* symtab.c (Symbol::init_base_output_data): Add version
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "object.h"
34 #include "dwarf_reader.h"
35 #include "dynobj.h"
36 #include "output.h"
37 #include "target.h"
38 #include "workqueue.h"
39 #include "symtab.h"
40
41 namespace gold
42 {
43
44 // Class Symbol.
45
46 // Initialize fields in Symbol.  This initializes everything except u_
47 // and source_.
48
49 void
50 Symbol::init_fields(const char* name, const char* version,
51                     elfcpp::STT type, elfcpp::STB binding,
52                     elfcpp::STV visibility, unsigned char nonvis)
53 {
54   this->name_ = name;
55   this->version_ = version;
56   this->symtab_index_ = 0;
57   this->dynsym_index_ = 0;
58   this->got_offsets_.init();
59   this->plt_offset_ = 0;
60   this->type_ = type;
61   this->binding_ = binding;
62   this->visibility_ = visibility;
63   this->nonvis_ = nonvis;
64   this->is_target_special_ = false;
65   this->is_def_ = false;
66   this->is_forwarder_ = false;
67   this->has_alias_ = false;
68   this->needs_dynsym_entry_ = false;
69   this->in_reg_ = false;
70   this->in_dyn_ = false;
71   this->has_plt_offset_ = false;
72   this->has_warning_ = false;
73   this->is_copied_from_dynobj_ = false;
74   this->is_forced_local_ = false;
75   this->is_ordinary_shndx_ = false;
76 }
77
78 // Return the demangled version of the symbol's name, but only
79 // if the --demangle flag was set.
80
81 static std::string
82 demangle(const char* name)
83 {
84   if (!parameters->options().do_demangle())
85     return name;
86
87   // cplus_demangle allocates memory for the result it returns,
88   // and returns NULL if the name is already demangled.
89   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
90   if (demangled_name == NULL)
91     return name;
92
93   std::string retval(demangled_name);
94   free(demangled_name);
95   return retval;
96 }
97
98 std::string
99 Symbol::demangled_name() const
100 {
101   return demangle(this->name());
102 }
103
104 // Initialize the fields in the base class Symbol for SYM in OBJECT.
105
106 template<int size, bool big_endian>
107 void
108 Symbol::init_base_object(const char* name, const char* version, Object* object,
109                          const elfcpp::Sym<size, big_endian>& sym,
110                          unsigned int st_shndx, bool is_ordinary)
111 {
112   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
113                     sym.get_st_visibility(), sym.get_st_nonvis());
114   this->u_.from_object.object = object;
115   this->u_.from_object.shndx = st_shndx;
116   this->is_ordinary_shndx_ = is_ordinary;
117   this->source_ = FROM_OBJECT;
118   this->in_reg_ = !object->is_dynamic();
119   this->in_dyn_ = object->is_dynamic();
120 }
121
122 // Initialize the fields in the base class Symbol for a symbol defined
123 // in an Output_data.
124
125 void
126 Symbol::init_base_output_data(const char* name, const char* version,
127                               Output_data* od, elfcpp::STT type,
128                               elfcpp::STB binding, elfcpp::STV visibility,
129                               unsigned char nonvis, bool offset_is_from_end)
130 {
131   this->init_fields(name, version, type, binding, visibility, nonvis);
132   this->u_.in_output_data.output_data = od;
133   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
134   this->source_ = IN_OUTPUT_DATA;
135   this->in_reg_ = true;
136 }
137
138 // Initialize the fields in the base class Symbol for a symbol defined
139 // in an Output_segment.
140
141 void
142 Symbol::init_base_output_segment(const char* name, const char* version,
143                                  Output_segment* os, elfcpp::STT type,
144                                  elfcpp::STB binding, elfcpp::STV visibility,
145                                  unsigned char nonvis,
146                                  Segment_offset_base offset_base)
147 {
148   this->init_fields(name, version, type, binding, visibility, nonvis);
149   this->u_.in_output_segment.output_segment = os;
150   this->u_.in_output_segment.offset_base = offset_base;
151   this->source_ = IN_OUTPUT_SEGMENT;
152   this->in_reg_ = true;
153 }
154
155 // Initialize the fields in the base class Symbol for a symbol defined
156 // as a constant.
157
158 void
159 Symbol::init_base_constant(const char* name, const char* version,
160                            elfcpp::STT type, elfcpp::STB binding,
161                            elfcpp::STV visibility, unsigned char nonvis)
162 {
163   this->init_fields(name, version, type, binding, visibility, nonvis);
164   this->source_ = IS_CONSTANT;
165   this->in_reg_ = true;
166 }
167
168 // Initialize the fields in the base class Symbol for an undefined
169 // symbol.
170
171 void
172 Symbol::init_base_undefined(const char* name, const char* version,
173                             elfcpp::STT type, elfcpp::STB binding,
174                             elfcpp::STV visibility, unsigned char nonvis)
175 {
176   this->init_fields(name, version, type, binding, visibility, nonvis);
177   this->source_ = IS_UNDEFINED;
178   this->in_reg_ = true;
179 }
180
181 // Allocate a common symbol in the base.
182
183 void
184 Symbol::allocate_base_common(Output_data* od)
185 {
186   gold_assert(this->is_common());
187   this->source_ = IN_OUTPUT_DATA;
188   this->u_.in_output_data.output_data = od;
189   this->u_.in_output_data.offset_is_from_end = false;
190 }
191
192 // Initialize the fields in Sized_symbol for SYM in OBJECT.
193
194 template<int size>
195 template<bool big_endian>
196 void
197 Sized_symbol<size>::init_object(const char* name, const char* version,
198                                 Object* object,
199                                 const elfcpp::Sym<size, big_endian>& sym,
200                                 unsigned int st_shndx, bool is_ordinary)
201 {
202   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
203   this->value_ = sym.get_st_value();
204   this->symsize_ = sym.get_st_size();
205 }
206
207 // Initialize the fields in Sized_symbol for a symbol defined in an
208 // Output_data.
209
210 template<int size>
211 void
212 Sized_symbol<size>::init_output_data(const char* name, const char* version,
213                                      Output_data* od, Value_type value,
214                                      Size_type symsize, elfcpp::STT type,
215                                      elfcpp::STB binding,
216                                      elfcpp::STV visibility,
217                                      unsigned char nonvis,
218                                      bool offset_is_from_end)
219 {
220   this->init_base_output_data(name, version, od, type, binding, visibility,
221                               nonvis, offset_is_from_end);
222   this->value_ = value;
223   this->symsize_ = symsize;
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_segment.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
232                                         Output_segment* os, Value_type value,
233                                         Size_type symsize, elfcpp::STT type,
234                                         elfcpp::STB binding,
235                                         elfcpp::STV visibility,
236                                         unsigned char nonvis,
237                                         Segment_offset_base offset_base)
238 {
239   this->init_base_output_segment(name, version, os, type, binding, visibility,
240                                  nonvis, offset_base);
241   this->value_ = value;
242   this->symsize_ = symsize;
243 }
244
245 // Initialize the fields in Sized_symbol for a symbol defined as a
246 // constant.
247
248 template<int size>
249 void
250 Sized_symbol<size>::init_constant(const char* name, const char* version,
251                                   Value_type value, Size_type symsize,
252                                   elfcpp::STT type, elfcpp::STB binding,
253                                   elfcpp::STV visibility, unsigned char nonvis)
254 {
255   this->init_base_constant(name, version, type, binding, visibility, nonvis);
256   this->value_ = value;
257   this->symsize_ = symsize;
258 }
259
260 // Initialize the fields in Sized_symbol for an undefined symbol.
261
262 template<int size>
263 void
264 Sized_symbol<size>::init_undefined(const char* name, const char* version,
265                                    elfcpp::STT type, elfcpp::STB binding,
266                                    elfcpp::STV visibility, unsigned char nonvis)
267 {
268   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
269   this->value_ = 0;
270   this->symsize_ = 0;
271 }
272
273 // Allocate a common symbol.
274
275 template<int size>
276 void
277 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
278 {
279   this->allocate_base_common(od);
280   this->value_ = value;
281 }
282
283 // Return true if this symbol should be added to the dynamic symbol
284 // table.
285
286 inline bool
287 Symbol::should_add_dynsym_entry() const
288 {
289   // If the symbol is used by a dynamic relocation, we need to add it.
290   if (this->needs_dynsym_entry())
291     return true;
292
293   // If the symbol was forced local in a version script, do not add it.
294   if (this->is_forced_local())
295     return false;
296
297   // If exporting all symbols or building a shared library,
298   // and the symbol is defined in a regular object and is
299   // externally visible, we need to add it.
300   if ((parameters->options().export_dynamic() || parameters->options().shared())
301       && !this->is_from_dynobj()
302       && this->is_externally_visible())
303     return true;
304
305   return false;
306 }
307
308 // Return true if the final value of this symbol is known at link
309 // time.
310
311 bool
312 Symbol::final_value_is_known() const
313 {
314   // If we are not generating an executable, then no final values are
315   // known, since they will change at runtime.
316   if (parameters->options().shared() || parameters->options().relocatable())
317     return false;
318
319   // If the symbol is not from an object file, and is not undefined,
320   // then it is defined, and known.
321   if (this->source_ != FROM_OBJECT)
322     {
323       if (this->source_ != IS_UNDEFINED)
324         return true;
325     }
326   else
327     {
328       // If the symbol is from a dynamic object, then the final value
329       // is not known.
330       if (this->object()->is_dynamic())
331         return false;
332
333       // If the symbol is not undefined (it is defined or common),
334       // then the final value is known.
335       if (!this->is_undefined())
336         return true;
337     }
338
339   // If the symbol is undefined, then whether the final value is known
340   // depends on whether we are doing a static link.  If we are doing a
341   // dynamic link, then the final value could be filled in at runtime.
342   // This could reasonably be the case for a weak undefined symbol.
343   return parameters->doing_static_link();
344 }
345
346 // Return the output section where this symbol is defined.
347
348 Output_section*
349 Symbol::output_section() const
350 {
351   switch (this->source_)
352     {
353     case FROM_OBJECT:
354       {
355         unsigned int shndx = this->u_.from_object.shndx;
356         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
357           {
358             gold_assert(!this->u_.from_object.object->is_dynamic());
359             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
360             section_offset_type dummy;
361             return relobj->output_section(shndx, &dummy);
362           }
363         return NULL;
364       }
365
366     case IN_OUTPUT_DATA:
367       return this->u_.in_output_data.output_data->output_section();
368
369     case IN_OUTPUT_SEGMENT:
370     case IS_CONSTANT:
371     case IS_UNDEFINED:
372       return NULL;
373
374     default:
375       gold_unreachable();
376     }
377 }
378
379 // Set the symbol's output section.  This is used for symbols defined
380 // in scripts.  This should only be called after the symbol table has
381 // been finalized.
382
383 void
384 Symbol::set_output_section(Output_section* os)
385 {
386   switch (this->source_)
387     {
388     case FROM_OBJECT:
389     case IN_OUTPUT_DATA:
390       gold_assert(this->output_section() == os);
391       break;
392     case IS_CONSTANT:
393       this->source_ = IN_OUTPUT_DATA;
394       this->u_.in_output_data.output_data = os;
395       this->u_.in_output_data.offset_is_from_end = false;
396       break;
397     case IN_OUTPUT_SEGMENT:
398     case IS_UNDEFINED:
399     default:
400       gold_unreachable();
401     }
402 }
403
404 // Class Symbol_table.
405
406 Symbol_table::Symbol_table(unsigned int count,
407                            const Version_script_info& version_script)
408   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
409     forwarders_(), commons_(), tls_commons_(), forced_locals_(), warnings_(),
410     version_script_(version_script)
411 {
412   namepool_.reserve(count);
413 }
414
415 Symbol_table::~Symbol_table()
416 {
417 }
418
419 // The hash function.  The key values are Stringpool keys.
420
421 inline size_t
422 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
423 {
424   return key.first ^ key.second;
425 }
426
427 // The symbol table key equality function.  This is called with
428 // Stringpool keys.
429
430 inline bool
431 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
432                                           const Symbol_table_key& k2) const
433 {
434   return k1.first == k2.first && k1.second == k2.second;
435 }
436
437 // Make TO a symbol which forwards to FROM.
438
439 void
440 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
441 {
442   gold_assert(from != to);
443   gold_assert(!from->is_forwarder() && !to->is_forwarder());
444   this->forwarders_[from] = to;
445   from->set_forwarder();
446 }
447
448 // Resolve the forwards from FROM, returning the real symbol.
449
450 Symbol*
451 Symbol_table::resolve_forwards(const Symbol* from) const
452 {
453   gold_assert(from->is_forwarder());
454   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
455     this->forwarders_.find(from);
456   gold_assert(p != this->forwarders_.end());
457   return p->second;
458 }
459
460 // Look up a symbol by name.
461
462 Symbol*
463 Symbol_table::lookup(const char* name, const char* version) const
464 {
465   Stringpool::Key name_key;
466   name = this->namepool_.find(name, &name_key);
467   if (name == NULL)
468     return NULL;
469
470   Stringpool::Key version_key = 0;
471   if (version != NULL)
472     {
473       version = this->namepool_.find(version, &version_key);
474       if (version == NULL)
475         return NULL;
476     }
477
478   Symbol_table_key key(name_key, version_key);
479   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
480   if (p == this->table_.end())
481     return NULL;
482   return p->second;
483 }
484
485 // Resolve a Symbol with another Symbol.  This is only used in the
486 // unusual case where there are references to both an unversioned
487 // symbol and a symbol with a version, and we then discover that that
488 // version is the default version.  Because this is unusual, we do
489 // this the slow way, by converting back to an ELF symbol.
490
491 template<int size, bool big_endian>
492 void
493 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
494                       const char* version)
495 {
496   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
497   elfcpp::Sym_write<size, big_endian> esym(buf);
498   // We don't bother to set the st_name or the st_shndx field.
499   esym.put_st_value(from->value());
500   esym.put_st_size(from->symsize());
501   esym.put_st_info(from->binding(), from->type());
502   esym.put_st_other(from->visibility(), from->nonvis());
503   bool is_ordinary;
504   unsigned int shndx = from->shndx(&is_ordinary);
505   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
506                 version);
507   if (from->in_reg())
508     to->set_in_reg();
509   if (from->in_dyn())
510     to->set_in_dyn();
511 }
512
513 // Record that a symbol is forced to be local by a version script.
514
515 void
516 Symbol_table::force_local(Symbol* sym)
517 {
518   if (!sym->is_defined() && !sym->is_common())
519     return;
520   if (sym->is_forced_local())
521     {
522       // We already got this one.
523       return;
524     }
525   sym->set_is_forced_local();
526   this->forced_locals_.push_back(sym);
527 }
528
529 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
530 // is only called for undefined symbols, when at least one --wrap
531 // option was used.
532
533 const char*
534 Symbol_table::wrap_symbol(Object* object, const char* name,
535                           Stringpool::Key* name_key)
536 {
537   // For some targets, we need to ignore a specific character when
538   // wrapping, and add it back later.
539   char prefix = '\0';
540   if (name[0] == object->target()->wrap_char())
541     {
542       prefix = name[0];
543       ++name;
544     }
545
546   if (parameters->options().is_wrap(name))
547     {
548       // Turn NAME into __wrap_NAME.
549       std::string s;
550       if (prefix != '\0')
551         s += prefix;
552       s += "__wrap_";
553       s += name;
554
555       // This will give us both the old and new name in NAMEPOOL_, but
556       // that is OK.  Only the versions we need will wind up in the
557       // real string table in the output file.
558       return this->namepool_.add(s.c_str(), true, name_key);
559     }
560
561   const char* const real_prefix = "__real_";
562   const size_t real_prefix_length = strlen(real_prefix);
563   if (strncmp(name, real_prefix, real_prefix_length) == 0
564       && parameters->options().is_wrap(name + real_prefix_length))
565     {
566       // Turn __real_NAME into NAME.
567       std::string s;
568       if (prefix != '\0')
569         s += prefix;
570       s += name + real_prefix_length;
571       return this->namepool_.add(s.c_str(), true, name_key);
572     }
573
574   return name;
575 }
576
577 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
578 // name and VERSION is the version; both are canonicalized.  DEF is
579 // whether this is the default version.  ST_SHNDX is the symbol's
580 // section index; IS_ORDINARY is whether this is a normal section
581 // rather than a special code.
582
583 // If DEF is true, then this is the definition of a default version of
584 // a symbol.  That means that any lookup of NAME/NULL and any lookup
585 // of NAME/VERSION should always return the same symbol.  This is
586 // obvious for references, but in particular we want to do this for
587 // definitions: overriding NAME/NULL should also override
588 // NAME/VERSION.  If we don't do that, it would be very hard to
589 // override functions in a shared library which uses versioning.
590
591 // We implement this by simply making both entries in the hash table
592 // point to the same Symbol structure.  That is easy enough if this is
593 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
594 // that we have seen both already, in which case they will both have
595 // independent entries in the symbol table.  We can't simply change
596 // the symbol table entry, because we have pointers to the entries
597 // attached to the object files.  So we mark the entry attached to the
598 // object file as a forwarder, and record it in the forwarders_ map.
599 // Note that entries in the hash table will never be marked as
600 // forwarders.
601 //
602 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
603 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
604 // for a special section code.  ST_SHNDX may be modified if the symbol
605 // is defined in a section being discarded.
606
607 template<int size, bool big_endian>
608 Sized_symbol<size>*
609 Symbol_table::add_from_object(Object* object,
610                               const char *name,
611                               Stringpool::Key name_key,
612                               const char *version,
613                               Stringpool::Key version_key,
614                               bool def,
615                               const elfcpp::Sym<size, big_endian>& sym,
616                               unsigned int st_shndx,
617                               bool is_ordinary,
618                               unsigned int orig_st_shndx)
619 {
620   // Print a message if this symbol is being traced.
621   if (parameters->options().is_trace_symbol(name))
622     {
623       if (orig_st_shndx == elfcpp::SHN_UNDEF)
624         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
625       else
626         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
627     }
628
629   // For an undefined symbol, we may need to adjust the name using
630   // --wrap.
631   if (orig_st_shndx == elfcpp::SHN_UNDEF
632       && parameters->options().any_wrap())
633     {
634       const char* wrap_name = this->wrap_symbol(object, name, &name_key);
635       if (wrap_name != name)
636         {
637           // If we see a reference to malloc with version GLIBC_2.0,
638           // and we turn it into a reference to __wrap_malloc, then we
639           // discard the version number.  Otherwise the user would be
640           // required to specify the correct version for
641           // __wrap_malloc.
642           version = NULL;
643           version_key = 0;
644           name = wrap_name;
645         }
646     }
647
648   Symbol* const snull = NULL;
649   std::pair<typename Symbol_table_type::iterator, bool> ins =
650     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
651                                        snull));
652
653   std::pair<typename Symbol_table_type::iterator, bool> insdef =
654     std::make_pair(this->table_.end(), false);
655   if (def)
656     {
657       const Stringpool::Key vnull_key = 0;
658       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
659                                                                  vnull_key),
660                                                   snull));
661     }
662
663   // ins.first: an iterator, which is a pointer to a pair.
664   // ins.first->first: the key (a pair of name and version).
665   // ins.first->second: the value (Symbol*).
666   // ins.second: true if new entry was inserted, false if not.
667
668   Sized_symbol<size>* ret;
669   bool was_undefined;
670   bool was_common;
671   if (!ins.second)
672     {
673       // We already have an entry for NAME/VERSION.
674       ret = this->get_sized_symbol<size>(ins.first->second);
675       gold_assert(ret != NULL);
676
677       was_undefined = ret->is_undefined();
678       was_common = ret->is_common();
679
680       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
681                     version);
682
683       if (def)
684         {
685           if (insdef.second)
686             {
687               // This is the first time we have seen NAME/NULL.  Make
688               // NAME/NULL point to NAME/VERSION.
689               insdef.first->second = ret;
690             }
691           else if (insdef.first->second != ret
692                    && insdef.first->second->is_undefined())
693             {
694               // This is the unfortunate case where we already have
695               // entries for both NAME/VERSION and NAME/NULL.  Note
696               // that we don't want to combine them if the existing
697               // symbol is going to override the new one.  FIXME: We
698               // currently just test is_undefined, but this may not do
699               // the right thing if the existing symbol is from a
700               // shared library and the new one is from a regular
701               // object.
702
703               const Sized_symbol<size>* sym2;
704               sym2 = this->get_sized_symbol<size>(insdef.first->second);
705               Symbol_table::resolve<size, big_endian>(ret, sym2, version);
706               this->make_forwarder(insdef.first->second, ret);
707               insdef.first->second = ret;
708             }
709           else
710             def = false;
711         }
712     }
713   else
714     {
715       // This is the first time we have seen NAME/VERSION.
716       gold_assert(ins.first->second == NULL);
717
718       if (def && !insdef.second)
719         {
720           // We already have an entry for NAME/NULL.  If we override
721           // it, then change it to NAME/VERSION.
722           ret = this->get_sized_symbol<size>(insdef.first->second);
723
724           was_undefined = ret->is_undefined();
725           was_common = ret->is_common();
726
727           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
728                         version);
729           ins.first->second = ret;
730         }
731       else
732         {
733           was_undefined = false;
734           was_common = false;
735
736           Sized_target<size, big_endian>* target =
737             object->sized_target<size, big_endian>();
738           if (!target->has_make_symbol())
739             ret = new Sized_symbol<size>();
740           else
741             {
742               ret = target->make_symbol();
743               if (ret == NULL)
744                 {
745                   // This means that we don't want a symbol table
746                   // entry after all.
747                   if (!def)
748                     this->table_.erase(ins.first);
749                   else
750                     {
751                       this->table_.erase(insdef.first);
752                       // Inserting insdef invalidated ins.
753                       this->table_.erase(std::make_pair(name_key,
754                                                         version_key));
755                     }
756                   return NULL;
757                 }
758             }
759
760           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
761
762           ins.first->second = ret;
763           if (def)
764             {
765               // This is the first time we have seen NAME/NULL.  Point
766               // it at the new entry for NAME/VERSION.
767               gold_assert(insdef.second);
768               insdef.first->second = ret;
769             }
770         }
771     }
772
773   // Record every time we see a new undefined symbol, to speed up
774   // archive groups.
775   if (!was_undefined && ret->is_undefined())
776     ++this->saw_undefined_;
777
778   // Keep track of common symbols, to speed up common symbol
779   // allocation.
780   if (!was_common && ret->is_common())
781     {
782       if (ret->type() != elfcpp::STT_TLS)
783         this->commons_.push_back(ret);
784       else
785         this->tls_commons_.push_back(ret);
786     }
787
788   if (def)
789     ret->set_is_default();
790   return ret;
791 }
792
793 // Add all the symbols in a relocatable object to the hash table.
794
795 template<int size, bool big_endian>
796 void
797 Symbol_table::add_from_relobj(
798     Sized_relobj<size, big_endian>* relobj,
799     const unsigned char* syms,
800     size_t count,
801     size_t symndx_offset,
802     const char* sym_names,
803     size_t sym_name_size,
804     typename Sized_relobj<size, big_endian>::Symbols* sympointers)
805 {
806   gold_assert(size == relobj->target()->get_size());
807   gold_assert(size == parameters->target().get_size());
808
809   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
810
811   const bool just_symbols = relobj->just_symbols();
812
813   const unsigned char* p = syms;
814   for (size_t i = 0; i < count; ++i, p += sym_size)
815     {
816       elfcpp::Sym<size, big_endian> sym(p);
817
818       unsigned int st_name = sym.get_st_name();
819       if (st_name >= sym_name_size)
820         {
821           relobj->error(_("bad global symbol name offset %u at %zu"),
822                         st_name, i);
823           continue;
824         }
825
826       const char* name = sym_names + st_name;
827
828       bool is_ordinary;
829       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
830                                                        sym.get_st_shndx(),
831                                                        &is_ordinary);
832       unsigned int orig_st_shndx = st_shndx;
833       if (!is_ordinary)
834         orig_st_shndx = elfcpp::SHN_UNDEF;
835
836       // A symbol defined in a section which we are not including must
837       // be treated as an undefined symbol.
838       if (st_shndx != elfcpp::SHN_UNDEF
839           && is_ordinary
840           && !relobj->is_section_included(st_shndx))
841         st_shndx = elfcpp::SHN_UNDEF;
842
843       // In an object file, an '@' in the name separates the symbol
844       // name from the version name.  If there are two '@' characters,
845       // this is the default version.
846       const char* ver = strchr(name, '@');
847       int namelen = 0;
848       // DEF: is the version default?  LOCAL: is the symbol forced local?
849       bool def = false;
850       bool local = false;
851
852       if (ver != NULL)
853         {
854           // The symbol name is of the form foo@VERSION or foo@@VERSION
855           namelen = ver - name;
856           ++ver;
857           if (*ver == '@')
858             {
859               def = true;
860               ++ver;
861             }
862         }
863       // We don't want to assign a version to an undefined symbol,
864       // even if it is listed in the version script.  FIXME: What
865       // about a common symbol?
866       else if (!version_script_.empty()
867                && st_shndx != elfcpp::SHN_UNDEF)
868         {
869           // The symbol name did not have a version, but
870           // the version script may assign a version anyway.
871           namelen = strlen(name);
872           def = true;
873           // Check the global: entries from the version script.
874           const std::string& version =
875               version_script_.get_symbol_version(name);
876           if (!version.empty())
877             ver = version.c_str();
878           // Check the local: entries from the version script
879           if (version_script_.symbol_is_local(name))
880             local = true;
881         }
882
883       elfcpp::Sym<size, big_endian>* psym = &sym;
884       unsigned char symbuf[sym_size];
885       elfcpp::Sym<size, big_endian> sym2(symbuf);
886       if (just_symbols)
887         {
888           memcpy(symbuf, p, sym_size);
889           elfcpp::Sym_write<size, big_endian> sw(symbuf);
890           if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
891             {
892               // Symbol values in object files are section relative.
893               // This is normally what we want, but since here we are
894               // converting the symbol to absolute we need to add the
895               // section address.  The section address in an object
896               // file is normally zero, but people can use a linker
897               // script to change it.
898               sw.put_st_value(sym.get_st_value()
899                               + relobj->section_address(orig_st_shndx));
900             }
901           st_shndx = elfcpp::SHN_ABS;
902           is_ordinary = false;
903           psym = &sym2;
904         }
905
906       Sized_symbol<size>* res;
907       if (ver == NULL)
908         {
909           Stringpool::Key name_key;
910           name = this->namepool_.add(name, true, &name_key);
911           res = this->add_from_object(relobj, name, name_key, NULL, 0,
912                                       false, *psym, st_shndx, is_ordinary,
913                                       orig_st_shndx);
914           if (local)
915             this->force_local(res);
916         }
917       else
918         {
919           Stringpool::Key name_key;
920           name = this->namepool_.add_with_length(name, namelen, true,
921                                                  &name_key);
922           Stringpool::Key ver_key;
923           ver = this->namepool_.add(ver, true, &ver_key);
924
925           res = this->add_from_object(relobj, name, name_key, ver, ver_key,
926                                       def, *psym, st_shndx, is_ordinary,
927                                       orig_st_shndx);
928         }
929
930       (*sympointers)[i] = res;
931     }
932 }
933
934 // Add all the symbols in a dynamic object to the hash table.
935
936 template<int size, bool big_endian>
937 void
938 Symbol_table::add_from_dynobj(
939     Sized_dynobj<size, big_endian>* dynobj,
940     const unsigned char* syms,
941     size_t count,
942     const char* sym_names,
943     size_t sym_name_size,
944     const unsigned char* versym,
945     size_t versym_size,
946     const std::vector<const char*>* version_map)
947 {
948   gold_assert(size == dynobj->target()->get_size());
949   gold_assert(size == parameters->target().get_size());
950
951   if (dynobj->just_symbols())
952     {
953       gold_error(_("--just-symbols does not make sense with a shared object"));
954       return;
955     }
956
957   if (versym != NULL && versym_size / 2 < count)
958     {
959       dynobj->error(_("too few symbol versions"));
960       return;
961     }
962
963   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
964
965   // We keep a list of all STT_OBJECT symbols, so that we can resolve
966   // weak aliases.  This is necessary because if the dynamic object
967   // provides the same variable under two names, one of which is a
968   // weak definition, and the regular object refers to the weak
969   // definition, we have to put both the weak definition and the
970   // strong definition into the dynamic symbol table.  Given a weak
971   // definition, the only way that we can find the corresponding
972   // strong definition, if any, is to search the symbol table.
973   std::vector<Sized_symbol<size>*> object_symbols;
974
975   const unsigned char* p = syms;
976   const unsigned char* vs = versym;
977   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
978     {
979       elfcpp::Sym<size, big_endian> sym(p);
980
981       // Ignore symbols with local binding or that have
982       // internal or hidden visibility.
983       if (sym.get_st_bind() == elfcpp::STB_LOCAL
984           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
985           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
986         continue;
987
988       // A protected symbol in a shared library must be treated as a
989       // normal symbol when viewed from outside the shared library.
990       // Implement this by overriding the visibility here.
991       elfcpp::Sym<size, big_endian>* psym = &sym;
992       unsigned char symbuf[sym_size];
993       elfcpp::Sym<size, big_endian> sym2(symbuf);
994       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
995         {
996           memcpy(symbuf, p, sym_size);
997           elfcpp::Sym_write<size, big_endian> sw(symbuf);
998           sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
999           psym = &sym2;
1000         }
1001
1002       unsigned int st_name = psym->get_st_name();
1003       if (st_name >= sym_name_size)
1004         {
1005           dynobj->error(_("bad symbol name offset %u at %zu"),
1006                         st_name, i);
1007           continue;
1008         }
1009
1010       const char* name = sym_names + st_name;
1011
1012       bool is_ordinary;
1013       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1014                                                        &is_ordinary);
1015
1016       Sized_symbol<size>* res;
1017
1018       if (versym == NULL)
1019         {
1020           Stringpool::Key name_key;
1021           name = this->namepool_.add(name, true, &name_key);
1022           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1023                                       false, *psym, st_shndx, is_ordinary,
1024                                       st_shndx);
1025         }
1026       else
1027         {
1028           // Read the version information.
1029
1030           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1031
1032           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1033           v &= elfcpp::VERSYM_VERSION;
1034
1035           // The Sun documentation says that V can be VER_NDX_LOCAL,
1036           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1037           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1038           // The old GNU linker will happily generate VER_NDX_LOCAL
1039           // for an undefined symbol.  I don't know what the Sun
1040           // linker will generate.
1041
1042           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1043               && st_shndx != elfcpp::SHN_UNDEF)
1044             {
1045               // This symbol should not be visible outside the object.
1046               continue;
1047             }
1048
1049           // At this point we are definitely going to add this symbol.
1050           Stringpool::Key name_key;
1051           name = this->namepool_.add(name, true, &name_key);
1052
1053           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1054               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1055             {
1056               // This symbol does not have a version.
1057               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1058                                           false, *psym, st_shndx, is_ordinary,
1059                                           st_shndx);
1060             }
1061           else
1062             {
1063               if (v >= version_map->size())
1064                 {
1065                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1066                                 i, v);
1067                   continue;
1068                 }
1069
1070               const char* version = (*version_map)[v];
1071               if (version == NULL)
1072                 {
1073                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1074                                 i, v);
1075                   continue;
1076                 }
1077
1078               Stringpool::Key version_key;
1079               version = this->namepool_.add(version, true, &version_key);
1080
1081               // If this is an absolute symbol, and the version name
1082               // and symbol name are the same, then this is the
1083               // version definition symbol.  These symbols exist to
1084               // support using -u to pull in particular versions.  We
1085               // do not want to record a version for them.
1086               if (st_shndx == elfcpp::SHN_ABS
1087                   && !is_ordinary
1088                   && name_key == version_key)
1089                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1090                                             false, *psym, st_shndx, is_ordinary,
1091                                             st_shndx);
1092               else
1093                 {
1094                   const bool def = (!hidden
1095                                     && st_shndx != elfcpp::SHN_UNDEF);
1096                   res = this->add_from_object(dynobj, name, name_key, version,
1097                                               version_key, def, *psym, st_shndx,
1098                                               is_ordinary, st_shndx);
1099                 }
1100             }
1101         }
1102
1103       // Note that it is possible that RES was overridden by an
1104       // earlier object, in which case it can't be aliased here.
1105       if (st_shndx != elfcpp::SHN_UNDEF
1106           && is_ordinary
1107           && psym->get_st_type() == elfcpp::STT_OBJECT
1108           && res->source() == Symbol::FROM_OBJECT
1109           && res->object() == dynobj)
1110         object_symbols.push_back(res);
1111     }
1112
1113   this->record_weak_aliases(&object_symbols);
1114 }
1115
1116 // This is used to sort weak aliases.  We sort them first by section
1117 // index, then by offset, then by weak ahead of strong.
1118
1119 template<int size>
1120 class Weak_alias_sorter
1121 {
1122  public:
1123   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1124 };
1125
1126 template<int size>
1127 bool
1128 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1129                                     const Sized_symbol<size>* s2) const
1130 {
1131   bool is_ordinary;
1132   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1133   gold_assert(is_ordinary);
1134   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1135   gold_assert(is_ordinary);
1136   if (s1_shndx != s2_shndx)
1137     return s1_shndx < s2_shndx;
1138
1139   if (s1->value() != s2->value())
1140     return s1->value() < s2->value();
1141   if (s1->binding() != s2->binding())
1142     {
1143       if (s1->binding() == elfcpp::STB_WEAK)
1144         return true;
1145       if (s2->binding() == elfcpp::STB_WEAK)
1146         return false;
1147     }
1148   return std::string(s1->name()) < std::string(s2->name());
1149 }
1150
1151 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1152 // for any weak aliases, and record them so that if we add the weak
1153 // alias to the dynamic symbol table, we also add the corresponding
1154 // strong symbol.
1155
1156 template<int size>
1157 void
1158 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1159 {
1160   // Sort the vector by section index, then by offset, then by weak
1161   // ahead of strong.
1162   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1163
1164   // Walk through the vector.  For each weak definition, record
1165   // aliases.
1166   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1167          symbols->begin();
1168        p != symbols->end();
1169        ++p)
1170     {
1171       if ((*p)->binding() != elfcpp::STB_WEAK)
1172         continue;
1173
1174       // Build a circular list of weak aliases.  Each symbol points to
1175       // the next one in the circular list.
1176
1177       Sized_symbol<size>* from_sym = *p;
1178       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1179       for (q = p + 1; q != symbols->end(); ++q)
1180         {
1181           bool dummy;
1182           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1183               || (*q)->value() != from_sym->value())
1184             break;
1185
1186           this->weak_aliases_[from_sym] = *q;
1187           from_sym->set_has_alias();
1188           from_sym = *q;
1189         }
1190
1191       if (from_sym != *p)
1192         {
1193           this->weak_aliases_[from_sym] = *p;
1194           from_sym->set_has_alias();
1195         }
1196
1197       p = q - 1;
1198     }
1199 }
1200
1201 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1202 // true, then only create the symbol if there is a reference to it.
1203 // If this does not return NULL, it sets *POLDSYM to the existing
1204 // symbol if there is one.  This canonicalizes *PNAME and *PVERSION.
1205
1206 template<int size, bool big_endian>
1207 Sized_symbol<size>*
1208 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1209                                     bool only_if_ref,
1210                                     Sized_symbol<size>** poldsym)
1211 {
1212   Symbol* oldsym;
1213   Sized_symbol<size>* sym;
1214   bool add_to_table = false;
1215   typename Symbol_table_type::iterator add_loc = this->table_.end();
1216
1217   // If the caller didn't give us a version, see if we get one from
1218   // the version script.
1219   if (*pversion == NULL)
1220     {
1221       const std::string& v(this->version_script_.get_symbol_version(*pname));
1222       if (!v.empty())
1223         *pversion = v.c_str();
1224     }
1225
1226   if (only_if_ref)
1227     {
1228       oldsym = this->lookup(*pname, *pversion);
1229       if (oldsym == NULL || !oldsym->is_undefined())
1230         return NULL;
1231
1232       *pname = oldsym->name();
1233       *pversion = oldsym->version();
1234     }
1235   else
1236     {
1237       // Canonicalize NAME and VERSION.
1238       Stringpool::Key name_key;
1239       *pname = this->namepool_.add(*pname, true, &name_key);
1240
1241       Stringpool::Key version_key = 0;
1242       if (*pversion != NULL)
1243         *pversion = this->namepool_.add(*pversion, true, &version_key);
1244
1245       Symbol* const snull = NULL;
1246       std::pair<typename Symbol_table_type::iterator, bool> ins =
1247         this->table_.insert(std::make_pair(std::make_pair(name_key,
1248                                                           version_key),
1249                                            snull));
1250
1251       if (!ins.second)
1252         {
1253           // We already have a symbol table entry for NAME/VERSION.
1254           oldsym = ins.first->second;
1255           gold_assert(oldsym != NULL);
1256         }
1257       else
1258         {
1259           // We haven't seen this symbol before.
1260           gold_assert(ins.first->second == NULL);
1261           add_to_table = true;
1262           add_loc = ins.first;
1263           oldsym = NULL;
1264         }
1265     }
1266
1267   const Target& target = parameters->target();
1268   if (!target.has_make_symbol())
1269     sym = new Sized_symbol<size>();
1270   else
1271     {
1272       gold_assert(target.get_size() == size);
1273       gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1274       typedef Sized_target<size, big_endian> My_target;
1275       const My_target* sized_target =
1276           static_cast<const My_target*>(&target);
1277       sym = sized_target->make_symbol();
1278       if (sym == NULL)
1279         return NULL;
1280     }
1281
1282   if (add_to_table)
1283     add_loc->second = sym;
1284   else
1285     gold_assert(oldsym != NULL);
1286
1287   *poldsym = this->get_sized_symbol<size>(oldsym);
1288
1289   return sym;
1290 }
1291
1292 // Define a symbol based on an Output_data.
1293
1294 Symbol*
1295 Symbol_table::define_in_output_data(const char* name,
1296                                     const char* version,
1297                                     Output_data* od,
1298                                     uint64_t value,
1299                                     uint64_t symsize,
1300                                     elfcpp::STT type,
1301                                     elfcpp::STB binding,
1302                                     elfcpp::STV visibility,
1303                                     unsigned char nonvis,
1304                                     bool offset_is_from_end,
1305                                     bool only_if_ref)
1306 {
1307   if (parameters->target().get_size() == 32)
1308     {
1309 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1310       return this->do_define_in_output_data<32>(name, version, od,
1311                                                 value, symsize, type, binding,
1312                                                 visibility, nonvis,
1313                                                 offset_is_from_end,
1314                                                 only_if_ref);
1315 #else
1316       gold_unreachable();
1317 #endif
1318     }
1319   else if (parameters->target().get_size() == 64)
1320     {
1321 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1322       return this->do_define_in_output_data<64>(name, version, od,
1323                                                 value, symsize, type, binding,
1324                                                 visibility, nonvis,
1325                                                 offset_is_from_end,
1326                                                 only_if_ref);
1327 #else
1328       gold_unreachable();
1329 #endif
1330     }
1331   else
1332     gold_unreachable();
1333 }
1334
1335 // Define a symbol in an Output_data, sized version.
1336
1337 template<int size>
1338 Sized_symbol<size>*
1339 Symbol_table::do_define_in_output_data(
1340     const char* name,
1341     const char* version,
1342     Output_data* od,
1343     typename elfcpp::Elf_types<size>::Elf_Addr value,
1344     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1345     elfcpp::STT type,
1346     elfcpp::STB binding,
1347     elfcpp::STV visibility,
1348     unsigned char nonvis,
1349     bool offset_is_from_end,
1350     bool only_if_ref)
1351 {
1352   Sized_symbol<size>* sym;
1353   Sized_symbol<size>* oldsym;
1354
1355   if (parameters->target().is_big_endian())
1356     {
1357 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1358       sym = this->define_special_symbol<size, true>(&name, &version,
1359                                                     only_if_ref, &oldsym);
1360 #else
1361       gold_unreachable();
1362 #endif
1363     }
1364   else
1365     {
1366 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1367       sym = this->define_special_symbol<size, false>(&name, &version,
1368                                                      only_if_ref, &oldsym);
1369 #else
1370       gold_unreachable();
1371 #endif
1372     }
1373
1374   if (sym == NULL)
1375     return NULL;
1376
1377   sym->init_output_data(name, version, od, value, symsize, type, binding,
1378                         visibility, nonvis, offset_is_from_end);
1379
1380   if (oldsym == NULL)
1381     {
1382       if (binding == elfcpp::STB_LOCAL
1383           || this->version_script_.symbol_is_local(name))
1384         this->force_local(sym);
1385       else if (version != NULL)
1386         sym->set_is_default();
1387       return sym;
1388     }
1389
1390   if (Symbol_table::should_override_with_special(oldsym))
1391     this->override_with_special(oldsym, sym);
1392   delete sym;
1393   return oldsym;
1394 }
1395
1396 // Define a symbol based on an Output_segment.
1397
1398 Symbol*
1399 Symbol_table::define_in_output_segment(const char* name,
1400                                        const char* version, Output_segment* os,
1401                                        uint64_t value,
1402                                        uint64_t symsize,
1403                                        elfcpp::STT type,
1404                                        elfcpp::STB binding,
1405                                        elfcpp::STV visibility,
1406                                        unsigned char nonvis,
1407                                        Symbol::Segment_offset_base offset_base,
1408                                        bool only_if_ref)
1409 {
1410   if (parameters->target().get_size() == 32)
1411     {
1412 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1413       return this->do_define_in_output_segment<32>(name, version, os,
1414                                                    value, symsize, type,
1415                                                    binding, visibility, nonvis,
1416                                                    offset_base, only_if_ref);
1417 #else
1418       gold_unreachable();
1419 #endif
1420     }
1421   else if (parameters->target().get_size() == 64)
1422     {
1423 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1424       return this->do_define_in_output_segment<64>(name, version, os,
1425                                                    value, symsize, type,
1426                                                    binding, visibility, nonvis,
1427                                                    offset_base, only_if_ref);
1428 #else
1429       gold_unreachable();
1430 #endif
1431     }
1432   else
1433     gold_unreachable();
1434 }
1435
1436 // Define a symbol in an Output_segment, sized version.
1437
1438 template<int size>
1439 Sized_symbol<size>*
1440 Symbol_table::do_define_in_output_segment(
1441     const char* name,
1442     const char* version,
1443     Output_segment* os,
1444     typename elfcpp::Elf_types<size>::Elf_Addr value,
1445     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1446     elfcpp::STT type,
1447     elfcpp::STB binding,
1448     elfcpp::STV visibility,
1449     unsigned char nonvis,
1450     Symbol::Segment_offset_base offset_base,
1451     bool only_if_ref)
1452 {
1453   Sized_symbol<size>* sym;
1454   Sized_symbol<size>* oldsym;
1455
1456   if (parameters->target().is_big_endian())
1457     {
1458 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1459       sym = this->define_special_symbol<size, true>(&name, &version,
1460                                                     only_if_ref, &oldsym);
1461 #else
1462       gold_unreachable();
1463 #endif
1464     }
1465   else
1466     {
1467 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1468       sym = this->define_special_symbol<size, false>(&name, &version,
1469                                                      only_if_ref, &oldsym);
1470 #else
1471       gold_unreachable();
1472 #endif
1473     }
1474
1475   if (sym == NULL)
1476     return NULL;
1477
1478   sym->init_output_segment(name, version, os, value, symsize, type, binding,
1479                            visibility, nonvis, offset_base);
1480
1481   if (oldsym == NULL)
1482     {
1483       if (binding == elfcpp::STB_LOCAL
1484           || this->version_script_.symbol_is_local(name))
1485         this->force_local(sym);
1486       else if (version != NULL)
1487         sym->set_is_default();
1488       return sym;
1489     }
1490
1491   if (Symbol_table::should_override_with_special(oldsym))
1492     this->override_with_special(oldsym, sym);
1493   delete sym;
1494   return oldsym;
1495 }
1496
1497 // Define a special symbol with a constant value.  It is a multiple
1498 // definition error if this symbol is already defined.
1499
1500 Symbol*
1501 Symbol_table::define_as_constant(const char* name,
1502                                  const char* version,
1503                                  uint64_t value,
1504                                  uint64_t symsize,
1505                                  elfcpp::STT type,
1506                                  elfcpp::STB binding,
1507                                  elfcpp::STV visibility,
1508                                  unsigned char nonvis,
1509                                  bool only_if_ref,
1510                                  bool force_override)
1511 {
1512   if (parameters->target().get_size() == 32)
1513     {
1514 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1515       return this->do_define_as_constant<32>(name, version, value,
1516                                              symsize, type, binding,
1517                                              visibility, nonvis, only_if_ref,
1518                                              force_override);
1519 #else
1520       gold_unreachable();
1521 #endif
1522     }
1523   else if (parameters->target().get_size() == 64)
1524     {
1525 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1526       return this->do_define_as_constant<64>(name, version, value,
1527                                              symsize, type, binding,
1528                                              visibility, nonvis, only_if_ref,
1529                                              force_override);
1530 #else
1531       gold_unreachable();
1532 #endif
1533     }
1534   else
1535     gold_unreachable();
1536 }
1537
1538 // Define a symbol as a constant, sized version.
1539
1540 template<int size>
1541 Sized_symbol<size>*
1542 Symbol_table::do_define_as_constant(
1543     const char* name,
1544     const char* version,
1545     typename elfcpp::Elf_types<size>::Elf_Addr value,
1546     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1547     elfcpp::STT type,
1548     elfcpp::STB binding,
1549     elfcpp::STV visibility,
1550     unsigned char nonvis,
1551     bool only_if_ref,
1552     bool force_override)
1553 {
1554   Sized_symbol<size>* sym;
1555   Sized_symbol<size>* oldsym;
1556
1557   if (parameters->target().is_big_endian())
1558     {
1559 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1560       sym = this->define_special_symbol<size, true>(&name, &version,
1561                                                     only_if_ref, &oldsym);
1562 #else
1563       gold_unreachable();
1564 #endif
1565     }
1566   else
1567     {
1568 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1569       sym = this->define_special_symbol<size, false>(&name, &version,
1570                                                      only_if_ref, &oldsym);
1571 #else
1572       gold_unreachable();
1573 #endif
1574     }
1575
1576   if (sym == NULL)
1577     return NULL;
1578
1579   sym->init_constant(name, version, value, symsize, type, binding, visibility,
1580                      nonvis);
1581
1582   if (oldsym == NULL)
1583     {
1584       // Version symbols are absolute symbols with name == version.
1585       // We don't want to force them to be local.
1586       if ((version == NULL
1587            || name != version
1588            || value != 0)
1589           && (binding == elfcpp::STB_LOCAL
1590               || this->version_script_.symbol_is_local(name)))
1591         this->force_local(sym);
1592       else if (version != NULL
1593                && (name != version || value != 0))
1594         sym->set_is_default();
1595       return sym;
1596     }
1597
1598   if (force_override || Symbol_table::should_override_with_special(oldsym))
1599     this->override_with_special(oldsym, sym);
1600   delete sym;
1601   return oldsym;
1602 }
1603
1604 // Define a set of symbols in output sections.
1605
1606 void
1607 Symbol_table::define_symbols(const Layout* layout, int count,
1608                              const Define_symbol_in_section* p,
1609                              bool only_if_ref)
1610 {
1611   for (int i = 0; i < count; ++i, ++p)
1612     {
1613       Output_section* os = layout->find_output_section(p->output_section);
1614       if (os != NULL)
1615         this->define_in_output_data(p->name, NULL, os, p->value,
1616                                     p->size, p->type, p->binding,
1617                                     p->visibility, p->nonvis,
1618                                     p->offset_is_from_end,
1619                                     only_if_ref || p->only_if_ref);
1620       else
1621         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1622                                  p->binding, p->visibility, p->nonvis,
1623                                  only_if_ref || p->only_if_ref,
1624                                  false);
1625     }
1626 }
1627
1628 // Define a set of symbols in output segments.
1629
1630 void
1631 Symbol_table::define_symbols(const Layout* layout, int count,
1632                              const Define_symbol_in_segment* p,
1633                              bool only_if_ref)
1634 {
1635   for (int i = 0; i < count; ++i, ++p)
1636     {
1637       Output_segment* os = layout->find_output_segment(p->segment_type,
1638                                                        p->segment_flags_set,
1639                                                        p->segment_flags_clear);
1640       if (os != NULL)
1641         this->define_in_output_segment(p->name, NULL, os, p->value,
1642                                        p->size, p->type, p->binding,
1643                                        p->visibility, p->nonvis,
1644                                        p->offset_base,
1645                                        only_if_ref || p->only_if_ref);
1646       else
1647         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1648                                  p->binding, p->visibility, p->nonvis,
1649                                  only_if_ref || p->only_if_ref,
1650                                  false);
1651     }
1652 }
1653
1654 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
1655 // symbol should be defined--typically a .dyn.bss section.  VALUE is
1656 // the offset within POSD.
1657
1658 template<int size>
1659 void
1660 Symbol_table::define_with_copy_reloc(
1661     Sized_symbol<size>* csym,
1662     Output_data* posd,
1663     typename elfcpp::Elf_types<size>::Elf_Addr value)
1664 {
1665   gold_assert(csym->is_from_dynobj());
1666   gold_assert(!csym->is_copied_from_dynobj());
1667   Object* object = csym->object();
1668   gold_assert(object->is_dynamic());
1669   Dynobj* dynobj = static_cast<Dynobj*>(object);
1670
1671   // Our copied variable has to override any variable in a shared
1672   // library.
1673   elfcpp::STB binding = csym->binding();
1674   if (binding == elfcpp::STB_WEAK)
1675     binding = elfcpp::STB_GLOBAL;
1676
1677   this->define_in_output_data(csym->name(), csym->version(),
1678                               posd, value, csym->symsize(),
1679                               csym->type(), binding,
1680                               csym->visibility(), csym->nonvis(),
1681                               false, false);
1682
1683   csym->set_is_copied_from_dynobj();
1684   csym->set_needs_dynsym_entry();
1685
1686   this->copied_symbol_dynobjs_[csym] = dynobj;
1687
1688   // We have now defined all aliases, but we have not entered them all
1689   // in the copied_symbol_dynobjs_ map.
1690   if (csym->has_alias())
1691     {
1692       Symbol* sym = csym;
1693       while (true)
1694         {
1695           sym = this->weak_aliases_[sym];
1696           if (sym == csym)
1697             break;
1698           gold_assert(sym->output_data() == posd);
1699
1700           sym->set_is_copied_from_dynobj();
1701           this->copied_symbol_dynobjs_[sym] = dynobj;
1702         }
1703     }
1704 }
1705
1706 // SYM is defined using a COPY reloc.  Return the dynamic object where
1707 // the original definition was found.
1708
1709 Dynobj*
1710 Symbol_table::get_copy_source(const Symbol* sym) const
1711 {
1712   gold_assert(sym->is_copied_from_dynobj());
1713   Copied_symbol_dynobjs::const_iterator p =
1714     this->copied_symbol_dynobjs_.find(sym);
1715   gold_assert(p != this->copied_symbol_dynobjs_.end());
1716   return p->second;
1717 }
1718
1719 // Add any undefined symbols named on the command line.
1720
1721 void
1722 Symbol_table::add_undefined_symbols_from_command_line()
1723 {
1724   if (parameters->options().any_undefined())
1725     {
1726       if (parameters->target().get_size() == 32)
1727         {
1728 #if defined(HAVE_TARGET_32_LITTL) || defined(HAVE_TARGET_32_BIG)
1729           this->do_add_undefined_symbols_from_command_line<32>();
1730 #else
1731           gold_unreachable();
1732 #endif
1733         }
1734       else if (parameters->target().get_size() == 64)
1735         {
1736 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1737           this->do_add_undefined_symbols_from_command_line<64>();
1738 #else
1739           gold_unreachable();
1740 #endif
1741         }
1742       else
1743         gold_unreachable();
1744     }
1745 }
1746
1747 template<int size>
1748 void
1749 Symbol_table::do_add_undefined_symbols_from_command_line()
1750 {
1751   for (options::String_set::const_iterator p =
1752          parameters->options().undefined_begin();
1753        p != parameters->options().undefined_end();
1754        ++p)
1755     {
1756       const char* name = p->c_str();
1757
1758       if (this->lookup(name) != NULL)
1759         continue;
1760
1761       const char* version = NULL;
1762
1763       Sized_symbol<size>* sym;
1764       Sized_symbol<size>* oldsym;
1765       if (parameters->target().is_big_endian())
1766         {
1767 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1768           sym = this->define_special_symbol<size, true>(&name, &version,
1769                                                         false, &oldsym);
1770 #else
1771           gold_unreachable();
1772 #endif
1773         }
1774       else
1775         {
1776 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1777           sym = this->define_special_symbol<size, false>(&name, &version,
1778                                                          false, &oldsym);
1779 #else
1780           gold_unreachable();
1781 #endif
1782         }
1783
1784       gold_assert(oldsym == NULL);
1785
1786       sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1787                           elfcpp::STV_DEFAULT, 0);
1788       ++this->saw_undefined_;
1789     }
1790 }
1791
1792 // Set the dynamic symbol indexes.  INDEX is the index of the first
1793 // global dynamic symbol.  Pointers to the symbols are stored into the
1794 // vector SYMS.  The names are added to DYNPOOL.  This returns an
1795 // updated dynamic symbol index.
1796
1797 unsigned int
1798 Symbol_table::set_dynsym_indexes(unsigned int index,
1799                                  std::vector<Symbol*>* syms,
1800                                  Stringpool* dynpool,
1801                                  Versions* versions)
1802 {
1803   for (Symbol_table_type::iterator p = this->table_.begin();
1804        p != this->table_.end();
1805        ++p)
1806     {
1807       Symbol* sym = p->second;
1808
1809       // Note that SYM may already have a dynamic symbol index, since
1810       // some symbols appear more than once in the symbol table, with
1811       // and without a version.
1812
1813       if (!sym->should_add_dynsym_entry())
1814         sym->set_dynsym_index(-1U);
1815       else if (!sym->has_dynsym_index())
1816         {
1817           sym->set_dynsym_index(index);
1818           ++index;
1819           syms->push_back(sym);
1820           dynpool->add(sym->name(), false, NULL);
1821
1822           // Record any version information.
1823           if (sym->version() != NULL)
1824             versions->record_version(this, dynpool, sym);
1825         }
1826     }
1827
1828   // Finish up the versions.  In some cases this may add new dynamic
1829   // symbols.
1830   index = versions->finalize(this, index, syms);
1831
1832   return index;
1833 }
1834
1835 // Set the final values for all the symbols.  The index of the first
1836 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
1837 // file offset OFF.  Add their names to POOL.  Return the new file
1838 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
1839
1840 off_t
1841 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1842                        size_t dyncount, Stringpool* pool,
1843                        unsigned int *plocal_symcount)
1844 {
1845   off_t ret;
1846
1847   gold_assert(*plocal_symcount != 0);
1848   this->first_global_index_ = *plocal_symcount;
1849
1850   this->dynamic_offset_ = dynoff;
1851   this->first_dynamic_global_index_ = dyn_global_index;
1852   this->dynamic_count_ = dyncount;
1853
1854   if (parameters->target().get_size() == 32)
1855     {
1856 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1857       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
1858 #else
1859       gold_unreachable();
1860 #endif
1861     }
1862   else if (parameters->target().get_size() == 64)
1863     {
1864 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1865       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
1866 #else
1867       gold_unreachable();
1868 #endif
1869     }
1870   else
1871     gold_unreachable();
1872
1873   // Now that we have the final symbol table, we can reliably note
1874   // which symbols should get warnings.
1875   this->warnings_.note_warnings(this);
1876
1877   return ret;
1878 }
1879
1880 // SYM is going into the symbol table at *PINDEX.  Add the name to
1881 // POOL, update *PINDEX and *POFF.
1882
1883 template<int size>
1884 void
1885 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1886                                   unsigned int* pindex, off_t* poff)
1887 {
1888   sym->set_symtab_index(*pindex);
1889   pool->add(sym->name(), false, NULL);
1890   ++*pindex;
1891   *poff += elfcpp::Elf_sizes<size>::sym_size;
1892 }
1893
1894 // Set the final value for all the symbols.  This is called after
1895 // Layout::finalize, so all the output sections have their final
1896 // address.
1897
1898 template<int size>
1899 off_t
1900 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1901                              unsigned int* plocal_symcount)
1902 {
1903   off = align_address(off, size >> 3);
1904   this->offset_ = off;
1905
1906   unsigned int index = *plocal_symcount;
1907   const unsigned int orig_index = index;
1908
1909   // First do all the symbols which have been forced to be local, as
1910   // they must appear before all global symbols.
1911   for (Forced_locals::iterator p = this->forced_locals_.begin();
1912        p != this->forced_locals_.end();
1913        ++p)
1914     {
1915       Symbol* sym = *p;
1916       gold_assert(sym->is_forced_local());
1917       if (this->sized_finalize_symbol<size>(sym))
1918         {
1919           this->add_to_final_symtab<size>(sym, pool, &index, &off);
1920           ++*plocal_symcount;
1921         }
1922     }
1923
1924   // Now do all the remaining symbols.
1925   for (Symbol_table_type::iterator p = this->table_.begin();
1926        p != this->table_.end();
1927        ++p)
1928     {
1929       Symbol* sym = p->second;
1930       if (this->sized_finalize_symbol<size>(sym))
1931         this->add_to_final_symtab<size>(sym, pool, &index, &off);
1932     }
1933
1934   this->output_count_ = index - orig_index;
1935
1936   return off;
1937 }
1938
1939 // Finalize the symbol SYM.  This returns true if the symbol should be
1940 // added to the symbol table, false otherwise.
1941
1942 template<int size>
1943 bool
1944 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
1945 {
1946   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
1947
1948   // The default version of a symbol may appear twice in the symbol
1949   // table.  We only need to finalize it once.
1950   if (sym->has_symtab_index())
1951     return false;
1952
1953   if (!sym->in_reg())
1954     {
1955       gold_assert(!sym->has_symtab_index());
1956       sym->set_symtab_index(-1U);
1957       gold_assert(sym->dynsym_index() == -1U);
1958       return false;
1959     }
1960
1961   typename Sized_symbol<size>::Value_type value;
1962
1963   switch (sym->source())
1964     {
1965     case Symbol::FROM_OBJECT:
1966       {
1967         bool is_ordinary;
1968         unsigned int shndx = sym->shndx(&is_ordinary);
1969
1970         // FIXME: We need some target specific support here.
1971         if (!is_ordinary
1972             && shndx != elfcpp::SHN_ABS
1973             && shndx != elfcpp::SHN_COMMON)
1974           {
1975             gold_error(_("%s: unsupported symbol section 0x%x"),
1976                        sym->demangled_name().c_str(), shndx);
1977             shndx = elfcpp::SHN_UNDEF;
1978           }
1979
1980         Object* symobj = sym->object();
1981         if (symobj->is_dynamic())
1982           {
1983             value = 0;
1984             shndx = elfcpp::SHN_UNDEF;
1985           }
1986         else if (shndx == elfcpp::SHN_UNDEF)
1987           value = 0;
1988         else if (!is_ordinary
1989                  && (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON))
1990           value = sym->value();
1991         else
1992           {
1993             Relobj* relobj = static_cast<Relobj*>(symobj);
1994             section_offset_type secoff;
1995             Output_section* os = relobj->output_section(shndx, &secoff);
1996
1997             if (os == NULL)
1998               {
1999                 sym->set_symtab_index(-1U);
2000                 gold_assert(sym->dynsym_index() == -1U);
2001                 return false;
2002               }
2003
2004             if (sym->type() == elfcpp::STT_TLS)
2005               value = sym->value() + os->tls_offset() + secoff;
2006             else
2007               value = sym->value() + os->address() + secoff;
2008           }
2009       }
2010       break;
2011
2012     case Symbol::IN_OUTPUT_DATA:
2013       {
2014         Output_data* od = sym->output_data();
2015         value = sym->value();
2016         if (sym->type() != elfcpp::STT_TLS)
2017           value += od->address();
2018         else
2019           {
2020             Output_section* os = od->output_section();
2021             gold_assert(os != NULL);
2022             value += os->tls_offset() + (od->address() - os->address());
2023           }
2024         if (sym->offset_is_from_end())
2025           value += od->data_size();
2026       }
2027       break;
2028
2029     case Symbol::IN_OUTPUT_SEGMENT:
2030       {
2031         Output_segment* os = sym->output_segment();
2032         value = sym->value();
2033         if (sym->type() != elfcpp::STT_TLS)
2034           value += os->vaddr();
2035         switch (sym->offset_base())
2036           {
2037           case Symbol::SEGMENT_START:
2038             break;
2039           case Symbol::SEGMENT_END:
2040             value += os->memsz();
2041             break;
2042           case Symbol::SEGMENT_BSS:
2043             value += os->filesz();
2044             break;
2045           default:
2046             gold_unreachable();
2047           }
2048       }
2049       break;
2050
2051     case Symbol::IS_CONSTANT:
2052       value = sym->value();
2053       break;
2054
2055     case Symbol::IS_UNDEFINED:
2056       value = 0;
2057       break;
2058
2059     default:
2060       gold_unreachable();
2061     }
2062
2063   sym->set_value(value);
2064
2065   if (parameters->options().strip_all())
2066     {
2067       sym->set_symtab_index(-1U);
2068       return false;
2069     }
2070
2071   return true;
2072 }
2073
2074 // Write out the global symbols.
2075
2076 void
2077 Symbol_table::write_globals(const Input_objects* input_objects,
2078                             const Stringpool* sympool,
2079                             const Stringpool* dynpool,
2080                             Output_symtab_xindex* symtab_xindex,
2081                             Output_symtab_xindex* dynsym_xindex,
2082                             Output_file* of) const
2083 {
2084   switch (parameters->size_and_endianness())
2085     {
2086 #ifdef HAVE_TARGET_32_LITTLE
2087     case Parameters::TARGET_32_LITTLE:
2088       this->sized_write_globals<32, false>(input_objects, sympool,
2089                                            dynpool, symtab_xindex,
2090                                            dynsym_xindex, of);
2091       break;
2092 #endif
2093 #ifdef HAVE_TARGET_32_BIG
2094     case Parameters::TARGET_32_BIG:
2095       this->sized_write_globals<32, true>(input_objects, sympool,
2096                                           dynpool, symtab_xindex,
2097                                           dynsym_xindex, of);
2098       break;
2099 #endif
2100 #ifdef HAVE_TARGET_64_LITTLE
2101     case Parameters::TARGET_64_LITTLE:
2102       this->sized_write_globals<64, false>(input_objects, sympool,
2103                                            dynpool, symtab_xindex,
2104                                            dynsym_xindex, of);
2105       break;
2106 #endif
2107 #ifdef HAVE_TARGET_64_BIG
2108     case Parameters::TARGET_64_BIG:
2109       this->sized_write_globals<64, true>(input_objects, sympool,
2110                                           dynpool, symtab_xindex,
2111                                           dynsym_xindex, of);
2112       break;
2113 #endif
2114     default:
2115       gold_unreachable();
2116     }
2117 }
2118
2119 // Write out the global symbols.
2120
2121 template<int size, bool big_endian>
2122 void
2123 Symbol_table::sized_write_globals(const Input_objects* input_objects,
2124                                   const Stringpool* sympool,
2125                                   const Stringpool* dynpool,
2126                                   Output_symtab_xindex* symtab_xindex,
2127                                   Output_symtab_xindex* dynsym_xindex,
2128                                   Output_file* of) const
2129 {
2130   const Target& target = parameters->target();
2131
2132   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2133
2134   const unsigned int output_count = this->output_count_;
2135   const section_size_type oview_size = output_count * sym_size;
2136   const unsigned int first_global_index = this->first_global_index_;
2137   unsigned char* psyms;
2138   if (this->offset_ == 0 || output_count == 0)
2139     psyms = NULL;
2140   else
2141     psyms = of->get_output_view(this->offset_, oview_size);
2142
2143   const unsigned int dynamic_count = this->dynamic_count_;
2144   const section_size_type dynamic_size = dynamic_count * sym_size;
2145   const unsigned int first_dynamic_global_index =
2146     this->first_dynamic_global_index_;
2147   unsigned char* dynamic_view;
2148   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2149     dynamic_view = NULL;
2150   else
2151     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2152
2153   for (Symbol_table_type::const_iterator p = this->table_.begin();
2154        p != this->table_.end();
2155        ++p)
2156     {
2157       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2158
2159       // Possibly warn about unresolved symbols in shared libraries.
2160       this->warn_about_undefined_dynobj_symbol(input_objects, sym);
2161
2162       unsigned int sym_index = sym->symtab_index();
2163       unsigned int dynsym_index;
2164       if (dynamic_view == NULL)
2165         dynsym_index = -1U;
2166       else
2167         dynsym_index = sym->dynsym_index();
2168
2169       if (sym_index == -1U && dynsym_index == -1U)
2170         {
2171           // This symbol is not included in the output file.
2172           continue;
2173         }
2174
2175       unsigned int shndx;
2176       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2177       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2178       switch (sym->source())
2179         {
2180         case Symbol::FROM_OBJECT:
2181           {
2182             bool is_ordinary;
2183             unsigned int in_shndx = sym->shndx(&is_ordinary);
2184
2185             // FIXME: We need some target specific support here.
2186             if (!is_ordinary
2187                 && in_shndx != elfcpp::SHN_ABS
2188                 && in_shndx != elfcpp::SHN_COMMON)
2189               {
2190                 gold_error(_("%s: unsupported symbol section 0x%x"),
2191                            sym->demangled_name().c_str(), in_shndx);
2192                 shndx = in_shndx;
2193               }
2194             else
2195               {
2196                 Object* symobj = sym->object();
2197                 if (symobj->is_dynamic())
2198                   {
2199                     if (sym->needs_dynsym_value())
2200                       dynsym_value = target.dynsym_value(sym);
2201                     shndx = elfcpp::SHN_UNDEF;
2202                   }
2203                 else if (in_shndx == elfcpp::SHN_UNDEF
2204                          || (!is_ordinary
2205                              && (in_shndx == elfcpp::SHN_ABS
2206                                  || in_shndx == elfcpp::SHN_COMMON)))
2207                   shndx = in_shndx;
2208                 else
2209                   {
2210                     Relobj* relobj = static_cast<Relobj*>(symobj);
2211                     section_offset_type secoff;
2212                     Output_section* os = relobj->output_section(in_shndx,
2213                                                                 &secoff);
2214                     gold_assert(os != NULL);
2215                     shndx = os->out_shndx();
2216
2217                     if (shndx >= elfcpp::SHN_LORESERVE)
2218                       {
2219                         if (sym_index != -1U)
2220                           symtab_xindex->add(sym_index, shndx);
2221                         if (dynsym_index != -1U)
2222                           dynsym_xindex->add(dynsym_index, shndx);
2223                         shndx = elfcpp::SHN_XINDEX;
2224                       }
2225
2226                     // In object files symbol values are section
2227                     // relative.
2228                     if (parameters->options().relocatable())
2229                       sym_value -= os->address();
2230                   }
2231               }
2232           }
2233           break;
2234
2235         case Symbol::IN_OUTPUT_DATA:
2236           shndx = sym->output_data()->out_shndx();
2237           if (shndx >= elfcpp::SHN_LORESERVE)
2238             {
2239               if (sym_index != -1U)
2240                 symtab_xindex->add(sym_index, shndx);
2241               if (dynsym_index != -1U)
2242                 dynsym_xindex->add(dynsym_index, shndx);
2243               shndx = elfcpp::SHN_XINDEX;
2244             }
2245           break;
2246
2247         case Symbol::IN_OUTPUT_SEGMENT:
2248           shndx = elfcpp::SHN_ABS;
2249           break;
2250
2251         case Symbol::IS_CONSTANT:
2252           shndx = elfcpp::SHN_ABS;
2253           break;
2254
2255         case Symbol::IS_UNDEFINED:
2256           shndx = elfcpp::SHN_UNDEF;
2257           break;
2258
2259         default:
2260           gold_unreachable();
2261         }
2262
2263       if (sym_index != -1U)
2264         {
2265           sym_index -= first_global_index;
2266           gold_assert(sym_index < output_count);
2267           unsigned char* ps = psyms + (sym_index * sym_size);
2268           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2269                                                      sympool, ps);
2270         }
2271
2272       if (dynsym_index != -1U)
2273         {
2274           dynsym_index -= first_dynamic_global_index;
2275           gold_assert(dynsym_index < dynamic_count);
2276           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2277           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2278                                                      dynpool, pd);
2279         }
2280     }
2281
2282   of->write_output_view(this->offset_, oview_size, psyms);
2283   if (dynamic_view != NULL)
2284     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2285 }
2286
2287 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
2288 // strtab holding the name.
2289
2290 template<int size, bool big_endian>
2291 void
2292 Symbol_table::sized_write_symbol(
2293     Sized_symbol<size>* sym,
2294     typename elfcpp::Elf_types<size>::Elf_Addr value,
2295     unsigned int shndx,
2296     const Stringpool* pool,
2297     unsigned char* p) const
2298 {
2299   elfcpp::Sym_write<size, big_endian> osym(p);
2300   osym.put_st_name(pool->get_offset(sym->name()));
2301   osym.put_st_value(value);
2302   osym.put_st_size(sym->symsize());
2303   // A version script may have overridden the default binding.
2304   if (sym->is_forced_local())
2305     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2306   else
2307     osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
2308   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2309   osym.put_st_shndx(shndx);
2310 }
2311
2312 // Check for unresolved symbols in shared libraries.  This is
2313 // controlled by the --allow-shlib-undefined option.
2314
2315 // We only warn about libraries for which we have seen all the
2316 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
2317 // which were not seen in this link.  If we didn't see a DT_NEEDED
2318 // entry, we aren't going to be able to reliably report whether the
2319 // symbol is undefined.
2320
2321 // We also don't warn about libraries found in the system library
2322 // directory (the directory were we find libc.so); we assume that
2323 // those libraries are OK.  This heuristic avoids problems in
2324 // GNU/Linux, in which -ldl can have undefined references satisfied by
2325 // ld-linux.so.
2326
2327 inline void
2328 Symbol_table::warn_about_undefined_dynobj_symbol(
2329     const Input_objects* input_objects,
2330     Symbol* sym) const
2331 {
2332   bool dummy;
2333   if (sym->source() == Symbol::FROM_OBJECT
2334       && sym->object()->is_dynamic()
2335       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2336       && sym->binding() != elfcpp::STB_WEAK
2337       && !parameters->options().allow_shlib_undefined()
2338       && !parameters->target().is_defined_by_abi(sym)
2339       && !input_objects->found_in_system_library_directory(sym->object()))
2340     {
2341       // A very ugly cast.
2342       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2343       if (!dynobj->has_unknown_needed_entries())
2344         gold_error(_("%s: undefined reference to '%s'"),
2345                    sym->object()->name().c_str(),
2346                    sym->demangled_name().c_str());
2347     }
2348 }
2349
2350 // Write out a section symbol.  Return the update offset.
2351
2352 void
2353 Symbol_table::write_section_symbol(const Output_section *os,
2354                                    Output_symtab_xindex* symtab_xindex,
2355                                    Output_file* of,
2356                                    off_t offset) const
2357 {
2358   switch (parameters->size_and_endianness())
2359     {
2360 #ifdef HAVE_TARGET_32_LITTLE
2361     case Parameters::TARGET_32_LITTLE:
2362       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
2363                                                   offset);
2364       break;
2365 #endif
2366 #ifdef HAVE_TARGET_32_BIG
2367     case Parameters::TARGET_32_BIG:
2368       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
2369                                                  offset);
2370       break;
2371 #endif
2372 #ifdef HAVE_TARGET_64_LITTLE
2373     case Parameters::TARGET_64_LITTLE:
2374       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
2375                                                   offset);
2376       break;
2377 #endif
2378 #ifdef HAVE_TARGET_64_BIG
2379     case Parameters::TARGET_64_BIG:
2380       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
2381                                                  offset);
2382       break;
2383 #endif
2384     default:
2385       gold_unreachable();
2386     }
2387 }
2388
2389 // Write out a section symbol, specialized for size and endianness.
2390
2391 template<int size, bool big_endian>
2392 void
2393 Symbol_table::sized_write_section_symbol(const Output_section* os,
2394                                          Output_symtab_xindex* symtab_xindex,
2395                                          Output_file* of,
2396                                          off_t offset) const
2397 {
2398   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2399
2400   unsigned char* pov = of->get_output_view(offset, sym_size);
2401
2402   elfcpp::Sym_write<size, big_endian> osym(pov);
2403   osym.put_st_name(0);
2404   osym.put_st_value(os->address());
2405   osym.put_st_size(0);
2406   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2407                                        elfcpp::STT_SECTION));
2408   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2409
2410   unsigned int shndx = os->out_shndx();
2411   if (shndx >= elfcpp::SHN_LORESERVE)
2412     {
2413       symtab_xindex->add(os->symtab_index(), shndx);
2414       shndx = elfcpp::SHN_XINDEX;
2415     }
2416   osym.put_st_shndx(shndx);
2417
2418   of->write_output_view(offset, sym_size, pov);
2419 }
2420
2421 // Print statistical information to stderr.  This is used for --stats.
2422
2423 void
2424 Symbol_table::print_stats() const
2425 {
2426 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2427   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2428           program_name, this->table_.size(), this->table_.bucket_count());
2429 #else
2430   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2431           program_name, this->table_.size());
2432 #endif
2433   this->namepool_.print_stats("symbol table stringpool");
2434 }
2435
2436 // We check for ODR violations by looking for symbols with the same
2437 // name for which the debugging information reports that they were
2438 // defined in different source locations.  When comparing the source
2439 // location, we consider instances with the same base filename and
2440 // line number to be the same.  This is because different object
2441 // files/shared libraries can include the same header file using
2442 // different paths, and we don't want to report an ODR violation in
2443 // that case.
2444
2445 // This struct is used to compare line information, as returned by
2446 // Dwarf_line_info::one_addr2line.  It implements a < comparison
2447 // operator used with std::set.
2448
2449 struct Odr_violation_compare
2450 {
2451   bool
2452   operator()(const std::string& s1, const std::string& s2) const
2453   {
2454     std::string::size_type pos1 = s1.rfind('/');
2455     std::string::size_type pos2 = s2.rfind('/');
2456     if (pos1 == std::string::npos
2457         || pos2 == std::string::npos)
2458       return s1 < s2;
2459     return s1.compare(pos1, std::string::npos,
2460                       s2, pos2, std::string::npos) < 0;
2461   }
2462 };
2463
2464 // Check candidate_odr_violations_ to find symbols with the same name
2465 // but apparently different definitions (different source-file/line-no).
2466
2467 void
2468 Symbol_table::detect_odr_violations(const Task* task,
2469                                     const char* output_file_name) const
2470 {
2471   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2472        it != candidate_odr_violations_.end();
2473        ++it)
2474     {
2475       const char* symbol_name = it->first;
2476       // We use a sorted set so the output is deterministic.
2477       std::set<std::string, Odr_violation_compare> line_nums;
2478
2479       for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2480                locs = it->second.begin();
2481            locs != it->second.end();
2482            ++locs)
2483         {
2484           // We need to lock the object in order to read it.  This
2485           // means that we have to run in a singleton Task.  If we
2486           // want to run this in a general Task for better
2487           // performance, we will need one Task for object, plus
2488           // appropriate locking to ensure that we don't conflict with
2489           // other uses of the object.  Also note, one_addr2line is not
2490           // currently thread-safe.
2491           Task_lock_obj<Object> tl(task, locs->object);
2492           // 16 is the size of the object-cache that one_addr2line should use.
2493           std::string lineno = Dwarf_line_info::one_addr2line(
2494               locs->object, locs->shndx, locs->offset, 16);
2495           if (!lineno.empty())
2496             line_nums.insert(lineno);
2497         }
2498
2499       if (line_nums.size() > 1)
2500         {
2501           gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2502                          "places (possible ODR violation):"),
2503                        output_file_name, demangle(symbol_name).c_str());
2504           for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2505                it2 != line_nums.end();
2506                ++it2)
2507             fprintf(stderr, "  %s\n", it2->c_str());
2508         }
2509     }
2510   // We only call one_addr2line() in this function, so we can clear its cache.
2511   Dwarf_line_info::clear_addr2line_cache();
2512 }
2513
2514 // Warnings functions.
2515
2516 // Add a new warning.
2517
2518 void
2519 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2520                       const std::string& warning)
2521 {
2522   name = symtab->canonicalize_name(name);
2523   this->warnings_[name].set(obj, warning);
2524 }
2525
2526 // Look through the warnings and mark the symbols for which we should
2527 // warn.  This is called during Layout::finalize when we know the
2528 // sources for all the symbols.
2529
2530 void
2531 Warnings::note_warnings(Symbol_table* symtab)
2532 {
2533   for (Warning_table::iterator p = this->warnings_.begin();
2534        p != this->warnings_.end();
2535        ++p)
2536     {
2537       Symbol* sym = symtab->lookup(p->first, NULL);
2538       if (sym != NULL
2539           && sym->source() == Symbol::FROM_OBJECT
2540           && sym->object() == p->second.object)
2541         sym->set_has_warning();
2542     }
2543 }
2544
2545 // Issue a warning.  This is called when we see a relocation against a
2546 // symbol for which has a warning.
2547
2548 template<int size, bool big_endian>
2549 void
2550 Warnings::issue_warning(const Symbol* sym,
2551                         const Relocate_info<size, big_endian>* relinfo,
2552                         size_t relnum, off_t reloffset) const
2553 {
2554   gold_assert(sym->has_warning());
2555   Warning_table::const_iterator p = this->warnings_.find(sym->name());
2556   gold_assert(p != this->warnings_.end());
2557   gold_warning_at_location(relinfo, relnum, reloffset,
2558                            "%s", p->second.text.c_str());
2559 }
2560
2561 // Instantiate the templates we need.  We could use the configure
2562 // script to restrict this to only the ones needed for implemented
2563 // targets.
2564
2565 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2566 template
2567 void
2568 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2569 #endif
2570
2571 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2572 template
2573 void
2574 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2575 #endif
2576
2577 #ifdef HAVE_TARGET_32_LITTLE
2578 template
2579 void
2580 Symbol_table::add_from_relobj<32, false>(
2581     Sized_relobj<32, false>* relobj,
2582     const unsigned char* syms,
2583     size_t count,
2584     size_t symndx_offset,
2585     const char* sym_names,
2586     size_t sym_name_size,
2587     Sized_relobj<32, true>::Symbols* sympointers);
2588 #endif
2589
2590 #ifdef HAVE_TARGET_32_BIG
2591 template
2592 void
2593 Symbol_table::add_from_relobj<32, true>(
2594     Sized_relobj<32, true>* relobj,
2595     const unsigned char* syms,
2596     size_t count,
2597     size_t symndx_offset,
2598     const char* sym_names,
2599     size_t sym_name_size,
2600     Sized_relobj<32, false>::Symbols* sympointers);
2601 #endif
2602
2603 #ifdef HAVE_TARGET_64_LITTLE
2604 template
2605 void
2606 Symbol_table::add_from_relobj<64, false>(
2607     Sized_relobj<64, false>* relobj,
2608     const unsigned char* syms,
2609     size_t count,
2610     size_t symndx_offset,
2611     const char* sym_names,
2612     size_t sym_name_size,
2613     Sized_relobj<64, true>::Symbols* sympointers);
2614 #endif
2615
2616 #ifdef HAVE_TARGET_64_BIG
2617 template
2618 void
2619 Symbol_table::add_from_relobj<64, true>(
2620     Sized_relobj<64, true>* relobj,
2621     const unsigned char* syms,
2622     size_t count,
2623     size_t symndx_offset,
2624     const char* sym_names,
2625     size_t sym_name_size,
2626     Sized_relobj<64, false>::Symbols* sympointers);
2627 #endif
2628
2629 #ifdef HAVE_TARGET_32_LITTLE
2630 template
2631 void
2632 Symbol_table::add_from_dynobj<32, false>(
2633     Sized_dynobj<32, false>* dynobj,
2634     const unsigned char* syms,
2635     size_t count,
2636     const char* sym_names,
2637     size_t sym_name_size,
2638     const unsigned char* versym,
2639     size_t versym_size,
2640     const std::vector<const char*>* version_map);
2641 #endif
2642
2643 #ifdef HAVE_TARGET_32_BIG
2644 template
2645 void
2646 Symbol_table::add_from_dynobj<32, true>(
2647     Sized_dynobj<32, true>* dynobj,
2648     const unsigned char* syms,
2649     size_t count,
2650     const char* sym_names,
2651     size_t sym_name_size,
2652     const unsigned char* versym,
2653     size_t versym_size,
2654     const std::vector<const char*>* version_map);
2655 #endif
2656
2657 #ifdef HAVE_TARGET_64_LITTLE
2658 template
2659 void
2660 Symbol_table::add_from_dynobj<64, false>(
2661     Sized_dynobj<64, false>* dynobj,
2662     const unsigned char* syms,
2663     size_t count,
2664     const char* sym_names,
2665     size_t sym_name_size,
2666     const unsigned char* versym,
2667     size_t versym_size,
2668     const std::vector<const char*>* version_map);
2669 #endif
2670
2671 #ifdef HAVE_TARGET_64_BIG
2672 template
2673 void
2674 Symbol_table::add_from_dynobj<64, true>(
2675     Sized_dynobj<64, true>* dynobj,
2676     const unsigned char* syms,
2677     size_t count,
2678     const char* sym_names,
2679     size_t sym_name_size,
2680     const unsigned char* versym,
2681     size_t versym_size,
2682     const std::vector<const char*>* version_map);
2683 #endif
2684
2685 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2686 template
2687 void
2688 Symbol_table::define_with_copy_reloc<32>(
2689     Sized_symbol<32>* sym,
2690     Output_data* posd,
2691     elfcpp::Elf_types<32>::Elf_Addr value);
2692 #endif
2693
2694 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2695 template
2696 void
2697 Symbol_table::define_with_copy_reloc<64>(
2698     Sized_symbol<64>* sym,
2699     Output_data* posd,
2700     elfcpp::Elf_types<64>::Elf_Addr value);
2701 #endif
2702
2703 #ifdef HAVE_TARGET_32_LITTLE
2704 template
2705 void
2706 Warnings::issue_warning<32, false>(const Symbol* sym,
2707                                    const Relocate_info<32, false>* relinfo,
2708                                    size_t relnum, off_t reloffset) const;
2709 #endif
2710
2711 #ifdef HAVE_TARGET_32_BIG
2712 template
2713 void
2714 Warnings::issue_warning<32, true>(const Symbol* sym,
2715                                   const Relocate_info<32, true>* relinfo,
2716                                   size_t relnum, off_t reloffset) const;
2717 #endif
2718
2719 #ifdef HAVE_TARGET_64_LITTLE
2720 template
2721 void
2722 Warnings::issue_warning<64, false>(const Symbol* sym,
2723                                    const Relocate_info<64, false>* relinfo,
2724                                    size_t relnum, off_t reloffset) const;
2725 #endif
2726
2727 #ifdef HAVE_TARGET_64_BIG
2728 template
2729 void
2730 Warnings::issue_warning<64, true>(const Symbol* sym,
2731                                   const Relocate_info<64, true>* relinfo,
2732                                   size_t relnum, off_t reloffset) const;
2733 #endif
2734
2735 } // End namespace gold.