2009-01-20 Sriraman Tallam <tmsriram@google.com>
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "demangle.h"   // needed for --dynamic-list-cpp-new
42 #include "plugin.h"
43
44 namespace gold
45 {
46
47 // Class Symbol.
48
49 // Initialize fields in Symbol.  This initializes everything except u_
50 // and source_.
51
52 void
53 Symbol::init_fields(const char* name, const char* version,
54                     elfcpp::STT type, elfcpp::STB binding,
55                     elfcpp::STV visibility, unsigned char nonvis)
56 {
57   this->name_ = name;
58   this->version_ = version;
59   this->symtab_index_ = 0;
60   this->dynsym_index_ = 0;
61   this->got_offsets_.init();
62   this->plt_offset_ = 0;
63   this->type_ = type;
64   this->binding_ = binding;
65   this->visibility_ = visibility;
66   this->nonvis_ = nonvis;
67   this->is_target_special_ = false;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_plt_offset_ = false;
75   this->has_warning_ = false;
76   this->is_copied_from_dynobj_ = false;
77   this->is_forced_local_ = false;
78   this->is_ordinary_shndx_ = false;
79   this->in_real_elf_ = false;
80 }
81
82 // Return the demangled version of the symbol's name, but only
83 // if the --demangle flag was set.
84
85 static std::string
86 demangle(const char* name)
87 {
88   if (!parameters->options().do_demangle())
89     return name;
90
91   // cplus_demangle allocates memory for the result it returns,
92   // and returns NULL if the name is already demangled.
93   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
94   if (demangled_name == NULL)
95     return name;
96
97   std::string retval(demangled_name);
98   free(demangled_name);
99   return retval;
100 }
101
102 std::string
103 Symbol::demangled_name() const
104 {
105   return demangle(this->name());
106 }
107
108 // Initialize the fields in the base class Symbol for SYM in OBJECT.
109
110 template<int size, bool big_endian>
111 void
112 Symbol::init_base_object(const char* name, const char* version, Object* object,
113                          const elfcpp::Sym<size, big_endian>& sym,
114                          unsigned int st_shndx, bool is_ordinary)
115 {
116   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
117                     sym.get_st_visibility(), sym.get_st_nonvis());
118   this->u_.from_object.object = object;
119   this->u_.from_object.shndx = st_shndx;
120   this->is_ordinary_shndx_ = is_ordinary;
121   this->source_ = FROM_OBJECT;
122   this->in_reg_ = !object->is_dynamic();
123   this->in_dyn_ = object->is_dynamic();
124   this->in_real_elf_ = object->pluginobj() == NULL;
125 }
126
127 // Initialize the fields in the base class Symbol for a symbol defined
128 // in an Output_data.
129
130 void
131 Symbol::init_base_output_data(const char* name, const char* version,
132                               Output_data* od, elfcpp::STT type,
133                               elfcpp::STB binding, elfcpp::STV visibility,
134                               unsigned char nonvis, bool offset_is_from_end)
135 {
136   this->init_fields(name, version, type, binding, visibility, nonvis);
137   this->u_.in_output_data.output_data = od;
138   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
139   this->source_ = IN_OUTPUT_DATA;
140   this->in_reg_ = true;
141   this->in_real_elf_ = true;
142 }
143
144 // Initialize the fields in the base class Symbol for a symbol defined
145 // in an Output_segment.
146
147 void
148 Symbol::init_base_output_segment(const char* name, const char* version,
149                                  Output_segment* os, elfcpp::STT type,
150                                  elfcpp::STB binding, elfcpp::STV visibility,
151                                  unsigned char nonvis,
152                                  Segment_offset_base offset_base)
153 {
154   this->init_fields(name, version, type, binding, visibility, nonvis);
155   this->u_.in_output_segment.output_segment = os;
156   this->u_.in_output_segment.offset_base = offset_base;
157   this->source_ = IN_OUTPUT_SEGMENT;
158   this->in_reg_ = true;
159   this->in_real_elf_ = true;
160 }
161
162 // Initialize the fields in the base class Symbol for a symbol defined
163 // as a constant.
164
165 void
166 Symbol::init_base_constant(const char* name, const char* version,
167                            elfcpp::STT type, elfcpp::STB binding,
168                            elfcpp::STV visibility, unsigned char nonvis)
169 {
170   this->init_fields(name, version, type, binding, visibility, nonvis);
171   this->source_ = IS_CONSTANT;
172   this->in_reg_ = true;
173   this->in_real_elf_ = true;
174 }
175
176 // Initialize the fields in the base class Symbol for an undefined
177 // symbol.
178
179 void
180 Symbol::init_base_undefined(const char* name, const char* version,
181                             elfcpp::STT type, elfcpp::STB binding,
182                             elfcpp::STV visibility, unsigned char nonvis)
183 {
184   this->init_fields(name, version, type, binding, visibility, nonvis);
185   this->dynsym_index_ = -1U;
186   this->source_ = IS_UNDEFINED;
187   this->in_reg_ = true;
188   this->in_real_elf_ = true;
189 }
190
191 // Allocate a common symbol in the base.
192
193 void
194 Symbol::allocate_base_common(Output_data* od)
195 {
196   gold_assert(this->is_common());
197   this->source_ = IN_OUTPUT_DATA;
198   this->u_.in_output_data.output_data = od;
199   this->u_.in_output_data.offset_is_from_end = false;
200 }
201
202 // Initialize the fields in Sized_symbol for SYM in OBJECT.
203
204 template<int size>
205 template<bool big_endian>
206 void
207 Sized_symbol<size>::init_object(const char* name, const char* version,
208                                 Object* object,
209                                 const elfcpp::Sym<size, big_endian>& sym,
210                                 unsigned int st_shndx, bool is_ordinary)
211 {
212   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
213   this->value_ = sym.get_st_value();
214   this->symsize_ = sym.get_st_size();
215 }
216
217 // Initialize the fields in Sized_symbol for a symbol defined in an
218 // Output_data.
219
220 template<int size>
221 void
222 Sized_symbol<size>::init_output_data(const char* name, const char* version,
223                                      Output_data* od, Value_type value,
224                                      Size_type symsize, elfcpp::STT type,
225                                      elfcpp::STB binding,
226                                      elfcpp::STV visibility,
227                                      unsigned char nonvis,
228                                      bool offset_is_from_end)
229 {
230   this->init_base_output_data(name, version, od, type, binding, visibility,
231                               nonvis, offset_is_from_end);
232   this->value_ = value;
233   this->symsize_ = symsize;
234 }
235
236 // Initialize the fields in Sized_symbol for a symbol defined in an
237 // Output_segment.
238
239 template<int size>
240 void
241 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
242                                         Output_segment* os, Value_type value,
243                                         Size_type symsize, elfcpp::STT type,
244                                         elfcpp::STB binding,
245                                         elfcpp::STV visibility,
246                                         unsigned char nonvis,
247                                         Segment_offset_base offset_base)
248 {
249   this->init_base_output_segment(name, version, os, type, binding, visibility,
250                                  nonvis, offset_base);
251   this->value_ = value;
252   this->symsize_ = symsize;
253 }
254
255 // Initialize the fields in Sized_symbol for a symbol defined as a
256 // constant.
257
258 template<int size>
259 void
260 Sized_symbol<size>::init_constant(const char* name, const char* version,
261                                   Value_type value, Size_type symsize,
262                                   elfcpp::STT type, elfcpp::STB binding,
263                                   elfcpp::STV visibility, unsigned char nonvis)
264 {
265   this->init_base_constant(name, version, type, binding, visibility, nonvis);
266   this->value_ = value;
267   this->symsize_ = symsize;
268 }
269
270 // Initialize the fields in Sized_symbol for an undefined symbol.
271
272 template<int size>
273 void
274 Sized_symbol<size>::init_undefined(const char* name, const char* version,
275                                    elfcpp::STT type, elfcpp::STB binding,
276                                    elfcpp::STV visibility, unsigned char nonvis)
277 {
278   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
279   this->value_ = 0;
280   this->symsize_ = 0;
281 }
282
283 // Allocate a common symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
288 {
289   this->allocate_base_common(od);
290   this->value_ = value;
291 }
292
293 // The ""'s around str ensure str is a string literal, so sizeof works.
294 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
295
296 // Return true if this symbol should be added to the dynamic symbol
297 // table.
298
299 inline bool
300 Symbol::should_add_dynsym_entry() const
301 {
302   // If the symbol is used by a dynamic relocation, we need to add it.
303   if (this->needs_dynsym_entry())
304     return true;
305
306   // If this symbol's section is not added, the symbol need not be added. 
307   // The section may have been GCed.  Note that export_dynamic is being 
308   // overridden here.  This should not be done for shared objects.
309   if (parameters->options().gc_sections() 
310       && !parameters->options().shared()
311       && this->source() == Symbol::FROM_OBJECT
312       && !this->object()->is_dynamic())
313     {
314       Relobj* relobj = static_cast<Relobj*>(this->object());
315       bool is_ordinary;
316       unsigned int shndx = this->shndx(&is_ordinary);
317       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
318           && !relobj->is_section_included(shndx))
319         return false;
320     }
321
322   // If the symbol was forced local in a version script, do not add it.
323   if (this->is_forced_local())
324     return false;
325
326   // If the symbol was forced dynamic in a --dynamic-list file, add it.
327   if (parameters->options().in_dynamic_list(this->name()))
328     return true;
329
330   // If dynamic-list-data was specified, add any STT_OBJECT.
331   if (parameters->options().dynamic_list_data()
332       && !this->is_from_dynobj()
333       && this->type() == elfcpp::STT_OBJECT)
334     return true;
335
336   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
337   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
338   if ((parameters->options().dynamic_list_cpp_new()
339        || parameters->options().dynamic_list_cpp_typeinfo())
340       && !this->is_from_dynobj())
341     {
342       // TODO(csilvers): We could probably figure out if we're an operator
343       //                 new/delete or typeinfo without the need to demangle.
344       char* demangled_name = cplus_demangle(this->name(),
345                                             DMGL_ANSI | DMGL_PARAMS);
346       if (demangled_name == NULL)
347         {
348           // Not a C++ symbol, so it can't satisfy these flags
349         }
350       else if (parameters->options().dynamic_list_cpp_new()
351                && (strprefix(demangled_name, "operator new")
352                    || strprefix(demangled_name, "operator delete")))
353         {
354           free(demangled_name);
355           return true;
356         }
357       else if (parameters->options().dynamic_list_cpp_typeinfo()
358                && (strprefix(demangled_name, "typeinfo name for")
359                    || strprefix(demangled_name, "typeinfo for")))
360         {
361           free(demangled_name);
362           return true;
363         }
364       else
365         free(demangled_name);
366     }
367
368   // If exporting all symbols or building a shared library,
369   // and the symbol is defined in a regular object and is
370   // externally visible, we need to add it.
371   if ((parameters->options().export_dynamic() || parameters->options().shared())
372       && !this->is_from_dynobj()
373       && this->is_externally_visible())
374     return true;
375
376   return false;
377 }
378
379 // Return true if the final value of this symbol is known at link
380 // time.
381
382 bool
383 Symbol::final_value_is_known() const
384 {
385   // If we are not generating an executable, then no final values are
386   // known, since they will change at runtime.
387   if (parameters->options().shared() || parameters->options().relocatable())
388     return false;
389
390   // If the symbol is not from an object file, and is not undefined,
391   // then it is defined, and known.
392   if (this->source_ != FROM_OBJECT)
393     {
394       if (this->source_ != IS_UNDEFINED)
395         return true;
396     }
397   else
398     {
399       // If the symbol is from a dynamic object, then the final value
400       // is not known.
401       if (this->object()->is_dynamic())
402         return false;
403
404       // If the symbol is not undefined (it is defined or common),
405       // then the final value is known.
406       if (!this->is_undefined())
407         return true;
408     }
409
410   // If the symbol is undefined, then whether the final value is known
411   // depends on whether we are doing a static link.  If we are doing a
412   // dynamic link, then the final value could be filled in at runtime.
413   // This could reasonably be the case for a weak undefined symbol.
414   return parameters->doing_static_link();
415 }
416
417 // Return the output section where this symbol is defined.
418
419 Output_section*
420 Symbol::output_section() const
421 {
422   switch (this->source_)
423     {
424     case FROM_OBJECT:
425       {
426         unsigned int shndx = this->u_.from_object.shndx;
427         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
428           {
429             gold_assert(!this->u_.from_object.object->is_dynamic());
430             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
431             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
432             return relobj->output_section(shndx);
433           }
434         return NULL;
435       }
436
437     case IN_OUTPUT_DATA:
438       return this->u_.in_output_data.output_data->output_section();
439
440     case IN_OUTPUT_SEGMENT:
441     case IS_CONSTANT:
442     case IS_UNDEFINED:
443       return NULL;
444
445     default:
446       gold_unreachable();
447     }
448 }
449
450 // Set the symbol's output section.  This is used for symbols defined
451 // in scripts.  This should only be called after the symbol table has
452 // been finalized.
453
454 void
455 Symbol::set_output_section(Output_section* os)
456 {
457   switch (this->source_)
458     {
459     case FROM_OBJECT:
460     case IN_OUTPUT_DATA:
461       gold_assert(this->output_section() == os);
462       break;
463     case IS_CONSTANT:
464       this->source_ = IN_OUTPUT_DATA;
465       this->u_.in_output_data.output_data = os;
466       this->u_.in_output_data.offset_is_from_end = false;
467       break;
468     case IN_OUTPUT_SEGMENT:
469     case IS_UNDEFINED:
470     default:
471       gold_unreachable();
472     }
473 }
474
475 // Class Symbol_table.
476
477 Symbol_table::Symbol_table(unsigned int count,
478                            const Version_script_info& version_script)
479   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
480     forwarders_(), commons_(), tls_commons_(), forced_locals_(), warnings_(),
481     version_script_(version_script), gc_(NULL)
482 {
483   namepool_.reserve(count);
484 }
485
486 Symbol_table::~Symbol_table()
487 {
488 }
489
490 // The hash function.  The key values are Stringpool keys.
491
492 inline size_t
493 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
494 {
495   return key.first ^ key.second;
496 }
497
498 // The symbol table key equality function.  This is called with
499 // Stringpool keys.
500
501 inline bool
502 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
503                                           const Symbol_table_key& k2) const
504 {
505   return k1.first == k2.first && k1.second == k2.second;
506 }
507
508 // For symbols that have been listed with -u option, add them to the
509 // work list to avoid gc'ing them.
510
511 void 
512 Symbol_table::gc_mark_undef_symbols()
513 {
514   for (options::String_set::const_iterator p =
515          parameters->options().undefined_begin();
516        p != parameters->options().undefined_end();
517        ++p)
518     {
519       const char* name = p->c_str();
520       Symbol* sym = this->lookup(name);
521       gold_assert (sym != NULL);
522       if (sym->source() == Symbol::FROM_OBJECT 
523           && !sym->object()->is_dynamic())
524         {
525           Relobj* obj = static_cast<Relobj*>(sym->object());
526           bool is_ordinary;
527           unsigned int shndx = sym->shndx(&is_ordinary);
528           if (is_ordinary)
529             {
530               gold_assert(this->gc_ != NULL);
531               this->gc_->worklist().push(Section_id(obj, shndx));
532             }
533         }
534     }
535 }
536
537 void
538 Symbol_table::gc_mark_symbol_for_shlib(Symbol* sym)
539 {
540   if (!sym->is_from_dynobj() 
541       && sym->is_externally_visible())
542     {
543       //Add the object and section to the work list.
544       Relobj* obj = static_cast<Relobj*>(sym->object());
545       bool is_ordinary;
546       unsigned int shndx = sym->shndx(&is_ordinary);
547       if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
548         {
549           gold_assert(this->gc_!= NULL);
550           this->gc_->worklist().push(Section_id(obj, shndx));
551         }
552     }
553 }
554
555 // When doing garbage collection, keep symbols that have been seen in
556 // dynamic objects.
557 inline void 
558 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
559 {
560   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
561       && !sym->object()->is_dynamic())
562     {
563       Relobj *obj = static_cast<Relobj*>(sym->object()); 
564       bool is_ordinary;
565       unsigned int shndx = sym->shndx(&is_ordinary);
566       if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
567         {
568           gold_assert(this->gc_ != NULL);
569           this->gc_->worklist().push(Section_id(obj, shndx));
570         }
571     }
572 }
573
574 // Make TO a symbol which forwards to FROM.
575
576 void
577 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
578 {
579   gold_assert(from != to);
580   gold_assert(!from->is_forwarder() && !to->is_forwarder());
581   this->forwarders_[from] = to;
582   from->set_forwarder();
583 }
584
585 // Resolve the forwards from FROM, returning the real symbol.
586
587 Symbol*
588 Symbol_table::resolve_forwards(const Symbol* from) const
589 {
590   gold_assert(from->is_forwarder());
591   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
592     this->forwarders_.find(from);
593   gold_assert(p != this->forwarders_.end());
594   return p->second;
595 }
596
597 // Look up a symbol by name.
598
599 Symbol*
600 Symbol_table::lookup(const char* name, const char* version) const
601 {
602   Stringpool::Key name_key;
603   name = this->namepool_.find(name, &name_key);
604   if (name == NULL)
605     return NULL;
606
607   Stringpool::Key version_key = 0;
608   if (version != NULL)
609     {
610       version = this->namepool_.find(version, &version_key);
611       if (version == NULL)
612         return NULL;
613     }
614
615   Symbol_table_key key(name_key, version_key);
616   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
617   if (p == this->table_.end())
618     return NULL;
619   return p->second;
620 }
621
622 // Resolve a Symbol with another Symbol.  This is only used in the
623 // unusual case where there are references to both an unversioned
624 // symbol and a symbol with a version, and we then discover that that
625 // version is the default version.  Because this is unusual, we do
626 // this the slow way, by converting back to an ELF symbol.
627
628 template<int size, bool big_endian>
629 void
630 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
631 {
632   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
633   elfcpp::Sym_write<size, big_endian> esym(buf);
634   // We don't bother to set the st_name or the st_shndx field.
635   esym.put_st_value(from->value());
636   esym.put_st_size(from->symsize());
637   esym.put_st_info(from->binding(), from->type());
638   esym.put_st_other(from->visibility(), from->nonvis());
639   bool is_ordinary;
640   unsigned int shndx = from->shndx(&is_ordinary);
641   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
642                 from->version());
643   if (from->in_reg())
644     to->set_in_reg();
645   if (from->in_dyn())
646     to->set_in_dyn();
647   if (parameters->options().gc_sections())
648     this->gc_mark_dyn_syms(to);
649 }
650
651 // Record that a symbol is forced to be local by a version script.
652
653 void
654 Symbol_table::force_local(Symbol* sym)
655 {
656   if (!sym->is_defined() && !sym->is_common())
657     return;
658   if (sym->is_forced_local())
659     {
660       // We already got this one.
661       return;
662     }
663   sym->set_is_forced_local();
664   this->forced_locals_.push_back(sym);
665 }
666
667 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
668 // is only called for undefined symbols, when at least one --wrap
669 // option was used.
670
671 const char*
672 Symbol_table::wrap_symbol(Object* object, const char* name,
673                           Stringpool::Key* name_key)
674 {
675   // For some targets, we need to ignore a specific character when
676   // wrapping, and add it back later.
677   char prefix = '\0';
678   if (name[0] == object->target()->wrap_char())
679     {
680       prefix = name[0];
681       ++name;
682     }
683
684   if (parameters->options().is_wrap(name))
685     {
686       // Turn NAME into __wrap_NAME.
687       std::string s;
688       if (prefix != '\0')
689         s += prefix;
690       s += "__wrap_";
691       s += name;
692
693       // This will give us both the old and new name in NAMEPOOL_, but
694       // that is OK.  Only the versions we need will wind up in the
695       // real string table in the output file.
696       return this->namepool_.add(s.c_str(), true, name_key);
697     }
698
699   const char* const real_prefix = "__real_";
700   const size_t real_prefix_length = strlen(real_prefix);
701   if (strncmp(name, real_prefix, real_prefix_length) == 0
702       && parameters->options().is_wrap(name + real_prefix_length))
703     {
704       // Turn __real_NAME into NAME.
705       std::string s;
706       if (prefix != '\0')
707         s += prefix;
708       s += name + real_prefix_length;
709       return this->namepool_.add(s.c_str(), true, name_key);
710     }
711
712   return name;
713 }
714
715 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
716 // name and VERSION is the version; both are canonicalized.  DEF is
717 // whether this is the default version.  ST_SHNDX is the symbol's
718 // section index; IS_ORDINARY is whether this is a normal section
719 // rather than a special code.
720
721 // If DEF is true, then this is the definition of a default version of
722 // a symbol.  That means that any lookup of NAME/NULL and any lookup
723 // of NAME/VERSION should always return the same symbol.  This is
724 // obvious for references, but in particular we want to do this for
725 // definitions: overriding NAME/NULL should also override
726 // NAME/VERSION.  If we don't do that, it would be very hard to
727 // override functions in a shared library which uses versioning.
728
729 // We implement this by simply making both entries in the hash table
730 // point to the same Symbol structure.  That is easy enough if this is
731 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
732 // that we have seen both already, in which case they will both have
733 // independent entries in the symbol table.  We can't simply change
734 // the symbol table entry, because we have pointers to the entries
735 // attached to the object files.  So we mark the entry attached to the
736 // object file as a forwarder, and record it in the forwarders_ map.
737 // Note that entries in the hash table will never be marked as
738 // forwarders.
739 //
740 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
741 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
742 // for a special section code.  ST_SHNDX may be modified if the symbol
743 // is defined in a section being discarded.
744
745 template<int size, bool big_endian>
746 Sized_symbol<size>*
747 Symbol_table::add_from_object(Object* object,
748                               const char *name,
749                               Stringpool::Key name_key,
750                               const char *version,
751                               Stringpool::Key version_key,
752                               bool def,
753                               const elfcpp::Sym<size, big_endian>& sym,
754                               unsigned int st_shndx,
755                               bool is_ordinary,
756                               unsigned int orig_st_shndx)
757 {
758   // Print a message if this symbol is being traced.
759   if (parameters->options().is_trace_symbol(name))
760     {
761       if (orig_st_shndx == elfcpp::SHN_UNDEF)
762         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
763       else
764         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
765     }
766
767   // For an undefined symbol, we may need to adjust the name using
768   // --wrap.
769   if (orig_st_shndx == elfcpp::SHN_UNDEF
770       && parameters->options().any_wrap())
771     {
772       const char* wrap_name = this->wrap_symbol(object, name, &name_key);
773       if (wrap_name != name)
774         {
775           // If we see a reference to malloc with version GLIBC_2.0,
776           // and we turn it into a reference to __wrap_malloc, then we
777           // discard the version number.  Otherwise the user would be
778           // required to specify the correct version for
779           // __wrap_malloc.
780           version = NULL;
781           version_key = 0;
782           name = wrap_name;
783         }
784     }
785
786   Symbol* const snull = NULL;
787   std::pair<typename Symbol_table_type::iterator, bool> ins =
788     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
789                                        snull));
790
791   std::pair<typename Symbol_table_type::iterator, bool> insdef =
792     std::make_pair(this->table_.end(), false);
793   if (def)
794     {
795       const Stringpool::Key vnull_key = 0;
796       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
797                                                                  vnull_key),
798                                                   snull));
799     }
800
801   // ins.first: an iterator, which is a pointer to a pair.
802   // ins.first->first: the key (a pair of name and version).
803   // ins.first->second: the value (Symbol*).
804   // ins.second: true if new entry was inserted, false if not.
805
806   Sized_symbol<size>* ret;
807   bool was_undefined;
808   bool was_common;
809   if (!ins.second)
810     {
811       // We already have an entry for NAME/VERSION.
812       ret = this->get_sized_symbol<size>(ins.first->second);
813       gold_assert(ret != NULL);
814
815       was_undefined = ret->is_undefined();
816       was_common = ret->is_common();
817
818       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
819                     version);
820       if (parameters->options().gc_sections())
821         this->gc_mark_dyn_syms(ret);
822
823       if (def)
824         {
825           if (insdef.second)
826             {
827               // This is the first time we have seen NAME/NULL.  Make
828               // NAME/NULL point to NAME/VERSION.
829               insdef.first->second = ret;
830             }
831           else if (insdef.first->second != ret)
832             {
833               // This is the unfortunate case where we already have
834               // entries for both NAME/VERSION and NAME/NULL.  We now
835               // see a symbol NAME/VERSION where VERSION is the
836               // default version.  We have already resolved this new
837               // symbol with the existing NAME/VERSION symbol.
838
839               // It's possible that NAME/NULL and NAME/VERSION are
840               // both defined in regular objects.  This can only
841               // happen if one object file defines foo and another
842               // defines foo@@ver.  This is somewhat obscure, but we
843               // call it a multiple definition error.
844
845               // It's possible that NAME/NULL actually has a version,
846               // in which case it won't be the same as VERSION.  This
847               // happens with ver_test_7.so in the testsuite for the
848               // symbol t2_2.  We see t2_2@@VER2, so we define both
849               // t2_2/VER2 and t2_2/NULL.  We then see an unadorned
850               // t2_2 in an object file and give it version VER1 from
851               // the version script.  This looks like a default
852               // definition for VER1, so it looks like we should merge
853               // t2_2/NULL with t2_2/VER1.  That doesn't make sense,
854               // but it's not obvious that this is an error, either.
855               // So we just punt.
856
857               // If one of the symbols has non-default visibility, and
858               // the other is defined in a shared object, then they
859               // are different symbols.
860
861               // Otherwise, we just resolve the symbols as though they
862               // were the same.
863
864               if (insdef.first->second->version() != NULL)
865                 {
866                   gold_assert(insdef.first->second->version() != version);
867                   def = false;
868                 }
869               else if (ret->visibility() != elfcpp::STV_DEFAULT
870                   && insdef.first->second->is_from_dynobj())
871                 def = false;
872               else if (insdef.first->second->visibility() != elfcpp::STV_DEFAULT
873                        && ret->is_from_dynobj())
874                 def = false;
875               else
876                 {
877                   const Sized_symbol<size>* sym2;
878                   sym2 = this->get_sized_symbol<size>(insdef.first->second);
879                   Symbol_table::resolve<size, big_endian>(ret, sym2);
880                   this->make_forwarder(insdef.first->second, ret);
881                   insdef.first->second = ret;
882                 }
883             }
884           else
885             def = false;
886         }
887     }
888   else
889     {
890       // This is the first time we have seen NAME/VERSION.
891       gold_assert(ins.first->second == NULL);
892
893       if (def && !insdef.second)
894         {
895           // We already have an entry for NAME/NULL.  If we override
896           // it, then change it to NAME/VERSION.
897           ret = this->get_sized_symbol<size>(insdef.first->second);
898
899           was_undefined = ret->is_undefined();
900           was_common = ret->is_common();
901
902           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
903                         version);
904           if (parameters->options().gc_sections())
905             this->gc_mark_dyn_syms(ret);
906           ins.first->second = ret;
907         }
908       else
909         {
910           was_undefined = false;
911           was_common = false;
912
913           Sized_target<size, big_endian>* target =
914             object->sized_target<size, big_endian>();
915           if (!target->has_make_symbol())
916             ret = new Sized_symbol<size>();
917           else
918             {
919               ret = target->make_symbol();
920               if (ret == NULL)
921                 {
922                   // This means that we don't want a symbol table
923                   // entry after all.
924                   if (!def)
925                     this->table_.erase(ins.first);
926                   else
927                     {
928                       this->table_.erase(insdef.first);
929                       // Inserting insdef invalidated ins.
930                       this->table_.erase(std::make_pair(name_key,
931                                                         version_key));
932                     }
933                   return NULL;
934                 }
935             }
936
937           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
938
939           ins.first->second = ret;
940           if (def)
941             {
942               // This is the first time we have seen NAME/NULL.  Point
943               // it at the new entry for NAME/VERSION.
944               gold_assert(insdef.second);
945               insdef.first->second = ret;
946             }
947         }
948     }
949
950   // Record every time we see a new undefined symbol, to speed up
951   // archive groups.
952   if (!was_undefined && ret->is_undefined())
953     ++this->saw_undefined_;
954
955   // Keep track of common symbols, to speed up common symbol
956   // allocation.
957   if (!was_common && ret->is_common())
958     {
959       if (ret->type() != elfcpp::STT_TLS)
960         this->commons_.push_back(ret);
961       else
962         this->tls_commons_.push_back(ret);
963     }
964
965   if (def)
966     ret->set_is_default();
967   return ret;
968 }
969
970 // Add all the symbols in a relocatable object to the hash table.
971
972 template<int size, bool big_endian>
973 void
974 Symbol_table::add_from_relobj(
975     Sized_relobj<size, big_endian>* relobj,
976     const unsigned char* syms,
977     size_t count,
978     size_t symndx_offset,
979     const char* sym_names,
980     size_t sym_name_size,
981     typename Sized_relobj<size, big_endian>::Symbols* sympointers,
982     size_t *defined)
983 {
984   *defined = 0;
985
986   gold_assert(size == relobj->target()->get_size());
987   gold_assert(size == parameters->target().get_size());
988
989   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
990
991   const bool just_symbols = relobj->just_symbols();
992
993   const unsigned char* p = syms;
994   for (size_t i = 0; i < count; ++i, p += sym_size)
995     {
996       (*sympointers)[i] = NULL;
997
998       elfcpp::Sym<size, big_endian> sym(p);
999
1000       unsigned int st_name = sym.get_st_name();
1001       if (st_name >= sym_name_size)
1002         {
1003           relobj->error(_("bad global symbol name offset %u at %zu"),
1004                         st_name, i);
1005           continue;
1006         }
1007
1008       const char* name = sym_names + st_name;
1009
1010       bool is_ordinary;
1011       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1012                                                        sym.get_st_shndx(),
1013                                                        &is_ordinary);
1014       unsigned int orig_st_shndx = st_shndx;
1015       if (!is_ordinary)
1016         orig_st_shndx = elfcpp::SHN_UNDEF;
1017
1018       if (st_shndx != elfcpp::SHN_UNDEF)
1019         ++*defined;
1020
1021       // A symbol defined in a section which we are not including must
1022       // be treated as an undefined symbol.
1023       if (st_shndx != elfcpp::SHN_UNDEF
1024           && is_ordinary
1025           && !relobj->is_section_included(st_shndx))
1026         st_shndx = elfcpp::SHN_UNDEF;
1027
1028       // In an object file, an '@' in the name separates the symbol
1029       // name from the version name.  If there are two '@' characters,
1030       // this is the default version.
1031       const char* ver = strchr(name, '@');
1032       Stringpool::Key ver_key = 0;
1033       int namelen = 0;
1034       // DEF: is the version default?  LOCAL: is the symbol forced local?
1035       bool def = false;
1036       bool local = false;
1037
1038       if (ver != NULL)
1039         {
1040           // The symbol name is of the form foo@VERSION or foo@@VERSION
1041           namelen = ver - name;
1042           ++ver;
1043           if (*ver == '@')
1044             {
1045               def = true;
1046               ++ver;
1047             }
1048           ver = this->namepool_.add(ver, true, &ver_key);
1049         }
1050       // We don't want to assign a version to an undefined symbol,
1051       // even if it is listed in the version script.  FIXME: What
1052       // about a common symbol?
1053       else
1054         {
1055           namelen = strlen(name);
1056           if (!this->version_script_.empty()
1057               && st_shndx != elfcpp::SHN_UNDEF)
1058             {
1059               // The symbol name did not have a version, but the
1060               // version script may assign a version anyway.
1061               std::string version;
1062               if (this->version_script_.get_symbol_version(name, &version))
1063                 {
1064                   // The version can be empty if the version script is
1065                   // only used to force some symbols to be local.
1066                   if (!version.empty())
1067                     {
1068                       ver = this->namepool_.add_with_length(version.c_str(),
1069                                                             version.length(),
1070                                                             true,
1071                                                             &ver_key);
1072                       def = true;
1073                     }
1074                 }
1075               else if (this->version_script_.symbol_is_local(name))
1076                 local = true;
1077             }
1078         }
1079
1080       elfcpp::Sym<size, big_endian>* psym = &sym;
1081       unsigned char symbuf[sym_size];
1082       elfcpp::Sym<size, big_endian> sym2(symbuf);
1083       if (just_symbols)
1084         {
1085           memcpy(symbuf, p, sym_size);
1086           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1087           if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
1088             {
1089               // Symbol values in object files are section relative.
1090               // This is normally what we want, but since here we are
1091               // converting the symbol to absolute we need to add the
1092               // section address.  The section address in an object
1093               // file is normally zero, but people can use a linker
1094               // script to change it.
1095               sw.put_st_value(sym.get_st_value()
1096                               + relobj->section_address(orig_st_shndx));
1097             }
1098           st_shndx = elfcpp::SHN_ABS;
1099           is_ordinary = false;
1100           psym = &sym2;
1101         }
1102
1103       Stringpool::Key name_key;
1104       name = this->namepool_.add_with_length(name, namelen, true,
1105                                              &name_key);
1106
1107       Sized_symbol<size>* res;
1108       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1109                                   def, *psym, st_shndx, is_ordinary,
1110                                   orig_st_shndx);
1111       
1112       // If building a shared library using garbage collection, do not 
1113       // treat externally visible symbols as garbage.
1114       if (parameters->options().gc_sections() 
1115           && parameters->options().shared())
1116         this->gc_mark_symbol_for_shlib(res);
1117
1118       if (local)
1119         this->force_local(res);
1120
1121       (*sympointers)[i] = res;
1122     }
1123 }
1124
1125 // Add a symbol from a plugin-claimed file.
1126
1127 template<int size, bool big_endian>
1128 Symbol*
1129 Symbol_table::add_from_pluginobj(
1130     Sized_pluginobj<size, big_endian>* obj,
1131     const char* name,
1132     const char* ver,
1133     elfcpp::Sym<size, big_endian>* sym)
1134 {
1135   unsigned int st_shndx = sym->get_st_shndx();
1136
1137   Stringpool::Key ver_key = 0;
1138   bool def = false;
1139   bool local = false;
1140
1141   if (ver != NULL)
1142     {
1143       ver = this->namepool_.add(ver, true, &ver_key);
1144     }
1145   // We don't want to assign a version to an undefined symbol,
1146   // even if it is listed in the version script.  FIXME: What
1147   // about a common symbol?
1148   else
1149     {
1150       if (!this->version_script_.empty()
1151           && st_shndx != elfcpp::SHN_UNDEF)
1152         {
1153           // The symbol name did not have a version, but the
1154           // version script may assign a version anyway.
1155           std::string version;
1156           if (this->version_script_.get_symbol_version(name, &version))
1157             {
1158               // The version can be empty if the version script is
1159               // only used to force some symbols to be local.
1160               if (!version.empty())
1161                 {
1162                   ver = this->namepool_.add_with_length(version.c_str(),
1163                                                         version.length(),
1164                                                         true,
1165                                                         &ver_key);
1166                   def = true;
1167                 }
1168             }
1169           else if (this->version_script_.symbol_is_local(name))
1170             local = true;
1171         }
1172     }
1173
1174   Stringpool::Key name_key;
1175   name = this->namepool_.add(name, true, &name_key);
1176
1177   Sized_symbol<size>* res;
1178   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1179                               def, *sym, st_shndx, true, st_shndx);
1180
1181   if (local)
1182         this->force_local(res);
1183
1184   return res;
1185 }
1186
1187 // Add all the symbols in a dynamic object to the hash table.
1188
1189 template<int size, bool big_endian>
1190 void
1191 Symbol_table::add_from_dynobj(
1192     Sized_dynobj<size, big_endian>* dynobj,
1193     const unsigned char* syms,
1194     size_t count,
1195     const char* sym_names,
1196     size_t sym_name_size,
1197     const unsigned char* versym,
1198     size_t versym_size,
1199     const std::vector<const char*>* version_map,
1200     typename Sized_relobj<size, big_endian>::Symbols* sympointers,
1201     size_t* defined)
1202 {
1203   *defined = 0;
1204
1205   gold_assert(size == dynobj->target()->get_size());
1206   gold_assert(size == parameters->target().get_size());
1207
1208   if (dynobj->just_symbols())
1209     {
1210       gold_error(_("--just-symbols does not make sense with a shared object"));
1211       return;
1212     }
1213
1214   if (versym != NULL && versym_size / 2 < count)
1215     {
1216       dynobj->error(_("too few symbol versions"));
1217       return;
1218     }
1219
1220   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1221
1222   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1223   // weak aliases.  This is necessary because if the dynamic object
1224   // provides the same variable under two names, one of which is a
1225   // weak definition, and the regular object refers to the weak
1226   // definition, we have to put both the weak definition and the
1227   // strong definition into the dynamic symbol table.  Given a weak
1228   // definition, the only way that we can find the corresponding
1229   // strong definition, if any, is to search the symbol table.
1230   std::vector<Sized_symbol<size>*> object_symbols;
1231
1232   const unsigned char* p = syms;
1233   const unsigned char* vs = versym;
1234   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1235     {
1236       elfcpp::Sym<size, big_endian> sym(p);
1237
1238       if (sympointers != NULL)
1239         (*sympointers)[i] = NULL;
1240
1241       // Ignore symbols with local binding or that have
1242       // internal or hidden visibility.
1243       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1244           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1245           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1246         continue;
1247
1248       // A protected symbol in a shared library must be treated as a
1249       // normal symbol when viewed from outside the shared library.
1250       // Implement this by overriding the visibility here.
1251       elfcpp::Sym<size, big_endian>* psym = &sym;
1252       unsigned char symbuf[sym_size];
1253       elfcpp::Sym<size, big_endian> sym2(symbuf);
1254       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1255         {
1256           memcpy(symbuf, p, sym_size);
1257           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1258           sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1259           psym = &sym2;
1260         }
1261
1262       unsigned int st_name = psym->get_st_name();
1263       if (st_name >= sym_name_size)
1264         {
1265           dynobj->error(_("bad symbol name offset %u at %zu"),
1266                         st_name, i);
1267           continue;
1268         }
1269
1270       const char* name = sym_names + st_name;
1271
1272       bool is_ordinary;
1273       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1274                                                        &is_ordinary);
1275
1276       if (st_shndx != elfcpp::SHN_UNDEF)
1277         ++*defined;
1278
1279       Sized_symbol<size>* res;
1280
1281       if (versym == NULL)
1282         {
1283           Stringpool::Key name_key;
1284           name = this->namepool_.add(name, true, &name_key);
1285           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1286                                       false, *psym, st_shndx, is_ordinary,
1287                                       st_shndx);
1288         }
1289       else
1290         {
1291           // Read the version information.
1292
1293           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1294
1295           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1296           v &= elfcpp::VERSYM_VERSION;
1297
1298           // The Sun documentation says that V can be VER_NDX_LOCAL,
1299           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1300           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1301           // The old GNU linker will happily generate VER_NDX_LOCAL
1302           // for an undefined symbol.  I don't know what the Sun
1303           // linker will generate.
1304
1305           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1306               && st_shndx != elfcpp::SHN_UNDEF)
1307             {
1308               // This symbol should not be visible outside the object.
1309               continue;
1310             }
1311
1312           // At this point we are definitely going to add this symbol.
1313           Stringpool::Key name_key;
1314           name = this->namepool_.add(name, true, &name_key);
1315
1316           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1317               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1318             {
1319               // This symbol does not have a version.
1320               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1321                                           false, *psym, st_shndx, is_ordinary,
1322                                           st_shndx);
1323             }
1324           else
1325             {
1326               if (v >= version_map->size())
1327                 {
1328                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1329                                 i, v);
1330                   continue;
1331                 }
1332
1333               const char* version = (*version_map)[v];
1334               if (version == NULL)
1335                 {
1336                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1337                                 i, v);
1338                   continue;
1339                 }
1340
1341               Stringpool::Key version_key;
1342               version = this->namepool_.add(version, true, &version_key);
1343
1344               // If this is an absolute symbol, and the version name
1345               // and symbol name are the same, then this is the
1346               // version definition symbol.  These symbols exist to
1347               // support using -u to pull in particular versions.  We
1348               // do not want to record a version for them.
1349               if (st_shndx == elfcpp::SHN_ABS
1350                   && !is_ordinary
1351                   && name_key == version_key)
1352                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1353                                             false, *psym, st_shndx, is_ordinary,
1354                                             st_shndx);
1355               else
1356                 {
1357                   const bool def = (!hidden
1358                                     && st_shndx != elfcpp::SHN_UNDEF);
1359                   res = this->add_from_object(dynobj, name, name_key, version,
1360                                               version_key, def, *psym, st_shndx,
1361                                               is_ordinary, st_shndx);
1362                 }
1363             }
1364         }
1365
1366       // Note that it is possible that RES was overridden by an
1367       // earlier object, in which case it can't be aliased here.
1368       if (st_shndx != elfcpp::SHN_UNDEF
1369           && is_ordinary
1370           && psym->get_st_type() == elfcpp::STT_OBJECT
1371           && res->source() == Symbol::FROM_OBJECT
1372           && res->object() == dynobj)
1373         object_symbols.push_back(res);
1374
1375       if (sympointers != NULL)
1376         (*sympointers)[i] = res;
1377     }
1378
1379   this->record_weak_aliases(&object_symbols);
1380 }
1381
1382 // This is used to sort weak aliases.  We sort them first by section
1383 // index, then by offset, then by weak ahead of strong.
1384
1385 template<int size>
1386 class Weak_alias_sorter
1387 {
1388  public:
1389   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1390 };
1391
1392 template<int size>
1393 bool
1394 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1395                                     const Sized_symbol<size>* s2) const
1396 {
1397   bool is_ordinary;
1398   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1399   gold_assert(is_ordinary);
1400   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1401   gold_assert(is_ordinary);
1402   if (s1_shndx != s2_shndx)
1403     return s1_shndx < s2_shndx;
1404
1405   if (s1->value() != s2->value())
1406     return s1->value() < s2->value();
1407   if (s1->binding() != s2->binding())
1408     {
1409       if (s1->binding() == elfcpp::STB_WEAK)
1410         return true;
1411       if (s2->binding() == elfcpp::STB_WEAK)
1412         return false;
1413     }
1414   return std::string(s1->name()) < std::string(s2->name());
1415 }
1416
1417 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1418 // for any weak aliases, and record them so that if we add the weak
1419 // alias to the dynamic symbol table, we also add the corresponding
1420 // strong symbol.
1421
1422 template<int size>
1423 void
1424 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1425 {
1426   // Sort the vector by section index, then by offset, then by weak
1427   // ahead of strong.
1428   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1429
1430   // Walk through the vector.  For each weak definition, record
1431   // aliases.
1432   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1433          symbols->begin();
1434        p != symbols->end();
1435        ++p)
1436     {
1437       if ((*p)->binding() != elfcpp::STB_WEAK)
1438         continue;
1439
1440       // Build a circular list of weak aliases.  Each symbol points to
1441       // the next one in the circular list.
1442
1443       Sized_symbol<size>* from_sym = *p;
1444       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1445       for (q = p + 1; q != symbols->end(); ++q)
1446         {
1447           bool dummy;
1448           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1449               || (*q)->value() != from_sym->value())
1450             break;
1451
1452           this->weak_aliases_[from_sym] = *q;
1453           from_sym->set_has_alias();
1454           from_sym = *q;
1455         }
1456
1457       if (from_sym != *p)
1458         {
1459           this->weak_aliases_[from_sym] = *p;
1460           from_sym->set_has_alias();
1461         }
1462
1463       p = q - 1;
1464     }
1465 }
1466
1467 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1468 // true, then only create the symbol if there is a reference to it.
1469 // If this does not return NULL, it sets *POLDSYM to the existing
1470 // symbol if there is one.  This canonicalizes *PNAME and *PVERSION.
1471
1472 template<int size, bool big_endian>
1473 Sized_symbol<size>*
1474 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1475                                     bool only_if_ref,
1476                                     Sized_symbol<size>** poldsym)
1477 {
1478   Symbol* oldsym;
1479   Sized_symbol<size>* sym;
1480   bool add_to_table = false;
1481   typename Symbol_table_type::iterator add_loc = this->table_.end();
1482
1483   // If the caller didn't give us a version, see if we get one from
1484   // the version script.
1485   std::string v;
1486   if (*pversion == NULL)
1487     {
1488       if (this->version_script_.get_symbol_version(*pname, &v))
1489         {
1490           if (!v.empty())
1491             *pversion = v.c_str();
1492         }
1493     }
1494
1495   if (only_if_ref)
1496     {
1497       oldsym = this->lookup(*pname, *pversion);
1498       if (oldsym == NULL || !oldsym->is_undefined())
1499         return NULL;
1500
1501       *pname = oldsym->name();
1502       *pversion = oldsym->version();
1503     }
1504   else
1505     {
1506       // Canonicalize NAME and VERSION.
1507       Stringpool::Key name_key;
1508       *pname = this->namepool_.add(*pname, true, &name_key);
1509
1510       Stringpool::Key version_key = 0;
1511       if (*pversion != NULL)
1512         *pversion = this->namepool_.add(*pversion, true, &version_key);
1513
1514       Symbol* const snull = NULL;
1515       std::pair<typename Symbol_table_type::iterator, bool> ins =
1516         this->table_.insert(std::make_pair(std::make_pair(name_key,
1517                                                           version_key),
1518                                            snull));
1519
1520       if (!ins.second)
1521         {
1522           // We already have a symbol table entry for NAME/VERSION.
1523           oldsym = ins.first->second;
1524           gold_assert(oldsym != NULL);
1525         }
1526       else
1527         {
1528           // We haven't seen this symbol before.
1529           gold_assert(ins.first->second == NULL);
1530           add_to_table = true;
1531           add_loc = ins.first;
1532           oldsym = NULL;
1533         }
1534     }
1535
1536   const Target& target = parameters->target();
1537   if (!target.has_make_symbol())
1538     sym = new Sized_symbol<size>();
1539   else
1540     {
1541       gold_assert(target.get_size() == size);
1542       gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1543       typedef Sized_target<size, big_endian> My_target;
1544       const My_target* sized_target =
1545           static_cast<const My_target*>(&target);
1546       sym = sized_target->make_symbol();
1547       if (sym == NULL)
1548         return NULL;
1549     }
1550
1551   if (add_to_table)
1552     add_loc->second = sym;
1553   else
1554     gold_assert(oldsym != NULL);
1555
1556   *poldsym = this->get_sized_symbol<size>(oldsym);
1557
1558   return sym;
1559 }
1560
1561 // Define a symbol based on an Output_data.
1562
1563 Symbol*
1564 Symbol_table::define_in_output_data(const char* name,
1565                                     const char* version,
1566                                     Output_data* od,
1567                                     uint64_t value,
1568                                     uint64_t symsize,
1569                                     elfcpp::STT type,
1570                                     elfcpp::STB binding,
1571                                     elfcpp::STV visibility,
1572                                     unsigned char nonvis,
1573                                     bool offset_is_from_end,
1574                                     bool only_if_ref)
1575 {
1576   if (parameters->target().get_size() == 32)
1577     {
1578 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1579       return this->do_define_in_output_data<32>(name, version, od,
1580                                                 value, symsize, type, binding,
1581                                                 visibility, nonvis,
1582                                                 offset_is_from_end,
1583                                                 only_if_ref);
1584 #else
1585       gold_unreachable();
1586 #endif
1587     }
1588   else if (parameters->target().get_size() == 64)
1589     {
1590 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1591       return this->do_define_in_output_data<64>(name, version, od,
1592                                                 value, symsize, type, binding,
1593                                                 visibility, nonvis,
1594                                                 offset_is_from_end,
1595                                                 only_if_ref);
1596 #else
1597       gold_unreachable();
1598 #endif
1599     }
1600   else
1601     gold_unreachable();
1602 }
1603
1604 // Define a symbol in an Output_data, sized version.
1605
1606 template<int size>
1607 Sized_symbol<size>*
1608 Symbol_table::do_define_in_output_data(
1609     const char* name,
1610     const char* version,
1611     Output_data* od,
1612     typename elfcpp::Elf_types<size>::Elf_Addr value,
1613     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1614     elfcpp::STT type,
1615     elfcpp::STB binding,
1616     elfcpp::STV visibility,
1617     unsigned char nonvis,
1618     bool offset_is_from_end,
1619     bool only_if_ref)
1620 {
1621   Sized_symbol<size>* sym;
1622   Sized_symbol<size>* oldsym;
1623
1624   if (parameters->target().is_big_endian())
1625     {
1626 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1627       sym = this->define_special_symbol<size, true>(&name, &version,
1628                                                     only_if_ref, &oldsym);
1629 #else
1630       gold_unreachable();
1631 #endif
1632     }
1633   else
1634     {
1635 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1636       sym = this->define_special_symbol<size, false>(&name, &version,
1637                                                      only_if_ref, &oldsym);
1638 #else
1639       gold_unreachable();
1640 #endif
1641     }
1642
1643   if (sym == NULL)
1644     return NULL;
1645
1646   sym->init_output_data(name, version, od, value, symsize, type, binding,
1647                         visibility, nonvis, offset_is_from_end);
1648
1649   if (oldsym == NULL)
1650     {
1651       if (binding == elfcpp::STB_LOCAL
1652           || this->version_script_.symbol_is_local(name))
1653         this->force_local(sym);
1654       else if (version != NULL)
1655         sym->set_is_default();
1656       return sym;
1657     }
1658
1659   if (Symbol_table::should_override_with_special(oldsym))
1660     this->override_with_special(oldsym, sym);
1661   delete sym;
1662   return oldsym;
1663 }
1664
1665 // Define a symbol based on an Output_segment.
1666
1667 Symbol*
1668 Symbol_table::define_in_output_segment(const char* name,
1669                                        const char* version, Output_segment* os,
1670                                        uint64_t value,
1671                                        uint64_t symsize,
1672                                        elfcpp::STT type,
1673                                        elfcpp::STB binding,
1674                                        elfcpp::STV visibility,
1675                                        unsigned char nonvis,
1676                                        Symbol::Segment_offset_base offset_base,
1677                                        bool only_if_ref)
1678 {
1679   if (parameters->target().get_size() == 32)
1680     {
1681 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1682       return this->do_define_in_output_segment<32>(name, version, os,
1683                                                    value, symsize, type,
1684                                                    binding, visibility, nonvis,
1685                                                    offset_base, only_if_ref);
1686 #else
1687       gold_unreachable();
1688 #endif
1689     }
1690   else if (parameters->target().get_size() == 64)
1691     {
1692 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1693       return this->do_define_in_output_segment<64>(name, version, os,
1694                                                    value, symsize, type,
1695                                                    binding, visibility, nonvis,
1696                                                    offset_base, only_if_ref);
1697 #else
1698       gold_unreachable();
1699 #endif
1700     }
1701   else
1702     gold_unreachable();
1703 }
1704
1705 // Define a symbol in an Output_segment, sized version.
1706
1707 template<int size>
1708 Sized_symbol<size>*
1709 Symbol_table::do_define_in_output_segment(
1710     const char* name,
1711     const char* version,
1712     Output_segment* os,
1713     typename elfcpp::Elf_types<size>::Elf_Addr value,
1714     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1715     elfcpp::STT type,
1716     elfcpp::STB binding,
1717     elfcpp::STV visibility,
1718     unsigned char nonvis,
1719     Symbol::Segment_offset_base offset_base,
1720     bool only_if_ref)
1721 {
1722   Sized_symbol<size>* sym;
1723   Sized_symbol<size>* oldsym;
1724
1725   if (parameters->target().is_big_endian())
1726     {
1727 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1728       sym = this->define_special_symbol<size, true>(&name, &version,
1729                                                     only_if_ref, &oldsym);
1730 #else
1731       gold_unreachable();
1732 #endif
1733     }
1734   else
1735     {
1736 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1737       sym = this->define_special_symbol<size, false>(&name, &version,
1738                                                      only_if_ref, &oldsym);
1739 #else
1740       gold_unreachable();
1741 #endif
1742     }
1743
1744   if (sym == NULL)
1745     return NULL;
1746
1747   sym->init_output_segment(name, version, os, value, symsize, type, binding,
1748                            visibility, nonvis, offset_base);
1749
1750   if (oldsym == NULL)
1751     {
1752       if (binding == elfcpp::STB_LOCAL
1753           || this->version_script_.symbol_is_local(name))
1754         this->force_local(sym);
1755       else if (version != NULL)
1756         sym->set_is_default();
1757       return sym;
1758     }
1759
1760   if (Symbol_table::should_override_with_special(oldsym))
1761     this->override_with_special(oldsym, sym);
1762   delete sym;
1763   return oldsym;
1764 }
1765
1766 // Define a special symbol with a constant value.  It is a multiple
1767 // definition error if this symbol is already defined.
1768
1769 Symbol*
1770 Symbol_table::define_as_constant(const char* name,
1771                                  const char* version,
1772                                  uint64_t value,
1773                                  uint64_t symsize,
1774                                  elfcpp::STT type,
1775                                  elfcpp::STB binding,
1776                                  elfcpp::STV visibility,
1777                                  unsigned char nonvis,
1778                                  bool only_if_ref,
1779                                  bool force_override)
1780 {
1781   if (parameters->target().get_size() == 32)
1782     {
1783 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1784       return this->do_define_as_constant<32>(name, version, value,
1785                                              symsize, type, binding,
1786                                              visibility, nonvis, only_if_ref,
1787                                              force_override);
1788 #else
1789       gold_unreachable();
1790 #endif
1791     }
1792   else if (parameters->target().get_size() == 64)
1793     {
1794 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1795       return this->do_define_as_constant<64>(name, version, value,
1796                                              symsize, type, binding,
1797                                              visibility, nonvis, only_if_ref,
1798                                              force_override);
1799 #else
1800       gold_unreachable();
1801 #endif
1802     }
1803   else
1804     gold_unreachable();
1805 }
1806
1807 // Define a symbol as a constant, sized version.
1808
1809 template<int size>
1810 Sized_symbol<size>*
1811 Symbol_table::do_define_as_constant(
1812     const char* name,
1813     const char* version,
1814     typename elfcpp::Elf_types<size>::Elf_Addr value,
1815     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1816     elfcpp::STT type,
1817     elfcpp::STB binding,
1818     elfcpp::STV visibility,
1819     unsigned char nonvis,
1820     bool only_if_ref,
1821     bool force_override)
1822 {
1823   Sized_symbol<size>* sym;
1824   Sized_symbol<size>* oldsym;
1825
1826   if (parameters->target().is_big_endian())
1827     {
1828 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1829       sym = this->define_special_symbol<size, true>(&name, &version,
1830                                                     only_if_ref, &oldsym);
1831 #else
1832       gold_unreachable();
1833 #endif
1834     }
1835   else
1836     {
1837 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1838       sym = this->define_special_symbol<size, false>(&name, &version,
1839                                                      only_if_ref, &oldsym);
1840 #else
1841       gold_unreachable();
1842 #endif
1843     }
1844
1845   if (sym == NULL)
1846     return NULL;
1847
1848   sym->init_constant(name, version, value, symsize, type, binding, visibility,
1849                      nonvis);
1850
1851   if (oldsym == NULL)
1852     {
1853       // Version symbols are absolute symbols with name == version.
1854       // We don't want to force them to be local.
1855       if ((version == NULL
1856            || name != version
1857            || value != 0)
1858           && (binding == elfcpp::STB_LOCAL
1859               || this->version_script_.symbol_is_local(name)))
1860         this->force_local(sym);
1861       else if (version != NULL
1862                && (name != version || value != 0))
1863         sym->set_is_default();
1864       return sym;
1865     }
1866
1867   if (force_override || Symbol_table::should_override_with_special(oldsym))
1868     this->override_with_special(oldsym, sym);
1869   delete sym;
1870   return oldsym;
1871 }
1872
1873 // Define a set of symbols in output sections.
1874
1875 void
1876 Symbol_table::define_symbols(const Layout* layout, int count,
1877                              const Define_symbol_in_section* p,
1878                              bool only_if_ref)
1879 {
1880   for (int i = 0; i < count; ++i, ++p)
1881     {
1882       Output_section* os = layout->find_output_section(p->output_section);
1883       if (os != NULL)
1884         this->define_in_output_data(p->name, NULL, os, p->value,
1885                                     p->size, p->type, p->binding,
1886                                     p->visibility, p->nonvis,
1887                                     p->offset_is_from_end,
1888                                     only_if_ref || p->only_if_ref);
1889       else
1890         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1891                                  p->binding, p->visibility, p->nonvis,
1892                                  only_if_ref || p->only_if_ref,
1893                                  false);
1894     }
1895 }
1896
1897 // Define a set of symbols in output segments.
1898
1899 void
1900 Symbol_table::define_symbols(const Layout* layout, int count,
1901                              const Define_symbol_in_segment* p,
1902                              bool only_if_ref)
1903 {
1904   for (int i = 0; i < count; ++i, ++p)
1905     {
1906       Output_segment* os = layout->find_output_segment(p->segment_type,
1907                                                        p->segment_flags_set,
1908                                                        p->segment_flags_clear);
1909       if (os != NULL)
1910         this->define_in_output_segment(p->name, NULL, os, p->value,
1911                                        p->size, p->type, p->binding,
1912                                        p->visibility, p->nonvis,
1913                                        p->offset_base,
1914                                        only_if_ref || p->only_if_ref);
1915       else
1916         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1917                                  p->binding, p->visibility, p->nonvis,
1918                                  only_if_ref || p->only_if_ref,
1919                                  false);
1920     }
1921 }
1922
1923 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
1924 // symbol should be defined--typically a .dyn.bss section.  VALUE is
1925 // the offset within POSD.
1926
1927 template<int size>
1928 void
1929 Symbol_table::define_with_copy_reloc(
1930     Sized_symbol<size>* csym,
1931     Output_data* posd,
1932     typename elfcpp::Elf_types<size>::Elf_Addr value)
1933 {
1934   gold_assert(csym->is_from_dynobj());
1935   gold_assert(!csym->is_copied_from_dynobj());
1936   Object* object = csym->object();
1937   gold_assert(object->is_dynamic());
1938   Dynobj* dynobj = static_cast<Dynobj*>(object);
1939
1940   // Our copied variable has to override any variable in a shared
1941   // library.
1942   elfcpp::STB binding = csym->binding();
1943   if (binding == elfcpp::STB_WEAK)
1944     binding = elfcpp::STB_GLOBAL;
1945
1946   this->define_in_output_data(csym->name(), csym->version(),
1947                               posd, value, csym->symsize(),
1948                               csym->type(), binding,
1949                               csym->visibility(), csym->nonvis(),
1950                               false, false);
1951
1952   csym->set_is_copied_from_dynobj();
1953   csym->set_needs_dynsym_entry();
1954
1955   this->copied_symbol_dynobjs_[csym] = dynobj;
1956
1957   // We have now defined all aliases, but we have not entered them all
1958   // in the copied_symbol_dynobjs_ map.
1959   if (csym->has_alias())
1960     {
1961       Symbol* sym = csym;
1962       while (true)
1963         {
1964           sym = this->weak_aliases_[sym];
1965           if (sym == csym)
1966             break;
1967           gold_assert(sym->output_data() == posd);
1968
1969           sym->set_is_copied_from_dynobj();
1970           this->copied_symbol_dynobjs_[sym] = dynobj;
1971         }
1972     }
1973 }
1974
1975 // SYM is defined using a COPY reloc.  Return the dynamic object where
1976 // the original definition was found.
1977
1978 Dynobj*
1979 Symbol_table::get_copy_source(const Symbol* sym) const
1980 {
1981   gold_assert(sym->is_copied_from_dynobj());
1982   Copied_symbol_dynobjs::const_iterator p =
1983     this->copied_symbol_dynobjs_.find(sym);
1984   gold_assert(p != this->copied_symbol_dynobjs_.end());
1985   return p->second;
1986 }
1987
1988 // Add any undefined symbols named on the command line.
1989
1990 void
1991 Symbol_table::add_undefined_symbols_from_command_line()
1992 {
1993   if (parameters->options().any_undefined())
1994     {
1995       if (parameters->target().get_size() == 32)
1996         {
1997 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1998           this->do_add_undefined_symbols_from_command_line<32>();
1999 #else
2000           gold_unreachable();
2001 #endif
2002         }
2003       else if (parameters->target().get_size() == 64)
2004         {
2005 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2006           this->do_add_undefined_symbols_from_command_line<64>();
2007 #else
2008           gold_unreachable();
2009 #endif
2010         }
2011       else
2012         gold_unreachable();
2013     }
2014 }
2015
2016 template<int size>
2017 void
2018 Symbol_table::do_add_undefined_symbols_from_command_line()
2019 {
2020   for (options::String_set::const_iterator p =
2021          parameters->options().undefined_begin();
2022        p != parameters->options().undefined_end();
2023        ++p)
2024     {
2025       const char* name = p->c_str();
2026
2027       if (this->lookup(name) != NULL)
2028         continue;
2029
2030       const char* version = NULL;
2031
2032       Sized_symbol<size>* sym;
2033       Sized_symbol<size>* oldsym;
2034       if (parameters->target().is_big_endian())
2035         {
2036 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2037           sym = this->define_special_symbol<size, true>(&name, &version,
2038                                                         false, &oldsym);
2039 #else
2040           gold_unreachable();
2041 #endif
2042         }
2043       else
2044         {
2045 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2046           sym = this->define_special_symbol<size, false>(&name, &version,
2047                                                          false, &oldsym);
2048 #else
2049           gold_unreachable();
2050 #endif
2051         }
2052
2053       gold_assert(oldsym == NULL);
2054
2055       sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2056                           elfcpp::STV_DEFAULT, 0);
2057       ++this->saw_undefined_;
2058     }
2059 }
2060
2061 // Set the dynamic symbol indexes.  INDEX is the index of the first
2062 // global dynamic symbol.  Pointers to the symbols are stored into the
2063 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2064 // updated dynamic symbol index.
2065
2066 unsigned int
2067 Symbol_table::set_dynsym_indexes(unsigned int index,
2068                                  std::vector<Symbol*>* syms,
2069                                  Stringpool* dynpool,
2070                                  Versions* versions)
2071 {
2072   for (Symbol_table_type::iterator p = this->table_.begin();
2073        p != this->table_.end();
2074        ++p)
2075     {
2076       Symbol* sym = p->second;
2077
2078       // Note that SYM may already have a dynamic symbol index, since
2079       // some symbols appear more than once in the symbol table, with
2080       // and without a version.
2081
2082       if (!sym->should_add_dynsym_entry())
2083         sym->set_dynsym_index(-1U);
2084       else if (!sym->has_dynsym_index())
2085         {
2086           sym->set_dynsym_index(index);
2087           ++index;
2088           syms->push_back(sym);
2089           dynpool->add(sym->name(), false, NULL);
2090
2091           // Record any version information.
2092           if (sym->version() != NULL)
2093             versions->record_version(this, dynpool, sym);
2094         }
2095     }
2096
2097   // Finish up the versions.  In some cases this may add new dynamic
2098   // symbols.
2099   index = versions->finalize(this, index, syms);
2100
2101   return index;
2102 }
2103
2104 // Set the final values for all the symbols.  The index of the first
2105 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2106 // file offset OFF.  Add their names to POOL.  Return the new file
2107 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2108
2109 off_t
2110 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2111                        size_t dyncount, Stringpool* pool,
2112                        unsigned int *plocal_symcount)
2113 {
2114   off_t ret;
2115
2116   gold_assert(*plocal_symcount != 0);
2117   this->first_global_index_ = *plocal_symcount;
2118
2119   this->dynamic_offset_ = dynoff;
2120   this->first_dynamic_global_index_ = dyn_global_index;
2121   this->dynamic_count_ = dyncount;
2122
2123   if (parameters->target().get_size() == 32)
2124     {
2125 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2126       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2127 #else
2128       gold_unreachable();
2129 #endif
2130     }
2131   else if (parameters->target().get_size() == 64)
2132     {
2133 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2134       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2135 #else
2136       gold_unreachable();
2137 #endif
2138     }
2139   else
2140     gold_unreachable();
2141
2142   // Now that we have the final symbol table, we can reliably note
2143   // which symbols should get warnings.
2144   this->warnings_.note_warnings(this);
2145
2146   return ret;
2147 }
2148
2149 // SYM is going into the symbol table at *PINDEX.  Add the name to
2150 // POOL, update *PINDEX and *POFF.
2151
2152 template<int size>
2153 void
2154 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2155                                   unsigned int* pindex, off_t* poff)
2156 {
2157   sym->set_symtab_index(*pindex);
2158   pool->add(sym->name(), false, NULL);
2159   ++*pindex;
2160   *poff += elfcpp::Elf_sizes<size>::sym_size;
2161 }
2162
2163 // Set the final value for all the symbols.  This is called after
2164 // Layout::finalize, so all the output sections have their final
2165 // address.
2166
2167 template<int size>
2168 off_t
2169 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2170                              unsigned int* plocal_symcount)
2171 {
2172   off = align_address(off, size >> 3);
2173   this->offset_ = off;
2174
2175   unsigned int index = *plocal_symcount;
2176   const unsigned int orig_index = index;
2177
2178   // First do all the symbols which have been forced to be local, as
2179   // they must appear before all global symbols.
2180   for (Forced_locals::iterator p = this->forced_locals_.begin();
2181        p != this->forced_locals_.end();
2182        ++p)
2183     {
2184       Symbol* sym = *p;
2185       gold_assert(sym->is_forced_local());
2186       if (this->sized_finalize_symbol<size>(sym))
2187         {
2188           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2189           ++*plocal_symcount;
2190         }
2191     }
2192
2193   // Now do all the remaining symbols.
2194   for (Symbol_table_type::iterator p = this->table_.begin();
2195        p != this->table_.end();
2196        ++p)
2197     {
2198       Symbol* sym = p->second;
2199       if (this->sized_finalize_symbol<size>(sym))
2200         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2201     }
2202
2203   this->output_count_ = index - orig_index;
2204
2205   return off;
2206 }
2207
2208 // Finalize the symbol SYM.  This returns true if the symbol should be
2209 // added to the symbol table, false otherwise.
2210
2211 template<int size>
2212 bool
2213 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2214 {
2215   typedef typename Sized_symbol<size>::Value_type Value_type;
2216
2217   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2218
2219   // The default version of a symbol may appear twice in the symbol
2220   // table.  We only need to finalize it once.
2221   if (sym->has_symtab_index())
2222     return false;
2223
2224   if (!sym->in_reg())
2225     {
2226       gold_assert(!sym->has_symtab_index());
2227       sym->set_symtab_index(-1U);
2228       gold_assert(sym->dynsym_index() == -1U);
2229       return false;
2230     }
2231
2232   Value_type value;
2233
2234   switch (sym->source())
2235     {
2236     case Symbol::FROM_OBJECT:
2237       {
2238         bool is_ordinary;
2239         unsigned int shndx = sym->shndx(&is_ordinary);
2240
2241         // FIXME: We need some target specific support here.
2242         if (!is_ordinary
2243             && shndx != elfcpp::SHN_ABS
2244             && shndx != elfcpp::SHN_COMMON)
2245           {
2246             gold_error(_("%s: unsupported symbol section 0x%x"),
2247                        sym->demangled_name().c_str(), shndx);
2248             shndx = elfcpp::SHN_UNDEF;
2249           }
2250
2251         Object* symobj = sym->object();
2252         if (symobj->is_dynamic())
2253           {
2254             value = 0;
2255             shndx = elfcpp::SHN_UNDEF;
2256           }
2257         else if (symobj->pluginobj() != NULL)
2258           {
2259             value = 0;
2260             shndx = elfcpp::SHN_UNDEF;
2261           }
2262         else if (shndx == elfcpp::SHN_UNDEF)
2263           value = 0;
2264         else if (!is_ordinary
2265                  && (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON))
2266           value = sym->value();
2267         else
2268           {
2269             Relobj* relobj = static_cast<Relobj*>(symobj);
2270             Output_section* os = relobj->output_section(shndx);
2271
2272             if (os == NULL)
2273               {
2274                 sym->set_symtab_index(-1U);
2275                 bool static_or_reloc = (parameters->doing_static_link() ||
2276                                         parameters->options().relocatable());
2277                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2278
2279                 return false;
2280               }
2281
2282             uint64_t secoff64 = relobj->output_section_offset(shndx);
2283             if (secoff64 == -1ULL)
2284               {
2285                 // The section needs special handling (e.g., a merge section).
2286                 value = os->output_address(relobj, shndx, sym->value());
2287               }
2288             else
2289               {
2290                 Value_type secoff =
2291                   convert_types<Value_type, uint64_t>(secoff64);
2292                 if (sym->type() == elfcpp::STT_TLS)
2293                   value = sym->value() + os->tls_offset() + secoff;
2294                 else
2295                   value = sym->value() + os->address() + secoff;
2296               }
2297           }
2298       }
2299       break;
2300
2301     case Symbol::IN_OUTPUT_DATA:
2302       {
2303         Output_data* od = sym->output_data();
2304         value = sym->value();
2305         if (sym->type() != elfcpp::STT_TLS)
2306           value += od->address();
2307         else
2308           {
2309             Output_section* os = od->output_section();
2310             gold_assert(os != NULL);
2311             value += os->tls_offset() + (od->address() - os->address());
2312           }
2313         if (sym->offset_is_from_end())
2314           value += od->data_size();
2315       }
2316       break;
2317
2318     case Symbol::IN_OUTPUT_SEGMENT:
2319       {
2320         Output_segment* os = sym->output_segment();
2321         value = sym->value();
2322         if (sym->type() != elfcpp::STT_TLS)
2323           value += os->vaddr();
2324         switch (sym->offset_base())
2325           {
2326           case Symbol::SEGMENT_START:
2327             break;
2328           case Symbol::SEGMENT_END:
2329             value += os->memsz();
2330             break;
2331           case Symbol::SEGMENT_BSS:
2332             value += os->filesz();
2333             break;
2334           default:
2335             gold_unreachable();
2336           }
2337       }
2338       break;
2339
2340     case Symbol::IS_CONSTANT:
2341       value = sym->value();
2342       break;
2343
2344     case Symbol::IS_UNDEFINED:
2345       value = 0;
2346       break;
2347
2348     default:
2349       gold_unreachable();
2350     }
2351
2352   sym->set_value(value);
2353
2354   if (parameters->options().strip_all())
2355     {
2356       sym->set_symtab_index(-1U);
2357       return false;
2358     }
2359
2360   return true;
2361 }
2362
2363 // Write out the global symbols.
2364
2365 void
2366 Symbol_table::write_globals(const Input_objects* input_objects,
2367                             const Stringpool* sympool,
2368                             const Stringpool* dynpool,
2369                             Output_symtab_xindex* symtab_xindex,
2370                             Output_symtab_xindex* dynsym_xindex,
2371                             Output_file* of) const
2372 {
2373   switch (parameters->size_and_endianness())
2374     {
2375 #ifdef HAVE_TARGET_32_LITTLE
2376     case Parameters::TARGET_32_LITTLE:
2377       this->sized_write_globals<32, false>(input_objects, sympool,
2378                                            dynpool, symtab_xindex,
2379                                            dynsym_xindex, of);
2380       break;
2381 #endif
2382 #ifdef HAVE_TARGET_32_BIG
2383     case Parameters::TARGET_32_BIG:
2384       this->sized_write_globals<32, true>(input_objects, sympool,
2385                                           dynpool, symtab_xindex,
2386                                           dynsym_xindex, of);
2387       break;
2388 #endif
2389 #ifdef HAVE_TARGET_64_LITTLE
2390     case Parameters::TARGET_64_LITTLE:
2391       this->sized_write_globals<64, false>(input_objects, sympool,
2392                                            dynpool, symtab_xindex,
2393                                            dynsym_xindex, of);
2394       break;
2395 #endif
2396 #ifdef HAVE_TARGET_64_BIG
2397     case Parameters::TARGET_64_BIG:
2398       this->sized_write_globals<64, true>(input_objects, sympool,
2399                                           dynpool, symtab_xindex,
2400                                           dynsym_xindex, of);
2401       break;
2402 #endif
2403     default:
2404       gold_unreachable();
2405     }
2406 }
2407
2408 // Write out the global symbols.
2409
2410 template<int size, bool big_endian>
2411 void
2412 Symbol_table::sized_write_globals(const Input_objects* input_objects,
2413                                   const Stringpool* sympool,
2414                                   const Stringpool* dynpool,
2415                                   Output_symtab_xindex* symtab_xindex,
2416                                   Output_symtab_xindex* dynsym_xindex,
2417                                   Output_file* of) const
2418 {
2419   const Target& target = parameters->target();
2420
2421   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2422
2423   const unsigned int output_count = this->output_count_;
2424   const section_size_type oview_size = output_count * sym_size;
2425   const unsigned int first_global_index = this->first_global_index_;
2426   unsigned char* psyms;
2427   if (this->offset_ == 0 || output_count == 0)
2428     psyms = NULL;
2429   else
2430     psyms = of->get_output_view(this->offset_, oview_size);
2431
2432   const unsigned int dynamic_count = this->dynamic_count_;
2433   const section_size_type dynamic_size = dynamic_count * sym_size;
2434   const unsigned int first_dynamic_global_index =
2435     this->first_dynamic_global_index_;
2436   unsigned char* dynamic_view;
2437   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2438     dynamic_view = NULL;
2439   else
2440     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2441
2442   for (Symbol_table_type::const_iterator p = this->table_.begin();
2443        p != this->table_.end();
2444        ++p)
2445     {
2446       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2447
2448       // Possibly warn about unresolved symbols in shared libraries.
2449       this->warn_about_undefined_dynobj_symbol(input_objects, sym);
2450
2451       unsigned int sym_index = sym->symtab_index();
2452       unsigned int dynsym_index;
2453       if (dynamic_view == NULL)
2454         dynsym_index = -1U;
2455       else
2456         dynsym_index = sym->dynsym_index();
2457
2458       if (sym_index == -1U && dynsym_index == -1U)
2459         {
2460           // This symbol is not included in the output file.
2461           continue;
2462         }
2463
2464       unsigned int shndx;
2465       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2466       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2467       switch (sym->source())
2468         {
2469         case Symbol::FROM_OBJECT:
2470           {
2471             bool is_ordinary;
2472             unsigned int in_shndx = sym->shndx(&is_ordinary);
2473
2474             // FIXME: We need some target specific support here.
2475             if (!is_ordinary
2476                 && in_shndx != elfcpp::SHN_ABS
2477                 && in_shndx != elfcpp::SHN_COMMON)
2478               {
2479                 gold_error(_("%s: unsupported symbol section 0x%x"),
2480                            sym->demangled_name().c_str(), in_shndx);
2481                 shndx = in_shndx;
2482               }
2483             else
2484               {
2485                 Object* symobj = sym->object();
2486                 if (symobj->is_dynamic())
2487                   {
2488                     if (sym->needs_dynsym_value())
2489                       dynsym_value = target.dynsym_value(sym);
2490                     shndx = elfcpp::SHN_UNDEF;
2491                   }
2492                 else if (symobj->pluginobj() != NULL)
2493                   shndx = elfcpp::SHN_UNDEF;
2494                 else if (in_shndx == elfcpp::SHN_UNDEF
2495                          || (!is_ordinary
2496                              && (in_shndx == elfcpp::SHN_ABS
2497                                  || in_shndx == elfcpp::SHN_COMMON)))
2498                   shndx = in_shndx;
2499                 else
2500                   {
2501                     Relobj* relobj = static_cast<Relobj*>(symobj);
2502                     Output_section* os = relobj->output_section(in_shndx);
2503                     gold_assert(os != NULL);
2504                     shndx = os->out_shndx();
2505
2506                     if (shndx >= elfcpp::SHN_LORESERVE)
2507                       {
2508                         if (sym_index != -1U)
2509                           symtab_xindex->add(sym_index, shndx);
2510                         if (dynsym_index != -1U)
2511                           dynsym_xindex->add(dynsym_index, shndx);
2512                         shndx = elfcpp::SHN_XINDEX;
2513                       }
2514
2515                     // In object files symbol values are section
2516                     // relative.
2517                     if (parameters->options().relocatable())
2518                       sym_value -= os->address();
2519                   }
2520               }
2521           }
2522           break;
2523
2524         case Symbol::IN_OUTPUT_DATA:
2525           shndx = sym->output_data()->out_shndx();
2526           if (shndx >= elfcpp::SHN_LORESERVE)
2527             {
2528               if (sym_index != -1U)
2529                 symtab_xindex->add(sym_index, shndx);
2530               if (dynsym_index != -1U)
2531                 dynsym_xindex->add(dynsym_index, shndx);
2532               shndx = elfcpp::SHN_XINDEX;
2533             }
2534           break;
2535
2536         case Symbol::IN_OUTPUT_SEGMENT:
2537           shndx = elfcpp::SHN_ABS;
2538           break;
2539
2540         case Symbol::IS_CONSTANT:
2541           shndx = elfcpp::SHN_ABS;
2542           break;
2543
2544         case Symbol::IS_UNDEFINED:
2545           shndx = elfcpp::SHN_UNDEF;
2546           break;
2547
2548         default:
2549           gold_unreachable();
2550         }
2551
2552       if (sym_index != -1U)
2553         {
2554           sym_index -= first_global_index;
2555           gold_assert(sym_index < output_count);
2556           unsigned char* ps = psyms + (sym_index * sym_size);
2557           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2558                                                      sympool, ps);
2559         }
2560
2561       if (dynsym_index != -1U)
2562         {
2563           dynsym_index -= first_dynamic_global_index;
2564           gold_assert(dynsym_index < dynamic_count);
2565           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2566           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2567                                                      dynpool, pd);
2568         }
2569     }
2570
2571   of->write_output_view(this->offset_, oview_size, psyms);
2572   if (dynamic_view != NULL)
2573     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2574 }
2575
2576 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
2577 // strtab holding the name.
2578
2579 template<int size, bool big_endian>
2580 void
2581 Symbol_table::sized_write_symbol(
2582     Sized_symbol<size>* sym,
2583     typename elfcpp::Elf_types<size>::Elf_Addr value,
2584     unsigned int shndx,
2585     const Stringpool* pool,
2586     unsigned char* p) const
2587 {
2588   elfcpp::Sym_write<size, big_endian> osym(p);
2589   osym.put_st_name(pool->get_offset(sym->name()));
2590   osym.put_st_value(value);
2591   // Use a symbol size of zero for undefined symbols from shared libraries.
2592   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2593     osym.put_st_size(0);
2594   else
2595     osym.put_st_size(sym->symsize());
2596   // A version script may have overridden the default binding.
2597   if (sym->is_forced_local())
2598     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2599   else
2600     osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
2601   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2602   osym.put_st_shndx(shndx);
2603 }
2604
2605 // Check for unresolved symbols in shared libraries.  This is
2606 // controlled by the --allow-shlib-undefined option.
2607
2608 // We only warn about libraries for which we have seen all the
2609 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
2610 // which were not seen in this link.  If we didn't see a DT_NEEDED
2611 // entry, we aren't going to be able to reliably report whether the
2612 // symbol is undefined.
2613
2614 // We also don't warn about libraries found in the system library
2615 // directory (the directory were we find libc.so); we assume that
2616 // those libraries are OK.  This heuristic avoids problems in
2617 // GNU/Linux, in which -ldl can have undefined references satisfied by
2618 // ld-linux.so.
2619
2620 inline void
2621 Symbol_table::warn_about_undefined_dynobj_symbol(
2622     const Input_objects* input_objects,
2623     Symbol* sym) const
2624 {
2625   bool dummy;
2626   if (sym->source() == Symbol::FROM_OBJECT
2627       && sym->object()->is_dynamic()
2628       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2629       && sym->binding() != elfcpp::STB_WEAK
2630       && !parameters->options().allow_shlib_undefined()
2631       && !parameters->target().is_defined_by_abi(sym)
2632       && !input_objects->found_in_system_library_directory(sym->object()))
2633     {
2634       // A very ugly cast.
2635       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2636       if (!dynobj->has_unknown_needed_entries())
2637         {
2638           if (sym->version())
2639             gold_error(_("%s: undefined reference to '%s', version '%s'"),
2640                        sym->object()->name().c_str(),
2641                        sym->demangled_name().c_str(),
2642                        sym->version());
2643           else
2644             gold_error(_("%s: undefined reference to '%s'"),
2645                        sym->object()->name().c_str(),
2646                        sym->demangled_name().c_str());
2647         }
2648     }
2649 }
2650
2651 // Write out a section symbol.  Return the update offset.
2652
2653 void
2654 Symbol_table::write_section_symbol(const Output_section *os,
2655                                    Output_symtab_xindex* symtab_xindex,
2656                                    Output_file* of,
2657                                    off_t offset) const
2658 {
2659   switch (parameters->size_and_endianness())
2660     {
2661 #ifdef HAVE_TARGET_32_LITTLE
2662     case Parameters::TARGET_32_LITTLE:
2663       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
2664                                                   offset);
2665       break;
2666 #endif
2667 #ifdef HAVE_TARGET_32_BIG
2668     case Parameters::TARGET_32_BIG:
2669       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
2670                                                  offset);
2671       break;
2672 #endif
2673 #ifdef HAVE_TARGET_64_LITTLE
2674     case Parameters::TARGET_64_LITTLE:
2675       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
2676                                                   offset);
2677       break;
2678 #endif
2679 #ifdef HAVE_TARGET_64_BIG
2680     case Parameters::TARGET_64_BIG:
2681       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
2682                                                  offset);
2683       break;
2684 #endif
2685     default:
2686       gold_unreachable();
2687     }
2688 }
2689
2690 // Write out a section symbol, specialized for size and endianness.
2691
2692 template<int size, bool big_endian>
2693 void
2694 Symbol_table::sized_write_section_symbol(const Output_section* os,
2695                                          Output_symtab_xindex* symtab_xindex,
2696                                          Output_file* of,
2697                                          off_t offset) const
2698 {
2699   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2700
2701   unsigned char* pov = of->get_output_view(offset, sym_size);
2702
2703   elfcpp::Sym_write<size, big_endian> osym(pov);
2704   osym.put_st_name(0);
2705   osym.put_st_value(os->address());
2706   osym.put_st_size(0);
2707   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2708                                        elfcpp::STT_SECTION));
2709   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2710
2711   unsigned int shndx = os->out_shndx();
2712   if (shndx >= elfcpp::SHN_LORESERVE)
2713     {
2714       symtab_xindex->add(os->symtab_index(), shndx);
2715       shndx = elfcpp::SHN_XINDEX;
2716     }
2717   osym.put_st_shndx(shndx);
2718
2719   of->write_output_view(offset, sym_size, pov);
2720 }
2721
2722 // Print statistical information to stderr.  This is used for --stats.
2723
2724 void
2725 Symbol_table::print_stats() const
2726 {
2727 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2728   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2729           program_name, this->table_.size(), this->table_.bucket_count());
2730 #else
2731   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2732           program_name, this->table_.size());
2733 #endif
2734   this->namepool_.print_stats("symbol table stringpool");
2735 }
2736
2737 // We check for ODR violations by looking for symbols with the same
2738 // name for which the debugging information reports that they were
2739 // defined in different source locations.  When comparing the source
2740 // location, we consider instances with the same base filename and
2741 // line number to be the same.  This is because different object
2742 // files/shared libraries can include the same header file using
2743 // different paths, and we don't want to report an ODR violation in
2744 // that case.
2745
2746 // This struct is used to compare line information, as returned by
2747 // Dwarf_line_info::one_addr2line.  It implements a < comparison
2748 // operator used with std::set.
2749
2750 struct Odr_violation_compare
2751 {
2752   bool
2753   operator()(const std::string& s1, const std::string& s2) const
2754   {
2755     std::string::size_type pos1 = s1.rfind('/');
2756     std::string::size_type pos2 = s2.rfind('/');
2757     if (pos1 == std::string::npos
2758         || pos2 == std::string::npos)
2759       return s1 < s2;
2760     return s1.compare(pos1, std::string::npos,
2761                       s2, pos2, std::string::npos) < 0;
2762   }
2763 };
2764
2765 // Check candidate_odr_violations_ to find symbols with the same name
2766 // but apparently different definitions (different source-file/line-no).
2767
2768 void
2769 Symbol_table::detect_odr_violations(const Task* task,
2770                                     const char* output_file_name) const
2771 {
2772   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2773        it != candidate_odr_violations_.end();
2774        ++it)
2775     {
2776       const char* symbol_name = it->first;
2777       // We use a sorted set so the output is deterministic.
2778       std::set<std::string, Odr_violation_compare> line_nums;
2779
2780       for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2781                locs = it->second.begin();
2782            locs != it->second.end();
2783            ++locs)
2784         {
2785           // We need to lock the object in order to read it.  This
2786           // means that we have to run in a singleton Task.  If we
2787           // want to run this in a general Task for better
2788           // performance, we will need one Task for object, plus
2789           // appropriate locking to ensure that we don't conflict with
2790           // other uses of the object.  Also note, one_addr2line is not
2791           // currently thread-safe.
2792           Task_lock_obj<Object> tl(task, locs->object);
2793           // 16 is the size of the object-cache that one_addr2line should use.
2794           std::string lineno = Dwarf_line_info::one_addr2line(
2795               locs->object, locs->shndx, locs->offset, 16);
2796           if (!lineno.empty())
2797             line_nums.insert(lineno);
2798         }
2799
2800       if (line_nums.size() > 1)
2801         {
2802           gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2803                          "places (possible ODR violation):"),
2804                        output_file_name, demangle(symbol_name).c_str());
2805           for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2806                it2 != line_nums.end();
2807                ++it2)
2808             fprintf(stderr, "  %s\n", it2->c_str());
2809         }
2810     }
2811   // We only call one_addr2line() in this function, so we can clear its cache.
2812   Dwarf_line_info::clear_addr2line_cache();
2813 }
2814
2815 // Warnings functions.
2816
2817 // Add a new warning.
2818
2819 void
2820 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2821                       const std::string& warning)
2822 {
2823   name = symtab->canonicalize_name(name);
2824   this->warnings_[name].set(obj, warning);
2825 }
2826
2827 // Look through the warnings and mark the symbols for which we should
2828 // warn.  This is called during Layout::finalize when we know the
2829 // sources for all the symbols.
2830
2831 void
2832 Warnings::note_warnings(Symbol_table* symtab)
2833 {
2834   for (Warning_table::iterator p = this->warnings_.begin();
2835        p != this->warnings_.end();
2836        ++p)
2837     {
2838       Symbol* sym = symtab->lookup(p->first, NULL);
2839       if (sym != NULL
2840           && sym->source() == Symbol::FROM_OBJECT
2841           && sym->object() == p->second.object)
2842         sym->set_has_warning();
2843     }
2844 }
2845
2846 // Issue a warning.  This is called when we see a relocation against a
2847 // symbol for which has a warning.
2848
2849 template<int size, bool big_endian>
2850 void
2851 Warnings::issue_warning(const Symbol* sym,
2852                         const Relocate_info<size, big_endian>* relinfo,
2853                         size_t relnum, off_t reloffset) const
2854 {
2855   gold_assert(sym->has_warning());
2856   Warning_table::const_iterator p = this->warnings_.find(sym->name());
2857   gold_assert(p != this->warnings_.end());
2858   gold_warning_at_location(relinfo, relnum, reloffset,
2859                            "%s", p->second.text.c_str());
2860 }
2861
2862 // Instantiate the templates we need.  We could use the configure
2863 // script to restrict this to only the ones needed for implemented
2864 // targets.
2865
2866 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2867 template
2868 void
2869 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2870 #endif
2871
2872 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2873 template
2874 void
2875 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2876 #endif
2877
2878 #ifdef HAVE_TARGET_32_LITTLE
2879 template
2880 void
2881 Symbol_table::add_from_relobj<32, false>(
2882     Sized_relobj<32, false>* relobj,
2883     const unsigned char* syms,
2884     size_t count,
2885     size_t symndx_offset,
2886     const char* sym_names,
2887     size_t sym_name_size,
2888     Sized_relobj<32, false>::Symbols* sympointers,
2889     size_t* defined);
2890 #endif
2891
2892 #ifdef HAVE_TARGET_32_BIG
2893 template
2894 void
2895 Symbol_table::add_from_relobj<32, true>(
2896     Sized_relobj<32, true>* relobj,
2897     const unsigned char* syms,
2898     size_t count,
2899     size_t symndx_offset,
2900     const char* sym_names,
2901     size_t sym_name_size,
2902     Sized_relobj<32, true>::Symbols* sympointers,
2903     size_t* defined);
2904 #endif
2905
2906 #ifdef HAVE_TARGET_64_LITTLE
2907 template
2908 void
2909 Symbol_table::add_from_relobj<64, false>(
2910     Sized_relobj<64, false>* relobj,
2911     const unsigned char* syms,
2912     size_t count,
2913     size_t symndx_offset,
2914     const char* sym_names,
2915     size_t sym_name_size,
2916     Sized_relobj<64, false>::Symbols* sympointers,
2917     size_t* defined);
2918 #endif
2919
2920 #ifdef HAVE_TARGET_64_BIG
2921 template
2922 void
2923 Symbol_table::add_from_relobj<64, true>(
2924     Sized_relobj<64, true>* relobj,
2925     const unsigned char* syms,
2926     size_t count,
2927     size_t symndx_offset,
2928     const char* sym_names,
2929     size_t sym_name_size,
2930     Sized_relobj<64, true>::Symbols* sympointers,
2931     size_t* defined);
2932 #endif
2933
2934 #ifdef HAVE_TARGET_32_LITTLE
2935 template
2936 Symbol*
2937 Symbol_table::add_from_pluginobj<32, false>(
2938     Sized_pluginobj<32, false>* obj,
2939     const char* name,
2940     const char* ver,
2941     elfcpp::Sym<32, false>* sym);
2942 #endif
2943
2944 #ifdef HAVE_TARGET_32_BIG
2945 template
2946 Symbol*
2947 Symbol_table::add_from_pluginobj<32, true>(
2948     Sized_pluginobj<32, true>* obj,
2949     const char* name,
2950     const char* ver,
2951     elfcpp::Sym<32, true>* sym);
2952 #endif
2953
2954 #ifdef HAVE_TARGET_64_LITTLE
2955 template
2956 Symbol*
2957 Symbol_table::add_from_pluginobj<64, false>(
2958     Sized_pluginobj<64, false>* obj,
2959     const char* name,
2960     const char* ver,
2961     elfcpp::Sym<64, false>* sym);
2962 #endif
2963
2964 #ifdef HAVE_TARGET_64_BIG
2965 template
2966 Symbol*
2967 Symbol_table::add_from_pluginobj<64, true>(
2968     Sized_pluginobj<64, true>* obj,
2969     const char* name,
2970     const char* ver,
2971     elfcpp::Sym<64, true>* sym);
2972 #endif
2973
2974 #ifdef HAVE_TARGET_32_LITTLE
2975 template
2976 void
2977 Symbol_table::add_from_dynobj<32, false>(
2978     Sized_dynobj<32, false>* dynobj,
2979     const unsigned char* syms,
2980     size_t count,
2981     const char* sym_names,
2982     size_t sym_name_size,
2983     const unsigned char* versym,
2984     size_t versym_size,
2985     const std::vector<const char*>* version_map,
2986     Sized_relobj<32, false>::Symbols* sympointers,
2987     size_t* defined);
2988 #endif
2989
2990 #ifdef HAVE_TARGET_32_BIG
2991 template
2992 void
2993 Symbol_table::add_from_dynobj<32, true>(
2994     Sized_dynobj<32, true>* dynobj,
2995     const unsigned char* syms,
2996     size_t count,
2997     const char* sym_names,
2998     size_t sym_name_size,
2999     const unsigned char* versym,
3000     size_t versym_size,
3001     const std::vector<const char*>* version_map,
3002     Sized_relobj<32, true>::Symbols* sympointers,
3003     size_t* defined);
3004 #endif
3005
3006 #ifdef HAVE_TARGET_64_LITTLE
3007 template
3008 void
3009 Symbol_table::add_from_dynobj<64, false>(
3010     Sized_dynobj<64, false>* dynobj,
3011     const unsigned char* syms,
3012     size_t count,
3013     const char* sym_names,
3014     size_t sym_name_size,
3015     const unsigned char* versym,
3016     size_t versym_size,
3017     const std::vector<const char*>* version_map,
3018     Sized_relobj<64, false>::Symbols* sympointers,
3019     size_t* defined);
3020 #endif
3021
3022 #ifdef HAVE_TARGET_64_BIG
3023 template
3024 void
3025 Symbol_table::add_from_dynobj<64, true>(
3026     Sized_dynobj<64, true>* dynobj,
3027     const unsigned char* syms,
3028     size_t count,
3029     const char* sym_names,
3030     size_t sym_name_size,
3031     const unsigned char* versym,
3032     size_t versym_size,
3033     const std::vector<const char*>* version_map,
3034     Sized_relobj<64, true>::Symbols* sympointers,
3035     size_t* defined);
3036 #endif
3037
3038 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3039 template
3040 void
3041 Symbol_table::define_with_copy_reloc<32>(
3042     Sized_symbol<32>* sym,
3043     Output_data* posd,
3044     elfcpp::Elf_types<32>::Elf_Addr value);
3045 #endif
3046
3047 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3048 template
3049 void
3050 Symbol_table::define_with_copy_reloc<64>(
3051     Sized_symbol<64>* sym,
3052     Output_data* posd,
3053     elfcpp::Elf_types<64>::Elf_Addr value);
3054 #endif
3055
3056 #ifdef HAVE_TARGET_32_LITTLE
3057 template
3058 void
3059 Warnings::issue_warning<32, false>(const Symbol* sym,
3060                                    const Relocate_info<32, false>* relinfo,
3061                                    size_t relnum, off_t reloffset) const;
3062 #endif
3063
3064 #ifdef HAVE_TARGET_32_BIG
3065 template
3066 void
3067 Warnings::issue_warning<32, true>(const Symbol* sym,
3068                                   const Relocate_info<32, true>* relinfo,
3069                                   size_t relnum, off_t reloffset) const;
3070 #endif
3071
3072 #ifdef HAVE_TARGET_64_LITTLE
3073 template
3074 void
3075 Warnings::issue_warning<64, false>(const Symbol* sym,
3076                                    const Relocate_info<64, false>* relinfo,
3077                                    size_t relnum, off_t reloffset) const;
3078 #endif
3079
3080 #ifdef HAVE_TARGET_64_BIG
3081 template
3082 void
3083 Warnings::issue_warning<64, true>(const Symbol* sym,
3084                                   const Relocate_info<64, true>* relinfo,
3085                                   size_t relnum, off_t reloffset) const;
3086 #endif
3087
3088 } // End namespace gold.