[GOLD] Symbol flag for PowerPC64 localentry:0 tracking
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2017 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol.  This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55                     elfcpp::STT type, elfcpp::STB binding,
56                     elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83   this->is_protected_ = false;
84   this->non_zero_localentry_ = false;
85 }
86
87 // Return the demangled version of the symbol's name, but only
88 // if the --demangle flag was set.
89
90 static std::string
91 demangle(const char* name)
92 {
93   if (!parameters->options().do_demangle())
94     return name;
95
96   // cplus_demangle allocates memory for the result it returns,
97   // and returns NULL if the name is already demangled.
98   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
99   if (demangled_name == NULL)
100     return name;
101
102   std::string retval(demangled_name);
103   free(demangled_name);
104   return retval;
105 }
106
107 std::string
108 Symbol::demangled_name() const
109 {
110   return demangle(this->name());
111 }
112
113 // Initialize the fields in the base class Symbol for SYM in OBJECT.
114
115 template<int size, bool big_endian>
116 void
117 Symbol::init_base_object(const char* name, const char* version, Object* object,
118                          const elfcpp::Sym<size, big_endian>& sym,
119                          unsigned int st_shndx, bool is_ordinary)
120 {
121   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
122                     sym.get_st_visibility(), sym.get_st_nonvis());
123   this->u_.from_object.object = object;
124   this->u_.from_object.shndx = st_shndx;
125   this->is_ordinary_shndx_ = is_ordinary;
126   this->source_ = FROM_OBJECT;
127   this->in_reg_ = !object->is_dynamic();
128   this->in_dyn_ = object->is_dynamic();
129   this->in_real_elf_ = object->pluginobj() == NULL;
130 }
131
132 // Initialize the fields in the base class Symbol for a symbol defined
133 // in an Output_data.
134
135 void
136 Symbol::init_base_output_data(const char* name, const char* version,
137                               Output_data* od, elfcpp::STT type,
138                               elfcpp::STB binding, elfcpp::STV visibility,
139                               unsigned char nonvis, bool offset_is_from_end,
140                               bool is_predefined)
141 {
142   this->init_fields(name, version, type, binding, visibility, nonvis);
143   this->u_.in_output_data.output_data = od;
144   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
145   this->source_ = IN_OUTPUT_DATA;
146   this->in_reg_ = true;
147   this->in_real_elf_ = true;
148   this->is_predefined_ = is_predefined;
149 }
150
151 // Initialize the fields in the base class Symbol for a symbol defined
152 // in an Output_segment.
153
154 void
155 Symbol::init_base_output_segment(const char* name, const char* version,
156                                  Output_segment* os, elfcpp::STT type,
157                                  elfcpp::STB binding, elfcpp::STV visibility,
158                                  unsigned char nonvis,
159                                  Segment_offset_base offset_base,
160                                  bool is_predefined)
161 {
162   this->init_fields(name, version, type, binding, visibility, nonvis);
163   this->u_.in_output_segment.output_segment = os;
164   this->u_.in_output_segment.offset_base = offset_base;
165   this->source_ = IN_OUTPUT_SEGMENT;
166   this->in_reg_ = true;
167   this->in_real_elf_ = true;
168   this->is_predefined_ = is_predefined;
169 }
170
171 // Initialize the fields in the base class Symbol for a symbol defined
172 // as a constant.
173
174 void
175 Symbol::init_base_constant(const char* name, const char* version,
176                            elfcpp::STT type, elfcpp::STB binding,
177                            elfcpp::STV visibility, unsigned char nonvis,
178                            bool is_predefined)
179 {
180   this->init_fields(name, version, type, binding, visibility, nonvis);
181   this->source_ = IS_CONSTANT;
182   this->in_reg_ = true;
183   this->in_real_elf_ = true;
184   this->is_predefined_ = is_predefined;
185 }
186
187 // Initialize the fields in the base class Symbol for an undefined
188 // symbol.
189
190 void
191 Symbol::init_base_undefined(const char* name, const char* version,
192                             elfcpp::STT type, elfcpp::STB binding,
193                             elfcpp::STV visibility, unsigned char nonvis)
194 {
195   this->init_fields(name, version, type, binding, visibility, nonvis);
196   this->dynsym_index_ = -1U;
197   this->source_ = IS_UNDEFINED;
198   this->in_reg_ = true;
199   this->in_real_elf_ = true;
200 }
201
202 // Allocate a common symbol in the base.
203
204 void
205 Symbol::allocate_base_common(Output_data* od)
206 {
207   gold_assert(this->is_common());
208   this->source_ = IN_OUTPUT_DATA;
209   this->u_.in_output_data.output_data = od;
210   this->u_.in_output_data.offset_is_from_end = false;
211 }
212
213 // Initialize the fields in Sized_symbol for SYM in OBJECT.
214
215 template<int size>
216 template<bool big_endian>
217 void
218 Sized_symbol<size>::init_object(const char* name, const char* version,
219                                 Object* object,
220                                 const elfcpp::Sym<size, big_endian>& sym,
221                                 unsigned int st_shndx, bool is_ordinary)
222 {
223   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
224   this->value_ = sym.get_st_value();
225   this->symsize_ = sym.get_st_size();
226 }
227
228 // Initialize the fields in Sized_symbol for a symbol defined in an
229 // Output_data.
230
231 template<int size>
232 void
233 Sized_symbol<size>::init_output_data(const char* name, const char* version,
234                                      Output_data* od, Value_type value,
235                                      Size_type symsize, elfcpp::STT type,
236                                      elfcpp::STB binding,
237                                      elfcpp::STV visibility,
238                                      unsigned char nonvis,
239                                      bool offset_is_from_end,
240                                      bool is_predefined)
241 {
242   this->init_base_output_data(name, version, od, type, binding, visibility,
243                               nonvis, offset_is_from_end, is_predefined);
244   this->value_ = value;
245   this->symsize_ = symsize;
246 }
247
248 // Initialize the fields in Sized_symbol for a symbol defined in an
249 // Output_segment.
250
251 template<int size>
252 void
253 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
254                                         Output_segment* os, Value_type value,
255                                         Size_type symsize, elfcpp::STT type,
256                                         elfcpp::STB binding,
257                                         elfcpp::STV visibility,
258                                         unsigned char nonvis,
259                                         Segment_offset_base offset_base,
260                                         bool is_predefined)
261 {
262   this->init_base_output_segment(name, version, os, type, binding, visibility,
263                                  nonvis, offset_base, is_predefined);
264   this->value_ = value;
265   this->symsize_ = symsize;
266 }
267
268 // Initialize the fields in Sized_symbol for a symbol defined as a
269 // constant.
270
271 template<int size>
272 void
273 Sized_symbol<size>::init_constant(const char* name, const char* version,
274                                   Value_type value, Size_type symsize,
275                                   elfcpp::STT type, elfcpp::STB binding,
276                                   elfcpp::STV visibility, unsigned char nonvis,
277                                   bool is_predefined)
278 {
279   this->init_base_constant(name, version, type, binding, visibility, nonvis,
280                            is_predefined);
281   this->value_ = value;
282   this->symsize_ = symsize;
283 }
284
285 // Initialize the fields in Sized_symbol for an undefined symbol.
286
287 template<int size>
288 void
289 Sized_symbol<size>::init_undefined(const char* name, const char* version,
290                                    Value_type value, elfcpp::STT type,
291                                    elfcpp::STB binding, elfcpp::STV visibility,
292                                    unsigned char nonvis)
293 {
294   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
295   this->value_ = value;
296   this->symsize_ = 0;
297 }
298
299 // Return an allocated string holding the symbol's name as
300 // name@version.  This is used for relocatable links.
301
302 std::string
303 Symbol::versioned_name() const
304 {
305   gold_assert(this->version_ != NULL);
306   std::string ret = this->name_;
307   ret.push_back('@');
308   if (this->is_def_)
309     ret.push_back('@');
310   ret += this->version_;
311   return ret;
312 }
313
314 // Return true if SHNDX represents a common symbol.
315
316 bool
317 Symbol::is_common_shndx(unsigned int shndx)
318 {
319   return (shndx == elfcpp::SHN_COMMON
320           || shndx == parameters->target().small_common_shndx()
321           || shndx == parameters->target().large_common_shndx());
322 }
323
324 // Allocate a common symbol.
325
326 template<int size>
327 void
328 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
329 {
330   this->allocate_base_common(od);
331   this->value_ = value;
332 }
333
334 // The ""'s around str ensure str is a string literal, so sizeof works.
335 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
336
337 // Return true if this symbol should be added to the dynamic symbol
338 // table.
339
340 bool
341 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
342 {
343   // If the symbol is only present on plugin files, the plugin decided we
344   // don't need it.
345   if (!this->in_real_elf())
346     return false;
347
348   // If the symbol is used by a dynamic relocation, we need to add it.
349   if (this->needs_dynsym_entry())
350     return true;
351
352   // If this symbol's section is not added, the symbol need not be added. 
353   // The section may have been GCed.  Note that export_dynamic is being 
354   // overridden here.  This should not be done for shared objects.
355   if (parameters->options().gc_sections() 
356       && !parameters->options().shared()
357       && this->source() == Symbol::FROM_OBJECT
358       && !this->object()->is_dynamic())
359     {
360       Relobj* relobj = static_cast<Relobj*>(this->object());
361       bool is_ordinary;
362       unsigned int shndx = this->shndx(&is_ordinary);
363       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
364           && !relobj->is_section_included(shndx)
365           && !symtab->is_section_folded(relobj, shndx))
366         return false;
367     }
368
369   // If the symbol was forced dynamic in a --dynamic-list file
370   // or an --export-dynamic-symbol option, add it.
371   if (!this->is_from_dynobj()
372       && (parameters->options().in_dynamic_list(this->name())
373           || parameters->options().is_export_dynamic_symbol(this->name())))
374     {
375       if (!this->is_forced_local())
376         return true;
377       gold_warning(_("Cannot export local symbol '%s'"),
378                    this->demangled_name().c_str());
379       return false;
380     }
381
382   // If the symbol was forced local in a version script, do not add it.
383   if (this->is_forced_local())
384     return false;
385
386   // If dynamic-list-data was specified, add any STT_OBJECT.
387   if (parameters->options().dynamic_list_data()
388       && !this->is_from_dynobj()
389       && this->type() == elfcpp::STT_OBJECT)
390     return true;
391
392   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
393   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
394   if ((parameters->options().dynamic_list_cpp_new()
395        || parameters->options().dynamic_list_cpp_typeinfo())
396       && !this->is_from_dynobj())
397     {
398       // TODO(csilvers): We could probably figure out if we're an operator
399       //                 new/delete or typeinfo without the need to demangle.
400       char* demangled_name = cplus_demangle(this->name(),
401                                             DMGL_ANSI | DMGL_PARAMS);
402       if (demangled_name == NULL)
403         {
404           // Not a C++ symbol, so it can't satisfy these flags
405         }
406       else if (parameters->options().dynamic_list_cpp_new()
407                && (strprefix(demangled_name, "operator new")
408                    || strprefix(demangled_name, "operator delete")))
409         {
410           free(demangled_name);
411           return true;
412         }
413       else if (parameters->options().dynamic_list_cpp_typeinfo()
414                && (strprefix(demangled_name, "typeinfo name for")
415                    || strprefix(demangled_name, "typeinfo for")))
416         {
417           free(demangled_name);
418           return true;
419         }
420       else
421         free(demangled_name);
422     }
423
424   // If exporting all symbols or building a shared library,
425   // or the symbol should be globally unique (GNU_UNIQUE),
426   // and the symbol is defined in a regular object and is
427   // externally visible, we need to add it.
428   if ((parameters->options().export_dynamic()
429        || parameters->options().shared()
430        || (parameters->options().gnu_unique()
431            && this->binding() == elfcpp::STB_GNU_UNIQUE))
432       && !this->is_from_dynobj()
433       && !this->is_undefined()
434       && this->is_externally_visible())
435     return true;
436
437   return false;
438 }
439
440 // Return true if the final value of this symbol is known at link
441 // time.
442
443 bool
444 Symbol::final_value_is_known() const
445 {
446   // If we are not generating an executable, then no final values are
447   // known, since they will change at runtime, with the exception of
448   // TLS symbols in a position-independent executable.
449   if ((parameters->options().output_is_position_independent()
450        || parameters->options().relocatable())
451       && !(this->type() == elfcpp::STT_TLS
452            && parameters->options().pie()))
453     return false;
454
455   // If the symbol is not from an object file, and is not undefined,
456   // then it is defined, and known.
457   if (this->source_ != FROM_OBJECT)
458     {
459       if (this->source_ != IS_UNDEFINED)
460         return true;
461     }
462   else
463     {
464       // If the symbol is from a dynamic object, then the final value
465       // is not known.
466       if (this->object()->is_dynamic())
467         return false;
468
469       // If the symbol is not undefined (it is defined or common),
470       // then the final value is known.
471       if (!this->is_undefined())
472         return true;
473     }
474
475   // If the symbol is undefined, then whether the final value is known
476   // depends on whether we are doing a static link.  If we are doing a
477   // dynamic link, then the final value could be filled in at runtime.
478   // This could reasonably be the case for a weak undefined symbol.
479   return parameters->doing_static_link();
480 }
481
482 // Return the output section where this symbol is defined.
483
484 Output_section*
485 Symbol::output_section() const
486 {
487   switch (this->source_)
488     {
489     case FROM_OBJECT:
490       {
491         unsigned int shndx = this->u_.from_object.shndx;
492         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
493           {
494             gold_assert(!this->u_.from_object.object->is_dynamic());
495             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
496             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
497             return relobj->output_section(shndx);
498           }
499         return NULL;
500       }
501
502     case IN_OUTPUT_DATA:
503       return this->u_.in_output_data.output_data->output_section();
504
505     case IN_OUTPUT_SEGMENT:
506     case IS_CONSTANT:
507     case IS_UNDEFINED:
508       return NULL;
509
510     default:
511       gold_unreachable();
512     }
513 }
514
515 // Set the symbol's output section.  This is used for symbols defined
516 // in scripts.  This should only be called after the symbol table has
517 // been finalized.
518
519 void
520 Symbol::set_output_section(Output_section* os)
521 {
522   switch (this->source_)
523     {
524     case FROM_OBJECT:
525     case IN_OUTPUT_DATA:
526       gold_assert(this->output_section() == os);
527       break;
528     case IS_CONSTANT:
529       this->source_ = IN_OUTPUT_DATA;
530       this->u_.in_output_data.output_data = os;
531       this->u_.in_output_data.offset_is_from_end = false;
532       break;
533     case IN_OUTPUT_SEGMENT:
534     case IS_UNDEFINED:
535     default:
536       gold_unreachable();
537     }
538 }
539
540 // Set the symbol's output segment.  This is used for pre-defined
541 // symbols whose segments aren't known until after layout is done
542 // (e.g., __ehdr_start).
543
544 void
545 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
546 {
547   gold_assert(this->is_predefined_);
548   this->source_ = IN_OUTPUT_SEGMENT;
549   this->u_.in_output_segment.output_segment = os;
550   this->u_.in_output_segment.offset_base = base;
551 }
552
553 // Set the symbol to undefined.  This is used for pre-defined
554 // symbols whose segments aren't known until after layout is done
555 // (e.g., __ehdr_start).
556
557 void
558 Symbol::set_undefined()
559 {
560   this->source_ = IS_UNDEFINED;
561   this->is_predefined_ = false;
562 }
563
564 // Class Symbol_table.
565
566 Symbol_table::Symbol_table(unsigned int count,
567                            const Version_script_info& version_script)
568   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
569     forwarders_(), commons_(), tls_commons_(), small_commons_(),
570     large_commons_(), forced_locals_(), warnings_(),
571     version_script_(version_script), gc_(NULL), icf_(NULL),
572     target_symbols_()
573 {
574   namepool_.reserve(count);
575 }
576
577 Symbol_table::~Symbol_table()
578 {
579 }
580
581 // The symbol table key equality function.  This is called with
582 // Stringpool keys.
583
584 inline bool
585 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
586                                           const Symbol_table_key& k2) const
587 {
588   return k1.first == k2.first && k1.second == k2.second;
589 }
590
591 bool
592 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
593 {
594   return (parameters->options().icf_enabled()
595           && this->icf_->is_section_folded(obj, shndx));
596 }
597
598 // For symbols that have been listed with a -u or --export-dynamic-symbol
599 // option, add them to the work list to avoid gc'ing them.
600
601 void 
602 Symbol_table::gc_mark_undef_symbols(Layout* layout)
603 {
604   for (options::String_set::const_iterator p =
605          parameters->options().undefined_begin();
606        p != parameters->options().undefined_end();
607        ++p)
608     {
609       const char* name = p->c_str();
610       Symbol* sym = this->lookup(name);
611       gold_assert(sym != NULL);
612       if (sym->source() == Symbol::FROM_OBJECT 
613           && !sym->object()->is_dynamic())
614         {
615           this->gc_mark_symbol(sym);
616         }
617     }
618
619   for (options::String_set::const_iterator p =
620          parameters->options().export_dynamic_symbol_begin();
621        p != parameters->options().export_dynamic_symbol_end();
622        ++p)
623     {
624       const char* name = p->c_str();
625       Symbol* sym = this->lookup(name);
626       // It's not an error if a symbol named by --export-dynamic-symbol
627       // is undefined.
628       if (sym != NULL
629           && sym->source() == Symbol::FROM_OBJECT 
630           && !sym->object()->is_dynamic())
631         {
632           this->gc_mark_symbol(sym);
633         }
634     }
635
636   for (Script_options::referenced_const_iterator p =
637          layout->script_options()->referenced_begin();
638        p != layout->script_options()->referenced_end();
639        ++p)
640     {
641       Symbol* sym = this->lookup(p->c_str());
642       gold_assert(sym != NULL);
643       if (sym->source() == Symbol::FROM_OBJECT
644           && !sym->object()->is_dynamic())
645         {
646           this->gc_mark_symbol(sym);
647         }
648     }
649 }
650
651 void
652 Symbol_table::gc_mark_symbol(Symbol* sym)
653 {
654   // Add the object and section to the work list.
655   bool is_ordinary;
656   unsigned int shndx = sym->shndx(&is_ordinary);
657   if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
658     {
659       gold_assert(this->gc_!= NULL);
660       Relobj* relobj = static_cast<Relobj*>(sym->object());
661       this->gc_->worklist().push_back(Section_id(relobj, shndx));
662     }
663   parameters->target().gc_mark_symbol(this, sym);
664 }
665
666 // When doing garbage collection, keep symbols that have been seen in
667 // dynamic objects.
668 inline void 
669 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
670 {
671   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
672       && !sym->object()->is_dynamic())
673     this->gc_mark_symbol(sym);
674 }
675
676 // Make TO a symbol which forwards to FROM.
677
678 void
679 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
680 {
681   gold_assert(from != to);
682   gold_assert(!from->is_forwarder() && !to->is_forwarder());
683   this->forwarders_[from] = to;
684   from->set_forwarder();
685 }
686
687 // Resolve the forwards from FROM, returning the real symbol.
688
689 Symbol*
690 Symbol_table::resolve_forwards(const Symbol* from) const
691 {
692   gold_assert(from->is_forwarder());
693   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
694     this->forwarders_.find(from);
695   gold_assert(p != this->forwarders_.end());
696   return p->second;
697 }
698
699 // Look up a symbol by name.
700
701 Symbol*
702 Symbol_table::lookup(const char* name, const char* version) const
703 {
704   Stringpool::Key name_key;
705   name = this->namepool_.find(name, &name_key);
706   if (name == NULL)
707     return NULL;
708
709   Stringpool::Key version_key = 0;
710   if (version != NULL)
711     {
712       version = this->namepool_.find(version, &version_key);
713       if (version == NULL)
714         return NULL;
715     }
716
717   Symbol_table_key key(name_key, version_key);
718   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
719   if (p == this->table_.end())
720     return NULL;
721   return p->second;
722 }
723
724 // Resolve a Symbol with another Symbol.  This is only used in the
725 // unusual case where there are references to both an unversioned
726 // symbol and a symbol with a version, and we then discover that that
727 // version is the default version.  Because this is unusual, we do
728 // this the slow way, by converting back to an ELF symbol.
729
730 template<int size, bool big_endian>
731 void
732 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
733 {
734   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
735   elfcpp::Sym_write<size, big_endian> esym(buf);
736   // We don't bother to set the st_name or the st_shndx field.
737   esym.put_st_value(from->value());
738   esym.put_st_size(from->symsize());
739   esym.put_st_info(from->binding(), from->type());
740   esym.put_st_other(from->visibility(), from->nonvis());
741   bool is_ordinary;
742   unsigned int shndx = from->shndx(&is_ordinary);
743   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
744                 from->version(), true);
745   if (from->in_reg())
746     to->set_in_reg();
747   if (from->in_dyn())
748     to->set_in_dyn();
749   if (parameters->options().gc_sections())
750     this->gc_mark_dyn_syms(to);
751 }
752
753 // Record that a symbol is forced to be local by a version script or
754 // by visibility.
755
756 void
757 Symbol_table::force_local(Symbol* sym)
758 {
759   if (!sym->is_defined() && !sym->is_common())
760     return;
761   if (sym->is_forced_local())
762     {
763       // We already got this one.
764       return;
765     }
766   sym->set_is_forced_local();
767   this->forced_locals_.push_back(sym);
768 }
769
770 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
771 // is only called for undefined symbols, when at least one --wrap
772 // option was used.
773
774 const char*
775 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
776 {
777   // For some targets, we need to ignore a specific character when
778   // wrapping, and add it back later.
779   char prefix = '\0';
780   if (name[0] == parameters->target().wrap_char())
781     {
782       prefix = name[0];
783       ++name;
784     }
785
786   if (parameters->options().is_wrap(name))
787     {
788       // Turn NAME into __wrap_NAME.
789       std::string s;
790       if (prefix != '\0')
791         s += prefix;
792       s += "__wrap_";
793       s += name;
794
795       // This will give us both the old and new name in NAMEPOOL_, but
796       // that is OK.  Only the versions we need will wind up in the
797       // real string table in the output file.
798       return this->namepool_.add(s.c_str(), true, name_key);
799     }
800
801   const char* const real_prefix = "__real_";
802   const size_t real_prefix_length = strlen(real_prefix);
803   if (strncmp(name, real_prefix, real_prefix_length) == 0
804       && parameters->options().is_wrap(name + real_prefix_length))
805     {
806       // Turn __real_NAME into NAME.
807       std::string s;
808       if (prefix != '\0')
809         s += prefix;
810       s += name + real_prefix_length;
811       return this->namepool_.add(s.c_str(), true, name_key);
812     }
813
814   return name;
815 }
816
817 // This is called when we see a symbol NAME/VERSION, and the symbol
818 // already exists in the symbol table, and VERSION is marked as being
819 // the default version.  SYM is the NAME/VERSION symbol we just added.
820 // DEFAULT_IS_NEW is true if this is the first time we have seen the
821 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
822
823 template<int size, bool big_endian>
824 void
825 Symbol_table::define_default_version(Sized_symbol<size>* sym,
826                                      bool default_is_new,
827                                      Symbol_table_type::iterator pdef)
828 {
829   if (default_is_new)
830     {
831       // This is the first time we have seen NAME/NULL.  Make
832       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
833       // version.
834       pdef->second = sym;
835       sym->set_is_default();
836     }
837   else if (pdef->second == sym)
838     {
839       // NAME/NULL already points to NAME/VERSION.  Don't mark the
840       // symbol as the default if it is not already the default.
841     }
842   else
843     {
844       // This is the unfortunate case where we already have entries
845       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
846       // NAME/VERSION where VERSION is the default version.  We have
847       // already resolved this new symbol with the existing
848       // NAME/VERSION symbol.
849
850       // It's possible that NAME/NULL and NAME/VERSION are both
851       // defined in regular objects.  This can only happen if one
852       // object file defines foo and another defines foo@@ver.  This
853       // is somewhat obscure, but we call it a multiple definition
854       // error.
855
856       // It's possible that NAME/NULL actually has a version, in which
857       // case it won't be the same as VERSION.  This happens with
858       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
859       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
860       // then see an unadorned t2_2 in an object file and give it
861       // version VER1 from the version script.  This looks like a
862       // default definition for VER1, so it looks like we should merge
863       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
864       // not obvious that this is an error, either.  So we just punt.
865
866       // If one of the symbols has non-default visibility, and the
867       // other is defined in a shared object, then they are different
868       // symbols.
869
870       // If the two symbols are from different shared objects,
871       // they are different symbols.
872
873       // Otherwise, we just resolve the symbols as though they were
874       // the same.
875
876       if (pdef->second->version() != NULL)
877         gold_assert(pdef->second->version() != sym->version());
878       else if (sym->visibility() != elfcpp::STV_DEFAULT
879                && pdef->second->is_from_dynobj())
880         ;
881       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
882                && sym->is_from_dynobj())
883         ;
884       else if (pdef->second->is_from_dynobj()
885                && sym->is_from_dynobj()
886                && pdef->second->is_defined()
887                && pdef->second->object() != sym->object())
888         ;
889       else
890         {
891           const Sized_symbol<size>* symdef;
892           symdef = this->get_sized_symbol<size>(pdef->second);
893           Symbol_table::resolve<size, big_endian>(sym, symdef);
894           this->make_forwarder(pdef->second, sym);
895           pdef->second = sym;
896           sym->set_is_default();
897         }
898     }
899 }
900
901 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
902 // name and VERSION is the version; both are canonicalized.  DEF is
903 // whether this is the default version.  ST_SHNDX is the symbol's
904 // section index; IS_ORDINARY is whether this is a normal section
905 // rather than a special code.
906
907 // If IS_DEFAULT_VERSION is true, then this is the definition of a
908 // default version of a symbol.  That means that any lookup of
909 // NAME/NULL and any lookup of NAME/VERSION should always return the
910 // same symbol.  This is obvious for references, but in particular we
911 // want to do this for definitions: overriding NAME/NULL should also
912 // override NAME/VERSION.  If we don't do that, it would be very hard
913 // to override functions in a shared library which uses versioning.
914
915 // We implement this by simply making both entries in the hash table
916 // point to the same Symbol structure.  That is easy enough if this is
917 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
918 // that we have seen both already, in which case they will both have
919 // independent entries in the symbol table.  We can't simply change
920 // the symbol table entry, because we have pointers to the entries
921 // attached to the object files.  So we mark the entry attached to the
922 // object file as a forwarder, and record it in the forwarders_ map.
923 // Note that entries in the hash table will never be marked as
924 // forwarders.
925 //
926 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
927 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
928 // for a special section code.  ST_SHNDX may be modified if the symbol
929 // is defined in a section being discarded.
930
931 template<int size, bool big_endian>
932 Sized_symbol<size>*
933 Symbol_table::add_from_object(Object* object,
934                               const char* name,
935                               Stringpool::Key name_key,
936                               const char* version,
937                               Stringpool::Key version_key,
938                               bool is_default_version,
939                               const elfcpp::Sym<size, big_endian>& sym,
940                               unsigned int st_shndx,
941                               bool is_ordinary,
942                               unsigned int orig_st_shndx)
943 {
944   // Print a message if this symbol is being traced.
945   if (parameters->options().is_trace_symbol(name))
946     {
947       if (orig_st_shndx == elfcpp::SHN_UNDEF)
948         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
949       else
950         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
951     }
952
953   // For an undefined symbol, we may need to adjust the name using
954   // --wrap.
955   if (orig_st_shndx == elfcpp::SHN_UNDEF
956       && parameters->options().any_wrap())
957     {
958       const char* wrap_name = this->wrap_symbol(name, &name_key);
959       if (wrap_name != name)
960         {
961           // If we see a reference to malloc with version GLIBC_2.0,
962           // and we turn it into a reference to __wrap_malloc, then we
963           // discard the version number.  Otherwise the user would be
964           // required to specify the correct version for
965           // __wrap_malloc.
966           version = NULL;
967           version_key = 0;
968           name = wrap_name;
969         }
970     }
971
972   Symbol* const snull = NULL;
973   std::pair<typename Symbol_table_type::iterator, bool> ins =
974     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
975                                        snull));
976
977   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
978     std::make_pair(this->table_.end(), false);
979   if (is_default_version)
980     {
981       const Stringpool::Key vnull_key = 0;
982       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
983                                                                      vnull_key),
984                                                       snull));
985     }
986
987   // ins.first: an iterator, which is a pointer to a pair.
988   // ins.first->first: the key (a pair of name and version).
989   // ins.first->second: the value (Symbol*).
990   // ins.second: true if new entry was inserted, false if not.
991
992   Sized_symbol<size>* ret;
993   bool was_undefined;
994   bool was_common;
995   if (!ins.second)
996     {
997       // We already have an entry for NAME/VERSION.
998       ret = this->get_sized_symbol<size>(ins.first->second);
999       gold_assert(ret != NULL);
1000
1001       was_undefined = ret->is_undefined();
1002       // Commons from plugins are just placeholders.
1003       was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1004
1005       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1006                     version, is_default_version);
1007       if (parameters->options().gc_sections())
1008         this->gc_mark_dyn_syms(ret);
1009
1010       if (is_default_version)
1011         this->define_default_version<size, big_endian>(ret, insdefault.second,
1012                                                        insdefault.first);
1013       else
1014         {
1015           bool dummy;
1016           if (version != NULL
1017               && ret->source() == Symbol::FROM_OBJECT
1018               && ret->object() == object
1019               && is_ordinary
1020               && ret->shndx(&dummy) == st_shndx
1021               && ret->is_default())
1022             {
1023               // We have seen NAME/VERSION already, and marked it as the
1024               // default version, but now we see a definition for
1025               // NAME/VERSION that is not the default version. This can
1026               // happen when the assembler generates two symbols for
1027               // a symbol as a result of a ".symver foo,foo@VER"
1028               // directive. We see the first unversioned symbol and
1029               // we may mark it as the default version (from a
1030               // version script); then we see the second versioned
1031               // symbol and we need to override the first.
1032               // In any other case, the two symbols should have generated
1033               // a multiple definition error.
1034               // (See PR gold/18703.)
1035               ret->set_is_not_default();
1036               const Stringpool::Key vnull_key = 0;
1037               this->table_.erase(std::make_pair(name_key, vnull_key));
1038             }
1039         }
1040     }
1041   else
1042     {
1043       // This is the first time we have seen NAME/VERSION.
1044       gold_assert(ins.first->second == NULL);
1045
1046       if (is_default_version && !insdefault.second)
1047         {
1048           // We already have an entry for NAME/NULL.  If we override
1049           // it, then change it to NAME/VERSION.
1050           ret = this->get_sized_symbol<size>(insdefault.first->second);
1051
1052           was_undefined = ret->is_undefined();
1053           // Commons from plugins are just placeholders.
1054           was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1055
1056           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1057                         version, is_default_version);
1058           if (parameters->options().gc_sections())
1059             this->gc_mark_dyn_syms(ret);
1060           ins.first->second = ret;
1061         }
1062       else
1063         {
1064           was_undefined = false;
1065           was_common = false;
1066
1067           Sized_target<size, big_endian>* target =
1068             parameters->sized_target<size, big_endian>();
1069           if (!target->has_make_symbol())
1070             ret = new Sized_symbol<size>();
1071           else
1072             {
1073               ret = target->make_symbol(name, sym.get_st_type(), object,
1074                                         st_shndx, sym.get_st_value());
1075               if (ret == NULL)
1076                 {
1077                   // This means that we don't want a symbol table
1078                   // entry after all.
1079                   if (!is_default_version)
1080                     this->table_.erase(ins.first);
1081                   else
1082                     {
1083                       this->table_.erase(insdefault.first);
1084                       // Inserting INSDEFAULT invalidated INS.
1085                       this->table_.erase(std::make_pair(name_key,
1086                                                         version_key));
1087                     }
1088                   return NULL;
1089                 }
1090             }
1091
1092           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1093
1094           ins.first->second = ret;
1095           if (is_default_version)
1096             {
1097               // This is the first time we have seen NAME/NULL.  Point
1098               // it at the new entry for NAME/VERSION.
1099               gold_assert(insdefault.second);
1100               insdefault.first->second = ret;
1101             }
1102         }
1103
1104       if (is_default_version)
1105         ret->set_is_default();
1106     }
1107
1108   // Record every time we see a new undefined symbol, to speed up
1109   // archive groups.
1110   if (!was_undefined && ret->is_undefined())
1111     {
1112       ++this->saw_undefined_;
1113       if (parameters->options().has_plugins())
1114         parameters->options().plugins()->new_undefined_symbol(ret);
1115     }
1116
1117   // Keep track of common symbols, to speed up common symbol
1118   // allocation.  Don't record commons from plugin objects;
1119   // we need to wait until we see the real symbol in the
1120   // replacement file.
1121   if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1122     {
1123       if (ret->type() == elfcpp::STT_TLS)
1124         this->tls_commons_.push_back(ret);
1125       else if (!is_ordinary
1126                && st_shndx == parameters->target().small_common_shndx())
1127         this->small_commons_.push_back(ret);
1128       else if (!is_ordinary
1129                && st_shndx == parameters->target().large_common_shndx())
1130         this->large_commons_.push_back(ret);
1131       else
1132         this->commons_.push_back(ret);
1133     }
1134
1135   // If we're not doing a relocatable link, then any symbol with
1136   // hidden or internal visibility is local.
1137   if ((ret->visibility() == elfcpp::STV_HIDDEN
1138        || ret->visibility() == elfcpp::STV_INTERNAL)
1139       && (ret->binding() == elfcpp::STB_GLOBAL
1140           || ret->binding() == elfcpp::STB_GNU_UNIQUE
1141           || ret->binding() == elfcpp::STB_WEAK)
1142       && !parameters->options().relocatable())
1143     this->force_local(ret);
1144
1145   return ret;
1146 }
1147
1148 // Add all the symbols in a relocatable object to the hash table.
1149
1150 template<int size, bool big_endian>
1151 void
1152 Symbol_table::add_from_relobj(
1153     Sized_relobj_file<size, big_endian>* relobj,
1154     const unsigned char* syms,
1155     size_t count,
1156     size_t symndx_offset,
1157     const char* sym_names,
1158     size_t sym_name_size,
1159     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1160     size_t* defined)
1161 {
1162   *defined = 0;
1163
1164   gold_assert(size == parameters->target().get_size());
1165
1166   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1167
1168   const bool just_symbols = relobj->just_symbols();
1169
1170   const unsigned char* p = syms;
1171   for (size_t i = 0; i < count; ++i, p += sym_size)
1172     {
1173       (*sympointers)[i] = NULL;
1174
1175       elfcpp::Sym<size, big_endian> sym(p);
1176
1177       unsigned int st_name = sym.get_st_name();
1178       if (st_name >= sym_name_size)
1179         {
1180           relobj->error(_("bad global symbol name offset %u at %zu"),
1181                         st_name, i);
1182           continue;
1183         }
1184
1185       const char* name = sym_names + st_name;
1186
1187       if (!parameters->options().relocatable()
1188           && strcmp (name, "__gnu_lto_slim") == 0)
1189         gold_info(_("%s: plugin needed to handle lto object"),
1190                   relobj->name().c_str());
1191
1192       bool is_ordinary;
1193       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1194                                                        sym.get_st_shndx(),
1195                                                        &is_ordinary);
1196       unsigned int orig_st_shndx = st_shndx;
1197       if (!is_ordinary)
1198         orig_st_shndx = elfcpp::SHN_UNDEF;
1199
1200       if (st_shndx != elfcpp::SHN_UNDEF)
1201         ++*defined;
1202
1203       // A symbol defined in a section which we are not including must
1204       // be treated as an undefined symbol.
1205       bool is_defined_in_discarded_section = false;
1206       if (st_shndx != elfcpp::SHN_UNDEF
1207           && is_ordinary
1208           && !relobj->is_section_included(st_shndx)
1209           && !this->is_section_folded(relobj, st_shndx))
1210         {
1211           st_shndx = elfcpp::SHN_UNDEF;
1212           is_defined_in_discarded_section = true;
1213         }
1214
1215       // In an object file, an '@' in the name separates the symbol
1216       // name from the version name.  If there are two '@' characters,
1217       // this is the default version.
1218       const char* ver = strchr(name, '@');
1219       Stringpool::Key ver_key = 0;
1220       int namelen = 0;
1221       // IS_DEFAULT_VERSION: is the version default?
1222       // IS_FORCED_LOCAL: is the symbol forced local?
1223       bool is_default_version = false;
1224       bool is_forced_local = false;
1225
1226       // FIXME: For incremental links, we don't store version information,
1227       // so we need to ignore version symbols for now.
1228       if (parameters->incremental_update() && ver != NULL)
1229         {
1230           namelen = ver - name;
1231           ver = NULL;
1232         }
1233
1234       if (ver != NULL)
1235         {
1236           // The symbol name is of the form foo@VERSION or foo@@VERSION
1237           namelen = ver - name;
1238           ++ver;
1239           if (*ver == '@')
1240             {
1241               is_default_version = true;
1242               ++ver;
1243             }
1244           ver = this->namepool_.add(ver, true, &ver_key);
1245         }
1246       // We don't want to assign a version to an undefined symbol,
1247       // even if it is listed in the version script.  FIXME: What
1248       // about a common symbol?
1249       else
1250         {
1251           namelen = strlen(name);
1252           if (!this->version_script_.empty()
1253               && st_shndx != elfcpp::SHN_UNDEF)
1254             {
1255               // The symbol name did not have a version, but the
1256               // version script may assign a version anyway.
1257               std::string version;
1258               bool is_global;
1259               if (this->version_script_.get_symbol_version(name, &version,
1260                                                            &is_global))
1261                 {
1262                   if (!is_global)
1263                     is_forced_local = true;
1264                   else if (!version.empty())
1265                     {
1266                       ver = this->namepool_.add_with_length(version.c_str(),
1267                                                             version.length(),
1268                                                             true,
1269                                                             &ver_key);
1270                       is_default_version = true;
1271                     }
1272                 }
1273             }
1274         }
1275
1276       elfcpp::Sym<size, big_endian>* psym = &sym;
1277       unsigned char symbuf[sym_size];
1278       elfcpp::Sym<size, big_endian> sym2(symbuf);
1279       if (just_symbols)
1280         {
1281           memcpy(symbuf, p, sym_size);
1282           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1283           if (orig_st_shndx != elfcpp::SHN_UNDEF
1284               && is_ordinary
1285               && relobj->e_type() == elfcpp::ET_REL)
1286             {
1287               // Symbol values in relocatable object files are section
1288               // relative.  This is normally what we want, but since here
1289               // we are converting the symbol to absolute we need to add
1290               // the section address.  The section address in an object
1291               // file is normally zero, but people can use a linker
1292               // script to change it.
1293               sw.put_st_value(sym.get_st_value()
1294                               + relobj->section_address(orig_st_shndx));
1295             }
1296           st_shndx = elfcpp::SHN_ABS;
1297           is_ordinary = false;
1298           psym = &sym2;
1299         }
1300
1301       // Fix up visibility if object has no-export set.
1302       if (relobj->no_export()
1303           && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1304         {
1305           // We may have copied symbol already above.
1306           if (psym != &sym2)
1307             {
1308               memcpy(symbuf, p, sym_size);
1309               psym = &sym2;
1310             }
1311
1312           elfcpp::STV visibility = sym2.get_st_visibility();
1313           if (visibility == elfcpp::STV_DEFAULT
1314               || visibility == elfcpp::STV_PROTECTED)
1315             {
1316               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1317               unsigned char nonvis = sym2.get_st_nonvis();
1318               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1319             }
1320         }
1321
1322       Stringpool::Key name_key;
1323       name = this->namepool_.add_with_length(name, namelen, true,
1324                                              &name_key);
1325
1326       Sized_symbol<size>* res;
1327       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1328                                   is_default_version, *psym, st_shndx,
1329                                   is_ordinary, orig_st_shndx);
1330
1331       if (res == NULL)
1332         continue;
1333       
1334       if (is_forced_local)
1335         this->force_local(res);
1336
1337       // Do not treat this symbol as garbage if this symbol will be
1338       // exported to the dynamic symbol table.  This is true when
1339       // building a shared library or using --export-dynamic and
1340       // the symbol is externally visible.
1341       if (parameters->options().gc_sections()
1342           && res->is_externally_visible()
1343           && !res->is_from_dynobj()
1344           && (parameters->options().shared()
1345               || parameters->options().export_dynamic()
1346               || parameters->options().in_dynamic_list(res->name())))
1347         this->gc_mark_symbol(res);
1348
1349       if (is_defined_in_discarded_section)
1350         res->set_is_defined_in_discarded_section();
1351
1352       (*sympointers)[i] = res;
1353     }
1354 }
1355
1356 // Add a symbol from a plugin-claimed file.
1357
1358 template<int size, bool big_endian>
1359 Symbol*
1360 Symbol_table::add_from_pluginobj(
1361     Sized_pluginobj<size, big_endian>* obj,
1362     const char* name,
1363     const char* ver,
1364     elfcpp::Sym<size, big_endian>* sym)
1365 {
1366   unsigned int st_shndx = sym->get_st_shndx();
1367   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1368
1369   Stringpool::Key ver_key = 0;
1370   bool is_default_version = false;
1371   bool is_forced_local = false;
1372
1373   if (ver != NULL)
1374     {
1375       ver = this->namepool_.add(ver, true, &ver_key);
1376     }
1377   // We don't want to assign a version to an undefined symbol,
1378   // even if it is listed in the version script.  FIXME: What
1379   // about a common symbol?
1380   else
1381     {
1382       if (!this->version_script_.empty()
1383           && st_shndx != elfcpp::SHN_UNDEF)
1384         {
1385           // The symbol name did not have a version, but the
1386           // version script may assign a version anyway.
1387           std::string version;
1388           bool is_global;
1389           if (this->version_script_.get_symbol_version(name, &version,
1390                                                        &is_global))
1391             {
1392               if (!is_global)
1393                 is_forced_local = true;
1394               else if (!version.empty())
1395                 {
1396                   ver = this->namepool_.add_with_length(version.c_str(),
1397                                                         version.length(),
1398                                                         true,
1399                                                         &ver_key);
1400                   is_default_version = true;
1401                 }
1402             }
1403         }
1404     }
1405
1406   Stringpool::Key name_key;
1407   name = this->namepool_.add(name, true, &name_key);
1408
1409   Sized_symbol<size>* res;
1410   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1411                               is_default_version, *sym, st_shndx,
1412                               is_ordinary, st_shndx);
1413
1414   if (res == NULL)
1415     return NULL;
1416
1417   if (is_forced_local)
1418     this->force_local(res);
1419
1420   return res;
1421 }
1422
1423 // Add all the symbols in a dynamic object to the hash table.
1424
1425 template<int size, bool big_endian>
1426 void
1427 Symbol_table::add_from_dynobj(
1428     Sized_dynobj<size, big_endian>* dynobj,
1429     const unsigned char* syms,
1430     size_t count,
1431     const char* sym_names,
1432     size_t sym_name_size,
1433     const unsigned char* versym,
1434     size_t versym_size,
1435     const std::vector<const char*>* version_map,
1436     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1437     size_t* defined)
1438 {
1439   *defined = 0;
1440
1441   gold_assert(size == parameters->target().get_size());
1442
1443   if (dynobj->just_symbols())
1444     {
1445       gold_error(_("--just-symbols does not make sense with a shared object"));
1446       return;
1447     }
1448
1449   // FIXME: For incremental links, we don't store version information,
1450   // so we need to ignore version symbols for now.
1451   if (parameters->incremental_update())
1452     versym = NULL;
1453
1454   if (versym != NULL && versym_size / 2 < count)
1455     {
1456       dynobj->error(_("too few symbol versions"));
1457       return;
1458     }
1459
1460   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1461
1462   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1463   // weak aliases.  This is necessary because if the dynamic object
1464   // provides the same variable under two names, one of which is a
1465   // weak definition, and the regular object refers to the weak
1466   // definition, we have to put both the weak definition and the
1467   // strong definition into the dynamic symbol table.  Given a weak
1468   // definition, the only way that we can find the corresponding
1469   // strong definition, if any, is to search the symbol table.
1470   std::vector<Sized_symbol<size>*> object_symbols;
1471
1472   const unsigned char* p = syms;
1473   const unsigned char* vs = versym;
1474   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1475     {
1476       elfcpp::Sym<size, big_endian> sym(p);
1477
1478       if (sympointers != NULL)
1479         (*sympointers)[i] = NULL;
1480
1481       // Ignore symbols with local binding or that have
1482       // internal or hidden visibility.
1483       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1484           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1485           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1486         continue;
1487
1488       // A protected symbol in a shared library must be treated as a
1489       // normal symbol when viewed from outside the shared library.
1490       // Implement this by overriding the visibility here.
1491       // Likewise, an IFUNC symbol in a shared library must be treated
1492       // as a normal FUNC symbol.
1493       elfcpp::Sym<size, big_endian>* psym = &sym;
1494       unsigned char symbuf[sym_size];
1495       elfcpp::Sym<size, big_endian> sym2(symbuf);
1496       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1497           || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1498         {
1499           memcpy(symbuf, p, sym_size);
1500           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1501           if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1502             sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1503           if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1504             sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1505           psym = &sym2;
1506         }
1507
1508       unsigned int st_name = psym->get_st_name();
1509       if (st_name >= sym_name_size)
1510         {
1511           dynobj->error(_("bad symbol name offset %u at %zu"),
1512                         st_name, i);
1513           continue;
1514         }
1515
1516       const char* name = sym_names + st_name;
1517
1518       bool is_ordinary;
1519       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1520                                                        &is_ordinary);
1521
1522       if (st_shndx != elfcpp::SHN_UNDEF)
1523         ++*defined;
1524
1525       Sized_symbol<size>* res;
1526
1527       if (versym == NULL)
1528         {
1529           Stringpool::Key name_key;
1530           name = this->namepool_.add(name, true, &name_key);
1531           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1532                                       false, *psym, st_shndx, is_ordinary,
1533                                       st_shndx);
1534         }
1535       else
1536         {
1537           // Read the version information.
1538
1539           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1540
1541           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1542           v &= elfcpp::VERSYM_VERSION;
1543
1544           // The Sun documentation says that V can be VER_NDX_LOCAL,
1545           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1546           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1547           // The old GNU linker will happily generate VER_NDX_LOCAL
1548           // for an undefined symbol.  I don't know what the Sun
1549           // linker will generate.
1550
1551           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1552               && st_shndx != elfcpp::SHN_UNDEF)
1553             {
1554               // This symbol should not be visible outside the object.
1555               continue;
1556             }
1557
1558           // At this point we are definitely going to add this symbol.
1559           Stringpool::Key name_key;
1560           name = this->namepool_.add(name, true, &name_key);
1561
1562           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1563               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1564             {
1565               // This symbol does not have a version.
1566               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1567                                           false, *psym, st_shndx, is_ordinary,
1568                                           st_shndx);
1569             }
1570           else
1571             {
1572               if (v >= version_map->size())
1573                 {
1574                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1575                                 i, v);
1576                   continue;
1577                 }
1578
1579               const char* version = (*version_map)[v];
1580               if (version == NULL)
1581                 {
1582                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1583                                 i, v);
1584                   continue;
1585                 }
1586
1587               Stringpool::Key version_key;
1588               version = this->namepool_.add(version, true, &version_key);
1589
1590               // If this is an absolute symbol, and the version name
1591               // and symbol name are the same, then this is the
1592               // version definition symbol.  These symbols exist to
1593               // support using -u to pull in particular versions.  We
1594               // do not want to record a version for them.
1595               if (st_shndx == elfcpp::SHN_ABS
1596                   && !is_ordinary
1597                   && name_key == version_key)
1598                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1599                                             false, *psym, st_shndx, is_ordinary,
1600                                             st_shndx);
1601               else
1602                 {
1603                   const bool is_default_version =
1604                     !hidden && st_shndx != elfcpp::SHN_UNDEF;
1605                   res = this->add_from_object(dynobj, name, name_key, version,
1606                                               version_key, is_default_version,
1607                                               *psym, st_shndx,
1608                                               is_ordinary, st_shndx);
1609                 }
1610             }
1611         }
1612
1613       if (res == NULL)
1614         continue;
1615
1616       // Note that it is possible that RES was overridden by an
1617       // earlier object, in which case it can't be aliased here.
1618       if (st_shndx != elfcpp::SHN_UNDEF
1619           && is_ordinary
1620           && psym->get_st_type() == elfcpp::STT_OBJECT
1621           && res->source() == Symbol::FROM_OBJECT
1622           && res->object() == dynobj)
1623         object_symbols.push_back(res);
1624
1625       // If the symbol has protected visibility in the dynobj,
1626       // mark it as such if it was not overridden.
1627       if (res->source() == Symbol::FROM_OBJECT
1628           && res->object() == dynobj
1629           && sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1630         res->set_is_protected();
1631
1632       if (sympointers != NULL)
1633         (*sympointers)[i] = res;
1634     }
1635
1636   this->record_weak_aliases(&object_symbols);
1637 }
1638
1639 // Add a symbol from a incremental object file.
1640
1641 template<int size, bool big_endian>
1642 Sized_symbol<size>*
1643 Symbol_table::add_from_incrobj(
1644     Object* obj,
1645     const char* name,
1646     const char* ver,
1647     elfcpp::Sym<size, big_endian>* sym)
1648 {
1649   unsigned int st_shndx = sym->get_st_shndx();
1650   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1651
1652   Stringpool::Key ver_key = 0;
1653   bool is_default_version = false;
1654
1655   Stringpool::Key name_key;
1656   name = this->namepool_.add(name, true, &name_key);
1657
1658   Sized_symbol<size>* res;
1659   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1660                               is_default_version, *sym, st_shndx,
1661                               is_ordinary, st_shndx);
1662
1663   return res;
1664 }
1665
1666 // This is used to sort weak aliases.  We sort them first by section
1667 // index, then by offset, then by weak ahead of strong.
1668
1669 template<int size>
1670 class Weak_alias_sorter
1671 {
1672  public:
1673   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1674 };
1675
1676 template<int size>
1677 bool
1678 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1679                                     const Sized_symbol<size>* s2) const
1680 {
1681   bool is_ordinary;
1682   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1683   gold_assert(is_ordinary);
1684   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1685   gold_assert(is_ordinary);
1686   if (s1_shndx != s2_shndx)
1687     return s1_shndx < s2_shndx;
1688
1689   if (s1->value() != s2->value())
1690     return s1->value() < s2->value();
1691   if (s1->binding() != s2->binding())
1692     {
1693       if (s1->binding() == elfcpp::STB_WEAK)
1694         return true;
1695       if (s2->binding() == elfcpp::STB_WEAK)
1696         return false;
1697     }
1698   return std::string(s1->name()) < std::string(s2->name());
1699 }
1700
1701 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1702 // for any weak aliases, and record them so that if we add the weak
1703 // alias to the dynamic symbol table, we also add the corresponding
1704 // strong symbol.
1705
1706 template<int size>
1707 void
1708 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1709 {
1710   // Sort the vector by section index, then by offset, then by weak
1711   // ahead of strong.
1712   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1713
1714   // Walk through the vector.  For each weak definition, record
1715   // aliases.
1716   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1717          symbols->begin();
1718        p != symbols->end();
1719        ++p)
1720     {
1721       if ((*p)->binding() != elfcpp::STB_WEAK)
1722         continue;
1723
1724       // Build a circular list of weak aliases.  Each symbol points to
1725       // the next one in the circular list.
1726
1727       Sized_symbol<size>* from_sym = *p;
1728       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1729       for (q = p + 1; q != symbols->end(); ++q)
1730         {
1731           bool dummy;
1732           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1733               || (*q)->value() != from_sym->value())
1734             break;
1735
1736           this->weak_aliases_[from_sym] = *q;
1737           from_sym->set_has_alias();
1738           from_sym = *q;
1739         }
1740
1741       if (from_sym != *p)
1742         {
1743           this->weak_aliases_[from_sym] = *p;
1744           from_sym->set_has_alias();
1745         }
1746
1747       p = q - 1;
1748     }
1749 }
1750
1751 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1752 // true, then only create the symbol if there is a reference to it.
1753 // If this does not return NULL, it sets *POLDSYM to the existing
1754 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1755 // resolve the newly created symbol to the old one.  This
1756 // canonicalizes *PNAME and *PVERSION.
1757
1758 template<int size, bool big_endian>
1759 Sized_symbol<size>*
1760 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1761                                     bool only_if_ref,
1762                                     Sized_symbol<size>** poldsym,
1763                                     bool* resolve_oldsym, bool is_forced_local)
1764 {
1765   *resolve_oldsym = false;
1766   *poldsym = NULL;
1767
1768   // If the caller didn't give us a version, see if we get one from
1769   // the version script.
1770   std::string v;
1771   bool is_default_version = false;
1772   if (!is_forced_local && *pversion == NULL)
1773     {
1774       bool is_global;
1775       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1776         {
1777           if (is_global && !v.empty())
1778             {
1779               *pversion = v.c_str();
1780               // If we get the version from a version script, then we
1781               // are also the default version.
1782               is_default_version = true;
1783             }
1784         }
1785     }
1786
1787   Symbol* oldsym;
1788   Sized_symbol<size>* sym;
1789
1790   bool add_to_table = false;
1791   typename Symbol_table_type::iterator add_loc = this->table_.end();
1792   bool add_def_to_table = false;
1793   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1794
1795   if (only_if_ref)
1796     {
1797       oldsym = this->lookup(*pname, *pversion);
1798       if (oldsym == NULL && is_default_version)
1799         oldsym = this->lookup(*pname, NULL);
1800       if (oldsym == NULL || !oldsym->is_undefined())
1801         return NULL;
1802
1803       *pname = oldsym->name();
1804       if (is_default_version)
1805         *pversion = this->namepool_.add(*pversion, true, NULL);
1806       else
1807         *pversion = oldsym->version();
1808     }
1809   else
1810     {
1811       // Canonicalize NAME and VERSION.
1812       Stringpool::Key name_key;
1813       *pname = this->namepool_.add(*pname, true, &name_key);
1814
1815       Stringpool::Key version_key = 0;
1816       if (*pversion != NULL)
1817         *pversion = this->namepool_.add(*pversion, true, &version_key);
1818
1819       Symbol* const snull = NULL;
1820       std::pair<typename Symbol_table_type::iterator, bool> ins =
1821         this->table_.insert(std::make_pair(std::make_pair(name_key,
1822                                                           version_key),
1823                                            snull));
1824
1825       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1826         std::make_pair(this->table_.end(), false);
1827       if (is_default_version)
1828         {
1829           const Stringpool::Key vnull = 0;
1830           insdefault =
1831             this->table_.insert(std::make_pair(std::make_pair(name_key,
1832                                                               vnull),
1833                                                snull));
1834         }
1835
1836       if (!ins.second)
1837         {
1838           // We already have a symbol table entry for NAME/VERSION.
1839           oldsym = ins.first->second;
1840           gold_assert(oldsym != NULL);
1841
1842           if (is_default_version)
1843             {
1844               Sized_symbol<size>* soldsym =
1845                 this->get_sized_symbol<size>(oldsym);
1846               this->define_default_version<size, big_endian>(soldsym,
1847                                                              insdefault.second,
1848                                                              insdefault.first);
1849             }
1850         }
1851       else
1852         {
1853           // We haven't seen this symbol before.
1854           gold_assert(ins.first->second == NULL);
1855
1856           add_to_table = true;
1857           add_loc = ins.first;
1858
1859           if (is_default_version && !insdefault.second)
1860             {
1861               // We are adding NAME/VERSION, and it is the default
1862               // version.  We already have an entry for NAME/NULL.
1863               oldsym = insdefault.first->second;
1864               *resolve_oldsym = true;
1865             }
1866           else
1867             {
1868               oldsym = NULL;
1869
1870               if (is_default_version)
1871                 {
1872                   add_def_to_table = true;
1873                   add_def_loc = insdefault.first;
1874                 }
1875             }
1876         }
1877     }
1878
1879   const Target& target = parameters->target();
1880   if (!target.has_make_symbol())
1881     sym = new Sized_symbol<size>();
1882   else
1883     {
1884       Sized_target<size, big_endian>* sized_target =
1885         parameters->sized_target<size, big_endian>();
1886       sym = sized_target->make_symbol(*pname, elfcpp::STT_NOTYPE,
1887                                       NULL, elfcpp::SHN_UNDEF, 0);
1888       if (sym == NULL)
1889         return NULL;
1890     }
1891
1892   if (add_to_table)
1893     add_loc->second = sym;
1894   else
1895     gold_assert(oldsym != NULL);
1896
1897   if (add_def_to_table)
1898     add_def_loc->second = sym;
1899
1900   *poldsym = this->get_sized_symbol<size>(oldsym);
1901
1902   return sym;
1903 }
1904
1905 // Define a symbol based on an Output_data.
1906
1907 Symbol*
1908 Symbol_table::define_in_output_data(const char* name,
1909                                     const char* version,
1910                                     Defined defined,
1911                                     Output_data* od,
1912                                     uint64_t value,
1913                                     uint64_t symsize,
1914                                     elfcpp::STT type,
1915                                     elfcpp::STB binding,
1916                                     elfcpp::STV visibility,
1917                                     unsigned char nonvis,
1918                                     bool offset_is_from_end,
1919                                     bool only_if_ref)
1920 {
1921   if (parameters->target().get_size() == 32)
1922     {
1923 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1924       return this->do_define_in_output_data<32>(name, version, defined, od,
1925                                                 value, symsize, type, binding,
1926                                                 visibility, nonvis,
1927                                                 offset_is_from_end,
1928                                                 only_if_ref);
1929 #else
1930       gold_unreachable();
1931 #endif
1932     }
1933   else if (parameters->target().get_size() == 64)
1934     {
1935 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1936       return this->do_define_in_output_data<64>(name, version, defined, od,
1937                                                 value, symsize, type, binding,
1938                                                 visibility, nonvis,
1939                                                 offset_is_from_end,
1940                                                 only_if_ref);
1941 #else
1942       gold_unreachable();
1943 #endif
1944     }
1945   else
1946     gold_unreachable();
1947 }
1948
1949 // Define a symbol in an Output_data, sized version.
1950
1951 template<int size>
1952 Sized_symbol<size>*
1953 Symbol_table::do_define_in_output_data(
1954     const char* name,
1955     const char* version,
1956     Defined defined,
1957     Output_data* od,
1958     typename elfcpp::Elf_types<size>::Elf_Addr value,
1959     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1960     elfcpp::STT type,
1961     elfcpp::STB binding,
1962     elfcpp::STV visibility,
1963     unsigned char nonvis,
1964     bool offset_is_from_end,
1965     bool only_if_ref)
1966 {
1967   Sized_symbol<size>* sym;
1968   Sized_symbol<size>* oldsym;
1969   bool resolve_oldsym;
1970   const bool is_forced_local = binding == elfcpp::STB_LOCAL;
1971
1972   if (parameters->target().is_big_endian())
1973     {
1974 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1975       sym = this->define_special_symbol<size, true>(&name, &version,
1976                                                     only_if_ref, &oldsym,
1977                                                     &resolve_oldsym,
1978                                                     is_forced_local);
1979 #else
1980       gold_unreachable();
1981 #endif
1982     }
1983   else
1984     {
1985 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1986       sym = this->define_special_symbol<size, false>(&name, &version,
1987                                                      only_if_ref, &oldsym,
1988                                                      &resolve_oldsym,
1989                                                      is_forced_local);
1990 #else
1991       gold_unreachable();
1992 #endif
1993     }
1994
1995   if (sym == NULL)
1996     return NULL;
1997
1998   sym->init_output_data(name, version, od, value, symsize, type, binding,
1999                         visibility, nonvis, offset_is_from_end,
2000                         defined == PREDEFINED);
2001
2002   if (oldsym == NULL)
2003     {
2004       if (is_forced_local || this->version_script_.symbol_is_local(name))
2005         this->force_local(sym);
2006       else if (version != NULL)
2007         sym->set_is_default();
2008       return sym;
2009     }
2010
2011   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2012     this->override_with_special(oldsym, sym);
2013
2014   if (resolve_oldsym)
2015     return sym;
2016   else
2017     {
2018       if (defined == PREDEFINED
2019           && (is_forced_local || this->version_script_.symbol_is_local(name)))
2020         this->force_local(oldsym);
2021       delete sym;
2022       return oldsym;
2023     }
2024 }
2025
2026 // Define a symbol based on an Output_segment.
2027
2028 Symbol*
2029 Symbol_table::define_in_output_segment(const char* name,
2030                                        const char* version,
2031                                        Defined defined,
2032                                        Output_segment* os,
2033                                        uint64_t value,
2034                                        uint64_t symsize,
2035                                        elfcpp::STT type,
2036                                        elfcpp::STB binding,
2037                                        elfcpp::STV visibility,
2038                                        unsigned char nonvis,
2039                                        Symbol::Segment_offset_base offset_base,
2040                                        bool only_if_ref)
2041 {
2042   if (parameters->target().get_size() == 32)
2043     {
2044 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2045       return this->do_define_in_output_segment<32>(name, version, defined, os,
2046                                                    value, symsize, type,
2047                                                    binding, visibility, nonvis,
2048                                                    offset_base, only_if_ref);
2049 #else
2050       gold_unreachable();
2051 #endif
2052     }
2053   else if (parameters->target().get_size() == 64)
2054     {
2055 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2056       return this->do_define_in_output_segment<64>(name, version, defined, os,
2057                                                    value, symsize, type,
2058                                                    binding, visibility, nonvis,
2059                                                    offset_base, only_if_ref);
2060 #else
2061       gold_unreachable();
2062 #endif
2063     }
2064   else
2065     gold_unreachable();
2066 }
2067
2068 // Define a symbol in an Output_segment, sized version.
2069
2070 template<int size>
2071 Sized_symbol<size>*
2072 Symbol_table::do_define_in_output_segment(
2073     const char* name,
2074     const char* version,
2075     Defined defined,
2076     Output_segment* os,
2077     typename elfcpp::Elf_types<size>::Elf_Addr value,
2078     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2079     elfcpp::STT type,
2080     elfcpp::STB binding,
2081     elfcpp::STV visibility,
2082     unsigned char nonvis,
2083     Symbol::Segment_offset_base offset_base,
2084     bool only_if_ref)
2085 {
2086   Sized_symbol<size>* sym;
2087   Sized_symbol<size>* oldsym;
2088   bool resolve_oldsym;
2089   const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2090
2091   if (parameters->target().is_big_endian())
2092     {
2093 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2094       sym = this->define_special_symbol<size, true>(&name, &version,
2095                                                     only_if_ref, &oldsym,
2096                                                     &resolve_oldsym,
2097                                                     is_forced_local);
2098 #else
2099       gold_unreachable();
2100 #endif
2101     }
2102   else
2103     {
2104 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2105       sym = this->define_special_symbol<size, false>(&name, &version,
2106                                                      only_if_ref, &oldsym,
2107                                                      &resolve_oldsym,
2108                                                      is_forced_local);
2109 #else
2110       gold_unreachable();
2111 #endif
2112     }
2113
2114   if (sym == NULL)
2115     return NULL;
2116
2117   sym->init_output_segment(name, version, os, value, symsize, type, binding,
2118                            visibility, nonvis, offset_base,
2119                            defined == PREDEFINED);
2120
2121   if (oldsym == NULL)
2122     {
2123       if (is_forced_local || this->version_script_.symbol_is_local(name))
2124         this->force_local(sym);
2125       else if (version != NULL)
2126         sym->set_is_default();
2127       return sym;
2128     }
2129
2130   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2131     this->override_with_special(oldsym, sym);
2132
2133   if (resolve_oldsym)
2134     return sym;
2135   else
2136     {
2137       if (is_forced_local || this->version_script_.symbol_is_local(name))
2138         this->force_local(oldsym);
2139       delete sym;
2140       return oldsym;
2141     }
2142 }
2143
2144 // Define a special symbol with a constant value.  It is a multiple
2145 // definition error if this symbol is already defined.
2146
2147 Symbol*
2148 Symbol_table::define_as_constant(const char* name,
2149                                  const char* version,
2150                                  Defined defined,
2151                                  uint64_t value,
2152                                  uint64_t symsize,
2153                                  elfcpp::STT type,
2154                                  elfcpp::STB binding,
2155                                  elfcpp::STV visibility,
2156                                  unsigned char nonvis,
2157                                  bool only_if_ref,
2158                                  bool force_override)
2159 {
2160   if (parameters->target().get_size() == 32)
2161     {
2162 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2163       return this->do_define_as_constant<32>(name, version, defined, value,
2164                                              symsize, type, binding,
2165                                              visibility, nonvis, only_if_ref,
2166                                              force_override);
2167 #else
2168       gold_unreachable();
2169 #endif
2170     }
2171   else if (parameters->target().get_size() == 64)
2172     {
2173 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2174       return this->do_define_as_constant<64>(name, version, defined, value,
2175                                              symsize, type, binding,
2176                                              visibility, nonvis, only_if_ref,
2177                                              force_override);
2178 #else
2179       gold_unreachable();
2180 #endif
2181     }
2182   else
2183     gold_unreachable();
2184 }
2185
2186 // Define a symbol as a constant, sized version.
2187
2188 template<int size>
2189 Sized_symbol<size>*
2190 Symbol_table::do_define_as_constant(
2191     const char* name,
2192     const char* version,
2193     Defined defined,
2194     typename elfcpp::Elf_types<size>::Elf_Addr value,
2195     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2196     elfcpp::STT type,
2197     elfcpp::STB binding,
2198     elfcpp::STV visibility,
2199     unsigned char nonvis,
2200     bool only_if_ref,
2201     bool force_override)
2202 {
2203   Sized_symbol<size>* sym;
2204   Sized_symbol<size>* oldsym;
2205   bool resolve_oldsym;
2206   const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2207
2208   if (parameters->target().is_big_endian())
2209     {
2210 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2211       sym = this->define_special_symbol<size, true>(&name, &version,
2212                                                     only_if_ref, &oldsym,
2213                                                     &resolve_oldsym,
2214                                                     is_forced_local);
2215 #else
2216       gold_unreachable();
2217 #endif
2218     }
2219   else
2220     {
2221 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2222       sym = this->define_special_symbol<size, false>(&name, &version,
2223                                                      only_if_ref, &oldsym,
2224                                                      &resolve_oldsym,
2225                                                      is_forced_local);
2226 #else
2227       gold_unreachable();
2228 #endif
2229     }
2230
2231   if (sym == NULL)
2232     return NULL;
2233
2234   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2235                      nonvis, defined == PREDEFINED);
2236
2237   if (oldsym == NULL)
2238     {
2239       // Version symbols are absolute symbols with name == version.
2240       // We don't want to force them to be local.
2241       if ((version == NULL
2242            || name != version
2243            || value != 0)
2244           && (is_forced_local || this->version_script_.symbol_is_local(name)))
2245         this->force_local(sym);
2246       else if (version != NULL
2247                && (name != version || value != 0))
2248         sym->set_is_default();
2249       return sym;
2250     }
2251
2252   if (force_override
2253       || Symbol_table::should_override_with_special(oldsym, type, defined))
2254     this->override_with_special(oldsym, sym);
2255
2256   if (resolve_oldsym)
2257     return sym;
2258   else
2259     {
2260       if (is_forced_local || this->version_script_.symbol_is_local(name))
2261         this->force_local(oldsym);
2262       delete sym;
2263       return oldsym;
2264     }
2265 }
2266
2267 // Define a set of symbols in output sections.
2268
2269 void
2270 Symbol_table::define_symbols(const Layout* layout, int count,
2271                              const Define_symbol_in_section* p,
2272                              bool only_if_ref)
2273 {
2274   for (int i = 0; i < count; ++i, ++p)
2275     {
2276       Output_section* os = layout->find_output_section(p->output_section);
2277       if (os != NULL)
2278         this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2279                                     p->size, p->type, p->binding,
2280                                     p->visibility, p->nonvis,
2281                                     p->offset_is_from_end,
2282                                     only_if_ref || p->only_if_ref);
2283       else
2284         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2285                                  p->type, p->binding, p->visibility, p->nonvis,
2286                                  only_if_ref || p->only_if_ref,
2287                                  false);
2288     }
2289 }
2290
2291 // Define a set of symbols in output segments.
2292
2293 void
2294 Symbol_table::define_symbols(const Layout* layout, int count,
2295                              const Define_symbol_in_segment* p,
2296                              bool only_if_ref)
2297 {
2298   for (int i = 0; i < count; ++i, ++p)
2299     {
2300       Output_segment* os = layout->find_output_segment(p->segment_type,
2301                                                        p->segment_flags_set,
2302                                                        p->segment_flags_clear);
2303       if (os != NULL)
2304         this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2305                                        p->size, p->type, p->binding,
2306                                        p->visibility, p->nonvis,
2307                                        p->offset_base,
2308                                        only_if_ref || p->only_if_ref);
2309       else
2310         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2311                                  p->type, p->binding, p->visibility, p->nonvis,
2312                                  only_if_ref || p->only_if_ref,
2313                                  false);
2314     }
2315 }
2316
2317 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2318 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2319 // the offset within POSD.
2320
2321 template<int size>
2322 void
2323 Symbol_table::define_with_copy_reloc(
2324     Sized_symbol<size>* csym,
2325     Output_data* posd,
2326     typename elfcpp::Elf_types<size>::Elf_Addr value)
2327 {
2328   gold_assert(csym->is_from_dynobj());
2329   gold_assert(!csym->is_copied_from_dynobj());
2330   Object* object = csym->object();
2331   gold_assert(object->is_dynamic());
2332   Dynobj* dynobj = static_cast<Dynobj*>(object);
2333
2334   // Our copied variable has to override any variable in a shared
2335   // library.
2336   elfcpp::STB binding = csym->binding();
2337   if (binding == elfcpp::STB_WEAK)
2338     binding = elfcpp::STB_GLOBAL;
2339
2340   this->define_in_output_data(csym->name(), csym->version(), COPY,
2341                               posd, value, csym->symsize(),
2342                               csym->type(), binding,
2343                               csym->visibility(), csym->nonvis(),
2344                               false, false);
2345
2346   csym->set_is_copied_from_dynobj();
2347   csym->set_needs_dynsym_entry();
2348
2349   this->copied_symbol_dynobjs_[csym] = dynobj;
2350
2351   // We have now defined all aliases, but we have not entered them all
2352   // in the copied_symbol_dynobjs_ map.
2353   if (csym->has_alias())
2354     {
2355       Symbol* sym = csym;
2356       while (true)
2357         {
2358           sym = this->weak_aliases_[sym];
2359           if (sym == csym)
2360             break;
2361           gold_assert(sym->output_data() == posd);
2362
2363           sym->set_is_copied_from_dynobj();
2364           this->copied_symbol_dynobjs_[sym] = dynobj;
2365         }
2366     }
2367 }
2368
2369 // SYM is defined using a COPY reloc.  Return the dynamic object where
2370 // the original definition was found.
2371
2372 Dynobj*
2373 Symbol_table::get_copy_source(const Symbol* sym) const
2374 {
2375   gold_assert(sym->is_copied_from_dynobj());
2376   Copied_symbol_dynobjs::const_iterator p =
2377     this->copied_symbol_dynobjs_.find(sym);
2378   gold_assert(p != this->copied_symbol_dynobjs_.end());
2379   return p->second;
2380 }
2381
2382 // Add any undefined symbols named on the command line.
2383
2384 void
2385 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2386 {
2387   if (parameters->options().any_undefined()
2388       || layout->script_options()->any_unreferenced())
2389     {
2390       if (parameters->target().get_size() == 32)
2391         {
2392 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2393           this->do_add_undefined_symbols_from_command_line<32>(layout);
2394 #else
2395           gold_unreachable();
2396 #endif
2397         }
2398       else if (parameters->target().get_size() == 64)
2399         {
2400 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2401           this->do_add_undefined_symbols_from_command_line<64>(layout);
2402 #else
2403           gold_unreachable();
2404 #endif
2405         }
2406       else
2407         gold_unreachable();
2408     }
2409 }
2410
2411 template<int size>
2412 void
2413 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2414 {
2415   for (options::String_set::const_iterator p =
2416          parameters->options().undefined_begin();
2417        p != parameters->options().undefined_end();
2418        ++p)
2419     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2420
2421   for (options::String_set::const_iterator p =
2422          parameters->options().export_dynamic_symbol_begin();
2423        p != parameters->options().export_dynamic_symbol_end();
2424        ++p)
2425     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2426
2427   for (Script_options::referenced_const_iterator p =
2428          layout->script_options()->referenced_begin();
2429        p != layout->script_options()->referenced_end();
2430        ++p)
2431     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2432 }
2433
2434 template<int size>
2435 void
2436 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2437 {
2438   if (this->lookup(name) != NULL)
2439     return;
2440
2441   const char* version = NULL;
2442
2443   Sized_symbol<size>* sym;
2444   Sized_symbol<size>* oldsym;
2445   bool resolve_oldsym;
2446   if (parameters->target().is_big_endian())
2447     {
2448 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2449       sym = this->define_special_symbol<size, true>(&name, &version,
2450                                                     false, &oldsym,
2451                                                     &resolve_oldsym,
2452                                                     false);
2453 #else
2454       gold_unreachable();
2455 #endif
2456     }
2457   else
2458     {
2459 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2460       sym = this->define_special_symbol<size, false>(&name, &version,
2461                                                      false, &oldsym,
2462                                                      &resolve_oldsym,
2463                                                      false);
2464 #else
2465       gold_unreachable();
2466 #endif
2467     }
2468
2469   gold_assert(oldsym == NULL);
2470
2471   sym->init_undefined(name, version, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2472                       elfcpp::STV_DEFAULT, 0);
2473   ++this->saw_undefined_;
2474 }
2475
2476 // Set the dynamic symbol indexes.  INDEX is the index of the first
2477 // global dynamic symbol.  Pointers to the global symbols are stored
2478 // into the vector SYMS.  The names are added to DYNPOOL.
2479 // This returns an updated dynamic symbol index.
2480
2481 unsigned int
2482 Symbol_table::set_dynsym_indexes(unsigned int index,
2483                                  unsigned int* pforced_local_count,
2484                                  std::vector<Symbol*>* syms,
2485                                  Stringpool* dynpool,
2486                                  Versions* versions)
2487 {
2488   std::vector<Symbol*> as_needed_sym;
2489
2490   // First process all the symbols which have been forced to be local,
2491   // as they must appear before all global symbols.
2492   unsigned int forced_local_count = 0;
2493   for (Forced_locals::iterator p = this->forced_locals_.begin();
2494        p != this->forced_locals_.end();
2495        ++p)
2496     {
2497       Symbol* sym = *p;
2498       gold_assert(sym->is_forced_local());
2499       if (sym->has_dynsym_index())
2500         continue;
2501       if (!sym->should_add_dynsym_entry(this))
2502         sym->set_dynsym_index(-1U);
2503       else
2504         {
2505           sym->set_dynsym_index(index);
2506           ++index;
2507           ++forced_local_count;
2508           dynpool->add(sym->name(), false, NULL);
2509         }
2510     }
2511   *pforced_local_count = forced_local_count;
2512
2513   // Allow a target to set dynsym indexes.
2514   if (parameters->target().has_custom_set_dynsym_indexes())
2515     {
2516       std::vector<Symbol*> dyn_symbols;
2517       for (Symbol_table_type::iterator p = this->table_.begin();
2518            p != this->table_.end();
2519            ++p)
2520         {
2521           Symbol* sym = p->second;
2522           if (sym->is_forced_local())
2523             continue;
2524           if (!sym->should_add_dynsym_entry(this))
2525             sym->set_dynsym_index(-1U);
2526           else
2527             dyn_symbols.push_back(sym);
2528         }
2529
2530       return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2531                                                      dynpool, versions, this);
2532     }
2533
2534   for (Symbol_table_type::iterator p = this->table_.begin();
2535        p != this->table_.end();
2536        ++p)
2537     {
2538       Symbol* sym = p->second;
2539
2540       if (sym->is_forced_local())
2541         continue;
2542
2543       // Note that SYM may already have a dynamic symbol index, since
2544       // some symbols appear more than once in the symbol table, with
2545       // and without a version.
2546
2547       if (!sym->should_add_dynsym_entry(this))
2548         sym->set_dynsym_index(-1U);
2549       else if (!sym->has_dynsym_index())
2550         {
2551           sym->set_dynsym_index(index);
2552           ++index;
2553           syms->push_back(sym);
2554           dynpool->add(sym->name(), false, NULL);
2555
2556           // If the symbol is defined in a dynamic object and is
2557           // referenced strongly in a regular object, then mark the
2558           // dynamic object as needed.  This is used to implement
2559           // --as-needed.
2560           if (sym->is_from_dynobj()
2561               && sym->in_reg()
2562               && !sym->is_undef_binding_weak())
2563             sym->object()->set_is_needed();
2564
2565           // Record any version information, except those from
2566           // as-needed libraries not seen to be needed.  Note that the
2567           // is_needed state for such libraries can change in this loop.
2568           if (sym->version() != NULL)
2569             {
2570               if (!sym->is_from_dynobj()
2571                   || !sym->object()->as_needed()
2572                   || sym->object()->is_needed())
2573                 versions->record_version(this, dynpool, sym);
2574               else
2575                 as_needed_sym.push_back(sym);
2576             }
2577         }
2578     }
2579
2580   // Process version information for symbols from as-needed libraries.
2581   for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2582        p != as_needed_sym.end();
2583        ++p)
2584     {
2585       Symbol* sym = *p;
2586
2587       if (sym->object()->is_needed())
2588         versions->record_version(this, dynpool, sym);
2589       else
2590         sym->clear_version();
2591     }
2592
2593   // Finish up the versions.  In some cases this may add new dynamic
2594   // symbols.
2595   index = versions->finalize(this, index, syms);
2596
2597   // Process target-specific symbols.
2598   for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2599        p != this->target_symbols_.end();
2600        ++p)
2601     {
2602       (*p)->set_dynsym_index(index);
2603       ++index;
2604       syms->push_back(*p);
2605       dynpool->add((*p)->name(), false, NULL);
2606     }
2607
2608   return index;
2609 }
2610
2611 // Set the final values for all the symbols.  The index of the first
2612 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2613 // file offset OFF.  Add their names to POOL.  Return the new file
2614 // offset.  Update *PLOCAL_SYMCOUNT if necessary.  DYNOFF and
2615 // DYN_GLOBAL_INDEX refer to the start of the symbols that will be
2616 // written from the global symbol table in Symtab::write_globals(),
2617 // which will include forced-local symbols.  DYN_GLOBAL_INDEX is
2618 // not necessarily the same as the sh_info field for the .dynsym
2619 // section, which will point to the first real global symbol.
2620
2621 off_t
2622 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2623                        size_t dyncount, Stringpool* pool,
2624                        unsigned int* plocal_symcount)
2625 {
2626   off_t ret;
2627
2628   gold_assert(*plocal_symcount != 0);
2629   this->first_global_index_ = *plocal_symcount;
2630
2631   this->dynamic_offset_ = dynoff;
2632   this->first_dynamic_global_index_ = dyn_global_index;
2633   this->dynamic_count_ = dyncount;
2634
2635   if (parameters->target().get_size() == 32)
2636     {
2637 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2638       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2639 #else
2640       gold_unreachable();
2641 #endif
2642     }
2643   else if (parameters->target().get_size() == 64)
2644     {
2645 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2646       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2647 #else
2648       gold_unreachable();
2649 #endif
2650     }
2651   else
2652     gold_unreachable();
2653
2654   // Now that we have the final symbol table, we can reliably note
2655   // which symbols should get warnings.
2656   this->warnings_.note_warnings(this);
2657
2658   return ret;
2659 }
2660
2661 // SYM is going into the symbol table at *PINDEX.  Add the name to
2662 // POOL, update *PINDEX and *POFF.
2663
2664 template<int size>
2665 void
2666 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2667                                   unsigned int* pindex, off_t* poff)
2668 {
2669   sym->set_symtab_index(*pindex);
2670   if (sym->version() == NULL || !parameters->options().relocatable())
2671     pool->add(sym->name(), false, NULL);
2672   else
2673     pool->add(sym->versioned_name(), true, NULL);
2674   ++*pindex;
2675   *poff += elfcpp::Elf_sizes<size>::sym_size;
2676 }
2677
2678 // Set the final value for all the symbols.  This is called after
2679 // Layout::finalize, so all the output sections have their final
2680 // address.
2681
2682 template<int size>
2683 off_t
2684 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2685                              unsigned int* plocal_symcount)
2686 {
2687   off = align_address(off, size >> 3);
2688   this->offset_ = off;
2689
2690   unsigned int index = *plocal_symcount;
2691   const unsigned int orig_index = index;
2692
2693   // First do all the symbols which have been forced to be local, as
2694   // they must appear before all global symbols.
2695   for (Forced_locals::iterator p = this->forced_locals_.begin();
2696        p != this->forced_locals_.end();
2697        ++p)
2698     {
2699       Symbol* sym = *p;
2700       gold_assert(sym->is_forced_local());
2701       if (this->sized_finalize_symbol<size>(sym))
2702         {
2703           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2704           ++*plocal_symcount;
2705         }
2706     }
2707
2708   // Now do all the remaining symbols.
2709   for (Symbol_table_type::iterator p = this->table_.begin();
2710        p != this->table_.end();
2711        ++p)
2712     {
2713       Symbol* sym = p->second;
2714       if (this->sized_finalize_symbol<size>(sym))
2715         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2716     }
2717
2718   // Now do target-specific symbols.
2719   for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2720        p != this->target_symbols_.end();
2721        ++p)
2722     {
2723       this->add_to_final_symtab<size>(*p, pool, &index, &off);
2724     }
2725
2726   this->output_count_ = index - orig_index;
2727
2728   return off;
2729 }
2730
2731 // Compute the final value of SYM and store status in location PSTATUS.
2732 // During relaxation, this may be called multiple times for a symbol to
2733 // compute its would-be final value in each relaxation pass.
2734
2735 template<int size>
2736 typename Sized_symbol<size>::Value_type
2737 Symbol_table::compute_final_value(
2738     const Sized_symbol<size>* sym,
2739     Compute_final_value_status* pstatus) const
2740 {
2741   typedef typename Sized_symbol<size>::Value_type Value_type;
2742   Value_type value;
2743
2744   switch (sym->source())
2745     {
2746     case Symbol::FROM_OBJECT:
2747       {
2748         bool is_ordinary;
2749         unsigned int shndx = sym->shndx(&is_ordinary);
2750
2751         if (!is_ordinary
2752             && shndx != elfcpp::SHN_ABS
2753             && !Symbol::is_common_shndx(shndx))
2754           {
2755             *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2756             return 0;
2757           }
2758
2759         Object* symobj = sym->object();
2760         if (symobj->is_dynamic())
2761           {
2762             value = 0;
2763             shndx = elfcpp::SHN_UNDEF;
2764           }
2765         else if (symobj->pluginobj() != NULL)
2766           {
2767             value = 0;
2768             shndx = elfcpp::SHN_UNDEF;
2769           }
2770         else if (shndx == elfcpp::SHN_UNDEF)
2771           value = 0;
2772         else if (!is_ordinary
2773                  && (shndx == elfcpp::SHN_ABS
2774                      || Symbol::is_common_shndx(shndx)))
2775           value = sym->value();
2776         else
2777           {
2778             Relobj* relobj = static_cast<Relobj*>(symobj);
2779             Output_section* os = relobj->output_section(shndx);
2780
2781             if (this->is_section_folded(relobj, shndx))
2782               {
2783                 gold_assert(os == NULL);
2784                 // Get the os of the section it is folded onto.
2785                 Section_id folded = this->icf_->get_folded_section(relobj,
2786                                                                    shndx);
2787                 gold_assert(folded.first != NULL);
2788                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2789                 unsigned folded_shndx = folded.second;
2790
2791                 os = folded_obj->output_section(folded_shndx);  
2792                 gold_assert(os != NULL);
2793
2794                 // Replace (relobj, shndx) with canonical ICF input section.
2795                 shndx = folded_shndx;
2796                 relobj = folded_obj;
2797               }
2798
2799             uint64_t secoff64 = relobj->output_section_offset(shndx);
2800             if (os == NULL)
2801               {
2802                 bool static_or_reloc = (parameters->doing_static_link() ||
2803                                         parameters->options().relocatable());
2804                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2805
2806                 *pstatus = CFVS_NO_OUTPUT_SECTION;
2807                 return 0;
2808               }
2809
2810             if (secoff64 == -1ULL)
2811               {
2812                 // The section needs special handling (e.g., a merge section).
2813
2814                 value = os->output_address(relobj, shndx, sym->value());
2815               }
2816             else
2817               {
2818                 Value_type secoff =
2819                   convert_types<Value_type, uint64_t>(secoff64);
2820                 if (sym->type() == elfcpp::STT_TLS)
2821                   value = sym->value() + os->tls_offset() + secoff;
2822                 else
2823                   value = sym->value() + os->address() + secoff;
2824               }
2825           }
2826       }
2827       break;
2828
2829     case Symbol::IN_OUTPUT_DATA:
2830       {
2831         Output_data* od = sym->output_data();
2832         value = sym->value();
2833         if (sym->type() != elfcpp::STT_TLS)
2834           value += od->address();
2835         else
2836           {
2837             Output_section* os = od->output_section();
2838             gold_assert(os != NULL);
2839             value += os->tls_offset() + (od->address() - os->address());
2840           }
2841         if (sym->offset_is_from_end())
2842           value += od->data_size();
2843       }
2844       break;
2845
2846     case Symbol::IN_OUTPUT_SEGMENT:
2847       {
2848         Output_segment* os = sym->output_segment();
2849         value = sym->value();
2850         if (sym->type() != elfcpp::STT_TLS)
2851           value += os->vaddr();
2852         switch (sym->offset_base())
2853           {
2854           case Symbol::SEGMENT_START:
2855             break;
2856           case Symbol::SEGMENT_END:
2857             value += os->memsz();
2858             break;
2859           case Symbol::SEGMENT_BSS:
2860             value += os->filesz();
2861             break;
2862           default:
2863             gold_unreachable();
2864           }
2865       }
2866       break;
2867
2868     case Symbol::IS_CONSTANT:
2869       value = sym->value();
2870       break;
2871
2872     case Symbol::IS_UNDEFINED:
2873       value = 0;
2874       break;
2875
2876     default:
2877       gold_unreachable();
2878     }
2879
2880   *pstatus = CFVS_OK;
2881   return value;
2882 }
2883
2884 // Finalize the symbol SYM.  This returns true if the symbol should be
2885 // added to the symbol table, false otherwise.
2886
2887 template<int size>
2888 bool
2889 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2890 {
2891   typedef typename Sized_symbol<size>::Value_type Value_type;
2892
2893   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2894
2895   // The default version of a symbol may appear twice in the symbol
2896   // table.  We only need to finalize it once.
2897   if (sym->has_symtab_index())
2898     return false;
2899
2900   if (!sym->in_reg())
2901     {
2902       gold_assert(!sym->has_symtab_index());
2903       sym->set_symtab_index(-1U);
2904       gold_assert(sym->dynsym_index() == -1U);
2905       return false;
2906     }
2907
2908   // If the symbol is only present on plugin files, the plugin decided we
2909   // don't need it.
2910   if (!sym->in_real_elf())
2911     {
2912       gold_assert(!sym->has_symtab_index());
2913       sym->set_symtab_index(-1U);
2914       return false;
2915     }
2916
2917   // Compute final symbol value.
2918   Compute_final_value_status status;
2919   Value_type value = this->compute_final_value(sym, &status);
2920
2921   switch (status)
2922     {
2923     case CFVS_OK:
2924       break;
2925     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2926       {
2927         bool is_ordinary;
2928         unsigned int shndx = sym->shndx(&is_ordinary);
2929         gold_error(_("%s: unsupported symbol section 0x%x"),
2930                    sym->demangled_name().c_str(), shndx);
2931       }
2932       break;
2933     case CFVS_NO_OUTPUT_SECTION:
2934       sym->set_symtab_index(-1U);
2935       return false;
2936     default:
2937       gold_unreachable();
2938     }
2939
2940   sym->set_value(value);
2941
2942   if (parameters->options().strip_all()
2943       || !parameters->options().should_retain_symbol(sym->name()))
2944     {
2945       sym->set_symtab_index(-1U);
2946       return false;
2947     }
2948
2949   return true;
2950 }
2951
2952 // Write out the global symbols.
2953
2954 void
2955 Symbol_table::write_globals(const Stringpool* sympool,
2956                             const Stringpool* dynpool,
2957                             Output_symtab_xindex* symtab_xindex,
2958                             Output_symtab_xindex* dynsym_xindex,
2959                             Output_file* of) const
2960 {
2961   switch (parameters->size_and_endianness())
2962     {
2963 #ifdef HAVE_TARGET_32_LITTLE
2964     case Parameters::TARGET_32_LITTLE:
2965       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2966                                            dynsym_xindex, of);
2967       break;
2968 #endif
2969 #ifdef HAVE_TARGET_32_BIG
2970     case Parameters::TARGET_32_BIG:
2971       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2972                                           dynsym_xindex, of);
2973       break;
2974 #endif
2975 #ifdef HAVE_TARGET_64_LITTLE
2976     case Parameters::TARGET_64_LITTLE:
2977       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2978                                            dynsym_xindex, of);
2979       break;
2980 #endif
2981 #ifdef HAVE_TARGET_64_BIG
2982     case Parameters::TARGET_64_BIG:
2983       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2984                                           dynsym_xindex, of);
2985       break;
2986 #endif
2987     default:
2988       gold_unreachable();
2989     }
2990 }
2991
2992 // Write out the global symbols.
2993
2994 template<int size, bool big_endian>
2995 void
2996 Symbol_table::sized_write_globals(const Stringpool* sympool,
2997                                   const Stringpool* dynpool,
2998                                   Output_symtab_xindex* symtab_xindex,
2999                                   Output_symtab_xindex* dynsym_xindex,
3000                                   Output_file* of) const
3001 {
3002   const Target& target = parameters->target();
3003
3004   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3005
3006   const unsigned int output_count = this->output_count_;
3007   const section_size_type oview_size = output_count * sym_size;
3008   const unsigned int first_global_index = this->first_global_index_;
3009   unsigned char* psyms;
3010   if (this->offset_ == 0 || output_count == 0)
3011     psyms = NULL;
3012   else
3013     psyms = of->get_output_view(this->offset_, oview_size);
3014
3015   const unsigned int dynamic_count = this->dynamic_count_;
3016   const section_size_type dynamic_size = dynamic_count * sym_size;
3017   const unsigned int first_dynamic_global_index =
3018     this->first_dynamic_global_index_;
3019   unsigned char* dynamic_view;
3020   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
3021     dynamic_view = NULL;
3022   else
3023     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
3024
3025   for (Symbol_table_type::const_iterator p = this->table_.begin();
3026        p != this->table_.end();
3027        ++p)
3028     {
3029       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
3030
3031       // Possibly warn about unresolved symbols in shared libraries.
3032       this->warn_about_undefined_dynobj_symbol(sym);
3033
3034       unsigned int sym_index = sym->symtab_index();
3035       unsigned int dynsym_index;
3036       if (dynamic_view == NULL)
3037         dynsym_index = -1U;
3038       else
3039         dynsym_index = sym->dynsym_index();
3040
3041       if (sym_index == -1U && dynsym_index == -1U)
3042         {
3043           // This symbol is not included in the output file.
3044           continue;
3045         }
3046
3047       unsigned int shndx;
3048       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
3049       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
3050       elfcpp::STB binding = sym->binding();
3051
3052       // If --weak-unresolved-symbols is set, change binding of unresolved
3053       // global symbols to STB_WEAK.
3054       if (parameters->options().weak_unresolved_symbols()
3055           && binding == elfcpp::STB_GLOBAL
3056           && sym->is_undefined())
3057         binding = elfcpp::STB_WEAK;
3058
3059       // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
3060       if (binding == elfcpp::STB_GNU_UNIQUE
3061           && !parameters->options().gnu_unique())
3062         binding = elfcpp::STB_GLOBAL;
3063
3064       switch (sym->source())
3065         {
3066         case Symbol::FROM_OBJECT:
3067           {
3068             bool is_ordinary;
3069             unsigned int in_shndx = sym->shndx(&is_ordinary);
3070
3071             if (!is_ordinary
3072                 && in_shndx != elfcpp::SHN_ABS
3073                 && !Symbol::is_common_shndx(in_shndx))
3074               {
3075                 gold_error(_("%s: unsupported symbol section 0x%x"),
3076                            sym->demangled_name().c_str(), in_shndx);
3077                 shndx = in_shndx;
3078               }
3079             else
3080               {
3081                 Object* symobj = sym->object();
3082                 if (symobj->is_dynamic())
3083                   {
3084                     if (sym->needs_dynsym_value())
3085                       dynsym_value = target.dynsym_value(sym);
3086                     shndx = elfcpp::SHN_UNDEF;
3087                     if (sym->is_undef_binding_weak())
3088                       binding = elfcpp::STB_WEAK;
3089                     else
3090                       binding = elfcpp::STB_GLOBAL;
3091                   }
3092                 else if (symobj->pluginobj() != NULL)
3093                   shndx = elfcpp::SHN_UNDEF;
3094                 else if (in_shndx == elfcpp::SHN_UNDEF
3095                          || (!is_ordinary
3096                              && (in_shndx == elfcpp::SHN_ABS
3097                                  || Symbol::is_common_shndx(in_shndx))))
3098                   shndx = in_shndx;
3099                 else
3100                   {
3101                     Relobj* relobj = static_cast<Relobj*>(symobj);
3102                     Output_section* os = relobj->output_section(in_shndx);
3103                     if (this->is_section_folded(relobj, in_shndx))
3104                       {
3105                         // This global symbol must be written out even though
3106                         // it is folded.
3107                         // Get the os of the section it is folded onto.
3108                         Section_id folded =
3109                              this->icf_->get_folded_section(relobj, in_shndx);
3110                         gold_assert(folded.first !=NULL);
3111                         Relobj* folded_obj = 
3112                           reinterpret_cast<Relobj*>(folded.first);
3113                         os = folded_obj->output_section(folded.second);  
3114                         gold_assert(os != NULL);
3115                       }
3116                     gold_assert(os != NULL);
3117                     shndx = os->out_shndx();
3118
3119                     if (shndx >= elfcpp::SHN_LORESERVE)
3120                       {
3121                         if (sym_index != -1U)
3122                           symtab_xindex->add(sym_index, shndx);
3123                         if (dynsym_index != -1U)
3124                           dynsym_xindex->add(dynsym_index, shndx);
3125                         shndx = elfcpp::SHN_XINDEX;
3126                       }
3127
3128                     // In object files symbol values are section
3129                     // relative.
3130                     if (parameters->options().relocatable())
3131                       sym_value -= os->address();
3132                   }
3133               }
3134           }
3135           break;
3136
3137         case Symbol::IN_OUTPUT_DATA:
3138           {
3139             Output_data* od = sym->output_data();
3140
3141             shndx = od->out_shndx();
3142             if (shndx >= elfcpp::SHN_LORESERVE)
3143               {
3144                 if (sym_index != -1U)
3145                   symtab_xindex->add(sym_index, shndx);
3146                 if (dynsym_index != -1U)
3147                   dynsym_xindex->add(dynsym_index, shndx);
3148                 shndx = elfcpp::SHN_XINDEX;
3149               }
3150
3151             // In object files symbol values are section
3152             // relative.
3153             if (parameters->options().relocatable())
3154               {
3155                 Output_section* os = od->output_section();
3156                 gold_assert(os != NULL);
3157                 sym_value -= os->address();
3158               }
3159           }
3160           break;
3161
3162         case Symbol::IN_OUTPUT_SEGMENT:
3163           {
3164             Output_segment* oseg = sym->output_segment();
3165             Output_section* osect = oseg->first_section();
3166             if (osect == NULL)
3167               shndx = elfcpp::SHN_ABS;
3168             else
3169               shndx = osect->out_shndx();
3170           }
3171           break;
3172
3173         case Symbol::IS_CONSTANT:
3174           shndx = elfcpp::SHN_ABS;
3175           break;
3176
3177         case Symbol::IS_UNDEFINED:
3178           shndx = elfcpp::SHN_UNDEF;
3179           break;
3180
3181         default:
3182           gold_unreachable();
3183         }
3184
3185       if (sym_index != -1U)
3186         {
3187           sym_index -= first_global_index;
3188           gold_assert(sym_index < output_count);
3189           unsigned char* ps = psyms + (sym_index * sym_size);
3190           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3191                                                      binding, sympool, ps);
3192         }
3193
3194       if (dynsym_index != -1U)
3195         {
3196           dynsym_index -= first_dynamic_global_index;
3197           gold_assert(dynsym_index < dynamic_count);
3198           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3199           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3200                                                      binding, dynpool, pd);
3201           // Allow a target to adjust dynamic symbol value.
3202           parameters->target().adjust_dyn_symbol(sym, pd);
3203         }
3204     }
3205
3206   // Write the target-specific symbols.
3207   for (std::vector<Symbol*>::const_iterator p = this->target_symbols_.begin();
3208        p != this->target_symbols_.end();
3209        ++p)
3210     {
3211       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(*p);
3212
3213       unsigned int sym_index = sym->symtab_index();
3214       unsigned int dynsym_index;
3215       if (dynamic_view == NULL)
3216         dynsym_index = -1U;
3217       else
3218         dynsym_index = sym->dynsym_index();
3219
3220       unsigned int shndx;
3221       switch (sym->source())
3222         {
3223         case Symbol::IS_CONSTANT:
3224           shndx = elfcpp::SHN_ABS;
3225           break;
3226         case Symbol::IS_UNDEFINED:
3227           shndx = elfcpp::SHN_UNDEF;
3228           break;
3229         default:
3230           gold_unreachable();
3231         }
3232
3233       if (sym_index != -1U)
3234         {
3235           sym_index -= first_global_index;
3236           gold_assert(sym_index < output_count);
3237           unsigned char* ps = psyms + (sym_index * sym_size);
3238           this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3239                                                      sym->binding(), sympool,
3240                                                      ps);
3241         }
3242
3243       if (dynsym_index != -1U)
3244         {
3245           dynsym_index -= first_dynamic_global_index;
3246           gold_assert(dynsym_index < dynamic_count);
3247           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3248           this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3249                                                      sym->binding(), dynpool,
3250                                                      pd);
3251         }
3252     }
3253
3254   of->write_output_view(this->offset_, oview_size, psyms);
3255   if (dynamic_view != NULL)
3256     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3257 }
3258
3259 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
3260 // strtab holding the name.
3261
3262 template<int size, bool big_endian>
3263 void
3264 Symbol_table::sized_write_symbol(
3265     Sized_symbol<size>* sym,
3266     typename elfcpp::Elf_types<size>::Elf_Addr value,
3267     unsigned int shndx,
3268     elfcpp::STB binding,
3269     const Stringpool* pool,
3270     unsigned char* p) const
3271 {
3272   elfcpp::Sym_write<size, big_endian> osym(p);
3273   if (sym->version() == NULL || !parameters->options().relocatable())
3274     osym.put_st_name(pool->get_offset(sym->name()));
3275   else
3276     osym.put_st_name(pool->get_offset(sym->versioned_name()));
3277   osym.put_st_value(value);
3278   // Use a symbol size of zero for undefined symbols from shared libraries.
3279   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3280     osym.put_st_size(0);
3281   else
3282     osym.put_st_size(sym->symsize());
3283   elfcpp::STT type = sym->type();
3284   gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3285   // A version script may have overridden the default binding.
3286   if (sym->is_forced_local())
3287     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3288   else
3289     osym.put_st_info(elfcpp::elf_st_info(binding, type));
3290   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3291   osym.put_st_shndx(shndx);
3292 }
3293
3294 // Check for unresolved symbols in shared libraries.  This is
3295 // controlled by the --allow-shlib-undefined option.
3296
3297 // We only warn about libraries for which we have seen all the
3298 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
3299 // which were not seen in this link.  If we didn't see a DT_NEEDED
3300 // entry, we aren't going to be able to reliably report whether the
3301 // symbol is undefined.
3302
3303 // We also don't warn about libraries found in a system library
3304 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3305 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
3306 // can have undefined references satisfied by ld-linux.so.
3307
3308 inline void
3309 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3310 {
3311   bool dummy;
3312   if (sym->source() == Symbol::FROM_OBJECT
3313       && sym->object()->is_dynamic()
3314       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3315       && sym->binding() != elfcpp::STB_WEAK
3316       && !parameters->options().allow_shlib_undefined()
3317       && !parameters->target().is_defined_by_abi(sym)
3318       && !sym->object()->is_in_system_directory())
3319     {
3320       // A very ugly cast.
3321       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3322       if (!dynobj->has_unknown_needed_entries())
3323         gold_undefined_symbol(sym);
3324     }
3325 }
3326
3327 // Write out a section symbol.  Return the update offset.
3328
3329 void
3330 Symbol_table::write_section_symbol(const Output_section* os,
3331                                    Output_symtab_xindex* symtab_xindex,
3332                                    Output_file* of,
3333                                    off_t offset) const
3334 {
3335   switch (parameters->size_and_endianness())
3336     {
3337 #ifdef HAVE_TARGET_32_LITTLE
3338     case Parameters::TARGET_32_LITTLE:
3339       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3340                                                   offset);
3341       break;
3342 #endif
3343 #ifdef HAVE_TARGET_32_BIG
3344     case Parameters::TARGET_32_BIG:
3345       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3346                                                  offset);
3347       break;
3348 #endif
3349 #ifdef HAVE_TARGET_64_LITTLE
3350     case Parameters::TARGET_64_LITTLE:
3351       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3352                                                   offset);
3353       break;
3354 #endif
3355 #ifdef HAVE_TARGET_64_BIG
3356     case Parameters::TARGET_64_BIG:
3357       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3358                                                  offset);
3359       break;
3360 #endif
3361     default:
3362       gold_unreachable();
3363     }
3364 }
3365
3366 // Write out a section symbol, specialized for size and endianness.
3367
3368 template<int size, bool big_endian>
3369 void
3370 Symbol_table::sized_write_section_symbol(const Output_section* os,
3371                                          Output_symtab_xindex* symtab_xindex,
3372                                          Output_file* of,
3373                                          off_t offset) const
3374 {
3375   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3376
3377   unsigned char* pov = of->get_output_view(offset, sym_size);
3378
3379   elfcpp::Sym_write<size, big_endian> osym(pov);
3380   osym.put_st_name(0);
3381   if (parameters->options().relocatable())
3382     osym.put_st_value(0);
3383   else
3384     osym.put_st_value(os->address());
3385   osym.put_st_size(0);
3386   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3387                                        elfcpp::STT_SECTION));
3388   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3389
3390   unsigned int shndx = os->out_shndx();
3391   if (shndx >= elfcpp::SHN_LORESERVE)
3392     {
3393       symtab_xindex->add(os->symtab_index(), shndx);
3394       shndx = elfcpp::SHN_XINDEX;
3395     }
3396   osym.put_st_shndx(shndx);
3397
3398   of->write_output_view(offset, sym_size, pov);
3399 }
3400
3401 // Print statistical information to stderr.  This is used for --stats.
3402
3403 void
3404 Symbol_table::print_stats() const
3405 {
3406 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3407   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3408           program_name, this->table_.size(), this->table_.bucket_count());
3409 #else
3410   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3411           program_name, this->table_.size());
3412 #endif
3413   this->namepool_.print_stats("symbol table stringpool");
3414 }
3415
3416 // We check for ODR violations by looking for symbols with the same
3417 // name for which the debugging information reports that they were
3418 // defined in disjoint source locations.  When comparing the source
3419 // location, we consider instances with the same base filename to be
3420 // the same.  This is because different object files/shared libraries
3421 // can include the same header file using different paths, and
3422 // different optimization settings can make the line number appear to
3423 // be a couple lines off, and we don't want to report an ODR violation
3424 // in those cases.
3425
3426 // This struct is used to compare line information, as returned by
3427 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3428 // operator used with std::sort.
3429
3430 struct Odr_violation_compare
3431 {
3432   bool
3433   operator()(const std::string& s1, const std::string& s2) const
3434   {
3435     // Inputs should be of the form "dirname/filename:linenum" where
3436     // "dirname/" is optional.  We want to compare just the filename:linenum.
3437
3438     // Find the last '/' in each string.
3439     std::string::size_type s1begin = s1.rfind('/');
3440     std::string::size_type s2begin = s2.rfind('/');
3441     // If there was no '/' in a string, start at the beginning.
3442     if (s1begin == std::string::npos)
3443       s1begin = 0;
3444     if (s2begin == std::string::npos)
3445       s2begin = 0;
3446     return s1.compare(s1begin, std::string::npos,
3447                       s2, s2begin, std::string::npos) < 0;
3448   }
3449 };
3450
3451 // Returns all of the lines attached to LOC, not just the one the
3452 // instruction actually came from.
3453 std::vector<std::string>
3454 Symbol_table::linenos_from_loc(const Task* task,
3455                                const Symbol_location& loc)
3456 {
3457   // We need to lock the object in order to read it.  This
3458   // means that we have to run in a singleton Task.  If we
3459   // want to run this in a general Task for better
3460   // performance, we will need one Task for object, plus
3461   // appropriate locking to ensure that we don't conflict with
3462   // other uses of the object.  Also note, one_addr2line is not
3463   // currently thread-safe.
3464   Task_lock_obj<Object> tl(task, loc.object);
3465
3466   std::vector<std::string> result;
3467   Symbol_location code_loc = loc;
3468   parameters->target().function_location(&code_loc);
3469   // 16 is the size of the object-cache that one_addr2line should use.
3470   std::string canonical_result = Dwarf_line_info::one_addr2line(
3471       code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3472   if (!canonical_result.empty())
3473     result.push_back(canonical_result);
3474   return result;
3475 }
3476
3477 // OutputIterator that records if it was ever assigned to.  This
3478 // allows it to be used with std::set_intersection() to check for
3479 // intersection rather than computing the intersection.
3480 struct Check_intersection
3481 {
3482   Check_intersection()
3483     : value_(false)
3484   {}
3485
3486   bool had_intersection() const
3487   { return this->value_; }
3488
3489   Check_intersection& operator++()
3490   { return *this; }
3491
3492   Check_intersection& operator*()
3493   { return *this; }
3494
3495   template<typename T>
3496   Check_intersection& operator=(const T&)
3497   {
3498     this->value_ = true;
3499     return *this;
3500   }
3501
3502  private:
3503   bool value_;
3504 };
3505
3506 // Check candidate_odr_violations_ to find symbols with the same name
3507 // but apparently different definitions (different source-file/line-no
3508 // for each line assigned to the first instruction).
3509
3510 void
3511 Symbol_table::detect_odr_violations(const Task* task,
3512                                     const char* output_file_name) const
3513 {
3514   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3515        it != candidate_odr_violations_.end();
3516        ++it)
3517     {
3518       const char* const symbol_name = it->first;
3519
3520       std::string first_object_name;
3521       std::vector<std::string> first_object_linenos;
3522
3523       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3524           locs = it->second.begin();
3525       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3526           locs_end = it->second.end();
3527       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3528         {
3529           // Save the line numbers from the first definition to
3530           // compare to the other definitions.  Ideally, we'd compare
3531           // every definition to every other, but we don't want to
3532           // take O(N^2) time to do this.  This shortcut may cause
3533           // false negatives that appear or disappear depending on the
3534           // link order, but it won't cause false positives.
3535           first_object_name = locs->object->name();
3536           first_object_linenos = this->linenos_from_loc(task, *locs);
3537         }
3538       if (first_object_linenos.empty())
3539         continue;
3540
3541       // Sort by Odr_violation_compare to make std::set_intersection work.
3542       std::string first_object_canonical_result = first_object_linenos.back();
3543       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3544                 Odr_violation_compare());
3545
3546       for (; locs != locs_end; ++locs)
3547         {
3548           std::vector<std::string> linenos =
3549               this->linenos_from_loc(task, *locs);
3550           // linenos will be empty if we couldn't parse the debug info.
3551           if (linenos.empty())
3552             continue;
3553           // Sort by Odr_violation_compare to make std::set_intersection work.
3554           gold_assert(!linenos.empty());
3555           std::string second_object_canonical_result = linenos.back();
3556           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3557
3558           Check_intersection intersection_result =
3559               std::set_intersection(first_object_linenos.begin(),
3560                                     first_object_linenos.end(),
3561                                     linenos.begin(),
3562                                     linenos.end(),
3563                                     Check_intersection(),
3564                                     Odr_violation_compare());
3565           if (!intersection_result.had_intersection())
3566             {
3567               gold_warning(_("while linking %s: symbol '%s' defined in "
3568                              "multiple places (possible ODR violation):"),
3569                            output_file_name, demangle(symbol_name).c_str());
3570               // This only prints one location from each definition,
3571               // which may not be the location we expect to intersect
3572               // with another definition.  We could print the whole
3573               // set of locations, but that seems too verbose.
3574               fprintf(stderr, _("  %s from %s\n"),
3575                       first_object_canonical_result.c_str(),
3576                       first_object_name.c_str());
3577               fprintf(stderr, _("  %s from %s\n"),
3578                       second_object_canonical_result.c_str(),
3579                       locs->object->name().c_str());
3580               // Only print one broken pair, to avoid needing to
3581               // compare against a list of the disjoint definition
3582               // locations we've found so far.  (If we kept comparing
3583               // against just the first one, we'd get a lot of
3584               // redundant complaints about the second definition
3585               // location.)
3586               break;
3587             }
3588         }
3589     }
3590   // We only call one_addr2line() in this function, so we can clear its cache.
3591   Dwarf_line_info::clear_addr2line_cache();
3592 }
3593
3594 // Warnings functions.
3595
3596 // Add a new warning.
3597
3598 void
3599 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3600                       const std::string& warning)
3601 {
3602   name = symtab->canonicalize_name(name);
3603   this->warnings_[name].set(obj, warning);
3604 }
3605
3606 // Look through the warnings and mark the symbols for which we should
3607 // warn.  This is called during Layout::finalize when we know the
3608 // sources for all the symbols.
3609
3610 void
3611 Warnings::note_warnings(Symbol_table* symtab)
3612 {
3613   for (Warning_table::iterator p = this->warnings_.begin();
3614        p != this->warnings_.end();
3615        ++p)
3616     {
3617       Symbol* sym = symtab->lookup(p->first, NULL);
3618       if (sym != NULL
3619           && sym->source() == Symbol::FROM_OBJECT
3620           && sym->object() == p->second.object)
3621         sym->set_has_warning();
3622     }
3623 }
3624
3625 // Issue a warning.  This is called when we see a relocation against a
3626 // symbol for which has a warning.
3627
3628 template<int size, bool big_endian>
3629 void
3630 Warnings::issue_warning(const Symbol* sym,
3631                         const Relocate_info<size, big_endian>* relinfo,
3632                         size_t relnum, off_t reloffset) const
3633 {
3634   gold_assert(sym->has_warning());
3635
3636   // We don't want to issue a warning for a relocation against the
3637   // symbol in the same object file in which the symbol is defined.
3638   if (sym->object() == relinfo->object)
3639     return;
3640
3641   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3642   gold_assert(p != this->warnings_.end());
3643   gold_warning_at_location(relinfo, relnum, reloffset,
3644                            "%s", p->second.text.c_str());
3645 }
3646
3647 // Instantiate the templates we need.  We could use the configure
3648 // script to restrict this to only the ones needed for implemented
3649 // targets.
3650
3651 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3652 template
3653 void
3654 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3655 #endif
3656
3657 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3658 template
3659 void
3660 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3661 #endif
3662
3663 #ifdef HAVE_TARGET_32_LITTLE
3664 template
3665 void
3666 Symbol_table::add_from_relobj<32, false>(
3667     Sized_relobj_file<32, false>* relobj,
3668     const unsigned char* syms,
3669     size_t count,
3670     size_t symndx_offset,
3671     const char* sym_names,
3672     size_t sym_name_size,
3673     Sized_relobj_file<32, false>::Symbols* sympointers,
3674     size_t* defined);
3675 #endif
3676
3677 #ifdef HAVE_TARGET_32_BIG
3678 template
3679 void
3680 Symbol_table::add_from_relobj<32, true>(
3681     Sized_relobj_file<32, true>* relobj,
3682     const unsigned char* syms,
3683     size_t count,
3684     size_t symndx_offset,
3685     const char* sym_names,
3686     size_t sym_name_size,
3687     Sized_relobj_file<32, true>::Symbols* sympointers,
3688     size_t* defined);
3689 #endif
3690
3691 #ifdef HAVE_TARGET_64_LITTLE
3692 template
3693 void
3694 Symbol_table::add_from_relobj<64, false>(
3695     Sized_relobj_file<64, false>* relobj,
3696     const unsigned char* syms,
3697     size_t count,
3698     size_t symndx_offset,
3699     const char* sym_names,
3700     size_t sym_name_size,
3701     Sized_relobj_file<64, false>::Symbols* sympointers,
3702     size_t* defined);
3703 #endif
3704
3705 #ifdef HAVE_TARGET_64_BIG
3706 template
3707 void
3708 Symbol_table::add_from_relobj<64, true>(
3709     Sized_relobj_file<64, true>* relobj,
3710     const unsigned char* syms,
3711     size_t count,
3712     size_t symndx_offset,
3713     const char* sym_names,
3714     size_t sym_name_size,
3715     Sized_relobj_file<64, true>::Symbols* sympointers,
3716     size_t* defined);
3717 #endif
3718
3719 #ifdef HAVE_TARGET_32_LITTLE
3720 template
3721 Symbol*
3722 Symbol_table::add_from_pluginobj<32, false>(
3723     Sized_pluginobj<32, false>* obj,
3724     const char* name,
3725     const char* ver,
3726     elfcpp::Sym<32, false>* sym);
3727 #endif
3728
3729 #ifdef HAVE_TARGET_32_BIG
3730 template
3731 Symbol*
3732 Symbol_table::add_from_pluginobj<32, true>(
3733     Sized_pluginobj<32, true>* obj,
3734     const char* name,
3735     const char* ver,
3736     elfcpp::Sym<32, true>* sym);
3737 #endif
3738
3739 #ifdef HAVE_TARGET_64_LITTLE
3740 template
3741 Symbol*
3742 Symbol_table::add_from_pluginobj<64, false>(
3743     Sized_pluginobj<64, false>* obj,
3744     const char* name,
3745     const char* ver,
3746     elfcpp::Sym<64, false>* sym);
3747 #endif
3748
3749 #ifdef HAVE_TARGET_64_BIG
3750 template
3751 Symbol*
3752 Symbol_table::add_from_pluginobj<64, true>(
3753     Sized_pluginobj<64, true>* obj,
3754     const char* name,
3755     const char* ver,
3756     elfcpp::Sym<64, true>* sym);
3757 #endif
3758
3759 #ifdef HAVE_TARGET_32_LITTLE
3760 template
3761 void
3762 Symbol_table::add_from_dynobj<32, false>(
3763     Sized_dynobj<32, false>* dynobj,
3764     const unsigned char* syms,
3765     size_t count,
3766     const char* sym_names,
3767     size_t sym_name_size,
3768     const unsigned char* versym,
3769     size_t versym_size,
3770     const std::vector<const char*>* version_map,
3771     Sized_relobj_file<32, false>::Symbols* sympointers,
3772     size_t* defined);
3773 #endif
3774
3775 #ifdef HAVE_TARGET_32_BIG
3776 template
3777 void
3778 Symbol_table::add_from_dynobj<32, true>(
3779     Sized_dynobj<32, true>* dynobj,
3780     const unsigned char* syms,
3781     size_t count,
3782     const char* sym_names,
3783     size_t sym_name_size,
3784     const unsigned char* versym,
3785     size_t versym_size,
3786     const std::vector<const char*>* version_map,
3787     Sized_relobj_file<32, true>::Symbols* sympointers,
3788     size_t* defined);
3789 #endif
3790
3791 #ifdef HAVE_TARGET_64_LITTLE
3792 template
3793 void
3794 Symbol_table::add_from_dynobj<64, false>(
3795     Sized_dynobj<64, false>* dynobj,
3796     const unsigned char* syms,
3797     size_t count,
3798     const char* sym_names,
3799     size_t sym_name_size,
3800     const unsigned char* versym,
3801     size_t versym_size,
3802     const std::vector<const char*>* version_map,
3803     Sized_relobj_file<64, false>::Symbols* sympointers,
3804     size_t* defined);
3805 #endif
3806
3807 #ifdef HAVE_TARGET_64_BIG
3808 template
3809 void
3810 Symbol_table::add_from_dynobj<64, true>(
3811     Sized_dynobj<64, true>* dynobj,
3812     const unsigned char* syms,
3813     size_t count,
3814     const char* sym_names,
3815     size_t sym_name_size,
3816     const unsigned char* versym,
3817     size_t versym_size,
3818     const std::vector<const char*>* version_map,
3819     Sized_relobj_file<64, true>::Symbols* sympointers,
3820     size_t* defined);
3821 #endif
3822
3823 #ifdef HAVE_TARGET_32_LITTLE
3824 template
3825 Sized_symbol<32>*
3826 Symbol_table::add_from_incrobj(
3827     Object* obj,
3828     const char* name,
3829     const char* ver,
3830     elfcpp::Sym<32, false>* sym);
3831 #endif
3832
3833 #ifdef HAVE_TARGET_32_BIG
3834 template
3835 Sized_symbol<32>*
3836 Symbol_table::add_from_incrobj(
3837     Object* obj,
3838     const char* name,
3839     const char* ver,
3840     elfcpp::Sym<32, true>* sym);
3841 #endif
3842
3843 #ifdef HAVE_TARGET_64_LITTLE
3844 template
3845 Sized_symbol<64>*
3846 Symbol_table::add_from_incrobj(
3847     Object* obj,
3848     const char* name,
3849     const char* ver,
3850     elfcpp::Sym<64, false>* sym);
3851 #endif
3852
3853 #ifdef HAVE_TARGET_64_BIG
3854 template
3855 Sized_symbol<64>*
3856 Symbol_table::add_from_incrobj(
3857     Object* obj,
3858     const char* name,
3859     const char* ver,
3860     elfcpp::Sym<64, true>* sym);
3861 #endif
3862
3863 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3864 template
3865 void
3866 Symbol_table::define_with_copy_reloc<32>(
3867     Sized_symbol<32>* sym,
3868     Output_data* posd,
3869     elfcpp::Elf_types<32>::Elf_Addr value);
3870 #endif
3871
3872 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3873 template
3874 void
3875 Symbol_table::define_with_copy_reloc<64>(
3876     Sized_symbol<64>* sym,
3877     Output_data* posd,
3878     elfcpp::Elf_types<64>::Elf_Addr value);
3879 #endif
3880
3881 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3882 template
3883 void
3884 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3885                                    Output_data* od, Value_type value,
3886                                    Size_type symsize, elfcpp::STT type,
3887                                    elfcpp::STB binding,
3888                                    elfcpp::STV visibility,
3889                                    unsigned char nonvis,
3890                                    bool offset_is_from_end,
3891                                    bool is_predefined);
3892
3893 template
3894 void
3895 Sized_symbol<32>::init_constant(const char* name, const char* version,
3896                                 Value_type value, Size_type symsize,
3897                                 elfcpp::STT type, elfcpp::STB binding,
3898                                 elfcpp::STV visibility, unsigned char nonvis,
3899                                 bool is_predefined);
3900
3901 template
3902 void
3903 Sized_symbol<32>::init_undefined(const char* name, const char* version,
3904                                  Value_type value, elfcpp::STT type,
3905                                  elfcpp::STB binding, elfcpp::STV visibility,
3906                                  unsigned char nonvis);
3907 #endif
3908
3909 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3910 template
3911 void
3912 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3913                                    Output_data* od, Value_type value,
3914                                    Size_type symsize, elfcpp::STT type,
3915                                    elfcpp::STB binding,
3916                                    elfcpp::STV visibility,
3917                                    unsigned char nonvis,
3918                                    bool offset_is_from_end,
3919                                    bool is_predefined);
3920
3921 template
3922 void
3923 Sized_symbol<64>::init_constant(const char* name, const char* version,
3924                                 Value_type value, Size_type symsize,
3925                                 elfcpp::STT type, elfcpp::STB binding,
3926                                 elfcpp::STV visibility, unsigned char nonvis,
3927                                 bool is_predefined);
3928
3929 template
3930 void
3931 Sized_symbol<64>::init_undefined(const char* name, const char* version,
3932                                  Value_type value, elfcpp::STT type,
3933                                  elfcpp::STB binding, elfcpp::STV visibility,
3934                                  unsigned char nonvis);
3935 #endif
3936
3937 #ifdef HAVE_TARGET_32_LITTLE
3938 template
3939 void
3940 Warnings::issue_warning<32, false>(const Symbol* sym,
3941                                    const Relocate_info<32, false>* relinfo,
3942                                    size_t relnum, off_t reloffset) const;
3943 #endif
3944
3945 #ifdef HAVE_TARGET_32_BIG
3946 template
3947 void
3948 Warnings::issue_warning<32, true>(const Symbol* sym,
3949                                   const Relocate_info<32, true>* relinfo,
3950                                   size_t relnum, off_t reloffset) const;
3951 #endif
3952
3953 #ifdef HAVE_TARGET_64_LITTLE
3954 template
3955 void
3956 Warnings::issue_warning<64, false>(const Symbol* sym,
3957                                    const Relocate_info<64, false>* relinfo,
3958                                    size_t relnum, off_t reloffset) const;
3959 #endif
3960
3961 #ifdef HAVE_TARGET_64_BIG
3962 template
3963 void
3964 Warnings::issue_warning<64, true>(const Symbol* sym,
3965                                   const Relocate_info<64, true>* relinfo,
3966                                   size_t relnum, off_t reloffset) const;
3967 #endif
3968
3969 } // End namespace gold.