Originally from Craig Silverstein, with changes: support using a
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <stdint.h>
26 #include <set>
27 #include <string>
28 #include <utility>
29 #include "demangle.h"
30
31 #include "object.h"
32 #include "dwarf_reader.h"
33 #include "dynobj.h"
34 #include "output.h"
35 #include "target.h"
36 #include "workqueue.h"
37 #include "symtab.h"
38
39 namespace gold
40 {
41
42 // Class Symbol.
43
44 // Initialize fields in Symbol.  This initializes everything except u_
45 // and source_.
46
47 void
48 Symbol::init_fields(const char* name, const char* version,
49                     elfcpp::STT type, elfcpp::STB binding,
50                     elfcpp::STV visibility, unsigned char nonvis)
51 {
52   this->name_ = name;
53   this->version_ = version;
54   this->symtab_index_ = 0;
55   this->dynsym_index_ = 0;
56   this->got_offset_ = 0;
57   this->plt_offset_ = 0;
58   this->type_ = type;
59   this->binding_ = binding;
60   this->visibility_ = visibility;
61   this->nonvis_ = nonvis;
62   this->is_target_special_ = false;
63   this->is_def_ = false;
64   this->is_forwarder_ = false;
65   this->has_alias_ = false;
66   this->needs_dynsym_entry_ = false;
67   this->in_reg_ = false;
68   this->in_dyn_ = false;
69   this->has_got_offset_ = false;
70   this->has_plt_offset_ = false;
71   this->has_warning_ = false;
72   this->is_copied_from_dynobj_ = false;
73   this->is_forced_local_ = false;
74 }
75
76 // Return the demangled version of the symbol's name, but only
77 // if the --demangle flag was set.
78
79 static std::string
80 demangle(const char* name)
81 {
82   if (!parameters->demangle())
83     return name;
84
85   // cplus_demangle allocates memory for the result it returns,
86   // and returns NULL if the name is already demangled.
87   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
88   if (demangled_name == NULL)
89     return name;
90
91   std::string retval(demangled_name);
92   free(demangled_name);
93   return retval;
94 }
95
96 std::string
97 Symbol::demangled_name() const
98 {
99   return demangle(this->name());
100 }
101
102 // Initialize the fields in the base class Symbol for SYM in OBJECT.
103
104 template<int size, bool big_endian>
105 void
106 Symbol::init_base(const char* name, const char* version, Object* object,
107                   const elfcpp::Sym<size, big_endian>& sym)
108 {
109   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
110                     sym.get_st_visibility(), sym.get_st_nonvis());
111   this->u_.from_object.object = object;
112   // FIXME: Handle SHN_XINDEX.
113   this->u_.from_object.shndx = sym.get_st_shndx();
114   this->source_ = FROM_OBJECT;
115   this->in_reg_ = !object->is_dynamic();
116   this->in_dyn_ = object->is_dynamic();
117 }
118
119 // Initialize the fields in the base class Symbol for a symbol defined
120 // in an Output_data.
121
122 void
123 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
124                   elfcpp::STB binding, elfcpp::STV visibility,
125                   unsigned char nonvis, bool offset_is_from_end)
126 {
127   this->init_fields(name, NULL, type, binding, visibility, nonvis);
128   this->u_.in_output_data.output_data = od;
129   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
130   this->source_ = IN_OUTPUT_DATA;
131   this->in_reg_ = true;
132 }
133
134 // Initialize the fields in the base class Symbol for a symbol defined
135 // in an Output_segment.
136
137 void
138 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
139                   elfcpp::STB binding, elfcpp::STV visibility,
140                   unsigned char nonvis, Segment_offset_base offset_base)
141 {
142   this->init_fields(name, NULL, type, binding, visibility, nonvis);
143   this->u_.in_output_segment.output_segment = os;
144   this->u_.in_output_segment.offset_base = offset_base;
145   this->source_ = IN_OUTPUT_SEGMENT;
146   this->in_reg_ = true;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // as a constant.
151
152 void
153 Symbol::init_base(const char* name, elfcpp::STT type,
154                   elfcpp::STB binding, elfcpp::STV visibility,
155                   unsigned char nonvis)
156 {
157   this->init_fields(name, NULL, type, binding, visibility, nonvis);
158   this->source_ = CONSTANT;
159   this->in_reg_ = true;
160 }
161
162 // Allocate a common symbol in the base.
163
164 void
165 Symbol::allocate_base_common(Output_data* od)
166 {
167   gold_assert(this->is_common());
168   this->source_ = IN_OUTPUT_DATA;
169   this->u_.in_output_data.output_data = od;
170   this->u_.in_output_data.offset_is_from_end = false;
171 }
172
173 // Initialize the fields in Sized_symbol for SYM in OBJECT.
174
175 template<int size>
176 template<bool big_endian>
177 void
178 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
179                          const elfcpp::Sym<size, big_endian>& sym)
180 {
181   this->init_base(name, version, object, sym);
182   this->value_ = sym.get_st_value();
183   this->symsize_ = sym.get_st_size();
184 }
185
186 // Initialize the fields in Sized_symbol for a symbol defined in an
187 // Output_data.
188
189 template<int size>
190 void
191 Sized_symbol<size>::init(const char* name, Output_data* od,
192                          Value_type value, Size_type symsize,
193                          elfcpp::STT type, elfcpp::STB binding,
194                          elfcpp::STV visibility, unsigned char nonvis,
195                          bool offset_is_from_end)
196 {
197   this->init_base(name, od, type, binding, visibility, nonvis,
198                   offset_is_from_end);
199   this->value_ = value;
200   this->symsize_ = symsize;
201 }
202
203 // Initialize the fields in Sized_symbol for a symbol defined in an
204 // Output_segment.
205
206 template<int size>
207 void
208 Sized_symbol<size>::init(const char* name, Output_segment* os,
209                          Value_type value, Size_type symsize,
210                          elfcpp::STT type, elfcpp::STB binding,
211                          elfcpp::STV visibility, unsigned char nonvis,
212                          Segment_offset_base offset_base)
213 {
214   this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
215   this->value_ = value;
216   this->symsize_ = symsize;
217 }
218
219 // Initialize the fields in Sized_symbol for a symbol defined as a
220 // constant.
221
222 template<int size>
223 void
224 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
225                          elfcpp::STT type, elfcpp::STB binding,
226                          elfcpp::STV visibility, unsigned char nonvis)
227 {
228   this->init_base(name, type, binding, visibility, nonvis);
229   this->value_ = value;
230   this->symsize_ = symsize;
231 }
232
233 // Allocate a common symbol.
234
235 template<int size>
236 void
237 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
238 {
239   this->allocate_base_common(od);
240   this->value_ = value;
241 }
242
243 // Return true if this symbol should be added to the dynamic symbol
244 // table.
245
246 inline bool
247 Symbol::should_add_dynsym_entry() const
248 {
249   // If the symbol is used by a dynamic relocation, we need to add it.
250   if (this->needs_dynsym_entry())
251     return true;
252
253   // If the symbol was forced local in a version script, do not add it.
254   if (this->is_forced_local())
255     return false;
256
257   // If exporting all symbols or building a shared library,
258   // and the symbol is defined in a regular object and is
259   // externally visible, we need to add it.
260   if ((parameters->export_dynamic() || parameters->output_is_shared())
261       && !this->is_from_dynobj()
262       && this->is_externally_visible())
263     return true;
264
265   return false;
266 }
267
268 // Return true if the final value of this symbol is known at link
269 // time.
270
271 bool
272 Symbol::final_value_is_known() const
273 {
274   // If we are not generating an executable, then no final values are
275   // known, since they will change at runtime.
276   if (!parameters->output_is_executable())
277     return false;
278
279   // If the symbol is not from an object file, then it is defined, and
280   // known.
281   if (this->source_ != FROM_OBJECT)
282     return true;
283
284   // If the symbol is from a dynamic object, then the final value is
285   // not known.
286   if (this->object()->is_dynamic())
287     return false;
288
289   // If the symbol is not undefined (it is defined or common), then
290   // the final value is known.
291   if (!this->is_undefined())
292     return true;
293
294   // If the symbol is undefined, then whether the final value is known
295   // depends on whether we are doing a static link.  If we are doing a
296   // dynamic link, then the final value could be filled in at runtime.
297   // This could reasonably be the case for a weak undefined symbol.
298   return parameters->doing_static_link();
299 }
300
301 // Class Symbol_table.
302
303 Symbol_table::Symbol_table(unsigned int count,
304                            const Version_script_info& version_script)
305   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
306     forwarders_(), commons_(), forced_locals_(), warnings_(),
307     version_script_(version_script)
308 {
309   namepool_.reserve(count);
310 }
311
312 Symbol_table::~Symbol_table()
313 {
314 }
315
316 // The hash function.  The key values are Stringpool keys.
317
318 inline size_t
319 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
320 {
321   return key.first ^ key.second;
322 }
323
324 // The symbol table key equality function.  This is called with
325 // Stringpool keys.
326
327 inline bool
328 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
329                                           const Symbol_table_key& k2) const
330 {
331   return k1.first == k2.first && k1.second == k2.second;
332 }
333
334 // Make TO a symbol which forwards to FROM.
335
336 void
337 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
338 {
339   gold_assert(from != to);
340   gold_assert(!from->is_forwarder() && !to->is_forwarder());
341   this->forwarders_[from] = to;
342   from->set_forwarder();
343 }
344
345 // Resolve the forwards from FROM, returning the real symbol.
346
347 Symbol*
348 Symbol_table::resolve_forwards(const Symbol* from) const
349 {
350   gold_assert(from->is_forwarder());
351   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
352     this->forwarders_.find(from);
353   gold_assert(p != this->forwarders_.end());
354   return p->second;
355 }
356
357 // Look up a symbol by name.
358
359 Symbol*
360 Symbol_table::lookup(const char* name, const char* version) const
361 {
362   Stringpool::Key name_key;
363   name = this->namepool_.find(name, &name_key);
364   if (name == NULL)
365     return NULL;
366
367   Stringpool::Key version_key = 0;
368   if (version != NULL)
369     {
370       version = this->namepool_.find(version, &version_key);
371       if (version == NULL)
372         return NULL;
373     }
374
375   Symbol_table_key key(name_key, version_key);
376   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
377   if (p == this->table_.end())
378     return NULL;
379   return p->second;
380 }
381
382 // Resolve a Symbol with another Symbol.  This is only used in the
383 // unusual case where there are references to both an unversioned
384 // symbol and a symbol with a version, and we then discover that that
385 // version is the default version.  Because this is unusual, we do
386 // this the slow way, by converting back to an ELF symbol.
387
388 template<int size, bool big_endian>
389 void
390 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
391                       const char* version ACCEPT_SIZE_ENDIAN)
392 {
393   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
394   elfcpp::Sym_write<size, big_endian> esym(buf);
395   // We don't bother to set the st_name field.
396   esym.put_st_value(from->value());
397   esym.put_st_size(from->symsize());
398   esym.put_st_info(from->binding(), from->type());
399   esym.put_st_other(from->visibility(), from->nonvis());
400   esym.put_st_shndx(from->shndx());
401   this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
402   if (from->in_reg())
403     to->set_in_reg();
404   if (from->in_dyn())
405     to->set_in_dyn();
406 }
407
408 // Record that a symbol is forced to be local by a version script.
409
410 void
411 Symbol_table::force_local(Symbol* sym)
412 {
413   if (!sym->is_defined() && !sym->is_common())
414     return;
415   if (sym->is_forced_local())
416     {
417       // We already got this one.
418       return;
419     }
420   sym->set_is_forced_local();
421   this->forced_locals_.push_back(sym);
422 }
423
424 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
425 // name and VERSION is the version; both are canonicalized.  DEF is
426 // whether this is the default version.
427
428 // If DEF is true, then this is the definition of a default version of
429 // a symbol.  That means that any lookup of NAME/NULL and any lookup
430 // of NAME/VERSION should always return the same symbol.  This is
431 // obvious for references, but in particular we want to do this for
432 // definitions: overriding NAME/NULL should also override
433 // NAME/VERSION.  If we don't do that, it would be very hard to
434 // override functions in a shared library which uses versioning.
435
436 // We implement this by simply making both entries in the hash table
437 // point to the same Symbol structure.  That is easy enough if this is
438 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
439 // that we have seen both already, in which case they will both have
440 // independent entries in the symbol table.  We can't simply change
441 // the symbol table entry, because we have pointers to the entries
442 // attached to the object files.  So we mark the entry attached to the
443 // object file as a forwarder, and record it in the forwarders_ map.
444 // Note that entries in the hash table will never be marked as
445 // forwarders.
446 //
447 // SYM and ORIG_SYM are almost always the same.  ORIG_SYM is the
448 // symbol exactly as it existed in the input file.  SYM is usually
449 // that as well, but can be modified, for instance if we determine
450 // it's in a to-be-discarded section.
451
452 template<int size, bool big_endian>
453 Sized_symbol<size>*
454 Symbol_table::add_from_object(Object* object,
455                               const char *name,
456                               Stringpool::Key name_key,
457                               const char *version,
458                               Stringpool::Key version_key,
459                               bool def,
460                               const elfcpp::Sym<size, big_endian>& sym,
461                               const elfcpp::Sym<size, big_endian>& orig_sym)
462 {
463   Symbol* const snull = NULL;
464   std::pair<typename Symbol_table_type::iterator, bool> ins =
465     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
466                                        snull));
467
468   std::pair<typename Symbol_table_type::iterator, bool> insdef =
469     std::make_pair(this->table_.end(), false);
470   if (def)
471     {
472       const Stringpool::Key vnull_key = 0;
473       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
474                                                                  vnull_key),
475                                                   snull));
476     }
477
478   // ins.first: an iterator, which is a pointer to a pair.
479   // ins.first->first: the key (a pair of name and version).
480   // ins.first->second: the value (Symbol*).
481   // ins.second: true if new entry was inserted, false if not.
482
483   Sized_symbol<size>* ret;
484   bool was_undefined;
485   bool was_common;
486   if (!ins.second)
487     {
488       // We already have an entry for NAME/VERSION.
489       ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
490                                                            SELECT_SIZE(size));
491       gold_assert(ret != NULL);
492
493       was_undefined = ret->is_undefined();
494       was_common = ret->is_common();
495
496       this->resolve(ret, sym, orig_sym, object, version);
497
498       if (def)
499         {
500           if (insdef.second)
501             {
502               // This is the first time we have seen NAME/NULL.  Make
503               // NAME/NULL point to NAME/VERSION.
504               insdef.first->second = ret;
505             }
506           else if (insdef.first->second != ret
507                    && insdef.first->second->is_undefined())
508             {
509               // This is the unfortunate case where we already have
510               // entries for both NAME/VERSION and NAME/NULL.  Note
511               // that we don't want to combine them if the existing
512               // symbol is going to override the new one.  FIXME: We
513               // currently just test is_undefined, but this may not do
514               // the right thing if the existing symbol is from a
515               // shared library and the new one is from a regular
516               // object.
517
518               const Sized_symbol<size>* sym2;
519               sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
520                 insdef.first->second
521                 SELECT_SIZE(size));
522               Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
523                 ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian));
524               this->make_forwarder(insdef.first->second, ret);
525               insdef.first->second = ret;
526             }
527         }
528     }
529   else
530     {
531       // This is the first time we have seen NAME/VERSION.
532       gold_assert(ins.first->second == NULL);
533
534       was_undefined = false;
535       was_common = false;
536
537       if (def && !insdef.second)
538         {
539           // We already have an entry for NAME/NULL.  If we override
540           // it, then change it to NAME/VERSION.
541           ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
542               insdef.first->second
543               SELECT_SIZE(size));
544           this->resolve(ret, sym, orig_sym, object, version);
545           ins.first->second = ret;
546         }
547       else
548         {
549           Sized_target<size, big_endian>* target =
550             object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
551                 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
552           if (!target->has_make_symbol())
553             ret = new Sized_symbol<size>();
554           else
555             {
556               ret = target->make_symbol();
557               if (ret == NULL)
558                 {
559                   // This means that we don't want a symbol table
560                   // entry after all.
561                   if (!def)
562                     this->table_.erase(ins.first);
563                   else
564                     {
565                       this->table_.erase(insdef.first);
566                       // Inserting insdef invalidated ins.
567                       this->table_.erase(std::make_pair(name_key,
568                                                         version_key));
569                     }
570                   return NULL;
571                 }
572             }
573
574           ret->init(name, version, object, sym);
575
576           ins.first->second = ret;
577           if (def)
578             {
579               // This is the first time we have seen NAME/NULL.  Point
580               // it at the new entry for NAME/VERSION.
581               gold_assert(insdef.second);
582               insdef.first->second = ret;
583             }
584         }
585     }
586
587   // Record every time we see a new undefined symbol, to speed up
588   // archive groups.
589   if (!was_undefined && ret->is_undefined())
590     ++this->saw_undefined_;
591
592   // Keep track of common symbols, to speed up common symbol
593   // allocation.
594   if (!was_common && ret->is_common())
595     this->commons_.push_back(ret);
596
597   ret->set_is_default(def);
598   return ret;
599 }
600
601 // Add all the symbols in a relocatable object to the hash table.
602
603 template<int size, bool big_endian>
604 void
605 Symbol_table::add_from_relobj(
606     Sized_relobj<size, big_endian>* relobj,
607     const unsigned char* syms,
608     size_t count,
609     const char* sym_names,
610     size_t sym_name_size,
611     typename Sized_relobj<size, big_endian>::Symbols* sympointers)
612 {
613   gold_assert(size == relobj->target()->get_size());
614   gold_assert(size == parameters->get_size());
615
616   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
617
618   const unsigned char* p = syms;
619   for (size_t i = 0; i < count; ++i, p += sym_size)
620     {
621       elfcpp::Sym<size, big_endian> sym(p);
622       elfcpp::Sym<size, big_endian>* psym = &sym;
623
624       unsigned int st_name = psym->get_st_name();
625       if (st_name >= sym_name_size)
626         {
627           relobj->error(_("bad global symbol name offset %u at %zu"),
628                         st_name, i);
629           continue;
630         }
631
632       const char* name = sym_names + st_name;
633
634       // A symbol defined in a section which we are not including must
635       // be treated as an undefined symbol.
636       unsigned char symbuf[sym_size];
637       elfcpp::Sym<size, big_endian> sym2(symbuf);
638       unsigned int st_shndx = psym->get_st_shndx();
639       if (st_shndx != elfcpp::SHN_UNDEF
640           && st_shndx < elfcpp::SHN_LORESERVE
641           && !relobj->is_section_included(st_shndx))
642         {
643           memcpy(symbuf, p, sym_size);
644           elfcpp::Sym_write<size, big_endian> sw(symbuf);
645           sw.put_st_shndx(elfcpp::SHN_UNDEF);
646           psym = &sym2;
647         }
648
649       // In an object file, an '@' in the name separates the symbol
650       // name from the version name.  If there are two '@' characters,
651       // this is the default version.
652       const char* ver = strchr(name, '@');
653       int namelen = 0;
654       // DEF: is the version default?  LOCAL: is the symbol forced local?
655       bool def = false;
656       bool local = false;
657
658       if (ver != NULL)
659         {
660           // The symbol name is of the form foo@VERSION or foo@@VERSION
661           namelen = ver - name;
662           ++ver;
663           if (*ver == '@')
664             {
665               def = true;
666               ++ver;
667             }
668         }
669       else if (!version_script_.empty())
670         {
671           // The symbol name did not have a version, but
672           // the version script may assign a version anyway.
673           namelen = strlen(name);
674           def = true;
675           // Check the global: entries from the version script.
676           const std::string& version =
677               version_script_.get_symbol_version(name);
678           if (!version.empty())
679             ver = version.c_str();
680           // Check the local: entries from the version script
681           if (version_script_.symbol_is_local(name))
682             local = true;
683         }
684
685       Sized_symbol<size>* res;
686       if (ver == NULL)
687         {
688           Stringpool::Key name_key;
689           name = this->namepool_.add(name, true, &name_key);
690           res = this->add_from_object(relobj, name, name_key, NULL, 0,
691                                       false, *psym, sym);
692           if (local)
693             this->force_local(res);
694         }
695       else
696         {
697           Stringpool::Key name_key;
698           name = this->namepool_.add_with_length(name, namelen, true,
699                                                  &name_key);
700           Stringpool::Key ver_key;
701           ver = this->namepool_.add(ver, true, &ver_key);
702
703           res = this->add_from_object(relobj, name, name_key, ver, ver_key,
704                                       def, *psym, sym);
705         }
706
707       (*sympointers)[i] = res;
708     }
709 }
710
711 // Add all the symbols in a dynamic object to the hash table.
712
713 template<int size, bool big_endian>
714 void
715 Symbol_table::add_from_dynobj(
716     Sized_dynobj<size, big_endian>* dynobj,
717     const unsigned char* syms,
718     size_t count,
719     const char* sym_names,
720     size_t sym_name_size,
721     const unsigned char* versym,
722     size_t versym_size,
723     const std::vector<const char*>* version_map)
724 {
725   gold_assert(size == dynobj->target()->get_size());
726   gold_assert(size == parameters->get_size());
727
728   if (versym != NULL && versym_size / 2 < count)
729     {
730       dynobj->error(_("too few symbol versions"));
731       return;
732     }
733
734   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
735
736   // We keep a list of all STT_OBJECT symbols, so that we can resolve
737   // weak aliases.  This is necessary because if the dynamic object
738   // provides the same variable under two names, one of which is a
739   // weak definition, and the regular object refers to the weak
740   // definition, we have to put both the weak definition and the
741   // strong definition into the dynamic symbol table.  Given a weak
742   // definition, the only way that we can find the corresponding
743   // strong definition, if any, is to search the symbol table.
744   std::vector<Sized_symbol<size>*> object_symbols;
745
746   const unsigned char* p = syms;
747   const unsigned char* vs = versym;
748   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
749     {
750       elfcpp::Sym<size, big_endian> sym(p);
751
752       // Ignore symbols with local binding.
753       if (sym.get_st_bind() == elfcpp::STB_LOCAL)
754         continue;
755
756       unsigned int st_name = sym.get_st_name();
757       if (st_name >= sym_name_size)
758         {
759           dynobj->error(_("bad symbol name offset %u at %zu"),
760                         st_name, i);
761           continue;
762         }
763
764       const char* name = sym_names + st_name;
765
766       Sized_symbol<size>* res;
767
768       if (versym == NULL)
769         {
770           Stringpool::Key name_key;
771           name = this->namepool_.add(name, true, &name_key);
772           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
773                                       false, sym, sym);
774         }
775       else
776         {
777           // Read the version information.
778
779           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
780
781           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
782           v &= elfcpp::VERSYM_VERSION;
783
784           // The Sun documentation says that V can be VER_NDX_LOCAL,
785           // or VER_NDX_GLOBAL, or a version index.  The meaning of
786           // VER_NDX_LOCAL is defined as "Symbol has local scope."
787           // The old GNU linker will happily generate VER_NDX_LOCAL
788           // for an undefined symbol.  I don't know what the Sun
789           // linker will generate.
790
791           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
792               && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
793             {
794               // This symbol should not be visible outside the object.
795               continue;
796             }
797
798           // At this point we are definitely going to add this symbol.
799           Stringpool::Key name_key;
800           name = this->namepool_.add(name, true, &name_key);
801
802           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
803               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
804             {
805               // This symbol does not have a version.
806               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
807                                           false, sym, sym);
808             }
809           else
810             {
811               if (v >= version_map->size())
812                 {
813                   dynobj->error(_("versym for symbol %zu out of range: %u"),
814                                 i, v);
815                   continue;
816                 }
817
818               const char* version = (*version_map)[v];
819               if (version == NULL)
820                 {
821                   dynobj->error(_("versym for symbol %zu has no name: %u"),
822                                 i, v);
823                   continue;
824                 }
825
826               Stringpool::Key version_key;
827               version = this->namepool_.add(version, true, &version_key);
828
829               // If this is an absolute symbol, and the version name
830               // and symbol name are the same, then this is the
831               // version definition symbol.  These symbols exist to
832               // support using -u to pull in particular versions.  We
833               // do not want to record a version for them.
834               if (sym.get_st_shndx() == elfcpp::SHN_ABS
835                   && name_key == version_key)
836                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
837                                             false, sym, sym);
838               else
839                 {
840                   const bool def = (!hidden
841                                     && (sym.get_st_shndx()
842                                         != elfcpp::SHN_UNDEF));
843                   res = this->add_from_object(dynobj, name, name_key, version,
844                                               version_key, def, sym, sym);
845                 }
846             }
847         }
848
849       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
850           && sym.get_st_type() == elfcpp::STT_OBJECT)
851         object_symbols.push_back(res);
852     }
853
854   this->record_weak_aliases(&object_symbols);
855 }
856
857 // This is used to sort weak aliases.  We sort them first by section
858 // index, then by offset, then by weak ahead of strong.
859
860 template<int size>
861 class Weak_alias_sorter
862 {
863  public:
864   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
865 };
866
867 template<int size>
868 bool
869 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
870                                     const Sized_symbol<size>* s2) const
871 {
872   if (s1->shndx() != s2->shndx())
873     return s1->shndx() < s2->shndx();
874   if (s1->value() != s2->value())
875     return s1->value() < s2->value();
876   if (s1->binding() != s2->binding())
877     {
878       if (s1->binding() == elfcpp::STB_WEAK)
879         return true;
880       if (s2->binding() == elfcpp::STB_WEAK)
881         return false;
882     }
883   return std::string(s1->name()) < std::string(s2->name());
884 }
885
886 // SYMBOLS is a list of object symbols from a dynamic object.  Look
887 // for any weak aliases, and record them so that if we add the weak
888 // alias to the dynamic symbol table, we also add the corresponding
889 // strong symbol.
890
891 template<int size>
892 void
893 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
894 {
895   // Sort the vector by section index, then by offset, then by weak
896   // ahead of strong.
897   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
898
899   // Walk through the vector.  For each weak definition, record
900   // aliases.
901   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
902          symbols->begin();
903        p != symbols->end();
904        ++p)
905     {
906       if ((*p)->binding() != elfcpp::STB_WEAK)
907         continue;
908
909       // Build a circular list of weak aliases.  Each symbol points to
910       // the next one in the circular list.
911
912       Sized_symbol<size>* from_sym = *p;
913       typename std::vector<Sized_symbol<size>*>::const_iterator q;
914       for (q = p + 1; q != symbols->end(); ++q)
915         {
916           if ((*q)->shndx() != from_sym->shndx()
917               || (*q)->value() != from_sym->value())
918             break;
919
920           this->weak_aliases_[from_sym] = *q;
921           from_sym->set_has_alias();
922           from_sym = *q;
923         }
924
925       if (from_sym != *p)
926         {
927           this->weak_aliases_[from_sym] = *p;
928           from_sym->set_has_alias();
929         }
930
931       p = q - 1;
932     }
933 }
934
935 // Create and return a specially defined symbol.  If ONLY_IF_REF is
936 // true, then only create the symbol if there is a reference to it.
937 // If this does not return NULL, it sets *POLDSYM to the existing
938 // symbol if there is one.  This canonicalizes *PNAME and *PVERSION.
939
940 template<int size, bool big_endian>
941 Sized_symbol<size>*
942 Symbol_table::define_special_symbol(const Target* target, const char** pname,
943                                     const char** pversion, bool only_if_ref,
944                                     Sized_symbol<size>** poldsym
945                                     ACCEPT_SIZE_ENDIAN)
946 {
947   Symbol* oldsym;
948   Sized_symbol<size>* sym;
949   bool add_to_table = false;
950   typename Symbol_table_type::iterator add_loc = this->table_.end();
951
952   // If the caller didn't give us a version, see if we get one from
953   // the version script.
954   if (*pversion == NULL)
955     {
956       const std::string& v(this->version_script_.get_symbol_version(*pname));
957       if (!v.empty())
958         *pversion = v.c_str();
959     }
960
961   if (only_if_ref)
962     {
963       oldsym = this->lookup(*pname, *pversion);
964       if (oldsym == NULL || !oldsym->is_undefined())
965         return NULL;
966
967       *pname = oldsym->name();
968       *pversion = oldsym->version();
969     }
970   else
971     {
972       // Canonicalize NAME and VERSION.
973       Stringpool::Key name_key;
974       *pname = this->namepool_.add(*pname, true, &name_key);
975
976       Stringpool::Key version_key = 0;
977       if (*pversion != NULL)
978         *pversion = this->namepool_.add(*pversion, true, &version_key);
979
980       Symbol* const snull = NULL;
981       std::pair<typename Symbol_table_type::iterator, bool> ins =
982         this->table_.insert(std::make_pair(std::make_pair(name_key,
983                                                           version_key),
984                                            snull));
985
986       if (!ins.second)
987         {
988           // We already have a symbol table entry for NAME/VERSION.
989           oldsym = ins.first->second;
990           gold_assert(oldsym != NULL);
991         }
992       else
993         {
994           // We haven't seen this symbol before.
995           gold_assert(ins.first->second == NULL);
996           add_to_table = true;
997           add_loc = ins.first;
998           oldsym = NULL;
999         }
1000     }
1001
1002   if (!target->has_make_symbol())
1003     sym = new Sized_symbol<size>();
1004   else
1005     {
1006       gold_assert(target->get_size() == size);
1007       gold_assert(target->is_big_endian() ? big_endian : !big_endian);
1008       typedef Sized_target<size, big_endian> My_target;
1009       const My_target* sized_target =
1010           static_cast<const My_target*>(target);
1011       sym = sized_target->make_symbol();
1012       if (sym == NULL)
1013         return NULL;
1014     }
1015
1016   if (add_to_table)
1017     add_loc->second = sym;
1018   else
1019     gold_assert(oldsym != NULL);
1020
1021   *poldsym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
1022                                                             SELECT_SIZE(size));
1023
1024   return sym;
1025 }
1026
1027 // Define a symbol based on an Output_data.
1028
1029 Symbol*
1030 Symbol_table::define_in_output_data(const Target* target, const char* name,
1031                                     const char* version, Output_data* od,
1032                                     uint64_t value, uint64_t symsize,
1033                                     elfcpp::STT type, elfcpp::STB binding,
1034                                     elfcpp::STV visibility,
1035                                     unsigned char nonvis,
1036                                     bool offset_is_from_end,
1037                                     bool only_if_ref)
1038 {
1039   if (parameters->get_size() == 32)
1040     {
1041 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1042       return this->do_define_in_output_data<32>(target, name, version, od,
1043                                                 value, symsize, type, binding,
1044                                                 visibility, nonvis,
1045                                                 offset_is_from_end,
1046                                                 only_if_ref);
1047 #else
1048       gold_unreachable();
1049 #endif
1050     }
1051   else if (parameters->get_size() == 64)
1052     {
1053 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1054       return this->do_define_in_output_data<64>(target, name, version, od,
1055                                                 value, symsize, type, binding,
1056                                                 visibility, nonvis,
1057                                                 offset_is_from_end,
1058                                                 only_if_ref);
1059 #else
1060       gold_unreachable();
1061 #endif
1062     }
1063   else
1064     gold_unreachable();
1065 }
1066
1067 // Define a symbol in an Output_data, sized version.
1068
1069 template<int size>
1070 Sized_symbol<size>*
1071 Symbol_table::do_define_in_output_data(
1072     const Target* target,
1073     const char* name,
1074     const char* version,
1075     Output_data* od,
1076     typename elfcpp::Elf_types<size>::Elf_Addr value,
1077     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1078     elfcpp::STT type,
1079     elfcpp::STB binding,
1080     elfcpp::STV visibility,
1081     unsigned char nonvis,
1082     bool offset_is_from_end,
1083     bool only_if_ref)
1084 {
1085   Sized_symbol<size>* sym;
1086   Sized_symbol<size>* oldsym;
1087
1088   if (parameters->is_big_endian())
1089     {
1090 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1091       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1092           target, &name, &version, only_if_ref, &oldsym
1093           SELECT_SIZE_ENDIAN(size, true));
1094 #else
1095       gold_unreachable();
1096 #endif
1097     }
1098   else
1099     {
1100 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1101       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1102           target, &name, &version, only_if_ref, &oldsym
1103           SELECT_SIZE_ENDIAN(size, false));
1104 #else
1105       gold_unreachable();
1106 #endif
1107     }
1108
1109   if (sym == NULL)
1110     return NULL;
1111
1112   gold_assert(version == NULL || oldsym != NULL);
1113   sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1114             offset_is_from_end);
1115
1116   if (oldsym == NULL)
1117     {
1118       if (binding == elfcpp::STB_LOCAL
1119           || this->version_script_.symbol_is_local(name))
1120         this->force_local(sym);
1121       return sym;
1122     }
1123
1124   if (Symbol_table::should_override_with_special(oldsym))
1125     this->override_with_special(oldsym, sym);
1126   delete sym;
1127   return oldsym;
1128 }
1129
1130 // Define a symbol based on an Output_segment.
1131
1132 Symbol*
1133 Symbol_table::define_in_output_segment(const Target* target, const char* name,
1134                                        const char* version, Output_segment* os,
1135                                        uint64_t value, uint64_t symsize,
1136                                        elfcpp::STT type, elfcpp::STB binding,
1137                                        elfcpp::STV visibility,
1138                                        unsigned char nonvis,
1139                                        Symbol::Segment_offset_base offset_base,
1140                                        bool only_if_ref)
1141 {
1142   if (parameters->get_size() == 32)
1143     {
1144 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1145       return this->do_define_in_output_segment<32>(target, name, version, os,
1146                                                    value, symsize, type,
1147                                                    binding, visibility, nonvis,
1148                                                    offset_base, only_if_ref);
1149 #else
1150       gold_unreachable();
1151 #endif
1152     }
1153   else if (parameters->get_size() == 64)
1154     {
1155 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1156       return this->do_define_in_output_segment<64>(target, name, version, os,
1157                                                    value, symsize, type,
1158                                                    binding, visibility, nonvis,
1159                                                    offset_base, only_if_ref);
1160 #else
1161       gold_unreachable();
1162 #endif
1163     }
1164   else
1165     gold_unreachable();
1166 }
1167
1168 // Define a symbol in an Output_segment, sized version.
1169
1170 template<int size>
1171 Sized_symbol<size>*
1172 Symbol_table::do_define_in_output_segment(
1173     const Target* target,
1174     const char* name,
1175     const char* version,
1176     Output_segment* os,
1177     typename elfcpp::Elf_types<size>::Elf_Addr value,
1178     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1179     elfcpp::STT type,
1180     elfcpp::STB binding,
1181     elfcpp::STV visibility,
1182     unsigned char nonvis,
1183     Symbol::Segment_offset_base offset_base,
1184     bool only_if_ref)
1185 {
1186   Sized_symbol<size>* sym;
1187   Sized_symbol<size>* oldsym;
1188
1189   if (parameters->is_big_endian())
1190     {
1191 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1192       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1193           target, &name, &version, only_if_ref, &oldsym
1194           SELECT_SIZE_ENDIAN(size, true));
1195 #else
1196       gold_unreachable();
1197 #endif
1198     }
1199   else
1200     {
1201 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1202       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1203           target, &name, &version, only_if_ref, &oldsym
1204           SELECT_SIZE_ENDIAN(size, false));
1205 #else
1206       gold_unreachable();
1207 #endif
1208     }
1209
1210   if (sym == NULL)
1211     return NULL;
1212
1213   gold_assert(version == NULL || oldsym != NULL);
1214   sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1215             offset_base);
1216
1217   if (oldsym == NULL)
1218     {
1219       if (binding == elfcpp::STB_LOCAL
1220           || this->version_script_.symbol_is_local(name))
1221         this->force_local(sym);
1222       return sym;
1223     }
1224
1225   if (Symbol_table::should_override_with_special(oldsym))
1226     this->override_with_special(oldsym, sym);
1227   delete sym;
1228   return oldsym;
1229 }
1230
1231 // Define a special symbol with a constant value.  It is a multiple
1232 // definition error if this symbol is already defined.
1233
1234 Symbol*
1235 Symbol_table::define_as_constant(const Target* target, const char* name,
1236                                  const char* version, uint64_t value,
1237                                  uint64_t symsize, elfcpp::STT type,
1238                                  elfcpp::STB binding, elfcpp::STV visibility,
1239                                  unsigned char nonvis, bool only_if_ref)
1240 {
1241   if (parameters->get_size() == 32)
1242     {
1243 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1244       return this->do_define_as_constant<32>(target, name, version, value,
1245                                              symsize, type, binding,
1246                                              visibility, nonvis, only_if_ref);
1247 #else
1248       gold_unreachable();
1249 #endif
1250     }
1251   else if (parameters->get_size() == 64)
1252     {
1253 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1254       return this->do_define_as_constant<64>(target, name, version, value,
1255                                              symsize, type, binding,
1256                                              visibility, nonvis, only_if_ref);
1257 #else
1258       gold_unreachable();
1259 #endif
1260     }
1261   else
1262     gold_unreachable();
1263 }
1264
1265 // Define a symbol as a constant, sized version.
1266
1267 template<int size>
1268 Sized_symbol<size>*
1269 Symbol_table::do_define_as_constant(
1270     const Target* target,
1271     const char* name,
1272     const char* version,
1273     typename elfcpp::Elf_types<size>::Elf_Addr value,
1274     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1275     elfcpp::STT type,
1276     elfcpp::STB binding,
1277     elfcpp::STV visibility,
1278     unsigned char nonvis,
1279     bool only_if_ref)
1280 {
1281   Sized_symbol<size>* sym;
1282   Sized_symbol<size>* oldsym;
1283
1284   if (parameters->is_big_endian())
1285     {
1286 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1287       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1288           target, &name, &version, only_if_ref, &oldsym
1289           SELECT_SIZE_ENDIAN(size, true));
1290 #else
1291       gold_unreachable();
1292 #endif
1293     }
1294   else
1295     {
1296 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1297       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1298           target, &name, &version, only_if_ref, &oldsym
1299           SELECT_SIZE_ENDIAN(size, false));
1300 #else
1301       gold_unreachable();
1302 #endif
1303     }
1304
1305   if (sym == NULL)
1306     return NULL;
1307
1308   gold_assert(version == NULL || version == name || oldsym != NULL);
1309   sym->init(name, value, symsize, type, binding, visibility, nonvis);
1310
1311   if (oldsym == NULL)
1312     {
1313       if (binding == elfcpp::STB_LOCAL
1314           || this->version_script_.symbol_is_local(name))
1315         this->force_local(sym);
1316       return sym;
1317     }
1318
1319   if (Symbol_table::should_override_with_special(oldsym))
1320     this->override_with_special(oldsym, sym);
1321   delete sym;
1322   return oldsym;
1323 }
1324
1325 // Define a set of symbols in output sections.
1326
1327 void
1328 Symbol_table::define_symbols(const Layout* layout, const Target* target,
1329                              int count, const Define_symbol_in_section* p)
1330 {
1331   for (int i = 0; i < count; ++i, ++p)
1332     {
1333       Output_section* os = layout->find_output_section(p->output_section);
1334       if (os != NULL)
1335         this->define_in_output_data(target, p->name, NULL, os, p->value,
1336                                     p->size, p->type, p->binding,
1337                                     p->visibility, p->nonvis,
1338                                     p->offset_is_from_end, p->only_if_ref);
1339       else
1340         this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1341                                  p->binding, p->visibility, p->nonvis,
1342                                  p->only_if_ref);
1343     }
1344 }
1345
1346 // Define a set of symbols in output segments.
1347
1348 void
1349 Symbol_table::define_symbols(const Layout* layout, const Target* target,
1350                              int count, const Define_symbol_in_segment* p)
1351 {
1352   for (int i = 0; i < count; ++i, ++p)
1353     {
1354       Output_segment* os = layout->find_output_segment(p->segment_type,
1355                                                        p->segment_flags_set,
1356                                                        p->segment_flags_clear);
1357       if (os != NULL)
1358         this->define_in_output_segment(target, p->name, NULL, os, p->value,
1359                                        p->size, p->type, p->binding,
1360                                        p->visibility, p->nonvis,
1361                                        p->offset_base, p->only_if_ref);
1362       else
1363         this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1364                                  p->binding, p->visibility, p->nonvis,
1365                                  p->only_if_ref);
1366     }
1367 }
1368
1369 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
1370 // symbol should be defined--typically a .dyn.bss section.  VALUE is
1371 // the offset within POSD.
1372
1373 template<int size>
1374 void
1375 Symbol_table::define_with_copy_reloc(
1376     const Target* target,
1377     Sized_symbol<size>* csym,
1378     Output_data* posd,
1379     typename elfcpp::Elf_types<size>::Elf_Addr value)
1380 {
1381   gold_assert(csym->is_from_dynobj());
1382   gold_assert(!csym->is_copied_from_dynobj());
1383   Object* object = csym->object();
1384   gold_assert(object->is_dynamic());
1385   Dynobj* dynobj = static_cast<Dynobj*>(object);
1386
1387   // Our copied variable has to override any variable in a shared
1388   // library.
1389   elfcpp::STB binding = csym->binding();
1390   if (binding == elfcpp::STB_WEAK)
1391     binding = elfcpp::STB_GLOBAL;
1392
1393   this->define_in_output_data(target, csym->name(), csym->version(),
1394                               posd, value, csym->symsize(),
1395                               csym->type(), binding,
1396                               csym->visibility(), csym->nonvis(),
1397                               false, false);
1398
1399   csym->set_is_copied_from_dynobj();
1400   csym->set_needs_dynsym_entry();
1401
1402   this->copied_symbol_dynobjs_[csym] = dynobj;
1403
1404   // We have now defined all aliases, but we have not entered them all
1405   // in the copied_symbol_dynobjs_ map.
1406   if (csym->has_alias())
1407     {
1408       Symbol* sym = csym;
1409       while (true)
1410         {
1411           sym = this->weak_aliases_[sym];
1412           if (sym == csym)
1413             break;
1414           gold_assert(sym->output_data() == posd);
1415
1416           sym->set_is_copied_from_dynobj();
1417           this->copied_symbol_dynobjs_[sym] = dynobj;
1418         }
1419     }
1420 }
1421
1422 // SYM is defined using a COPY reloc.  Return the dynamic object where
1423 // the original definition was found.
1424
1425 Dynobj*
1426 Symbol_table::get_copy_source(const Symbol* sym) const
1427 {
1428   gold_assert(sym->is_copied_from_dynobj());
1429   Copied_symbol_dynobjs::const_iterator p =
1430     this->copied_symbol_dynobjs_.find(sym);
1431   gold_assert(p != this->copied_symbol_dynobjs_.end());
1432   return p->second;
1433 }
1434
1435 // Set the dynamic symbol indexes.  INDEX is the index of the first
1436 // global dynamic symbol.  Pointers to the symbols are stored into the
1437 // vector SYMS.  The names are added to DYNPOOL.  This returns an
1438 // updated dynamic symbol index.
1439
1440 unsigned int
1441 Symbol_table::set_dynsym_indexes(const Target* target,
1442                                  unsigned int index,
1443                                  std::vector<Symbol*>* syms,
1444                                  Stringpool* dynpool,
1445                                  Versions* versions)
1446 {
1447   for (Symbol_table_type::iterator p = this->table_.begin();
1448        p != this->table_.end();
1449        ++p)
1450     {
1451       Symbol* sym = p->second;
1452
1453       // Note that SYM may already have a dynamic symbol index, since
1454       // some symbols appear more than once in the symbol table, with
1455       // and without a version.
1456
1457       if (!sym->should_add_dynsym_entry())
1458         sym->set_dynsym_index(-1U);
1459       else if (!sym->has_dynsym_index())
1460         {
1461           sym->set_dynsym_index(index);
1462           ++index;
1463           syms->push_back(sym);
1464           dynpool->add(sym->name(), false, NULL);
1465
1466           // Record any version information.
1467           if (sym->version() != NULL)
1468             versions->record_version(this, dynpool, sym);
1469         }
1470     }
1471
1472   // Finish up the versions.  In some cases this may add new dynamic
1473   // symbols.
1474   index = versions->finalize(target, this, index, syms);
1475
1476   return index;
1477 }
1478
1479 // Set the final values for all the symbols.  The index of the first
1480 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
1481 // file offset OFF.  Add their names to POOL.  Return the new file
1482 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
1483
1484 off_t
1485 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1486                        size_t dyncount, Stringpool* pool,
1487                        unsigned int *plocal_symcount)
1488 {
1489   off_t ret;
1490
1491   gold_assert(*plocal_symcount != 0);
1492   this->first_global_index_ = *plocal_symcount;
1493
1494   this->dynamic_offset_ = dynoff;
1495   this->first_dynamic_global_index_ = dyn_global_index;
1496   this->dynamic_count_ = dyncount;
1497
1498   if (parameters->get_size() == 32)
1499     {
1500 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1501       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
1502 #else
1503       gold_unreachable();
1504 #endif
1505     }
1506   else if (parameters->get_size() == 64)
1507     {
1508 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1509       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
1510 #else
1511       gold_unreachable();
1512 #endif
1513     }
1514   else
1515     gold_unreachable();
1516
1517   // Now that we have the final symbol table, we can reliably note
1518   // which symbols should get warnings.
1519   this->warnings_.note_warnings(this);
1520
1521   return ret;
1522 }
1523
1524 // SYM is going into the symbol table at *PINDEX.  Add the name to
1525 // POOL, update *PINDEX and *POFF.
1526
1527 template<int size>
1528 void
1529 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1530                                   unsigned int* pindex, off_t* poff)
1531 {
1532   sym->set_symtab_index(*pindex);
1533   pool->add(sym->name(), false, NULL);
1534   ++*pindex;
1535   *poff += elfcpp::Elf_sizes<size>::sym_size;
1536 }
1537
1538 // Set the final value for all the symbols.  This is called after
1539 // Layout::finalize, so all the output sections have their final
1540 // address.
1541
1542 template<int size>
1543 off_t
1544 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1545                              unsigned int* plocal_symcount)
1546 {
1547   off = align_address(off, size >> 3);
1548   this->offset_ = off;
1549
1550   unsigned int index = *plocal_symcount;
1551   const unsigned int orig_index = index;
1552
1553   // First do all the symbols which have been forced to be local, as
1554   // they must appear before all global symbols.
1555   for (Forced_locals::iterator p = this->forced_locals_.begin();
1556        p != this->forced_locals_.end();
1557        ++p)
1558     {
1559       Symbol* sym = *p;
1560       gold_assert(sym->is_forced_local());
1561       if (this->sized_finalize_symbol<size>(sym))
1562         {
1563           this->add_to_final_symtab<size>(sym, pool, &index, &off);
1564           ++*plocal_symcount;
1565         }
1566     }
1567
1568   // Now do all the remaining symbols.
1569   for (Symbol_table_type::iterator p = this->table_.begin();
1570        p != this->table_.end();
1571        ++p)
1572     {
1573       Symbol* sym = p->second;
1574       if (this->sized_finalize_symbol<size>(sym))
1575         this->add_to_final_symtab<size>(sym, pool, &index, &off);
1576     }
1577
1578   this->output_count_ = index - orig_index;
1579
1580   return off;
1581 }
1582
1583 // Finalize the symbol SYM.  This returns true if the symbol should be
1584 // added to the symbol table, false otherwise.
1585
1586 template<int size>
1587 bool
1588 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
1589 {
1590   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
1591
1592   // The default version of a symbol may appear twice in the symbol
1593   // table.  We only need to finalize it once.
1594   if (sym->has_symtab_index())
1595     return false;
1596
1597   if (!sym->in_reg())
1598     {
1599       gold_assert(!sym->has_symtab_index());
1600       sym->set_symtab_index(-1U);
1601       gold_assert(sym->dynsym_index() == -1U);
1602       return false;
1603     }
1604
1605   typename Sized_symbol<size>::Value_type value;
1606
1607   switch (sym->source())
1608     {
1609     case Symbol::FROM_OBJECT:
1610       {
1611         unsigned int shndx = sym->shndx();
1612
1613         // FIXME: We need some target specific support here.
1614         if (shndx >= elfcpp::SHN_LORESERVE
1615             && shndx != elfcpp::SHN_ABS)
1616           {
1617             gold_error(_("%s: unsupported symbol section 0x%x"),
1618                        sym->demangled_name().c_str(), shndx);
1619             shndx = elfcpp::SHN_UNDEF;
1620           }
1621
1622         Object* symobj = sym->object();
1623         if (symobj->is_dynamic())
1624           {
1625             value = 0;
1626             shndx = elfcpp::SHN_UNDEF;
1627           }
1628         else if (shndx == elfcpp::SHN_UNDEF)
1629           value = 0;
1630         else if (shndx == elfcpp::SHN_ABS)
1631           value = sym->value();
1632         else
1633           {
1634             Relobj* relobj = static_cast<Relobj*>(symobj);
1635             section_offset_type secoff;
1636             Output_section* os = relobj->output_section(shndx, &secoff);
1637
1638             if (os == NULL)
1639               {
1640                 sym->set_symtab_index(-1U);
1641                 gold_assert(sym->dynsym_index() == -1U);
1642                 return false;
1643               }
1644
1645             if (sym->type() == elfcpp::STT_TLS)
1646               value = sym->value() + os->tls_offset() + secoff;
1647             else
1648               value = sym->value() + os->address() + secoff;
1649           }
1650       }
1651       break;
1652
1653     case Symbol::IN_OUTPUT_DATA:
1654       {
1655         Output_data* od = sym->output_data();
1656         value = sym->value() + od->address();
1657         if (sym->offset_is_from_end())
1658           value += od->data_size();
1659       }
1660       break;
1661
1662     case Symbol::IN_OUTPUT_SEGMENT:
1663       {
1664         Output_segment* os = sym->output_segment();
1665         value = sym->value() + os->vaddr();
1666         switch (sym->offset_base())
1667           {
1668           case Symbol::SEGMENT_START:
1669             break;
1670           case Symbol::SEGMENT_END:
1671             value += os->memsz();
1672             break;
1673           case Symbol::SEGMENT_BSS:
1674             value += os->filesz();
1675             break;
1676           default:
1677             gold_unreachable();
1678           }
1679       }
1680       break;
1681
1682     case Symbol::CONSTANT:
1683       value = sym->value();
1684       break;
1685
1686     default:
1687       gold_unreachable();
1688     }
1689
1690   sym->set_value(value);
1691
1692   if (parameters->strip_all())
1693     {
1694       sym->set_symtab_index(-1U);
1695       return false;
1696     }
1697
1698   return true;
1699 }
1700
1701 // Write out the global symbols.
1702
1703 void
1704 Symbol_table::write_globals(const Input_objects* input_objects,
1705                             const Stringpool* sympool,
1706                             const Stringpool* dynpool, Output_file* of) const
1707 {
1708   if (parameters->get_size() == 32)
1709     {
1710       if (parameters->is_big_endian())
1711         {
1712 #ifdef HAVE_TARGET_32_BIG
1713           this->sized_write_globals<32, true>(input_objects, sympool,
1714                                               dynpool, of);
1715 #else
1716           gold_unreachable();
1717 #endif
1718         }
1719       else
1720         {
1721 #ifdef HAVE_TARGET_32_LITTLE
1722           this->sized_write_globals<32, false>(input_objects, sympool,
1723                                                dynpool, of);
1724 #else
1725           gold_unreachable();
1726 #endif
1727         }
1728     }
1729   else if (parameters->get_size() == 64)
1730     {
1731       if (parameters->is_big_endian())
1732         {
1733 #ifdef HAVE_TARGET_64_BIG
1734           this->sized_write_globals<64, true>(input_objects, sympool,
1735                                               dynpool, of);
1736 #else
1737           gold_unreachable();
1738 #endif
1739         }
1740       else
1741         {
1742 #ifdef HAVE_TARGET_64_LITTLE
1743           this->sized_write_globals<64, false>(input_objects, sympool,
1744                                                dynpool, of);
1745 #else
1746           gold_unreachable();
1747 #endif
1748         }
1749     }
1750   else
1751     gold_unreachable();
1752 }
1753
1754 // Write out the global symbols.
1755
1756 template<int size, bool big_endian>
1757 void
1758 Symbol_table::sized_write_globals(const Input_objects* input_objects,
1759                                   const Stringpool* sympool,
1760                                   const Stringpool* dynpool,
1761                                   Output_file* of) const
1762 {
1763   const Target* const target = input_objects->target();
1764
1765   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1766
1767   const unsigned int output_count = this->output_count_;
1768   const section_size_type oview_size = output_count * sym_size;
1769   const unsigned int first_global_index = this->first_global_index_;
1770   unsigned char* const psyms = of->get_output_view(this->offset_, oview_size);
1771
1772   const unsigned int dynamic_count = this->dynamic_count_;
1773   const section_size_type dynamic_size = dynamic_count * sym_size;
1774   const unsigned int first_dynamic_global_index =
1775     this->first_dynamic_global_index_;
1776   unsigned char* dynamic_view;
1777   if (this->dynamic_offset_ == 0)
1778     dynamic_view = NULL;
1779   else
1780     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1781
1782   for (Symbol_table_type::const_iterator p = this->table_.begin();
1783        p != this->table_.end();
1784        ++p)
1785     {
1786       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1787
1788       // Possibly warn about unresolved symbols in shared libraries.
1789       this->warn_about_undefined_dynobj_symbol(input_objects, sym);
1790
1791       unsigned int sym_index = sym->symtab_index();
1792       unsigned int dynsym_index;
1793       if (dynamic_view == NULL)
1794         dynsym_index = -1U;
1795       else
1796         dynsym_index = sym->dynsym_index();
1797
1798       if (sym_index == -1U && dynsym_index == -1U)
1799         {
1800           // This symbol is not included in the output file.
1801           continue;
1802         }
1803
1804       unsigned int shndx;
1805       typename elfcpp::Elf_types<32>::Elf_Addr value = sym->value();
1806       switch (sym->source())
1807         {
1808         case Symbol::FROM_OBJECT:
1809           {
1810             unsigned int in_shndx = sym->shndx();
1811
1812             // FIXME: We need some target specific support here.
1813             if (in_shndx >= elfcpp::SHN_LORESERVE
1814                 && in_shndx != elfcpp::SHN_ABS)
1815               {
1816                 gold_error(_("%s: unsupported symbol section 0x%x"),
1817                            sym->demangled_name().c_str(), in_shndx);
1818                 shndx = in_shndx;
1819               }
1820             else
1821               {
1822                 Object* symobj = sym->object();
1823                 if (symobj->is_dynamic())
1824                   {
1825                     if (sym->needs_dynsym_value())
1826                       value = target->dynsym_value(sym);
1827                     shndx = elfcpp::SHN_UNDEF;
1828                   }
1829                 else if (in_shndx == elfcpp::SHN_UNDEF
1830                          || in_shndx == elfcpp::SHN_ABS)
1831                   shndx = in_shndx;
1832                 else
1833                   {
1834                     Relobj* relobj = static_cast<Relobj*>(symobj);
1835                     section_offset_type secoff;
1836                     Output_section* os = relobj->output_section(in_shndx,
1837                                                                 &secoff);
1838                     gold_assert(os != NULL);
1839                     shndx = os->out_shndx();
1840                   }
1841               }
1842           }
1843           break;
1844
1845         case Symbol::IN_OUTPUT_DATA:
1846           shndx = sym->output_data()->out_shndx();
1847           break;
1848
1849         case Symbol::IN_OUTPUT_SEGMENT:
1850           shndx = elfcpp::SHN_ABS;
1851           break;
1852
1853         case Symbol::CONSTANT:
1854           shndx = elfcpp::SHN_ABS;
1855           break;
1856
1857         default:
1858           gold_unreachable();
1859         }
1860
1861       if (sym_index != -1U)
1862         {
1863           sym_index -= first_global_index;
1864           gold_assert(sym_index < output_count);
1865           unsigned char* ps = psyms + (sym_index * sym_size);
1866           this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1867               sym, sym->value(), shndx, sympool, ps
1868               SELECT_SIZE_ENDIAN(size, big_endian));
1869         }
1870
1871       if (dynsym_index != -1U)
1872         {
1873           dynsym_index -= first_dynamic_global_index;
1874           gold_assert(dynsym_index < dynamic_count);
1875           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1876           this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1877               sym, value, shndx, dynpool, pd
1878               SELECT_SIZE_ENDIAN(size, big_endian));
1879         }
1880     }
1881
1882   of->write_output_view(this->offset_, oview_size, psyms);
1883   if (dynamic_view != NULL)
1884     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1885 }
1886
1887 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
1888 // strtab holding the name.
1889
1890 template<int size, bool big_endian>
1891 void
1892 Symbol_table::sized_write_symbol(
1893     Sized_symbol<size>* sym,
1894     typename elfcpp::Elf_types<size>::Elf_Addr value,
1895     unsigned int shndx,
1896     const Stringpool* pool,
1897     unsigned char* p
1898     ACCEPT_SIZE_ENDIAN) const
1899 {
1900   elfcpp::Sym_write<size, big_endian> osym(p);
1901   osym.put_st_name(pool->get_offset(sym->name()));
1902   osym.put_st_value(value);
1903   osym.put_st_size(sym->symsize());
1904   // A version script may have overridden the default binding.
1905   if (sym->is_forced_local())
1906     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
1907   else
1908     osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1909   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1910   osym.put_st_shndx(shndx);
1911 }
1912
1913 // Check for unresolved symbols in shared libraries.  This is
1914 // controlled by the --allow-shlib-undefined option.
1915
1916 // We only warn about libraries for which we have seen all the
1917 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
1918 // which were not seen in this link.  If we didn't see a DT_NEEDED
1919 // entry, we aren't going to be able to reliably report whether the
1920 // symbol is undefined.
1921
1922 // We also don't warn about libraries found in the system library
1923 // directory (the directory were we find libc.so); we assume that
1924 // those libraries are OK.  This heuristic avoids problems in
1925 // GNU/Linux, in which -ldl can have undefined references satisfied by
1926 // ld-linux.so.
1927
1928 inline void
1929 Symbol_table::warn_about_undefined_dynobj_symbol(
1930     const Input_objects* input_objects,
1931     Symbol* sym) const
1932 {
1933   if (sym->source() == Symbol::FROM_OBJECT
1934       && sym->object()->is_dynamic()
1935       && sym->shndx() == elfcpp::SHN_UNDEF
1936       && sym->binding() != elfcpp::STB_WEAK
1937       && !parameters->allow_shlib_undefined()
1938       && !input_objects->target()->is_defined_by_abi(sym)
1939       && !input_objects->found_in_system_library_directory(sym->object()))
1940     {
1941       // A very ugly cast.
1942       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
1943       if (!dynobj->has_unknown_needed_entries())
1944         gold_error(_("%s: undefined reference to '%s'"),
1945                    sym->object()->name().c_str(),
1946                    sym->demangled_name().c_str());
1947     }
1948 }
1949
1950 // Write out a section symbol.  Return the update offset.
1951
1952 void
1953 Symbol_table::write_section_symbol(const Output_section *os,
1954                                    Output_file* of,
1955                                    off_t offset) const
1956 {
1957   if (parameters->get_size() == 32)
1958     {
1959       if (parameters->is_big_endian())
1960         {
1961 #ifdef HAVE_TARGET_32_BIG
1962           this->sized_write_section_symbol<32, true>(os, of, offset);
1963 #else
1964           gold_unreachable();
1965 #endif
1966         }
1967       else
1968         {
1969 #ifdef HAVE_TARGET_32_LITTLE
1970           this->sized_write_section_symbol<32, false>(os, of, offset);
1971 #else
1972           gold_unreachable();
1973 #endif
1974         }
1975     }
1976   else if (parameters->get_size() == 64)
1977     {
1978       if (parameters->is_big_endian())
1979         {
1980 #ifdef HAVE_TARGET_64_BIG
1981           this->sized_write_section_symbol<64, true>(os, of, offset);
1982 #else
1983           gold_unreachable();
1984 #endif
1985         }
1986       else
1987         {
1988 #ifdef HAVE_TARGET_64_LITTLE
1989           this->sized_write_section_symbol<64, false>(os, of, offset);
1990 #else
1991           gold_unreachable();
1992 #endif
1993         }
1994     }
1995   else
1996     gold_unreachable();
1997 }
1998
1999 // Write out a section symbol, specialized for size and endianness.
2000
2001 template<int size, bool big_endian>
2002 void
2003 Symbol_table::sized_write_section_symbol(const Output_section* os,
2004                                          Output_file* of,
2005                                          off_t offset) const
2006 {
2007   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2008
2009   unsigned char* pov = of->get_output_view(offset, sym_size);
2010
2011   elfcpp::Sym_write<size, big_endian> osym(pov);
2012   osym.put_st_name(0);
2013   osym.put_st_value(os->address());
2014   osym.put_st_size(0);
2015   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2016                                        elfcpp::STT_SECTION));
2017   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2018   osym.put_st_shndx(os->out_shndx());
2019
2020   of->write_output_view(offset, sym_size, pov);
2021 }
2022
2023 // Print statistical information to stderr.  This is used for --stats.
2024
2025 void
2026 Symbol_table::print_stats() const
2027 {
2028 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2029   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2030           program_name, this->table_.size(), this->table_.bucket_count());
2031 #else
2032   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2033           program_name, this->table_.size());
2034 #endif
2035   this->namepool_.print_stats("symbol table stringpool");
2036 }
2037
2038 // We check for ODR violations by looking for symbols with the same
2039 // name for which the debugging information reports that they were
2040 // defined in different source locations.  When comparing the source
2041 // location, we consider instances with the same base filename and
2042 // line number to be the same.  This is because different object
2043 // files/shared libraries can include the same header file using
2044 // different paths, and we don't want to report an ODR violation in
2045 // that case.
2046
2047 // This struct is used to compare line information, as returned by
2048 // Dwarf_line_info::one_addr2line.  It implements a < comparison
2049 // operator used with std::set.
2050
2051 struct Odr_violation_compare
2052 {
2053   bool
2054   operator()(const std::string& s1, const std::string& s2) const
2055   {
2056     std::string::size_type pos1 = s1.rfind('/');
2057     std::string::size_type pos2 = s2.rfind('/');
2058     if (pos1 == std::string::npos
2059         || pos2 == std::string::npos)
2060       return s1 < s2;
2061     return s1.compare(pos1, std::string::npos,
2062                       s2, pos2, std::string::npos) < 0;
2063   }
2064 };
2065
2066 // Check candidate_odr_violations_ to find symbols with the same name
2067 // but apparently different definitions (different source-file/line-no).
2068
2069 void
2070 Symbol_table::detect_odr_violations(const Task* task,
2071                                     const char* output_file_name) const
2072 {
2073   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2074        it != candidate_odr_violations_.end();
2075        ++it)
2076     {
2077       const char* symbol_name = it->first;
2078       // We use a sorted set so the output is deterministic.
2079       std::set<std::string, Odr_violation_compare> line_nums;
2080
2081       for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2082                locs = it->second.begin();
2083            locs != it->second.end();
2084            ++locs)
2085         {
2086           // We need to lock the object in order to read it.  This
2087           // means that we have to run in a singleton Task.  If we
2088           // want to run this in a general Task for better
2089           // performance, we will need one Task for object, plus
2090           // appropriate locking to ensure that we don't conflict with
2091           // other uses of the object.
2092           Task_lock_obj<Object> tl(task, locs->object);
2093           std::string lineno = Dwarf_line_info::one_addr2line(
2094               locs->object, locs->shndx, locs->offset);
2095           if (!lineno.empty())
2096             line_nums.insert(lineno);
2097         }
2098
2099       if (line_nums.size() > 1)
2100         {
2101           gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2102                          "places (possible ODR violation):"),
2103                        output_file_name, demangle(symbol_name).c_str());
2104           for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2105                it2 != line_nums.end();
2106                ++it2)
2107             fprintf(stderr, "  %s\n", it2->c_str());
2108         }
2109     }
2110 }
2111
2112 // Warnings functions.
2113
2114 // Add a new warning.
2115
2116 void
2117 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2118                       const std::string& warning)
2119 {
2120   name = symtab->canonicalize_name(name);
2121   this->warnings_[name].set(obj, warning);
2122 }
2123
2124 // Look through the warnings and mark the symbols for which we should
2125 // warn.  This is called during Layout::finalize when we know the
2126 // sources for all the symbols.
2127
2128 void
2129 Warnings::note_warnings(Symbol_table* symtab)
2130 {
2131   for (Warning_table::iterator p = this->warnings_.begin();
2132        p != this->warnings_.end();
2133        ++p)
2134     {
2135       Symbol* sym = symtab->lookup(p->first, NULL);
2136       if (sym != NULL
2137           && sym->source() == Symbol::FROM_OBJECT
2138           && sym->object() == p->second.object)
2139         sym->set_has_warning();
2140     }
2141 }
2142
2143 // Issue a warning.  This is called when we see a relocation against a
2144 // symbol for which has a warning.
2145
2146 template<int size, bool big_endian>
2147 void
2148 Warnings::issue_warning(const Symbol* sym,
2149                         const Relocate_info<size, big_endian>* relinfo,
2150                         size_t relnum, off_t reloffset) const
2151 {
2152   gold_assert(sym->has_warning());
2153   Warning_table::const_iterator p = this->warnings_.find(sym->name());
2154   gold_assert(p != this->warnings_.end());
2155   gold_warning_at_location(relinfo, relnum, reloffset,
2156                            "%s", p->second.text.c_str());
2157 }
2158
2159 // Instantiate the templates we need.  We could use the configure
2160 // script to restrict this to only the ones needed for implemented
2161 // targets.
2162
2163 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2164 template
2165 void
2166 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2167 #endif
2168
2169 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2170 template
2171 void
2172 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2173 #endif
2174
2175 #ifdef HAVE_TARGET_32_LITTLE
2176 template
2177 void
2178 Symbol_table::add_from_relobj<32, false>(
2179     Sized_relobj<32, false>* relobj,
2180     const unsigned char* syms,
2181     size_t count,
2182     const char* sym_names,
2183     size_t sym_name_size,
2184     Sized_relobj<32, true>::Symbols* sympointers);
2185 #endif
2186
2187 #ifdef HAVE_TARGET_32_BIG
2188 template
2189 void
2190 Symbol_table::add_from_relobj<32, true>(
2191     Sized_relobj<32, true>* relobj,
2192     const unsigned char* syms,
2193     size_t count,
2194     const char* sym_names,
2195     size_t sym_name_size,
2196     Sized_relobj<32, false>::Symbols* sympointers);
2197 #endif
2198
2199 #ifdef HAVE_TARGET_64_LITTLE
2200 template
2201 void
2202 Symbol_table::add_from_relobj<64, false>(
2203     Sized_relobj<64, false>* relobj,
2204     const unsigned char* syms,
2205     size_t count,
2206     const char* sym_names,
2207     size_t sym_name_size,
2208     Sized_relobj<64, true>::Symbols* sympointers);
2209 #endif
2210
2211 #ifdef HAVE_TARGET_64_BIG
2212 template
2213 void
2214 Symbol_table::add_from_relobj<64, true>(
2215     Sized_relobj<64, true>* relobj,
2216     const unsigned char* syms,
2217     size_t count,
2218     const char* sym_names,
2219     size_t sym_name_size,
2220     Sized_relobj<64, false>::Symbols* sympointers);
2221 #endif
2222
2223 #ifdef HAVE_TARGET_32_LITTLE
2224 template
2225 void
2226 Symbol_table::add_from_dynobj<32, false>(
2227     Sized_dynobj<32, false>* dynobj,
2228     const unsigned char* syms,
2229     size_t count,
2230     const char* sym_names,
2231     size_t sym_name_size,
2232     const unsigned char* versym,
2233     size_t versym_size,
2234     const std::vector<const char*>* version_map);
2235 #endif
2236
2237 #ifdef HAVE_TARGET_32_BIG
2238 template
2239 void
2240 Symbol_table::add_from_dynobj<32, true>(
2241     Sized_dynobj<32, true>* dynobj,
2242     const unsigned char* syms,
2243     size_t count,
2244     const char* sym_names,
2245     size_t sym_name_size,
2246     const unsigned char* versym,
2247     size_t versym_size,
2248     const std::vector<const char*>* version_map);
2249 #endif
2250
2251 #ifdef HAVE_TARGET_64_LITTLE
2252 template
2253 void
2254 Symbol_table::add_from_dynobj<64, false>(
2255     Sized_dynobj<64, false>* dynobj,
2256     const unsigned char* syms,
2257     size_t count,
2258     const char* sym_names,
2259     size_t sym_name_size,
2260     const unsigned char* versym,
2261     size_t versym_size,
2262     const std::vector<const char*>* version_map);
2263 #endif
2264
2265 #ifdef HAVE_TARGET_64_BIG
2266 template
2267 void
2268 Symbol_table::add_from_dynobj<64, true>(
2269     Sized_dynobj<64, true>* dynobj,
2270     const unsigned char* syms,
2271     size_t count,
2272     const char* sym_names,
2273     size_t sym_name_size,
2274     const unsigned char* versym,
2275     size_t versym_size,
2276     const std::vector<const char*>* version_map);
2277 #endif
2278
2279 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2280 template
2281 void
2282 Symbol_table::define_with_copy_reloc<32>(
2283     const Target* target,
2284     Sized_symbol<32>* sym,
2285     Output_data* posd,
2286     elfcpp::Elf_types<32>::Elf_Addr value);
2287 #endif
2288
2289 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2290 template
2291 void
2292 Symbol_table::define_with_copy_reloc<64>(
2293     const Target* target,
2294     Sized_symbol<64>* sym,
2295     Output_data* posd,
2296     elfcpp::Elf_types<64>::Elf_Addr value);
2297 #endif
2298
2299 #ifdef HAVE_TARGET_32_LITTLE
2300 template
2301 void
2302 Warnings::issue_warning<32, false>(const Symbol* sym,
2303                                    const Relocate_info<32, false>* relinfo,
2304                                    size_t relnum, off_t reloffset) const;
2305 #endif
2306
2307 #ifdef HAVE_TARGET_32_BIG
2308 template
2309 void
2310 Warnings::issue_warning<32, true>(const Symbol* sym,
2311                                   const Relocate_info<32, true>* relinfo,
2312                                   size_t relnum, off_t reloffset) const;
2313 #endif
2314
2315 #ifdef HAVE_TARGET_64_LITTLE
2316 template
2317 void
2318 Warnings::issue_warning<64, false>(const Symbol* sym,
2319                                    const Relocate_info<64, false>* relinfo,
2320                                    size_t relnum, off_t reloffset) const;
2321 #endif
2322
2323 #ifdef HAVE_TARGET_64_BIG
2324 template
2325 void
2326 Warnings::issue_warning<64, true>(const Symbol* sym,
2327                                   const Relocate_info<64, true>* relinfo,
2328                                   size_t relnum, off_t reloffset) const;
2329 #endif
2330
2331 } // End namespace gold.