2009-05-19 Doug Kwan <dougkwan@google.com>
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "demangle.h"   // needed for --dynamic-list-cpp-new
42 #include "plugin.h"
43
44 namespace gold
45 {
46
47 // Class Symbol.
48
49 // Initialize fields in Symbol.  This initializes everything except u_
50 // and source_.
51
52 void
53 Symbol::init_fields(const char* name, const char* version,
54                     elfcpp::STT type, elfcpp::STB binding,
55                     elfcpp::STV visibility, unsigned char nonvis)
56 {
57   this->name_ = name;
58   this->version_ = version;
59   this->symtab_index_ = 0;
60   this->dynsym_index_ = 0;
61   this->got_offsets_.init();
62   this->plt_offset_ = 0;
63   this->type_ = type;
64   this->binding_ = binding;
65   this->visibility_ = visibility;
66   this->nonvis_ = nonvis;
67   this->is_target_special_ = false;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_plt_offset_ = false;
75   this->has_warning_ = false;
76   this->is_copied_from_dynobj_ = false;
77   this->is_forced_local_ = false;
78   this->is_ordinary_shndx_ = false;
79   this->in_real_elf_ = false;
80 }
81
82 // Return the demangled version of the symbol's name, but only
83 // if the --demangle flag was set.
84
85 static std::string
86 demangle(const char* name)
87 {
88   if (!parameters->options().do_demangle())
89     return name;
90
91   // cplus_demangle allocates memory for the result it returns,
92   // and returns NULL if the name is already demangled.
93   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
94   if (demangled_name == NULL)
95     return name;
96
97   std::string retval(demangled_name);
98   free(demangled_name);
99   return retval;
100 }
101
102 std::string
103 Symbol::demangled_name() const
104 {
105   return demangle(this->name());
106 }
107
108 // Initialize the fields in the base class Symbol for SYM in OBJECT.
109
110 template<int size, bool big_endian>
111 void
112 Symbol::init_base_object(const char* name, const char* version, Object* object,
113                          const elfcpp::Sym<size, big_endian>& sym,
114                          unsigned int st_shndx, bool is_ordinary)
115 {
116   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
117                     sym.get_st_visibility(), sym.get_st_nonvis());
118   this->u_.from_object.object = object;
119   this->u_.from_object.shndx = st_shndx;
120   this->is_ordinary_shndx_ = is_ordinary;
121   this->source_ = FROM_OBJECT;
122   this->in_reg_ = !object->is_dynamic();
123   this->in_dyn_ = object->is_dynamic();
124   this->in_real_elf_ = object->pluginobj() == NULL;
125 }
126
127 // Initialize the fields in the base class Symbol for a symbol defined
128 // in an Output_data.
129
130 void
131 Symbol::init_base_output_data(const char* name, const char* version,
132                               Output_data* od, elfcpp::STT type,
133                               elfcpp::STB binding, elfcpp::STV visibility,
134                               unsigned char nonvis, bool offset_is_from_end)
135 {
136   this->init_fields(name, version, type, binding, visibility, nonvis);
137   this->u_.in_output_data.output_data = od;
138   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
139   this->source_ = IN_OUTPUT_DATA;
140   this->in_reg_ = true;
141   this->in_real_elf_ = true;
142 }
143
144 // Initialize the fields in the base class Symbol for a symbol defined
145 // in an Output_segment.
146
147 void
148 Symbol::init_base_output_segment(const char* name, const char* version,
149                                  Output_segment* os, elfcpp::STT type,
150                                  elfcpp::STB binding, elfcpp::STV visibility,
151                                  unsigned char nonvis,
152                                  Segment_offset_base offset_base)
153 {
154   this->init_fields(name, version, type, binding, visibility, nonvis);
155   this->u_.in_output_segment.output_segment = os;
156   this->u_.in_output_segment.offset_base = offset_base;
157   this->source_ = IN_OUTPUT_SEGMENT;
158   this->in_reg_ = true;
159   this->in_real_elf_ = true;
160 }
161
162 // Initialize the fields in the base class Symbol for a symbol defined
163 // as a constant.
164
165 void
166 Symbol::init_base_constant(const char* name, const char* version,
167                            elfcpp::STT type, elfcpp::STB binding,
168                            elfcpp::STV visibility, unsigned char nonvis)
169 {
170   this->init_fields(name, version, type, binding, visibility, nonvis);
171   this->source_ = IS_CONSTANT;
172   this->in_reg_ = true;
173   this->in_real_elf_ = true;
174 }
175
176 // Initialize the fields in the base class Symbol for an undefined
177 // symbol.
178
179 void
180 Symbol::init_base_undefined(const char* name, const char* version,
181                             elfcpp::STT type, elfcpp::STB binding,
182                             elfcpp::STV visibility, unsigned char nonvis)
183 {
184   this->init_fields(name, version, type, binding, visibility, nonvis);
185   this->dynsym_index_ = -1U;
186   this->source_ = IS_UNDEFINED;
187   this->in_reg_ = true;
188   this->in_real_elf_ = true;
189 }
190
191 // Allocate a common symbol in the base.
192
193 void
194 Symbol::allocate_base_common(Output_data* od)
195 {
196   gold_assert(this->is_common());
197   this->source_ = IN_OUTPUT_DATA;
198   this->u_.in_output_data.output_data = od;
199   this->u_.in_output_data.offset_is_from_end = false;
200 }
201
202 // Initialize the fields in Sized_symbol for SYM in OBJECT.
203
204 template<int size>
205 template<bool big_endian>
206 void
207 Sized_symbol<size>::init_object(const char* name, const char* version,
208                                 Object* object,
209                                 const elfcpp::Sym<size, big_endian>& sym,
210                                 unsigned int st_shndx, bool is_ordinary)
211 {
212   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
213   this->value_ = sym.get_st_value();
214   this->symsize_ = sym.get_st_size();
215 }
216
217 // Initialize the fields in Sized_symbol for a symbol defined in an
218 // Output_data.
219
220 template<int size>
221 void
222 Sized_symbol<size>::init_output_data(const char* name, const char* version,
223                                      Output_data* od, Value_type value,
224                                      Size_type symsize, elfcpp::STT type,
225                                      elfcpp::STB binding,
226                                      elfcpp::STV visibility,
227                                      unsigned char nonvis,
228                                      bool offset_is_from_end)
229 {
230   this->init_base_output_data(name, version, od, type, binding, visibility,
231                               nonvis, offset_is_from_end);
232   this->value_ = value;
233   this->symsize_ = symsize;
234 }
235
236 // Initialize the fields in Sized_symbol for a symbol defined in an
237 // Output_segment.
238
239 template<int size>
240 void
241 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
242                                         Output_segment* os, Value_type value,
243                                         Size_type symsize, elfcpp::STT type,
244                                         elfcpp::STB binding,
245                                         elfcpp::STV visibility,
246                                         unsigned char nonvis,
247                                         Segment_offset_base offset_base)
248 {
249   this->init_base_output_segment(name, version, os, type, binding, visibility,
250                                  nonvis, offset_base);
251   this->value_ = value;
252   this->symsize_ = symsize;
253 }
254
255 // Initialize the fields in Sized_symbol for a symbol defined as a
256 // constant.
257
258 template<int size>
259 void
260 Sized_symbol<size>::init_constant(const char* name, const char* version,
261                                   Value_type value, Size_type symsize,
262                                   elfcpp::STT type, elfcpp::STB binding,
263                                   elfcpp::STV visibility, unsigned char nonvis)
264 {
265   this->init_base_constant(name, version, type, binding, visibility, nonvis);
266   this->value_ = value;
267   this->symsize_ = symsize;
268 }
269
270 // Initialize the fields in Sized_symbol for an undefined symbol.
271
272 template<int size>
273 void
274 Sized_symbol<size>::init_undefined(const char* name, const char* version,
275                                    elfcpp::STT type, elfcpp::STB binding,
276                                    elfcpp::STV visibility, unsigned char nonvis)
277 {
278   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
279   this->value_ = 0;
280   this->symsize_ = 0;
281 }
282
283 // Allocate a common symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
288 {
289   this->allocate_base_common(od);
290   this->value_ = value;
291 }
292
293 // The ""'s around str ensure str is a string literal, so sizeof works.
294 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
295
296 // Return true if this symbol should be added to the dynamic symbol
297 // table.
298
299 inline bool
300 Symbol::should_add_dynsym_entry() const
301 {
302   // If the symbol is used by a dynamic relocation, we need to add it.
303   if (this->needs_dynsym_entry())
304     return true;
305
306   // If this symbol's section is not added, the symbol need not be added. 
307   // The section may have been GCed.  Note that export_dynamic is being 
308   // overridden here.  This should not be done for shared objects.
309   if (parameters->options().gc_sections() 
310       && !parameters->options().shared()
311       && this->source() == Symbol::FROM_OBJECT
312       && !this->object()->is_dynamic())
313     {
314       Relobj* relobj = static_cast<Relobj*>(this->object());
315       bool is_ordinary;
316       unsigned int shndx = this->shndx(&is_ordinary);
317       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
318           && !relobj->is_section_included(shndx))
319         return false;
320     }
321
322   // If the symbol was forced local in a version script, do not add it.
323   if (this->is_forced_local())
324     return false;
325
326   // If the symbol was forced dynamic in a --dynamic-list file, add it.
327   if (parameters->options().in_dynamic_list(this->name()))
328     return true;
329
330   // If dynamic-list-data was specified, add any STT_OBJECT.
331   if (parameters->options().dynamic_list_data()
332       && !this->is_from_dynobj()
333       && this->type() == elfcpp::STT_OBJECT)
334     return true;
335
336   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
337   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
338   if ((parameters->options().dynamic_list_cpp_new()
339        || parameters->options().dynamic_list_cpp_typeinfo())
340       && !this->is_from_dynobj())
341     {
342       // TODO(csilvers): We could probably figure out if we're an operator
343       //                 new/delete or typeinfo without the need to demangle.
344       char* demangled_name = cplus_demangle(this->name(),
345                                             DMGL_ANSI | DMGL_PARAMS);
346       if (demangled_name == NULL)
347         {
348           // Not a C++ symbol, so it can't satisfy these flags
349         }
350       else if (parameters->options().dynamic_list_cpp_new()
351                && (strprefix(demangled_name, "operator new")
352                    || strprefix(demangled_name, "operator delete")))
353         {
354           free(demangled_name);
355           return true;
356         }
357       else if (parameters->options().dynamic_list_cpp_typeinfo()
358                && (strprefix(demangled_name, "typeinfo name for")
359                    || strprefix(demangled_name, "typeinfo for")))
360         {
361           free(demangled_name);
362           return true;
363         }
364       else
365         free(demangled_name);
366     }
367
368   // If exporting all symbols or building a shared library,
369   // and the symbol is defined in a regular object and is
370   // externally visible, we need to add it.
371   if ((parameters->options().export_dynamic() || parameters->options().shared())
372       && !this->is_from_dynobj()
373       && this->is_externally_visible())
374     return true;
375
376   return false;
377 }
378
379 // Return true if the final value of this symbol is known at link
380 // time.
381
382 bool
383 Symbol::final_value_is_known() const
384 {
385   // If we are not generating an executable, then no final values are
386   // known, since they will change at runtime.
387   if (parameters->options().shared() || parameters->options().relocatable())
388     return false;
389
390   // If the symbol is not from an object file, and is not undefined,
391   // then it is defined, and known.
392   if (this->source_ != FROM_OBJECT)
393     {
394       if (this->source_ != IS_UNDEFINED)
395         return true;
396     }
397   else
398     {
399       // If the symbol is from a dynamic object, then the final value
400       // is not known.
401       if (this->object()->is_dynamic())
402         return false;
403
404       // If the symbol is not undefined (it is defined or common),
405       // then the final value is known.
406       if (!this->is_undefined())
407         return true;
408     }
409
410   // If the symbol is undefined, then whether the final value is known
411   // depends on whether we are doing a static link.  If we are doing a
412   // dynamic link, then the final value could be filled in at runtime.
413   // This could reasonably be the case for a weak undefined symbol.
414   return parameters->doing_static_link();
415 }
416
417 // Return the output section where this symbol is defined.
418
419 Output_section*
420 Symbol::output_section() const
421 {
422   switch (this->source_)
423     {
424     case FROM_OBJECT:
425       {
426         unsigned int shndx = this->u_.from_object.shndx;
427         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
428           {
429             gold_assert(!this->u_.from_object.object->is_dynamic());
430             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
431             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
432             return relobj->output_section(shndx);
433           }
434         return NULL;
435       }
436
437     case IN_OUTPUT_DATA:
438       return this->u_.in_output_data.output_data->output_section();
439
440     case IN_OUTPUT_SEGMENT:
441     case IS_CONSTANT:
442     case IS_UNDEFINED:
443       return NULL;
444
445     default:
446       gold_unreachable();
447     }
448 }
449
450 // Set the symbol's output section.  This is used for symbols defined
451 // in scripts.  This should only be called after the symbol table has
452 // been finalized.
453
454 void
455 Symbol::set_output_section(Output_section* os)
456 {
457   switch (this->source_)
458     {
459     case FROM_OBJECT:
460     case IN_OUTPUT_DATA:
461       gold_assert(this->output_section() == os);
462       break;
463     case IS_CONSTANT:
464       this->source_ = IN_OUTPUT_DATA;
465       this->u_.in_output_data.output_data = os;
466       this->u_.in_output_data.offset_is_from_end = false;
467       break;
468     case IN_OUTPUT_SEGMENT:
469     case IS_UNDEFINED:
470     default:
471       gold_unreachable();
472     }
473 }
474
475 // Class Symbol_table.
476
477 Symbol_table::Symbol_table(unsigned int count,
478                            const Version_script_info& version_script)
479   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
480     forwarders_(), commons_(), tls_commons_(), forced_locals_(), warnings_(),
481     version_script_(version_script), gc_(NULL)
482 {
483   namepool_.reserve(count);
484 }
485
486 Symbol_table::~Symbol_table()
487 {
488 }
489
490 // The hash function.  The key values are Stringpool keys.
491
492 inline size_t
493 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
494 {
495   return key.first ^ key.second;
496 }
497
498 // The symbol table key equality function.  This is called with
499 // Stringpool keys.
500
501 inline bool
502 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
503                                           const Symbol_table_key& k2) const
504 {
505   return k1.first == k2.first && k1.second == k2.second;
506 }
507
508 // For symbols that have been listed with -u option, add them to the
509 // work list to avoid gc'ing them.
510
511 void 
512 Symbol_table::gc_mark_undef_symbols()
513 {
514   for (options::String_set::const_iterator p =
515          parameters->options().undefined_begin();
516        p != parameters->options().undefined_end();
517        ++p)
518     {
519       const char* name = p->c_str();
520       Symbol* sym = this->lookup(name);
521       gold_assert (sym != NULL);
522       if (sym->source() == Symbol::FROM_OBJECT 
523           && !sym->object()->is_dynamic())
524         {
525           Relobj* obj = static_cast<Relobj*>(sym->object());
526           bool is_ordinary;
527           unsigned int shndx = sym->shndx(&is_ordinary);
528           if (is_ordinary)
529             {
530               gold_assert(this->gc_ != NULL);
531               this->gc_->worklist().push(Section_id(obj, shndx));
532             }
533         }
534     }
535 }
536
537 void
538 Symbol_table::gc_mark_symbol_for_shlib(Symbol* sym)
539 {
540   if (!sym->is_from_dynobj() 
541       && sym->is_externally_visible())
542     {
543       //Add the object and section to the work list.
544       Relobj* obj = static_cast<Relobj*>(sym->object());
545       bool is_ordinary;
546       unsigned int shndx = sym->shndx(&is_ordinary);
547       if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
548         {
549           gold_assert(this->gc_!= NULL);
550           this->gc_->worklist().push(Section_id(obj, shndx));
551         }
552     }
553 }
554
555 // When doing garbage collection, keep symbols that have been seen in
556 // dynamic objects.
557 inline void 
558 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
559 {
560   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
561       && !sym->object()->is_dynamic())
562     {
563       Relobj *obj = static_cast<Relobj*>(sym->object()); 
564       bool is_ordinary;
565       unsigned int shndx = sym->shndx(&is_ordinary);
566       if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
567         {
568           gold_assert(this->gc_ != NULL);
569           this->gc_->worklist().push(Section_id(obj, shndx));
570         }
571     }
572 }
573
574 // Make TO a symbol which forwards to FROM.
575
576 void
577 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
578 {
579   gold_assert(from != to);
580   gold_assert(!from->is_forwarder() && !to->is_forwarder());
581   this->forwarders_[from] = to;
582   from->set_forwarder();
583 }
584
585 // Resolve the forwards from FROM, returning the real symbol.
586
587 Symbol*
588 Symbol_table::resolve_forwards(const Symbol* from) const
589 {
590   gold_assert(from->is_forwarder());
591   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
592     this->forwarders_.find(from);
593   gold_assert(p != this->forwarders_.end());
594   return p->second;
595 }
596
597 // Look up a symbol by name.
598
599 Symbol*
600 Symbol_table::lookup(const char* name, const char* version) const
601 {
602   Stringpool::Key name_key;
603   name = this->namepool_.find(name, &name_key);
604   if (name == NULL)
605     return NULL;
606
607   Stringpool::Key version_key = 0;
608   if (version != NULL)
609     {
610       version = this->namepool_.find(version, &version_key);
611       if (version == NULL)
612         return NULL;
613     }
614
615   Symbol_table_key key(name_key, version_key);
616   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
617   if (p == this->table_.end())
618     return NULL;
619   return p->second;
620 }
621
622 // Resolve a Symbol with another Symbol.  This is only used in the
623 // unusual case where there are references to both an unversioned
624 // symbol and a symbol with a version, and we then discover that that
625 // version is the default version.  Because this is unusual, we do
626 // this the slow way, by converting back to an ELF symbol.
627
628 template<int size, bool big_endian>
629 void
630 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
631 {
632   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
633   elfcpp::Sym_write<size, big_endian> esym(buf);
634   // We don't bother to set the st_name or the st_shndx field.
635   esym.put_st_value(from->value());
636   esym.put_st_size(from->symsize());
637   esym.put_st_info(from->binding(), from->type());
638   esym.put_st_other(from->visibility(), from->nonvis());
639   bool is_ordinary;
640   unsigned int shndx = from->shndx(&is_ordinary);
641   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
642                 from->version());
643   if (from->in_reg())
644     to->set_in_reg();
645   if (from->in_dyn())
646     to->set_in_dyn();
647   if (parameters->options().gc_sections())
648     this->gc_mark_dyn_syms(to);
649 }
650
651 // Record that a symbol is forced to be local by a version script or
652 // by visibility.
653
654 void
655 Symbol_table::force_local(Symbol* sym)
656 {
657   if (!sym->is_defined() && !sym->is_common())
658     return;
659   if (sym->is_forced_local())
660     {
661       // We already got this one.
662       return;
663     }
664   sym->set_is_forced_local();
665   this->forced_locals_.push_back(sym);
666 }
667
668 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
669 // is only called for undefined symbols, when at least one --wrap
670 // option was used.
671
672 const char*
673 Symbol_table::wrap_symbol(Object* object, const char* name,
674                           Stringpool::Key* name_key)
675 {
676   // For some targets, we need to ignore a specific character when
677   // wrapping, and add it back later.
678   char prefix = '\0';
679   if (name[0] == object->target()->wrap_char())
680     {
681       prefix = name[0];
682       ++name;
683     }
684
685   if (parameters->options().is_wrap(name))
686     {
687       // Turn NAME into __wrap_NAME.
688       std::string s;
689       if (prefix != '\0')
690         s += prefix;
691       s += "__wrap_";
692       s += name;
693
694       // This will give us both the old and new name in NAMEPOOL_, but
695       // that is OK.  Only the versions we need will wind up in the
696       // real string table in the output file.
697       return this->namepool_.add(s.c_str(), true, name_key);
698     }
699
700   const char* const real_prefix = "__real_";
701   const size_t real_prefix_length = strlen(real_prefix);
702   if (strncmp(name, real_prefix, real_prefix_length) == 0
703       && parameters->options().is_wrap(name + real_prefix_length))
704     {
705       // Turn __real_NAME into NAME.
706       std::string s;
707       if (prefix != '\0')
708         s += prefix;
709       s += name + real_prefix_length;
710       return this->namepool_.add(s.c_str(), true, name_key);
711     }
712
713   return name;
714 }
715
716 // This is called when we see a symbol NAME/VERSION, and the symbol
717 // already exists in the symbol table, and VERSION is marked as being
718 // the default version.  SYM is the NAME/VERSION symbol we just added.
719 // DEFAULT_IS_NEW is true if this is the first time we have seen the
720 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
721
722 template<int size, bool big_endian>
723 void
724 Symbol_table::define_default_version(Sized_symbol<size>* sym,
725                                      bool default_is_new,
726                                      Symbol_table_type::iterator pdef)
727 {
728   if (default_is_new)
729     {
730       // This is the first time we have seen NAME/NULL.  Make
731       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
732       // version.
733       pdef->second = sym;
734       sym->set_is_default();
735     }
736   else if (pdef->second == sym)
737     {
738       // NAME/NULL already points to NAME/VERSION.  Don't mark the
739       // symbol as the default if it is not already the default.
740     }
741   else
742     {
743       // This is the unfortunate case where we already have entries
744       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
745       // NAME/VERSION where VERSION is the default version.  We have
746       // already resolved this new symbol with the existing
747       // NAME/VERSION symbol.
748
749       // It's possible that NAME/NULL and NAME/VERSION are both
750       // defined in regular objects.  This can only happen if one
751       // object file defines foo and another defines foo@@ver.  This
752       // is somewhat obscure, but we call it a multiple definition
753       // error.
754
755       // It's possible that NAME/NULL actually has a version, in which
756       // case it won't be the same as VERSION.  This happens with
757       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
758       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
759       // then see an unadorned t2_2 in an object file and give it
760       // version VER1 from the version script.  This looks like a
761       // default definition for VER1, so it looks like we should merge
762       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
763       // not obvious that this is an error, either.  So we just punt.
764
765       // If one of the symbols has non-default visibility, and the
766       // other is defined in a shared object, then they are different
767       // symbols.
768
769       // Otherwise, we just resolve the symbols as though they were
770       // the same.
771
772       if (pdef->second->version() != NULL)
773         gold_assert(pdef->second->version() != sym->version());
774       else if (sym->visibility() != elfcpp::STV_DEFAULT
775                && pdef->second->is_from_dynobj())
776         ;
777       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
778                && sym->is_from_dynobj())
779         ;
780       else
781         {
782           const Sized_symbol<size>* symdef;
783           symdef = this->get_sized_symbol<size>(pdef->second);
784           Symbol_table::resolve<size, big_endian>(sym, symdef);
785           this->make_forwarder(pdef->second, sym);
786           pdef->second = sym;
787           sym->set_is_default();
788         }
789     }
790 }
791
792 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
793 // name and VERSION is the version; both are canonicalized.  DEF is
794 // whether this is the default version.  ST_SHNDX is the symbol's
795 // section index; IS_ORDINARY is whether this is a normal section
796 // rather than a special code.
797
798 // If DEF is true, then this is the definition of a default version of
799 // a symbol.  That means that any lookup of NAME/NULL and any lookup
800 // of NAME/VERSION should always return the same symbol.  This is
801 // obvious for references, but in particular we want to do this for
802 // definitions: overriding NAME/NULL should also override
803 // NAME/VERSION.  If we don't do that, it would be very hard to
804 // override functions in a shared library which uses versioning.
805
806 // We implement this by simply making both entries in the hash table
807 // point to the same Symbol structure.  That is easy enough if this is
808 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
809 // that we have seen both already, in which case they will both have
810 // independent entries in the symbol table.  We can't simply change
811 // the symbol table entry, because we have pointers to the entries
812 // attached to the object files.  So we mark the entry attached to the
813 // object file as a forwarder, and record it in the forwarders_ map.
814 // Note that entries in the hash table will never be marked as
815 // forwarders.
816 //
817 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
818 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
819 // for a special section code.  ST_SHNDX may be modified if the symbol
820 // is defined in a section being discarded.
821
822 template<int size, bool big_endian>
823 Sized_symbol<size>*
824 Symbol_table::add_from_object(Object* object,
825                               const char *name,
826                               Stringpool::Key name_key,
827                               const char *version,
828                               Stringpool::Key version_key,
829                               bool def,
830                               const elfcpp::Sym<size, big_endian>& sym,
831                               unsigned int st_shndx,
832                               bool is_ordinary,
833                               unsigned int orig_st_shndx)
834 {
835   // Print a message if this symbol is being traced.
836   if (parameters->options().is_trace_symbol(name))
837     {
838       if (orig_st_shndx == elfcpp::SHN_UNDEF)
839         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
840       else
841         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
842     }
843
844   // For an undefined symbol, we may need to adjust the name using
845   // --wrap.
846   if (orig_st_shndx == elfcpp::SHN_UNDEF
847       && parameters->options().any_wrap())
848     {
849       const char* wrap_name = this->wrap_symbol(object, name, &name_key);
850       if (wrap_name != name)
851         {
852           // If we see a reference to malloc with version GLIBC_2.0,
853           // and we turn it into a reference to __wrap_malloc, then we
854           // discard the version number.  Otherwise the user would be
855           // required to specify the correct version for
856           // __wrap_malloc.
857           version = NULL;
858           version_key = 0;
859           name = wrap_name;
860         }
861     }
862
863   Symbol* const snull = NULL;
864   std::pair<typename Symbol_table_type::iterator, bool> ins =
865     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
866                                        snull));
867
868   std::pair<typename Symbol_table_type::iterator, bool> insdef =
869     std::make_pair(this->table_.end(), false);
870   if (def)
871     {
872       const Stringpool::Key vnull_key = 0;
873       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
874                                                                  vnull_key),
875                                                   snull));
876     }
877
878   // ins.first: an iterator, which is a pointer to a pair.
879   // ins.first->first: the key (a pair of name and version).
880   // ins.first->second: the value (Symbol*).
881   // ins.second: true if new entry was inserted, false if not.
882
883   Sized_symbol<size>* ret;
884   bool was_undefined;
885   bool was_common;
886   if (!ins.second)
887     {
888       // We already have an entry for NAME/VERSION.
889       ret = this->get_sized_symbol<size>(ins.first->second);
890       gold_assert(ret != NULL);
891
892       was_undefined = ret->is_undefined();
893       was_common = ret->is_common();
894
895       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
896                     version);
897       if (parameters->options().gc_sections())
898         this->gc_mark_dyn_syms(ret);
899
900       if (def)
901         this->define_default_version<size, big_endian>(ret, insdef.second,
902                                                        insdef.first);
903     }
904   else
905     {
906       // This is the first time we have seen NAME/VERSION.
907       gold_assert(ins.first->second == NULL);
908
909       if (def && !insdef.second)
910         {
911           // We already have an entry for NAME/NULL.  If we override
912           // it, then change it to NAME/VERSION.
913           ret = this->get_sized_symbol<size>(insdef.first->second);
914
915           was_undefined = ret->is_undefined();
916           was_common = ret->is_common();
917
918           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
919                         version);
920           if (parameters->options().gc_sections())
921             this->gc_mark_dyn_syms(ret);
922           ins.first->second = ret;
923         }
924       else
925         {
926           was_undefined = false;
927           was_common = false;
928
929           Sized_target<size, big_endian>* target =
930             object->sized_target<size, big_endian>();
931           if (!target->has_make_symbol())
932             ret = new Sized_symbol<size>();
933           else
934             {
935               ret = target->make_symbol();
936               if (ret == NULL)
937                 {
938                   // This means that we don't want a symbol table
939                   // entry after all.
940                   if (!def)
941                     this->table_.erase(ins.first);
942                   else
943                     {
944                       this->table_.erase(insdef.first);
945                       // Inserting insdef invalidated ins.
946                       this->table_.erase(std::make_pair(name_key,
947                                                         version_key));
948                     }
949                   return NULL;
950                 }
951             }
952
953           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
954
955           ins.first->second = ret;
956           if (def)
957             {
958               // This is the first time we have seen NAME/NULL.  Point
959               // it at the new entry for NAME/VERSION.
960               gold_assert(insdef.second);
961               insdef.first->second = ret;
962             }
963         }
964
965       if (def)
966         ret->set_is_default();
967     }
968
969   // Record every time we see a new undefined symbol, to speed up
970   // archive groups.
971   if (!was_undefined && ret->is_undefined())
972     ++this->saw_undefined_;
973
974   // Keep track of common symbols, to speed up common symbol
975   // allocation.
976   if (!was_common && ret->is_common())
977     {
978       if (ret->type() != elfcpp::STT_TLS)
979         this->commons_.push_back(ret);
980       else
981         this->tls_commons_.push_back(ret);
982     }
983
984   // If we're not doing a relocatable link, then any symbol with
985   // hidden or internal visibility is local.
986   if ((ret->visibility() == elfcpp::STV_HIDDEN
987        || ret->visibility() == elfcpp::STV_INTERNAL)
988       && (ret->binding() == elfcpp::STB_GLOBAL
989           || ret->binding() == elfcpp::STB_WEAK)
990       && !parameters->options().relocatable())
991     this->force_local(ret);
992
993   return ret;
994 }
995
996 // Add all the symbols in a relocatable object to the hash table.
997
998 template<int size, bool big_endian>
999 void
1000 Symbol_table::add_from_relobj(
1001     Sized_relobj<size, big_endian>* relobj,
1002     const unsigned char* syms,
1003     size_t count,
1004     size_t symndx_offset,
1005     const char* sym_names,
1006     size_t sym_name_size,
1007     typename Sized_relobj<size, big_endian>::Symbols* sympointers,
1008     size_t *defined)
1009 {
1010   *defined = 0;
1011
1012   gold_assert(size == relobj->target()->get_size());
1013   gold_assert(size == parameters->target().get_size());
1014
1015   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1016
1017   const bool just_symbols = relobj->just_symbols();
1018
1019   const unsigned char* p = syms;
1020   for (size_t i = 0; i < count; ++i, p += sym_size)
1021     {
1022       (*sympointers)[i] = NULL;
1023
1024       elfcpp::Sym<size, big_endian> sym(p);
1025
1026       unsigned int st_name = sym.get_st_name();
1027       if (st_name >= sym_name_size)
1028         {
1029           relobj->error(_("bad global symbol name offset %u at %zu"),
1030                         st_name, i);
1031           continue;
1032         }
1033
1034       const char* name = sym_names + st_name;
1035
1036       bool is_ordinary;
1037       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1038                                                        sym.get_st_shndx(),
1039                                                        &is_ordinary);
1040       unsigned int orig_st_shndx = st_shndx;
1041       if (!is_ordinary)
1042         orig_st_shndx = elfcpp::SHN_UNDEF;
1043
1044       if (st_shndx != elfcpp::SHN_UNDEF)
1045         ++*defined;
1046
1047       // A symbol defined in a section which we are not including must
1048       // be treated as an undefined symbol.
1049       if (st_shndx != elfcpp::SHN_UNDEF
1050           && is_ordinary
1051           && !relobj->is_section_included(st_shndx))
1052         st_shndx = elfcpp::SHN_UNDEF;
1053
1054       // In an object file, an '@' in the name separates the symbol
1055       // name from the version name.  If there are two '@' characters,
1056       // this is the default version.
1057       const char* ver = strchr(name, '@');
1058       Stringpool::Key ver_key = 0;
1059       int namelen = 0;
1060       // DEF: is the version default?  LOCAL: is the symbol forced local?
1061       bool def = false;
1062       bool local = false;
1063
1064       if (ver != NULL)
1065         {
1066           // The symbol name is of the form foo@VERSION or foo@@VERSION
1067           namelen = ver - name;
1068           ++ver;
1069           if (*ver == '@')
1070             {
1071               def = true;
1072               ++ver;
1073             }
1074           ver = this->namepool_.add(ver, true, &ver_key);
1075         }
1076       // We don't want to assign a version to an undefined symbol,
1077       // even if it is listed in the version script.  FIXME: What
1078       // about a common symbol?
1079       else
1080         {
1081           namelen = strlen(name);
1082           if (!this->version_script_.empty()
1083               && st_shndx != elfcpp::SHN_UNDEF)
1084             {
1085               // The symbol name did not have a version, but the
1086               // version script may assign a version anyway.
1087               std::string version;
1088               if (this->version_script_.get_symbol_version(name, &version))
1089                 {
1090                   // The version can be empty if the version script is
1091                   // only used to force some symbols to be local.
1092                   if (!version.empty())
1093                     {
1094                       ver = this->namepool_.add_with_length(version.c_str(),
1095                                                             version.length(),
1096                                                             true,
1097                                                             &ver_key);
1098                       def = true;
1099                     }
1100                 }
1101               else if (this->version_script_.symbol_is_local(name))
1102                 local = true;
1103             }
1104         }
1105
1106       elfcpp::Sym<size, big_endian>* psym = &sym;
1107       unsigned char symbuf[sym_size];
1108       elfcpp::Sym<size, big_endian> sym2(symbuf);
1109       if (just_symbols)
1110         {
1111           memcpy(symbuf, p, sym_size);
1112           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1113           if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
1114             {
1115               // Symbol values in object files are section relative.
1116               // This is normally what we want, but since here we are
1117               // converting the symbol to absolute we need to add the
1118               // section address.  The section address in an object
1119               // file is normally zero, but people can use a linker
1120               // script to change it.
1121               sw.put_st_value(sym.get_st_value()
1122                               + relobj->section_address(orig_st_shndx));
1123             }
1124           st_shndx = elfcpp::SHN_ABS;
1125           is_ordinary = false;
1126           psym = &sym2;
1127         }
1128
1129       // Fix up visibility if object has no-export set.
1130       if (relobj->no_export())
1131         {
1132           // We may have copied symbol already above.
1133           if (psym != &sym2)
1134             {
1135               memcpy(symbuf, p, sym_size);
1136               psym = &sym2;
1137             }
1138
1139           elfcpp::STV visibility = sym2.get_st_visibility();
1140           if (visibility == elfcpp::STV_DEFAULT
1141               || visibility == elfcpp::STV_PROTECTED)
1142             {
1143               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1144               unsigned char nonvis = sym2.get_st_nonvis();
1145               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1146             }
1147         }
1148
1149       Stringpool::Key name_key;
1150       name = this->namepool_.add_with_length(name, namelen, true,
1151                                              &name_key);
1152
1153       Sized_symbol<size>* res;
1154       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1155                                   def, *psym, st_shndx, is_ordinary,
1156                                   orig_st_shndx);
1157       
1158       // If building a shared library using garbage collection, do not 
1159       // treat externally visible symbols as garbage.
1160       if (parameters->options().gc_sections() 
1161           && parameters->options().shared())
1162         this->gc_mark_symbol_for_shlib(res);
1163
1164       if (local)
1165         this->force_local(res);
1166
1167       (*sympointers)[i] = res;
1168     }
1169 }
1170
1171 // Add a symbol from a plugin-claimed file.
1172
1173 template<int size, bool big_endian>
1174 Symbol*
1175 Symbol_table::add_from_pluginobj(
1176     Sized_pluginobj<size, big_endian>* obj,
1177     const char* name,
1178     const char* ver,
1179     elfcpp::Sym<size, big_endian>* sym)
1180 {
1181   unsigned int st_shndx = sym->get_st_shndx();
1182
1183   Stringpool::Key ver_key = 0;
1184   bool def = false;
1185   bool local = false;
1186
1187   if (ver != NULL)
1188     {
1189       ver = this->namepool_.add(ver, true, &ver_key);
1190     }
1191   // We don't want to assign a version to an undefined symbol,
1192   // even if it is listed in the version script.  FIXME: What
1193   // about a common symbol?
1194   else
1195     {
1196       if (!this->version_script_.empty()
1197           && st_shndx != elfcpp::SHN_UNDEF)
1198         {
1199           // The symbol name did not have a version, but the
1200           // version script may assign a version anyway.
1201           std::string version;
1202           if (this->version_script_.get_symbol_version(name, &version))
1203             {
1204               // The version can be empty if the version script is
1205               // only used to force some symbols to be local.
1206               if (!version.empty())
1207                 {
1208                   ver = this->namepool_.add_with_length(version.c_str(),
1209                                                         version.length(),
1210                                                         true,
1211                                                         &ver_key);
1212                   def = true;
1213                 }
1214             }
1215           else if (this->version_script_.symbol_is_local(name))
1216             local = true;
1217         }
1218     }
1219
1220   Stringpool::Key name_key;
1221   name = this->namepool_.add(name, true, &name_key);
1222
1223   Sized_symbol<size>* res;
1224   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1225                               def, *sym, st_shndx, true, st_shndx);
1226
1227   if (local)
1228     this->force_local(res);
1229
1230   return res;
1231 }
1232
1233 // Add all the symbols in a dynamic object to the hash table.
1234
1235 template<int size, bool big_endian>
1236 void
1237 Symbol_table::add_from_dynobj(
1238     Sized_dynobj<size, big_endian>* dynobj,
1239     const unsigned char* syms,
1240     size_t count,
1241     const char* sym_names,
1242     size_t sym_name_size,
1243     const unsigned char* versym,
1244     size_t versym_size,
1245     const std::vector<const char*>* version_map,
1246     typename Sized_relobj<size, big_endian>::Symbols* sympointers,
1247     size_t* defined)
1248 {
1249   *defined = 0;
1250
1251   gold_assert(size == dynobj->target()->get_size());
1252   gold_assert(size == parameters->target().get_size());
1253
1254   if (dynobj->just_symbols())
1255     {
1256       gold_error(_("--just-symbols does not make sense with a shared object"));
1257       return;
1258     }
1259
1260   if (versym != NULL && versym_size / 2 < count)
1261     {
1262       dynobj->error(_("too few symbol versions"));
1263       return;
1264     }
1265
1266   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1267
1268   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1269   // weak aliases.  This is necessary because if the dynamic object
1270   // provides the same variable under two names, one of which is a
1271   // weak definition, and the regular object refers to the weak
1272   // definition, we have to put both the weak definition and the
1273   // strong definition into the dynamic symbol table.  Given a weak
1274   // definition, the only way that we can find the corresponding
1275   // strong definition, if any, is to search the symbol table.
1276   std::vector<Sized_symbol<size>*> object_symbols;
1277
1278   const unsigned char* p = syms;
1279   const unsigned char* vs = versym;
1280   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1281     {
1282       elfcpp::Sym<size, big_endian> sym(p);
1283
1284       if (sympointers != NULL)
1285         (*sympointers)[i] = NULL;
1286
1287       // Ignore symbols with local binding or that have
1288       // internal or hidden visibility.
1289       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1290           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1291           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1292         continue;
1293
1294       // A protected symbol in a shared library must be treated as a
1295       // normal symbol when viewed from outside the shared library.
1296       // Implement this by overriding the visibility here.
1297       elfcpp::Sym<size, big_endian>* psym = &sym;
1298       unsigned char symbuf[sym_size];
1299       elfcpp::Sym<size, big_endian> sym2(symbuf);
1300       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1301         {
1302           memcpy(symbuf, p, sym_size);
1303           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1304           sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1305           psym = &sym2;
1306         }
1307
1308       unsigned int st_name = psym->get_st_name();
1309       if (st_name >= sym_name_size)
1310         {
1311           dynobj->error(_("bad symbol name offset %u at %zu"),
1312                         st_name, i);
1313           continue;
1314         }
1315
1316       const char* name = sym_names + st_name;
1317
1318       bool is_ordinary;
1319       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1320                                                        &is_ordinary);
1321
1322       if (st_shndx != elfcpp::SHN_UNDEF)
1323         ++*defined;
1324
1325       Sized_symbol<size>* res;
1326
1327       if (versym == NULL)
1328         {
1329           Stringpool::Key name_key;
1330           name = this->namepool_.add(name, true, &name_key);
1331           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1332                                       false, *psym, st_shndx, is_ordinary,
1333                                       st_shndx);
1334         }
1335       else
1336         {
1337           // Read the version information.
1338
1339           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1340
1341           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1342           v &= elfcpp::VERSYM_VERSION;
1343
1344           // The Sun documentation says that V can be VER_NDX_LOCAL,
1345           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1346           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1347           // The old GNU linker will happily generate VER_NDX_LOCAL
1348           // for an undefined symbol.  I don't know what the Sun
1349           // linker will generate.
1350
1351           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1352               && st_shndx != elfcpp::SHN_UNDEF)
1353             {
1354               // This symbol should not be visible outside the object.
1355               continue;
1356             }
1357
1358           // At this point we are definitely going to add this symbol.
1359           Stringpool::Key name_key;
1360           name = this->namepool_.add(name, true, &name_key);
1361
1362           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1363               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1364             {
1365               // This symbol does not have a version.
1366               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1367                                           false, *psym, st_shndx, is_ordinary,
1368                                           st_shndx);
1369             }
1370           else
1371             {
1372               if (v >= version_map->size())
1373                 {
1374                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1375                                 i, v);
1376                   continue;
1377                 }
1378
1379               const char* version = (*version_map)[v];
1380               if (version == NULL)
1381                 {
1382                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1383                                 i, v);
1384                   continue;
1385                 }
1386
1387               Stringpool::Key version_key;
1388               version = this->namepool_.add(version, true, &version_key);
1389
1390               // If this is an absolute symbol, and the version name
1391               // and symbol name are the same, then this is the
1392               // version definition symbol.  These symbols exist to
1393               // support using -u to pull in particular versions.  We
1394               // do not want to record a version for them.
1395               if (st_shndx == elfcpp::SHN_ABS
1396                   && !is_ordinary
1397                   && name_key == version_key)
1398                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1399                                             false, *psym, st_shndx, is_ordinary,
1400                                             st_shndx);
1401               else
1402                 {
1403                   const bool def = (!hidden
1404                                     && st_shndx != elfcpp::SHN_UNDEF);
1405                   res = this->add_from_object(dynobj, name, name_key, version,
1406                                               version_key, def, *psym, st_shndx,
1407                                               is_ordinary, st_shndx);
1408                 }
1409             }
1410         }
1411
1412       // Note that it is possible that RES was overridden by an
1413       // earlier object, in which case it can't be aliased here.
1414       if (st_shndx != elfcpp::SHN_UNDEF
1415           && is_ordinary
1416           && psym->get_st_type() == elfcpp::STT_OBJECT
1417           && res->source() == Symbol::FROM_OBJECT
1418           && res->object() == dynobj)
1419         object_symbols.push_back(res);
1420
1421       if (sympointers != NULL)
1422         (*sympointers)[i] = res;
1423     }
1424
1425   this->record_weak_aliases(&object_symbols);
1426 }
1427
1428 // This is used to sort weak aliases.  We sort them first by section
1429 // index, then by offset, then by weak ahead of strong.
1430
1431 template<int size>
1432 class Weak_alias_sorter
1433 {
1434  public:
1435   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1436 };
1437
1438 template<int size>
1439 bool
1440 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1441                                     const Sized_symbol<size>* s2) const
1442 {
1443   bool is_ordinary;
1444   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1445   gold_assert(is_ordinary);
1446   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1447   gold_assert(is_ordinary);
1448   if (s1_shndx != s2_shndx)
1449     return s1_shndx < s2_shndx;
1450
1451   if (s1->value() != s2->value())
1452     return s1->value() < s2->value();
1453   if (s1->binding() != s2->binding())
1454     {
1455       if (s1->binding() == elfcpp::STB_WEAK)
1456         return true;
1457       if (s2->binding() == elfcpp::STB_WEAK)
1458         return false;
1459     }
1460   return std::string(s1->name()) < std::string(s2->name());
1461 }
1462
1463 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1464 // for any weak aliases, and record them so that if we add the weak
1465 // alias to the dynamic symbol table, we also add the corresponding
1466 // strong symbol.
1467
1468 template<int size>
1469 void
1470 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1471 {
1472   // Sort the vector by section index, then by offset, then by weak
1473   // ahead of strong.
1474   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1475
1476   // Walk through the vector.  For each weak definition, record
1477   // aliases.
1478   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1479          symbols->begin();
1480        p != symbols->end();
1481        ++p)
1482     {
1483       if ((*p)->binding() != elfcpp::STB_WEAK)
1484         continue;
1485
1486       // Build a circular list of weak aliases.  Each symbol points to
1487       // the next one in the circular list.
1488
1489       Sized_symbol<size>* from_sym = *p;
1490       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1491       for (q = p + 1; q != symbols->end(); ++q)
1492         {
1493           bool dummy;
1494           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1495               || (*q)->value() != from_sym->value())
1496             break;
1497
1498           this->weak_aliases_[from_sym] = *q;
1499           from_sym->set_has_alias();
1500           from_sym = *q;
1501         }
1502
1503       if (from_sym != *p)
1504         {
1505           this->weak_aliases_[from_sym] = *p;
1506           from_sym->set_has_alias();
1507         }
1508
1509       p = q - 1;
1510     }
1511 }
1512
1513 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1514 // true, then only create the symbol if there is a reference to it.
1515 // If this does not return NULL, it sets *POLDSYM to the existing
1516 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1517 // resolve the newly created symbol to the old one.  This
1518 // canonicalizes *PNAME and *PVERSION.
1519
1520 template<int size, bool big_endian>
1521 Sized_symbol<size>*
1522 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1523                                     bool only_if_ref,
1524                                     Sized_symbol<size>** poldsym,
1525                                     bool *resolve_oldsym)
1526 {
1527   *resolve_oldsym = false;
1528
1529   // If the caller didn't give us a version, see if we get one from
1530   // the version script.
1531   std::string v;
1532   bool is_default_version = false;
1533   if (*pversion == NULL)
1534     {
1535       if (this->version_script_.get_symbol_version(*pname, &v))
1536         {
1537           if (!v.empty())
1538             *pversion = v.c_str();
1539
1540           // If we get the version from a version script, then we are
1541           // also the default version.
1542           is_default_version = true;
1543         }
1544     }
1545
1546   Symbol* oldsym;
1547   Sized_symbol<size>* sym;
1548
1549   bool add_to_table = false;
1550   typename Symbol_table_type::iterator add_loc = this->table_.end();
1551   bool add_def_to_table = false;
1552   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1553
1554   if (only_if_ref)
1555     {
1556       oldsym = this->lookup(*pname, *pversion);
1557       if (oldsym == NULL && is_default_version)
1558         oldsym = this->lookup(*pname, NULL);
1559       if (oldsym == NULL || !oldsym->is_undefined())
1560         return NULL;
1561
1562       *pname = oldsym->name();
1563       if (!is_default_version)
1564         *pversion = oldsym->version();
1565     }
1566   else
1567     {
1568       // Canonicalize NAME and VERSION.
1569       Stringpool::Key name_key;
1570       *pname = this->namepool_.add(*pname, true, &name_key);
1571
1572       Stringpool::Key version_key = 0;
1573       if (*pversion != NULL)
1574         *pversion = this->namepool_.add(*pversion, true, &version_key);
1575
1576       Symbol* const snull = NULL;
1577       std::pair<typename Symbol_table_type::iterator, bool> ins =
1578         this->table_.insert(std::make_pair(std::make_pair(name_key,
1579                                                           version_key),
1580                                            snull));
1581
1582       std::pair<typename Symbol_table_type::iterator, bool> insdef =
1583         std::make_pair(this->table_.end(), false);
1584       if (is_default_version)
1585         {
1586           const Stringpool::Key vnull = 0;
1587           insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
1588                                                                      vnull),
1589                                                       snull));
1590         }
1591
1592       if (!ins.second)
1593         {
1594           // We already have a symbol table entry for NAME/VERSION.
1595           oldsym = ins.first->second;
1596           gold_assert(oldsym != NULL);
1597
1598           if (is_default_version)
1599             {
1600               Sized_symbol<size>* soldsym =
1601                 this->get_sized_symbol<size>(oldsym);
1602               this->define_default_version<size, big_endian>(soldsym,
1603                                                              insdef.second,
1604                                                              insdef.first);
1605             }
1606         }
1607       else
1608         {
1609           // We haven't seen this symbol before.
1610           gold_assert(ins.first->second == NULL);
1611
1612           add_to_table = true;
1613           add_loc = ins.first;
1614
1615           if (is_default_version && !insdef.second)
1616             {
1617               // We are adding NAME/VERSION, and it is the default
1618               // version.  We already have an entry for NAME/NULL.
1619               oldsym = insdef.first->second;
1620               *resolve_oldsym = true;
1621             }
1622           else
1623             {
1624               oldsym = NULL;
1625
1626               if (is_default_version)
1627                 {
1628                   add_def_to_table = true;
1629                   add_def_loc = insdef.first;
1630                 }
1631             }
1632         }
1633     }
1634
1635   const Target& target = parameters->target();
1636   if (!target.has_make_symbol())
1637     sym = new Sized_symbol<size>();
1638   else
1639     {
1640       gold_assert(target.get_size() == size);
1641       gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1642       typedef Sized_target<size, big_endian> My_target;
1643       const My_target* sized_target =
1644           static_cast<const My_target*>(&target);
1645       sym = sized_target->make_symbol();
1646       if (sym == NULL)
1647         return NULL;
1648     }
1649
1650   if (add_to_table)
1651     add_loc->second = sym;
1652   else
1653     gold_assert(oldsym != NULL);
1654
1655   if (add_def_to_table)
1656     add_def_loc->second = sym;
1657
1658   *poldsym = this->get_sized_symbol<size>(oldsym);
1659
1660   return sym;
1661 }
1662
1663 // Define a symbol based on an Output_data.
1664
1665 Symbol*
1666 Symbol_table::define_in_output_data(const char* name,
1667                                     const char* version,
1668                                     Output_data* od,
1669                                     uint64_t value,
1670                                     uint64_t symsize,
1671                                     elfcpp::STT type,
1672                                     elfcpp::STB binding,
1673                                     elfcpp::STV visibility,
1674                                     unsigned char nonvis,
1675                                     bool offset_is_from_end,
1676                                     bool only_if_ref)
1677 {
1678   if (parameters->target().get_size() == 32)
1679     {
1680 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1681       return this->do_define_in_output_data<32>(name, version, od,
1682                                                 value, symsize, type, binding,
1683                                                 visibility, nonvis,
1684                                                 offset_is_from_end,
1685                                                 only_if_ref);
1686 #else
1687       gold_unreachable();
1688 #endif
1689     }
1690   else if (parameters->target().get_size() == 64)
1691     {
1692 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1693       return this->do_define_in_output_data<64>(name, version, od,
1694                                                 value, symsize, type, binding,
1695                                                 visibility, nonvis,
1696                                                 offset_is_from_end,
1697                                                 only_if_ref);
1698 #else
1699       gold_unreachable();
1700 #endif
1701     }
1702   else
1703     gold_unreachable();
1704 }
1705
1706 // Define a symbol in an Output_data, sized version.
1707
1708 template<int size>
1709 Sized_symbol<size>*
1710 Symbol_table::do_define_in_output_data(
1711     const char* name,
1712     const char* version,
1713     Output_data* od,
1714     typename elfcpp::Elf_types<size>::Elf_Addr value,
1715     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1716     elfcpp::STT type,
1717     elfcpp::STB binding,
1718     elfcpp::STV visibility,
1719     unsigned char nonvis,
1720     bool offset_is_from_end,
1721     bool only_if_ref)
1722 {
1723   Sized_symbol<size>* sym;
1724   Sized_symbol<size>* oldsym;
1725   bool resolve_oldsym;
1726
1727   if (parameters->target().is_big_endian())
1728     {
1729 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1730       sym = this->define_special_symbol<size, true>(&name, &version,
1731                                                     only_if_ref, &oldsym,
1732                                                     &resolve_oldsym);
1733 #else
1734       gold_unreachable();
1735 #endif
1736     }
1737   else
1738     {
1739 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1740       sym = this->define_special_symbol<size, false>(&name, &version,
1741                                                      only_if_ref, &oldsym,
1742                                                      &resolve_oldsym);
1743 #else
1744       gold_unreachable();
1745 #endif
1746     }
1747
1748   if (sym == NULL)
1749     return NULL;
1750
1751   sym->init_output_data(name, version, od, value, symsize, type, binding,
1752                         visibility, nonvis, offset_is_from_end);
1753
1754   if (oldsym == NULL)
1755     {
1756       if (binding == elfcpp::STB_LOCAL
1757           || this->version_script_.symbol_is_local(name))
1758         this->force_local(sym);
1759       else if (version != NULL)
1760         sym->set_is_default();
1761       return sym;
1762     }
1763
1764   if (Symbol_table::should_override_with_special(oldsym))
1765     this->override_with_special(oldsym, sym);
1766
1767   if (resolve_oldsym)
1768     return sym;
1769   else
1770     {
1771       delete sym;
1772       return oldsym;
1773     }
1774 }
1775
1776 // Define a symbol based on an Output_segment.
1777
1778 Symbol*
1779 Symbol_table::define_in_output_segment(const char* name,
1780                                        const char* version, Output_segment* os,
1781                                        uint64_t value,
1782                                        uint64_t symsize,
1783                                        elfcpp::STT type,
1784                                        elfcpp::STB binding,
1785                                        elfcpp::STV visibility,
1786                                        unsigned char nonvis,
1787                                        Symbol::Segment_offset_base offset_base,
1788                                        bool only_if_ref)
1789 {
1790   if (parameters->target().get_size() == 32)
1791     {
1792 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1793       return this->do_define_in_output_segment<32>(name, version, os,
1794                                                    value, symsize, type,
1795                                                    binding, visibility, nonvis,
1796                                                    offset_base, only_if_ref);
1797 #else
1798       gold_unreachable();
1799 #endif
1800     }
1801   else if (parameters->target().get_size() == 64)
1802     {
1803 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1804       return this->do_define_in_output_segment<64>(name, version, os,
1805                                                    value, symsize, type,
1806                                                    binding, visibility, nonvis,
1807                                                    offset_base, only_if_ref);
1808 #else
1809       gold_unreachable();
1810 #endif
1811     }
1812   else
1813     gold_unreachable();
1814 }
1815
1816 // Define a symbol in an Output_segment, sized version.
1817
1818 template<int size>
1819 Sized_symbol<size>*
1820 Symbol_table::do_define_in_output_segment(
1821     const char* name,
1822     const char* version,
1823     Output_segment* os,
1824     typename elfcpp::Elf_types<size>::Elf_Addr value,
1825     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1826     elfcpp::STT type,
1827     elfcpp::STB binding,
1828     elfcpp::STV visibility,
1829     unsigned char nonvis,
1830     Symbol::Segment_offset_base offset_base,
1831     bool only_if_ref)
1832 {
1833   Sized_symbol<size>* sym;
1834   Sized_symbol<size>* oldsym;
1835   bool resolve_oldsym;
1836
1837   if (parameters->target().is_big_endian())
1838     {
1839 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1840       sym = this->define_special_symbol<size, true>(&name, &version,
1841                                                     only_if_ref, &oldsym,
1842                                                     &resolve_oldsym);
1843 #else
1844       gold_unreachable();
1845 #endif
1846     }
1847   else
1848     {
1849 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1850       sym = this->define_special_symbol<size, false>(&name, &version,
1851                                                      only_if_ref, &oldsym,
1852                                                      &resolve_oldsym);
1853 #else
1854       gold_unreachable();
1855 #endif
1856     }
1857
1858   if (sym == NULL)
1859     return NULL;
1860
1861   sym->init_output_segment(name, version, os, value, symsize, type, binding,
1862                            visibility, nonvis, offset_base);
1863
1864   if (oldsym == NULL)
1865     {
1866       if (binding == elfcpp::STB_LOCAL
1867           || this->version_script_.symbol_is_local(name))
1868         this->force_local(sym);
1869       else if (version != NULL)
1870         sym->set_is_default();
1871       return sym;
1872     }
1873
1874   if (Symbol_table::should_override_with_special(oldsym))
1875     this->override_with_special(oldsym, sym);
1876
1877   if (resolve_oldsym)
1878     return sym;
1879   else
1880     {
1881       delete sym;
1882       return oldsym;
1883     }
1884 }
1885
1886 // Define a special symbol with a constant value.  It is a multiple
1887 // definition error if this symbol is already defined.
1888
1889 Symbol*
1890 Symbol_table::define_as_constant(const char* name,
1891                                  const char* version,
1892                                  uint64_t value,
1893                                  uint64_t symsize,
1894                                  elfcpp::STT type,
1895                                  elfcpp::STB binding,
1896                                  elfcpp::STV visibility,
1897                                  unsigned char nonvis,
1898                                  bool only_if_ref,
1899                                  bool force_override)
1900 {
1901   if (parameters->target().get_size() == 32)
1902     {
1903 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1904       return this->do_define_as_constant<32>(name, version, value,
1905                                              symsize, type, binding,
1906                                              visibility, nonvis, only_if_ref,
1907                                              force_override);
1908 #else
1909       gold_unreachable();
1910 #endif
1911     }
1912   else if (parameters->target().get_size() == 64)
1913     {
1914 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1915       return this->do_define_as_constant<64>(name, version, value,
1916                                              symsize, type, binding,
1917                                              visibility, nonvis, only_if_ref,
1918                                              force_override);
1919 #else
1920       gold_unreachable();
1921 #endif
1922     }
1923   else
1924     gold_unreachable();
1925 }
1926
1927 // Define a symbol as a constant, sized version.
1928
1929 template<int size>
1930 Sized_symbol<size>*
1931 Symbol_table::do_define_as_constant(
1932     const char* name,
1933     const char* version,
1934     typename elfcpp::Elf_types<size>::Elf_Addr value,
1935     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1936     elfcpp::STT type,
1937     elfcpp::STB binding,
1938     elfcpp::STV visibility,
1939     unsigned char nonvis,
1940     bool only_if_ref,
1941     bool force_override)
1942 {
1943   Sized_symbol<size>* sym;
1944   Sized_symbol<size>* oldsym;
1945   bool resolve_oldsym;
1946
1947   if (parameters->target().is_big_endian())
1948     {
1949 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1950       sym = this->define_special_symbol<size, true>(&name, &version,
1951                                                     only_if_ref, &oldsym,
1952                                                     &resolve_oldsym);
1953 #else
1954       gold_unreachable();
1955 #endif
1956     }
1957   else
1958     {
1959 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1960       sym = this->define_special_symbol<size, false>(&name, &version,
1961                                                      only_if_ref, &oldsym,
1962                                                      &resolve_oldsym);
1963 #else
1964       gold_unreachable();
1965 #endif
1966     }
1967
1968   if (sym == NULL)
1969     return NULL;
1970
1971   sym->init_constant(name, version, value, symsize, type, binding, visibility,
1972                      nonvis);
1973
1974   if (oldsym == NULL)
1975     {
1976       // Version symbols are absolute symbols with name == version.
1977       // We don't want to force them to be local.
1978       if ((version == NULL
1979            || name != version
1980            || value != 0)
1981           && (binding == elfcpp::STB_LOCAL
1982               || this->version_script_.symbol_is_local(name)))
1983         this->force_local(sym);
1984       else if (version != NULL
1985                && (name != version || value != 0))
1986         sym->set_is_default();
1987       return sym;
1988     }
1989
1990   if (force_override || Symbol_table::should_override_with_special(oldsym))
1991     this->override_with_special(oldsym, sym);
1992
1993   if (resolve_oldsym)
1994     return sym;
1995   else
1996     {
1997       delete sym;
1998       return oldsym;
1999     }
2000 }
2001
2002 // Define a set of symbols in output sections.
2003
2004 void
2005 Symbol_table::define_symbols(const Layout* layout, int count,
2006                              const Define_symbol_in_section* p,
2007                              bool only_if_ref)
2008 {
2009   for (int i = 0; i < count; ++i, ++p)
2010     {
2011       Output_section* os = layout->find_output_section(p->output_section);
2012       if (os != NULL)
2013         this->define_in_output_data(p->name, NULL, os, p->value,
2014                                     p->size, p->type, p->binding,
2015                                     p->visibility, p->nonvis,
2016                                     p->offset_is_from_end,
2017                                     only_if_ref || p->only_if_ref);
2018       else
2019         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
2020                                  p->binding, p->visibility, p->nonvis,
2021                                  only_if_ref || p->only_if_ref,
2022                                  false);
2023     }
2024 }
2025
2026 // Define a set of symbols in output segments.
2027
2028 void
2029 Symbol_table::define_symbols(const Layout* layout, int count,
2030                              const Define_symbol_in_segment* p,
2031                              bool only_if_ref)
2032 {
2033   for (int i = 0; i < count; ++i, ++p)
2034     {
2035       Output_segment* os = layout->find_output_segment(p->segment_type,
2036                                                        p->segment_flags_set,
2037                                                        p->segment_flags_clear);
2038       if (os != NULL)
2039         this->define_in_output_segment(p->name, NULL, os, p->value,
2040                                        p->size, p->type, p->binding,
2041                                        p->visibility, p->nonvis,
2042                                        p->offset_base,
2043                                        only_if_ref || p->only_if_ref);
2044       else
2045         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
2046                                  p->binding, p->visibility, p->nonvis,
2047                                  only_if_ref || p->only_if_ref,
2048                                  false);
2049     }
2050 }
2051
2052 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2053 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2054 // the offset within POSD.
2055
2056 template<int size>
2057 void
2058 Symbol_table::define_with_copy_reloc(
2059     Sized_symbol<size>* csym,
2060     Output_data* posd,
2061     typename elfcpp::Elf_types<size>::Elf_Addr value)
2062 {
2063   gold_assert(csym->is_from_dynobj());
2064   gold_assert(!csym->is_copied_from_dynobj());
2065   Object* object = csym->object();
2066   gold_assert(object->is_dynamic());
2067   Dynobj* dynobj = static_cast<Dynobj*>(object);
2068
2069   // Our copied variable has to override any variable in a shared
2070   // library.
2071   elfcpp::STB binding = csym->binding();
2072   if (binding == elfcpp::STB_WEAK)
2073     binding = elfcpp::STB_GLOBAL;
2074
2075   this->define_in_output_data(csym->name(), csym->version(),
2076                               posd, value, csym->symsize(),
2077                               csym->type(), binding,
2078                               csym->visibility(), csym->nonvis(),
2079                               false, false);
2080
2081   csym->set_is_copied_from_dynobj();
2082   csym->set_needs_dynsym_entry();
2083
2084   this->copied_symbol_dynobjs_[csym] = dynobj;
2085
2086   // We have now defined all aliases, but we have not entered them all
2087   // in the copied_symbol_dynobjs_ map.
2088   if (csym->has_alias())
2089     {
2090       Symbol* sym = csym;
2091       while (true)
2092         {
2093           sym = this->weak_aliases_[sym];
2094           if (sym == csym)
2095             break;
2096           gold_assert(sym->output_data() == posd);
2097
2098           sym->set_is_copied_from_dynobj();
2099           this->copied_symbol_dynobjs_[sym] = dynobj;
2100         }
2101     }
2102 }
2103
2104 // SYM is defined using a COPY reloc.  Return the dynamic object where
2105 // the original definition was found.
2106
2107 Dynobj*
2108 Symbol_table::get_copy_source(const Symbol* sym) const
2109 {
2110   gold_assert(sym->is_copied_from_dynobj());
2111   Copied_symbol_dynobjs::const_iterator p =
2112     this->copied_symbol_dynobjs_.find(sym);
2113   gold_assert(p != this->copied_symbol_dynobjs_.end());
2114   return p->second;
2115 }
2116
2117 // Add any undefined symbols named on the command line.
2118
2119 void
2120 Symbol_table::add_undefined_symbols_from_command_line()
2121 {
2122   if (parameters->options().any_undefined())
2123     {
2124       if (parameters->target().get_size() == 32)
2125         {
2126 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2127           this->do_add_undefined_symbols_from_command_line<32>();
2128 #else
2129           gold_unreachable();
2130 #endif
2131         }
2132       else if (parameters->target().get_size() == 64)
2133         {
2134 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2135           this->do_add_undefined_symbols_from_command_line<64>();
2136 #else
2137           gold_unreachable();
2138 #endif
2139         }
2140       else
2141         gold_unreachable();
2142     }
2143 }
2144
2145 template<int size>
2146 void
2147 Symbol_table::do_add_undefined_symbols_from_command_line()
2148 {
2149   for (options::String_set::const_iterator p =
2150          parameters->options().undefined_begin();
2151        p != parameters->options().undefined_end();
2152        ++p)
2153     {
2154       const char* name = p->c_str();
2155
2156       if (this->lookup(name) != NULL)
2157         continue;
2158
2159       const char* version = NULL;
2160
2161       Sized_symbol<size>* sym;
2162       Sized_symbol<size>* oldsym;
2163       bool resolve_oldsym;
2164       if (parameters->target().is_big_endian())
2165         {
2166 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2167           sym = this->define_special_symbol<size, true>(&name, &version,
2168                                                         false, &oldsym,
2169                                                         &resolve_oldsym);
2170 #else
2171           gold_unreachable();
2172 #endif
2173         }
2174       else
2175         {
2176 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2177           sym = this->define_special_symbol<size, false>(&name, &version,
2178                                                          false, &oldsym,
2179                                                          &resolve_oldsym);
2180 #else
2181           gold_unreachable();
2182 #endif
2183         }
2184
2185       gold_assert(oldsym == NULL);
2186
2187       sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2188                           elfcpp::STV_DEFAULT, 0);
2189       ++this->saw_undefined_;
2190     }
2191 }
2192
2193 // Set the dynamic symbol indexes.  INDEX is the index of the first
2194 // global dynamic symbol.  Pointers to the symbols are stored into the
2195 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2196 // updated dynamic symbol index.
2197
2198 unsigned int
2199 Symbol_table::set_dynsym_indexes(unsigned int index,
2200                                  std::vector<Symbol*>* syms,
2201                                  Stringpool* dynpool,
2202                                  Versions* versions)
2203 {
2204   for (Symbol_table_type::iterator p = this->table_.begin();
2205        p != this->table_.end();
2206        ++p)
2207     {
2208       Symbol* sym = p->second;
2209
2210       // Note that SYM may already have a dynamic symbol index, since
2211       // some symbols appear more than once in the symbol table, with
2212       // and without a version.
2213
2214       if (!sym->should_add_dynsym_entry())
2215         sym->set_dynsym_index(-1U);
2216       else if (!sym->has_dynsym_index())
2217         {
2218           sym->set_dynsym_index(index);
2219           ++index;
2220           syms->push_back(sym);
2221           dynpool->add(sym->name(), false, NULL);
2222
2223           // Record any version information.
2224           if (sym->version() != NULL)
2225             versions->record_version(this, dynpool, sym);
2226         }
2227     }
2228
2229   // Finish up the versions.  In some cases this may add new dynamic
2230   // symbols.
2231   index = versions->finalize(this, index, syms);
2232
2233   return index;
2234 }
2235
2236 // Set the final values for all the symbols.  The index of the first
2237 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2238 // file offset OFF.  Add their names to POOL.  Return the new file
2239 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2240
2241 off_t
2242 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2243                        size_t dyncount, Stringpool* pool,
2244                        unsigned int *plocal_symcount)
2245 {
2246   off_t ret;
2247
2248   gold_assert(*plocal_symcount != 0);
2249   this->first_global_index_ = *plocal_symcount;
2250
2251   this->dynamic_offset_ = dynoff;
2252   this->first_dynamic_global_index_ = dyn_global_index;
2253   this->dynamic_count_ = dyncount;
2254
2255   if (parameters->target().get_size() == 32)
2256     {
2257 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2258       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2259 #else
2260       gold_unreachable();
2261 #endif
2262     }
2263   else if (parameters->target().get_size() == 64)
2264     {
2265 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2266       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2267 #else
2268       gold_unreachable();
2269 #endif
2270     }
2271   else
2272     gold_unreachable();
2273
2274   // Now that we have the final symbol table, we can reliably note
2275   // which symbols should get warnings.
2276   this->warnings_.note_warnings(this);
2277
2278   return ret;
2279 }
2280
2281 // SYM is going into the symbol table at *PINDEX.  Add the name to
2282 // POOL, update *PINDEX and *POFF.
2283
2284 template<int size>
2285 void
2286 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2287                                   unsigned int* pindex, off_t* poff)
2288 {
2289   sym->set_symtab_index(*pindex);
2290   pool->add(sym->name(), false, NULL);
2291   ++*pindex;
2292   *poff += elfcpp::Elf_sizes<size>::sym_size;
2293 }
2294
2295 // Set the final value for all the symbols.  This is called after
2296 // Layout::finalize, so all the output sections have their final
2297 // address.
2298
2299 template<int size>
2300 off_t
2301 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2302                              unsigned int* plocal_symcount)
2303 {
2304   off = align_address(off, size >> 3);
2305   this->offset_ = off;
2306
2307   unsigned int index = *plocal_symcount;
2308   const unsigned int orig_index = index;
2309
2310   // First do all the symbols which have been forced to be local, as
2311   // they must appear before all global symbols.
2312   for (Forced_locals::iterator p = this->forced_locals_.begin();
2313        p != this->forced_locals_.end();
2314        ++p)
2315     {
2316       Symbol* sym = *p;
2317       gold_assert(sym->is_forced_local());
2318       if (this->sized_finalize_symbol<size>(sym))
2319         {
2320           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2321           ++*plocal_symcount;
2322         }
2323     }
2324
2325   // Now do all the remaining symbols.
2326   for (Symbol_table_type::iterator p = this->table_.begin();
2327        p != this->table_.end();
2328        ++p)
2329     {
2330       Symbol* sym = p->second;
2331       if (this->sized_finalize_symbol<size>(sym))
2332         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2333     }
2334
2335   this->output_count_ = index - orig_index;
2336
2337   return off;
2338 }
2339
2340 // Finalize the symbol SYM.  This returns true if the symbol should be
2341 // added to the symbol table, false otherwise.
2342
2343 template<int size>
2344 bool
2345 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2346 {
2347   typedef typename Sized_symbol<size>::Value_type Value_type;
2348
2349   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2350
2351   // The default version of a symbol may appear twice in the symbol
2352   // table.  We only need to finalize it once.
2353   if (sym->has_symtab_index())
2354     return false;
2355
2356   if (!sym->in_reg())
2357     {
2358       gold_assert(!sym->has_symtab_index());
2359       sym->set_symtab_index(-1U);
2360       gold_assert(sym->dynsym_index() == -1U);
2361       return false;
2362     }
2363
2364   Value_type value;
2365
2366   switch (sym->source())
2367     {
2368     case Symbol::FROM_OBJECT:
2369       {
2370         bool is_ordinary;
2371         unsigned int shndx = sym->shndx(&is_ordinary);
2372
2373         // FIXME: We need some target specific support here.
2374         if (!is_ordinary
2375             && shndx != elfcpp::SHN_ABS
2376             && shndx != elfcpp::SHN_COMMON)
2377           {
2378             gold_error(_("%s: unsupported symbol section 0x%x"),
2379                        sym->demangled_name().c_str(), shndx);
2380             shndx = elfcpp::SHN_UNDEF;
2381           }
2382
2383         Object* symobj = sym->object();
2384         if (symobj->is_dynamic())
2385           {
2386             value = 0;
2387             shndx = elfcpp::SHN_UNDEF;
2388           }
2389         else if (symobj->pluginobj() != NULL)
2390           {
2391             value = 0;
2392             shndx = elfcpp::SHN_UNDEF;
2393           }
2394         else if (shndx == elfcpp::SHN_UNDEF)
2395           value = 0;
2396         else if (!is_ordinary
2397                  && (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON))
2398           value = sym->value();
2399         else
2400           {
2401             Relobj* relobj = static_cast<Relobj*>(symobj);
2402             Output_section* os = relobj->output_section(shndx);
2403
2404             if (os == NULL)
2405               {
2406                 sym->set_symtab_index(-1U);
2407                 bool static_or_reloc = (parameters->doing_static_link() ||
2408                                         parameters->options().relocatable());
2409                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2410
2411                 return false;
2412               }
2413
2414             uint64_t secoff64 = relobj->output_section_offset(shndx);
2415             if (secoff64 == -1ULL)
2416               {
2417                 // The section needs special handling (e.g., a merge section).
2418                 value = os->output_address(relobj, shndx, sym->value());
2419               }
2420             else
2421               {
2422                 Value_type secoff =
2423                   convert_types<Value_type, uint64_t>(secoff64);
2424                 if (sym->type() == elfcpp::STT_TLS)
2425                   value = sym->value() + os->tls_offset() + secoff;
2426                 else
2427                   value = sym->value() + os->address() + secoff;
2428               }
2429           }
2430       }
2431       break;
2432
2433     case Symbol::IN_OUTPUT_DATA:
2434       {
2435         Output_data* od = sym->output_data();
2436         value = sym->value();
2437         if (sym->type() != elfcpp::STT_TLS)
2438           value += od->address();
2439         else
2440           {
2441             Output_section* os = od->output_section();
2442             gold_assert(os != NULL);
2443             value += os->tls_offset() + (od->address() - os->address());
2444           }
2445         if (sym->offset_is_from_end())
2446           value += od->data_size();
2447       }
2448       break;
2449
2450     case Symbol::IN_OUTPUT_SEGMENT:
2451       {
2452         Output_segment* os = sym->output_segment();
2453         value = sym->value();
2454         if (sym->type() != elfcpp::STT_TLS)
2455           value += os->vaddr();
2456         switch (sym->offset_base())
2457           {
2458           case Symbol::SEGMENT_START:
2459             break;
2460           case Symbol::SEGMENT_END:
2461             value += os->memsz();
2462             break;
2463           case Symbol::SEGMENT_BSS:
2464             value += os->filesz();
2465             break;
2466           default:
2467             gold_unreachable();
2468           }
2469       }
2470       break;
2471
2472     case Symbol::IS_CONSTANT:
2473       value = sym->value();
2474       break;
2475
2476     case Symbol::IS_UNDEFINED:
2477       value = 0;
2478       break;
2479
2480     default:
2481       gold_unreachable();
2482     }
2483
2484   sym->set_value(value);
2485
2486   if (parameters->options().strip_all())
2487     {
2488       sym->set_symtab_index(-1U);
2489       return false;
2490     }
2491
2492   return true;
2493 }
2494
2495 // Write out the global symbols.
2496
2497 void
2498 Symbol_table::write_globals(const Stringpool* sympool,
2499                             const Stringpool* dynpool,
2500                             Output_symtab_xindex* symtab_xindex,
2501                             Output_symtab_xindex* dynsym_xindex,
2502                             Output_file* of) const
2503 {
2504   switch (parameters->size_and_endianness())
2505     {
2506 #ifdef HAVE_TARGET_32_LITTLE
2507     case Parameters::TARGET_32_LITTLE:
2508       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2509                                            dynsym_xindex, of);
2510       break;
2511 #endif
2512 #ifdef HAVE_TARGET_32_BIG
2513     case Parameters::TARGET_32_BIG:
2514       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2515                                           dynsym_xindex, of);
2516       break;
2517 #endif
2518 #ifdef HAVE_TARGET_64_LITTLE
2519     case Parameters::TARGET_64_LITTLE:
2520       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2521                                            dynsym_xindex, of);
2522       break;
2523 #endif
2524 #ifdef HAVE_TARGET_64_BIG
2525     case Parameters::TARGET_64_BIG:
2526       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2527                                           dynsym_xindex, of);
2528       break;
2529 #endif
2530     default:
2531       gold_unreachable();
2532     }
2533 }
2534
2535 // Write out the global symbols.
2536
2537 template<int size, bool big_endian>
2538 void
2539 Symbol_table::sized_write_globals(const Stringpool* sympool,
2540                                   const Stringpool* dynpool,
2541                                   Output_symtab_xindex* symtab_xindex,
2542                                   Output_symtab_xindex* dynsym_xindex,
2543                                   Output_file* of) const
2544 {
2545   const Target& target = parameters->target();
2546
2547   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2548
2549   const unsigned int output_count = this->output_count_;
2550   const section_size_type oview_size = output_count * sym_size;
2551   const unsigned int first_global_index = this->first_global_index_;
2552   unsigned char* psyms;
2553   if (this->offset_ == 0 || output_count == 0)
2554     psyms = NULL;
2555   else
2556     psyms = of->get_output_view(this->offset_, oview_size);
2557
2558   const unsigned int dynamic_count = this->dynamic_count_;
2559   const section_size_type dynamic_size = dynamic_count * sym_size;
2560   const unsigned int first_dynamic_global_index =
2561     this->first_dynamic_global_index_;
2562   unsigned char* dynamic_view;
2563   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2564     dynamic_view = NULL;
2565   else
2566     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2567
2568   for (Symbol_table_type::const_iterator p = this->table_.begin();
2569        p != this->table_.end();
2570        ++p)
2571     {
2572       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2573
2574       // Possibly warn about unresolved symbols in shared libraries.
2575       this->warn_about_undefined_dynobj_symbol(sym);
2576
2577       unsigned int sym_index = sym->symtab_index();
2578       unsigned int dynsym_index;
2579       if (dynamic_view == NULL)
2580         dynsym_index = -1U;
2581       else
2582         dynsym_index = sym->dynsym_index();
2583
2584       if (sym_index == -1U && dynsym_index == -1U)
2585         {
2586           // This symbol is not included in the output file.
2587           continue;
2588         }
2589
2590       unsigned int shndx;
2591       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2592       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2593       switch (sym->source())
2594         {
2595         case Symbol::FROM_OBJECT:
2596           {
2597             bool is_ordinary;
2598             unsigned int in_shndx = sym->shndx(&is_ordinary);
2599
2600             // FIXME: We need some target specific support here.
2601             if (!is_ordinary
2602                 && in_shndx != elfcpp::SHN_ABS
2603                 && in_shndx != elfcpp::SHN_COMMON)
2604               {
2605                 gold_error(_("%s: unsupported symbol section 0x%x"),
2606                            sym->demangled_name().c_str(), in_shndx);
2607                 shndx = in_shndx;
2608               }
2609             else
2610               {
2611                 Object* symobj = sym->object();
2612                 if (symobj->is_dynamic())
2613                   {
2614                     if (sym->needs_dynsym_value())
2615                       dynsym_value = target.dynsym_value(sym);
2616                     shndx = elfcpp::SHN_UNDEF;
2617                   }
2618                 else if (symobj->pluginobj() != NULL)
2619                   shndx = elfcpp::SHN_UNDEF;
2620                 else if (in_shndx == elfcpp::SHN_UNDEF
2621                          || (!is_ordinary
2622                              && (in_shndx == elfcpp::SHN_ABS
2623                                  || in_shndx == elfcpp::SHN_COMMON)))
2624                   shndx = in_shndx;
2625                 else
2626                   {
2627                     Relobj* relobj = static_cast<Relobj*>(symobj);
2628                     Output_section* os = relobj->output_section(in_shndx);
2629                     gold_assert(os != NULL);
2630                     shndx = os->out_shndx();
2631
2632                     if (shndx >= elfcpp::SHN_LORESERVE)
2633                       {
2634                         if (sym_index != -1U)
2635                           symtab_xindex->add(sym_index, shndx);
2636                         if (dynsym_index != -1U)
2637                           dynsym_xindex->add(dynsym_index, shndx);
2638                         shndx = elfcpp::SHN_XINDEX;
2639                       }
2640
2641                     // In object files symbol values are section
2642                     // relative.
2643                     if (parameters->options().relocatable())
2644                       sym_value -= os->address();
2645                   }
2646               }
2647           }
2648           break;
2649
2650         case Symbol::IN_OUTPUT_DATA:
2651           shndx = sym->output_data()->out_shndx();
2652           if (shndx >= elfcpp::SHN_LORESERVE)
2653             {
2654               if (sym_index != -1U)
2655                 symtab_xindex->add(sym_index, shndx);
2656               if (dynsym_index != -1U)
2657                 dynsym_xindex->add(dynsym_index, shndx);
2658               shndx = elfcpp::SHN_XINDEX;
2659             }
2660           break;
2661
2662         case Symbol::IN_OUTPUT_SEGMENT:
2663           shndx = elfcpp::SHN_ABS;
2664           break;
2665
2666         case Symbol::IS_CONSTANT:
2667           shndx = elfcpp::SHN_ABS;
2668           break;
2669
2670         case Symbol::IS_UNDEFINED:
2671           shndx = elfcpp::SHN_UNDEF;
2672           break;
2673
2674         default:
2675           gold_unreachable();
2676         }
2677
2678       if (sym_index != -1U)
2679         {
2680           sym_index -= first_global_index;
2681           gold_assert(sym_index < output_count);
2682           unsigned char* ps = psyms + (sym_index * sym_size);
2683           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2684                                                      sympool, ps);
2685         }
2686
2687       if (dynsym_index != -1U)
2688         {
2689           dynsym_index -= first_dynamic_global_index;
2690           gold_assert(dynsym_index < dynamic_count);
2691           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2692           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2693                                                      dynpool, pd);
2694         }
2695     }
2696
2697   of->write_output_view(this->offset_, oview_size, psyms);
2698   if (dynamic_view != NULL)
2699     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2700 }
2701
2702 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
2703 // strtab holding the name.
2704
2705 template<int size, bool big_endian>
2706 void
2707 Symbol_table::sized_write_symbol(
2708     Sized_symbol<size>* sym,
2709     typename elfcpp::Elf_types<size>::Elf_Addr value,
2710     unsigned int shndx,
2711     const Stringpool* pool,
2712     unsigned char* p) const
2713 {
2714   elfcpp::Sym_write<size, big_endian> osym(p);
2715   osym.put_st_name(pool->get_offset(sym->name()));
2716   osym.put_st_value(value);
2717   // Use a symbol size of zero for undefined symbols from shared libraries.
2718   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2719     osym.put_st_size(0);
2720   else
2721     osym.put_st_size(sym->symsize());
2722   // A version script may have overridden the default binding.
2723   if (sym->is_forced_local())
2724     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2725   else
2726     osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
2727   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2728   osym.put_st_shndx(shndx);
2729 }
2730
2731 // Check for unresolved symbols in shared libraries.  This is
2732 // controlled by the --allow-shlib-undefined option.
2733
2734 // We only warn about libraries for which we have seen all the
2735 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
2736 // which were not seen in this link.  If we didn't see a DT_NEEDED
2737 // entry, we aren't going to be able to reliably report whether the
2738 // symbol is undefined.
2739
2740 // We also don't warn about libraries found in a system library
2741 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2742 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
2743 // can have undefined references satisfied by ld-linux.so.
2744
2745 inline void
2746 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
2747 {
2748   bool dummy;
2749   if (sym->source() == Symbol::FROM_OBJECT
2750       && sym->object()->is_dynamic()
2751       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2752       && sym->binding() != elfcpp::STB_WEAK
2753       && !parameters->options().allow_shlib_undefined()
2754       && !parameters->target().is_defined_by_abi(sym)
2755       && !sym->object()->is_in_system_directory())
2756     {
2757       // A very ugly cast.
2758       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2759       if (!dynobj->has_unknown_needed_entries())
2760         gold_undefined_symbol(sym);
2761     }
2762 }
2763
2764 // Write out a section symbol.  Return the update offset.
2765
2766 void
2767 Symbol_table::write_section_symbol(const Output_section *os,
2768                                    Output_symtab_xindex* symtab_xindex,
2769                                    Output_file* of,
2770                                    off_t offset) const
2771 {
2772   switch (parameters->size_and_endianness())
2773     {
2774 #ifdef HAVE_TARGET_32_LITTLE
2775     case Parameters::TARGET_32_LITTLE:
2776       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
2777                                                   offset);
2778       break;
2779 #endif
2780 #ifdef HAVE_TARGET_32_BIG
2781     case Parameters::TARGET_32_BIG:
2782       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
2783                                                  offset);
2784       break;
2785 #endif
2786 #ifdef HAVE_TARGET_64_LITTLE
2787     case Parameters::TARGET_64_LITTLE:
2788       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
2789                                                   offset);
2790       break;
2791 #endif
2792 #ifdef HAVE_TARGET_64_BIG
2793     case Parameters::TARGET_64_BIG:
2794       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
2795                                                  offset);
2796       break;
2797 #endif
2798     default:
2799       gold_unreachable();
2800     }
2801 }
2802
2803 // Write out a section symbol, specialized for size and endianness.
2804
2805 template<int size, bool big_endian>
2806 void
2807 Symbol_table::sized_write_section_symbol(const Output_section* os,
2808                                          Output_symtab_xindex* symtab_xindex,
2809                                          Output_file* of,
2810                                          off_t offset) const
2811 {
2812   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2813
2814   unsigned char* pov = of->get_output_view(offset, sym_size);
2815
2816   elfcpp::Sym_write<size, big_endian> osym(pov);
2817   osym.put_st_name(0);
2818   if (parameters->options().relocatable())
2819     osym.put_st_value(0);
2820   else
2821     osym.put_st_value(os->address());
2822   osym.put_st_size(0);
2823   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2824                                        elfcpp::STT_SECTION));
2825   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2826
2827   unsigned int shndx = os->out_shndx();
2828   if (shndx >= elfcpp::SHN_LORESERVE)
2829     {
2830       symtab_xindex->add(os->symtab_index(), shndx);
2831       shndx = elfcpp::SHN_XINDEX;
2832     }
2833   osym.put_st_shndx(shndx);
2834
2835   of->write_output_view(offset, sym_size, pov);
2836 }
2837
2838 // Print statistical information to stderr.  This is used for --stats.
2839
2840 void
2841 Symbol_table::print_stats() const
2842 {
2843 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2844   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2845           program_name, this->table_.size(), this->table_.bucket_count());
2846 #else
2847   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2848           program_name, this->table_.size());
2849 #endif
2850   this->namepool_.print_stats("symbol table stringpool");
2851 }
2852
2853 // We check for ODR violations by looking for symbols with the same
2854 // name for which the debugging information reports that they were
2855 // defined in different source locations.  When comparing the source
2856 // location, we consider instances with the same base filename and
2857 // line number to be the same.  This is because different object
2858 // files/shared libraries can include the same header file using
2859 // different paths, and we don't want to report an ODR violation in
2860 // that case.
2861
2862 // This struct is used to compare line information, as returned by
2863 // Dwarf_line_info::one_addr2line.  It implements a < comparison
2864 // operator used with std::set.
2865
2866 struct Odr_violation_compare
2867 {
2868   bool
2869   operator()(const std::string& s1, const std::string& s2) const
2870   {
2871     std::string::size_type pos1 = s1.rfind('/');
2872     std::string::size_type pos2 = s2.rfind('/');
2873     if (pos1 == std::string::npos
2874         || pos2 == std::string::npos)
2875       return s1 < s2;
2876     return s1.compare(pos1, std::string::npos,
2877                       s2, pos2, std::string::npos) < 0;
2878   }
2879 };
2880
2881 // Check candidate_odr_violations_ to find symbols with the same name
2882 // but apparently different definitions (different source-file/line-no).
2883
2884 void
2885 Symbol_table::detect_odr_violations(const Task* task,
2886                                     const char* output_file_name) const
2887 {
2888   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2889        it != candidate_odr_violations_.end();
2890        ++it)
2891     {
2892       const char* symbol_name = it->first;
2893       // We use a sorted set so the output is deterministic.
2894       std::set<std::string, Odr_violation_compare> line_nums;
2895
2896       for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2897                locs = it->second.begin();
2898            locs != it->second.end();
2899            ++locs)
2900         {
2901           // We need to lock the object in order to read it.  This
2902           // means that we have to run in a singleton Task.  If we
2903           // want to run this in a general Task for better
2904           // performance, we will need one Task for object, plus
2905           // appropriate locking to ensure that we don't conflict with
2906           // other uses of the object.  Also note, one_addr2line is not
2907           // currently thread-safe.
2908           Task_lock_obj<Object> tl(task, locs->object);
2909           // 16 is the size of the object-cache that one_addr2line should use.
2910           std::string lineno = Dwarf_line_info::one_addr2line(
2911               locs->object, locs->shndx, locs->offset, 16);
2912           if (!lineno.empty())
2913             line_nums.insert(lineno);
2914         }
2915
2916       if (line_nums.size() > 1)
2917         {
2918           gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2919                          "places (possible ODR violation):"),
2920                        output_file_name, demangle(symbol_name).c_str());
2921           for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2922                it2 != line_nums.end();
2923                ++it2)
2924             fprintf(stderr, "  %s\n", it2->c_str());
2925         }
2926     }
2927   // We only call one_addr2line() in this function, so we can clear its cache.
2928   Dwarf_line_info::clear_addr2line_cache();
2929 }
2930
2931 // Warnings functions.
2932
2933 // Add a new warning.
2934
2935 void
2936 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2937                       const std::string& warning)
2938 {
2939   name = symtab->canonicalize_name(name);
2940   this->warnings_[name].set(obj, warning);
2941 }
2942
2943 // Look through the warnings and mark the symbols for which we should
2944 // warn.  This is called during Layout::finalize when we know the
2945 // sources for all the symbols.
2946
2947 void
2948 Warnings::note_warnings(Symbol_table* symtab)
2949 {
2950   for (Warning_table::iterator p = this->warnings_.begin();
2951        p != this->warnings_.end();
2952        ++p)
2953     {
2954       Symbol* sym = symtab->lookup(p->first, NULL);
2955       if (sym != NULL
2956           && sym->source() == Symbol::FROM_OBJECT
2957           && sym->object() == p->second.object)
2958         sym->set_has_warning();
2959     }
2960 }
2961
2962 // Issue a warning.  This is called when we see a relocation against a
2963 // symbol for which has a warning.
2964
2965 template<int size, bool big_endian>
2966 void
2967 Warnings::issue_warning(const Symbol* sym,
2968                         const Relocate_info<size, big_endian>* relinfo,
2969                         size_t relnum, off_t reloffset) const
2970 {
2971   gold_assert(sym->has_warning());
2972   Warning_table::const_iterator p = this->warnings_.find(sym->name());
2973   gold_assert(p != this->warnings_.end());
2974   gold_warning_at_location(relinfo, relnum, reloffset,
2975                            "%s", p->second.text.c_str());
2976 }
2977
2978 // Instantiate the templates we need.  We could use the configure
2979 // script to restrict this to only the ones needed for implemented
2980 // targets.
2981
2982 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2983 template
2984 void
2985 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2986 #endif
2987
2988 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2989 template
2990 void
2991 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2992 #endif
2993
2994 #ifdef HAVE_TARGET_32_LITTLE
2995 template
2996 void
2997 Symbol_table::add_from_relobj<32, false>(
2998     Sized_relobj<32, false>* relobj,
2999     const unsigned char* syms,
3000     size_t count,
3001     size_t symndx_offset,
3002     const char* sym_names,
3003     size_t sym_name_size,
3004     Sized_relobj<32, false>::Symbols* sympointers,
3005     size_t* defined);
3006 #endif
3007
3008 #ifdef HAVE_TARGET_32_BIG
3009 template
3010 void
3011 Symbol_table::add_from_relobj<32, true>(
3012     Sized_relobj<32, true>* relobj,
3013     const unsigned char* syms,
3014     size_t count,
3015     size_t symndx_offset,
3016     const char* sym_names,
3017     size_t sym_name_size,
3018     Sized_relobj<32, true>::Symbols* sympointers,
3019     size_t* defined);
3020 #endif
3021
3022 #ifdef HAVE_TARGET_64_LITTLE
3023 template
3024 void
3025 Symbol_table::add_from_relobj<64, false>(
3026     Sized_relobj<64, false>* relobj,
3027     const unsigned char* syms,
3028     size_t count,
3029     size_t symndx_offset,
3030     const char* sym_names,
3031     size_t sym_name_size,
3032     Sized_relobj<64, false>::Symbols* sympointers,
3033     size_t* defined);
3034 #endif
3035
3036 #ifdef HAVE_TARGET_64_BIG
3037 template
3038 void
3039 Symbol_table::add_from_relobj<64, true>(
3040     Sized_relobj<64, true>* relobj,
3041     const unsigned char* syms,
3042     size_t count,
3043     size_t symndx_offset,
3044     const char* sym_names,
3045     size_t sym_name_size,
3046     Sized_relobj<64, true>::Symbols* sympointers,
3047     size_t* defined);
3048 #endif
3049
3050 #ifdef HAVE_TARGET_32_LITTLE
3051 template
3052 Symbol*
3053 Symbol_table::add_from_pluginobj<32, false>(
3054     Sized_pluginobj<32, false>* obj,
3055     const char* name,
3056     const char* ver,
3057     elfcpp::Sym<32, false>* sym);
3058 #endif
3059
3060 #ifdef HAVE_TARGET_32_BIG
3061 template
3062 Symbol*
3063 Symbol_table::add_from_pluginobj<32, true>(
3064     Sized_pluginobj<32, true>* obj,
3065     const char* name,
3066     const char* ver,
3067     elfcpp::Sym<32, true>* sym);
3068 #endif
3069
3070 #ifdef HAVE_TARGET_64_LITTLE
3071 template
3072 Symbol*
3073 Symbol_table::add_from_pluginobj<64, false>(
3074     Sized_pluginobj<64, false>* obj,
3075     const char* name,
3076     const char* ver,
3077     elfcpp::Sym<64, false>* sym);
3078 #endif
3079
3080 #ifdef HAVE_TARGET_64_BIG
3081 template
3082 Symbol*
3083 Symbol_table::add_from_pluginobj<64, true>(
3084     Sized_pluginobj<64, true>* obj,
3085     const char* name,
3086     const char* ver,
3087     elfcpp::Sym<64, true>* sym);
3088 #endif
3089
3090 #ifdef HAVE_TARGET_32_LITTLE
3091 template
3092 void
3093 Symbol_table::add_from_dynobj<32, false>(
3094     Sized_dynobj<32, false>* dynobj,
3095     const unsigned char* syms,
3096     size_t count,
3097     const char* sym_names,
3098     size_t sym_name_size,
3099     const unsigned char* versym,
3100     size_t versym_size,
3101     const std::vector<const char*>* version_map,
3102     Sized_relobj<32, false>::Symbols* sympointers,
3103     size_t* defined);
3104 #endif
3105
3106 #ifdef HAVE_TARGET_32_BIG
3107 template
3108 void
3109 Symbol_table::add_from_dynobj<32, true>(
3110     Sized_dynobj<32, true>* dynobj,
3111     const unsigned char* syms,
3112     size_t count,
3113     const char* sym_names,
3114     size_t sym_name_size,
3115     const unsigned char* versym,
3116     size_t versym_size,
3117     const std::vector<const char*>* version_map,
3118     Sized_relobj<32, true>::Symbols* sympointers,
3119     size_t* defined);
3120 #endif
3121
3122 #ifdef HAVE_TARGET_64_LITTLE
3123 template
3124 void
3125 Symbol_table::add_from_dynobj<64, false>(
3126     Sized_dynobj<64, false>* dynobj,
3127     const unsigned char* syms,
3128     size_t count,
3129     const char* sym_names,
3130     size_t sym_name_size,
3131     const unsigned char* versym,
3132     size_t versym_size,
3133     const std::vector<const char*>* version_map,
3134     Sized_relobj<64, false>::Symbols* sympointers,
3135     size_t* defined);
3136 #endif
3137
3138 #ifdef HAVE_TARGET_64_BIG
3139 template
3140 void
3141 Symbol_table::add_from_dynobj<64, true>(
3142     Sized_dynobj<64, true>* dynobj,
3143     const unsigned char* syms,
3144     size_t count,
3145     const char* sym_names,
3146     size_t sym_name_size,
3147     const unsigned char* versym,
3148     size_t versym_size,
3149     const std::vector<const char*>* version_map,
3150     Sized_relobj<64, true>::Symbols* sympointers,
3151     size_t* defined);
3152 #endif
3153
3154 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3155 template
3156 void
3157 Symbol_table::define_with_copy_reloc<32>(
3158     Sized_symbol<32>* sym,
3159     Output_data* posd,
3160     elfcpp::Elf_types<32>::Elf_Addr value);
3161 #endif
3162
3163 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3164 template
3165 void
3166 Symbol_table::define_with_copy_reloc<64>(
3167     Sized_symbol<64>* sym,
3168     Output_data* posd,
3169     elfcpp::Elf_types<64>::Elf_Addr value);
3170 #endif
3171
3172 #ifdef HAVE_TARGET_32_LITTLE
3173 template
3174 void
3175 Warnings::issue_warning<32, false>(const Symbol* sym,
3176                                    const Relocate_info<32, false>* relinfo,
3177                                    size_t relnum, off_t reloffset) const;
3178 #endif
3179
3180 #ifdef HAVE_TARGET_32_BIG
3181 template
3182 void
3183 Warnings::issue_warning<32, true>(const Symbol* sym,
3184                                   const Relocate_info<32, true>* relinfo,
3185                                   size_t relnum, off_t reloffset) const;
3186 #endif
3187
3188 #ifdef HAVE_TARGET_64_LITTLE
3189 template
3190 void
3191 Warnings::issue_warning<64, false>(const Symbol* sym,
3192                                    const Relocate_info<64, false>* relinfo,
3193                                    size_t relnum, off_t reloffset) const;
3194 #endif
3195
3196 #ifdef HAVE_TARGET_64_BIG
3197 template
3198 void
3199 Warnings::issue_warning<64, true>(const Symbol* sym,
3200                                   const Relocate_info<64, true>* relinfo,
3201                                   size_t relnum, off_t reloffset) const;
3202 #endif
3203
3204 } // End namespace gold.