndx = elfcpp::SHN_UNDEF;
1717           }
1718
1719         Object* symobj = sym->object();
1720         if (symobj->is_dynamic())
1721           {
1722             value = 0;
1723             shndx = elfcpp::SHN_UNDEF;
1724           }
1725         else if (shndx == elfcpp::SHN_UNDEF)
1726           value = 0;
1727         else if (shndx == elfcpp::SHN_ABS)
1728           value = sym->value();
1729         else
1730           {
1731             Relobj* relobj = static_cast<Relobj*>(symobj);
1732             section_offset_type secoff;
1733             Output_section* os = relobj->output_section(shndx, &secoff);
1734
1735             if (os == NULL)
1736               {
1737                 sym->set_symtab_index(-1U);
1738                 gold_assert(sym->dynsym_index() == -1U);
1739                 return false;
1740               }
1741
1742             if (sym->type() == elfcpp::STT_TLS)
1743               value = sym->value() + os->tls_offset() + secoff;
1744             else
1745               value = sym->value() + os->address() + secoff;
1746           }
1747       }
1748       break;
1749
1750     case Symbol::IN_OUTPUT_DATA:
1751       {
1752         Output_data* od = sym->output_data();
1753         value = sym->value() + od->address();
1754         if (sym->offset_is_from_end())
1755           value += od->data_size();
1756       }
1757       break;
1758
1759     case Symbol::IN_OUTPUT_SEGMENT:
1760       {
1761         Output_segment* os = sym->output_segment();
1762         value = sym->value() + os->vaddr();
1763         switch (sym->offset_base())
1764           {
1765           case Symbol::SEGMENT_START:
1766             break;
1767           case Symbol::SEGMENT_END:
1768             value += os->memsz();
1769             break;
1770           case Symbol::SEGMENT_BSS:
1771             value += os->filesz();
1772             break;
1773           default:
1774             gold_unreachable();
1775           }
1776       }
1777       break;
1778
1779     case Symbol::CONSTANT:
1780       value = sym->value();
1781       break;
1782
1783     default:
1784       gold_unreachable();
1785     }
1786
1787   sym->set_value(value);
1788
1789   if (parameters->strip_all())
1790     {
1791       sym->set_symtab_index(-1U);
1792       return false;
1793     }
1794
1795   return true;
1796 }
1797
1798 // Write out the global symbols.
1799
1800 void
1801 Symbol_table::write_globals(const Input_objects* input_objects,
1802                             const Stringpool* sympool,
1803                             const Stringpool* dynpool, Output_file* of) const
1804 {
1805   if (parameters->get_size() == 32)
1806     {
1807       if (parameters->is_big_endian())
1808         {
1809 #ifdef HAVE_TARGET_32_BIG
1810           this->sized_write_globals<32, true>(input_objects, sympool,
1811                                               dynpool, of);
1812 #else
1813           gold_unreachable();
1814 #endif
1815         }
1816       else
1817         {
1818 #ifdef HAVE_TARGET_32_LITTLE
1819           this->sized_write_globals<32, false>(input_objects, sympool,
1820                                                dynpool, of);
1821 #else
1822           gold_unreachable();
1823 #endif
1824         }
1825     }
1826   else if (parameters->get_size() == 64)
1827     {
1828       if (parameters->is_big_endian())
1829         {
1830 #ifdef HAVE_TARGET_64_BIG
1831           this->sized_write_globals<64, true>(input_objects, sympool,
1832                                               dynpool, of);
1833 #else
1834           gold_unreachable();
1835 #endif
1836         }
1837       else
1838         {
1839 #ifdef HAVE_TARGET_64_LITTLE
1840           this->sized_write_globals<64, false>(input_objects, sympool,
1841                                                dynpool, of);
1842 #else
1843           gold_unreachable();
1844 #endif
1845         }
1846     }
1847   else
1848     gold_unreachable();
1849 }
1850
1851 // Write out the global symbols.
1852
1853 template<int size, bool big_endian>
1854 void
1855 Symbol_table::sized_write_globals(const Input_objects* input_objects,
1856                                   const Stringpool* sympool,
1857                                   const Stringpool* dynpool,
1858                                   Output_file* of) const
1859 {
1860   const Target* const target = parameters->target();
1861
1862   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1863
1864   const unsigned int output_count = this->output_count_;
1865   const section_size_type oview_size = output_count * sym_size;
1866   const unsigned int first_global_index = this->first_global_index_;
1867   unsigned char* psyms;
1868   if (this->offset_ == 0 || output_count == 0)
1869     psyms = NULL;
1870   else
1871     psyms = of->get_output_view(this->offset_, oview_size);
1872
1873   const unsigned int dynamic_count = this->dynamic_count_;
1874   const section_size_type dynamic_size = dynamic_count * sym_size;
1875   const unsigned int first_dynamic_global_index =
1876     this->first_dynamic_global_index_;
1877   unsigned char* dynamic_view;
1878   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
1879     dynamic_view = NULL;
1880   else
1881     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1882
1883   for (Symbol_table_type::const_iterator p = this->table_.begin();
1884        p != this->table_.end();
1885        ++p)
1886     {
1887       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1888
1889       // Possibly warn about unresolved symbols in shared libraries.
1890       this->warn_about_undefined_dynobj_symbol(input_objects, sym);
1891
1892       unsigned int sym_index = sym->symtab_index();
1893       unsigned int dynsym_index;
1894       if (dynamic_view == NULL)
1895         dynsym_index = -1U;
1896       else
1897         dynsym_index = sym->dynsym_index();
1898
1899       if (sym_index == -1U && dynsym_index == -1U)
1900         {
1901           // This symbol is not included in the output file.
1902           continue;
1903         }
1904
1905       unsigned int shndx;
1906       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
1907       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
1908       switch (sym->source())
1909         {
1910         case Symbol::FROM_OBJECT:
1911           {
1912             unsigned int in_shndx = sym->shndx();
1913
1914             // FIXME: We need some target specific support here.
1915             if (in_shndx >= elfcpp::SHN_LORESERVE
1916                 && in_shndx != elfcpp::SHN_ABS)
1917               {
1918                 gold_error(_("%s: unsupported symbol section 0x%x"),
1919                            sym->demangled_name().c_str(), in_shndx);
1920                 shndx = in_shndx;
1921               }
1922             else
1923               {
1924                 Object* symobj = sym->object();
1925                 if (symobj->is_dynamic())
1926                   {
1927                     if (sym->needs_dynsym_value())
1928                       dynsym_value = target->dynsym_value(sym);
1929                     shndx = elfcpp::SHN_UNDEF;
1930                   }
1931                 else if (in_shndx == elfcpp::SHN_UNDEF
1932                          || in_shndx == elfcpp::SHN_ABS)
1933                   shndx = in_shndx;
1934                 else
1935                   {
1936                     Relobj* relobj = static_cast<Relobj*>(symobj);
1937                     section_offset_type secoff;
1938                     Output_section* os = relobj->output_section(in_shndx,
1939                                                                 &secoff);
1940                     gold_assert(os != NULL);
1941                     shndx = os->out_shndx();
1942
1943                     // In object files symbol values are section
1944                     // relative.
1945                     if (parameters->output_is_object())
1946                       sym_value -= os->address();
1947                   }
1948               }
1949           }
1950           break;
1951
1952         case Symbol::IN_OUTPUT_DATA:
1953           shndx = sym->output_data()->out_shndx();
1954           break;
1955
1956         case Symbol::IN_OUTPUT_SEGMENT:
1957           shndx = elfcpp::SHN_ABS;
1958           break;
1959
1960         case Symbol::CONSTANT:
1961           shndx = elfcpp::SHN_ABS;
1962           break;
1963
1964         default:
1965           gold_unreachable();
1966         }
1967
1968       if (sym_index != -1U)
1969         {
1970           sym_index -= first_global_index;
1971           gold_assert(sym_index < output_count);
1972           unsigned char* ps = psyms + (sym_index * sym_size);
1973           this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1974               sym, sym_value, shndx, sympool, ps
1975               SELECT_SIZE_ENDIAN(size, big_endian));
1976         }
1977
1978       if (dynsym_index != -1U)
1979         {
1980           dynsym_index -= first_dynamic_global_index;
1981           gold_assert(dynsym_index < dynamic_count);
1982           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1983           this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1984               sym, dynsym_value, shndx, dynpool, pd
1985               SELECT_SIZE_ENDIAN(size, big_endian));
1986         }
1987     }
1988
1989   of->write_output_view(this->offset_, oview_size, psyms);
1990   if (dynamic_view != NULL)
1991     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1992 }
1993
1994 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
1995 // strtab holding the name.
1996
1997 template<int size, bool big_endian>
1998 void
1999 Symbol_table::sized_write_symbol(
2000     Sized_symbol<size>* sym,
2001     typename elfcpp::Elf_types<size>::Elf_Addr value,
2002     unsigned int shndx,
2003     const Stringpool* pool,
2004     unsigned char* p
2005     ACCEPT_SIZE_ENDIAN) const
2006 {
2007   elfcpp::Sym_write<size, big_endian> osym(p);
2008   osym.put_st_name(pool->get_offset(sym->name()));
2009   osym.put_st_value(value);
2010   osym.put_st_size(sym->symsize());
2011   // A version script may have overridden the default binding.
2012   if (sym->is_forced_local())
2013     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2014   else
2015     osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
2016   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2017   osym.put_st_shndx(shndx);
2018 }
2019
2020 // Check for unresolved symbols in shared libraries.  This is
2021 // controlled by the --allow-shlib-undefined option.
2022
2023 // We only warn about libraries for which we have seen all the
2024 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
2025 // which were not seen in this link.  If we didn't see a DT_NEEDED
2026 // entry, we aren't going to be able to reliably report whether the
2027 // symbol is undefined.
2028
2029 // We also don't warn about libraries found in the system library
2030 // directory (the directory were we find libc.so); we assume that
2031 // those libraries are OK.  This heuristic avoids problems in
2032 // GNU/Linux, in which -ldl can have undefined references satisfied by
2033 // ld-linux.so.
2034
2035 inline void
2036 Symbol_table::warn_about_undefined_dynobj_symbol(
2037     const Input_objects* input_objects,
2038     Symbol* sym) const
2039 {
2040   if (sym->source() == Symbol::FROM_OBJECT
2041       && sym->object()->is_dynamic()
2042       && sym->shndx() == elfcpp::SHN_UNDEF
2043       && sym->binding() != elfcpp::STB_WEAK
2044       && !parameters->allow_shlib_undefined()
2045       && !parameters->target()->is_defined_by_abi(sym)
2046       && !input_objects->found_in_system_library_directory(sym->object()))
2047     {
2048       // A very ugly cast.
2049       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2050       if (!dynobj->has_unknown_needed_entries())
2051         gold_error(_("%s: undefined reference to '%s'"),
2052                    sym->object()->name().c_str(),
2053                    sym->demangled_name().c_str());
2054     }
2055 }
2056
2057 // Write out a section symbol.  Return the update offset.
2058
2059 void
2060 Symbol_table::write_section_symbol(const Output_section *os,
2061                                    Output_file* of,
2062                                    off_t offset) const
2063 {
2064   if (parameters->get_size() == 32)
2065     {
2066       if (parameters->is_big_endian())
2067         {
2068 #ifdef HAVE_TARGET_32_BIG
2069           this->sized_write_section_symbol<32, true>(os, of, offset);
2070 #else
2071           gold_unreachable();
2072 #endif
2073         }
2074       else
2075         {
2076 #ifdef HAVE_TARGET_32_LITTLE
2077           this->sized_write_section_symbol<32, false>(os, of, offset);
2078 #else
2079           gold_unreachable();
2080 #endif
2081         }
2082     }
2083   else if (parameters->get_size() == 64)
2084     {
2085       if (parameters->is_big_endian())
2086         {
2087 #ifdef HAVE_TARGET_64_BIG
2088           this->sized_write_section_symbol<64, true>(os, of, offset);
2089 #else
2090           gold_unreachable();
2091 #endif
2092         }
2093       else
2094         {
2095 #ifdef HAVE_TARGET_64_LITTLE
2096           this->sized_write_section_symbol<64, false>(os, of, offset);
2097 #else
2098           gold_unreachable();
2099 #endif
2100         }
2101     }
2102   else
2103     gold_unreachable();
2104 }
2105
2106 // Write out a section symbol, specialized for size and endianness.
2107
2108 template<int size, bool big_endian>
2109 void
2110 Symbol_table::sized_write_section_symbol(const Output_section* os,
2111                                          Output_file* of,
2112                                          off_t offset) const
2113 {
2114   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2115
2116   unsigned char* pov = of->get_output_view(offset, sym_size);
2117
2118   elfcpp::Sym_write<size, big_endian> osym(pov);
2119   osym.put_st_name(0);
2120   osym.put_st_value(os->address());
2121   osym.put_st_size(0);
2122   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2123                                        elfcpp::STT_SECTION));
2124   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2125   osym.put_st_shndx(os->out_shndx());
2126
2127   of->write_output_view(offset, sym_size, pov);
2128 }
2129
2130 // Print statistical information to stderr.  This is used for --stats.
2131
2132 void
2133 Symbol_table::print_stats() const
2134 {
2135 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2136   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2137           program_name, this->table_.size(), this->table_.bucket_count());
2138 #else
2139   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2140           program_name, this->table_.size());
2141 #endif
2142   this->namepool_.print_stats("symbol table stringpool");
2143 }
2144
2145 // We check for ODR violations by looking for symbols with the same
2146 // name for which the debugging information reports that they were
2147 // defined in different source locations.  When comparing the source
2148 // location, we consider instances with the same base filename and
2149 // line number to be the same.  This is because different object
2150 // files/shared libraries can include the same header file using
2151 // different paths, and we don't want to report an ODR violation in
2152 // that case.
2153
2154 // This struct is used to compare line information, as returned by
2155 // Dwarf_line_info::one_addr2line.  It implements a < comparison
2156 // operator used with std::set.
2157
2158 struct Odr_violation_compare
2159 {
2160   bool
2161   operator()(const std::string& s1, const std::string& s2) const
2162   {
2163     std::string::size_type pos1 = s1.rfind('/');
2164     std::string::size_type pos2 = s2.rfind('/');
2165     if (pos1 == std::string::npos
2166         || pos2 == std::string::npos)
2167       return s1 < s2;
2168     return s1.compare(pos1, std::string::npos,
2169                       s2, pos2, std::string::npos) < 0;
2170   }
2171 };
2172
2173 // Check candidate_odr_violations_ to find symbols with the same name
2174 // but apparently different definitions (different source-file/line-no).
2175
2176 void
2177 Symbol_table::detect_odr_violations(const Task* task,
2178                                     const char* output_file_name) const
2179 {
2180   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2181        it != candidate_odr_violations_.end();
2182        ++it)
2183     {
2184       const char* symbol_name = it->first;
2185       // We use a sorted set so the output is deterministic.
2186       std::set<std::string, Odr_violation_compare> line_nums;
2187
2188       for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2189                locs = it->second.begin();
2190            locs != it->second.end();
2191            ++locs)
2192         {
2193           // We need to lock the object in order to read it.  This
2194           // means that we have to run in a singleton Task.  If we
2195           // want to run this in a general Task for better
2196           // performance, we will need one Task for object, plus
2197           // appropriate locking to ensure that we don't conflict with
2198           // other uses of the object.
2199           Task_lock_obj<Object> tl(task, locs->object);
2200           std::string lineno = Dwarf_line_info::one_addr2line(
2201               locs->object, locs->shndx, locs->offset);
2202           if (!lineno.empty())
2203             line_nums.insert(lineno);
2204         }
2205
2206       if (line_nums.size() > 1)
2207         {
2208           gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2209                          "places (possible ODR violation):"),
2210                        output_file_name, demangle(symbol_name).c_str());
2211           for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2212                it2 != line_nums.end();
2213                ++it2)
2214             fprintf(stderr, "  %s\n", it2->c_str());
2215         }
2216     }
2217 }
2218
2219 // Warnings functions.
2220
2221 // Add a new warning.
2222
2223 void
2224 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2225                       const std::string& warning)
2226 {
2227   name = symtab->canonicalize_name(name);
2228   this->warnings_[name].set(obj, warning);
2229 }
2230
2231 // Look through the warnings and mark the symbols for which we should
2232 // warn.  This is called during Layout::finalize when we know the
2233 // sources for all the symbols.
2234
2235 void
2236 Warnings::note_warnings(Symbol_table* symtab)
2237 {
2238   for (Warning_table::iterator p = this->warnings_.begin();
2239        p != this->warnings_.end();
2240        ++p)
2241     {
2242       Symbol* sym = symtab->lookup(p->first, NULL);
2243       if (sym != NULL
2244           && sym->source() == Symbol::FROM_OBJECT
2245           && sym->object() == p->second.object)
2246         sym->set_has_warning();
2247     }
2248 }
2249
2250 // Issue a warning.  This is called when we see a relocation against a
2251 // symbol for which has a warning.
2252
2253 template<int size, bool big_endian>
2254 void
2255 Warnings::issue_warning(const Symbol* sym,
2256                         const Relocate_info<size, big_endian>* relinfo,
2257                         size_t relnum, off_t reloffset) const
2258 {
2259   gold_assert(sym->has_warning());
2260   Warning_table::const_iterator p = this->warnings_.find(sym->name());
2261   gold_assert(p != this->warnings_.end());
2262   gold_warning_at_location(relinfo, relnum, reloffset,
2263                            "%s", p->second.text.c_str());
2264 }
2265
2266 // Instantiate the templates we need.  We could use the configure
2267 // script to restrict this to only the ones needed for implemented
2268 // targets.
2269
2270 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2271 template
2272 void
2273 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2274 #endif
2275
2276 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2277 template
2278 void
2279 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2280 #endif
2281
2282 #ifdef HAVE_TARGET_32_LITTLE
2283 template
2284 void
2285 Symbol_table::add_from_relobj<32, false>(
2286     Sized_relobj<32, false>* relobj,
2287     const unsigned char* syms,
2288     size_t count,
2289     const char* sym_names,
2290     size_t sym_name_size,
2291     Sized_relobj<32, true>::Symbols* sympointers);
2292 #endif
2293
2294 #ifdef HAVE_TARGET_32_BIG
2295 template
2296 void
2297 Symbol_table::add_from_relobj<32, true>(
2298     Sized_relobj<32, true>* relobj,
2299     const unsigned char* syms,
2300     size_t count,
2301     const char* sym_names,
2302     size_t sym_name_size,
2303     Sized_relobj<32, false>::Symbols* sympointers);
2304 #endif
2305
2306 #ifdef HAVE_TARGET_64_LITTLE
2307 template
2308 void
2309 Symbol_table::add_from_relobj<64, false>(
2310     Sized_relobj<64, false>* relobj,
2311     const unsigned char* syms,
2312     size_t count,
2313     const char* sym_names,
2314     size_t sym_name_size,
2315     Sized_relobj<64, true>::Symbols* sympointers);
2316 #endif
2317
2318 #ifdef HAVE_TARGET_64_BIG
2319 template
2320 void
2321 Symbol_table::add_from_relobj<64, true>(
2322     Sized_relobj<64, true>* relobj,
2323     const unsigned char* syms,
2324     size_t count,
2325     const char* sym_names,
2326     size_t sym_name_size,
2327     Sized_relobj<64, false>::Symbols* sympointers);
2328 #endif
2329
2330 #ifdef HAVE_TARGET_32_LITTLE
2331 template
2332 void
2333 Symbol_table::add_from_dynobj<32, false>(
2334     Sized_dynobj<32, false>* dynobj,
2335     const unsigned char* syms,
2336     size_t count,
2337     const char* sym_names,
2338     size_t sym_name_size,
2339     const unsigned char* versym,
2340     size_t versym_size,
2341     const std::vector<const char*>* version_map);
2342 #endif
2343
2344 #ifdef HAVE_TARGET_32_BIG
2345 template
2346 void
2347 Symbol_table::add_from_dynobj<32, true>(
2348     Sized_dynobj<32, true>* dynobj,
2349     const unsigned char* syms,
2350     size_t count,
2351     const char* sym_names,
2352     size_t sym_name_size,
2353     const unsigned char* versym,
2354     size_t versym_size,
2355     const std::vector<const char*>* version_map);
2356 #endif
2357
2358 #ifdef HAVE_TARGET_64_LITTLE
2359 template
2360 void
2361 Symbol_table::add_from_dynobj<64, false>(
2362     Sized_dynobj<64, false>* dynobj,
2363     const unsigned char* syms,
2364     size_t count,
2365     const char* sym_names,
2366     size_t sym_name_size,
2367     const unsigned char* versym,
2368     size_t versym_size,
2369     const std::vector<const char*>* version_map);
2370 #endif
2371
2372 #ifdef HAVE_TARGET_64_BIG
2373 template
2374 void
2375 Symbol_table::add_from_dynobj<64, true>(
2376     Sized_dynobj<64, true>* dynobj,
2377     const unsigned char* syms,
2378     size_t count,
2379     const char* sym_names,
2380     size_t sym_name_size,
2381     const unsigned char* versym,
2382     size_t versym_size,
2383     const std::vector<const char*>* version_map);
2384 #endif
2385
2386 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2387 template
2388 void
2389 Symbol_table::define_with_copy_reloc<32>(
2390     Sized_symbol<32>* sym,
2391     Output_data* posd,
2392     elfcpp::Elf_types<32>::Elf_Addr value);
2393 #endif
2394
2395 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2396 template
2397 void
2398 Symbol_table::define_with_copy_reloc<64>(
2399     Sized_symbol<64>* sym,
2400     Output_data* posd,
2401     elfcpp::Elf_types<64>::Elf_Addr value);
2402 #endif
2403
2404 #ifdef HAVE_TARGET_32_LITTLE
2405 template
2406 void
2407 Warnings::issue_warning<32, false>(const Symbol* sym,
2408                                    const Relocate_info<32, false>* relinfo,
2409                                    size_t relnum, off_t reloffset) const;
2410 #endif
2411
2412 #ifdef HAVE_TARGET_32_BIG
2413 template
2414 void
2415 Warnings::issue_warning<32, true>(const Symbol* sym,
2416                                   const Relocate_info<32, true>* relinfo,
2417                                   size_t relnum, off_t reloffset) const;
2418 #endif
2419
2420 #ifdef HAVE_TARGET_64_LITTLE
2421 template
2422 void
2423 Warnings::issue_warning<64, false>(const Symbol* sym,
2424                                    const Relocate_info<64, false>* relinfo,
2425                                    size_t relnum, off_t reloffset) const;
2426 #endif
2427
2428 #ifdef HAVE_TARGET_64_BIG
2429 template
2430 void
2431 Warnings::issue_warning<64, true>(const Symbol* sym,
2432                                   const Relocate_info<64, true>* relinfo,
2433                                   size_t relnum, off_t reloffset) const;
2434 #endif
2435
2436 } // End namespace gold.