* symtab.cc (Symbol::versioned_name): New function.
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol.  This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55                     elfcpp::STT type, elfcpp::STB binding,
56                     elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91   if (!parameters->options().do_demangle())
92     return name;
93
94   // cplus_demangle allocates memory for the result it returns,
95   // and returns NULL if the name is already demangled.
96   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97   if (demangled_name == NULL)
98     return name;
99
100   std::string retval(demangled_name);
101   free(demangled_name);
102   return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108   return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116                          const elfcpp::Sym<size, big_endian>& sym,
117                          unsigned int st_shndx, bool is_ordinary)
118 {
119   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120                     sym.get_st_visibility(), sym.get_st_nonvis());
121   this->u_.from_object.object = object;
122   this->u_.from_object.shndx = st_shndx;
123   this->is_ordinary_shndx_ = is_ordinary;
124   this->source_ = FROM_OBJECT;
125   this->in_reg_ = !object->is_dynamic();
126   this->in_dyn_ = object->is_dynamic();
127   this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135                               Output_data* od, elfcpp::STT type,
136                               elfcpp::STB binding, elfcpp::STV visibility,
137                               unsigned char nonvis, bool offset_is_from_end,
138                               bool is_predefined)
139 {
140   this->init_fields(name, version, type, binding, visibility, nonvis);
141   this->u_.in_output_data.output_data = od;
142   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143   this->source_ = IN_OUTPUT_DATA;
144   this->in_reg_ = true;
145   this->in_real_elf_ = true;
146   this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154                                  Output_segment* os, elfcpp::STT type,
155                                  elfcpp::STB binding, elfcpp::STV visibility,
156                                  unsigned char nonvis,
157                                  Segment_offset_base offset_base,
158                                  bool is_predefined)
159 {
160   this->init_fields(name, version, type, binding, visibility, nonvis);
161   this->u_.in_output_segment.output_segment = os;
162   this->u_.in_output_segment.offset_base = offset_base;
163   this->source_ = IN_OUTPUT_SEGMENT;
164   this->in_reg_ = true;
165   this->in_real_elf_ = true;
166   this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174                            elfcpp::STT type, elfcpp::STB binding,
175                            elfcpp::STV visibility, unsigned char nonvis,
176                            bool is_predefined)
177 {
178   this->init_fields(name, version, type, binding, visibility, nonvis);
179   this->source_ = IS_CONSTANT;
180   this->in_reg_ = true;
181   this->in_real_elf_ = true;
182   this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190                             elfcpp::STT type, elfcpp::STB binding,
191                             elfcpp::STV visibility, unsigned char nonvis)
192 {
193   this->init_fields(name, version, type, binding, visibility, nonvis);
194   this->dynsym_index_ = -1U;
195   this->source_ = IS_UNDEFINED;
196   this->in_reg_ = true;
197   this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205   gold_assert(this->is_common());
206   this->source_ = IN_OUTPUT_DATA;
207   this->u_.in_output_data.output_data = od;
208   this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217                                 Object* object,
218                                 const elfcpp::Sym<size, big_endian>& sym,
219                                 unsigned int st_shndx, bool is_ordinary)
220 {
221   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222   this->value_ = sym.get_st_value();
223   this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232                                      Output_data* od, Value_type value,
233                                      Size_type symsize, elfcpp::STT type,
234                                      elfcpp::STB binding,
235                                      elfcpp::STV visibility,
236                                      unsigned char nonvis,
237                                      bool offset_is_from_end,
238                                      bool is_predefined)
239 {
240   this->init_base_output_data(name, version, od, type, binding, visibility,
241                               nonvis, offset_is_from_end, is_predefined);
242   this->value_ = value;
243   this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252                                         Output_segment* os, Value_type value,
253                                         Size_type symsize, elfcpp::STT type,
254                                         elfcpp::STB binding,
255                                         elfcpp::STV visibility,
256                                         unsigned char nonvis,
257                                         Segment_offset_base offset_base,
258                                         bool is_predefined)
259 {
260   this->init_base_output_segment(name, version, os, type, binding, visibility,
261                                  nonvis, offset_base, is_predefined);
262   this->value_ = value;
263   this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272                                   Value_type value, Size_type symsize,
273                                   elfcpp::STT type, elfcpp::STB binding,
274                                   elfcpp::STV visibility, unsigned char nonvis,
275                                   bool is_predefined)
276 {
277   this->init_base_constant(name, version, type, binding, visibility, nonvis,
278                            is_predefined);
279   this->value_ = value;
280   this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288                                    elfcpp::STT type, elfcpp::STB binding,
289                                    elfcpp::STV visibility, unsigned char nonvis)
290 {
291   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292   this->value_ = 0;
293   this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version.  This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302   gold_assert(this->version_ != NULL);
303   std::string ret = this->name_;
304   ret.push_back('@');
305   if (this->is_def_)
306     ret.push_back('@');
307   ret += this->version_;
308   return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316   return (shndx == elfcpp::SHN_COMMON
317           || shndx == parameters->target().small_common_shndx()
318           || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327   this->allocate_base_common(od);
328   this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 inline bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340   // If the symbol is only present on plugin files, the plugin decided we
341   // don't need it.
342   if (!this->in_real_elf())
343     return false;
344
345   // If the symbol is used by a dynamic relocation, we need to add it.
346   if (this->needs_dynsym_entry())
347     return true;
348
349   // If this symbol's section is not added, the symbol need not be added. 
350   // The section may have been GCed.  Note that export_dynamic is being 
351   // overridden here.  This should not be done for shared objects.
352   if (parameters->options().gc_sections() 
353       && !parameters->options().shared()
354       && this->source() == Symbol::FROM_OBJECT
355       && !this->object()->is_dynamic())
356     {
357       Relobj* relobj = static_cast<Relobj*>(this->object());
358       bool is_ordinary;
359       unsigned int shndx = this->shndx(&is_ordinary);
360       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361           && !relobj->is_section_included(shndx)
362           && !symtab->is_section_folded(relobj, shndx))
363         return false;
364     }
365
366   // If the symbol was forced local in a version script, do not add it.
367   if (this->is_forced_local())
368     return false;
369
370   // If the symbol was forced dynamic in a --dynamic-list file, add it.
371   if (parameters->options().in_dynamic_list(this->name()))
372     return true;
373
374   // If dynamic-list-data was specified, add any STT_OBJECT.
375   if (parameters->options().dynamic_list_data()
376       && !this->is_from_dynobj()
377       && this->type() == elfcpp::STT_OBJECT)
378     return true;
379
380   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
381   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
382   if ((parameters->options().dynamic_list_cpp_new()
383        || parameters->options().dynamic_list_cpp_typeinfo())
384       && !this->is_from_dynobj())
385     {
386       // TODO(csilvers): We could probably figure out if we're an operator
387       //                 new/delete or typeinfo without the need to demangle.
388       char* demangled_name = cplus_demangle(this->name(),
389                                             DMGL_ANSI | DMGL_PARAMS);
390       if (demangled_name == NULL)
391         {
392           // Not a C++ symbol, so it can't satisfy these flags
393         }
394       else if (parameters->options().dynamic_list_cpp_new()
395                && (strprefix(demangled_name, "operator new")
396                    || strprefix(demangled_name, "operator delete")))
397         {
398           free(demangled_name);
399           return true;
400         }
401       else if (parameters->options().dynamic_list_cpp_typeinfo()
402                && (strprefix(demangled_name, "typeinfo name for")
403                    || strprefix(demangled_name, "typeinfo for")))
404         {
405           free(demangled_name);
406           return true;
407         }
408       else
409         free(demangled_name);
410     }
411
412   // If exporting all symbols or building a shared library,
413   // and the symbol is defined in a regular object and is
414   // externally visible, we need to add it.
415   if ((parameters->options().export_dynamic() || parameters->options().shared())
416       && !this->is_from_dynobj()
417       && this->is_externally_visible())
418     return true;
419
420   return false;
421 }
422
423 // Return true if the final value of this symbol is known at link
424 // time.
425
426 bool
427 Symbol::final_value_is_known() const
428 {
429   // If we are not generating an executable, then no final values are
430   // known, since they will change at runtime.
431   if (parameters->options().output_is_position_independent()
432       || parameters->options().relocatable())
433     return false;
434
435   // If the symbol is not from an object file, and is not undefined,
436   // then it is defined, and known.
437   if (this->source_ != FROM_OBJECT)
438     {
439       if (this->source_ != IS_UNDEFINED)
440         return true;
441     }
442   else
443     {
444       // If the symbol is from a dynamic object, then the final value
445       // is not known.
446       if (this->object()->is_dynamic())
447         return false;
448
449       // If the symbol is not undefined (it is defined or common),
450       // then the final value is known.
451       if (!this->is_undefined())
452         return true;
453     }
454
455   // If the symbol is undefined, then whether the final value is known
456   // depends on whether we are doing a static link.  If we are doing a
457   // dynamic link, then the final value could be filled in at runtime.
458   // This could reasonably be the case for a weak undefined symbol.
459   return parameters->doing_static_link();
460 }
461
462 // Return the output section where this symbol is defined.
463
464 Output_section*
465 Symbol::output_section() const
466 {
467   switch (this->source_)
468     {
469     case FROM_OBJECT:
470       {
471         unsigned int shndx = this->u_.from_object.shndx;
472         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
473           {
474             gold_assert(!this->u_.from_object.object->is_dynamic());
475             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
476             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
477             return relobj->output_section(shndx);
478           }
479         return NULL;
480       }
481
482     case IN_OUTPUT_DATA:
483       return this->u_.in_output_data.output_data->output_section();
484
485     case IN_OUTPUT_SEGMENT:
486     case IS_CONSTANT:
487     case IS_UNDEFINED:
488       return NULL;
489
490     default:
491       gold_unreachable();
492     }
493 }
494
495 // Set the symbol's output section.  This is used for symbols defined
496 // in scripts.  This should only be called after the symbol table has
497 // been finalized.
498
499 void
500 Symbol::set_output_section(Output_section* os)
501 {
502   switch (this->source_)
503     {
504     case FROM_OBJECT:
505     case IN_OUTPUT_DATA:
506       gold_assert(this->output_section() == os);
507       break;
508     case IS_CONSTANT:
509       this->source_ = IN_OUTPUT_DATA;
510       this->u_.in_output_data.output_data = os;
511       this->u_.in_output_data.offset_is_from_end = false;
512       break;
513     case IN_OUTPUT_SEGMENT:
514     case IS_UNDEFINED:
515     default:
516       gold_unreachable();
517     }
518 }
519
520 // Class Symbol_table.
521
522 Symbol_table::Symbol_table(unsigned int count,
523                            const Version_script_info& version_script)
524   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
525     forwarders_(), commons_(), tls_commons_(), small_commons_(),
526     large_commons_(), forced_locals_(), warnings_(),
527     version_script_(version_script), gc_(NULL), icf_(NULL)
528 {
529   namepool_.reserve(count);
530 }
531
532 Symbol_table::~Symbol_table()
533 {
534 }
535
536 // The symbol table key equality function.  This is called with
537 // Stringpool keys.
538
539 inline bool
540 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
541                                           const Symbol_table_key& k2) const
542 {
543   return k1.first == k2.first && k1.second == k2.second;
544 }
545
546 bool
547 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
548 {
549   return (parameters->options().icf_enabled()
550           && this->icf_->is_section_folded(obj, shndx));
551 }
552
553 // For symbols that have been listed with -u option, add them to the
554 // work list to avoid gc'ing them.
555
556 void 
557 Symbol_table::gc_mark_undef_symbols(Layout* layout)
558 {
559   for (options::String_set::const_iterator p =
560          parameters->options().undefined_begin();
561        p != parameters->options().undefined_end();
562        ++p)
563     {
564       const char* name = p->c_str();
565       Symbol* sym = this->lookup(name);
566       gold_assert(sym != NULL);
567       if (sym->source() == Symbol::FROM_OBJECT 
568           && !sym->object()->is_dynamic())
569         {
570           Relobj* obj = static_cast<Relobj*>(sym->object());
571           bool is_ordinary;
572           unsigned int shndx = sym->shndx(&is_ordinary);
573           if (is_ordinary)
574             {
575               gold_assert(this->gc_ != NULL);
576               this->gc_->worklist().push(Section_id(obj, shndx));
577             }
578         }
579     }
580
581   for (Script_options::referenced_const_iterator p =
582          layout->script_options()->referenced_begin();
583        p != layout->script_options()->referenced_end();
584        ++p)
585     {
586       Symbol* sym = this->lookup(p->c_str());
587       gold_assert(sym != NULL);
588       if (sym->source() == Symbol::FROM_OBJECT
589           && !sym->object()->is_dynamic())
590         {
591           Relobj* obj = static_cast<Relobj*>(sym->object());
592           bool is_ordinary;
593           unsigned int shndx = sym->shndx(&is_ordinary);
594           if (is_ordinary)
595             {
596               gold_assert(this->gc_ != NULL);
597               this->gc_->worklist().push(Section_id(obj, shndx));
598             }
599         }
600     }
601 }
602
603 void
604 Symbol_table::gc_mark_symbol_for_shlib(Symbol* sym)
605 {
606   if (!sym->is_from_dynobj() 
607       && sym->is_externally_visible())
608     {
609       //Add the object and section to the work list.
610       Relobj* obj = static_cast<Relobj*>(sym->object());
611       bool is_ordinary;
612       unsigned int shndx = sym->shndx(&is_ordinary);
613       if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
614         {
615           gold_assert(this->gc_!= NULL);
616           this->gc_->worklist().push(Section_id(obj, shndx));
617         }
618     }
619 }
620
621 // When doing garbage collection, keep symbols that have been seen in
622 // dynamic objects.
623 inline void 
624 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
625 {
626   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
627       && !sym->object()->is_dynamic())
628     {
629       Relobj* obj = static_cast<Relobj*>(sym->object()); 
630       bool is_ordinary;
631       unsigned int shndx = sym->shndx(&is_ordinary);
632       if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
633         {
634           gold_assert(this->gc_ != NULL);
635           this->gc_->worklist().push(Section_id(obj, shndx));
636         }
637     }
638 }
639
640 // Make TO a symbol which forwards to FROM.
641
642 void
643 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
644 {
645   gold_assert(from != to);
646   gold_assert(!from->is_forwarder() && !to->is_forwarder());
647   this->forwarders_[from] = to;
648   from->set_forwarder();
649 }
650
651 // Resolve the forwards from FROM, returning the real symbol.
652
653 Symbol*
654 Symbol_table::resolve_forwards(const Symbol* from) const
655 {
656   gold_assert(from->is_forwarder());
657   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
658     this->forwarders_.find(from);
659   gold_assert(p != this->forwarders_.end());
660   return p->second;
661 }
662
663 // Look up a symbol by name.
664
665 Symbol*
666 Symbol_table::lookup(const char* name, const char* version) const
667 {
668   Stringpool::Key name_key;
669   name = this->namepool_.find(name, &name_key);
670   if (name == NULL)
671     return NULL;
672
673   Stringpool::Key version_key = 0;
674   if (version != NULL)
675     {
676       version = this->namepool_.find(version, &version_key);
677       if (version == NULL)
678         return NULL;
679     }
680
681   Symbol_table_key key(name_key, version_key);
682   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
683   if (p == this->table_.end())
684     return NULL;
685   return p->second;
686 }
687
688 // Resolve a Symbol with another Symbol.  This is only used in the
689 // unusual case where there are references to both an unversioned
690 // symbol and a symbol with a version, and we then discover that that
691 // version is the default version.  Because this is unusual, we do
692 // this the slow way, by converting back to an ELF symbol.
693
694 template<int size, bool big_endian>
695 void
696 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
697 {
698   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
699   elfcpp::Sym_write<size, big_endian> esym(buf);
700   // We don't bother to set the st_name or the st_shndx field.
701   esym.put_st_value(from->value());
702   esym.put_st_size(from->symsize());
703   esym.put_st_info(from->binding(), from->type());
704   esym.put_st_other(from->visibility(), from->nonvis());
705   bool is_ordinary;
706   unsigned int shndx = from->shndx(&is_ordinary);
707   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
708                 from->version());
709   if (from->in_reg())
710     to->set_in_reg();
711   if (from->in_dyn())
712     to->set_in_dyn();
713   if (parameters->options().gc_sections())
714     this->gc_mark_dyn_syms(to);
715 }
716
717 // Record that a symbol is forced to be local by a version script or
718 // by visibility.
719
720 void
721 Symbol_table::force_local(Symbol* sym)
722 {
723   if (!sym->is_defined() && !sym->is_common())
724     return;
725   if (sym->is_forced_local())
726     {
727       // We already got this one.
728       return;
729     }
730   sym->set_is_forced_local();
731   this->forced_locals_.push_back(sym);
732 }
733
734 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
735 // is only called for undefined symbols, when at least one --wrap
736 // option was used.
737
738 const char*
739 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
740 {
741   // For some targets, we need to ignore a specific character when
742   // wrapping, and add it back later.
743   char prefix = '\0';
744   if (name[0] == parameters->target().wrap_char())
745     {
746       prefix = name[0];
747       ++name;
748     }
749
750   if (parameters->options().is_wrap(name))
751     {
752       // Turn NAME into __wrap_NAME.
753       std::string s;
754       if (prefix != '\0')
755         s += prefix;
756       s += "__wrap_";
757       s += name;
758
759       // This will give us both the old and new name in NAMEPOOL_, but
760       // that is OK.  Only the versions we need will wind up in the
761       // real string table in the output file.
762       return this->namepool_.add(s.c_str(), true, name_key);
763     }
764
765   const char* const real_prefix = "__real_";
766   const size_t real_prefix_length = strlen(real_prefix);
767   if (strncmp(name, real_prefix, real_prefix_length) == 0
768       && parameters->options().is_wrap(name + real_prefix_length))
769     {
770       // Turn __real_NAME into NAME.
771       std::string s;
772       if (prefix != '\0')
773         s += prefix;
774       s += name + real_prefix_length;
775       return this->namepool_.add(s.c_str(), true, name_key);
776     }
777
778   return name;
779 }
780
781 // This is called when we see a symbol NAME/VERSION, and the symbol
782 // already exists in the symbol table, and VERSION is marked as being
783 // the default version.  SYM is the NAME/VERSION symbol we just added.
784 // DEFAULT_IS_NEW is true if this is the first time we have seen the
785 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
786
787 template<int size, bool big_endian>
788 void
789 Symbol_table::define_default_version(Sized_symbol<size>* sym,
790                                      bool default_is_new,
791                                      Symbol_table_type::iterator pdef)
792 {
793   if (default_is_new)
794     {
795       // This is the first time we have seen NAME/NULL.  Make
796       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
797       // version.
798       pdef->second = sym;
799       sym->set_is_default();
800     }
801   else if (pdef->second == sym)
802     {
803       // NAME/NULL already points to NAME/VERSION.  Don't mark the
804       // symbol as the default if it is not already the default.
805     }
806   else
807     {
808       // This is the unfortunate case where we already have entries
809       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
810       // NAME/VERSION where VERSION is the default version.  We have
811       // already resolved this new symbol with the existing
812       // NAME/VERSION symbol.
813
814       // It's possible that NAME/NULL and NAME/VERSION are both
815       // defined in regular objects.  This can only happen if one
816       // object file defines foo and another defines foo@@ver.  This
817       // is somewhat obscure, but we call it a multiple definition
818       // error.
819
820       // It's possible that NAME/NULL actually has a version, in which
821       // case it won't be the same as VERSION.  This happens with
822       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
823       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
824       // then see an unadorned t2_2 in an object file and give it
825       // version VER1 from the version script.  This looks like a
826       // default definition for VER1, so it looks like we should merge
827       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
828       // not obvious that this is an error, either.  So we just punt.
829
830       // If one of the symbols has non-default visibility, and the
831       // other is defined in a shared object, then they are different
832       // symbols.
833
834       // Otherwise, we just resolve the symbols as though they were
835       // the same.
836
837       if (pdef->second->version() != NULL)
838         gold_assert(pdef->second->version() != sym->version());
839       else if (sym->visibility() != elfcpp::STV_DEFAULT
840                && pdef->second->is_from_dynobj())
841         ;
842       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
843                && sym->is_from_dynobj())
844         ;
845       else
846         {
847           const Sized_symbol<size>* symdef;
848           symdef = this->get_sized_symbol<size>(pdef->second);
849           Symbol_table::resolve<size, big_endian>(sym, symdef);
850           this->make_forwarder(pdef->second, sym);
851           pdef->second = sym;
852           sym->set_is_default();
853         }
854     }
855 }
856
857 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
858 // name and VERSION is the version; both are canonicalized.  DEF is
859 // whether this is the default version.  ST_SHNDX is the symbol's
860 // section index; IS_ORDINARY is whether this is a normal section
861 // rather than a special code.
862
863 // If IS_DEFAULT_VERSION is true, then this is the definition of a
864 // default version of a symbol.  That means that any lookup of
865 // NAME/NULL and any lookup of NAME/VERSION should always return the
866 // same symbol.  This is obvious for references, but in particular we
867 // want to do this for definitions: overriding NAME/NULL should also
868 // override NAME/VERSION.  If we don't do that, it would be very hard
869 // to override functions in a shared library which uses versioning.
870
871 // We implement this by simply making both entries in the hash table
872 // point to the same Symbol structure.  That is easy enough if this is
873 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
874 // that we have seen both already, in which case they will both have
875 // independent entries in the symbol table.  We can't simply change
876 // the symbol table entry, because we have pointers to the entries
877 // attached to the object files.  So we mark the entry attached to the
878 // object file as a forwarder, and record it in the forwarders_ map.
879 // Note that entries in the hash table will never be marked as
880 // forwarders.
881 //
882 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
883 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
884 // for a special section code.  ST_SHNDX may be modified if the symbol
885 // is defined in a section being discarded.
886
887 template<int size, bool big_endian>
888 Sized_symbol<size>*
889 Symbol_table::add_from_object(Object* object,
890                               const char* name,
891                               Stringpool::Key name_key,
892                               const char* version,
893                               Stringpool::Key version_key,
894                               bool is_default_version,
895                               const elfcpp::Sym<size, big_endian>& sym,
896                               unsigned int st_shndx,
897                               bool is_ordinary,
898                               unsigned int orig_st_shndx)
899 {
900   // Print a message if this symbol is being traced.
901   if (parameters->options().is_trace_symbol(name))
902     {
903       if (orig_st_shndx == elfcpp::SHN_UNDEF)
904         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
905       else
906         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
907     }
908
909   // For an undefined symbol, we may need to adjust the name using
910   // --wrap.
911   if (orig_st_shndx == elfcpp::SHN_UNDEF
912       && parameters->options().any_wrap())
913     {
914       const char* wrap_name = this->wrap_symbol(name, &name_key);
915       if (wrap_name != name)
916         {
917           // If we see a reference to malloc with version GLIBC_2.0,
918           // and we turn it into a reference to __wrap_malloc, then we
919           // discard the version number.  Otherwise the user would be
920           // required to specify the correct version for
921           // __wrap_malloc.
922           version = NULL;
923           version_key = 0;
924           name = wrap_name;
925         }
926     }
927
928   Symbol* const snull = NULL;
929   std::pair<typename Symbol_table_type::iterator, bool> ins =
930     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
931                                        snull));
932
933   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
934     std::make_pair(this->table_.end(), false);
935   if (is_default_version)
936     {
937       const Stringpool::Key vnull_key = 0;
938       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
939                                                                      vnull_key),
940                                                       snull));
941     }
942
943   // ins.first: an iterator, which is a pointer to a pair.
944   // ins.first->first: the key (a pair of name and version).
945   // ins.first->second: the value (Symbol*).
946   // ins.second: true if new entry was inserted, false if not.
947
948   Sized_symbol<size>* ret;
949   bool was_undefined;
950   bool was_common;
951   if (!ins.second)
952     {
953       // We already have an entry for NAME/VERSION.
954       ret = this->get_sized_symbol<size>(ins.first->second);
955       gold_assert(ret != NULL);
956
957       was_undefined = ret->is_undefined();
958       was_common = ret->is_common();
959
960       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
961                     version);
962       if (parameters->options().gc_sections())
963         this->gc_mark_dyn_syms(ret);
964
965       if (is_default_version)
966         this->define_default_version<size, big_endian>(ret, insdefault.second,
967                                                        insdefault.first);
968     }
969   else
970     {
971       // This is the first time we have seen NAME/VERSION.
972       gold_assert(ins.first->second == NULL);
973
974       if (is_default_version && !insdefault.second)
975         {
976           // We already have an entry for NAME/NULL.  If we override
977           // it, then change it to NAME/VERSION.
978           ret = this->get_sized_symbol<size>(insdefault.first->second);
979
980           was_undefined = ret->is_undefined();
981           was_common = ret->is_common();
982
983           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
984                         version);
985           if (parameters->options().gc_sections())
986             this->gc_mark_dyn_syms(ret);
987           ins.first->second = ret;
988         }
989       else
990         {
991           was_undefined = false;
992           was_common = false;
993
994           Sized_target<size, big_endian>* target =
995             parameters->sized_target<size, big_endian>();
996           if (!target->has_make_symbol())
997             ret = new Sized_symbol<size>();
998           else
999             {
1000               ret = target->make_symbol();
1001               if (ret == NULL)
1002                 {
1003                   // This means that we don't want a symbol table
1004                   // entry after all.
1005                   if (!is_default_version)
1006                     this->table_.erase(ins.first);
1007                   else
1008                     {
1009                       this->table_.erase(insdefault.first);
1010                       // Inserting INSDEFAULT invalidated INS.
1011                       this->table_.erase(std::make_pair(name_key,
1012                                                         version_key));
1013                     }
1014                   return NULL;
1015                 }
1016             }
1017
1018           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1019
1020           ins.first->second = ret;
1021           if (is_default_version)
1022             {
1023               // This is the first time we have seen NAME/NULL.  Point
1024               // it at the new entry for NAME/VERSION.
1025               gold_assert(insdefault.second);
1026               insdefault.first->second = ret;
1027             }
1028         }
1029
1030       if (is_default_version)
1031         ret->set_is_default();
1032     }
1033
1034   // Record every time we see a new undefined symbol, to speed up
1035   // archive groups.
1036   if (!was_undefined && ret->is_undefined())
1037     {
1038       ++this->saw_undefined_;
1039       if (parameters->options().has_plugins())
1040         parameters->options().plugins()->new_undefined_symbol(ret);
1041     }
1042
1043   // Keep track of common symbols, to speed up common symbol
1044   // allocation.
1045   if (!was_common && ret->is_common())
1046     {
1047       if (ret->type() == elfcpp::STT_TLS)
1048         this->tls_commons_.push_back(ret);
1049       else if (!is_ordinary
1050                && st_shndx == parameters->target().small_common_shndx())
1051         this->small_commons_.push_back(ret);
1052       else if (!is_ordinary
1053                && st_shndx == parameters->target().large_common_shndx())
1054         this->large_commons_.push_back(ret);
1055       else
1056         this->commons_.push_back(ret);
1057     }
1058
1059   // If we're not doing a relocatable link, then any symbol with
1060   // hidden or internal visibility is local.
1061   if ((ret->visibility() == elfcpp::STV_HIDDEN
1062        || ret->visibility() == elfcpp::STV_INTERNAL)
1063       && (ret->binding() == elfcpp::STB_GLOBAL
1064           || ret->binding() == elfcpp::STB_GNU_UNIQUE
1065           || ret->binding() == elfcpp::STB_WEAK)
1066       && !parameters->options().relocatable())
1067     this->force_local(ret);
1068
1069   return ret;
1070 }
1071
1072 // Add all the symbols in a relocatable object to the hash table.
1073
1074 template<int size, bool big_endian>
1075 void
1076 Symbol_table::add_from_relobj(
1077     Sized_relobj_file<size, big_endian>* relobj,
1078     const unsigned char* syms,
1079     size_t count,
1080     size_t symndx_offset,
1081     const char* sym_names,
1082     size_t sym_name_size,
1083     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1084     size_t* defined)
1085 {
1086   *defined = 0;
1087
1088   gold_assert(size == parameters->target().get_size());
1089
1090   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1091
1092   const bool just_symbols = relobj->just_symbols();
1093
1094   const unsigned char* p = syms;
1095   for (size_t i = 0; i < count; ++i, p += sym_size)
1096     {
1097       (*sympointers)[i] = NULL;
1098
1099       elfcpp::Sym<size, big_endian> sym(p);
1100
1101       unsigned int st_name = sym.get_st_name();
1102       if (st_name >= sym_name_size)
1103         {
1104           relobj->error(_("bad global symbol name offset %u at %zu"),
1105                         st_name, i);
1106           continue;
1107         }
1108
1109       const char* name = sym_names + st_name;
1110
1111       bool is_ordinary;
1112       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1113                                                        sym.get_st_shndx(),
1114                                                        &is_ordinary);
1115       unsigned int orig_st_shndx = st_shndx;
1116       if (!is_ordinary)
1117         orig_st_shndx = elfcpp::SHN_UNDEF;
1118
1119       if (st_shndx != elfcpp::SHN_UNDEF)
1120         ++*defined;
1121
1122       // A symbol defined in a section which we are not including must
1123       // be treated as an undefined symbol.
1124       bool is_defined_in_discarded_section = false;
1125       if (st_shndx != elfcpp::SHN_UNDEF
1126           && is_ordinary
1127           && !relobj->is_section_included(st_shndx)
1128           && !this->is_section_folded(relobj, st_shndx))
1129         {
1130           st_shndx = elfcpp::SHN_UNDEF;
1131           is_defined_in_discarded_section = true;
1132         }
1133
1134       // In an object file, an '@' in the name separates the symbol
1135       // name from the version name.  If there are two '@' characters,
1136       // this is the default version.
1137       const char* ver = strchr(name, '@');
1138       Stringpool::Key ver_key = 0;
1139       int namelen = 0;
1140       // IS_DEFAULT_VERSION: is the version default?
1141       // IS_FORCED_LOCAL: is the symbol forced local?
1142       bool is_default_version = false;
1143       bool is_forced_local = false;
1144
1145       if (ver != NULL)
1146         {
1147           // The symbol name is of the form foo@VERSION or foo@@VERSION
1148           namelen = ver - name;
1149           ++ver;
1150           if (*ver == '@')
1151             {
1152               is_default_version = true;
1153               ++ver;
1154             }
1155           ver = this->namepool_.add(ver, true, &ver_key);
1156         }
1157       // We don't want to assign a version to an undefined symbol,
1158       // even if it is listed in the version script.  FIXME: What
1159       // about a common symbol?
1160       else
1161         {
1162           namelen = strlen(name);
1163           if (!this->version_script_.empty()
1164               && st_shndx != elfcpp::SHN_UNDEF)
1165             {
1166               // The symbol name did not have a version, but the
1167               // version script may assign a version anyway.
1168               std::string version;
1169               bool is_global;
1170               if (this->version_script_.get_symbol_version(name, &version,
1171                                                            &is_global))
1172                 {
1173                   if (!is_global)
1174                     is_forced_local = true;
1175                   else if (!version.empty())
1176                     {
1177                       ver = this->namepool_.add_with_length(version.c_str(),
1178                                                             version.length(),
1179                                                             true,
1180                                                             &ver_key);
1181                       is_default_version = true;
1182                     }
1183                 }
1184             }
1185         }
1186
1187       elfcpp::Sym<size, big_endian>* psym = &sym;
1188       unsigned char symbuf[sym_size];
1189       elfcpp::Sym<size, big_endian> sym2(symbuf);
1190       if (just_symbols)
1191         {
1192           memcpy(symbuf, p, sym_size);
1193           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1194           if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
1195             {
1196               // Symbol values in object files are section relative.
1197               // This is normally what we want, but since here we are
1198               // converting the symbol to absolute we need to add the
1199               // section address.  The section address in an object
1200               // file is normally zero, but people can use a linker
1201               // script to change it.
1202               sw.put_st_value(sym.get_st_value()
1203                               + relobj->section_address(orig_st_shndx));
1204             }
1205           st_shndx = elfcpp::SHN_ABS;
1206           is_ordinary = false;
1207           psym = &sym2;
1208         }
1209
1210       // Fix up visibility if object has no-export set.
1211       if (relobj->no_export()
1212           && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1213         {
1214           // We may have copied symbol already above.
1215           if (psym != &sym2)
1216             {
1217               memcpy(symbuf, p, sym_size);
1218               psym = &sym2;
1219             }
1220
1221           elfcpp::STV visibility = sym2.get_st_visibility();
1222           if (visibility == elfcpp::STV_DEFAULT
1223               || visibility == elfcpp::STV_PROTECTED)
1224             {
1225               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1226               unsigned char nonvis = sym2.get_st_nonvis();
1227               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1228             }
1229         }
1230
1231       Stringpool::Key name_key;
1232       name = this->namepool_.add_with_length(name, namelen, true,
1233                                              &name_key);
1234
1235       Sized_symbol<size>* res;
1236       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1237                                   is_default_version, *psym, st_shndx,
1238                                   is_ordinary, orig_st_shndx);
1239       
1240       // If building a shared library using garbage collection, do not 
1241       // treat externally visible symbols as garbage.
1242       if (parameters->options().gc_sections() 
1243           && parameters->options().shared())
1244         this->gc_mark_symbol_for_shlib(res);
1245
1246       if (is_forced_local)
1247         this->force_local(res);
1248
1249       if (is_defined_in_discarded_section)
1250         res->set_is_defined_in_discarded_section();
1251
1252       (*sympointers)[i] = res;
1253     }
1254 }
1255
1256 // Add a symbol from a plugin-claimed file.
1257
1258 template<int size, bool big_endian>
1259 Symbol*
1260 Symbol_table::add_from_pluginobj(
1261     Sized_pluginobj<size, big_endian>* obj,
1262     const char* name,
1263     const char* ver,
1264     elfcpp::Sym<size, big_endian>* sym)
1265 {
1266   unsigned int st_shndx = sym->get_st_shndx();
1267   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1268
1269   Stringpool::Key ver_key = 0;
1270   bool is_default_version = false;
1271   bool is_forced_local = false;
1272
1273   if (ver != NULL)
1274     {
1275       ver = this->namepool_.add(ver, true, &ver_key);
1276     }
1277   // We don't want to assign a version to an undefined symbol,
1278   // even if it is listed in the version script.  FIXME: What
1279   // about a common symbol?
1280   else
1281     {
1282       if (!this->version_script_.empty()
1283           && st_shndx != elfcpp::SHN_UNDEF)
1284         {
1285           // The symbol name did not have a version, but the
1286           // version script may assign a version anyway.
1287           std::string version;
1288           bool is_global;
1289           if (this->version_script_.get_symbol_version(name, &version,
1290                                                        &is_global))
1291             {
1292               if (!is_global)
1293                 is_forced_local = true;
1294               else if (!version.empty())
1295                 {
1296                   ver = this->namepool_.add_with_length(version.c_str(),
1297                                                         version.length(),
1298                                                         true,
1299                                                         &ver_key);
1300                   is_default_version = true;
1301                 }
1302             }
1303         }
1304     }
1305
1306   Stringpool::Key name_key;
1307   name = this->namepool_.add(name, true, &name_key);
1308
1309   Sized_symbol<size>* res;
1310   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1311                               is_default_version, *sym, st_shndx,
1312                               is_ordinary, st_shndx);
1313
1314   if (is_forced_local)
1315     this->force_local(res);
1316
1317   return res;
1318 }
1319
1320 // Add all the symbols in a dynamic object to the hash table.
1321
1322 template<int size, bool big_endian>
1323 void
1324 Symbol_table::add_from_dynobj(
1325     Sized_dynobj<size, big_endian>* dynobj,
1326     const unsigned char* syms,
1327     size_t count,
1328     const char* sym_names,
1329     size_t sym_name_size,
1330     const unsigned char* versym,
1331     size_t versym_size,
1332     const std::vector<const char*>* version_map,
1333     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1334     size_t* defined)
1335 {
1336   *defined = 0;
1337
1338   gold_assert(size == parameters->target().get_size());
1339
1340   if (dynobj->just_symbols())
1341     {
1342       gold_error(_("--just-symbols does not make sense with a shared object"));
1343       return;
1344     }
1345
1346   if (versym != NULL && versym_size / 2 < count)
1347     {
1348       dynobj->error(_("too few symbol versions"));
1349       return;
1350     }
1351
1352   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1353
1354   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1355   // weak aliases.  This is necessary because if the dynamic object
1356   // provides the same variable under two names, one of which is a
1357   // weak definition, and the regular object refers to the weak
1358   // definition, we have to put both the weak definition and the
1359   // strong definition into the dynamic symbol table.  Given a weak
1360   // definition, the only way that we can find the corresponding
1361   // strong definition, if any, is to search the symbol table.
1362   std::vector<Sized_symbol<size>*> object_symbols;
1363
1364   const unsigned char* p = syms;
1365   const unsigned char* vs = versym;
1366   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1367     {
1368       elfcpp::Sym<size, big_endian> sym(p);
1369
1370       if (sympointers != NULL)
1371         (*sympointers)[i] = NULL;
1372
1373       // Ignore symbols with local binding or that have
1374       // internal or hidden visibility.
1375       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1376           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1377           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1378         continue;
1379
1380       // A protected symbol in a shared library must be treated as a
1381       // normal symbol when viewed from outside the shared library.
1382       // Implement this by overriding the visibility here.
1383       elfcpp::Sym<size, big_endian>* psym = &sym;
1384       unsigned char symbuf[sym_size];
1385       elfcpp::Sym<size, big_endian> sym2(symbuf);
1386       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1387         {
1388           memcpy(symbuf, p, sym_size);
1389           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1390           sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1391           psym = &sym2;
1392         }
1393
1394       unsigned int st_name = psym->get_st_name();
1395       if (st_name >= sym_name_size)
1396         {
1397           dynobj->error(_("bad symbol name offset %u at %zu"),
1398                         st_name, i);
1399           continue;
1400         }
1401
1402       const char* name = sym_names + st_name;
1403
1404       bool is_ordinary;
1405       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1406                                                        &is_ordinary);
1407
1408       if (st_shndx != elfcpp::SHN_UNDEF)
1409         ++*defined;
1410
1411       Sized_symbol<size>* res;
1412
1413       if (versym == NULL)
1414         {
1415           Stringpool::Key name_key;
1416           name = this->namepool_.add(name, true, &name_key);
1417           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1418                                       false, *psym, st_shndx, is_ordinary,
1419                                       st_shndx);
1420         }
1421       else
1422         {
1423           // Read the version information.
1424
1425           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1426
1427           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1428           v &= elfcpp::VERSYM_VERSION;
1429
1430           // The Sun documentation says that V can be VER_NDX_LOCAL,
1431           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1432           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1433           // The old GNU linker will happily generate VER_NDX_LOCAL
1434           // for an undefined symbol.  I don't know what the Sun
1435           // linker will generate.
1436
1437           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1438               && st_shndx != elfcpp::SHN_UNDEF)
1439             {
1440               // This symbol should not be visible outside the object.
1441               continue;
1442             }
1443
1444           // At this point we are definitely going to add this symbol.
1445           Stringpool::Key name_key;
1446           name = this->namepool_.add(name, true, &name_key);
1447
1448           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1449               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1450             {
1451               // This symbol does not have a version.
1452               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1453                                           false, *psym, st_shndx, is_ordinary,
1454                                           st_shndx);
1455             }
1456           else
1457             {
1458               if (v >= version_map->size())
1459                 {
1460                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1461                                 i, v);
1462                   continue;
1463                 }
1464
1465               const char* version = (*version_map)[v];
1466               if (version == NULL)
1467                 {
1468                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1469                                 i, v);
1470                   continue;
1471                 }
1472
1473               Stringpool::Key version_key;
1474               version = this->namepool_.add(version, true, &version_key);
1475
1476               // If this is an absolute symbol, and the version name
1477               // and symbol name are the same, then this is the
1478               // version definition symbol.  These symbols exist to
1479               // support using -u to pull in particular versions.  We
1480               // do not want to record a version for them.
1481               if (st_shndx == elfcpp::SHN_ABS
1482                   && !is_ordinary
1483                   && name_key == version_key)
1484                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1485                                             false, *psym, st_shndx, is_ordinary,
1486                                             st_shndx);
1487               else
1488                 {
1489                   const bool is_default_version =
1490                     !hidden && st_shndx != elfcpp::SHN_UNDEF;
1491                   res = this->add_from_object(dynobj, name, name_key, version,
1492                                               version_key, is_default_version,
1493                                               *psym, st_shndx,
1494                                               is_ordinary, st_shndx);
1495                 }
1496             }
1497         }
1498
1499       // Note that it is possible that RES was overridden by an
1500       // earlier object, in which case it can't be aliased here.
1501       if (st_shndx != elfcpp::SHN_UNDEF
1502           && is_ordinary
1503           && psym->get_st_type() == elfcpp::STT_OBJECT
1504           && res->source() == Symbol::FROM_OBJECT
1505           && res->object() == dynobj)
1506         object_symbols.push_back(res);
1507
1508       if (sympointers != NULL)
1509         (*sympointers)[i] = res;
1510     }
1511
1512   this->record_weak_aliases(&object_symbols);
1513 }
1514
1515 // Add a symbol from a incremental object file.
1516
1517 template<int size, bool big_endian>
1518 Sized_symbol<size>*
1519 Symbol_table::add_from_incrobj(
1520     Object* obj,
1521     const char* name,
1522     const char* ver,
1523     elfcpp::Sym<size, big_endian>* sym)
1524 {
1525   unsigned int st_shndx = sym->get_st_shndx();
1526   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1527
1528   Stringpool::Key ver_key = 0;
1529   bool is_default_version = false;
1530   bool is_forced_local = false;
1531
1532   Stringpool::Key name_key;
1533   name = this->namepool_.add(name, true, &name_key);
1534
1535   Sized_symbol<size>* res;
1536   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1537                               is_default_version, *sym, st_shndx,
1538                               is_ordinary, st_shndx);
1539
1540   if (is_forced_local)
1541     this->force_local(res);
1542
1543   return res;
1544 }
1545
1546 // This is used to sort weak aliases.  We sort them first by section
1547 // index, then by offset, then by weak ahead of strong.
1548
1549 template<int size>
1550 class Weak_alias_sorter
1551 {
1552  public:
1553   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1554 };
1555
1556 template<int size>
1557 bool
1558 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1559                                     const Sized_symbol<size>* s2) const
1560 {
1561   bool is_ordinary;
1562   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1563   gold_assert(is_ordinary);
1564   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1565   gold_assert(is_ordinary);
1566   if (s1_shndx != s2_shndx)
1567     return s1_shndx < s2_shndx;
1568
1569   if (s1->value() != s2->value())
1570     return s1->value() < s2->value();
1571   if (s1->binding() != s2->binding())
1572     {
1573       if (s1->binding() == elfcpp::STB_WEAK)
1574         return true;
1575       if (s2->binding() == elfcpp::STB_WEAK)
1576         return false;
1577     }
1578   return std::string(s1->name()) < std::string(s2->name());
1579 }
1580
1581 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1582 // for any weak aliases, and record them so that if we add the weak
1583 // alias to the dynamic symbol table, we also add the corresponding
1584 // strong symbol.
1585
1586 template<int size>
1587 void
1588 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1589 {
1590   // Sort the vector by section index, then by offset, then by weak
1591   // ahead of strong.
1592   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1593
1594   // Walk through the vector.  For each weak definition, record
1595   // aliases.
1596   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1597          symbols->begin();
1598        p != symbols->end();
1599        ++p)
1600     {
1601       if ((*p)->binding() != elfcpp::STB_WEAK)
1602         continue;
1603
1604       // Build a circular list of weak aliases.  Each symbol points to
1605       // the next one in the circular list.
1606
1607       Sized_symbol<size>* from_sym = *p;
1608       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1609       for (q = p + 1; q != symbols->end(); ++q)
1610         {
1611           bool dummy;
1612           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1613               || (*q)->value() != from_sym->value())
1614             break;
1615
1616           this->weak_aliases_[from_sym] = *q;
1617           from_sym->set_has_alias();
1618           from_sym = *q;
1619         }
1620
1621       if (from_sym != *p)
1622         {
1623           this->weak_aliases_[from_sym] = *p;
1624           from_sym->set_has_alias();
1625         }
1626
1627       p = q - 1;
1628     }
1629 }
1630
1631 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1632 // true, then only create the symbol if there is a reference to it.
1633 // If this does not return NULL, it sets *POLDSYM to the existing
1634 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1635 // resolve the newly created symbol to the old one.  This
1636 // canonicalizes *PNAME and *PVERSION.
1637
1638 template<int size, bool big_endian>
1639 Sized_symbol<size>*
1640 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1641                                     bool only_if_ref,
1642                                     Sized_symbol<size>** poldsym,
1643                                     bool* resolve_oldsym)
1644 {
1645   *resolve_oldsym = false;
1646
1647   // If the caller didn't give us a version, see if we get one from
1648   // the version script.
1649   std::string v;
1650   bool is_default_version = false;
1651   if (*pversion == NULL)
1652     {
1653       bool is_global;
1654       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1655         {
1656           if (is_global && !v.empty())
1657             {
1658               *pversion = v.c_str();
1659               // If we get the version from a version script, then we
1660               // are also the default version.
1661               is_default_version = true;
1662             }
1663         }
1664     }
1665
1666   Symbol* oldsym;
1667   Sized_symbol<size>* sym;
1668
1669   bool add_to_table = false;
1670   typename Symbol_table_type::iterator add_loc = this->table_.end();
1671   bool add_def_to_table = false;
1672   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1673
1674   if (only_if_ref)
1675     {
1676       oldsym = this->lookup(*pname, *pversion);
1677       if (oldsym == NULL && is_default_version)
1678         oldsym = this->lookup(*pname, NULL);
1679       if (oldsym == NULL || !oldsym->is_undefined())
1680         return NULL;
1681
1682       *pname = oldsym->name();
1683       if (!is_default_version)
1684         *pversion = oldsym->version();
1685     }
1686   else
1687     {
1688       // Canonicalize NAME and VERSION.
1689       Stringpool::Key name_key;
1690       *pname = this->namepool_.add(*pname, true, &name_key);
1691
1692       Stringpool::Key version_key = 0;
1693       if (*pversion != NULL)
1694         *pversion = this->namepool_.add(*pversion, true, &version_key);
1695
1696       Symbol* const snull = NULL;
1697       std::pair<typename Symbol_table_type::iterator, bool> ins =
1698         this->table_.insert(std::make_pair(std::make_pair(name_key,
1699                                                           version_key),
1700                                            snull));
1701
1702       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1703         std::make_pair(this->table_.end(), false);
1704       if (is_default_version)
1705         {
1706           const Stringpool::Key vnull = 0;
1707           insdefault =
1708             this->table_.insert(std::make_pair(std::make_pair(name_key,
1709                                                               vnull),
1710                                                snull));
1711         }
1712
1713       if (!ins.second)
1714         {
1715           // We already have a symbol table entry for NAME/VERSION.
1716           oldsym = ins.first->second;
1717           gold_assert(oldsym != NULL);
1718
1719           if (is_default_version)
1720             {
1721               Sized_symbol<size>* soldsym =
1722                 this->get_sized_symbol<size>(oldsym);
1723               this->define_default_version<size, big_endian>(soldsym,
1724                                                              insdefault.second,
1725                                                              insdefault.first);
1726             }
1727         }
1728       else
1729         {
1730           // We haven't seen this symbol before.
1731           gold_assert(ins.first->second == NULL);
1732
1733           add_to_table = true;
1734           add_loc = ins.first;
1735
1736           if (is_default_version && !insdefault.second)
1737             {
1738               // We are adding NAME/VERSION, and it is the default
1739               // version.  We already have an entry for NAME/NULL.
1740               oldsym = insdefault.first->second;
1741               *resolve_oldsym = true;
1742             }
1743           else
1744             {
1745               oldsym = NULL;
1746
1747               if (is_default_version)
1748                 {
1749                   add_def_to_table = true;
1750                   add_def_loc = insdefault.first;
1751                 }
1752             }
1753         }
1754     }
1755
1756   const Target& target = parameters->target();
1757   if (!target.has_make_symbol())
1758     sym = new Sized_symbol<size>();
1759   else
1760     {
1761       Sized_target<size, big_endian>* sized_target =
1762         parameters->sized_target<size, big_endian>();
1763       sym = sized_target->make_symbol();
1764       if (sym == NULL)
1765         return NULL;
1766     }
1767
1768   if (add_to_table)
1769     add_loc->second = sym;
1770   else
1771     gold_assert(oldsym != NULL);
1772
1773   if (add_def_to_table)
1774     add_def_loc->second = sym;
1775
1776   *poldsym = this->get_sized_symbol<size>(oldsym);
1777
1778   return sym;
1779 }
1780
1781 // Define a symbol based on an Output_data.
1782
1783 Symbol*
1784 Symbol_table::define_in_output_data(const char* name,
1785                                     const char* version,
1786                                     Defined defined,
1787                                     Output_data* od,
1788                                     uint64_t value,
1789                                     uint64_t symsize,
1790                                     elfcpp::STT type,
1791                                     elfcpp::STB binding,
1792                                     elfcpp::STV visibility,
1793                                     unsigned char nonvis,
1794                                     bool offset_is_from_end,
1795                                     bool only_if_ref)
1796 {
1797   if (parameters->target().get_size() == 32)
1798     {
1799 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1800       return this->do_define_in_output_data<32>(name, version, defined, od,
1801                                                 value, symsize, type, binding,
1802                                                 visibility, nonvis,
1803                                                 offset_is_from_end,
1804                                                 only_if_ref);
1805 #else
1806       gold_unreachable();
1807 #endif
1808     }
1809   else if (parameters->target().get_size() == 64)
1810     {
1811 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1812       return this->do_define_in_output_data<64>(name, version, defined, od,
1813                                                 value, symsize, type, binding,
1814                                                 visibility, nonvis,
1815                                                 offset_is_from_end,
1816                                                 only_if_ref);
1817 #else
1818       gold_unreachable();
1819 #endif
1820     }
1821   else
1822     gold_unreachable();
1823 }
1824
1825 // Define a symbol in an Output_data, sized version.
1826
1827 template<int size>
1828 Sized_symbol<size>*
1829 Symbol_table::do_define_in_output_data(
1830     const char* name,
1831     const char* version,
1832     Defined defined,
1833     Output_data* od,
1834     typename elfcpp::Elf_types<size>::Elf_Addr value,
1835     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1836     elfcpp::STT type,
1837     elfcpp::STB binding,
1838     elfcpp::STV visibility,
1839     unsigned char nonvis,
1840     bool offset_is_from_end,
1841     bool only_if_ref)
1842 {
1843   Sized_symbol<size>* sym;
1844   Sized_symbol<size>* oldsym;
1845   bool resolve_oldsym;
1846
1847   if (parameters->target().is_big_endian())
1848     {
1849 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1850       sym = this->define_special_symbol<size, true>(&name, &version,
1851                                                     only_if_ref, &oldsym,
1852                                                     &resolve_oldsym);
1853 #else
1854       gold_unreachable();
1855 #endif
1856     }
1857   else
1858     {
1859 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1860       sym = this->define_special_symbol<size, false>(&name, &version,
1861                                                      only_if_ref, &oldsym,
1862                                                      &resolve_oldsym);
1863 #else
1864       gold_unreachable();
1865 #endif
1866     }
1867
1868   if (sym == NULL)
1869     return NULL;
1870
1871   sym->init_output_data(name, version, od, value, symsize, type, binding,
1872                         visibility, nonvis, offset_is_from_end,
1873                         defined == PREDEFINED);
1874
1875   if (oldsym == NULL)
1876     {
1877       if (binding == elfcpp::STB_LOCAL
1878           || this->version_script_.symbol_is_local(name))
1879         this->force_local(sym);
1880       else if (version != NULL)
1881         sym->set_is_default();
1882       return sym;
1883     }
1884
1885   if (Symbol_table::should_override_with_special(oldsym, defined))
1886     this->override_with_special(oldsym, sym);
1887
1888   if (resolve_oldsym)
1889     return sym;
1890   else
1891     {
1892       delete sym;
1893       return oldsym;
1894     }
1895 }
1896
1897 // Define a symbol based on an Output_segment.
1898
1899 Symbol*
1900 Symbol_table::define_in_output_segment(const char* name,
1901                                        const char* version,
1902                                        Defined defined,
1903                                        Output_segment* os,
1904                                        uint64_t value,
1905                                        uint64_t symsize,
1906                                        elfcpp::STT type,
1907                                        elfcpp::STB binding,
1908                                        elfcpp::STV visibility,
1909                                        unsigned char nonvis,
1910                                        Symbol::Segment_offset_base offset_base,
1911                                        bool only_if_ref)
1912 {
1913   if (parameters->target().get_size() == 32)
1914     {
1915 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1916       return this->do_define_in_output_segment<32>(name, version, defined, os,
1917                                                    value, symsize, type,
1918                                                    binding, visibility, nonvis,
1919                                                    offset_base, only_if_ref);
1920 #else
1921       gold_unreachable();
1922 #endif
1923     }
1924   else if (parameters->target().get_size() == 64)
1925     {
1926 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1927       return this->do_define_in_output_segment<64>(name, version, defined, os,
1928                                                    value, symsize, type,
1929                                                    binding, visibility, nonvis,
1930                                                    offset_base, only_if_ref);
1931 #else
1932       gold_unreachable();
1933 #endif
1934     }
1935   else
1936     gold_unreachable();
1937 }
1938
1939 // Define a symbol in an Output_segment, sized version.
1940
1941 template<int size>
1942 Sized_symbol<size>*
1943 Symbol_table::do_define_in_output_segment(
1944     const char* name,
1945     const char* version,
1946     Defined defined,
1947     Output_segment* os,
1948     typename elfcpp::Elf_types<size>::Elf_Addr value,
1949     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1950     elfcpp::STT type,
1951     elfcpp::STB binding,
1952     elfcpp::STV visibility,
1953     unsigned char nonvis,
1954     Symbol::Segment_offset_base offset_base,
1955     bool only_if_ref)
1956 {
1957   Sized_symbol<size>* sym;
1958   Sized_symbol<size>* oldsym;
1959   bool resolve_oldsym;
1960
1961   if (parameters->target().is_big_endian())
1962     {
1963 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1964       sym = this->define_special_symbol<size, true>(&name, &version,
1965                                                     only_if_ref, &oldsym,
1966                                                     &resolve_oldsym);
1967 #else
1968       gold_unreachable();
1969 #endif
1970     }
1971   else
1972     {
1973 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1974       sym = this->define_special_symbol<size, false>(&name, &version,
1975                                                      only_if_ref, &oldsym,
1976                                                      &resolve_oldsym);
1977 #else
1978       gold_unreachable();
1979 #endif
1980     }
1981
1982   if (sym == NULL)
1983     return NULL;
1984
1985   sym->init_output_segment(name, version, os, value, symsize, type, binding,
1986                            visibility, nonvis, offset_base,
1987                            defined == PREDEFINED);
1988
1989   if (oldsym == NULL)
1990     {
1991       if (binding == elfcpp::STB_LOCAL
1992           || this->version_script_.symbol_is_local(name))
1993         this->force_local(sym);
1994       else if (version != NULL)
1995         sym->set_is_default();
1996       return sym;
1997     }
1998
1999   if (Symbol_table::should_override_with_special(oldsym, defined))
2000     this->override_with_special(oldsym, sym);
2001
2002   if (resolve_oldsym)
2003     return sym;
2004   else
2005     {
2006       delete sym;
2007       return oldsym;
2008     }
2009 }
2010
2011 // Define a special symbol with a constant value.  It is a multiple
2012 // definition error if this symbol is already defined.
2013
2014 Symbol*
2015 Symbol_table::define_as_constant(const char* name,
2016                                  const char* version,
2017                                  Defined defined,
2018                                  uint64_t value,
2019                                  uint64_t symsize,
2020                                  elfcpp::STT type,
2021                                  elfcpp::STB binding,
2022                                  elfcpp::STV visibility,
2023                                  unsigned char nonvis,
2024                                  bool only_if_ref,
2025                                  bool force_override)
2026 {
2027   if (parameters->target().get_size() == 32)
2028     {
2029 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2030       return this->do_define_as_constant<32>(name, version, defined, value,
2031                                              symsize, type, binding,
2032                                              visibility, nonvis, only_if_ref,
2033                                              force_override);
2034 #else
2035       gold_unreachable();
2036 #endif
2037     }
2038   else if (parameters->target().get_size() == 64)
2039     {
2040 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2041       return this->do_define_as_constant<64>(name, version, defined, value,
2042                                              symsize, type, binding,
2043                                              visibility, nonvis, only_if_ref,
2044                                              force_override);
2045 #else
2046       gold_unreachable();
2047 #endif
2048     }
2049   else
2050     gold_unreachable();
2051 }
2052
2053 // Define a symbol as a constant, sized version.
2054
2055 template<int size>
2056 Sized_symbol<size>*
2057 Symbol_table::do_define_as_constant(
2058     const char* name,
2059     const char* version,
2060     Defined defined,
2061     typename elfcpp::Elf_types<size>::Elf_Addr value,
2062     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2063     elfcpp::STT type,
2064     elfcpp::STB binding,
2065     elfcpp::STV visibility,
2066     unsigned char nonvis,
2067     bool only_if_ref,
2068     bool force_override)
2069 {
2070   Sized_symbol<size>* sym;
2071   Sized_symbol<size>* oldsym;
2072   bool resolve_oldsym;
2073
2074   if (parameters->target().is_big_endian())
2075     {
2076 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2077       sym = this->define_special_symbol<size, true>(&name, &version,
2078                                                     only_if_ref, &oldsym,
2079                                                     &resolve_oldsym);
2080 #else
2081       gold_unreachable();
2082 #endif
2083     }
2084   else
2085     {
2086 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2087       sym = this->define_special_symbol<size, false>(&name, &version,
2088                                                      only_if_ref, &oldsym,
2089                                                      &resolve_oldsym);
2090 #else
2091       gold_unreachable();
2092 #endif
2093     }
2094
2095   if (sym == NULL)
2096     return NULL;
2097
2098   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2099                      nonvis, defined == PREDEFINED);
2100
2101   if (oldsym == NULL)
2102     {
2103       // Version symbols are absolute symbols with name == version.
2104       // We don't want to force them to be local.
2105       if ((version == NULL
2106            || name != version
2107            || value != 0)
2108           && (binding == elfcpp::STB_LOCAL
2109               || this->version_script_.symbol_is_local(name)))
2110         this->force_local(sym);
2111       else if (version != NULL
2112                && (name != version || value != 0))
2113         sym->set_is_default();
2114       return sym;
2115     }
2116
2117   if (force_override
2118       || Symbol_table::should_override_with_special(oldsym, defined))
2119     this->override_with_special(oldsym, sym);
2120
2121   if (resolve_oldsym)
2122     return sym;
2123   else
2124     {
2125       delete sym;
2126       return oldsym;
2127     }
2128 }
2129
2130 // Define a set of symbols in output sections.
2131
2132 void
2133 Symbol_table::define_symbols(const Layout* layout, int count,
2134                              const Define_symbol_in_section* p,
2135                              bool only_if_ref)
2136 {
2137   for (int i = 0; i < count; ++i, ++p)
2138     {
2139       Output_section* os = layout->find_output_section(p->output_section);
2140       if (os != NULL)
2141         this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2142                                     p->size, p->type, p->binding,
2143                                     p->visibility, p->nonvis,
2144                                     p->offset_is_from_end,
2145                                     only_if_ref || p->only_if_ref);
2146       else
2147         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2148                                  p->type, p->binding, p->visibility, p->nonvis,
2149                                  only_if_ref || p->only_if_ref,
2150                                  false);
2151     }
2152 }
2153
2154 // Define a set of symbols in output segments.
2155
2156 void
2157 Symbol_table::define_symbols(const Layout* layout, int count,
2158                              const Define_symbol_in_segment* p,
2159                              bool only_if_ref)
2160 {
2161   for (int i = 0; i < count; ++i, ++p)
2162     {
2163       Output_segment* os = layout->find_output_segment(p->segment_type,
2164                                                        p->segment_flags_set,
2165                                                        p->segment_flags_clear);
2166       if (os != NULL)
2167         this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2168                                        p->size, p->type, p->binding,
2169                                        p->visibility, p->nonvis,
2170                                        p->offset_base,
2171                                        only_if_ref || p->only_if_ref);
2172       else
2173         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2174                                  p->type, p->binding, p->visibility, p->nonvis,
2175                                  only_if_ref || p->only_if_ref,
2176                                  false);
2177     }
2178 }
2179
2180 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2181 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2182 // the offset within POSD.
2183
2184 template<int size>
2185 void
2186 Symbol_table::define_with_copy_reloc(
2187     Sized_symbol<size>* csym,
2188     Output_data* posd,
2189     typename elfcpp::Elf_types<size>::Elf_Addr value)
2190 {
2191   gold_assert(csym->is_from_dynobj());
2192   gold_assert(!csym->is_copied_from_dynobj());
2193   Object* object = csym->object();
2194   gold_assert(object->is_dynamic());
2195   Dynobj* dynobj = static_cast<Dynobj*>(object);
2196
2197   // Our copied variable has to override any variable in a shared
2198   // library.
2199   elfcpp::STB binding = csym->binding();
2200   if (binding == elfcpp::STB_WEAK)
2201     binding = elfcpp::STB_GLOBAL;
2202
2203   this->define_in_output_data(csym->name(), csym->version(), COPY,
2204                               posd, value, csym->symsize(),
2205                               csym->type(), binding,
2206                               csym->visibility(), csym->nonvis(),
2207                               false, false);
2208
2209   csym->set_is_copied_from_dynobj();
2210   csym->set_needs_dynsym_entry();
2211
2212   this->copied_symbol_dynobjs_[csym] = dynobj;
2213
2214   // We have now defined all aliases, but we have not entered them all
2215   // in the copied_symbol_dynobjs_ map.
2216   if (csym->has_alias())
2217     {
2218       Symbol* sym = csym;
2219       while (true)
2220         {
2221           sym = this->weak_aliases_[sym];
2222           if (sym == csym)
2223             break;
2224           gold_assert(sym->output_data() == posd);
2225
2226           sym->set_is_copied_from_dynobj();
2227           this->copied_symbol_dynobjs_[sym] = dynobj;
2228         }
2229     }
2230 }
2231
2232 // SYM is defined using a COPY reloc.  Return the dynamic object where
2233 // the original definition was found.
2234
2235 Dynobj*
2236 Symbol_table::get_copy_source(const Symbol* sym) const
2237 {
2238   gold_assert(sym->is_copied_from_dynobj());
2239   Copied_symbol_dynobjs::const_iterator p =
2240     this->copied_symbol_dynobjs_.find(sym);
2241   gold_assert(p != this->copied_symbol_dynobjs_.end());
2242   return p->second;
2243 }
2244
2245 // Add any undefined symbols named on the command line.
2246
2247 void
2248 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2249 {
2250   if (parameters->options().any_undefined()
2251       || layout->script_options()->any_unreferenced())
2252     {
2253       if (parameters->target().get_size() == 32)
2254         {
2255 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2256           this->do_add_undefined_symbols_from_command_line<32>(layout);
2257 #else
2258           gold_unreachable();
2259 #endif
2260         }
2261       else if (parameters->target().get_size() == 64)
2262         {
2263 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2264           this->do_add_undefined_symbols_from_command_line<64>(layout);
2265 #else
2266           gold_unreachable();
2267 #endif
2268         }
2269       else
2270         gold_unreachable();
2271     }
2272 }
2273
2274 template<int size>
2275 void
2276 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2277 {
2278   for (options::String_set::const_iterator p =
2279          parameters->options().undefined_begin();
2280        p != parameters->options().undefined_end();
2281        ++p)
2282     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2283
2284   for (Script_options::referenced_const_iterator p =
2285          layout->script_options()->referenced_begin();
2286        p != layout->script_options()->referenced_end();
2287        ++p)
2288     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2289 }
2290
2291 template<int size>
2292 void
2293 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2294 {
2295   if (this->lookup(name) != NULL)
2296     return;
2297
2298   const char* version = NULL;
2299
2300   Sized_symbol<size>* sym;
2301   Sized_symbol<size>* oldsym;
2302   bool resolve_oldsym;
2303   if (parameters->target().is_big_endian())
2304     {
2305 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2306       sym = this->define_special_symbol<size, true>(&name, &version,
2307                                                     false, &oldsym,
2308                                                     &resolve_oldsym);
2309 #else
2310       gold_unreachable();
2311 #endif
2312     }
2313   else
2314     {
2315 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2316       sym = this->define_special_symbol<size, false>(&name, &version,
2317                                                      false, &oldsym,
2318                                                      &resolve_oldsym);
2319 #else
2320       gold_unreachable();
2321 #endif
2322     }
2323
2324   gold_assert(oldsym == NULL);
2325
2326   sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2327                       elfcpp::STV_DEFAULT, 0);
2328   ++this->saw_undefined_;
2329 }
2330
2331 // Set the dynamic symbol indexes.  INDEX is the index of the first
2332 // global dynamic symbol.  Pointers to the symbols are stored into the
2333 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2334 // updated dynamic symbol index.
2335
2336 unsigned int
2337 Symbol_table::set_dynsym_indexes(unsigned int index,
2338                                  std::vector<Symbol*>* syms,
2339                                  Stringpool* dynpool,
2340                                  Versions* versions)
2341 {
2342   for (Symbol_table_type::iterator p = this->table_.begin();
2343        p != this->table_.end();
2344        ++p)
2345     {
2346       Symbol* sym = p->second;
2347
2348       // Note that SYM may already have a dynamic symbol index, since
2349       // some symbols appear more than once in the symbol table, with
2350       // and without a version.
2351
2352       if (!sym->should_add_dynsym_entry(this))
2353         sym->set_dynsym_index(-1U);
2354       else if (!sym->has_dynsym_index())
2355         {
2356           sym->set_dynsym_index(index);
2357           ++index;
2358           syms->push_back(sym);
2359           dynpool->add(sym->name(), false, NULL);
2360
2361           // Record any version information.
2362           if (sym->version() != NULL)
2363             versions->record_version(this, dynpool, sym);
2364
2365           // If the symbol is defined in a dynamic object and is
2366           // referenced in a regular object, then mark the dynamic
2367           // object as needed.  This is used to implement --as-needed.
2368           if (sym->is_from_dynobj() && sym->in_reg())
2369             sym->object()->set_is_needed();
2370         }
2371     }
2372
2373   // Finish up the versions.  In some cases this may add new dynamic
2374   // symbols.
2375   index = versions->finalize(this, index, syms);
2376
2377   return index;
2378 }
2379
2380 // Set the final values for all the symbols.  The index of the first
2381 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2382 // file offset OFF.  Add their names to POOL.  Return the new file
2383 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2384
2385 off_t
2386 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2387                        size_t dyncount, Stringpool* pool,
2388                        unsigned int* plocal_symcount)
2389 {
2390   off_t ret;
2391
2392   gold_assert(*plocal_symcount != 0);
2393   this->first_global_index_ = *plocal_symcount;
2394
2395   this->dynamic_offset_ = dynoff;
2396   this->first_dynamic_global_index_ = dyn_global_index;
2397   this->dynamic_count_ = dyncount;
2398
2399   if (parameters->target().get_size() == 32)
2400     {
2401 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2402       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2403 #else
2404       gold_unreachable();
2405 #endif
2406     }
2407   else if (parameters->target().get_size() == 64)
2408     {
2409 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2410       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2411 #else
2412       gold_unreachable();
2413 #endif
2414     }
2415   else
2416     gold_unreachable();
2417
2418   // Now that we have the final symbol table, we can reliably note
2419   // which symbols should get warnings.
2420   this->warnings_.note_warnings(this);
2421
2422   return ret;
2423 }
2424
2425 // SYM is going into the symbol table at *PINDEX.  Add the name to
2426 // POOL, update *PINDEX and *POFF.
2427
2428 template<int size>
2429 void
2430 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2431                                   unsigned int* pindex, off_t* poff)
2432 {
2433   sym->set_symtab_index(*pindex);
2434   if (sym->version() == NULL || !parameters->options().relocatable())
2435     pool->add(sym->name(), false, NULL);
2436   else
2437     pool->add(sym->versioned_name(), true, NULL);
2438   ++*pindex;
2439   *poff += elfcpp::Elf_sizes<size>::sym_size;
2440 }
2441
2442 // Set the final value for all the symbols.  This is called after
2443 // Layout::finalize, so all the output sections have their final
2444 // address.
2445
2446 template<int size>
2447 off_t
2448 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2449                              unsigned int* plocal_symcount)
2450 {
2451   off = align_address(off, size >> 3);
2452   this->offset_ = off;
2453
2454   unsigned int index = *plocal_symcount;
2455   const unsigned int orig_index = index;
2456
2457   // First do all the symbols which have been forced to be local, as
2458   // they must appear before all global symbols.
2459   for (Forced_locals::iterator p = this->forced_locals_.begin();
2460        p != this->forced_locals_.end();
2461        ++p)
2462     {
2463       Symbol* sym = *p;
2464       gold_assert(sym->is_forced_local());
2465       if (this->sized_finalize_symbol<size>(sym))
2466         {
2467           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2468           ++*plocal_symcount;
2469         }
2470     }
2471
2472   // Now do all the remaining symbols.
2473   for (Symbol_table_type::iterator p = this->table_.begin();
2474        p != this->table_.end();
2475        ++p)
2476     {
2477       Symbol* sym = p->second;
2478       if (this->sized_finalize_symbol<size>(sym))
2479         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2480     }
2481
2482   this->output_count_ = index - orig_index;
2483
2484   return off;
2485 }
2486
2487 // Compute the final value of SYM and store status in location PSTATUS.
2488 // During relaxation, this may be called multiple times for a symbol to
2489 // compute its would-be final value in each relaxation pass.
2490
2491 template<int size>
2492 typename Sized_symbol<size>::Value_type
2493 Symbol_table::compute_final_value(
2494     const Sized_symbol<size>* sym,
2495     Compute_final_value_status* pstatus) const
2496 {
2497   typedef typename Sized_symbol<size>::Value_type Value_type;
2498   Value_type value;
2499
2500   switch (sym->source())
2501     {
2502     case Symbol::FROM_OBJECT:
2503       {
2504         bool is_ordinary;
2505         unsigned int shndx = sym->shndx(&is_ordinary);
2506
2507         if (!is_ordinary
2508             && shndx != elfcpp::SHN_ABS
2509             && !Symbol::is_common_shndx(shndx))
2510           {
2511             *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2512             return 0;
2513           }
2514
2515         Object* symobj = sym->object();
2516         if (symobj->is_dynamic())
2517           {
2518             value = 0;
2519             shndx = elfcpp::SHN_UNDEF;
2520           }
2521         else if (symobj->pluginobj() != NULL)
2522           {
2523             value = 0;
2524             shndx = elfcpp::SHN_UNDEF;
2525           }
2526         else if (shndx == elfcpp::SHN_UNDEF)
2527           value = 0;
2528         else if (!is_ordinary
2529                  && (shndx == elfcpp::SHN_ABS
2530                      || Symbol::is_common_shndx(shndx)))
2531           value = sym->value();
2532         else
2533           {
2534             Relobj* relobj = static_cast<Relobj*>(symobj);
2535             Output_section* os = relobj->output_section(shndx);
2536
2537             if (this->is_section_folded(relobj, shndx))
2538               {
2539                 gold_assert(os == NULL);
2540                 // Get the os of the section it is folded onto.
2541                 Section_id folded = this->icf_->get_folded_section(relobj,
2542                                                                    shndx);
2543                 gold_assert(folded.first != NULL);
2544                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2545                 unsigned folded_shndx = folded.second;
2546
2547                 os = folded_obj->output_section(folded_shndx);  
2548                 gold_assert(os != NULL);
2549
2550                 // Replace (relobj, shndx) with canonical ICF input section.
2551                 shndx = folded_shndx;
2552                 relobj = folded_obj;
2553               }
2554
2555             uint64_t secoff64 = relobj->output_section_offset(shndx);
2556             if (os == NULL)
2557               {
2558                 bool static_or_reloc = (parameters->doing_static_link() ||
2559                                         parameters->options().relocatable());
2560                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2561
2562                 *pstatus = CFVS_NO_OUTPUT_SECTION;
2563                 return 0;
2564               }
2565
2566             if (secoff64 == -1ULL)
2567               {
2568                 // The section needs special handling (e.g., a merge section).
2569
2570                 value = os->output_address(relobj, shndx, sym->value());
2571               }
2572             else
2573               {
2574                 Value_type secoff =
2575                   convert_types<Value_type, uint64_t>(secoff64);
2576                 if (sym->type() == elfcpp::STT_TLS)
2577                   value = sym->value() + os->tls_offset() + secoff;
2578                 else
2579                   value = sym->value() + os->address() + secoff;
2580               }
2581           }
2582       }
2583       break;
2584
2585     case Symbol::IN_OUTPUT_DATA:
2586       {
2587         Output_data* od = sym->output_data();
2588         value = sym->value();
2589         if (sym->type() != elfcpp::STT_TLS)
2590           value += od->address();
2591         else
2592           {
2593             Output_section* os = od->output_section();
2594             gold_assert(os != NULL);
2595             value += os->tls_offset() + (od->address() - os->address());
2596           }
2597         if (sym->offset_is_from_end())
2598           value += od->data_size();
2599       }
2600       break;
2601
2602     case Symbol::IN_OUTPUT_SEGMENT:
2603       {
2604         Output_segment* os = sym->output_segment();
2605         value = sym->value();
2606         if (sym->type() != elfcpp::STT_TLS)
2607           value += os->vaddr();
2608         switch (sym->offset_base())
2609           {
2610           case Symbol::SEGMENT_START:
2611             break;
2612           case Symbol::SEGMENT_END:
2613             value += os->memsz();
2614             break;
2615           case Symbol::SEGMENT_BSS:
2616             value += os->filesz();
2617             break;
2618           default:
2619             gold_unreachable();
2620           }
2621       }
2622       break;
2623
2624     case Symbol::IS_CONSTANT:
2625       value = sym->value();
2626       break;
2627
2628     case Symbol::IS_UNDEFINED:
2629       value = 0;
2630       break;
2631
2632     default:
2633       gold_unreachable();
2634     }
2635
2636   *pstatus = CFVS_OK;
2637   return value;
2638 }
2639
2640 // Finalize the symbol SYM.  This returns true if the symbol should be
2641 // added to the symbol table, false otherwise.
2642
2643 template<int size>
2644 bool
2645 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2646 {
2647   typedef typename Sized_symbol<size>::Value_type Value_type;
2648
2649   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2650
2651   // The default version of a symbol may appear twice in the symbol
2652   // table.  We only need to finalize it once.
2653   if (sym->has_symtab_index())
2654     return false;
2655
2656   if (!sym->in_reg())
2657     {
2658       gold_assert(!sym->has_symtab_index());
2659       sym->set_symtab_index(-1U);
2660       gold_assert(sym->dynsym_index() == -1U);
2661       return false;
2662     }
2663
2664   // If the symbol is only present on plugin files, the plugin decided we
2665   // don't need it.
2666   if (!sym->in_real_elf())
2667     {
2668       gold_assert(!sym->has_symtab_index());
2669       sym->set_symtab_index(-1U);
2670       return false;
2671     }
2672
2673   // Compute final symbol value.
2674   Compute_final_value_status status;
2675   Value_type value = this->compute_final_value(sym, &status);
2676
2677   switch (status)
2678     {
2679     case CFVS_OK:
2680       break;
2681     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2682       {
2683         bool is_ordinary;
2684         unsigned int shndx = sym->shndx(&is_ordinary);
2685         gold_error(_("%s: unsupported symbol section 0x%x"),
2686                    sym->demangled_name().c_str(), shndx);
2687       }
2688       break;
2689     case CFVS_NO_OUTPUT_SECTION:
2690       sym->set_symtab_index(-1U);
2691       return false;
2692     default:
2693       gold_unreachable();
2694     }
2695
2696   sym->set_value(value);
2697
2698   if (parameters->options().strip_all()
2699       || !parameters->options().should_retain_symbol(sym->name()))
2700     {
2701       sym->set_symtab_index(-1U);
2702       return false;
2703     }
2704
2705   return true;
2706 }
2707
2708 // Write out the global symbols.
2709
2710 void
2711 Symbol_table::write_globals(const Stringpool* sympool,
2712                             const Stringpool* dynpool,
2713                             Output_symtab_xindex* symtab_xindex,
2714                             Output_symtab_xindex* dynsym_xindex,
2715                             Output_file* of) const
2716 {
2717   switch (parameters->size_and_endianness())
2718     {
2719 #ifdef HAVE_TARGET_32_LITTLE
2720     case Parameters::TARGET_32_LITTLE:
2721       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2722                                            dynsym_xindex, of);
2723       break;
2724 #endif
2725 #ifdef HAVE_TARGET_32_BIG
2726     case Parameters::TARGET_32_BIG:
2727       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2728                                           dynsym_xindex, of);
2729       break;
2730 #endif
2731 #ifdef HAVE_TARGET_64_LITTLE
2732     case Parameters::TARGET_64_LITTLE:
2733       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2734                                            dynsym_xindex, of);
2735       break;
2736 #endif
2737 #ifdef HAVE_TARGET_64_BIG
2738     case Parameters::TARGET_64_BIG:
2739       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2740                                           dynsym_xindex, of);
2741       break;
2742 #endif
2743     default:
2744       gold_unreachable();
2745     }
2746 }
2747
2748 // Write out the global symbols.
2749
2750 template<int size, bool big_endian>
2751 void
2752 Symbol_table::sized_write_globals(const Stringpool* sympool,
2753                                   const Stringpool* dynpool,
2754                                   Output_symtab_xindex* symtab_xindex,
2755                                   Output_symtab_xindex* dynsym_xindex,
2756                                   Output_file* of) const
2757 {
2758   const Target& target = parameters->target();
2759
2760   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2761
2762   const unsigned int output_count = this->output_count_;
2763   const section_size_type oview_size = output_count * sym_size;
2764   const unsigned int first_global_index = this->first_global_index_;
2765   unsigned char* psyms;
2766   if (this->offset_ == 0 || output_count == 0)
2767     psyms = NULL;
2768   else
2769     psyms = of->get_output_view(this->offset_, oview_size);
2770
2771   const unsigned int dynamic_count = this->dynamic_count_;
2772   const section_size_type dynamic_size = dynamic_count * sym_size;
2773   const unsigned int first_dynamic_global_index =
2774     this->first_dynamic_global_index_;
2775   unsigned char* dynamic_view;
2776   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2777     dynamic_view = NULL;
2778   else
2779     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2780
2781   for (Symbol_table_type::const_iterator p = this->table_.begin();
2782        p != this->table_.end();
2783        ++p)
2784     {
2785       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2786
2787       // Possibly warn about unresolved symbols in shared libraries.
2788       this->warn_about_undefined_dynobj_symbol(sym);
2789
2790       unsigned int sym_index = sym->symtab_index();
2791       unsigned int dynsym_index;
2792       if (dynamic_view == NULL)
2793         dynsym_index = -1U;
2794       else
2795         dynsym_index = sym->dynsym_index();
2796
2797       if (sym_index == -1U && dynsym_index == -1U)
2798         {
2799           // This symbol is not included in the output file.
2800           continue;
2801         }
2802
2803       unsigned int shndx;
2804       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2805       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2806       elfcpp::STB binding = sym->binding();
2807       switch (sym->source())
2808         {
2809         case Symbol::FROM_OBJECT:
2810           {
2811             bool is_ordinary;
2812             unsigned int in_shndx = sym->shndx(&is_ordinary);
2813
2814             if (!is_ordinary
2815                 && in_shndx != elfcpp::SHN_ABS
2816                 && !Symbol::is_common_shndx(in_shndx))
2817               {
2818                 gold_error(_("%s: unsupported symbol section 0x%x"),
2819                            sym->demangled_name().c_str(), in_shndx);
2820                 shndx = in_shndx;
2821               }
2822             else
2823               {
2824                 Object* symobj = sym->object();
2825                 if (symobj->is_dynamic())
2826                   {
2827                     if (sym->needs_dynsym_value())
2828                       dynsym_value = target.dynsym_value(sym);
2829                     shndx = elfcpp::SHN_UNDEF;
2830                     if (sym->is_undef_binding_weak())
2831                       binding = elfcpp::STB_WEAK;
2832                     else
2833                       binding = elfcpp::STB_GLOBAL;
2834                   }
2835                 else if (symobj->pluginobj() != NULL)
2836                   shndx = elfcpp::SHN_UNDEF;
2837                 else if (in_shndx == elfcpp::SHN_UNDEF
2838                          || (!is_ordinary
2839                              && (in_shndx == elfcpp::SHN_ABS
2840                                  || Symbol::is_common_shndx(in_shndx))))
2841                   shndx = in_shndx;
2842                 else
2843                   {
2844                     Relobj* relobj = static_cast<Relobj*>(symobj);
2845                     Output_section* os = relobj->output_section(in_shndx);
2846                     if (this->is_section_folded(relobj, in_shndx))
2847                       {
2848                         // This global symbol must be written out even though
2849                         // it is folded.
2850                         // Get the os of the section it is folded onto.
2851                         Section_id folded =
2852                              this->icf_->get_folded_section(relobj, in_shndx);
2853                         gold_assert(folded.first !=NULL);
2854                         Relobj* folded_obj = 
2855                           reinterpret_cast<Relobj*>(folded.first);
2856                         os = folded_obj->output_section(folded.second);  
2857                         gold_assert(os != NULL);
2858                       }
2859                     gold_assert(os != NULL);
2860                     shndx = os->out_shndx();
2861
2862                     if (shndx >= elfcpp::SHN_LORESERVE)
2863                       {
2864                         if (sym_index != -1U)
2865                           symtab_xindex->add(sym_index, shndx);
2866                         if (dynsym_index != -1U)
2867                           dynsym_xindex->add(dynsym_index, shndx);
2868                         shndx = elfcpp::SHN_XINDEX;
2869                       }
2870
2871                     // In object files symbol values are section
2872                     // relative.
2873                     if (parameters->options().relocatable())
2874                       sym_value -= os->address();
2875                   }
2876               }
2877           }
2878           break;
2879
2880         case Symbol::IN_OUTPUT_DATA:
2881           shndx = sym->output_data()->out_shndx();
2882           if (shndx >= elfcpp::SHN_LORESERVE)
2883             {
2884               if (sym_index != -1U)
2885                 symtab_xindex->add(sym_index, shndx);
2886               if (dynsym_index != -1U)
2887                 dynsym_xindex->add(dynsym_index, shndx);
2888               shndx = elfcpp::SHN_XINDEX;
2889             }
2890           break;
2891
2892         case Symbol::IN_OUTPUT_SEGMENT:
2893           shndx = elfcpp::SHN_ABS;
2894           break;
2895
2896         case Symbol::IS_CONSTANT:
2897           shndx = elfcpp::SHN_ABS;
2898           break;
2899
2900         case Symbol::IS_UNDEFINED:
2901           shndx = elfcpp::SHN_UNDEF;
2902           break;
2903
2904         default:
2905           gold_unreachable();
2906         }
2907
2908       if (sym_index != -1U)
2909         {
2910           sym_index -= first_global_index;
2911           gold_assert(sym_index < output_count);
2912           unsigned char* ps = psyms + (sym_index * sym_size);
2913           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2914                                                      binding, sympool, ps);
2915         }
2916
2917       if (dynsym_index != -1U)
2918         {
2919           dynsym_index -= first_dynamic_global_index;
2920           gold_assert(dynsym_index < dynamic_count);
2921           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2922           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2923                                                      binding, dynpool, pd);
2924         }
2925     }
2926
2927   of->write_output_view(this->offset_, oview_size, psyms);
2928   if (dynamic_view != NULL)
2929     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2930 }
2931
2932 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
2933 // strtab holding the name.
2934
2935 template<int size, bool big_endian>
2936 void
2937 Symbol_table::sized_write_symbol(
2938     Sized_symbol<size>* sym,
2939     typename elfcpp::Elf_types<size>::Elf_Addr value,
2940     unsigned int shndx,
2941     elfcpp::STB binding,
2942     const Stringpool* pool,
2943     unsigned char* p) const
2944 {
2945   elfcpp::Sym_write<size, big_endian> osym(p);
2946   if (sym->version() == NULL || !parameters->options().relocatable())
2947     osym.put_st_name(pool->get_offset(sym->name()));
2948   else
2949     osym.put_st_name(pool->get_offset(sym->versioned_name()));
2950   osym.put_st_value(value);
2951   // Use a symbol size of zero for undefined symbols from shared libraries.
2952   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2953     osym.put_st_size(0);
2954   else
2955     osym.put_st_size(sym->symsize());
2956   elfcpp::STT type = sym->type();
2957   // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
2958   if (type == elfcpp::STT_GNU_IFUNC
2959       && sym->is_from_dynobj())
2960     type = elfcpp::STT_FUNC;
2961   // A version script may have overridden the default binding.
2962   if (sym->is_forced_local())
2963     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
2964   else
2965     osym.put_st_info(elfcpp::elf_st_info(binding, type));
2966   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2967   osym.put_st_shndx(shndx);
2968 }
2969
2970 // Check for unresolved symbols in shared libraries.  This is
2971 // controlled by the --allow-shlib-undefined option.
2972
2973 // We only warn about libraries for which we have seen all the
2974 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
2975 // which were not seen in this link.  If we didn't see a DT_NEEDED
2976 // entry, we aren't going to be able to reliably report whether the
2977 // symbol is undefined.
2978
2979 // We also don't warn about libraries found in a system library
2980 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2981 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
2982 // can have undefined references satisfied by ld-linux.so.
2983
2984 inline void
2985 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
2986 {
2987   bool dummy;
2988   if (sym->source() == Symbol::FROM_OBJECT
2989       && sym->object()->is_dynamic()
2990       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2991       && sym->binding() != elfcpp::STB_WEAK
2992       && !parameters->options().allow_shlib_undefined()
2993       && !parameters->target().is_defined_by_abi(sym)
2994       && !sym->object()->is_in_system_directory())
2995     {
2996       // A very ugly cast.
2997       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2998       if (!dynobj->has_unknown_needed_entries())
2999         gold_undefined_symbol(sym);
3000     }
3001 }
3002
3003 // Write out a section symbol.  Return the update offset.
3004
3005 void
3006 Symbol_table::write_section_symbol(const Output_section* os,
3007                                    Output_symtab_xindex* symtab_xindex,
3008                                    Output_file* of,
3009                                    off_t offset) const
3010 {
3011   switch (parameters->size_and_endianness())
3012     {
3013 #ifdef HAVE_TARGET_32_LITTLE
3014     case Parameters::TARGET_32_LITTLE:
3015       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3016                                                   offset);
3017       break;
3018 #endif
3019 #ifdef HAVE_TARGET_32_BIG
3020     case Parameters::TARGET_32_BIG:
3021       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3022                                                  offset);
3023       break;
3024 #endif
3025 #ifdef HAVE_TARGET_64_LITTLE
3026     case Parameters::TARGET_64_LITTLE:
3027       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3028                                                   offset);
3029       break;
3030 #endif
3031 #ifdef HAVE_TARGET_64_BIG
3032     case Parameters::TARGET_64_BIG:
3033       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3034                                                  offset);
3035       break;
3036 #endif
3037     default:
3038       gold_unreachable();
3039     }
3040 }
3041
3042 // Write out a section symbol, specialized for size and endianness.
3043
3044 template<int size, bool big_endian>
3045 void
3046 Symbol_table::sized_write_section_symbol(const Output_section* os,
3047                                          Output_symtab_xindex* symtab_xindex,
3048                                          Output_file* of,
3049                                          off_t offset) const
3050 {
3051   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3052
3053   unsigned char* pov = of->get_output_view(offset, sym_size);
3054
3055   elfcpp::Sym_write<size, big_endian> osym(pov);
3056   osym.put_st_name(0);
3057   if (parameters->options().relocatable())
3058     osym.put_st_value(0);
3059   else
3060     osym.put_st_value(os->address());
3061   osym.put_st_size(0);
3062   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3063                                        elfcpp::STT_SECTION));
3064   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3065
3066   unsigned int shndx = os->out_shndx();
3067   if (shndx >= elfcpp::SHN_LORESERVE)
3068     {
3069       symtab_xindex->add(os->symtab_index(), shndx);
3070       shndx = elfcpp::SHN_XINDEX;
3071     }
3072   osym.put_st_shndx(shndx);
3073
3074   of->write_output_view(offset, sym_size, pov);
3075 }
3076
3077 // Print statistical information to stderr.  This is used for --stats.
3078
3079 void
3080 Symbol_table::print_stats() const
3081 {
3082 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3083   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3084           program_name, this->table_.size(), this->table_.bucket_count());
3085 #else
3086   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3087           program_name, this->table_.size());
3088 #endif
3089   this->namepool_.print_stats("symbol table stringpool");
3090 }
3091
3092 // We check for ODR violations by looking for symbols with the same
3093 // name for which the debugging information reports that they were
3094 // defined in disjoint source locations.  When comparing the source
3095 // location, we consider instances with the same base filename to be
3096 // the same.  This is because different object files/shared libraries
3097 // can include the same header file using different paths, and
3098 // different optimization settings can make the line number appear to
3099 // be a couple lines off, and we don't want to report an ODR violation
3100 // in those cases.
3101
3102 // This struct is used to compare line information, as returned by
3103 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3104 // operator used with std::sort.
3105
3106 struct Odr_violation_compare
3107 {
3108   bool
3109   operator()(const std::string& s1, const std::string& s2) const
3110   {
3111     // Inputs should be of the form "dirname/filename:linenum" where
3112     // "dirname/" is optional.  We want to compare just the filename:linenum.
3113
3114     // Find the last '/' in each string.
3115     std::string::size_type s1begin = s1.rfind('/');
3116     std::string::size_type s2begin = s2.rfind('/');
3117     // If there was no '/' in a string, start at the beginning.
3118     if (s1begin == std::string::npos)
3119       s1begin = 0;
3120     if (s2begin == std::string::npos)
3121       s2begin = 0;
3122     return s1.compare(s1begin, std::string::npos,
3123                       s2, s2begin, std::string::npos) < 0;
3124   }
3125 };
3126
3127 // Returns all of the lines attached to LOC, not just the one the
3128 // instruction actually came from.
3129 std::vector<std::string>
3130 Symbol_table::linenos_from_loc(const Task* task,
3131                                const Symbol_location& loc)
3132 {
3133   // We need to lock the object in order to read it.  This
3134   // means that we have to run in a singleton Task.  If we
3135   // want to run this in a general Task for better
3136   // performance, we will need one Task for object, plus
3137   // appropriate locking to ensure that we don't conflict with
3138   // other uses of the object.  Also note, one_addr2line is not
3139   // currently thread-safe.
3140   Task_lock_obj<Object> tl(task, loc.object);
3141
3142   std::vector<std::string> result;
3143   // 16 is the size of the object-cache that one_addr2line should use.
3144   std::string canonical_result = Dwarf_line_info::one_addr2line(
3145       loc.object, loc.shndx, loc.offset, 16, &result);
3146   if (!canonical_result.empty())
3147     result.push_back(canonical_result);
3148   return result;
3149 }
3150
3151 // OutputIterator that records if it was ever assigned to.  This
3152 // allows it to be used with std::set_intersection() to check for
3153 // intersection rather than computing the intersection.
3154 struct Check_intersection
3155 {
3156   Check_intersection()
3157     : value_(false)
3158   {}
3159
3160   bool had_intersection() const
3161   { return this->value_; }
3162
3163   Check_intersection& operator++()
3164   { return *this; }
3165
3166   Check_intersection& operator*()
3167   { return *this; }
3168
3169   template<typename T>
3170   Check_intersection& operator=(const T&)
3171   {
3172     this->value_ = true;
3173     return *this;
3174   }
3175
3176  private:
3177   bool value_;
3178 };
3179
3180 // Check candidate_odr_violations_ to find symbols with the same name
3181 // but apparently different definitions (different source-file/line-no
3182 // for each line assigned to the first instruction).
3183
3184 void
3185 Symbol_table::detect_odr_violations(const Task* task,
3186                                     const char* output_file_name) const
3187 {
3188   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3189        it != candidate_odr_violations_.end();
3190        ++it)
3191     {
3192       const char* const symbol_name = it->first;
3193
3194       std::string first_object_name;
3195       std::vector<std::string> first_object_linenos;
3196
3197       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3198           locs = it->second.begin();
3199       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3200           locs_end = it->second.end();
3201       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3202         {
3203           // Save the line numbers from the first definition to
3204           // compare to the other definitions.  Ideally, we'd compare
3205           // every definition to every other, but we don't want to
3206           // take O(N^2) time to do this.  This shortcut may cause
3207           // false negatives that appear or disappear depending on the
3208           // link order, but it won't cause false positives.
3209           first_object_name = locs->object->name();
3210           first_object_linenos = this->linenos_from_loc(task, *locs);
3211         }
3212
3213       // Sort by Odr_violation_compare to make std::set_intersection work.
3214       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3215                 Odr_violation_compare());
3216
3217       for (; locs != locs_end; ++locs)
3218         {
3219           std::vector<std::string> linenos =
3220               this->linenos_from_loc(task, *locs);
3221           // linenos will be empty if we couldn't parse the debug info.
3222           if (linenos.empty())
3223             continue;
3224           // Sort by Odr_violation_compare to make std::set_intersection work.
3225           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3226
3227           Check_intersection intersection_result =
3228               std::set_intersection(first_object_linenos.begin(),
3229                                     first_object_linenos.end(),
3230                                     linenos.begin(),
3231                                     linenos.end(),
3232                                     Check_intersection(),
3233                                     Odr_violation_compare());
3234           if (!intersection_result.had_intersection())
3235             {
3236               gold_warning(_("while linking %s: symbol '%s' defined in "
3237                              "multiple places (possible ODR violation):"),
3238                            output_file_name, demangle(symbol_name).c_str());
3239               // This only prints one location from each definition,
3240               // which may not be the location we expect to intersect
3241               // with another definition.  We could print the whole
3242               // set of locations, but that seems too verbose.
3243               gold_assert(!first_object_linenos.empty());
3244               gold_assert(!linenos.empty());
3245               fprintf(stderr, _("  %s from %s\n"),
3246                       first_object_linenos[0].c_str(),
3247                       first_object_name.c_str());
3248               fprintf(stderr, _("  %s from %s\n"),
3249                       linenos[0].c_str(),
3250                       locs->object->name().c_str());
3251               // Only print one broken pair, to avoid needing to
3252               // compare against a list of the disjoint definition
3253               // locations we've found so far.  (If we kept comparing
3254               // against just the first one, we'd get a lot of
3255               // redundant complaints about the second definition
3256               // location.)
3257               break;
3258             }
3259         }
3260     }
3261   // We only call one_addr2line() in this function, so we can clear its cache.
3262   Dwarf_line_info::clear_addr2line_cache();
3263 }
3264
3265 // Warnings functions.
3266
3267 // Add a new warning.
3268
3269 void
3270 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3271                       const std::string& warning)
3272 {
3273   name = symtab->canonicalize_name(name);
3274   this->warnings_[name].set(obj, warning);
3275 }
3276
3277 // Look through the warnings and mark the symbols for which we should
3278 // warn.  This is called during Layout::finalize when we know the
3279 // sources for all the symbols.
3280
3281 void
3282 Warnings::note_warnings(Symbol_table* symtab)
3283 {
3284   for (Warning_table::iterator p = this->warnings_.begin();
3285        p != this->warnings_.end();
3286        ++p)
3287     {
3288       Symbol* sym = symtab->lookup(p->first, NULL);
3289       if (sym != NULL
3290           && sym->source() == Symbol::FROM_OBJECT
3291           && sym->object() == p->second.object)
3292         sym->set_has_warning();
3293     }
3294 }
3295
3296 // Issue a warning.  This is called when we see a relocation against a
3297 // symbol for which has a warning.
3298
3299 template<int size, bool big_endian>
3300 void
3301 Warnings::issue_warning(const Symbol* sym,
3302                         const Relocate_info<size, big_endian>* relinfo,
3303                         size_t relnum, off_t reloffset) const
3304 {
3305   gold_assert(sym->has_warning());
3306
3307   // We don't want to issue a warning for a relocation against the
3308   // symbol in the same object file in which the symbol is defined.
3309   if (sym->object() == relinfo->object)
3310     return;
3311
3312   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3313   gold_assert(p != this->warnings_.end());
3314   gold_warning_at_location(relinfo, relnum, reloffset,
3315                            "%s", p->second.text.c_str());
3316 }
3317
3318 // Instantiate the templates we need.  We could use the configure
3319 // script to restrict this to only the ones needed for implemented
3320 // targets.
3321
3322 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3323 template
3324 void
3325 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3326 #endif
3327
3328 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3329 template
3330 void
3331 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3332 #endif
3333
3334 #ifdef HAVE_TARGET_32_LITTLE
3335 template
3336 void
3337 Symbol_table::add_from_relobj<32, false>(
3338     Sized_relobj_file<32, false>* relobj,
3339     const unsigned char* syms,
3340     size_t count,
3341     size_t symndx_offset,
3342     const char* sym_names,
3343     size_t sym_name_size,
3344     Sized_relobj_file<32, false>::Symbols* sympointers,
3345     size_t* defined);
3346 #endif
3347
3348 #ifdef HAVE_TARGET_32_BIG
3349 template
3350 void
3351 Symbol_table::add_from_relobj<32, true>(
3352     Sized_relobj_file<32, true>* relobj,
3353     const unsigned char* syms,
3354     size_t count,
3355     size_t symndx_offset,
3356     const char* sym_names,
3357     size_t sym_name_size,
3358     Sized_relobj_file<32, true>::Symbols* sympointers,
3359     size_t* defined);
3360 #endif
3361
3362 #ifdef HAVE_TARGET_64_LITTLE
3363 template
3364 void
3365 Symbol_table::add_from_relobj<64, false>(
3366     Sized_relobj_file<64, false>* relobj,
3367     const unsigned char* syms,
3368     size_t count,
3369     size_t symndx_offset,
3370     const char* sym_names,
3371     size_t sym_name_size,
3372     Sized_relobj_file<64, false>::Symbols* sympointers,
3373     size_t* defined);
3374 #endif
3375
3376 #ifdef HAVE_TARGET_64_BIG
3377 template
3378 void
3379 Symbol_table::add_from_relobj<64, true>(
3380     Sized_relobj_file<64, true>* relobj,
3381     const unsigned char* syms,
3382     size_t count,
3383     size_t symndx_offset,
3384     const char* sym_names,
3385     size_t sym_name_size,
3386     Sized_relobj_file<64, true>::Symbols* sympointers,
3387     size_t* defined);
3388 #endif
3389
3390 #ifdef HAVE_TARGET_32_LITTLE
3391 template
3392 Symbol*
3393 Symbol_table::add_from_pluginobj<32, false>(
3394     Sized_pluginobj<32, false>* obj,
3395     const char* name,
3396     const char* ver,
3397     elfcpp::Sym<32, false>* sym);
3398 #endif
3399
3400 #ifdef HAVE_TARGET_32_BIG
3401 template
3402 Symbol*
3403 Symbol_table::add_from_pluginobj<32, true>(
3404     Sized_pluginobj<32, true>* obj,
3405     const char* name,
3406     const char* ver,
3407     elfcpp::Sym<32, true>* sym);
3408 #endif
3409
3410 #ifdef HAVE_TARGET_64_LITTLE
3411 template
3412 Symbol*
3413 Symbol_table::add_from_pluginobj<64, false>(
3414     Sized_pluginobj<64, false>* obj,
3415     const char* name,
3416     const char* ver,
3417     elfcpp::Sym<64, false>* sym);
3418 #endif
3419
3420 #ifdef HAVE_TARGET_64_BIG
3421 template
3422 Symbol*
3423 Symbol_table::add_from_pluginobj<64, true>(
3424     Sized_pluginobj<64, true>* obj,
3425     const char* name,
3426     const char* ver,
3427     elfcpp::Sym<64, true>* sym);
3428 #endif
3429
3430 #ifdef HAVE_TARGET_32_LITTLE
3431 template
3432 void
3433 Symbol_table::add_from_dynobj<32, false>(
3434     Sized_dynobj<32, false>* dynobj,
3435     const unsigned char* syms,
3436     size_t count,
3437     const char* sym_names,
3438     size_t sym_name_size,
3439     const unsigned char* versym,
3440     size_t versym_size,
3441     const std::vector<const char*>* version_map,
3442     Sized_relobj_file<32, false>::Symbols* sympointers,
3443     size_t* defined);
3444 #endif
3445
3446 #ifdef HAVE_TARGET_32_BIG
3447 template
3448 void
3449 Symbol_table::add_from_dynobj<32, true>(
3450     Sized_dynobj<32, true>* dynobj,
3451     const unsigned char* syms,
3452     size_t count,
3453     const char* sym_names,
3454     size_t sym_name_size,
3455     const unsigned char* versym,
3456     size_t versym_size,
3457     const std::vector<const char*>* version_map,
3458     Sized_relobj_file<32, true>::Symbols* sympointers,
3459     size_t* defined);
3460 #endif
3461
3462 #ifdef HAVE_TARGET_64_LITTLE
3463 template
3464 void
3465 Symbol_table::add_from_dynobj<64, false>(
3466     Sized_dynobj<64, false>* dynobj,
3467     const unsigned char* syms,
3468     size_t count,
3469     const char* sym_names,
3470     size_t sym_name_size,
3471     const unsigned char* versym,
3472     size_t versym_size,
3473     const std::vector<const char*>* version_map,
3474     Sized_relobj_file<64, false>::Symbols* sympointers,
3475     size_t* defined);
3476 #endif
3477
3478 #ifdef HAVE_TARGET_64_BIG
3479 template
3480 void
3481 Symbol_table::add_from_dynobj<64, true>(
3482     Sized_dynobj<64, true>* dynobj,
3483     const unsigned char* syms,
3484     size_t count,
3485     const char* sym_names,
3486     size_t sym_name_size,
3487     const unsigned char* versym,
3488     size_t versym_size,
3489     const std::vector<const char*>* version_map,
3490     Sized_relobj_file<64, true>::Symbols* sympointers,
3491     size_t* defined);
3492 #endif
3493
3494 #ifdef HAVE_TARGET_32_LITTLE
3495 template
3496 Sized_symbol<32>*
3497 Symbol_table::add_from_incrobj(
3498     Object* obj,
3499     const char* name,
3500     const char* ver,
3501     elfcpp::Sym<32, false>* sym);
3502 #endif
3503
3504 #ifdef HAVE_TARGET_32_BIG
3505 template
3506 Sized_symbol<32>*
3507 Symbol_table::add_from_incrobj(
3508     Object* obj,
3509     const char* name,
3510     const char* ver,
3511     elfcpp::Sym<32, true>* sym);
3512 #endif
3513
3514 #ifdef HAVE_TARGET_64_LITTLE
3515 template
3516 Sized_symbol<64>*
3517 Symbol_table::add_from_incrobj(
3518     Object* obj,
3519     const char* name,
3520     const char* ver,
3521     elfcpp::Sym<64, false>* sym);
3522 #endif
3523
3524 #ifdef HAVE_TARGET_64_BIG
3525 template
3526 Sized_symbol<64>*
3527 Symbol_table::add_from_incrobj(
3528     Object* obj,
3529     const char* name,
3530     const char* ver,
3531     elfcpp::Sym<64, true>* sym);
3532 #endif
3533
3534 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3535 template
3536 void
3537 Symbol_table::define_with_copy_reloc<32>(
3538     Sized_symbol<32>* sym,
3539     Output_data* posd,
3540     elfcpp::Elf_types<32>::Elf_Addr value);
3541 #endif
3542
3543 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3544 template
3545 void
3546 Symbol_table::define_with_copy_reloc<64>(
3547     Sized_symbol<64>* sym,
3548     Output_data* posd,
3549     elfcpp::Elf_types<64>::Elf_Addr value);
3550 #endif
3551
3552 #ifdef HAVE_TARGET_32_LITTLE
3553 template
3554 void
3555 Warnings::issue_warning<32, false>(const Symbol* sym,
3556                                    const Relocate_info<32, false>* relinfo,
3557                                    size_t relnum, off_t reloffset) const;
3558 #endif
3559
3560 #ifdef HAVE_TARGET_32_BIG
3561 template
3562 void
3563 Warnings::issue_warning<32, true>(const Symbol* sym,
3564                                   const Relocate_info<32, true>* relinfo,
3565                                   size_t relnum, off_t reloffset) const;
3566 #endif
3567
3568 #ifdef HAVE_TARGET_64_LITTLE
3569 template
3570 void
3571 Warnings::issue_warning<64, false>(const Symbol* sym,
3572                                    const Relocate_info<64, false>* relinfo,
3573                                    size_t relnum, off_t reloffset) const;
3574 #endif
3575
3576 #ifdef HAVE_TARGET_64_BIG
3577 template
3578 void
3579 Warnings::issue_warning<64, true>(const Symbol* sym,
3580                                   const Relocate_info<64, true>* relinfo,
3581                                   size_t relnum, off_t reloffset) const;
3582 #endif
3583
3584 } // End namespace gold.