Fix problem where __start_ and __stop_ section symbols do not honor version script.
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol.  This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55                     elfcpp::STT type, elfcpp::STB binding,
56                     elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91   if (!parameters->options().do_demangle())
92     return name;
93
94   // cplus_demangle allocates memory for the result it returns,
95   // and returns NULL if the name is already demangled.
96   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97   if (demangled_name == NULL)
98     return name;
99
100   std::string retval(demangled_name);
101   free(demangled_name);
102   return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108   return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116                          const elfcpp::Sym<size, big_endian>& sym,
117                          unsigned int st_shndx, bool is_ordinary)
118 {
119   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120                     sym.get_st_visibility(), sym.get_st_nonvis());
121   this->u_.from_object.object = object;
122   this->u_.from_object.shndx = st_shndx;
123   this->is_ordinary_shndx_ = is_ordinary;
124   this->source_ = FROM_OBJECT;
125   this->in_reg_ = !object->is_dynamic();
126   this->in_dyn_ = object->is_dynamic();
127   this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135                               Output_data* od, elfcpp::STT type,
136                               elfcpp::STB binding, elfcpp::STV visibility,
137                               unsigned char nonvis, bool offset_is_from_end,
138                               bool is_predefined)
139 {
140   this->init_fields(name, version, type, binding, visibility, nonvis);
141   this->u_.in_output_data.output_data = od;
142   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143   this->source_ = IN_OUTPUT_DATA;
144   this->in_reg_ = true;
145   this->in_real_elf_ = true;
146   this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154                                  Output_segment* os, elfcpp::STT type,
155                                  elfcpp::STB binding, elfcpp::STV visibility,
156                                  unsigned char nonvis,
157                                  Segment_offset_base offset_base,
158                                  bool is_predefined)
159 {
160   this->init_fields(name, version, type, binding, visibility, nonvis);
161   this->u_.in_output_segment.output_segment = os;
162   this->u_.in_output_segment.offset_base = offset_base;
163   this->source_ = IN_OUTPUT_SEGMENT;
164   this->in_reg_ = true;
165   this->in_real_elf_ = true;
166   this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174                            elfcpp::STT type, elfcpp::STB binding,
175                            elfcpp::STV visibility, unsigned char nonvis,
176                            bool is_predefined)
177 {
178   this->init_fields(name, version, type, binding, visibility, nonvis);
179   this->source_ = IS_CONSTANT;
180   this->in_reg_ = true;
181   this->in_real_elf_ = true;
182   this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190                             elfcpp::STT type, elfcpp::STB binding,
191                             elfcpp::STV visibility, unsigned char nonvis)
192 {
193   this->init_fields(name, version, type, binding, visibility, nonvis);
194   this->dynsym_index_ = -1U;
195   this->source_ = IS_UNDEFINED;
196   this->in_reg_ = true;
197   this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205   gold_assert(this->is_common());
206   this->source_ = IN_OUTPUT_DATA;
207   this->u_.in_output_data.output_data = od;
208   this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217                                 Object* object,
218                                 const elfcpp::Sym<size, big_endian>& sym,
219                                 unsigned int st_shndx, bool is_ordinary)
220 {
221   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222   this->value_ = sym.get_st_value();
223   this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232                                      Output_data* od, Value_type value,
233                                      Size_type symsize, elfcpp::STT type,
234                                      elfcpp::STB binding,
235                                      elfcpp::STV visibility,
236                                      unsigned char nonvis,
237                                      bool offset_is_from_end,
238                                      bool is_predefined)
239 {
240   this->init_base_output_data(name, version, od, type, binding, visibility,
241                               nonvis, offset_is_from_end, is_predefined);
242   this->value_ = value;
243   this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252                                         Output_segment* os, Value_type value,
253                                         Size_type symsize, elfcpp::STT type,
254                                         elfcpp::STB binding,
255                                         elfcpp::STV visibility,
256                                         unsigned char nonvis,
257                                         Segment_offset_base offset_base,
258                                         bool is_predefined)
259 {
260   this->init_base_output_segment(name, version, os, type, binding, visibility,
261                                  nonvis, offset_base, is_predefined);
262   this->value_ = value;
263   this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272                                   Value_type value, Size_type symsize,
273                                   elfcpp::STT type, elfcpp::STB binding,
274                                   elfcpp::STV visibility, unsigned char nonvis,
275                                   bool is_predefined)
276 {
277   this->init_base_constant(name, version, type, binding, visibility, nonvis,
278                            is_predefined);
279   this->value_ = value;
280   this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288                                    elfcpp::STT type, elfcpp::STB binding,
289                                    elfcpp::STV visibility, unsigned char nonvis)
290 {
291   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292   this->value_ = 0;
293   this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version.  This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302   gold_assert(this->version_ != NULL);
303   std::string ret = this->name_;
304   ret.push_back('@');
305   if (this->is_def_)
306     ret.push_back('@');
307   ret += this->version_;
308   return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316   return (shndx == elfcpp::SHN_COMMON
317           || shndx == parameters->target().small_common_shndx()
318           || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327   this->allocate_base_common(od);
328   this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340   // If the symbol is only present on plugin files, the plugin decided we
341   // don't need it.
342   if (!this->in_real_elf())
343     return false;
344
345   // If the symbol is used by a dynamic relocation, we need to add it.
346   if (this->needs_dynsym_entry())
347     return true;
348
349   // If this symbol's section is not added, the symbol need not be added. 
350   // The section may have been GCed.  Note that export_dynamic is being 
351   // overridden here.  This should not be done for shared objects.
352   if (parameters->options().gc_sections() 
353       && !parameters->options().shared()
354       && this->source() == Symbol::FROM_OBJECT
355       && !this->object()->is_dynamic())
356     {
357       Relobj* relobj = static_cast<Relobj*>(this->object());
358       bool is_ordinary;
359       unsigned int shndx = this->shndx(&is_ordinary);
360       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361           && !relobj->is_section_included(shndx)
362           && !symtab->is_section_folded(relobj, shndx))
363         return false;
364     }
365
366   // If the symbol was forced dynamic in a --dynamic-list file
367   // or an --export-dynamic-symbol option, add it.
368   if (!this->is_from_dynobj()
369       && (parameters->options().in_dynamic_list(this->name())
370           || parameters->options().is_export_dynamic_symbol(this->name())))
371     {
372       if (!this->is_forced_local())
373         return true;
374       gold_warning(_("Cannot export local symbol '%s'"),
375                    this->demangled_name().c_str());
376       return false;
377     }
378
379   // If the symbol was forced local in a version script, do not add it.
380   if (this->is_forced_local())
381     return false;
382
383   // If dynamic-list-data was specified, add any STT_OBJECT.
384   if (parameters->options().dynamic_list_data()
385       && !this->is_from_dynobj()
386       && this->type() == elfcpp::STT_OBJECT)
387     return true;
388
389   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391   if ((parameters->options().dynamic_list_cpp_new()
392        || parameters->options().dynamic_list_cpp_typeinfo())
393       && !this->is_from_dynobj())
394     {
395       // TODO(csilvers): We could probably figure out if we're an operator
396       //                 new/delete or typeinfo without the need to demangle.
397       char* demangled_name = cplus_demangle(this->name(),
398                                             DMGL_ANSI | DMGL_PARAMS);
399       if (demangled_name == NULL)
400         {
401           // Not a C++ symbol, so it can't satisfy these flags
402         }
403       else if (parameters->options().dynamic_list_cpp_new()
404                && (strprefix(demangled_name, "operator new")
405                    || strprefix(demangled_name, "operator delete")))
406         {
407           free(demangled_name);
408           return true;
409         }
410       else if (parameters->options().dynamic_list_cpp_typeinfo()
411                && (strprefix(demangled_name, "typeinfo name for")
412                    || strprefix(demangled_name, "typeinfo for")))
413         {
414           free(demangled_name);
415           return true;
416         }
417       else
418         free(demangled_name);
419     }
420
421   // If exporting all symbols or building a shared library,
422   // or the symbol should be globally unique (GNU_UNIQUE),
423   // and the symbol is defined in a regular object and is
424   // externally visible, we need to add it.
425   if ((parameters->options().export_dynamic()
426        || parameters->options().shared()
427        || (parameters->options().gnu_unique()
428            && this->binding() == elfcpp::STB_GNU_UNIQUE))
429       && !this->is_from_dynobj()
430       && !this->is_undefined()
431       && this->is_externally_visible())
432     return true;
433
434   return false;
435 }
436
437 // Return true if the final value of this symbol is known at link
438 // time.
439
440 bool
441 Symbol::final_value_is_known() const
442 {
443   // If we are not generating an executable, then no final values are
444   // known, since they will change at runtime, with the exception of
445   // TLS symbols in a position-independent executable.
446   if ((parameters->options().output_is_position_independent()
447        || parameters->options().relocatable())
448       && !(this->type() == elfcpp::STT_TLS
449            && parameters->options().pie()))
450     return false;
451
452   // If the symbol is not from an object file, and is not undefined,
453   // then it is defined, and known.
454   if (this->source_ != FROM_OBJECT)
455     {
456       if (this->source_ != IS_UNDEFINED)
457         return true;
458     }
459   else
460     {
461       // If the symbol is from a dynamic object, then the final value
462       // is not known.
463       if (this->object()->is_dynamic())
464         return false;
465
466       // If the symbol is not undefined (it is defined or common),
467       // then the final value is known.
468       if (!this->is_undefined())
469         return true;
470     }
471
472   // If the symbol is undefined, then whether the final value is known
473   // depends on whether we are doing a static link.  If we are doing a
474   // dynamic link, then the final value could be filled in at runtime.
475   // This could reasonably be the case for a weak undefined symbol.
476   return parameters->doing_static_link();
477 }
478
479 // Return the output section where this symbol is defined.
480
481 Output_section*
482 Symbol::output_section() const
483 {
484   switch (this->source_)
485     {
486     case FROM_OBJECT:
487       {
488         unsigned int shndx = this->u_.from_object.shndx;
489         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
490           {
491             gold_assert(!this->u_.from_object.object->is_dynamic());
492             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
493             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
494             return relobj->output_section(shndx);
495           }
496         return NULL;
497       }
498
499     case IN_OUTPUT_DATA:
500       return this->u_.in_output_data.output_data->output_section();
501
502     case IN_OUTPUT_SEGMENT:
503     case IS_CONSTANT:
504     case IS_UNDEFINED:
505       return NULL;
506
507     default:
508       gold_unreachable();
509     }
510 }
511
512 // Set the symbol's output section.  This is used for symbols defined
513 // in scripts.  This should only be called after the symbol table has
514 // been finalized.
515
516 void
517 Symbol::set_output_section(Output_section* os)
518 {
519   switch (this->source_)
520     {
521     case FROM_OBJECT:
522     case IN_OUTPUT_DATA:
523       gold_assert(this->output_section() == os);
524       break;
525     case IS_CONSTANT:
526       this->source_ = IN_OUTPUT_DATA;
527       this->u_.in_output_data.output_data = os;
528       this->u_.in_output_data.offset_is_from_end = false;
529       break;
530     case IN_OUTPUT_SEGMENT:
531     case IS_UNDEFINED:
532     default:
533       gold_unreachable();
534     }
535 }
536
537 // Set the symbol's output segment.  This is used for pre-defined
538 // symbols whose segments aren't known until after layout is done
539 // (e.g., __ehdr_start).
540
541 void
542 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
543 {
544   gold_assert(this->is_predefined_);
545   this->source_ = IN_OUTPUT_SEGMENT;
546   this->u_.in_output_segment.output_segment = os;
547   this->u_.in_output_segment.offset_base = base;
548 }
549
550 // Set the symbol to undefined.  This is used for pre-defined
551 // symbols whose segments aren't known until after layout is done
552 // (e.g., __ehdr_start).
553
554 void
555 Symbol::set_undefined()
556 {
557   this->source_ = IS_UNDEFINED;
558   this->is_predefined_ = false;
559 }
560
561 // Class Symbol_table.
562
563 Symbol_table::Symbol_table(unsigned int count,
564                            const Version_script_info& version_script)
565   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
566     forwarders_(), commons_(), tls_commons_(), small_commons_(),
567     large_commons_(), forced_locals_(), warnings_(),
568     version_script_(version_script), gc_(NULL), icf_(NULL)
569 {
570   namepool_.reserve(count);
571 }
572
573 Symbol_table::~Symbol_table()
574 {
575 }
576
577 // The symbol table key equality function.  This is called with
578 // Stringpool keys.
579
580 inline bool
581 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
582                                           const Symbol_table_key& k2) const
583 {
584   return k1.first == k2.first && k1.second == k2.second;
585 }
586
587 bool
588 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
589 {
590   return (parameters->options().icf_enabled()
591           && this->icf_->is_section_folded(obj, shndx));
592 }
593
594 // For symbols that have been listed with a -u or --export-dynamic-symbol
595 // option, add them to the work list to avoid gc'ing them.
596
597 void 
598 Symbol_table::gc_mark_undef_symbols(Layout* layout)
599 {
600   for (options::String_set::const_iterator p =
601          parameters->options().undefined_begin();
602        p != parameters->options().undefined_end();
603        ++p)
604     {
605       const char* name = p->c_str();
606       Symbol* sym = this->lookup(name);
607       gold_assert(sym != NULL);
608       if (sym->source() == Symbol::FROM_OBJECT 
609           && !sym->object()->is_dynamic())
610         {
611           this->gc_mark_symbol(sym);
612         }
613     }
614
615   for (options::String_set::const_iterator p =
616          parameters->options().export_dynamic_symbol_begin();
617        p != parameters->options().export_dynamic_symbol_end();
618        ++p)
619     {
620       const char* name = p->c_str();
621       Symbol* sym = this->lookup(name);
622       // It's not an error if a symbol named by --export-dynamic-symbol
623       // is undefined.
624       if (sym != NULL
625           && sym->source() == Symbol::FROM_OBJECT 
626           && !sym->object()->is_dynamic())
627         {
628           this->gc_mark_symbol(sym);
629         }
630     }
631
632   for (Script_options::referenced_const_iterator p =
633          layout->script_options()->referenced_begin();
634        p != layout->script_options()->referenced_end();
635        ++p)
636     {
637       Symbol* sym = this->lookup(p->c_str());
638       gold_assert(sym != NULL);
639       if (sym->source() == Symbol::FROM_OBJECT
640           && !sym->object()->is_dynamic())
641         {
642           this->gc_mark_symbol(sym);
643         }
644     }
645 }
646
647 void
648 Symbol_table::gc_mark_symbol(Symbol* sym)
649 {
650   // Add the object and section to the work list.
651   bool is_ordinary;
652   unsigned int shndx = sym->shndx(&is_ordinary);
653   if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
654     {
655       gold_assert(this->gc_!= NULL);
656       Relobj* relobj = static_cast<Relobj*>(sym->object());
657       this->gc_->worklist().push_back(Section_id(relobj, shndx));
658     }
659   parameters->target().gc_mark_symbol(this, sym);
660 }
661
662 // When doing garbage collection, keep symbols that have been seen in
663 // dynamic objects.
664 inline void 
665 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
666 {
667   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
668       && !sym->object()->is_dynamic())
669     this->gc_mark_symbol(sym);
670 }
671
672 // Make TO a symbol which forwards to FROM.
673
674 void
675 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
676 {
677   gold_assert(from != to);
678   gold_assert(!from->is_forwarder() && !to->is_forwarder());
679   this->forwarders_[from] = to;
680   from->set_forwarder();
681 }
682
683 // Resolve the forwards from FROM, returning the real symbol.
684
685 Symbol*
686 Symbol_table::resolve_forwards(const Symbol* from) const
687 {
688   gold_assert(from->is_forwarder());
689   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
690     this->forwarders_.find(from);
691   gold_assert(p != this->forwarders_.end());
692   return p->second;
693 }
694
695 // Look up a symbol by name.
696
697 Symbol*
698 Symbol_table::lookup(const char* name, const char* version) const
699 {
700   Stringpool::Key name_key;
701   name = this->namepool_.find(name, &name_key);
702   if (name == NULL)
703     return NULL;
704
705   Stringpool::Key version_key = 0;
706   if (version != NULL)
707     {
708       version = this->namepool_.find(version, &version_key);
709       if (version == NULL)
710         return NULL;
711     }
712
713   Symbol_table_key key(name_key, version_key);
714   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
715   if (p == this->table_.end())
716     return NULL;
717   return p->second;
718 }
719
720 // Resolve a Symbol with another Symbol.  This is only used in the
721 // unusual case where there are references to both an unversioned
722 // symbol and a symbol with a version, and we then discover that that
723 // version is the default version.  Because this is unusual, we do
724 // this the slow way, by converting back to an ELF symbol.
725
726 template<int size, bool big_endian>
727 void
728 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
729 {
730   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
731   elfcpp::Sym_write<size, big_endian> esym(buf);
732   // We don't bother to set the st_name or the st_shndx field.
733   esym.put_st_value(from->value());
734   esym.put_st_size(from->symsize());
735   esym.put_st_info(from->binding(), from->type());
736   esym.put_st_other(from->visibility(), from->nonvis());
737   bool is_ordinary;
738   unsigned int shndx = from->shndx(&is_ordinary);
739   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
740                 from->version());
741   if (from->in_reg())
742     to->set_in_reg();
743   if (from->in_dyn())
744     to->set_in_dyn();
745   if (parameters->options().gc_sections())
746     this->gc_mark_dyn_syms(to);
747 }
748
749 // Record that a symbol is forced to be local by a version script or
750 // by visibility.
751
752 void
753 Symbol_table::force_local(Symbol* sym)
754 {
755   if (!sym->is_defined() && !sym->is_common())
756     return;
757   if (sym->is_forced_local())
758     {
759       // We already got this one.
760       return;
761     }
762   sym->set_is_forced_local();
763   this->forced_locals_.push_back(sym);
764 }
765
766 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
767 // is only called for undefined symbols, when at least one --wrap
768 // option was used.
769
770 const char*
771 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
772 {
773   // For some targets, we need to ignore a specific character when
774   // wrapping, and add it back later.
775   char prefix = '\0';
776   if (name[0] == parameters->target().wrap_char())
777     {
778       prefix = name[0];
779       ++name;
780     }
781
782   if (parameters->options().is_wrap(name))
783     {
784       // Turn NAME into __wrap_NAME.
785       std::string s;
786       if (prefix != '\0')
787         s += prefix;
788       s += "__wrap_";
789       s += name;
790
791       // This will give us both the old and new name in NAMEPOOL_, but
792       // that is OK.  Only the versions we need will wind up in the
793       // real string table in the output file.
794       return this->namepool_.add(s.c_str(), true, name_key);
795     }
796
797   const char* const real_prefix = "__real_";
798   const size_t real_prefix_length = strlen(real_prefix);
799   if (strncmp(name, real_prefix, real_prefix_length) == 0
800       && parameters->options().is_wrap(name + real_prefix_length))
801     {
802       // Turn __real_NAME into NAME.
803       std::string s;
804       if (prefix != '\0')
805         s += prefix;
806       s += name + real_prefix_length;
807       return this->namepool_.add(s.c_str(), true, name_key);
808     }
809
810   return name;
811 }
812
813 // This is called when we see a symbol NAME/VERSION, and the symbol
814 // already exists in the symbol table, and VERSION is marked as being
815 // the default version.  SYM is the NAME/VERSION symbol we just added.
816 // DEFAULT_IS_NEW is true if this is the first time we have seen the
817 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
818
819 template<int size, bool big_endian>
820 void
821 Symbol_table::define_default_version(Sized_symbol<size>* sym,
822                                      bool default_is_new,
823                                      Symbol_table_type::iterator pdef)
824 {
825   if (default_is_new)
826     {
827       // This is the first time we have seen NAME/NULL.  Make
828       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
829       // version.
830       pdef->second = sym;
831       sym->set_is_default();
832     }
833   else if (pdef->second == sym)
834     {
835       // NAME/NULL already points to NAME/VERSION.  Don't mark the
836       // symbol as the default if it is not already the default.
837     }
838   else
839     {
840       // This is the unfortunate case where we already have entries
841       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
842       // NAME/VERSION where VERSION is the default version.  We have
843       // already resolved this new symbol with the existing
844       // NAME/VERSION symbol.
845
846       // It's possible that NAME/NULL and NAME/VERSION are both
847       // defined in regular objects.  This can only happen if one
848       // object file defines foo and another defines foo@@ver.  This
849       // is somewhat obscure, but we call it a multiple definition
850       // error.
851
852       // It's possible that NAME/NULL actually has a version, in which
853       // case it won't be the same as VERSION.  This happens with
854       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
855       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
856       // then see an unadorned t2_2 in an object file and give it
857       // version VER1 from the version script.  This looks like a
858       // default definition for VER1, so it looks like we should merge
859       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
860       // not obvious that this is an error, either.  So we just punt.
861
862       // If one of the symbols has non-default visibility, and the
863       // other is defined in a shared object, then they are different
864       // symbols.
865
866       // Otherwise, we just resolve the symbols as though they were
867       // the same.
868
869       if (pdef->second->version() != NULL)
870         gold_assert(pdef->second->version() != sym->version());
871       else if (sym->visibility() != elfcpp::STV_DEFAULT
872                && pdef->second->is_from_dynobj())
873         ;
874       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
875                && sym->is_from_dynobj())
876         ;
877       else
878         {
879           const Sized_symbol<size>* symdef;
880           symdef = this->get_sized_symbol<size>(pdef->second);
881           Symbol_table::resolve<size, big_endian>(sym, symdef);
882           this->make_forwarder(pdef->second, sym);
883           pdef->second = sym;
884           sym->set_is_default();
885         }
886     }
887 }
888
889 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
890 // name and VERSION is the version; both are canonicalized.  DEF is
891 // whether this is the default version.  ST_SHNDX is the symbol's
892 // section index; IS_ORDINARY is whether this is a normal section
893 // rather than a special code.
894
895 // If IS_DEFAULT_VERSION is true, then this is the definition of a
896 // default version of a symbol.  That means that any lookup of
897 // NAME/NULL and any lookup of NAME/VERSION should always return the
898 // same symbol.  This is obvious for references, but in particular we
899 // want to do this for definitions: overriding NAME/NULL should also
900 // override NAME/VERSION.  If we don't do that, it would be very hard
901 // to override functions in a shared library which uses versioning.
902
903 // We implement this by simply making both entries in the hash table
904 // point to the same Symbol structure.  That is easy enough if this is
905 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
906 // that we have seen both already, in which case they will both have
907 // independent entries in the symbol table.  We can't simply change
908 // the symbol table entry, because we have pointers to the entries
909 // attached to the object files.  So we mark the entry attached to the
910 // object file as a forwarder, and record it in the forwarders_ map.
911 // Note that entries in the hash table will never be marked as
912 // forwarders.
913 //
914 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
915 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
916 // for a special section code.  ST_SHNDX may be modified if the symbol
917 // is defined in a section being discarded.
918
919 template<int size, bool big_endian>
920 Sized_symbol<size>*
921 Symbol_table::add_from_object(Object* object,
922                               const char* name,
923                               Stringpool::Key name_key,
924                               const char* version,
925                               Stringpool::Key version_key,
926                               bool is_default_version,
927                               const elfcpp::Sym<size, big_endian>& sym,
928                               unsigned int st_shndx,
929                               bool is_ordinary,
930                               unsigned int orig_st_shndx)
931 {
932   // Print a message if this symbol is being traced.
933   if (parameters->options().is_trace_symbol(name))
934     {
935       if (orig_st_shndx == elfcpp::SHN_UNDEF)
936         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
937       else
938         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
939     }
940
941   // For an undefined symbol, we may need to adjust the name using
942   // --wrap.
943   if (orig_st_shndx == elfcpp::SHN_UNDEF
944       && parameters->options().any_wrap())
945     {
946       const char* wrap_name = this->wrap_symbol(name, &name_key);
947       if (wrap_name != name)
948         {
949           // If we see a reference to malloc with version GLIBC_2.0,
950           // and we turn it into a reference to __wrap_malloc, then we
951           // discard the version number.  Otherwise the user would be
952           // required to specify the correct version for
953           // __wrap_malloc.
954           version = NULL;
955           version_key = 0;
956           name = wrap_name;
957         }
958     }
959
960   Symbol* const snull = NULL;
961   std::pair<typename Symbol_table_type::iterator, bool> ins =
962     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
963                                        snull));
964
965   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
966     std::make_pair(this->table_.end(), false);
967   if (is_default_version)
968     {
969       const Stringpool::Key vnull_key = 0;
970       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
971                                                                      vnull_key),
972                                                       snull));
973     }
974
975   // ins.first: an iterator, which is a pointer to a pair.
976   // ins.first->first: the key (a pair of name and version).
977   // ins.first->second: the value (Symbol*).
978   // ins.second: true if new entry was inserted, false if not.
979
980   Sized_symbol<size>* ret;
981   bool was_undefined;
982   bool was_common;
983   if (!ins.second)
984     {
985       // We already have an entry for NAME/VERSION.
986       ret = this->get_sized_symbol<size>(ins.first->second);
987       gold_assert(ret != NULL);
988
989       was_undefined = ret->is_undefined();
990       // Commons from plugins are just placeholders.
991       was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
992
993       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
994                     version);
995       if (parameters->options().gc_sections())
996         this->gc_mark_dyn_syms(ret);
997
998       if (is_default_version)
999         this->define_default_version<size, big_endian>(ret, insdefault.second,
1000                                                        insdefault.first);
1001     }
1002   else
1003     {
1004       // This is the first time we have seen NAME/VERSION.
1005       gold_assert(ins.first->second == NULL);
1006
1007       if (is_default_version && !insdefault.second)
1008         {
1009           // We already have an entry for NAME/NULL.  If we override
1010           // it, then change it to NAME/VERSION.
1011           ret = this->get_sized_symbol<size>(insdefault.first->second);
1012
1013           was_undefined = ret->is_undefined();
1014           // Commons from plugins are just placeholders.
1015           was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1016
1017           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1018                         version);
1019           if (parameters->options().gc_sections())
1020             this->gc_mark_dyn_syms(ret);
1021           ins.first->second = ret;
1022         }
1023       else
1024         {
1025           was_undefined = false;
1026           was_common = false;
1027
1028           Sized_target<size, big_endian>* target =
1029             parameters->sized_target<size, big_endian>();
1030           if (!target->has_make_symbol())
1031             ret = new Sized_symbol<size>();
1032           else
1033             {
1034               ret = target->make_symbol();
1035               if (ret == NULL)
1036                 {
1037                   // This means that we don't want a symbol table
1038                   // entry after all.
1039                   if (!is_default_version)
1040                     this->table_.erase(ins.first);
1041                   else
1042                     {
1043                       this->table_.erase(insdefault.first);
1044                       // Inserting INSDEFAULT invalidated INS.
1045                       this->table_.erase(std::make_pair(name_key,
1046                                                         version_key));
1047                     }
1048                   return NULL;
1049                 }
1050             }
1051
1052           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1053
1054           ins.first->second = ret;
1055           if (is_default_version)
1056             {
1057               // This is the first time we have seen NAME/NULL.  Point
1058               // it at the new entry for NAME/VERSION.
1059               gold_assert(insdefault.second);
1060               insdefault.first->second = ret;
1061             }
1062         }
1063
1064       if (is_default_version)
1065         ret->set_is_default();
1066     }
1067
1068   // Record every time we see a new undefined symbol, to speed up
1069   // archive groups.
1070   if (!was_undefined && ret->is_undefined())
1071     {
1072       ++this->saw_undefined_;
1073       if (parameters->options().has_plugins())
1074         parameters->options().plugins()->new_undefined_symbol(ret);
1075     }
1076
1077   // Keep track of common symbols, to speed up common symbol
1078   // allocation.  Don't record commons from plugin objects;
1079   // we need to wait until we see the real symbol in the
1080   // replacement file.
1081   if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1082     {
1083       if (ret->type() == elfcpp::STT_TLS)
1084         this->tls_commons_.push_back(ret);
1085       else if (!is_ordinary
1086                && st_shndx == parameters->target().small_common_shndx())
1087         this->small_commons_.push_back(ret);
1088       else if (!is_ordinary
1089                && st_shndx == parameters->target().large_common_shndx())
1090         this->large_commons_.push_back(ret);
1091       else
1092         this->commons_.push_back(ret);
1093     }
1094
1095   // If we're not doing a relocatable link, then any symbol with
1096   // hidden or internal visibility is local.
1097   if ((ret->visibility() == elfcpp::STV_HIDDEN
1098        || ret->visibility() == elfcpp::STV_INTERNAL)
1099       && (ret->binding() == elfcpp::STB_GLOBAL
1100           || ret->binding() == elfcpp::STB_GNU_UNIQUE
1101           || ret->binding() == elfcpp::STB_WEAK)
1102       && !parameters->options().relocatable())
1103     this->force_local(ret);
1104
1105   return ret;
1106 }
1107
1108 // Add all the symbols in a relocatable object to the hash table.
1109
1110 template<int size, bool big_endian>
1111 void
1112 Symbol_table::add_from_relobj(
1113     Sized_relobj_file<size, big_endian>* relobj,
1114     const unsigned char* syms,
1115     size_t count,
1116     size_t symndx_offset,
1117     const char* sym_names,
1118     size_t sym_name_size,
1119     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1120     size_t* defined)
1121 {
1122   *defined = 0;
1123
1124   gold_assert(size == parameters->target().get_size());
1125
1126   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1127
1128   const bool just_symbols = relobj->just_symbols();
1129
1130   const unsigned char* p = syms;
1131   for (size_t i = 0; i < count; ++i, p += sym_size)
1132     {
1133       (*sympointers)[i] = NULL;
1134
1135       elfcpp::Sym<size, big_endian> sym(p);
1136
1137       unsigned int st_name = sym.get_st_name();
1138       if (st_name >= sym_name_size)
1139         {
1140           relobj->error(_("bad global symbol name offset %u at %zu"),
1141                         st_name, i);
1142           continue;
1143         }
1144
1145       const char* name = sym_names + st_name;
1146
1147       if (strcmp (name, "__gnu_lto_slim") == 0)
1148         gold_info(_("%s: plugin needed to handle lto object"),
1149                   relobj->name().c_str());
1150
1151       bool is_ordinary;
1152       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1153                                                        sym.get_st_shndx(),
1154                                                        &is_ordinary);
1155       unsigned int orig_st_shndx = st_shndx;
1156       if (!is_ordinary)
1157         orig_st_shndx = elfcpp::SHN_UNDEF;
1158
1159       if (st_shndx != elfcpp::SHN_UNDEF)
1160         ++*defined;
1161
1162       // A symbol defined in a section which we are not including must
1163       // be treated as an undefined symbol.
1164       bool is_defined_in_discarded_section = false;
1165       if (st_shndx != elfcpp::SHN_UNDEF
1166           && is_ordinary
1167           && !relobj->is_section_included(st_shndx)
1168           && !this->is_section_folded(relobj, st_shndx))
1169         {
1170           st_shndx = elfcpp::SHN_UNDEF;
1171           is_defined_in_discarded_section = true;
1172         }
1173
1174       // In an object file, an '@' in the name separates the symbol
1175       // name from the version name.  If there are two '@' characters,
1176       // this is the default version.
1177       const char* ver = strchr(name, '@');
1178       Stringpool::Key ver_key = 0;
1179       int namelen = 0;
1180       // IS_DEFAULT_VERSION: is the version default?
1181       // IS_FORCED_LOCAL: is the symbol forced local?
1182       bool is_default_version = false;
1183       bool is_forced_local = false;
1184
1185       // FIXME: For incremental links, we don't store version information,
1186       // so we need to ignore version symbols for now.
1187       if (parameters->incremental_update() && ver != NULL)
1188         {
1189           namelen = ver - name;
1190           ver = NULL;
1191         }
1192
1193       if (ver != NULL)
1194         {
1195           // The symbol name is of the form foo@VERSION or foo@@VERSION
1196           namelen = ver - name;
1197           ++ver;
1198           if (*ver == '@')
1199             {
1200               is_default_version = true;
1201               ++ver;
1202             }
1203           ver = this->namepool_.add(ver, true, &ver_key);
1204         }
1205       // We don't want to assign a version to an undefined symbol,
1206       // even if it is listed in the version script.  FIXME: What
1207       // about a common symbol?
1208       else
1209         {
1210           namelen = strlen(name);
1211           if (!this->version_script_.empty()
1212               && st_shndx != elfcpp::SHN_UNDEF)
1213             {
1214               // The symbol name did not have a version, but the
1215               // version script may assign a version anyway.
1216               std::string version;
1217               bool is_global;
1218               if (this->version_script_.get_symbol_version(name, &version,
1219                                                            &is_global))
1220                 {
1221                   if (!is_global)
1222                     is_forced_local = true;
1223                   else if (!version.empty())
1224                     {
1225                       ver = this->namepool_.add_with_length(version.c_str(),
1226                                                             version.length(),
1227                                                             true,
1228                                                             &ver_key);
1229                       is_default_version = true;
1230                     }
1231                 }
1232             }
1233         }
1234
1235       elfcpp::Sym<size, big_endian>* psym = &sym;
1236       unsigned char symbuf[sym_size];
1237       elfcpp::Sym<size, big_endian> sym2(symbuf);
1238       if (just_symbols)
1239         {
1240           memcpy(symbuf, p, sym_size);
1241           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1242           if (orig_st_shndx != elfcpp::SHN_UNDEF
1243               && is_ordinary
1244               && relobj->e_type() == elfcpp::ET_REL)
1245             {
1246               // Symbol values in relocatable object files are section
1247               // relative.  This is normally what we want, but since here
1248               // we are converting the symbol to absolute we need to add
1249               // the section address.  The section address in an object
1250               // file is normally zero, but people can use a linker
1251               // script to change it.
1252               sw.put_st_value(sym.get_st_value()
1253                               + relobj->section_address(orig_st_shndx));
1254             }
1255           st_shndx = elfcpp::SHN_ABS;
1256           is_ordinary = false;
1257           psym = &sym2;
1258         }
1259
1260       // Fix up visibility if object has no-export set.
1261       if (relobj->no_export()
1262           && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1263         {
1264           // We may have copied symbol already above.
1265           if (psym != &sym2)
1266             {
1267               memcpy(symbuf, p, sym_size);
1268               psym = &sym2;
1269             }
1270
1271           elfcpp::STV visibility = sym2.get_st_visibility();
1272           if (visibility == elfcpp::STV_DEFAULT
1273               || visibility == elfcpp::STV_PROTECTED)
1274             {
1275               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1276               unsigned char nonvis = sym2.get_st_nonvis();
1277               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1278             }
1279         }
1280
1281       Stringpool::Key name_key;
1282       name = this->namepool_.add_with_length(name, namelen, true,
1283                                              &name_key);
1284
1285       Sized_symbol<size>* res;
1286       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1287                                   is_default_version, *psym, st_shndx,
1288                                   is_ordinary, orig_st_shndx);
1289       
1290       if (is_forced_local)
1291         this->force_local(res);
1292
1293       // Do not treat this symbol as garbage if this symbol will be
1294       // exported to the dynamic symbol table.  This is true when
1295       // building a shared library or using --export-dynamic and
1296       // the symbol is externally visible.
1297       if (parameters->options().gc_sections()
1298           && res->is_externally_visible()
1299           && !res->is_from_dynobj()
1300           && (parameters->options().shared()
1301               || parameters->options().export_dynamic()
1302               || parameters->options().in_dynamic_list(res->name())))
1303         this->gc_mark_symbol(res);
1304
1305       if (is_defined_in_discarded_section)
1306         res->set_is_defined_in_discarded_section();
1307
1308       (*sympointers)[i] = res;
1309     }
1310 }
1311
1312 // Add a symbol from a plugin-claimed file.
1313
1314 template<int size, bool big_endian>
1315 Symbol*
1316 Symbol_table::add_from_pluginobj(
1317     Sized_pluginobj<size, big_endian>* obj,
1318     const char* name,
1319     const char* ver,
1320     elfcpp::Sym<size, big_endian>* sym)
1321 {
1322   unsigned int st_shndx = sym->get_st_shndx();
1323   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1324
1325   Stringpool::Key ver_key = 0;
1326   bool is_default_version = false;
1327   bool is_forced_local = false;
1328
1329   if (ver != NULL)
1330     {
1331       ver = this->namepool_.add(ver, true, &ver_key);
1332     }
1333   // We don't want to assign a version to an undefined symbol,
1334   // even if it is listed in the version script.  FIXME: What
1335   // about a common symbol?
1336   else
1337     {
1338       if (!this->version_script_.empty()
1339           && st_shndx != elfcpp::SHN_UNDEF)
1340         {
1341           // The symbol name did not have a version, but the
1342           // version script may assign a version anyway.
1343           std::string version;
1344           bool is_global;
1345           if (this->version_script_.get_symbol_version(name, &version,
1346                                                        &is_global))
1347             {
1348               if (!is_global)
1349                 is_forced_local = true;
1350               else if (!version.empty())
1351                 {
1352                   ver = this->namepool_.add_with_length(version.c_str(),
1353                                                         version.length(),
1354                                                         true,
1355                                                         &ver_key);
1356                   is_default_version = true;
1357                 }
1358             }
1359         }
1360     }
1361
1362   Stringpool::Key name_key;
1363   name = this->namepool_.add(name, true, &name_key);
1364
1365   Sized_symbol<size>* res;
1366   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1367                               is_default_version, *sym, st_shndx,
1368                               is_ordinary, st_shndx);
1369
1370   if (is_forced_local)
1371     this->force_local(res);
1372
1373   return res;
1374 }
1375
1376 // Add all the symbols in a dynamic object to the hash table.
1377
1378 template<int size, bool big_endian>
1379 void
1380 Symbol_table::add_from_dynobj(
1381     Sized_dynobj<size, big_endian>* dynobj,
1382     const unsigned char* syms,
1383     size_t count,
1384     const char* sym_names,
1385     size_t sym_name_size,
1386     const unsigned char* versym,
1387     size_t versym_size,
1388     const std::vector<const char*>* version_map,
1389     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1390     size_t* defined)
1391 {
1392   *defined = 0;
1393
1394   gold_assert(size == parameters->target().get_size());
1395
1396   if (dynobj->just_symbols())
1397     {
1398       gold_error(_("--just-symbols does not make sense with a shared object"));
1399       return;
1400     }
1401
1402   // FIXME: For incremental links, we don't store version information,
1403   // so we need to ignore version symbols for now.
1404   if (parameters->incremental_update())
1405     versym = NULL;
1406
1407   if (versym != NULL && versym_size / 2 < count)
1408     {
1409       dynobj->error(_("too few symbol versions"));
1410       return;
1411     }
1412
1413   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1414
1415   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1416   // weak aliases.  This is necessary because if the dynamic object
1417   // provides the same variable under two names, one of which is a
1418   // weak definition, and the regular object refers to the weak
1419   // definition, we have to put both the weak definition and the
1420   // strong definition into the dynamic symbol table.  Given a weak
1421   // definition, the only way that we can find the corresponding
1422   // strong definition, if any, is to search the symbol table.
1423   std::vector<Sized_symbol<size>*> object_symbols;
1424
1425   const unsigned char* p = syms;
1426   const unsigned char* vs = versym;
1427   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1428     {
1429       elfcpp::Sym<size, big_endian> sym(p);
1430
1431       if (sympointers != NULL)
1432         (*sympointers)[i] = NULL;
1433
1434       // Ignore symbols with local binding or that have
1435       // internal or hidden visibility.
1436       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1437           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1438           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1439         continue;
1440
1441       // A protected symbol in a shared library must be treated as a
1442       // normal symbol when viewed from outside the shared library.
1443       // Implement this by overriding the visibility here.
1444       elfcpp::Sym<size, big_endian>* psym = &sym;
1445       unsigned char symbuf[sym_size];
1446       elfcpp::Sym<size, big_endian> sym2(symbuf);
1447       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1448         {
1449           memcpy(symbuf, p, sym_size);
1450           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1451           sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1452           psym = &sym2;
1453         }
1454
1455       unsigned int st_name = psym->get_st_name();
1456       if (st_name >= sym_name_size)
1457         {
1458           dynobj->error(_("bad symbol name offset %u at %zu"),
1459                         st_name, i);
1460           continue;
1461         }
1462
1463       const char* name = sym_names + st_name;
1464
1465       bool is_ordinary;
1466       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1467                                                        &is_ordinary);
1468
1469       if (st_shndx != elfcpp::SHN_UNDEF)
1470         ++*defined;
1471
1472       Sized_symbol<size>* res;
1473
1474       if (versym == NULL)
1475         {
1476           Stringpool::Key name_key;
1477           name = this->namepool_.add(name, true, &name_key);
1478           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1479                                       false, *psym, st_shndx, is_ordinary,
1480                                       st_shndx);
1481         }
1482       else
1483         {
1484           // Read the version information.
1485
1486           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1487
1488           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1489           v &= elfcpp::VERSYM_VERSION;
1490
1491           // The Sun documentation says that V can be VER_NDX_LOCAL,
1492           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1493           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1494           // The old GNU linker will happily generate VER_NDX_LOCAL
1495           // for an undefined symbol.  I don't know what the Sun
1496           // linker will generate.
1497
1498           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1499               && st_shndx != elfcpp::SHN_UNDEF)
1500             {
1501               // This symbol should not be visible outside the object.
1502               continue;
1503             }
1504
1505           // At this point we are definitely going to add this symbol.
1506           Stringpool::Key name_key;
1507           name = this->namepool_.add(name, true, &name_key);
1508
1509           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1510               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1511             {
1512               // This symbol does not have a version.
1513               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1514                                           false, *psym, st_shndx, is_ordinary,
1515                                           st_shndx);
1516             }
1517           else
1518             {
1519               if (v >= version_map->size())
1520                 {
1521                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1522                                 i, v);
1523                   continue;
1524                 }
1525
1526               const char* version = (*version_map)[v];
1527               if (version == NULL)
1528                 {
1529                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1530                                 i, v);
1531                   continue;
1532                 }
1533
1534               Stringpool::Key version_key;
1535               version = this->namepool_.add(version, true, &version_key);
1536
1537               // If this is an absolute symbol, and the version name
1538               // and symbol name are the same, then this is the
1539               // version definition symbol.  These symbols exist to
1540               // support using -u to pull in particular versions.  We
1541               // do not want to record a version for them.
1542               if (st_shndx == elfcpp::SHN_ABS
1543                   && !is_ordinary
1544                   && name_key == version_key)
1545                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1546                                             false, *psym, st_shndx, is_ordinary,
1547                                             st_shndx);
1548               else
1549                 {
1550                   const bool is_default_version =
1551                     !hidden && st_shndx != elfcpp::SHN_UNDEF;
1552                   res = this->add_from_object(dynobj, name, name_key, version,
1553                                               version_key, is_default_version,
1554                                               *psym, st_shndx,
1555                                               is_ordinary, st_shndx);
1556                 }
1557             }
1558         }
1559
1560       // Note that it is possible that RES was overridden by an
1561       // earlier object, in which case it can't be aliased here.
1562       if (st_shndx != elfcpp::SHN_UNDEF
1563           && is_ordinary
1564           && psym->get_st_type() == elfcpp::STT_OBJECT
1565           && res->source() == Symbol::FROM_OBJECT
1566           && res->object() == dynobj)
1567         object_symbols.push_back(res);
1568
1569       if (sympointers != NULL)
1570         (*sympointers)[i] = res;
1571     }
1572
1573   this->record_weak_aliases(&object_symbols);
1574 }
1575
1576 // Add a symbol from a incremental object file.
1577
1578 template<int size, bool big_endian>
1579 Sized_symbol<size>*
1580 Symbol_table::add_from_incrobj(
1581     Object* obj,
1582     const char* name,
1583     const char* ver,
1584     elfcpp::Sym<size, big_endian>* sym)
1585 {
1586   unsigned int st_shndx = sym->get_st_shndx();
1587   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1588
1589   Stringpool::Key ver_key = 0;
1590   bool is_default_version = false;
1591   bool is_forced_local = false;
1592
1593   Stringpool::Key name_key;
1594   name = this->namepool_.add(name, true, &name_key);
1595
1596   Sized_symbol<size>* res;
1597   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1598                               is_default_version, *sym, st_shndx,
1599                               is_ordinary, st_shndx);
1600
1601   if (is_forced_local)
1602     this->force_local(res);
1603
1604   return res;
1605 }
1606
1607 // This is used to sort weak aliases.  We sort them first by section
1608 // index, then by offset, then by weak ahead of strong.
1609
1610 template<int size>
1611 class Weak_alias_sorter
1612 {
1613  public:
1614   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1615 };
1616
1617 template<int size>
1618 bool
1619 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1620                                     const Sized_symbol<size>* s2) const
1621 {
1622   bool is_ordinary;
1623   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1624   gold_assert(is_ordinary);
1625   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1626   gold_assert(is_ordinary);
1627   if (s1_shndx != s2_shndx)
1628     return s1_shndx < s2_shndx;
1629
1630   if (s1->value() != s2->value())
1631     return s1->value() < s2->value();
1632   if (s1->binding() != s2->binding())
1633     {
1634       if (s1->binding() == elfcpp::STB_WEAK)
1635         return true;
1636       if (s2->binding() == elfcpp::STB_WEAK)
1637         return false;
1638     }
1639   return std::string(s1->name()) < std::string(s2->name());
1640 }
1641
1642 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1643 // for any weak aliases, and record them so that if we add the weak
1644 // alias to the dynamic symbol table, we also add the corresponding
1645 // strong symbol.
1646
1647 template<int size>
1648 void
1649 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1650 {
1651   // Sort the vector by section index, then by offset, then by weak
1652   // ahead of strong.
1653   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1654
1655   // Walk through the vector.  For each weak definition, record
1656   // aliases.
1657   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1658          symbols->begin();
1659        p != symbols->end();
1660        ++p)
1661     {
1662       if ((*p)->binding() != elfcpp::STB_WEAK)
1663         continue;
1664
1665       // Build a circular list of weak aliases.  Each symbol points to
1666       // the next one in the circular list.
1667
1668       Sized_symbol<size>* from_sym = *p;
1669       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1670       for (q = p + 1; q != symbols->end(); ++q)
1671         {
1672           bool dummy;
1673           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1674               || (*q)->value() != from_sym->value())
1675             break;
1676
1677           this->weak_aliases_[from_sym] = *q;
1678           from_sym->set_has_alias();
1679           from_sym = *q;
1680         }
1681
1682       if (from_sym != *p)
1683         {
1684           this->weak_aliases_[from_sym] = *p;
1685           from_sym->set_has_alias();
1686         }
1687
1688       p = q - 1;
1689     }
1690 }
1691
1692 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1693 // true, then only create the symbol if there is a reference to it.
1694 // If this does not return NULL, it sets *POLDSYM to the existing
1695 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1696 // resolve the newly created symbol to the old one.  This
1697 // canonicalizes *PNAME and *PVERSION.
1698
1699 template<int size, bool big_endian>
1700 Sized_symbol<size>*
1701 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1702                                     bool only_if_ref,
1703                                     Sized_symbol<size>** poldsym,
1704                                     bool* resolve_oldsym)
1705 {
1706   *resolve_oldsym = false;
1707   *poldsym = NULL;
1708
1709   // If the caller didn't give us a version, see if we get one from
1710   // the version script.
1711   std::string v;
1712   bool is_default_version = false;
1713   if (*pversion == NULL)
1714     {
1715       bool is_global;
1716       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1717         {
1718           if (is_global && !v.empty())
1719             {
1720               *pversion = v.c_str();
1721               // If we get the version from a version script, then we
1722               // are also the default version.
1723               is_default_version = true;
1724             }
1725         }
1726     }
1727
1728   Symbol* oldsym;
1729   Sized_symbol<size>* sym;
1730
1731   bool add_to_table = false;
1732   typename Symbol_table_type::iterator add_loc = this->table_.end();
1733   bool add_def_to_table = false;
1734   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1735
1736   if (only_if_ref)
1737     {
1738       oldsym = this->lookup(*pname, *pversion);
1739       if (oldsym == NULL && is_default_version)
1740         oldsym = this->lookup(*pname, NULL);
1741       if (oldsym == NULL || !oldsym->is_undefined())
1742         return NULL;
1743
1744       *pname = oldsym->name();
1745       if (is_default_version)
1746         *pversion = this->namepool_.add(*pversion, true, NULL);
1747       else
1748         *pversion = oldsym->version();
1749     }
1750   else
1751     {
1752       // Canonicalize NAME and VERSION.
1753       Stringpool::Key name_key;
1754       *pname = this->namepool_.add(*pname, true, &name_key);
1755
1756       Stringpool::Key version_key = 0;
1757       if (*pversion != NULL)
1758         *pversion = this->namepool_.add(*pversion, true, &version_key);
1759
1760       Symbol* const snull = NULL;
1761       std::pair<typename Symbol_table_type::iterator, bool> ins =
1762         this->table_.insert(std::make_pair(std::make_pair(name_key,
1763                                                           version_key),
1764                                            snull));
1765
1766       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1767         std::make_pair(this->table_.end(), false);
1768       if (is_default_version)
1769         {
1770           const Stringpool::Key vnull = 0;
1771           insdefault =
1772             this->table_.insert(std::make_pair(std::make_pair(name_key,
1773                                                               vnull),
1774                                                snull));
1775         }
1776
1777       if (!ins.second)
1778         {
1779           // We already have a symbol table entry for NAME/VERSION.
1780           oldsym = ins.first->second;
1781           gold_assert(oldsym != NULL);
1782
1783           if (is_default_version)
1784             {
1785               Sized_symbol<size>* soldsym =
1786                 this->get_sized_symbol<size>(oldsym);
1787               this->define_default_version<size, big_endian>(soldsym,
1788                                                              insdefault.second,
1789                                                              insdefault.first);
1790             }
1791         }
1792       else
1793         {
1794           // We haven't seen this symbol before.
1795           gold_assert(ins.first->second == NULL);
1796
1797           add_to_table = true;
1798           add_loc = ins.first;
1799
1800           if (is_default_version && !insdefault.second)
1801             {
1802               // We are adding NAME/VERSION, and it is the default
1803               // version.  We already have an entry for NAME/NULL.
1804               oldsym = insdefault.first->second;
1805               *resolve_oldsym = true;
1806             }
1807           else
1808             {
1809               oldsym = NULL;
1810
1811               if (is_default_version)
1812                 {
1813                   add_def_to_table = true;
1814                   add_def_loc = insdefault.first;
1815                 }
1816             }
1817         }
1818     }
1819
1820   const Target& target = parameters->target();
1821   if (!target.has_make_symbol())
1822     sym = new Sized_symbol<size>();
1823   else
1824     {
1825       Sized_target<size, big_endian>* sized_target =
1826         parameters->sized_target<size, big_endian>();
1827       sym = sized_target->make_symbol();
1828       if (sym == NULL)
1829         return NULL;
1830     }
1831
1832   if (add_to_table)
1833     add_loc->second = sym;
1834   else
1835     gold_assert(oldsym != NULL);
1836
1837   if (add_def_to_table)
1838     add_def_loc->second = sym;
1839
1840   *poldsym = this->get_sized_symbol<size>(oldsym);
1841
1842   return sym;
1843 }
1844
1845 // Define a symbol based on an Output_data.
1846
1847 Symbol*
1848 Symbol_table::define_in_output_data(const char* name,
1849                                     const char* version,
1850                                     Defined defined,
1851                                     Output_data* od,
1852                                     uint64_t value,
1853                                     uint64_t symsize,
1854                                     elfcpp::STT type,
1855                                     elfcpp::STB binding,
1856                                     elfcpp::STV visibility,
1857                                     unsigned char nonvis,
1858                                     bool offset_is_from_end,
1859                                     bool only_if_ref)
1860 {
1861   if (parameters->target().get_size() == 32)
1862     {
1863 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1864       return this->do_define_in_output_data<32>(name, version, defined, od,
1865                                                 value, symsize, type, binding,
1866                                                 visibility, nonvis,
1867                                                 offset_is_from_end,
1868                                                 only_if_ref);
1869 #else
1870       gold_unreachable();
1871 #endif
1872     }
1873   else if (parameters->target().get_size() == 64)
1874     {
1875 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1876       return this->do_define_in_output_data<64>(name, version, defined, od,
1877                                                 value, symsize, type, binding,
1878                                                 visibility, nonvis,
1879                                                 offset_is_from_end,
1880                                                 only_if_ref);
1881 #else
1882       gold_unreachable();
1883 #endif
1884     }
1885   else
1886     gold_unreachable();
1887 }
1888
1889 // Define a symbol in an Output_data, sized version.
1890
1891 template<int size>
1892 Sized_symbol<size>*
1893 Symbol_table::do_define_in_output_data(
1894     const char* name,
1895     const char* version,
1896     Defined defined,
1897     Output_data* od,
1898     typename elfcpp::Elf_types<size>::Elf_Addr value,
1899     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1900     elfcpp::STT type,
1901     elfcpp::STB binding,
1902     elfcpp::STV visibility,
1903     unsigned char nonvis,
1904     bool offset_is_from_end,
1905     bool only_if_ref)
1906 {
1907   Sized_symbol<size>* sym;
1908   Sized_symbol<size>* oldsym;
1909   bool resolve_oldsym;
1910
1911   if (parameters->target().is_big_endian())
1912     {
1913 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1914       sym = this->define_special_symbol<size, true>(&name, &version,
1915                                                     only_if_ref, &oldsym,
1916                                                     &resolve_oldsym);
1917 #else
1918       gold_unreachable();
1919 #endif
1920     }
1921   else
1922     {
1923 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1924       sym = this->define_special_symbol<size, false>(&name, &version,
1925                                                      only_if_ref, &oldsym,
1926                                                      &resolve_oldsym);
1927 #else
1928       gold_unreachable();
1929 #endif
1930     }
1931
1932   if (sym == NULL)
1933     return NULL;
1934
1935   sym->init_output_data(name, version, od, value, symsize, type, binding,
1936                         visibility, nonvis, offset_is_from_end,
1937                         defined == PREDEFINED);
1938
1939   if (oldsym == NULL)
1940     {
1941       if (binding == elfcpp::STB_LOCAL
1942           || this->version_script_.symbol_is_local(name))
1943         this->force_local(sym);
1944       else if (version != NULL)
1945         sym->set_is_default();
1946       return sym;
1947     }
1948
1949   if (Symbol_table::should_override_with_special(oldsym, type, defined))
1950     this->override_with_special(oldsym, sym);
1951
1952   if (resolve_oldsym)
1953     return sym;
1954   else
1955     {
1956       if (binding == elfcpp::STB_LOCAL
1957           || this->version_script_.symbol_is_local(name))
1958         this->force_local(oldsym);
1959       delete sym;
1960       return oldsym;
1961     }
1962 }
1963
1964 // Define a symbol based on an Output_segment.
1965
1966 Symbol*
1967 Symbol_table::define_in_output_segment(const char* name,
1968                                        const char* version,
1969                                        Defined defined,
1970                                        Output_segment* os,
1971                                        uint64_t value,
1972                                        uint64_t symsize,
1973                                        elfcpp::STT type,
1974                                        elfcpp::STB binding,
1975                                        elfcpp::STV visibility,
1976                                        unsigned char nonvis,
1977                                        Symbol::Segment_offset_base offset_base,
1978                                        bool only_if_ref)
1979 {
1980   if (parameters->target().get_size() == 32)
1981     {
1982 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1983       return this->do_define_in_output_segment<32>(name, version, defined, os,
1984                                                    value, symsize, type,
1985                                                    binding, visibility, nonvis,
1986                                                    offset_base, only_if_ref);
1987 #else
1988       gold_unreachable();
1989 #endif
1990     }
1991   else if (parameters->target().get_size() == 64)
1992     {
1993 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1994       return this->do_define_in_output_segment<64>(name, version, defined, os,
1995                                                    value, symsize, type,
1996                                                    binding, visibility, nonvis,
1997                                                    offset_base, only_if_ref);
1998 #else
1999       gold_unreachable();
2000 #endif
2001     }
2002   else
2003     gold_unreachable();
2004 }
2005
2006 // Define a symbol in an Output_segment, sized version.
2007
2008 template<int size>
2009 Sized_symbol<size>*
2010 Symbol_table::do_define_in_output_segment(
2011     const char* name,
2012     const char* version,
2013     Defined defined,
2014     Output_segment* os,
2015     typename elfcpp::Elf_types<size>::Elf_Addr value,
2016     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2017     elfcpp::STT type,
2018     elfcpp::STB binding,
2019     elfcpp::STV visibility,
2020     unsigned char nonvis,
2021     Symbol::Segment_offset_base offset_base,
2022     bool only_if_ref)
2023 {
2024   Sized_symbol<size>* sym;
2025   Sized_symbol<size>* oldsym;
2026   bool resolve_oldsym;
2027
2028   if (parameters->target().is_big_endian())
2029     {
2030 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2031       sym = this->define_special_symbol<size, true>(&name, &version,
2032                                                     only_if_ref, &oldsym,
2033                                                     &resolve_oldsym);
2034 #else
2035       gold_unreachable();
2036 #endif
2037     }
2038   else
2039     {
2040 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2041       sym = this->define_special_symbol<size, false>(&name, &version,
2042                                                      only_if_ref, &oldsym,
2043                                                      &resolve_oldsym);
2044 #else
2045       gold_unreachable();
2046 #endif
2047     }
2048
2049   if (sym == NULL)
2050     return NULL;
2051
2052   sym->init_output_segment(name, version, os, value, symsize, type, binding,
2053                            visibility, nonvis, offset_base,
2054                            defined == PREDEFINED);
2055
2056   if (oldsym == NULL)
2057     {
2058       if (binding == elfcpp::STB_LOCAL
2059           || this->version_script_.symbol_is_local(name))
2060         this->force_local(sym);
2061       else if (version != NULL)
2062         sym->set_is_default();
2063       return sym;
2064     }
2065
2066   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2067     this->override_with_special(oldsym, sym);
2068
2069   if (resolve_oldsym)
2070     return sym;
2071   else
2072     {
2073       if (binding == elfcpp::STB_LOCAL
2074           || this->version_script_.symbol_is_local(name))
2075         this->force_local(oldsym);
2076       delete sym;
2077       return oldsym;
2078     }
2079 }
2080
2081 // Define a special symbol with a constant value.  It is a multiple
2082 // definition error if this symbol is already defined.
2083
2084 Symbol*
2085 Symbol_table::define_as_constant(const char* name,
2086                                  const char* version,
2087                                  Defined defined,
2088                                  uint64_t value,
2089                                  uint64_t symsize,
2090                                  elfcpp::STT type,
2091                                  elfcpp::STB binding,
2092                                  elfcpp::STV visibility,
2093                                  unsigned char nonvis,
2094                                  bool only_if_ref,
2095                                  bool force_override)
2096 {
2097   if (parameters->target().get_size() == 32)
2098     {
2099 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2100       return this->do_define_as_constant<32>(name, version, defined, value,
2101                                              symsize, type, binding,
2102                                              visibility, nonvis, only_if_ref,
2103                                              force_override);
2104 #else
2105       gold_unreachable();
2106 #endif
2107     }
2108   else if (parameters->target().get_size() == 64)
2109     {
2110 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2111       return this->do_define_as_constant<64>(name, version, defined, value,
2112                                              symsize, type, binding,
2113                                              visibility, nonvis, only_if_ref,
2114                                              force_override);
2115 #else
2116       gold_unreachable();
2117 #endif
2118     }
2119   else
2120     gold_unreachable();
2121 }
2122
2123 // Define a symbol as a constant, sized version.
2124
2125 template<int size>
2126 Sized_symbol<size>*
2127 Symbol_table::do_define_as_constant(
2128     const char* name,
2129     const char* version,
2130     Defined defined,
2131     typename elfcpp::Elf_types<size>::Elf_Addr value,
2132     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2133     elfcpp::STT type,
2134     elfcpp::STB binding,
2135     elfcpp::STV visibility,
2136     unsigned char nonvis,
2137     bool only_if_ref,
2138     bool force_override)
2139 {
2140   Sized_symbol<size>* sym;
2141   Sized_symbol<size>* oldsym;
2142   bool resolve_oldsym;
2143
2144   if (parameters->target().is_big_endian())
2145     {
2146 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2147       sym = this->define_special_symbol<size, true>(&name, &version,
2148                                                     only_if_ref, &oldsym,
2149                                                     &resolve_oldsym);
2150 #else
2151       gold_unreachable();
2152 #endif
2153     }
2154   else
2155     {
2156 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2157       sym = this->define_special_symbol<size, false>(&name, &version,
2158                                                      only_if_ref, &oldsym,
2159                                                      &resolve_oldsym);
2160 #else
2161       gold_unreachable();
2162 #endif
2163     }
2164
2165   if (sym == NULL)
2166     return NULL;
2167
2168   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2169                      nonvis, defined == PREDEFINED);
2170
2171   if (oldsym == NULL)
2172     {
2173       // Version symbols are absolute symbols with name == version.
2174       // We don't want to force them to be local.
2175       if ((version == NULL
2176            || name != version
2177            || value != 0)
2178           && (binding == elfcpp::STB_LOCAL
2179               || this->version_script_.symbol_is_local(name)))
2180         this->force_local(sym);
2181       else if (version != NULL
2182                && (name != version || value != 0))
2183         sym->set_is_default();
2184       return sym;
2185     }
2186
2187   if (force_override
2188       || Symbol_table::should_override_with_special(oldsym, type, defined))
2189     this->override_with_special(oldsym, sym);
2190
2191   if (resolve_oldsym)
2192     return sym;
2193   else
2194     {
2195       if (binding == elfcpp::STB_LOCAL
2196           || this->version_script_.symbol_is_local(name))
2197         this->force_local(oldsym);
2198       delete sym;
2199       return oldsym;
2200     }
2201 }
2202
2203 // Define a set of symbols in output sections.
2204
2205 void
2206 Symbol_table::define_symbols(const Layout* layout, int count,
2207                              const Define_symbol_in_section* p,
2208                              bool only_if_ref)
2209 {
2210   for (int i = 0; i < count; ++i, ++p)
2211     {
2212       Output_section* os = layout->find_output_section(p->output_section);
2213       if (os != NULL)
2214         this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2215                                     p->size, p->type, p->binding,
2216                                     p->visibility, p->nonvis,
2217                                     p->offset_is_from_end,
2218                                     only_if_ref || p->only_if_ref);
2219       else
2220         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2221                                  p->type, p->binding, p->visibility, p->nonvis,
2222                                  only_if_ref || p->only_if_ref,
2223                                  false);
2224     }
2225 }
2226
2227 // Define a set of symbols in output segments.
2228
2229 void
2230 Symbol_table::define_symbols(const Layout* layout, int count,
2231                              const Define_symbol_in_segment* p,
2232                              bool only_if_ref)
2233 {
2234   for (int i = 0; i < count; ++i, ++p)
2235     {
2236       Output_segment* os = layout->find_output_segment(p->segment_type,
2237                                                        p->segment_flags_set,
2238                                                        p->segment_flags_clear);
2239       if (os != NULL)
2240         this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2241                                        p->size, p->type, p->binding,
2242                                        p->visibility, p->nonvis,
2243                                        p->offset_base,
2244                                        only_if_ref || p->only_if_ref);
2245       else
2246         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2247                                  p->type, p->binding, p->visibility, p->nonvis,
2248                                  only_if_ref || p->only_if_ref,
2249                                  false);
2250     }
2251 }
2252
2253 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2254 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2255 // the offset within POSD.
2256
2257 template<int size>
2258 void
2259 Symbol_table::define_with_copy_reloc(
2260     Sized_symbol<size>* csym,
2261     Output_data* posd,
2262     typename elfcpp::Elf_types<size>::Elf_Addr value)
2263 {
2264   gold_assert(csym->is_from_dynobj());
2265   gold_assert(!csym->is_copied_from_dynobj());
2266   Object* object = csym->object();
2267   gold_assert(object->is_dynamic());
2268   Dynobj* dynobj = static_cast<Dynobj*>(object);
2269
2270   // Our copied variable has to override any variable in a shared
2271   // library.
2272   elfcpp::STB binding = csym->binding();
2273   if (binding == elfcpp::STB_WEAK)
2274     binding = elfcpp::STB_GLOBAL;
2275
2276   this->define_in_output_data(csym->name(), csym->version(), COPY,
2277                               posd, value, csym->symsize(),
2278                               csym->type(), binding,
2279                               csym->visibility(), csym->nonvis(),
2280                               false, false);
2281
2282   csym->set_is_copied_from_dynobj();
2283   csym->set_needs_dynsym_entry();
2284
2285   this->copied_symbol_dynobjs_[csym] = dynobj;
2286
2287   // We have now defined all aliases, but we have not entered them all
2288   // in the copied_symbol_dynobjs_ map.
2289   if (csym->has_alias())
2290     {
2291       Symbol* sym = csym;
2292       while (true)
2293         {
2294           sym = this->weak_aliases_[sym];
2295           if (sym == csym)
2296             break;
2297           gold_assert(sym->output_data() == posd);
2298
2299           sym->set_is_copied_from_dynobj();
2300           this->copied_symbol_dynobjs_[sym] = dynobj;
2301         }
2302     }
2303 }
2304
2305 // SYM is defined using a COPY reloc.  Return the dynamic object where
2306 // the original definition was found.
2307
2308 Dynobj*
2309 Symbol_table::get_copy_source(const Symbol* sym) const
2310 {
2311   gold_assert(sym->is_copied_from_dynobj());
2312   Copied_symbol_dynobjs::const_iterator p =
2313     this->copied_symbol_dynobjs_.find(sym);
2314   gold_assert(p != this->copied_symbol_dynobjs_.end());
2315   return p->second;
2316 }
2317
2318 // Add any undefined symbols named on the command line.
2319
2320 void
2321 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2322 {
2323   if (parameters->options().any_undefined()
2324       || layout->script_options()->any_unreferenced())
2325     {
2326       if (parameters->target().get_size() == 32)
2327         {
2328 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2329           this->do_add_undefined_symbols_from_command_line<32>(layout);
2330 #else
2331           gold_unreachable();
2332 #endif
2333         }
2334       else if (parameters->target().get_size() == 64)
2335         {
2336 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2337           this->do_add_undefined_symbols_from_command_line<64>(layout);
2338 #else
2339           gold_unreachable();
2340 #endif
2341         }
2342       else
2343         gold_unreachable();
2344     }
2345 }
2346
2347 template<int size>
2348 void
2349 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2350 {
2351   for (options::String_set::const_iterator p =
2352          parameters->options().undefined_begin();
2353        p != parameters->options().undefined_end();
2354        ++p)
2355     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2356
2357   for (options::String_set::const_iterator p =
2358          parameters->options().export_dynamic_symbol_begin();
2359        p != parameters->options().export_dynamic_symbol_end();
2360        ++p)
2361     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2362
2363   for (Script_options::referenced_const_iterator p =
2364          layout->script_options()->referenced_begin();
2365        p != layout->script_options()->referenced_end();
2366        ++p)
2367     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2368 }
2369
2370 template<int size>
2371 void
2372 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2373 {
2374   if (this->lookup(name) != NULL)
2375     return;
2376
2377   const char* version = NULL;
2378
2379   Sized_symbol<size>* sym;
2380   Sized_symbol<size>* oldsym;
2381   bool resolve_oldsym;
2382   if (parameters->target().is_big_endian())
2383     {
2384 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2385       sym = this->define_special_symbol<size, true>(&name, &version,
2386                                                     false, &oldsym,
2387                                                     &resolve_oldsym);
2388 #else
2389       gold_unreachable();
2390 #endif
2391     }
2392   else
2393     {
2394 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2395       sym = this->define_special_symbol<size, false>(&name, &version,
2396                                                      false, &oldsym,
2397                                                      &resolve_oldsym);
2398 #else
2399       gold_unreachable();
2400 #endif
2401     }
2402
2403   gold_assert(oldsym == NULL);
2404
2405   sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2406                       elfcpp::STV_DEFAULT, 0);
2407   ++this->saw_undefined_;
2408 }
2409
2410 // Set the dynamic symbol indexes.  INDEX is the index of the first
2411 // global dynamic symbol.  Pointers to the symbols are stored into the
2412 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2413 // updated dynamic symbol index.
2414
2415 unsigned int
2416 Symbol_table::set_dynsym_indexes(unsigned int index,
2417                                  std::vector<Symbol*>* syms,
2418                                  Stringpool* dynpool,
2419                                  Versions* versions)
2420 {
2421   std::vector<Symbol*> as_needed_sym;
2422
2423   // Allow a target to set dynsym indexes.
2424   if (parameters->target().has_custom_set_dynsym_indexes())
2425     {
2426       std::vector<Symbol*> dyn_symbols;
2427       for (Symbol_table_type::iterator p = this->table_.begin();
2428            p != this->table_.end();
2429            ++p)
2430         {
2431           Symbol* sym = p->second;
2432           if (!sym->should_add_dynsym_entry(this))
2433             sym->set_dynsym_index(-1U);
2434           else
2435             dyn_symbols.push_back(sym);
2436         }
2437
2438       return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2439                                                      dynpool, versions, this);
2440     }
2441
2442   for (Symbol_table_type::iterator p = this->table_.begin();
2443        p != this->table_.end();
2444        ++p)
2445     {
2446       Symbol* sym = p->second;
2447
2448       // Note that SYM may already have a dynamic symbol index, since
2449       // some symbols appear more than once in the symbol table, with
2450       // and without a version.
2451
2452       if (!sym->should_add_dynsym_entry(this))
2453         sym->set_dynsym_index(-1U);
2454       else if (!sym->has_dynsym_index())
2455         {
2456           sym->set_dynsym_index(index);
2457           ++index;
2458           syms->push_back(sym);
2459           dynpool->add(sym->name(), false, NULL);
2460
2461           // If the symbol is defined in a dynamic object and is
2462           // referenced strongly in a regular object, then mark the
2463           // dynamic object as needed.  This is used to implement
2464           // --as-needed.
2465           if (sym->is_from_dynobj()
2466               && sym->in_reg()
2467               && !sym->is_undef_binding_weak())
2468             sym->object()->set_is_needed();
2469
2470           // Record any version information, except those from
2471           // as-needed libraries not seen to be needed.  Note that the
2472           // is_needed state for such libraries can change in this loop.
2473           if (sym->version() != NULL)
2474             {
2475               if (!sym->is_from_dynobj()
2476                   || !sym->object()->as_needed()
2477                   || sym->object()->is_needed())
2478                 versions->record_version(this, dynpool, sym);
2479               else
2480                 as_needed_sym.push_back(sym);
2481             }
2482         }
2483     }
2484
2485   // Process version information for symbols from as-needed libraries.
2486   for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2487        p != as_needed_sym.end();
2488        ++p)
2489     {
2490       Symbol* sym = *p;
2491
2492       if (sym->object()->is_needed())
2493         versions->record_version(this, dynpool, sym);
2494       else
2495         sym->clear_version();
2496     }
2497
2498   // Finish up the versions.  In some cases this may add new dynamic
2499   // symbols.
2500   index = versions->finalize(this, index, syms);
2501
2502   return index;
2503 }
2504
2505 // Set the final values for all the symbols.  The index of the first
2506 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2507 // file offset OFF.  Add their names to POOL.  Return the new file
2508 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2509
2510 off_t
2511 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2512                        size_t dyncount, Stringpool* pool,
2513                        unsigned int* plocal_symcount)
2514 {
2515   off_t ret;
2516
2517   gold_assert(*plocal_symcount != 0);
2518   this->first_global_index_ = *plocal_symcount;
2519
2520   this->dynamic_offset_ = dynoff;
2521   this->first_dynamic_global_index_ = dyn_global_index;
2522   this->dynamic_count_ = dyncount;
2523
2524   if (parameters->target().get_size() == 32)
2525     {
2526 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2527       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2528 #else
2529       gold_unreachable();
2530 #endif
2531     }
2532   else if (parameters->target().get_size() == 64)
2533     {
2534 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2535       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2536 #else
2537       gold_unreachable();
2538 #endif
2539     }
2540   else
2541     gold_unreachable();
2542
2543   // Now that we have the final symbol table, we can reliably note
2544   // which symbols should get warnings.
2545   this->warnings_.note_warnings(this);
2546
2547   return ret;
2548 }
2549
2550 // SYM is going into the symbol table at *PINDEX.  Add the name to
2551 // POOL, update *PINDEX and *POFF.
2552
2553 template<int size>
2554 void
2555 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2556                                   unsigned int* pindex, off_t* poff)
2557 {
2558   sym->set_symtab_index(*pindex);
2559   if (sym->version() == NULL || !parameters->options().relocatable())
2560     pool->add(sym->name(), false, NULL);
2561   else
2562     pool->add(sym->versioned_name(), true, NULL);
2563   ++*pindex;
2564   *poff += elfcpp::Elf_sizes<size>::sym_size;
2565 }
2566
2567 // Set the final value for all the symbols.  This is called after
2568 // Layout::finalize, so all the output sections have their final
2569 // address.
2570
2571 template<int size>
2572 off_t
2573 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2574                              unsigned int* plocal_symcount)
2575 {
2576   off = align_address(off, size >> 3);
2577   this->offset_ = off;
2578
2579   unsigned int index = *plocal_symcount;
2580   const unsigned int orig_index = index;
2581
2582   // First do all the symbols which have been forced to be local, as
2583   // they must appear before all global symbols.
2584   for (Forced_locals::iterator p = this->forced_locals_.begin();
2585        p != this->forced_locals_.end();
2586        ++p)
2587     {
2588       Symbol* sym = *p;
2589       gold_assert(sym->is_forced_local());
2590       if (this->sized_finalize_symbol<size>(sym))
2591         {
2592           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2593           ++*plocal_symcount;
2594         }
2595     }
2596
2597   // Now do all the remaining symbols.
2598   for (Symbol_table_type::iterator p = this->table_.begin();
2599        p != this->table_.end();
2600        ++p)
2601     {
2602       Symbol* sym = p->second;
2603       if (this->sized_finalize_symbol<size>(sym))
2604         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2605     }
2606
2607   this->output_count_ = index - orig_index;
2608
2609   return off;
2610 }
2611
2612 // Compute the final value of SYM and store status in location PSTATUS.
2613 // During relaxation, this may be called multiple times for a symbol to
2614 // compute its would-be final value in each relaxation pass.
2615
2616 template<int size>
2617 typename Sized_symbol<size>::Value_type
2618 Symbol_table::compute_final_value(
2619     const Sized_symbol<size>* sym,
2620     Compute_final_value_status* pstatus) const
2621 {
2622   typedef typename Sized_symbol<size>::Value_type Value_type;
2623   Value_type value;
2624
2625   switch (sym->source())
2626     {
2627     case Symbol::FROM_OBJECT:
2628       {
2629         bool is_ordinary;
2630         unsigned int shndx = sym->shndx(&is_ordinary);
2631
2632         if (!is_ordinary
2633             && shndx != elfcpp::SHN_ABS
2634             && !Symbol::is_common_shndx(shndx))
2635           {
2636             *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2637             return 0;
2638           }
2639
2640         Object* symobj = sym->object();
2641         if (symobj->is_dynamic())
2642           {
2643             value = 0;
2644             shndx = elfcpp::SHN_UNDEF;
2645           }
2646         else if (symobj->pluginobj() != NULL)
2647           {
2648             value = 0;
2649             shndx = elfcpp::SHN_UNDEF;
2650           }
2651         else if (shndx == elfcpp::SHN_UNDEF)
2652           value = 0;
2653         else if (!is_ordinary
2654                  && (shndx == elfcpp::SHN_ABS
2655                      || Symbol::is_common_shndx(shndx)))
2656           value = sym->value();
2657         else
2658           {
2659             Relobj* relobj = static_cast<Relobj*>(symobj);
2660             Output_section* os = relobj->output_section(shndx);
2661
2662             if (this->is_section_folded(relobj, shndx))
2663               {
2664                 gold_assert(os == NULL);
2665                 // Get the os of the section it is folded onto.
2666                 Section_id folded = this->icf_->get_folded_section(relobj,
2667                                                                    shndx);
2668                 gold_assert(folded.first != NULL);
2669                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2670                 unsigned folded_shndx = folded.second;
2671
2672                 os = folded_obj->output_section(folded_shndx);  
2673                 gold_assert(os != NULL);
2674
2675                 // Replace (relobj, shndx) with canonical ICF input section.
2676                 shndx = folded_shndx;
2677                 relobj = folded_obj;
2678               }
2679
2680             uint64_t secoff64 = relobj->output_section_offset(shndx);
2681             if (os == NULL)
2682               {
2683                 bool static_or_reloc = (parameters->doing_static_link() ||
2684                                         parameters->options().relocatable());
2685                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2686
2687                 *pstatus = CFVS_NO_OUTPUT_SECTION;
2688                 return 0;
2689               }
2690
2691             if (secoff64 == -1ULL)
2692               {
2693                 // The section needs special handling (e.g., a merge section).
2694
2695                 value = os->output_address(relobj, shndx, sym->value());
2696               }
2697             else
2698               {
2699                 Value_type secoff =
2700                   convert_types<Value_type, uint64_t>(secoff64);
2701                 if (sym->type() == elfcpp::STT_TLS)
2702                   value = sym->value() + os->tls_offset() + secoff;
2703                 else
2704                   value = sym->value() + os->address() + secoff;
2705               }
2706           }
2707       }
2708       break;
2709
2710     case Symbol::IN_OUTPUT_DATA:
2711       {
2712         Output_data* od = sym->output_data();
2713         value = sym->value();
2714         if (sym->type() != elfcpp::STT_TLS)
2715           value += od->address();
2716         else
2717           {
2718             Output_section* os = od->output_section();
2719             gold_assert(os != NULL);
2720             value += os->tls_offset() + (od->address() - os->address());
2721           }
2722         if (sym->offset_is_from_end())
2723           value += od->data_size();
2724       }
2725       break;
2726
2727     case Symbol::IN_OUTPUT_SEGMENT:
2728       {
2729         Output_segment* os = sym->output_segment();
2730         value = sym->value();
2731         if (sym->type() != elfcpp::STT_TLS)
2732           value += os->vaddr();
2733         switch (sym->offset_base())
2734           {
2735           case Symbol::SEGMENT_START:
2736             break;
2737           case Symbol::SEGMENT_END:
2738             value += os->memsz();
2739             break;
2740           case Symbol::SEGMENT_BSS:
2741             value += os->filesz();
2742             break;
2743           default:
2744             gold_unreachable();
2745           }
2746       }
2747       break;
2748
2749     case Symbol::IS_CONSTANT:
2750       value = sym->value();
2751       break;
2752
2753     case Symbol::IS_UNDEFINED:
2754       value = 0;
2755       break;
2756
2757     default:
2758       gold_unreachable();
2759     }
2760
2761   *pstatus = CFVS_OK;
2762   return value;
2763 }
2764
2765 // Finalize the symbol SYM.  This returns true if the symbol should be
2766 // added to the symbol table, false otherwise.
2767
2768 template<int size>
2769 bool
2770 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2771 {
2772   typedef typename Sized_symbol<size>::Value_type Value_type;
2773
2774   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2775
2776   // The default version of a symbol may appear twice in the symbol
2777   // table.  We only need to finalize it once.
2778   if (sym->has_symtab_index())
2779     return false;
2780
2781   if (!sym->in_reg())
2782     {
2783       gold_assert(!sym->has_symtab_index());
2784       sym->set_symtab_index(-1U);
2785       gold_assert(sym->dynsym_index() == -1U);
2786       return false;
2787     }
2788
2789   // If the symbol is only present on plugin files, the plugin decided we
2790   // don't need it.
2791   if (!sym->in_real_elf())
2792     {
2793       gold_assert(!sym->has_symtab_index());
2794       sym->set_symtab_index(-1U);
2795       return false;
2796     }
2797
2798   // Compute final symbol value.
2799   Compute_final_value_status status;
2800   Value_type value = this->compute_final_value(sym, &status);
2801
2802   switch (status)
2803     {
2804     case CFVS_OK:
2805       break;
2806     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2807       {
2808         bool is_ordinary;
2809         unsigned int shndx = sym->shndx(&is_ordinary);
2810         gold_error(_("%s: unsupported symbol section 0x%x"),
2811                    sym->demangled_name().c_str(), shndx);
2812       }
2813       break;
2814     case CFVS_NO_OUTPUT_SECTION:
2815       sym->set_symtab_index(-1U);
2816       return false;
2817     default:
2818       gold_unreachable();
2819     }
2820
2821   sym->set_value(value);
2822
2823   if (parameters->options().strip_all()
2824       || !parameters->options().should_retain_symbol(sym->name()))
2825     {
2826       sym->set_symtab_index(-1U);
2827       return false;
2828     }
2829
2830   return true;
2831 }
2832
2833 // Write out the global symbols.
2834
2835 void
2836 Symbol_table::write_globals(const Stringpool* sympool,
2837                             const Stringpool* dynpool,
2838                             Output_symtab_xindex* symtab_xindex,
2839                             Output_symtab_xindex* dynsym_xindex,
2840                             Output_file* of) const
2841 {
2842   switch (parameters->size_and_endianness())
2843     {
2844 #ifdef HAVE_TARGET_32_LITTLE
2845     case Parameters::TARGET_32_LITTLE:
2846       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2847                                            dynsym_xindex, of);
2848       break;
2849 #endif
2850 #ifdef HAVE_TARGET_32_BIG
2851     case Parameters::TARGET_32_BIG:
2852       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2853                                           dynsym_xindex, of);
2854       break;
2855 #endif
2856 #ifdef HAVE_TARGET_64_LITTLE
2857     case Parameters::TARGET_64_LITTLE:
2858       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2859                                            dynsym_xindex, of);
2860       break;
2861 #endif
2862 #ifdef HAVE_TARGET_64_BIG
2863     case Parameters::TARGET_64_BIG:
2864       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2865                                           dynsym_xindex, of);
2866       break;
2867 #endif
2868     default:
2869       gold_unreachable();
2870     }
2871 }
2872
2873 // Write out the global symbols.
2874
2875 template<int size, bool big_endian>
2876 void
2877 Symbol_table::sized_write_globals(const Stringpool* sympool,
2878                                   const Stringpool* dynpool,
2879                                   Output_symtab_xindex* symtab_xindex,
2880                                   Output_symtab_xindex* dynsym_xindex,
2881                                   Output_file* of) const
2882 {
2883   const Target& target = parameters->target();
2884
2885   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2886
2887   const unsigned int output_count = this->output_count_;
2888   const section_size_type oview_size = output_count * sym_size;
2889   const unsigned int first_global_index = this->first_global_index_;
2890   unsigned char* psyms;
2891   if (this->offset_ == 0 || output_count == 0)
2892     psyms = NULL;
2893   else
2894     psyms = of->get_output_view(this->offset_, oview_size);
2895
2896   const unsigned int dynamic_count = this->dynamic_count_;
2897   const section_size_type dynamic_size = dynamic_count * sym_size;
2898   const unsigned int first_dynamic_global_index =
2899     this->first_dynamic_global_index_;
2900   unsigned char* dynamic_view;
2901   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2902     dynamic_view = NULL;
2903   else
2904     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2905
2906   for (Symbol_table_type::const_iterator p = this->table_.begin();
2907        p != this->table_.end();
2908        ++p)
2909     {
2910       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2911
2912       // Possibly warn about unresolved symbols in shared libraries.
2913       this->warn_about_undefined_dynobj_symbol(sym);
2914
2915       unsigned int sym_index = sym->symtab_index();
2916       unsigned int dynsym_index;
2917       if (dynamic_view == NULL)
2918         dynsym_index = -1U;
2919       else
2920         dynsym_index = sym->dynsym_index();
2921
2922       if (sym_index == -1U && dynsym_index == -1U)
2923         {
2924           // This symbol is not included in the output file.
2925           continue;
2926         }
2927
2928       unsigned int shndx;
2929       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2930       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2931       elfcpp::STB binding = sym->binding();
2932
2933       // If --weak-unresolved-symbols is set, change binding of unresolved
2934       // global symbols to STB_WEAK.
2935       if (parameters->options().weak_unresolved_symbols()
2936           && binding == elfcpp::STB_GLOBAL
2937           && sym->is_undefined())
2938         binding = elfcpp::STB_WEAK;
2939
2940       // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2941       if (binding == elfcpp::STB_GNU_UNIQUE
2942           && !parameters->options().gnu_unique())
2943         binding = elfcpp::STB_GLOBAL;
2944
2945       switch (sym->source())
2946         {
2947         case Symbol::FROM_OBJECT:
2948           {
2949             bool is_ordinary;
2950             unsigned int in_shndx = sym->shndx(&is_ordinary);
2951
2952             if (!is_ordinary
2953                 && in_shndx != elfcpp::SHN_ABS
2954                 && !Symbol::is_common_shndx(in_shndx))
2955               {
2956                 gold_error(_("%s: unsupported symbol section 0x%x"),
2957                            sym->demangled_name().c_str(), in_shndx);
2958                 shndx = in_shndx;
2959               }
2960             else
2961               {
2962                 Object* symobj = sym->object();
2963                 if (symobj->is_dynamic())
2964                   {
2965                     if (sym->needs_dynsym_value())
2966                       dynsym_value = target.dynsym_value(sym);
2967                     shndx = elfcpp::SHN_UNDEF;
2968                     if (sym->is_undef_binding_weak())
2969                       binding = elfcpp::STB_WEAK;
2970                     else
2971                       binding = elfcpp::STB_GLOBAL;
2972                   }
2973                 else if (symobj->pluginobj() != NULL)
2974                   shndx = elfcpp::SHN_UNDEF;
2975                 else if (in_shndx == elfcpp::SHN_UNDEF
2976                          || (!is_ordinary
2977                              && (in_shndx == elfcpp::SHN_ABS
2978                                  || Symbol::is_common_shndx(in_shndx))))
2979                   shndx = in_shndx;
2980                 else
2981                   {
2982                     Relobj* relobj = static_cast<Relobj*>(symobj);
2983                     Output_section* os = relobj->output_section(in_shndx);
2984                     if (this->is_section_folded(relobj, in_shndx))
2985                       {
2986                         // This global symbol must be written out even though
2987                         // it is folded.
2988                         // Get the os of the section it is folded onto.
2989                         Section_id folded =
2990                              this->icf_->get_folded_section(relobj, in_shndx);
2991                         gold_assert(folded.first !=NULL);
2992                         Relobj* folded_obj = 
2993                           reinterpret_cast<Relobj*>(folded.first);
2994                         os = folded_obj->output_section(folded.second);  
2995                         gold_assert(os != NULL);
2996                       }
2997                     gold_assert(os != NULL);
2998                     shndx = os->out_shndx();
2999
3000                     if (shndx >= elfcpp::SHN_LORESERVE)
3001                       {
3002                         if (sym_index != -1U)
3003                           symtab_xindex->add(sym_index, shndx);
3004                         if (dynsym_index != -1U)
3005                           dynsym_xindex->add(dynsym_index, shndx);
3006                         shndx = elfcpp::SHN_XINDEX;
3007                       }
3008
3009                     // In object files symbol values are section
3010                     // relative.
3011                     if (parameters->options().relocatable())
3012                       sym_value -= os->address();
3013                   }
3014               }
3015           }
3016           break;
3017
3018         case Symbol::IN_OUTPUT_DATA:
3019           {
3020             Output_data* od = sym->output_data();
3021
3022             shndx = od->out_shndx();
3023             if (shndx >= elfcpp::SHN_LORESERVE)
3024               {
3025                 if (sym_index != -1U)
3026                   symtab_xindex->add(sym_index, shndx);
3027                 if (dynsym_index != -1U)
3028                   dynsym_xindex->add(dynsym_index, shndx);
3029                 shndx = elfcpp::SHN_XINDEX;
3030               }
3031
3032             // In object files symbol values are section
3033             // relative.
3034             if (parameters->options().relocatable())
3035               sym_value -= od->address();
3036           }
3037           break;
3038
3039         case Symbol::IN_OUTPUT_SEGMENT:
3040           shndx = elfcpp::SHN_ABS;
3041           break;
3042
3043         case Symbol::IS_CONSTANT:
3044           shndx = elfcpp::SHN_ABS;
3045           break;
3046
3047         case Symbol::IS_UNDEFINED:
3048           shndx = elfcpp::SHN_UNDEF;
3049           break;
3050
3051         default:
3052           gold_unreachable();
3053         }
3054
3055       if (sym_index != -1U)
3056         {
3057           sym_index -= first_global_index;
3058           gold_assert(sym_index < output_count);
3059           unsigned char* ps = psyms + (sym_index * sym_size);
3060           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3061                                                      binding, sympool, ps);
3062         }
3063
3064       if (dynsym_index != -1U)
3065         {
3066           dynsym_index -= first_dynamic_global_index;
3067           gold_assert(dynsym_index < dynamic_count);
3068           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3069           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3070                                                      binding, dynpool, pd);
3071           // Allow a target to adjust dynamic symbol value.
3072           parameters->target().adjust_dyn_symbol(sym, pd);
3073         }
3074     }
3075
3076   of->write_output_view(this->offset_, oview_size, psyms);
3077   if (dynamic_view != NULL)
3078     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3079 }
3080
3081 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
3082 // strtab holding the name.
3083
3084 template<int size, bool big_endian>
3085 void
3086 Symbol_table::sized_write_symbol(
3087     Sized_symbol<size>* sym,
3088     typename elfcpp::Elf_types<size>::Elf_Addr value,
3089     unsigned int shndx,
3090     elfcpp::STB binding,
3091     const Stringpool* pool,
3092     unsigned char* p) const
3093 {
3094   elfcpp::Sym_write<size, big_endian> osym(p);
3095   if (sym->version() == NULL || !parameters->options().relocatable())
3096     osym.put_st_name(pool->get_offset(sym->name()));
3097   else
3098     osym.put_st_name(pool->get_offset(sym->versioned_name()));
3099   osym.put_st_value(value);
3100   // Use a symbol size of zero for undefined symbols from shared libraries.
3101   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3102     osym.put_st_size(0);
3103   else
3104     osym.put_st_size(sym->symsize());
3105   elfcpp::STT type = sym->type();
3106   // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3107   if (type == elfcpp::STT_GNU_IFUNC
3108       && sym->is_from_dynobj())
3109     type = elfcpp::STT_FUNC;
3110   // A version script may have overridden the default binding.
3111   if (sym->is_forced_local())
3112     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3113   else
3114     osym.put_st_info(elfcpp::elf_st_info(binding, type));
3115   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3116   osym.put_st_shndx(shndx);
3117 }
3118
3119 // Check for unresolved symbols in shared libraries.  This is
3120 // controlled by the --allow-shlib-undefined option.
3121
3122 // We only warn about libraries for which we have seen all the
3123 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
3124 // which were not seen in this link.  If we didn't see a DT_NEEDED
3125 // entry, we aren't going to be able to reliably report whether the
3126 // symbol is undefined.
3127
3128 // We also don't warn about libraries found in a system library
3129 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3130 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
3131 // can have undefined references satisfied by ld-linux.so.
3132
3133 inline void
3134 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3135 {
3136   bool dummy;
3137   if (sym->source() == Symbol::FROM_OBJECT
3138       && sym->object()->is_dynamic()
3139       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3140       && sym->binding() != elfcpp::STB_WEAK
3141       && !parameters->options().allow_shlib_undefined()
3142       && !parameters->target().is_defined_by_abi(sym)
3143       && !sym->object()->is_in_system_directory())
3144     {
3145       // A very ugly cast.
3146       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3147       if (!dynobj->has_unknown_needed_entries())
3148         gold_undefined_symbol(sym);
3149     }
3150 }
3151
3152 // Write out a section symbol.  Return the update offset.
3153
3154 void
3155 Symbol_table::write_section_symbol(const Output_section* os,
3156                                    Output_symtab_xindex* symtab_xindex,
3157                                    Output_file* of,
3158                                    off_t offset) const
3159 {
3160   switch (parameters->size_and_endianness())
3161     {
3162 #ifdef HAVE_TARGET_32_LITTLE
3163     case Parameters::TARGET_32_LITTLE:
3164       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3165                                                   offset);
3166       break;
3167 #endif
3168 #ifdef HAVE_TARGET_32_BIG
3169     case Parameters::TARGET_32_BIG:
3170       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3171                                                  offset);
3172       break;
3173 #endif
3174 #ifdef HAVE_TARGET_64_LITTLE
3175     case Parameters::TARGET_64_LITTLE:
3176       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3177                                                   offset);
3178       break;
3179 #endif
3180 #ifdef HAVE_TARGET_64_BIG
3181     case Parameters::TARGET_64_BIG:
3182       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3183                                                  offset);
3184       break;
3185 #endif
3186     default:
3187       gold_unreachable();
3188     }
3189 }
3190
3191 // Write out a section symbol, specialized for size and endianness.
3192
3193 template<int size, bool big_endian>
3194 void
3195 Symbol_table::sized_write_section_symbol(const Output_section* os,
3196                                          Output_symtab_xindex* symtab_xindex,
3197                                          Output_file* of,
3198                                          off_t offset) const
3199 {
3200   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3201
3202   unsigned char* pov = of->get_output_view(offset, sym_size);
3203
3204   elfcpp::Sym_write<size, big_endian> osym(pov);
3205   osym.put_st_name(0);
3206   if (parameters->options().relocatable())
3207     osym.put_st_value(0);
3208   else
3209     osym.put_st_value(os->address());
3210   osym.put_st_size(0);
3211   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3212                                        elfcpp::STT_SECTION));
3213   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3214
3215   unsigned int shndx = os->out_shndx();
3216   if (shndx >= elfcpp::SHN_LORESERVE)
3217     {
3218       symtab_xindex->add(os->symtab_index(), shndx);
3219       shndx = elfcpp::SHN_XINDEX;
3220     }
3221   osym.put_st_shndx(shndx);
3222
3223   of->write_output_view(offset, sym_size, pov);
3224 }
3225
3226 // Print statistical information to stderr.  This is used for --stats.
3227
3228 void
3229 Symbol_table::print_stats() const
3230 {
3231 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3232   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3233           program_name, this->table_.size(), this->table_.bucket_count());
3234 #else
3235   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3236           program_name, this->table_.size());
3237 #endif
3238   this->namepool_.print_stats("symbol table stringpool");
3239 }
3240
3241 // We check for ODR violations by looking for symbols with the same
3242 // name for which the debugging information reports that they were
3243 // defined in disjoint source locations.  When comparing the source
3244 // location, we consider instances with the same base filename to be
3245 // the same.  This is because different object files/shared libraries
3246 // can include the same header file using different paths, and
3247 // different optimization settings can make the line number appear to
3248 // be a couple lines off, and we don't want to report an ODR violation
3249 // in those cases.
3250
3251 // This struct is used to compare line information, as returned by
3252 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3253 // operator used with std::sort.
3254
3255 struct Odr_violation_compare
3256 {
3257   bool
3258   operator()(const std::string& s1, const std::string& s2) const
3259   {
3260     // Inputs should be of the form "dirname/filename:linenum" where
3261     // "dirname/" is optional.  We want to compare just the filename:linenum.
3262
3263     // Find the last '/' in each string.
3264     std::string::size_type s1begin = s1.rfind('/');
3265     std::string::size_type s2begin = s2.rfind('/');
3266     // If there was no '/' in a string, start at the beginning.
3267     if (s1begin == std::string::npos)
3268       s1begin = 0;
3269     if (s2begin == std::string::npos)
3270       s2begin = 0;
3271     return s1.compare(s1begin, std::string::npos,
3272                       s2, s2begin, std::string::npos) < 0;
3273   }
3274 };
3275
3276 // Returns all of the lines attached to LOC, not just the one the
3277 // instruction actually came from.
3278 std::vector<std::string>
3279 Symbol_table::linenos_from_loc(const Task* task,
3280                                const Symbol_location& loc)
3281 {
3282   // We need to lock the object in order to read it.  This
3283   // means that we have to run in a singleton Task.  If we
3284   // want to run this in a general Task for better
3285   // performance, we will need one Task for object, plus
3286   // appropriate locking to ensure that we don't conflict with
3287   // other uses of the object.  Also note, one_addr2line is not
3288   // currently thread-safe.
3289   Task_lock_obj<Object> tl(task, loc.object);
3290
3291   std::vector<std::string> result;
3292   Symbol_location code_loc = loc;
3293   parameters->target().function_location(&code_loc);
3294   // 16 is the size of the object-cache that one_addr2line should use.
3295   std::string canonical_result = Dwarf_line_info::one_addr2line(
3296       code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3297   if (!canonical_result.empty())
3298     result.push_back(canonical_result);
3299   return result;
3300 }
3301
3302 // OutputIterator that records if it was ever assigned to.  This
3303 // allows it to be used with std::set_intersection() to check for
3304 // intersection rather than computing the intersection.
3305 struct Check_intersection
3306 {
3307   Check_intersection()
3308     : value_(false)
3309   {}
3310
3311   bool had_intersection() const
3312   { return this->value_; }
3313
3314   Check_intersection& operator++()
3315   { return *this; }
3316
3317   Check_intersection& operator*()
3318   { return *this; }
3319
3320   template<typename T>
3321   Check_intersection& operator=(const T&)
3322   {
3323     this->value_ = true;
3324     return *this;
3325   }
3326
3327  private:
3328   bool value_;
3329 };
3330
3331 // Check candidate_odr_violations_ to find symbols with the same name
3332 // but apparently different definitions (different source-file/line-no
3333 // for each line assigned to the first instruction).
3334
3335 void
3336 Symbol_table::detect_odr_violations(const Task* task,
3337                                     const char* output_file_name) const
3338 {
3339   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3340        it != candidate_odr_violations_.end();
3341        ++it)
3342     {
3343       const char* const symbol_name = it->first;
3344
3345       std::string first_object_name;
3346       std::vector<std::string> first_object_linenos;
3347
3348       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3349           locs = it->second.begin();
3350       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3351           locs_end = it->second.end();
3352       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3353         {
3354           // Save the line numbers from the first definition to
3355           // compare to the other definitions.  Ideally, we'd compare
3356           // every definition to every other, but we don't want to
3357           // take O(N^2) time to do this.  This shortcut may cause
3358           // false negatives that appear or disappear depending on the
3359           // link order, but it won't cause false positives.
3360           first_object_name = locs->object->name();
3361           first_object_linenos = this->linenos_from_loc(task, *locs);
3362         }
3363       if (first_object_linenos.empty())
3364         continue;
3365
3366       // Sort by Odr_violation_compare to make std::set_intersection work.
3367       std::string first_object_canonical_result = first_object_linenos.back();
3368       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3369                 Odr_violation_compare());
3370
3371       for (; locs != locs_end; ++locs)
3372         {
3373           std::vector<std::string> linenos =
3374               this->linenos_from_loc(task, *locs);
3375           // linenos will be empty if we couldn't parse the debug info.
3376           if (linenos.empty())
3377             continue;
3378           // Sort by Odr_violation_compare to make std::set_intersection work.
3379           gold_assert(!linenos.empty());
3380           std::string second_object_canonical_result = linenos.back();
3381           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3382
3383           Check_intersection intersection_result =
3384               std::set_intersection(first_object_linenos.begin(),
3385                                     first_object_linenos.end(),
3386                                     linenos.begin(),
3387                                     linenos.end(),
3388                                     Check_intersection(),
3389                                     Odr_violation_compare());
3390           if (!intersection_result.had_intersection())
3391             {
3392               gold_warning(_("while linking %s: symbol '%s' defined in "
3393                              "multiple places (possible ODR violation):"),
3394                            output_file_name, demangle(symbol_name).c_str());
3395               // This only prints one location from each definition,
3396               // which may not be the location we expect to intersect
3397               // with another definition.  We could print the whole
3398               // set of locations, but that seems too verbose.
3399               fprintf(stderr, _("  %s from %s\n"),
3400                       first_object_canonical_result.c_str(),
3401                       first_object_name.c_str());
3402               fprintf(stderr, _("  %s from %s\n"),
3403                       second_object_canonical_result.c_str(),
3404                       locs->object->name().c_str());
3405               // Only print one broken pair, to avoid needing to
3406               // compare against a list of the disjoint definition
3407               // locations we've found so far.  (If we kept comparing
3408               // against just the first one, we'd get a lot of
3409               // redundant complaints about the second definition
3410               // location.)
3411               break;
3412             }
3413         }
3414     }
3415   // We only call one_addr2line() in this function, so we can clear its cache.
3416   Dwarf_line_info::clear_addr2line_cache();
3417 }
3418
3419 // Warnings functions.
3420
3421 // Add a new warning.
3422
3423 void
3424 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3425                       const std::string& warning)
3426 {
3427   name = symtab->canonicalize_name(name);
3428   this->warnings_[name].set(obj, warning);
3429 }
3430
3431 // Look through the warnings and mark the symbols for which we should
3432 // warn.  This is called during Layout::finalize when we know the
3433 // sources for all the symbols.
3434
3435 void
3436 Warnings::note_warnings(Symbol_table* symtab)
3437 {
3438   for (Warning_table::iterator p = this->warnings_.begin();
3439        p != this->warnings_.end();
3440        ++p)
3441     {
3442       Symbol* sym = symtab->lookup(p->first, NULL);
3443       if (sym != NULL
3444           && sym->source() == Symbol::FROM_OBJECT
3445           && sym->object() == p->second.object)
3446         sym->set_has_warning();
3447     }
3448 }
3449
3450 // Issue a warning.  This is called when we see a relocation against a
3451 // symbol for which has a warning.
3452
3453 template<int size, bool big_endian>
3454 void
3455 Warnings::issue_warning(const Symbol* sym,
3456                         const Relocate_info<size, big_endian>* relinfo,
3457                         size_t relnum, off_t reloffset) const
3458 {
3459   gold_assert(sym->has_warning());
3460
3461   // We don't want to issue a warning for a relocation against the
3462   // symbol in the same object file in which the symbol is defined.
3463   if (sym->object() == relinfo->object)
3464     return;
3465
3466   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3467   gold_assert(p != this->warnings_.end());
3468   gold_warning_at_location(relinfo, relnum, reloffset,
3469                            "%s", p->second.text.c_str());
3470 }
3471
3472 // Instantiate the templates we need.  We could use the configure
3473 // script to restrict this to only the ones needed for implemented
3474 // targets.
3475
3476 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3477 template
3478 void
3479 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3480 #endif
3481
3482 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3483 template
3484 void
3485 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3486 #endif
3487
3488 #ifdef HAVE_TARGET_32_LITTLE
3489 template
3490 void
3491 Symbol_table::add_from_relobj<32, false>(
3492     Sized_relobj_file<32, false>* relobj,
3493     const unsigned char* syms,
3494     size_t count,
3495     size_t symndx_offset,
3496     const char* sym_names,
3497     size_t sym_name_size,
3498     Sized_relobj_file<32, false>::Symbols* sympointers,
3499     size_t* defined);
3500 #endif
3501
3502 #ifdef HAVE_TARGET_32_BIG
3503 template
3504 void
3505 Symbol_table::add_from_relobj<32, true>(
3506     Sized_relobj_file<32, true>* relobj,
3507     const unsigned char* syms,
3508     size_t count,
3509     size_t symndx_offset,
3510     const char* sym_names,
3511     size_t sym_name_size,
3512     Sized_relobj_file<32, true>::Symbols* sympointers,
3513     size_t* defined);
3514 #endif
3515
3516 #ifdef HAVE_TARGET_64_LITTLE
3517 template
3518 void
3519 Symbol_table::add_from_relobj<64, false>(
3520     Sized_relobj_file<64, false>* relobj,
3521     const unsigned char* syms,
3522     size_t count,
3523     size_t symndx_offset,
3524     const char* sym_names,
3525     size_t sym_name_size,
3526     Sized_relobj_file<64, false>::Symbols* sympointers,
3527     size_t* defined);
3528 #endif
3529
3530 #ifdef HAVE_TARGET_64_BIG
3531 template
3532 void
3533 Symbol_table::add_from_relobj<64, true>(
3534     Sized_relobj_file<64, true>* relobj,
3535     const unsigned char* syms,
3536     size_t count,
3537     size_t symndx_offset,
3538     const char* sym_names,
3539     size_t sym_name_size,
3540     Sized_relobj_file<64, true>::Symbols* sympointers,
3541     size_t* defined);
3542 #endif
3543
3544 #ifdef HAVE_TARGET_32_LITTLE
3545 template
3546 Symbol*
3547 Symbol_table::add_from_pluginobj<32, false>(
3548     Sized_pluginobj<32, false>* obj,
3549     const char* name,
3550     const char* ver,
3551     elfcpp::Sym<32, false>* sym);
3552 #endif
3553
3554 #ifdef HAVE_TARGET_32_BIG
3555 template
3556 Symbol*
3557 Symbol_table::add_from_pluginobj<32, true>(
3558     Sized_pluginobj<32, true>* obj,
3559     const char* name,
3560     const char* ver,
3561     elfcpp::Sym<32, true>* sym);
3562 #endif
3563
3564 #ifdef HAVE_TARGET_64_LITTLE
3565 template
3566 Symbol*
3567 Symbol_table::add_from_pluginobj<64, false>(
3568     Sized_pluginobj<64, false>* obj,
3569     const char* name,
3570     const char* ver,
3571     elfcpp::Sym<64, false>* sym);
3572 #endif
3573
3574 #ifdef HAVE_TARGET_64_BIG
3575 template
3576 Symbol*
3577 Symbol_table::add_from_pluginobj<64, true>(
3578     Sized_pluginobj<64, true>* obj,
3579     const char* name,
3580     const char* ver,
3581     elfcpp::Sym<64, true>* sym);
3582 #endif
3583
3584 #ifdef HAVE_TARGET_32_LITTLE
3585 template
3586 void
3587 Symbol_table::add_from_dynobj<32, false>(
3588     Sized_dynobj<32, false>* dynobj,
3589     const unsigned char* syms,
3590     size_t count,
3591     const char* sym_names,
3592     size_t sym_name_size,
3593     const unsigned char* versym,
3594     size_t versym_size,
3595     const std::vector<const char*>* version_map,
3596     Sized_relobj_file<32, false>::Symbols* sympointers,
3597     size_t* defined);
3598 #endif
3599
3600 #ifdef HAVE_TARGET_32_BIG
3601 template
3602 void
3603 Symbol_table::add_from_dynobj<32, true>(
3604     Sized_dynobj<32, true>* dynobj,
3605     const unsigned char* syms,
3606     size_t count,
3607     const char* sym_names,
3608     size_t sym_name_size,
3609     const unsigned char* versym,
3610     size_t versym_size,
3611     const std::vector<const char*>* version_map,
3612     Sized_relobj_file<32, true>::Symbols* sympointers,
3613     size_t* defined);
3614 #endif
3615
3616 #ifdef HAVE_TARGET_64_LITTLE
3617 template
3618 void
3619 Symbol_table::add_from_dynobj<64, false>(
3620     Sized_dynobj<64, false>* dynobj,
3621     const unsigned char* syms,
3622     size_t count,
3623     const char* sym_names,
3624     size_t sym_name_size,
3625     const unsigned char* versym,
3626     size_t versym_size,
3627     const std::vector<const char*>* version_map,
3628     Sized_relobj_file<64, false>::Symbols* sympointers,
3629     size_t* defined);
3630 #endif
3631
3632 #ifdef HAVE_TARGET_64_BIG
3633 template
3634 void
3635 Symbol_table::add_from_dynobj<64, true>(
3636     Sized_dynobj<64, true>* dynobj,
3637     const unsigned char* syms,
3638     size_t count,
3639     const char* sym_names,
3640     size_t sym_name_size,
3641     const unsigned char* versym,
3642     size_t versym_size,
3643     const std::vector<const char*>* version_map,
3644     Sized_relobj_file<64, true>::Symbols* sympointers,
3645     size_t* defined);
3646 #endif
3647
3648 #ifdef HAVE_TARGET_32_LITTLE
3649 template
3650 Sized_symbol<32>*
3651 Symbol_table::add_from_incrobj(
3652     Object* obj,
3653     const char* name,
3654     const char* ver,
3655     elfcpp::Sym<32, false>* sym);
3656 #endif
3657
3658 #ifdef HAVE_TARGET_32_BIG
3659 template
3660 Sized_symbol<32>*
3661 Symbol_table::add_from_incrobj(
3662     Object* obj,
3663     const char* name,
3664     const char* ver,
3665     elfcpp::Sym<32, true>* sym);
3666 #endif
3667
3668 #ifdef HAVE_TARGET_64_LITTLE
3669 template
3670 Sized_symbol<64>*
3671 Symbol_table::add_from_incrobj(
3672     Object* obj,
3673     const char* name,
3674     const char* ver,
3675     elfcpp::Sym<64, false>* sym);
3676 #endif
3677
3678 #ifdef HAVE_TARGET_64_BIG
3679 template
3680 Sized_symbol<64>*
3681 Symbol_table::add_from_incrobj(
3682     Object* obj,
3683     const char* name,
3684     const char* ver,
3685     elfcpp::Sym<64, true>* sym);
3686 #endif
3687
3688 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3689 template
3690 void
3691 Symbol_table::define_with_copy_reloc<32>(
3692     Sized_symbol<32>* sym,
3693     Output_data* posd,
3694     elfcpp::Elf_types<32>::Elf_Addr value);
3695 #endif
3696
3697 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3698 template
3699 void
3700 Symbol_table::define_with_copy_reloc<64>(
3701     Sized_symbol<64>* sym,
3702     Output_data* posd,
3703     elfcpp::Elf_types<64>::Elf_Addr value);
3704 #endif
3705
3706 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3707 template
3708 void
3709 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3710                                    Output_data* od, Value_type value,
3711                                    Size_type symsize, elfcpp::STT type,
3712                                    elfcpp::STB binding,
3713                                    elfcpp::STV visibility,
3714                                    unsigned char nonvis,
3715                                    bool offset_is_from_end,
3716                                    bool is_predefined);
3717 #endif
3718
3719 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3720 template
3721 void
3722 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3723                                    Output_data* od, Value_type value,
3724                                    Size_type symsize, elfcpp::STT type,
3725                                    elfcpp::STB binding,
3726                                    elfcpp::STV visibility,
3727                                    unsigned char nonvis,
3728                                    bool offset_is_from_end,
3729                                    bool is_predefined);
3730 #endif
3731
3732 #ifdef HAVE_TARGET_32_LITTLE
3733 template
3734 void
3735 Warnings::issue_warning<32, false>(const Symbol* sym,
3736                                    const Relocate_info<32, false>* relinfo,
3737                                    size_t relnum, off_t reloffset) const;
3738 #endif
3739
3740 #ifdef HAVE_TARGET_32_BIG
3741 template
3742 void
3743 Warnings::issue_warning<32, true>(const Symbol* sym,
3744                                   const Relocate_info<32, true>* relinfo,
3745                                   size_t relnum, off_t reloffset) const;
3746 #endif
3747
3748 #ifdef HAVE_TARGET_64_LITTLE
3749 template
3750 void
3751 Warnings::issue_warning<64, false>(const Symbol* sym,
3752                                    const Relocate_info<64, false>* relinfo,
3753                                    size_t relnum, off_t reloffset) const;
3754 #endif
3755
3756 #ifdef HAVE_TARGET_64_BIG
3757 template
3758 void
3759 Warnings::issue_warning<64, true>(const Symbol* sym,
3760                                   const Relocate_info<64, true>* relinfo,
3761                                   size_t relnum, off_t reloffset) const;
3762 #endif
3763
3764 } // End namespace gold.