* common.cc (Symbol_table::do_allocate_commons_list): For incremental
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol.  This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55                     elfcpp::STT type, elfcpp::STB binding,
56                     elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91   if (!parameters->options().do_demangle())
92     return name;
93
94   // cplus_demangle allocates memory for the result it returns,
95   // and returns NULL if the name is already demangled.
96   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97   if (demangled_name == NULL)
98     return name;
99
100   std::string retval(demangled_name);
101   free(demangled_name);
102   return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108   return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116                          const elfcpp::Sym<size, big_endian>& sym,
117                          unsigned int st_shndx, bool is_ordinary)
118 {
119   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120                     sym.get_st_visibility(), sym.get_st_nonvis());
121   this->u_.from_object.object = object;
122   this->u_.from_object.shndx = st_shndx;
123   this->is_ordinary_shndx_ = is_ordinary;
124   this->source_ = FROM_OBJECT;
125   this->in_reg_ = !object->is_dynamic();
126   this->in_dyn_ = object->is_dynamic();
127   this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135                               Output_data* od, elfcpp::STT type,
136                               elfcpp::STB binding, elfcpp::STV visibility,
137                               unsigned char nonvis, bool offset_is_from_end,
138                               bool is_predefined)
139 {
140   this->init_fields(name, version, type, binding, visibility, nonvis);
141   this->u_.in_output_data.output_data = od;
142   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143   this->source_ = IN_OUTPUT_DATA;
144   this->in_reg_ = true;
145   this->in_real_elf_ = true;
146   this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154                                  Output_segment* os, elfcpp::STT type,
155                                  elfcpp::STB binding, elfcpp::STV visibility,
156                                  unsigned char nonvis,
157                                  Segment_offset_base offset_base,
158                                  bool is_predefined)
159 {
160   this->init_fields(name, version, type, binding, visibility, nonvis);
161   this->u_.in_output_segment.output_segment = os;
162   this->u_.in_output_segment.offset_base = offset_base;
163   this->source_ = IN_OUTPUT_SEGMENT;
164   this->in_reg_ = true;
165   this->in_real_elf_ = true;
166   this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174                            elfcpp::STT type, elfcpp::STB binding,
175                            elfcpp::STV visibility, unsigned char nonvis,
176                            bool is_predefined)
177 {
178   this->init_fields(name, version, type, binding, visibility, nonvis);
179   this->source_ = IS_CONSTANT;
180   this->in_reg_ = true;
181   this->in_real_elf_ = true;
182   this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190                             elfcpp::STT type, elfcpp::STB binding,
191                             elfcpp::STV visibility, unsigned char nonvis)
192 {
193   this->init_fields(name, version, type, binding, visibility, nonvis);
194   this->dynsym_index_ = -1U;
195   this->source_ = IS_UNDEFINED;
196   this->in_reg_ = true;
197   this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205   gold_assert(this->is_common());
206   this->source_ = IN_OUTPUT_DATA;
207   this->u_.in_output_data.output_data = od;
208   this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217                                 Object* object,
218                                 const elfcpp::Sym<size, big_endian>& sym,
219                                 unsigned int st_shndx, bool is_ordinary)
220 {
221   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222   this->value_ = sym.get_st_value();
223   this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232                                      Output_data* od, Value_type value,
233                                      Size_type symsize, elfcpp::STT type,
234                                      elfcpp::STB binding,
235                                      elfcpp::STV visibility,
236                                      unsigned char nonvis,
237                                      bool offset_is_from_end,
238                                      bool is_predefined)
239 {
240   this->init_base_output_data(name, version, od, type, binding, visibility,
241                               nonvis, offset_is_from_end, is_predefined);
242   this->value_ = value;
243   this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252                                         Output_segment* os, Value_type value,
253                                         Size_type symsize, elfcpp::STT type,
254                                         elfcpp::STB binding,
255                                         elfcpp::STV visibility,
256                                         unsigned char nonvis,
257                                         Segment_offset_base offset_base,
258                                         bool is_predefined)
259 {
260   this->init_base_output_segment(name, version, os, type, binding, visibility,
261                                  nonvis, offset_base, is_predefined);
262   this->value_ = value;
263   this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272                                   Value_type value, Size_type symsize,
273                                   elfcpp::STT type, elfcpp::STB binding,
274                                   elfcpp::STV visibility, unsigned char nonvis,
275                                   bool is_predefined)
276 {
277   this->init_base_constant(name, version, type, binding, visibility, nonvis,
278                            is_predefined);
279   this->value_ = value;
280   this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288                                    elfcpp::STT type, elfcpp::STB binding,
289                                    elfcpp::STV visibility, unsigned char nonvis)
290 {
291   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292   this->value_ = 0;
293   this->symsize_ = 0;
294 }
295
296 // Return true if SHNDX represents a common symbol.
297
298 bool
299 Symbol::is_common_shndx(unsigned int shndx)
300 {
301   return (shndx == elfcpp::SHN_COMMON
302           || shndx == parameters->target().small_common_shndx()
303           || shndx == parameters->target().large_common_shndx());
304 }
305
306 // Allocate a common symbol.
307
308 template<int size>
309 void
310 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
311 {
312   this->allocate_base_common(od);
313   this->value_ = value;
314 }
315
316 // The ""'s around str ensure str is a string literal, so sizeof works.
317 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
318
319 // Return true if this symbol should be added to the dynamic symbol
320 // table.
321
322 inline bool
323 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
324 {
325   // If the symbol is only present on plugin files, the plugin decided we
326   // don't need it.
327   if (!this->in_real_elf())
328     return false;
329
330   // If the symbol is used by a dynamic relocation, we need to add it.
331   if (this->needs_dynsym_entry())
332     return true;
333
334   // If this symbol's section is not added, the symbol need not be added. 
335   // The section may have been GCed.  Note that export_dynamic is being 
336   // overridden here.  This should not be done for shared objects.
337   if (parameters->options().gc_sections() 
338       && !parameters->options().shared()
339       && this->source() == Symbol::FROM_OBJECT
340       && !this->object()->is_dynamic())
341     {
342       Relobj* relobj = static_cast<Relobj*>(this->object());
343       bool is_ordinary;
344       unsigned int shndx = this->shndx(&is_ordinary);
345       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
346           && !relobj->is_section_included(shndx)
347           && !symtab->is_section_folded(relobj, shndx))
348         return false;
349     }
350
351   // If the symbol was forced local in a version script, do not add it.
352   if (this->is_forced_local())
353     return false;
354
355   // If the symbol was forced dynamic in a --dynamic-list file, add it.
356   if (parameters->options().in_dynamic_list(this->name()))
357     return true;
358
359   // If dynamic-list-data was specified, add any STT_OBJECT.
360   if (parameters->options().dynamic_list_data()
361       && !this->is_from_dynobj()
362       && this->type() == elfcpp::STT_OBJECT)
363     return true;
364
365   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
366   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
367   if ((parameters->options().dynamic_list_cpp_new()
368        || parameters->options().dynamic_list_cpp_typeinfo())
369       && !this->is_from_dynobj())
370     {
371       // TODO(csilvers): We could probably figure out if we're an operator
372       //                 new/delete or typeinfo without the need to demangle.
373       char* demangled_name = cplus_demangle(this->name(),
374                                             DMGL_ANSI | DMGL_PARAMS);
375       if (demangled_name == NULL)
376         {
377           // Not a C++ symbol, so it can't satisfy these flags
378         }
379       else if (parameters->options().dynamic_list_cpp_new()
380                && (strprefix(demangled_name, "operator new")
381                    || strprefix(demangled_name, "operator delete")))
382         {
383           free(demangled_name);
384           return true;
385         }
386       else if (parameters->options().dynamic_list_cpp_typeinfo()
387                && (strprefix(demangled_name, "typeinfo name for")
388                    || strprefix(demangled_name, "typeinfo for")))
389         {
390           free(demangled_name);
391           return true;
392         }
393       else
394         free(demangled_name);
395     }
396
397   // If exporting all symbols or building a shared library,
398   // and the symbol is defined in a regular object and is
399   // externally visible, we need to add it.
400   if ((parameters->options().export_dynamic() || parameters->options().shared())
401       && !this->is_from_dynobj()
402       && this->is_externally_visible())
403     return true;
404
405   return false;
406 }
407
408 // Return true if the final value of this symbol is known at link
409 // time.
410
411 bool
412 Symbol::final_value_is_known() const
413 {
414   // If we are not generating an executable, then no final values are
415   // known, since they will change at runtime.
416   if (parameters->options().output_is_position_independent()
417       || parameters->options().relocatable())
418     return false;
419
420   // If the symbol is not from an object file, and is not undefined,
421   // then it is defined, and known.
422   if (this->source_ != FROM_OBJECT)
423     {
424       if (this->source_ != IS_UNDEFINED)
425         return true;
426     }
427   else
428     {
429       // If the symbol is from a dynamic object, then the final value
430       // is not known.
431       if (this->object()->is_dynamic())
432         return false;
433
434       // If the symbol is not undefined (it is defined or common),
435       // then the final value is known.
436       if (!this->is_undefined())
437         return true;
438     }
439
440   // If the symbol is undefined, then whether the final value is known
441   // depends on whether we are doing a static link.  If we are doing a
442   // dynamic link, then the final value could be filled in at runtime.
443   // This could reasonably be the case for a weak undefined symbol.
444   return parameters->doing_static_link();
445 }
446
447 // Return the output section where this symbol is defined.
448
449 Output_section*
450 Symbol::output_section() const
451 {
452   switch (this->source_)
453     {
454     case FROM_OBJECT:
455       {
456         unsigned int shndx = this->u_.from_object.shndx;
457         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
458           {
459             gold_assert(!this->u_.from_object.object->is_dynamic());
460             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
461             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
462             return relobj->output_section(shndx);
463           }
464         return NULL;
465       }
466
467     case IN_OUTPUT_DATA:
468       return this->u_.in_output_data.output_data->output_section();
469
470     case IN_OUTPUT_SEGMENT:
471     case IS_CONSTANT:
472     case IS_UNDEFINED:
473       return NULL;
474
475     default:
476       gold_unreachable();
477     }
478 }
479
480 // Set the symbol's output section.  This is used for symbols defined
481 // in scripts.  This should only be called after the symbol table has
482 // been finalized.
483
484 void
485 Symbol::set_output_section(Output_section* os)
486 {
487   switch (this->source_)
488     {
489     case FROM_OBJECT:
490     case IN_OUTPUT_DATA:
491       gold_assert(this->output_section() == os);
492       break;
493     case IS_CONSTANT:
494       this->source_ = IN_OUTPUT_DATA;
495       this->u_.in_output_data.output_data = os;
496       this->u_.in_output_data.offset_is_from_end = false;
497       break;
498     case IN_OUTPUT_SEGMENT:
499     case IS_UNDEFINED:
500     default:
501       gold_unreachable();
502     }
503 }
504
505 // Class Symbol_table.
506
507 Symbol_table::Symbol_table(unsigned int count,
508                            const Version_script_info& version_script)
509   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
510     forwarders_(), commons_(), tls_commons_(), small_commons_(),
511     large_commons_(), forced_locals_(), warnings_(),
512     version_script_(version_script), gc_(NULL), icf_(NULL)
513 {
514   namepool_.reserve(count);
515 }
516
517 Symbol_table::~Symbol_table()
518 {
519 }
520
521 // The symbol table key equality function.  This is called with
522 // Stringpool keys.
523
524 inline bool
525 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
526                                           const Symbol_table_key& k2) const
527 {
528   return k1.first == k2.first && k1.second == k2.second;
529 }
530
531 bool
532 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
533 {
534   return (parameters->options().icf_enabled()
535           && this->icf_->is_section_folded(obj, shndx));
536 }
537
538 // For symbols that have been listed with -u option, add them to the
539 // work list to avoid gc'ing them.
540
541 void 
542 Symbol_table::gc_mark_undef_symbols(Layout* layout)
543 {
544   for (options::String_set::const_iterator p =
545          parameters->options().undefined_begin();
546        p != parameters->options().undefined_end();
547        ++p)
548     {
549       const char* name = p->c_str();
550       Symbol* sym = this->lookup(name);
551       gold_assert(sym != NULL);
552       if (sym->source() == Symbol::FROM_OBJECT 
553           && !sym->object()->is_dynamic())
554         {
555           Relobj* obj = static_cast<Relobj*>(sym->object());
556           bool is_ordinary;
557           unsigned int shndx = sym->shndx(&is_ordinary);
558           if (is_ordinary)
559             {
560               gold_assert(this->gc_ != NULL);
561               this->gc_->worklist().push(Section_id(obj, shndx));
562             }
563         }
564     }
565
566   for (Script_options::referenced_const_iterator p =
567          layout->script_options()->referenced_begin();
568        p != layout->script_options()->referenced_end();
569        ++p)
570     {
571       Symbol* sym = this->lookup(p->c_str());
572       gold_assert(sym != NULL);
573       if (sym->source() == Symbol::FROM_OBJECT
574           && !sym->object()->is_dynamic())
575         {
576           Relobj* obj = static_cast<Relobj*>(sym->object());
577           bool is_ordinary;
578           unsigned int shndx = sym->shndx(&is_ordinary);
579           if (is_ordinary)
580             {
581               gold_assert(this->gc_ != NULL);
582               this->gc_->worklist().push(Section_id(obj, shndx));
583             }
584         }
585     }
586 }
587
588 void
589 Symbol_table::gc_mark_symbol_for_shlib(Symbol* sym)
590 {
591   if (!sym->is_from_dynobj() 
592       && sym->is_externally_visible())
593     {
594       //Add the object and section to the work list.
595       Relobj* obj = static_cast<Relobj*>(sym->object());
596       bool is_ordinary;
597       unsigned int shndx = sym->shndx(&is_ordinary);
598       if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
599         {
600           gold_assert(this->gc_!= NULL);
601           this->gc_->worklist().push(Section_id(obj, shndx));
602         }
603     }
604 }
605
606 // When doing garbage collection, keep symbols that have been seen in
607 // dynamic objects.
608 inline void 
609 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
610 {
611   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
612       && !sym->object()->is_dynamic())
613     {
614       Relobj* obj = static_cast<Relobj*>(sym->object()); 
615       bool is_ordinary;
616       unsigned int shndx = sym->shndx(&is_ordinary);
617       if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
618         {
619           gold_assert(this->gc_ != NULL);
620           this->gc_->worklist().push(Section_id(obj, shndx));
621         }
622     }
623 }
624
625 // Make TO a symbol which forwards to FROM.
626
627 void
628 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
629 {
630   gold_assert(from != to);
631   gold_assert(!from->is_forwarder() && !to->is_forwarder());
632   this->forwarders_[from] = to;
633   from->set_forwarder();
634 }
635
636 // Resolve the forwards from FROM, returning the real symbol.
637
638 Symbol*
639 Symbol_table::resolve_forwards(const Symbol* from) const
640 {
641   gold_assert(from->is_forwarder());
642   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
643     this->forwarders_.find(from);
644   gold_assert(p != this->forwarders_.end());
645   return p->second;
646 }
647
648 // Look up a symbol by name.
649
650 Symbol*
651 Symbol_table::lookup(const char* name, const char* version) const
652 {
653   Stringpool::Key name_key;
654   name = this->namepool_.find(name, &name_key);
655   if (name == NULL)
656     return NULL;
657
658   Stringpool::Key version_key = 0;
659   if (version != NULL)
660     {
661       version = this->namepool_.find(version, &version_key);
662       if (version == NULL)
663         return NULL;
664     }
665
666   Symbol_table_key key(name_key, version_key);
667   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
668   if (p == this->table_.end())
669     return NULL;
670   return p->second;
671 }
672
673 // Resolve a Symbol with another Symbol.  This is only used in the
674 // unusual case where there are references to both an unversioned
675 // symbol and a symbol with a version, and we then discover that that
676 // version is the default version.  Because this is unusual, we do
677 // this the slow way, by converting back to an ELF symbol.
678
679 template<int size, bool big_endian>
680 void
681 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
682 {
683   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
684   elfcpp::Sym_write<size, big_endian> esym(buf);
685   // We don't bother to set the st_name or the st_shndx field.
686   esym.put_st_value(from->value());
687   esym.put_st_size(from->symsize());
688   esym.put_st_info(from->binding(), from->type());
689   esym.put_st_other(from->visibility(), from->nonvis());
690   bool is_ordinary;
691   unsigned int shndx = from->shndx(&is_ordinary);
692   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
693                 from->version());
694   if (from->in_reg())
695     to->set_in_reg();
696   if (from->in_dyn())
697     to->set_in_dyn();
698   if (parameters->options().gc_sections())
699     this->gc_mark_dyn_syms(to);
700 }
701
702 // Record that a symbol is forced to be local by a version script or
703 // by visibility.
704
705 void
706 Symbol_table::force_local(Symbol* sym)
707 {
708   if (!sym->is_defined() && !sym->is_common())
709     return;
710   if (sym->is_forced_local())
711     {
712       // We already got this one.
713       return;
714     }
715   sym->set_is_forced_local();
716   this->forced_locals_.push_back(sym);
717 }
718
719 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
720 // is only called for undefined symbols, when at least one --wrap
721 // option was used.
722
723 const char*
724 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
725 {
726   // For some targets, we need to ignore a specific character when
727   // wrapping, and add it back later.
728   char prefix = '\0';
729   if (name[0] == parameters->target().wrap_char())
730     {
731       prefix = name[0];
732       ++name;
733     }
734
735   if (parameters->options().is_wrap(name))
736     {
737       // Turn NAME into __wrap_NAME.
738       std::string s;
739       if (prefix != '\0')
740         s += prefix;
741       s += "__wrap_";
742       s += name;
743
744       // This will give us both the old and new name in NAMEPOOL_, but
745       // that is OK.  Only the versions we need will wind up in the
746       // real string table in the output file.
747       return this->namepool_.add(s.c_str(), true, name_key);
748     }
749
750   const char* const real_prefix = "__real_";
751   const size_t real_prefix_length = strlen(real_prefix);
752   if (strncmp(name, real_prefix, real_prefix_length) == 0
753       && parameters->options().is_wrap(name + real_prefix_length))
754     {
755       // Turn __real_NAME into NAME.
756       std::string s;
757       if (prefix != '\0')
758         s += prefix;
759       s += name + real_prefix_length;
760       return this->namepool_.add(s.c_str(), true, name_key);
761     }
762
763   return name;
764 }
765
766 // This is called when we see a symbol NAME/VERSION, and the symbol
767 // already exists in the symbol table, and VERSION is marked as being
768 // the default version.  SYM is the NAME/VERSION symbol we just added.
769 // DEFAULT_IS_NEW is true if this is the first time we have seen the
770 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
771
772 template<int size, bool big_endian>
773 void
774 Symbol_table::define_default_version(Sized_symbol<size>* sym,
775                                      bool default_is_new,
776                                      Symbol_table_type::iterator pdef)
777 {
778   if (default_is_new)
779     {
780       // This is the first time we have seen NAME/NULL.  Make
781       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
782       // version.
783       pdef->second = sym;
784       sym->set_is_default();
785     }
786   else if (pdef->second == sym)
787     {
788       // NAME/NULL already points to NAME/VERSION.  Don't mark the
789       // symbol as the default if it is not already the default.
790     }
791   else
792     {
793       // This is the unfortunate case where we already have entries
794       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
795       // NAME/VERSION where VERSION is the default version.  We have
796       // already resolved this new symbol with the existing
797       // NAME/VERSION symbol.
798
799       // It's possible that NAME/NULL and NAME/VERSION are both
800       // defined in regular objects.  This can only happen if one
801       // object file defines foo and another defines foo@@ver.  This
802       // is somewhat obscure, but we call it a multiple definition
803       // error.
804
805       // It's possible that NAME/NULL actually has a version, in which
806       // case it won't be the same as VERSION.  This happens with
807       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
808       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
809       // then see an unadorned t2_2 in an object file and give it
810       // version VER1 from the version script.  This looks like a
811       // default definition for VER1, so it looks like we should merge
812       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
813       // not obvious that this is an error, either.  So we just punt.
814
815       // If one of the symbols has non-default visibility, and the
816       // other is defined in a shared object, then they are different
817       // symbols.
818
819       // Otherwise, we just resolve the symbols as though they were
820       // the same.
821
822       if (pdef->second->version() != NULL)
823         gold_assert(pdef->second->version() != sym->version());
824       else if (sym->visibility() != elfcpp::STV_DEFAULT
825                && pdef->second->is_from_dynobj())
826         ;
827       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
828                && sym->is_from_dynobj())
829         ;
830       else
831         {
832           const Sized_symbol<size>* symdef;
833           symdef = this->get_sized_symbol<size>(pdef->second);
834           Symbol_table::resolve<size, big_endian>(sym, symdef);
835           this->make_forwarder(pdef->second, sym);
836           pdef->second = sym;
837           sym->set_is_default();
838         }
839     }
840 }
841
842 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
843 // name and VERSION is the version; both are canonicalized.  DEF is
844 // whether this is the default version.  ST_SHNDX is the symbol's
845 // section index; IS_ORDINARY is whether this is a normal section
846 // rather than a special code.
847
848 // If IS_DEFAULT_VERSION is true, then this is the definition of a
849 // default version of a symbol.  That means that any lookup of
850 // NAME/NULL and any lookup of NAME/VERSION should always return the
851 // same symbol.  This is obvious for references, but in particular we
852 // want to do this for definitions: overriding NAME/NULL should also
853 // override NAME/VERSION.  If we don't do that, it would be very hard
854 // to override functions in a shared library which uses versioning.
855
856 // We implement this by simply making both entries in the hash table
857 // point to the same Symbol structure.  That is easy enough if this is
858 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
859 // that we have seen both already, in which case they will both have
860 // independent entries in the symbol table.  We can't simply change
861 // the symbol table entry, because we have pointers to the entries
862 // attached to the object files.  So we mark the entry attached to the
863 // object file as a forwarder, and record it in the forwarders_ map.
864 // Note that entries in the hash table will never be marked as
865 // forwarders.
866 //
867 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
868 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
869 // for a special section code.  ST_SHNDX may be modified if the symbol
870 // is defined in a section being discarded.
871
872 template<int size, bool big_endian>
873 Sized_symbol<size>*
874 Symbol_table::add_from_object(Object* object,
875                               const char* name,
876                               Stringpool::Key name_key,
877                               const char* version,
878                               Stringpool::Key version_key,
879                               bool is_default_version,
880                               const elfcpp::Sym<size, big_endian>& sym,
881                               unsigned int st_shndx,
882                               bool is_ordinary,
883                               unsigned int orig_st_shndx)
884 {
885   // Print a message if this symbol is being traced.
886   if (parameters->options().is_trace_symbol(name))
887     {
888       if (orig_st_shndx == elfcpp::SHN_UNDEF)
889         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
890       else
891         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
892     }
893
894   // For an undefined symbol, we may need to adjust the name using
895   // --wrap.
896   if (orig_st_shndx == elfcpp::SHN_UNDEF
897       && parameters->options().any_wrap())
898     {
899       const char* wrap_name = this->wrap_symbol(name, &name_key);
900       if (wrap_name != name)
901         {
902           // If we see a reference to malloc with version GLIBC_2.0,
903           // and we turn it into a reference to __wrap_malloc, then we
904           // discard the version number.  Otherwise the user would be
905           // required to specify the correct version for
906           // __wrap_malloc.
907           version = NULL;
908           version_key = 0;
909           name = wrap_name;
910         }
911     }
912
913   Symbol* const snull = NULL;
914   std::pair<typename Symbol_table_type::iterator, bool> ins =
915     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
916                                        snull));
917
918   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
919     std::make_pair(this->table_.end(), false);
920   if (is_default_version)
921     {
922       const Stringpool::Key vnull_key = 0;
923       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
924                                                                      vnull_key),
925                                                       snull));
926     }
927
928   // ins.first: an iterator, which is a pointer to a pair.
929   // ins.first->first: the key (a pair of name and version).
930   // ins.first->second: the value (Symbol*).
931   // ins.second: true if new entry was inserted, false if not.
932
933   Sized_symbol<size>* ret;
934   bool was_undefined;
935   bool was_common;
936   if (!ins.second)
937     {
938       // We already have an entry for NAME/VERSION.
939       ret = this->get_sized_symbol<size>(ins.first->second);
940       gold_assert(ret != NULL);
941
942       was_undefined = ret->is_undefined();
943       was_common = ret->is_common();
944
945       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
946                     version);
947       if (parameters->options().gc_sections())
948         this->gc_mark_dyn_syms(ret);
949
950       if (is_default_version)
951         this->define_default_version<size, big_endian>(ret, insdefault.second,
952                                                        insdefault.first);
953     }
954   else
955     {
956       // This is the first time we have seen NAME/VERSION.
957       gold_assert(ins.first->second == NULL);
958
959       if (is_default_version && !insdefault.second)
960         {
961           // We already have an entry for NAME/NULL.  If we override
962           // it, then change it to NAME/VERSION.
963           ret = this->get_sized_symbol<size>(insdefault.first->second);
964
965           was_undefined = ret->is_undefined();
966           was_common = ret->is_common();
967
968           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
969                         version);
970           if (parameters->options().gc_sections())
971             this->gc_mark_dyn_syms(ret);
972           ins.first->second = ret;
973         }
974       else
975         {
976           was_undefined = false;
977           was_common = false;
978
979           Sized_target<size, big_endian>* target =
980             parameters->sized_target<size, big_endian>();
981           if (!target->has_make_symbol())
982             ret = new Sized_symbol<size>();
983           else
984             {
985               ret = target->make_symbol();
986               if (ret == NULL)
987                 {
988                   // This means that we don't want a symbol table
989                   // entry after all.
990                   if (!is_default_version)
991                     this->table_.erase(ins.first);
992                   else
993                     {
994                       this->table_.erase(insdefault.first);
995                       // Inserting INSDEFAULT invalidated INS.
996                       this->table_.erase(std::make_pair(name_key,
997                                                         version_key));
998                     }
999                   return NULL;
1000                 }
1001             }
1002
1003           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1004
1005           ins.first->second = ret;
1006           if (is_default_version)
1007             {
1008               // This is the first time we have seen NAME/NULL.  Point
1009               // it at the new entry for NAME/VERSION.
1010               gold_assert(insdefault.second);
1011               insdefault.first->second = ret;
1012             }
1013         }
1014
1015       if (is_default_version)
1016         ret->set_is_default();
1017     }
1018
1019   // Record every time we see a new undefined symbol, to speed up
1020   // archive groups.
1021   if (!was_undefined && ret->is_undefined())
1022     {
1023       ++this->saw_undefined_;
1024       if (parameters->options().has_plugins())
1025         parameters->options().plugins()->new_undefined_symbol(ret);
1026     }
1027
1028   // Keep track of common symbols, to speed up common symbol
1029   // allocation.
1030   if (!was_common && ret->is_common())
1031     {
1032       if (ret->type() == elfcpp::STT_TLS)
1033         this->tls_commons_.push_back(ret);
1034       else if (!is_ordinary
1035                && st_shndx == parameters->target().small_common_shndx())
1036         this->small_commons_.push_back(ret);
1037       else if (!is_ordinary
1038                && st_shndx == parameters->target().large_common_shndx())
1039         this->large_commons_.push_back(ret);
1040       else
1041         this->commons_.push_back(ret);
1042     }
1043
1044   // If we're not doing a relocatable link, then any symbol with
1045   // hidden or internal visibility is local.
1046   if ((ret->visibility() == elfcpp::STV_HIDDEN
1047        || ret->visibility() == elfcpp::STV_INTERNAL)
1048       && (ret->binding() == elfcpp::STB_GLOBAL
1049           || ret->binding() == elfcpp::STB_GNU_UNIQUE
1050           || ret->binding() == elfcpp::STB_WEAK)
1051       && !parameters->options().relocatable())
1052     this->force_local(ret);
1053
1054   return ret;
1055 }
1056
1057 // Add all the symbols in a relocatable object to the hash table.
1058
1059 template<int size, bool big_endian>
1060 void
1061 Symbol_table::add_from_relobj(
1062     Sized_relobj_file<size, big_endian>* relobj,
1063     const unsigned char* syms,
1064     size_t count,
1065     size_t symndx_offset,
1066     const char* sym_names,
1067     size_t sym_name_size,
1068     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1069     size_t* defined)
1070 {
1071   *defined = 0;
1072
1073   gold_assert(size == parameters->target().get_size());
1074
1075   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1076
1077   const bool just_symbols = relobj->just_symbols();
1078
1079   const unsigned char* p = syms;
1080   for (size_t i = 0; i < count; ++i, p += sym_size)
1081     {
1082       (*sympointers)[i] = NULL;
1083
1084       elfcpp::Sym<size, big_endian> sym(p);
1085
1086       unsigned int st_name = sym.get_st_name();
1087       if (st_name >= sym_name_size)
1088         {
1089           relobj->error(_("bad global symbol name offset %u at %zu"),
1090                         st_name, i);
1091           continue;
1092         }
1093
1094       const char* name = sym_names + st_name;
1095
1096       bool is_ordinary;
1097       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1098                                                        sym.get_st_shndx(),
1099                                                        &is_ordinary);
1100       unsigned int orig_st_shndx = st_shndx;
1101       if (!is_ordinary)
1102         orig_st_shndx = elfcpp::SHN_UNDEF;
1103
1104       if (st_shndx != elfcpp::SHN_UNDEF)
1105         ++*defined;
1106
1107       // A symbol defined in a section which we are not including must
1108       // be treated as an undefined symbol.
1109       bool is_defined_in_discarded_section = false;
1110       if (st_shndx != elfcpp::SHN_UNDEF
1111           && is_ordinary
1112           && !relobj->is_section_included(st_shndx)
1113           && !this->is_section_folded(relobj, st_shndx))
1114         {
1115           st_shndx = elfcpp::SHN_UNDEF;
1116           is_defined_in_discarded_section = true;
1117         }
1118
1119       // In an object file, an '@' in the name separates the symbol
1120       // name from the version name.  If there are two '@' characters,
1121       // this is the default version.
1122       const char* ver = strchr(name, '@');
1123       Stringpool::Key ver_key = 0;
1124       int namelen = 0;
1125       // IS_DEFAULT_VERSION: is the version default?
1126       // IS_FORCED_LOCAL: is the symbol forced local?
1127       bool is_default_version = false;
1128       bool is_forced_local = false;
1129
1130       if (ver != NULL)
1131         {
1132           // The symbol name is of the form foo@VERSION or foo@@VERSION
1133           namelen = ver - name;
1134           ++ver;
1135           if (*ver == '@')
1136             {
1137               is_default_version = true;
1138               ++ver;
1139             }
1140           ver = this->namepool_.add(ver, true, &ver_key);
1141         }
1142       // We don't want to assign a version to an undefined symbol,
1143       // even if it is listed in the version script.  FIXME: What
1144       // about a common symbol?
1145       else
1146         {
1147           namelen = strlen(name);
1148           if (!this->version_script_.empty()
1149               && st_shndx != elfcpp::SHN_UNDEF)
1150             {
1151               // The symbol name did not have a version, but the
1152               // version script may assign a version anyway.
1153               std::string version;
1154               bool is_global;
1155               if (this->version_script_.get_symbol_version(name, &version,
1156                                                            &is_global))
1157                 {
1158                   if (!is_global)
1159                     is_forced_local = true;
1160                   else if (!version.empty())
1161                     {
1162                       ver = this->namepool_.add_with_length(version.c_str(),
1163                                                             version.length(),
1164                                                             true,
1165                                                             &ver_key);
1166                       is_default_version = true;
1167                     }
1168                 }
1169             }
1170         }
1171
1172       elfcpp::Sym<size, big_endian>* psym = &sym;
1173       unsigned char symbuf[sym_size];
1174       elfcpp::Sym<size, big_endian> sym2(symbuf);
1175       if (just_symbols)
1176         {
1177           memcpy(symbuf, p, sym_size);
1178           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1179           if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
1180             {
1181               // Symbol values in object files are section relative.
1182               // This is normally what we want, but since here we are
1183               // converting the symbol to absolute we need to add the
1184               // section address.  The section address in an object
1185               // file is normally zero, but people can use a linker
1186               // script to change it.
1187               sw.put_st_value(sym.get_st_value()
1188                               + relobj->section_address(orig_st_shndx));
1189             }
1190           st_shndx = elfcpp::SHN_ABS;
1191           is_ordinary = false;
1192           psym = &sym2;
1193         }
1194
1195       // Fix up visibility if object has no-export set.
1196       if (relobj->no_export()
1197           && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1198         {
1199           // We may have copied symbol already above.
1200           if (psym != &sym2)
1201             {
1202               memcpy(symbuf, p, sym_size);
1203               psym = &sym2;
1204             }
1205
1206           elfcpp::STV visibility = sym2.get_st_visibility();
1207           if (visibility == elfcpp::STV_DEFAULT
1208               || visibility == elfcpp::STV_PROTECTED)
1209             {
1210               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1211               unsigned char nonvis = sym2.get_st_nonvis();
1212               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1213             }
1214         }
1215
1216       Stringpool::Key name_key;
1217       name = this->namepool_.add_with_length(name, namelen, true,
1218                                              &name_key);
1219
1220       Sized_symbol<size>* res;
1221       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1222                                   is_default_version, *psym, st_shndx,
1223                                   is_ordinary, orig_st_shndx);
1224       
1225       // If building a shared library using garbage collection, do not 
1226       // treat externally visible symbols as garbage.
1227       if (parameters->options().gc_sections() 
1228           && parameters->options().shared())
1229         this->gc_mark_symbol_for_shlib(res);
1230
1231       if (is_forced_local)
1232         this->force_local(res);
1233
1234       if (is_defined_in_discarded_section)
1235         res->set_is_defined_in_discarded_section();
1236
1237       (*sympointers)[i] = res;
1238     }
1239 }
1240
1241 // Add a symbol from a plugin-claimed file.
1242
1243 template<int size, bool big_endian>
1244 Symbol*
1245 Symbol_table::add_from_pluginobj(
1246     Sized_pluginobj<size, big_endian>* obj,
1247     const char* name,
1248     const char* ver,
1249     elfcpp::Sym<size, big_endian>* sym)
1250 {
1251   unsigned int st_shndx = sym->get_st_shndx();
1252   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1253
1254   Stringpool::Key ver_key = 0;
1255   bool is_default_version = false;
1256   bool is_forced_local = false;
1257
1258   if (ver != NULL)
1259     {
1260       ver = this->namepool_.add(ver, true, &ver_key);
1261     }
1262   // We don't want to assign a version to an undefined symbol,
1263   // even if it is listed in the version script.  FIXME: What
1264   // about a common symbol?
1265   else
1266     {
1267       if (!this->version_script_.empty()
1268           && st_shndx != elfcpp::SHN_UNDEF)
1269         {
1270           // The symbol name did not have a version, but the
1271           // version script may assign a version anyway.
1272           std::string version;
1273           bool is_global;
1274           if (this->version_script_.get_symbol_version(name, &version,
1275                                                        &is_global))
1276             {
1277               if (!is_global)
1278                 is_forced_local = true;
1279               else if (!version.empty())
1280                 {
1281                   ver = this->namepool_.add_with_length(version.c_str(),
1282                                                         version.length(),
1283                                                         true,
1284                                                         &ver_key);
1285                   is_default_version = true;
1286                 }
1287             }
1288         }
1289     }
1290
1291   Stringpool::Key name_key;
1292   name = this->namepool_.add(name, true, &name_key);
1293
1294   Sized_symbol<size>* res;
1295   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1296                               is_default_version, *sym, st_shndx,
1297                               is_ordinary, st_shndx);
1298
1299   if (is_forced_local)
1300     this->force_local(res);
1301
1302   return res;
1303 }
1304
1305 // Add all the symbols in a dynamic object to the hash table.
1306
1307 template<int size, bool big_endian>
1308 void
1309 Symbol_table::add_from_dynobj(
1310     Sized_dynobj<size, big_endian>* dynobj,
1311     const unsigned char* syms,
1312     size_t count,
1313     const char* sym_names,
1314     size_t sym_name_size,
1315     const unsigned char* versym,
1316     size_t versym_size,
1317     const std::vector<const char*>* version_map,
1318     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1319     size_t* defined)
1320 {
1321   *defined = 0;
1322
1323   gold_assert(size == parameters->target().get_size());
1324
1325   if (dynobj->just_symbols())
1326     {
1327       gold_error(_("--just-symbols does not make sense with a shared object"));
1328       return;
1329     }
1330
1331   if (versym != NULL && versym_size / 2 < count)
1332     {
1333       dynobj->error(_("too few symbol versions"));
1334       return;
1335     }
1336
1337   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1338
1339   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1340   // weak aliases.  This is necessary because if the dynamic object
1341   // provides the same variable under two names, one of which is a
1342   // weak definition, and the regular object refers to the weak
1343   // definition, we have to put both the weak definition and the
1344   // strong definition into the dynamic symbol table.  Given a weak
1345   // definition, the only way that we can find the corresponding
1346   // strong definition, if any, is to search the symbol table.
1347   std::vector<Sized_symbol<size>*> object_symbols;
1348
1349   const unsigned char* p = syms;
1350   const unsigned char* vs = versym;
1351   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1352     {
1353       elfcpp::Sym<size, big_endian> sym(p);
1354
1355       if (sympointers != NULL)
1356         (*sympointers)[i] = NULL;
1357
1358       // Ignore symbols with local binding or that have
1359       // internal or hidden visibility.
1360       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1361           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1362           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1363         continue;
1364
1365       // A protected symbol in a shared library must be treated as a
1366       // normal symbol when viewed from outside the shared library.
1367       // Implement this by overriding the visibility here.
1368       elfcpp::Sym<size, big_endian>* psym = &sym;
1369       unsigned char symbuf[sym_size];
1370       elfcpp::Sym<size, big_endian> sym2(symbuf);
1371       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1372         {
1373           memcpy(symbuf, p, sym_size);
1374           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1375           sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1376           psym = &sym2;
1377         }
1378
1379       unsigned int st_name = psym->get_st_name();
1380       if (st_name >= sym_name_size)
1381         {
1382           dynobj->error(_("bad symbol name offset %u at %zu"),
1383                         st_name, i);
1384           continue;
1385         }
1386
1387       const char* name = sym_names + st_name;
1388
1389       bool is_ordinary;
1390       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1391                                                        &is_ordinary);
1392
1393       if (st_shndx != elfcpp::SHN_UNDEF)
1394         ++*defined;
1395
1396       Sized_symbol<size>* res;
1397
1398       if (versym == NULL)
1399         {
1400           Stringpool::Key name_key;
1401           name = this->namepool_.add(name, true, &name_key);
1402           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1403                                       false, *psym, st_shndx, is_ordinary,
1404                                       st_shndx);
1405         }
1406       else
1407         {
1408           // Read the version information.
1409
1410           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1411
1412           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1413           v &= elfcpp::VERSYM_VERSION;
1414
1415           // The Sun documentation says that V can be VER_NDX_LOCAL,
1416           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1417           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1418           // The old GNU linker will happily generate VER_NDX_LOCAL
1419           // for an undefined symbol.  I don't know what the Sun
1420           // linker will generate.
1421
1422           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1423               && st_shndx != elfcpp::SHN_UNDEF)
1424             {
1425               // This symbol should not be visible outside the object.
1426               continue;
1427             }
1428
1429           // At this point we are definitely going to add this symbol.
1430           Stringpool::Key name_key;
1431           name = this->namepool_.add(name, true, &name_key);
1432
1433           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1434               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1435             {
1436               // This symbol does not have a version.
1437               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1438                                           false, *psym, st_shndx, is_ordinary,
1439                                           st_shndx);
1440             }
1441           else
1442             {
1443               if (v >= version_map->size())
1444                 {
1445                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1446                                 i, v);
1447                   continue;
1448                 }
1449
1450               const char* version = (*version_map)[v];
1451               if (version == NULL)
1452                 {
1453                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1454                                 i, v);
1455                   continue;
1456                 }
1457
1458               Stringpool::Key version_key;
1459               version = this->namepool_.add(version, true, &version_key);
1460
1461               // If this is an absolute symbol, and the version name
1462               // and symbol name are the same, then this is the
1463               // version definition symbol.  These symbols exist to
1464               // support using -u to pull in particular versions.  We
1465               // do not want to record a version for them.
1466               if (st_shndx == elfcpp::SHN_ABS
1467                   && !is_ordinary
1468                   && name_key == version_key)
1469                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1470                                             false, *psym, st_shndx, is_ordinary,
1471                                             st_shndx);
1472               else
1473                 {
1474                   const bool is_default_version =
1475                     !hidden && st_shndx != elfcpp::SHN_UNDEF;
1476                   res = this->add_from_object(dynobj, name, name_key, version,
1477                                               version_key, is_default_version,
1478                                               *psym, st_shndx,
1479                                               is_ordinary, st_shndx);
1480                 }
1481             }
1482         }
1483
1484       // Note that it is possible that RES was overridden by an
1485       // earlier object, in which case it can't be aliased here.
1486       if (st_shndx != elfcpp::SHN_UNDEF
1487           && is_ordinary
1488           && psym->get_st_type() == elfcpp::STT_OBJECT
1489           && res->source() == Symbol::FROM_OBJECT
1490           && res->object() == dynobj)
1491         object_symbols.push_back(res);
1492
1493       if (sympointers != NULL)
1494         (*sympointers)[i] = res;
1495     }
1496
1497   this->record_weak_aliases(&object_symbols);
1498 }
1499
1500 // Add a symbol from a incremental object file.
1501
1502 template<int size, bool big_endian>
1503 Sized_symbol<size>*
1504 Symbol_table::add_from_incrobj(
1505     Object* obj,
1506     const char* name,
1507     const char* ver,
1508     elfcpp::Sym<size, big_endian>* sym)
1509 {
1510   unsigned int st_shndx = sym->get_st_shndx();
1511   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1512
1513   Stringpool::Key ver_key = 0;
1514   bool is_default_version = false;
1515   bool is_forced_local = false;
1516
1517   Stringpool::Key name_key;
1518   name = this->namepool_.add(name, true, &name_key);
1519
1520   Sized_symbol<size>* res;
1521   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1522                               is_default_version, *sym, st_shndx,
1523                               is_ordinary, st_shndx);
1524
1525   if (is_forced_local)
1526     this->force_local(res);
1527
1528   return res;
1529 }
1530
1531 // This is used to sort weak aliases.  We sort them first by section
1532 // index, then by offset, then by weak ahead of strong.
1533
1534 template<int size>
1535 class Weak_alias_sorter
1536 {
1537  public:
1538   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1539 };
1540
1541 template<int size>
1542 bool
1543 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1544                                     const Sized_symbol<size>* s2) const
1545 {
1546   bool is_ordinary;
1547   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1548   gold_assert(is_ordinary);
1549   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1550   gold_assert(is_ordinary);
1551   if (s1_shndx != s2_shndx)
1552     return s1_shndx < s2_shndx;
1553
1554   if (s1->value() != s2->value())
1555     return s1->value() < s2->value();
1556   if (s1->binding() != s2->binding())
1557     {
1558       if (s1->binding() == elfcpp::STB_WEAK)
1559         return true;
1560       if (s2->binding() == elfcpp::STB_WEAK)
1561         return false;
1562     }
1563   return std::string(s1->name()) < std::string(s2->name());
1564 }
1565
1566 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1567 // for any weak aliases, and record them so that if we add the weak
1568 // alias to the dynamic symbol table, we also add the corresponding
1569 // strong symbol.
1570
1571 template<int size>
1572 void
1573 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1574 {
1575   // Sort the vector by section index, then by offset, then by weak
1576   // ahead of strong.
1577   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1578
1579   // Walk through the vector.  For each weak definition, record
1580   // aliases.
1581   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1582          symbols->begin();
1583        p != symbols->end();
1584        ++p)
1585     {
1586       if ((*p)->binding() != elfcpp::STB_WEAK)
1587         continue;
1588
1589       // Build a circular list of weak aliases.  Each symbol points to
1590       // the next one in the circular list.
1591
1592       Sized_symbol<size>* from_sym = *p;
1593       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1594       for (q = p + 1; q != symbols->end(); ++q)
1595         {
1596           bool dummy;
1597           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1598               || (*q)->value() != from_sym->value())
1599             break;
1600
1601           this->weak_aliases_[from_sym] = *q;
1602           from_sym->set_has_alias();
1603           from_sym = *q;
1604         }
1605
1606       if (from_sym != *p)
1607         {
1608           this->weak_aliases_[from_sym] = *p;
1609           from_sym->set_has_alias();
1610         }
1611
1612       p = q - 1;
1613     }
1614 }
1615
1616 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1617 // true, then only create the symbol if there is a reference to it.
1618 // If this does not return NULL, it sets *POLDSYM to the existing
1619 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1620 // resolve the newly created symbol to the old one.  This
1621 // canonicalizes *PNAME and *PVERSION.
1622
1623 template<int size, bool big_endian>
1624 Sized_symbol<size>*
1625 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1626                                     bool only_if_ref,
1627                                     Sized_symbol<size>** poldsym,
1628                                     bool* resolve_oldsym)
1629 {
1630   *resolve_oldsym = false;
1631
1632   // If the caller didn't give us a version, see if we get one from
1633   // the version script.
1634   std::string v;
1635   bool is_default_version = false;
1636   if (*pversion == NULL)
1637     {
1638       bool is_global;
1639       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1640         {
1641           if (is_global && !v.empty())
1642             {
1643               *pversion = v.c_str();
1644               // If we get the version from a version script, then we
1645               // are also the default version.
1646               is_default_version = true;
1647             }
1648         }
1649     }
1650
1651   Symbol* oldsym;
1652   Sized_symbol<size>* sym;
1653
1654   bool add_to_table = false;
1655   typename Symbol_table_type::iterator add_loc = this->table_.end();
1656   bool add_def_to_table = false;
1657   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1658
1659   if (only_if_ref)
1660     {
1661       oldsym = this->lookup(*pname, *pversion);
1662       if (oldsym == NULL && is_default_version)
1663         oldsym = this->lookup(*pname, NULL);
1664       if (oldsym == NULL || !oldsym->is_undefined())
1665         return NULL;
1666
1667       *pname = oldsym->name();
1668       if (!is_default_version)
1669         *pversion = oldsym->version();
1670     }
1671   else
1672     {
1673       // Canonicalize NAME and VERSION.
1674       Stringpool::Key name_key;
1675       *pname = this->namepool_.add(*pname, true, &name_key);
1676
1677       Stringpool::Key version_key = 0;
1678       if (*pversion != NULL)
1679         *pversion = this->namepool_.add(*pversion, true, &version_key);
1680
1681       Symbol* const snull = NULL;
1682       std::pair<typename Symbol_table_type::iterator, bool> ins =
1683         this->table_.insert(std::make_pair(std::make_pair(name_key,
1684                                                           version_key),
1685                                            snull));
1686
1687       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1688         std::make_pair(this->table_.end(), false);
1689       if (is_default_version)
1690         {
1691           const Stringpool::Key vnull = 0;
1692           insdefault =
1693             this->table_.insert(std::make_pair(std::make_pair(name_key,
1694                                                               vnull),
1695                                                snull));
1696         }
1697
1698       if (!ins.second)
1699         {
1700           // We already have a symbol table entry for NAME/VERSION.
1701           oldsym = ins.first->second;
1702           gold_assert(oldsym != NULL);
1703
1704           if (is_default_version)
1705             {
1706               Sized_symbol<size>* soldsym =
1707                 this->get_sized_symbol<size>(oldsym);
1708               this->define_default_version<size, big_endian>(soldsym,
1709                                                              insdefault.second,
1710                                                              insdefault.first);
1711             }
1712         }
1713       else
1714         {
1715           // We haven't seen this symbol before.
1716           gold_assert(ins.first->second == NULL);
1717
1718           add_to_table = true;
1719           add_loc = ins.first;
1720
1721           if (is_default_version && !insdefault.second)
1722             {
1723               // We are adding NAME/VERSION, and it is the default
1724               // version.  We already have an entry for NAME/NULL.
1725               oldsym = insdefault.first->second;
1726               *resolve_oldsym = true;
1727             }
1728           else
1729             {
1730               oldsym = NULL;
1731
1732               if (is_default_version)
1733                 {
1734                   add_def_to_table = true;
1735                   add_def_loc = insdefault.first;
1736                 }
1737             }
1738         }
1739     }
1740
1741   const Target& target = parameters->target();
1742   if (!target.has_make_symbol())
1743     sym = new Sized_symbol<size>();
1744   else
1745     {
1746       Sized_target<size, big_endian>* sized_target =
1747         parameters->sized_target<size, big_endian>();
1748       sym = sized_target->make_symbol();
1749       if (sym == NULL)
1750         return NULL;
1751     }
1752
1753   if (add_to_table)
1754     add_loc->second = sym;
1755   else
1756     gold_assert(oldsym != NULL);
1757
1758   if (add_def_to_table)
1759     add_def_loc->second = sym;
1760
1761   *poldsym = this->get_sized_symbol<size>(oldsym);
1762
1763   return sym;
1764 }
1765
1766 // Define a symbol based on an Output_data.
1767
1768 Symbol*
1769 Symbol_table::define_in_output_data(const char* name,
1770                                     const char* version,
1771                                     Defined defined,
1772                                     Output_data* od,
1773                                     uint64_t value,
1774                                     uint64_t symsize,
1775                                     elfcpp::STT type,
1776                                     elfcpp::STB binding,
1777                                     elfcpp::STV visibility,
1778                                     unsigned char nonvis,
1779                                     bool offset_is_from_end,
1780                                     bool only_if_ref)
1781 {
1782   if (parameters->target().get_size() == 32)
1783     {
1784 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1785       return this->do_define_in_output_data<32>(name, version, defined, od,
1786                                                 value, symsize, type, binding,
1787                                                 visibility, nonvis,
1788                                                 offset_is_from_end,
1789                                                 only_if_ref);
1790 #else
1791       gold_unreachable();
1792 #endif
1793     }
1794   else if (parameters->target().get_size() == 64)
1795     {
1796 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1797       return this->do_define_in_output_data<64>(name, version, defined, od,
1798                                                 value, symsize, type, binding,
1799                                                 visibility, nonvis,
1800                                                 offset_is_from_end,
1801                                                 only_if_ref);
1802 #else
1803       gold_unreachable();
1804 #endif
1805     }
1806   else
1807     gold_unreachable();
1808 }
1809
1810 // Define a symbol in an Output_data, sized version.
1811
1812 template<int size>
1813 Sized_symbol<size>*
1814 Symbol_table::do_define_in_output_data(
1815     const char* name,
1816     const char* version,
1817     Defined defined,
1818     Output_data* od,
1819     typename elfcpp::Elf_types<size>::Elf_Addr value,
1820     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1821     elfcpp::STT type,
1822     elfcpp::STB binding,
1823     elfcpp::STV visibility,
1824     unsigned char nonvis,
1825     bool offset_is_from_end,
1826     bool only_if_ref)
1827 {
1828   Sized_symbol<size>* sym;
1829   Sized_symbol<size>* oldsym;
1830   bool resolve_oldsym;
1831
1832   if (parameters->target().is_big_endian())
1833     {
1834 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1835       sym = this->define_special_symbol<size, true>(&name, &version,
1836                                                     only_if_ref, &oldsym,
1837                                                     &resolve_oldsym);
1838 #else
1839       gold_unreachable();
1840 #endif
1841     }
1842   else
1843     {
1844 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1845       sym = this->define_special_symbol<size, false>(&name, &version,
1846                                                      only_if_ref, &oldsym,
1847                                                      &resolve_oldsym);
1848 #else
1849       gold_unreachable();
1850 #endif
1851     }
1852
1853   if (sym == NULL)
1854     return NULL;
1855
1856   sym->init_output_data(name, version, od, value, symsize, type, binding,
1857                         visibility, nonvis, offset_is_from_end,
1858                         defined == PREDEFINED);
1859
1860   if (oldsym == NULL)
1861     {
1862       if (binding == elfcpp::STB_LOCAL
1863           || this->version_script_.symbol_is_local(name))
1864         this->force_local(sym);
1865       else if (version != NULL)
1866         sym->set_is_default();
1867       return sym;
1868     }
1869
1870   if (Symbol_table::should_override_with_special(oldsym, defined))
1871     this->override_with_special(oldsym, sym);
1872
1873   if (resolve_oldsym)
1874     return sym;
1875   else
1876     {
1877       delete sym;
1878       return oldsym;
1879     }
1880 }
1881
1882 // Define a symbol based on an Output_segment.
1883
1884 Symbol*
1885 Symbol_table::define_in_output_segment(const char* name,
1886                                        const char* version,
1887                                        Defined defined,
1888                                        Output_segment* os,
1889                                        uint64_t value,
1890                                        uint64_t symsize,
1891                                        elfcpp::STT type,
1892                                        elfcpp::STB binding,
1893                                        elfcpp::STV visibility,
1894                                        unsigned char nonvis,
1895                                        Symbol::Segment_offset_base offset_base,
1896                                        bool only_if_ref)
1897 {
1898   if (parameters->target().get_size() == 32)
1899     {
1900 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1901       return this->do_define_in_output_segment<32>(name, version, defined, os,
1902                                                    value, symsize, type,
1903                                                    binding, visibility, nonvis,
1904                                                    offset_base, only_if_ref);
1905 #else
1906       gold_unreachable();
1907 #endif
1908     }
1909   else if (parameters->target().get_size() == 64)
1910     {
1911 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1912       return this->do_define_in_output_segment<64>(name, version, defined, os,
1913                                                    value, symsize, type,
1914                                                    binding, visibility, nonvis,
1915                                                    offset_base, only_if_ref);
1916 #else
1917       gold_unreachable();
1918 #endif
1919     }
1920   else
1921     gold_unreachable();
1922 }
1923
1924 // Define a symbol in an Output_segment, sized version.
1925
1926 template<int size>
1927 Sized_symbol<size>*
1928 Symbol_table::do_define_in_output_segment(
1929     const char* name,
1930     const char* version,
1931     Defined defined,
1932     Output_segment* os,
1933     typename elfcpp::Elf_types<size>::Elf_Addr value,
1934     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1935     elfcpp::STT type,
1936     elfcpp::STB binding,
1937     elfcpp::STV visibility,
1938     unsigned char nonvis,
1939     Symbol::Segment_offset_base offset_base,
1940     bool only_if_ref)
1941 {
1942   Sized_symbol<size>* sym;
1943   Sized_symbol<size>* oldsym;
1944   bool resolve_oldsym;
1945
1946   if (parameters->target().is_big_endian())
1947     {
1948 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1949       sym = this->define_special_symbol<size, true>(&name, &version,
1950                                                     only_if_ref, &oldsym,
1951                                                     &resolve_oldsym);
1952 #else
1953       gold_unreachable();
1954 #endif
1955     }
1956   else
1957     {
1958 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1959       sym = this->define_special_symbol<size, false>(&name, &version,
1960                                                      only_if_ref, &oldsym,
1961                                                      &resolve_oldsym);
1962 #else
1963       gold_unreachable();
1964 #endif
1965     }
1966
1967   if (sym == NULL)
1968     return NULL;
1969
1970   sym->init_output_segment(name, version, os, value, symsize, type, binding,
1971                            visibility, nonvis, offset_base,
1972                            defined == PREDEFINED);
1973
1974   if (oldsym == NULL)
1975     {
1976       if (binding == elfcpp::STB_LOCAL
1977           || this->version_script_.symbol_is_local(name))
1978         this->force_local(sym);
1979       else if (version != NULL)
1980         sym->set_is_default();
1981       return sym;
1982     }
1983
1984   if (Symbol_table::should_override_with_special(oldsym, defined))
1985     this->override_with_special(oldsym, sym);
1986
1987   if (resolve_oldsym)
1988     return sym;
1989   else
1990     {
1991       delete sym;
1992       return oldsym;
1993     }
1994 }
1995
1996 // Define a special symbol with a constant value.  It is a multiple
1997 // definition error if this symbol is already defined.
1998
1999 Symbol*
2000 Symbol_table::define_as_constant(const char* name,
2001                                  const char* version,
2002                                  Defined defined,
2003                                  uint64_t value,
2004                                  uint64_t symsize,
2005                                  elfcpp::STT type,
2006                                  elfcpp::STB binding,
2007                                  elfcpp::STV visibility,
2008                                  unsigned char nonvis,
2009                                  bool only_if_ref,
2010                                  bool force_override)
2011 {
2012   if (parameters->target().get_size() == 32)
2013     {
2014 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2015       return this->do_define_as_constant<32>(name, version, defined, value,
2016                                              symsize, type, binding,
2017                                              visibility, nonvis, only_if_ref,
2018                                              force_override);
2019 #else
2020       gold_unreachable();
2021 #endif
2022     }
2023   else if (parameters->target().get_size() == 64)
2024     {
2025 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2026       return this->do_define_as_constant<64>(name, version, defined, value,
2027                                              symsize, type, binding,
2028                                              visibility, nonvis, only_if_ref,
2029                                              force_override);
2030 #else
2031       gold_unreachable();
2032 #endif
2033     }
2034   else
2035     gold_unreachable();
2036 }
2037
2038 // Define a symbol as a constant, sized version.
2039
2040 template<int size>
2041 Sized_symbol<size>*
2042 Symbol_table::do_define_as_constant(
2043     const char* name,
2044     const char* version,
2045     Defined defined,
2046     typename elfcpp::Elf_types<size>::Elf_Addr value,
2047     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2048     elfcpp::STT type,
2049     elfcpp::STB binding,
2050     elfcpp::STV visibility,
2051     unsigned char nonvis,
2052     bool only_if_ref,
2053     bool force_override)
2054 {
2055   Sized_symbol<size>* sym;
2056   Sized_symbol<size>* oldsym;
2057   bool resolve_oldsym;
2058
2059   if (parameters->target().is_big_endian())
2060     {
2061 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2062       sym = this->define_special_symbol<size, true>(&name, &version,
2063                                                     only_if_ref, &oldsym,
2064                                                     &resolve_oldsym);
2065 #else
2066       gold_unreachable();
2067 #endif
2068     }
2069   else
2070     {
2071 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2072       sym = this->define_special_symbol<size, false>(&name, &version,
2073                                                      only_if_ref, &oldsym,
2074                                                      &resolve_oldsym);
2075 #else
2076       gold_unreachable();
2077 #endif
2078     }
2079
2080   if (sym == NULL)
2081     return NULL;
2082
2083   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2084                      nonvis, defined == PREDEFINED);
2085
2086   if (oldsym == NULL)
2087     {
2088       // Version symbols are absolute symbols with name == version.
2089       // We don't want to force them to be local.
2090       if ((version == NULL
2091            || name != version
2092            || value != 0)
2093           && (binding == elfcpp::STB_LOCAL
2094               || this->version_script_.symbol_is_local(name)))
2095         this->force_local(sym);
2096       else if (version != NULL
2097                && (name != version || value != 0))
2098         sym->set_is_default();
2099       return sym;
2100     }
2101
2102   if (force_override
2103       || Symbol_table::should_override_with_special(oldsym, defined))
2104     this->override_with_special(oldsym, sym);
2105
2106   if (resolve_oldsym)
2107     return sym;
2108   else
2109     {
2110       delete sym;
2111       return oldsym;
2112     }
2113 }
2114
2115 // Define a set of symbols in output sections.
2116
2117 void
2118 Symbol_table::define_symbols(const Layout* layout, int count,
2119                              const Define_symbol_in_section* p,
2120                              bool only_if_ref)
2121 {
2122   for (int i = 0; i < count; ++i, ++p)
2123     {
2124       Output_section* os = layout->find_output_section(p->output_section);
2125       if (os != NULL)
2126         this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2127                                     p->size, p->type, p->binding,
2128                                     p->visibility, p->nonvis,
2129                                     p->offset_is_from_end,
2130                                     only_if_ref || p->only_if_ref);
2131       else
2132         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2133                                  p->type, p->binding, p->visibility, p->nonvis,
2134                                  only_if_ref || p->only_if_ref,
2135                                  false);
2136     }
2137 }
2138
2139 // Define a set of symbols in output segments.
2140
2141 void
2142 Symbol_table::define_symbols(const Layout* layout, int count,
2143                              const Define_symbol_in_segment* p,
2144                              bool only_if_ref)
2145 {
2146   for (int i = 0; i < count; ++i, ++p)
2147     {
2148       Output_segment* os = layout->find_output_segment(p->segment_type,
2149                                                        p->segment_flags_set,
2150                                                        p->segment_flags_clear);
2151       if (os != NULL)
2152         this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2153                                        p->size, p->type, p->binding,
2154                                        p->visibility, p->nonvis,
2155                                        p->offset_base,
2156                                        only_if_ref || p->only_if_ref);
2157       else
2158         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2159                                  p->type, p->binding, p->visibility, p->nonvis,
2160                                  only_if_ref || p->only_if_ref,
2161                                  false);
2162     }
2163 }
2164
2165 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2166 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2167 // the offset within POSD.
2168
2169 template<int size>
2170 void
2171 Symbol_table::define_with_copy_reloc(
2172     Sized_symbol<size>* csym,
2173     Output_data* posd,
2174     typename elfcpp::Elf_types<size>::Elf_Addr value)
2175 {
2176   gold_assert(csym->is_from_dynobj());
2177   gold_assert(!csym->is_copied_from_dynobj());
2178   Object* object = csym->object();
2179   gold_assert(object->is_dynamic());
2180   Dynobj* dynobj = static_cast<Dynobj*>(object);
2181
2182   // Our copied variable has to override any variable in a shared
2183   // library.
2184   elfcpp::STB binding = csym->binding();
2185   if (binding == elfcpp::STB_WEAK)
2186     binding = elfcpp::STB_GLOBAL;
2187
2188   this->define_in_output_data(csym->name(), csym->version(), COPY,
2189                               posd, value, csym->symsize(),
2190                               csym->type(), binding,
2191                               csym->visibility(), csym->nonvis(),
2192                               false, false);
2193
2194   csym->set_is_copied_from_dynobj();
2195   csym->set_needs_dynsym_entry();
2196
2197   this->copied_symbol_dynobjs_[csym] = dynobj;
2198
2199   // We have now defined all aliases, but we have not entered them all
2200   // in the copied_symbol_dynobjs_ map.
2201   if (csym->has_alias())
2202     {
2203       Symbol* sym = csym;
2204       while (true)
2205         {
2206           sym = this->weak_aliases_[sym];
2207           if (sym == csym)
2208             break;
2209           gold_assert(sym->output_data() == posd);
2210
2211           sym->set_is_copied_from_dynobj();
2212           this->copied_symbol_dynobjs_[sym] = dynobj;
2213         }
2214     }
2215 }
2216
2217 // SYM is defined using a COPY reloc.  Return the dynamic object where
2218 // the original definition was found.
2219
2220 Dynobj*
2221 Symbol_table::get_copy_source(const Symbol* sym) const
2222 {
2223   gold_assert(sym->is_copied_from_dynobj());
2224   Copied_symbol_dynobjs::const_iterator p =
2225     this->copied_symbol_dynobjs_.find(sym);
2226   gold_assert(p != this->copied_symbol_dynobjs_.end());
2227   return p->second;
2228 }
2229
2230 // Add any undefined symbols named on the command line.
2231
2232 void
2233 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2234 {
2235   if (parameters->options().any_undefined()
2236       || layout->script_options()->any_unreferenced())
2237     {
2238       if (parameters->target().get_size() == 32)
2239         {
2240 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2241           this->do_add_undefined_symbols_from_command_line<32>(layout);
2242 #else
2243           gold_unreachable();
2244 #endif
2245         }
2246       else if (parameters->target().get_size() == 64)
2247         {
2248 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2249           this->do_add_undefined_symbols_from_command_line<64>(layout);
2250 #else
2251           gold_unreachable();
2252 #endif
2253         }
2254       else
2255         gold_unreachable();
2256     }
2257 }
2258
2259 template<int size>
2260 void
2261 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2262 {
2263   for (options::String_set::const_iterator p =
2264          parameters->options().undefined_begin();
2265        p != parameters->options().undefined_end();
2266        ++p)
2267     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2268
2269   for (Script_options::referenced_const_iterator p =
2270          layout->script_options()->referenced_begin();
2271        p != layout->script_options()->referenced_end();
2272        ++p)
2273     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2274 }
2275
2276 template<int size>
2277 void
2278 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2279 {
2280   if (this->lookup(name) != NULL)
2281     return;
2282
2283   const char* version = NULL;
2284
2285   Sized_symbol<size>* sym;
2286   Sized_symbol<size>* oldsym;
2287   bool resolve_oldsym;
2288   if (parameters->target().is_big_endian())
2289     {
2290 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2291       sym = this->define_special_symbol<size, true>(&name, &version,
2292                                                     false, &oldsym,
2293                                                     &resolve_oldsym);
2294 #else
2295       gold_unreachable();
2296 #endif
2297     }
2298   else
2299     {
2300 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2301       sym = this->define_special_symbol<size, false>(&name, &version,
2302                                                      false, &oldsym,
2303                                                      &resolve_oldsym);
2304 #else
2305       gold_unreachable();
2306 #endif
2307     }
2308
2309   gold_assert(oldsym == NULL);
2310
2311   sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2312                       elfcpp::STV_DEFAULT, 0);
2313   ++this->saw_undefined_;
2314 }
2315
2316 // Set the dynamic symbol indexes.  INDEX is the index of the first
2317 // global dynamic symbol.  Pointers to the symbols are stored into the
2318 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2319 // updated dynamic symbol index.
2320
2321 unsigned int
2322 Symbol_table::set_dynsym_indexes(unsigned int index,
2323                                  std::vector<Symbol*>* syms,
2324                                  Stringpool* dynpool,
2325                                  Versions* versions)
2326 {
2327   for (Symbol_table_type::iterator p = this->table_.begin();
2328        p != this->table_.end();
2329        ++p)
2330     {
2331       Symbol* sym = p->second;
2332
2333       // Note that SYM may already have a dynamic symbol index, since
2334       // some symbols appear more than once in the symbol table, with
2335       // and without a version.
2336
2337       if (!sym->should_add_dynsym_entry(this))
2338         sym->set_dynsym_index(-1U);
2339       else if (!sym->has_dynsym_index())
2340         {
2341           sym->set_dynsym_index(index);
2342           ++index;
2343           syms->push_back(sym);
2344           dynpool->add(sym->name(), false, NULL);
2345
2346           // Record any version information.
2347           if (sym->version() != NULL)
2348             versions->record_version(this, dynpool, sym);
2349
2350           // If the symbol is defined in a dynamic object and is
2351           // referenced in a regular object, then mark the dynamic
2352           // object as needed.  This is used to implement --as-needed.
2353           if (sym->is_from_dynobj() && sym->in_reg())
2354             sym->object()->set_is_needed();
2355         }
2356     }
2357
2358   // Finish up the versions.  In some cases this may add new dynamic
2359   // symbols.
2360   index = versions->finalize(this, index, syms);
2361
2362   return index;
2363 }
2364
2365 // Set the final values for all the symbols.  The index of the first
2366 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2367 // file offset OFF.  Add their names to POOL.  Return the new file
2368 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2369
2370 off_t
2371 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2372                        size_t dyncount, Stringpool* pool,
2373                        unsigned int* plocal_symcount)
2374 {
2375   off_t ret;
2376
2377   gold_assert(*plocal_symcount != 0);
2378   this->first_global_index_ = *plocal_symcount;
2379
2380   this->dynamic_offset_ = dynoff;
2381   this->first_dynamic_global_index_ = dyn_global_index;
2382   this->dynamic_count_ = dyncount;
2383
2384   if (parameters->target().get_size() == 32)
2385     {
2386 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2387       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2388 #else
2389       gold_unreachable();
2390 #endif
2391     }
2392   else if (parameters->target().get_size() == 64)
2393     {
2394 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2395       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2396 #else
2397       gold_unreachable();
2398 #endif
2399     }
2400   else
2401     gold_unreachable();
2402
2403   // Now that we have the final symbol table, we can reliably note
2404   // which symbols should get warnings.
2405   this->warnings_.note_warnings(this);
2406
2407   return ret;
2408 }
2409
2410 // SYM is going into the symbol table at *PINDEX.  Add the name to
2411 // POOL, update *PINDEX and *POFF.
2412
2413 template<int size>
2414 void
2415 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2416                                   unsigned int* pindex, off_t* poff)
2417 {
2418   sym->set_symtab_index(*pindex);
2419   pool->add(sym->name(), false, NULL);
2420   ++*pindex;
2421   *poff += elfcpp::Elf_sizes<size>::sym_size;
2422 }
2423
2424 // Set the final value for all the symbols.  This is called after
2425 // Layout::finalize, so all the output sections have their final
2426 // address.
2427
2428 template<int size>
2429 off_t
2430 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2431                              unsigned int* plocal_symcount)
2432 {
2433   off = align_address(off, size >> 3);
2434   this->offset_ = off;
2435
2436   unsigned int index = *plocal_symcount;
2437   const unsigned int orig_index = index;
2438
2439   // First do all the symbols which have been forced to be local, as
2440   // they must appear before all global symbols.
2441   for (Forced_locals::iterator p = this->forced_locals_.begin();
2442        p != this->forced_locals_.end();
2443        ++p)
2444     {
2445       Symbol* sym = *p;
2446       gold_assert(sym->is_forced_local());
2447       if (this->sized_finalize_symbol<size>(sym))
2448         {
2449           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2450           ++*plocal_symcount;
2451         }
2452     }
2453
2454   // Now do all the remaining symbols.
2455   for (Symbol_table_type::iterator p = this->table_.begin();
2456        p != this->table_.end();
2457        ++p)
2458     {
2459       Symbol* sym = p->second;
2460       if (this->sized_finalize_symbol<size>(sym))
2461         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2462     }
2463
2464   this->output_count_ = index - orig_index;
2465
2466   return off;
2467 }
2468
2469 // Compute the final value of SYM and store status in location PSTATUS.
2470 // During relaxation, this may be called multiple times for a symbol to
2471 // compute its would-be final value in each relaxation pass.
2472
2473 template<int size>
2474 typename Sized_symbol<size>::Value_type
2475 Symbol_table::compute_final_value(
2476     const Sized_symbol<size>* sym,
2477     Compute_final_value_status* pstatus) const
2478 {
2479   typedef typename Sized_symbol<size>::Value_type Value_type;
2480   Value_type value;
2481
2482   switch (sym->source())
2483     {
2484     case Symbol::FROM_OBJECT:
2485       {
2486         bool is_ordinary;
2487         unsigned int shndx = sym->shndx(&is_ordinary);
2488
2489         if (!is_ordinary
2490             && shndx != elfcpp::SHN_ABS
2491             && !Symbol::is_common_shndx(shndx))
2492           {
2493             *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2494             return 0;
2495           }
2496
2497         Object* symobj = sym->object();
2498         if (symobj->is_dynamic())
2499           {
2500             value = 0;
2501             shndx = elfcpp::SHN_UNDEF;
2502           }
2503         else if (symobj->pluginobj() != NULL)
2504           {
2505             value = 0;
2506             shndx = elfcpp::SHN_UNDEF;
2507           }
2508         else if (shndx == elfcpp::SHN_UNDEF)
2509           value = 0;
2510         else if (!is_ordinary
2511                  && (shndx == elfcpp::SHN_ABS
2512                      || Symbol::is_common_shndx(shndx)))
2513           value = sym->value();
2514         else
2515           {
2516             Relobj* relobj = static_cast<Relobj*>(symobj);
2517             Output_section* os = relobj->output_section(shndx);
2518
2519             if (this->is_section_folded(relobj, shndx))
2520               {
2521                 gold_assert(os == NULL);
2522                 // Get the os of the section it is folded onto.
2523                 Section_id folded = this->icf_->get_folded_section(relobj,
2524                                                                    shndx);
2525                 gold_assert(folded.first != NULL);
2526                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2527                 unsigned folded_shndx = folded.second;
2528
2529                 os = folded_obj->output_section(folded_shndx);  
2530                 gold_assert(os != NULL);
2531
2532                 // Replace (relobj, shndx) with canonical ICF input section.
2533                 shndx = folded_shndx;
2534                 relobj = folded_obj;
2535               }
2536
2537             uint64_t secoff64 = relobj->output_section_offset(shndx);
2538             if (os == NULL)
2539               {
2540                 bool static_or_reloc = (parameters->doing_static_link() ||
2541                                         parameters->options().relocatable());
2542                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2543
2544                 *pstatus = CFVS_NO_OUTPUT_SECTION;
2545                 return 0;
2546               }
2547
2548             if (secoff64 == -1ULL)
2549               {
2550                 // The section needs special handling (e.g., a merge section).
2551
2552                 value = os->output_address(relobj, shndx, sym->value());
2553               }
2554             else
2555               {
2556                 Value_type secoff =
2557                   convert_types<Value_type, uint64_t>(secoff64);
2558                 if (sym->type() == elfcpp::STT_TLS)
2559                   value = sym->value() + os->tls_offset() + secoff;
2560                 else
2561                   value = sym->value() + os->address() + secoff;
2562               }
2563           }
2564       }
2565       break;
2566
2567     case Symbol::IN_OUTPUT_DATA:
2568       {
2569         Output_data* od = sym->output_data();
2570         value = sym->value();
2571         if (sym->type() != elfcpp::STT_TLS)
2572           value += od->address();
2573         else
2574           {
2575             Output_section* os = od->output_section();
2576             gold_assert(os != NULL);
2577             value += os->tls_offset() + (od->address() - os->address());
2578           }
2579         if (sym->offset_is_from_end())
2580           value += od->data_size();
2581       }
2582       break;
2583
2584     case Symbol::IN_OUTPUT_SEGMENT:
2585       {
2586         Output_segment* os = sym->output_segment();
2587         value = sym->value();
2588         if (sym->type() != elfcpp::STT_TLS)
2589           value += os->vaddr();
2590         switch (sym->offset_base())
2591           {
2592           case Symbol::SEGMENT_START:
2593             break;
2594           case Symbol::SEGMENT_END:
2595             value += os->memsz();
2596             break;
2597           case Symbol::SEGMENT_BSS:
2598             value += os->filesz();
2599             break;
2600           default:
2601             gold_unreachable();
2602           }
2603       }
2604       break;
2605
2606     case Symbol::IS_CONSTANT:
2607       value = sym->value();
2608       break;
2609
2610     case Symbol::IS_UNDEFINED:
2611       value = 0;
2612       break;
2613
2614     default:
2615       gold_unreachable();
2616     }
2617
2618   *pstatus = CFVS_OK;
2619   return value;
2620 }
2621
2622 // Finalize the symbol SYM.  This returns true if the symbol should be
2623 // added to the symbol table, false otherwise.
2624
2625 template<int size>
2626 bool
2627 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2628 {
2629   typedef typename Sized_symbol<size>::Value_type Value_type;
2630
2631   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2632
2633   // The default version of a symbol may appear twice in the symbol
2634   // table.  We only need to finalize it once.
2635   if (sym->has_symtab_index())
2636     return false;
2637
2638   if (!sym->in_reg())
2639     {
2640       gold_assert(!sym->has_symtab_index());
2641       sym->set_symtab_index(-1U);
2642       gold_assert(sym->dynsym_index() == -1U);
2643       return false;
2644     }
2645
2646   // If the symbol is only present on plugin files, the plugin decided we
2647   // don't need it.
2648   if (!sym->in_real_elf())
2649     {
2650       gold_assert(!sym->has_symtab_index());
2651       sym->set_symtab_index(-1U);
2652       return false;
2653     }
2654
2655   // Compute final symbol value.
2656   Compute_final_value_status status;
2657   Value_type value = this->compute_final_value(sym, &status);
2658
2659   switch (status)
2660     {
2661     case CFVS_OK:
2662       break;
2663     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2664       {
2665         bool is_ordinary;
2666         unsigned int shndx = sym->shndx(&is_ordinary);
2667         gold_error(_("%s: unsupported symbol section 0x%x"),
2668                    sym->demangled_name().c_str(), shndx);
2669       }
2670       break;
2671     case CFVS_NO_OUTPUT_SECTION:
2672       sym->set_symtab_index(-1U);
2673       return false;
2674     default:
2675       gold_unreachable();
2676     }
2677
2678   sym->set_value(value);
2679
2680   if (parameters->options().strip_all()
2681       || !parameters->options().should_retain_symbol(sym->name()))
2682     {
2683       sym->set_symtab_index(-1U);
2684       return false;
2685     }
2686
2687   return true;
2688 }
2689
2690 // Write out the global symbols.
2691
2692 void
2693 Symbol_table::write_globals(const Stringpool* sympool,
2694                             const Stringpool* dynpool,
2695                             Output_symtab_xindex* symtab_xindex,
2696                             Output_symtab_xindex* dynsym_xindex,
2697                             Output_file* of) const
2698 {
2699   switch (parameters->size_and_endianness())
2700     {
2701 #ifdef HAVE_TARGET_32_LITTLE
2702     case Parameters::TARGET_32_LITTLE:
2703       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2704                                            dynsym_xindex, of);
2705       break;
2706 #endif
2707 #ifdef HAVE_TARGET_32_BIG
2708     case Parameters::TARGET_32_BIG:
2709       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2710                                           dynsym_xindex, of);
2711       break;
2712 #endif
2713 #ifdef HAVE_TARGET_64_LITTLE
2714     case Parameters::TARGET_64_LITTLE:
2715       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2716                                            dynsym_xindex, of);
2717       break;
2718 #endif
2719 #ifdef HAVE_TARGET_64_BIG
2720     case Parameters::TARGET_64_BIG:
2721       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2722                                           dynsym_xindex, of);
2723       break;
2724 #endif
2725     default:
2726       gold_unreachable();
2727     }
2728 }
2729
2730 // Write out the global symbols.
2731
2732 template<int size, bool big_endian>
2733 void
2734 Symbol_table::sized_write_globals(const Stringpool* sympool,
2735                                   const Stringpool* dynpool,
2736                                   Output_symtab_xindex* symtab_xindex,
2737                                   Output_symtab_xindex* dynsym_xindex,
2738                                   Output_file* of) const
2739 {
2740   const Target& target = parameters->target();
2741
2742   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2743
2744   const unsigned int output_count = this->output_count_;
2745   const section_size_type oview_size = output_count * sym_size;
2746   const unsigned int first_global_index = this->first_global_index_;
2747   unsigned char* psyms;
2748   if (this->offset_ == 0 || output_count == 0)
2749     psyms = NULL;
2750   else
2751     psyms = of->get_output_view(this->offset_, oview_size);
2752
2753   const unsigned int dynamic_count = this->dynamic_count_;
2754   const section_size_type dynamic_size = dynamic_count * sym_size;
2755   const unsigned int first_dynamic_global_index =
2756     this->first_dynamic_global_index_;
2757   unsigned char* dynamic_view;
2758   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2759     dynamic_view = NULL;
2760   else
2761     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2762
2763   for (Symbol_table_type::const_iterator p = this->table_.begin();
2764        p != this->table_.end();
2765        ++p)
2766     {
2767       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2768
2769       // Possibly warn about unresolved symbols in shared libraries.
2770       this->warn_about_undefined_dynobj_symbol(sym);
2771
2772       unsigned int sym_index = sym->symtab_index();
2773       unsigned int dynsym_index;
2774       if (dynamic_view == NULL)
2775         dynsym_index = -1U;
2776       else
2777         dynsym_index = sym->dynsym_index();
2778
2779       if (sym_index == -1U && dynsym_index == -1U)
2780         {
2781           // This symbol is not included in the output file.
2782           continue;
2783         }
2784
2785       unsigned int shndx;
2786       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2787       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2788       elfcpp::STB binding = sym->binding();
2789       switch (sym->source())
2790         {
2791         case Symbol::FROM_OBJECT:
2792           {
2793             bool is_ordinary;
2794             unsigned int in_shndx = sym->shndx(&is_ordinary);
2795
2796             if (!is_ordinary
2797                 && in_shndx != elfcpp::SHN_ABS
2798                 && !Symbol::is_common_shndx(in_shndx))
2799               {
2800                 gold_error(_("%s: unsupported symbol section 0x%x"),
2801                            sym->demangled_name().c_str(), in_shndx);
2802                 shndx = in_shndx;
2803               }
2804             else
2805               {
2806                 Object* symobj = sym->object();
2807                 if (symobj->is_dynamic())
2808                   {
2809                     if (sym->needs_dynsym_value())
2810                       dynsym_value = target.dynsym_value(sym);
2811                     shndx = elfcpp::SHN_UNDEF;
2812                     if (sym->is_undef_binding_weak())
2813                       binding = elfcpp::STB_WEAK;
2814                     else
2815                       binding = elfcpp::STB_GLOBAL;
2816                   }
2817                 else if (symobj->pluginobj() != NULL)
2818                   shndx = elfcpp::SHN_UNDEF;
2819                 else if (in_shndx == elfcpp::SHN_UNDEF
2820                          || (!is_ordinary
2821                              && (in_shndx == elfcpp::SHN_ABS
2822                                  || Symbol::is_common_shndx(in_shndx))))
2823                   shndx = in_shndx;
2824                 else
2825                   {
2826                     Relobj* relobj = static_cast<Relobj*>(symobj);
2827                     Output_section* os = relobj->output_section(in_shndx);
2828                     if (this->is_section_folded(relobj, in_shndx))
2829                       {
2830                         // This global symbol must be written out even though
2831                         // it is folded.
2832                         // Get the os of the section it is folded onto.
2833                         Section_id folded =
2834                              this->icf_->get_folded_section(relobj, in_shndx);
2835                         gold_assert(folded.first !=NULL);
2836                         Relobj* folded_obj = 
2837                           reinterpret_cast<Relobj*>(folded.first);
2838                         os = folded_obj->output_section(folded.second);  
2839                         gold_assert(os != NULL);
2840                       }
2841                     gold_assert(os != NULL);
2842                     shndx = os->out_shndx();
2843
2844                     if (shndx >= elfcpp::SHN_LORESERVE)
2845                       {
2846                         if (sym_index != -1U)
2847                           symtab_xindex->add(sym_index, shndx);
2848                         if (dynsym_index != -1U)
2849                           dynsym_xindex->add(dynsym_index, shndx);
2850                         shndx = elfcpp::SHN_XINDEX;
2851                       }
2852
2853                     // In object files symbol values are section
2854                     // relative.
2855                     if (parameters->options().relocatable())
2856                       sym_value -= os->address();
2857                   }
2858               }
2859           }
2860           break;
2861
2862         case Symbol::IN_OUTPUT_DATA:
2863           shndx = sym->output_data()->out_shndx();
2864           if (shndx >= elfcpp::SHN_LORESERVE)
2865             {
2866               if (sym_index != -1U)
2867                 symtab_xindex->add(sym_index, shndx);
2868               if (dynsym_index != -1U)
2869                 dynsym_xindex->add(dynsym_index, shndx);
2870               shndx = elfcpp::SHN_XINDEX;
2871             }
2872           break;
2873
2874         case Symbol::IN_OUTPUT_SEGMENT:
2875           shndx = elfcpp::SHN_ABS;
2876           break;
2877
2878         case Symbol::IS_CONSTANT:
2879           shndx = elfcpp::SHN_ABS;
2880           break;
2881
2882         case Symbol::IS_UNDEFINED:
2883           shndx = elfcpp::SHN_UNDEF;
2884           break;
2885
2886         default:
2887           gold_unreachable();
2888         }
2889
2890       if (sym_index != -1U)
2891         {
2892           sym_index -= first_global_index;
2893           gold_assert(sym_index < output_count);
2894           unsigned char* ps = psyms + (sym_index * sym_size);
2895           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2896                                                      binding, sympool, ps);
2897         }
2898
2899       if (dynsym_index != -1U)
2900         {
2901           dynsym_index -= first_dynamic_global_index;
2902           gold_assert(dynsym_index < dynamic_count);
2903           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2904           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2905                                                      binding, dynpool, pd);
2906         }
2907     }
2908
2909   of->write_output_view(this->offset_, oview_size, psyms);
2910   if (dynamic_view != NULL)
2911     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2912 }
2913
2914 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
2915 // strtab holding the name.
2916
2917 template<int size, bool big_endian>
2918 void
2919 Symbol_table::sized_write_symbol(
2920     Sized_symbol<size>* sym,
2921     typename elfcpp::Elf_types<size>::Elf_Addr value,
2922     unsigned int shndx,
2923     elfcpp::STB binding,
2924     const Stringpool* pool,
2925     unsigned char* p) const
2926 {
2927   elfcpp::Sym_write<size, big_endian> osym(p);
2928   osym.put_st_name(pool->get_offset(sym->name()));
2929   osym.put_st_value(value);
2930   // Use a symbol size of zero for undefined symbols from shared libraries.
2931   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2932     osym.put_st_size(0);
2933   else
2934     osym.put_st_size(sym->symsize());
2935   elfcpp::STT type = sym->type();
2936   // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
2937   if (type == elfcpp::STT_GNU_IFUNC
2938       && sym->is_from_dynobj())
2939     type = elfcpp::STT_FUNC;
2940   // A version script may have overridden the default binding.
2941   if (sym->is_forced_local())
2942     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
2943   else
2944     osym.put_st_info(elfcpp::elf_st_info(binding, type));
2945   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2946   osym.put_st_shndx(shndx);
2947 }
2948
2949 // Check for unresolved symbols in shared libraries.  This is
2950 // controlled by the --allow-shlib-undefined option.
2951
2952 // We only warn about libraries for which we have seen all the
2953 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
2954 // which were not seen in this link.  If we didn't see a DT_NEEDED
2955 // entry, we aren't going to be able to reliably report whether the
2956 // symbol is undefined.
2957
2958 // We also don't warn about libraries found in a system library
2959 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2960 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
2961 // can have undefined references satisfied by ld-linux.so.
2962
2963 inline void
2964 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
2965 {
2966   bool dummy;
2967   if (sym->source() == Symbol::FROM_OBJECT
2968       && sym->object()->is_dynamic()
2969       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2970       && sym->binding() != elfcpp::STB_WEAK
2971       && !parameters->options().allow_shlib_undefined()
2972       && !parameters->target().is_defined_by_abi(sym)
2973       && !sym->object()->is_in_system_directory())
2974     {
2975       // A very ugly cast.
2976       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2977       if (!dynobj->has_unknown_needed_entries())
2978         gold_undefined_symbol(sym);
2979     }
2980 }
2981
2982 // Write out a section symbol.  Return the update offset.
2983
2984 void
2985 Symbol_table::write_section_symbol(const Output_section* os,
2986                                    Output_symtab_xindex* symtab_xindex,
2987                                    Output_file* of,
2988                                    off_t offset) const
2989 {
2990   switch (parameters->size_and_endianness())
2991     {
2992 #ifdef HAVE_TARGET_32_LITTLE
2993     case Parameters::TARGET_32_LITTLE:
2994       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
2995                                                   offset);
2996       break;
2997 #endif
2998 #ifdef HAVE_TARGET_32_BIG
2999     case Parameters::TARGET_32_BIG:
3000       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3001                                                  offset);
3002       break;
3003 #endif
3004 #ifdef HAVE_TARGET_64_LITTLE
3005     case Parameters::TARGET_64_LITTLE:
3006       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3007                                                   offset);
3008       break;
3009 #endif
3010 #ifdef HAVE_TARGET_64_BIG
3011     case Parameters::TARGET_64_BIG:
3012       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3013                                                  offset);
3014       break;
3015 #endif
3016     default:
3017       gold_unreachable();
3018     }
3019 }
3020
3021 // Write out a section symbol, specialized for size and endianness.
3022
3023 template<int size, bool big_endian>
3024 void
3025 Symbol_table::sized_write_section_symbol(const Output_section* os,
3026                                          Output_symtab_xindex* symtab_xindex,
3027                                          Output_file* of,
3028                                          off_t offset) const
3029 {
3030   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3031
3032   unsigned char* pov = of->get_output_view(offset, sym_size);
3033
3034   elfcpp::Sym_write<size, big_endian> osym(pov);
3035   osym.put_st_name(0);
3036   if (parameters->options().relocatable())
3037     osym.put_st_value(0);
3038   else
3039     osym.put_st_value(os->address());
3040   osym.put_st_size(0);
3041   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3042                                        elfcpp::STT_SECTION));
3043   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3044
3045   unsigned int shndx = os->out_shndx();
3046   if (shndx >= elfcpp::SHN_LORESERVE)
3047     {
3048       symtab_xindex->add(os->symtab_index(), shndx);
3049       shndx = elfcpp::SHN_XINDEX;
3050     }
3051   osym.put_st_shndx(shndx);
3052
3053   of->write_output_view(offset, sym_size, pov);
3054 }
3055
3056 // Print statistical information to stderr.  This is used for --stats.
3057
3058 void
3059 Symbol_table::print_stats() const
3060 {
3061 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3062   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3063           program_name, this->table_.size(), this->table_.bucket_count());
3064 #else
3065   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3066           program_name, this->table_.size());
3067 #endif
3068   this->namepool_.print_stats("symbol table stringpool");
3069 }
3070
3071 // We check for ODR violations by looking for symbols with the same
3072 // name for which the debugging information reports that they were
3073 // defined in disjoint source locations.  When comparing the source
3074 // location, we consider instances with the same base filename to be
3075 // the same.  This is because different object files/shared libraries
3076 // can include the same header file using different paths, and
3077 // different optimization settings can make the line number appear to
3078 // be a couple lines off, and we don't want to report an ODR violation
3079 // in those cases.
3080
3081 // This struct is used to compare line information, as returned by
3082 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3083 // operator used with std::sort.
3084
3085 struct Odr_violation_compare
3086 {
3087   bool
3088   operator()(const std::string& s1, const std::string& s2) const
3089   {
3090     // Inputs should be of the form "dirname/filename:linenum" where
3091     // "dirname/" is optional.  We want to compare just the filename:linenum.
3092
3093     // Find the last '/' in each string.
3094     std::string::size_type s1begin = s1.rfind('/');
3095     std::string::size_type s2begin = s2.rfind('/');
3096     // If there was no '/' in a string, start at the beginning.
3097     if (s1begin == std::string::npos)
3098       s1begin = 0;
3099     if (s2begin == std::string::npos)
3100       s2begin = 0;
3101     return s1.compare(s1begin, std::string::npos,
3102                       s2, s2begin, std::string::npos) < 0;
3103   }
3104 };
3105
3106 // Returns all of the lines attached to LOC, not just the one the
3107 // instruction actually came from.
3108 std::vector<std::string>
3109 Symbol_table::linenos_from_loc(const Task* task,
3110                                const Symbol_location& loc)
3111 {
3112   // We need to lock the object in order to read it.  This
3113   // means that we have to run in a singleton Task.  If we
3114   // want to run this in a general Task for better
3115   // performance, we will need one Task for object, plus
3116   // appropriate locking to ensure that we don't conflict with
3117   // other uses of the object.  Also note, one_addr2line is not
3118   // currently thread-safe.
3119   Task_lock_obj<Object> tl(task, loc.object);
3120
3121   std::vector<std::string> result;
3122   // 16 is the size of the object-cache that one_addr2line should use.
3123   std::string canonical_result = Dwarf_line_info::one_addr2line(
3124       loc.object, loc.shndx, loc.offset, 16, &result);
3125   if (!canonical_result.empty())
3126     result.push_back(canonical_result);
3127   return result;
3128 }
3129
3130 // OutputIterator that records if it was ever assigned to.  This
3131 // allows it to be used with std::set_intersection() to check for
3132 // intersection rather than computing the intersection.
3133 struct Check_intersection
3134 {
3135   Check_intersection()
3136     : value_(false)
3137   {}
3138
3139   bool had_intersection() const
3140   { return this->value_; }
3141
3142   Check_intersection& operator++()
3143   { return *this; }
3144
3145   Check_intersection& operator*()
3146   { return *this; }
3147
3148   template<typename T>
3149   Check_intersection& operator=(const T&)
3150   {
3151     this->value_ = true;
3152     return *this;
3153   }
3154
3155  private:
3156   bool value_;
3157 };
3158
3159 // Check candidate_odr_violations_ to find symbols with the same name
3160 // but apparently different definitions (different source-file/line-no
3161 // for each line assigned to the first instruction).
3162
3163 void
3164 Symbol_table::detect_odr_violations(const Task* task,
3165                                     const char* output_file_name) const
3166 {
3167   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3168        it != candidate_odr_violations_.end();
3169        ++it)
3170     {
3171       const char* const symbol_name = it->first;
3172
3173       std::string first_object_name;
3174       std::vector<std::string> first_object_linenos;
3175
3176       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3177           locs = it->second.begin();
3178       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3179           locs_end = it->second.end();
3180       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3181         {
3182           // Save the line numbers from the first definition to
3183           // compare to the other definitions.  Ideally, we'd compare
3184           // every definition to every other, but we don't want to
3185           // take O(N^2) time to do this.  This shortcut may cause
3186           // false negatives that appear or disappear depending on the
3187           // link order, but it won't cause false positives.
3188           first_object_name = locs->object->name();
3189           first_object_linenos = this->linenos_from_loc(task, *locs);
3190         }
3191
3192       // Sort by Odr_violation_compare to make std::set_intersection work.
3193       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3194                 Odr_violation_compare());
3195
3196       for (; locs != locs_end; ++locs)
3197         {
3198           std::vector<std::string> linenos =
3199               this->linenos_from_loc(task, *locs);
3200           // linenos will be empty if we couldn't parse the debug info.
3201           if (linenos.empty())
3202             continue;
3203           // Sort by Odr_violation_compare to make std::set_intersection work.
3204           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3205
3206           Check_intersection intersection_result =
3207               std::set_intersection(first_object_linenos.begin(),
3208                                     first_object_linenos.end(),
3209                                     linenos.begin(),
3210                                     linenos.end(),
3211                                     Check_intersection(),
3212                                     Odr_violation_compare());
3213           if (!intersection_result.had_intersection())
3214             {
3215               gold_warning(_("while linking %s: symbol '%s' defined in "
3216                              "multiple places (possible ODR violation):"),
3217                            output_file_name, demangle(symbol_name).c_str());
3218               // This only prints one location from each definition,
3219               // which may not be the location we expect to intersect
3220               // with another definition.  We could print the whole
3221               // set of locations, but that seems too verbose.
3222               gold_assert(!first_object_linenos.empty());
3223               gold_assert(!linenos.empty());
3224               fprintf(stderr, _("  %s from %s\n"),
3225                       first_object_linenos[0].c_str(),
3226                       first_object_name.c_str());
3227               fprintf(stderr, _("  %s from %s\n"),
3228                       linenos[0].c_str(),
3229                       locs->object->name().c_str());
3230               // Only print one broken pair, to avoid needing to
3231               // compare against a list of the disjoint definition
3232               // locations we've found so far.  (If we kept comparing
3233               // against just the first one, we'd get a lot of
3234               // redundant complaints about the second definition
3235               // location.)
3236               break;
3237             }
3238         }
3239     }
3240   // We only call one_addr2line() in this function, so we can clear its cache.
3241   Dwarf_line_info::clear_addr2line_cache();
3242 }
3243
3244 // Warnings functions.
3245
3246 // Add a new warning.
3247
3248 void
3249 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3250                       const std::string& warning)
3251 {
3252   name = symtab->canonicalize_name(name);
3253   this->warnings_[name].set(obj, warning);
3254 }
3255
3256 // Look through the warnings and mark the symbols for which we should
3257 // warn.  This is called during Layout::finalize when we know the
3258 // sources for all the symbols.
3259
3260 void
3261 Warnings::note_warnings(Symbol_table* symtab)
3262 {
3263   for (Warning_table::iterator p = this->warnings_.begin();
3264        p != this->warnings_.end();
3265        ++p)
3266     {
3267       Symbol* sym = symtab->lookup(p->first, NULL);
3268       if (sym != NULL
3269           && sym->source() == Symbol::FROM_OBJECT
3270           && sym->object() == p->second.object)
3271         sym->set_has_warning();
3272     }
3273 }
3274
3275 // Issue a warning.  This is called when we see a relocation against a
3276 // symbol for which has a warning.
3277
3278 template<int size, bool big_endian>
3279 void
3280 Warnings::issue_warning(const Symbol* sym,
3281                         const Relocate_info<size, big_endian>* relinfo,
3282                         size_t relnum, off_t reloffset) const
3283 {
3284   gold_assert(sym->has_warning());
3285   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3286   gold_assert(p != this->warnings_.end());
3287   gold_warning_at_location(relinfo, relnum, reloffset,
3288                            "%s", p->second.text.c_str());
3289 }
3290
3291 // Instantiate the templates we need.  We could use the configure
3292 // script to restrict this to only the ones needed for implemented
3293 // targets.
3294
3295 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3296 template
3297 void
3298 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3299 #endif
3300
3301 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3302 template
3303 void
3304 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3305 #endif
3306
3307 #ifdef HAVE_TARGET_32_LITTLE
3308 template
3309 void
3310 Symbol_table::add_from_relobj<32, false>(
3311     Sized_relobj_file<32, false>* relobj,
3312     const unsigned char* syms,
3313     size_t count,
3314     size_t symndx_offset,
3315     const char* sym_names,
3316     size_t sym_name_size,
3317     Sized_relobj_file<32, false>::Symbols* sympointers,
3318     size_t* defined);
3319 #endif
3320
3321 #ifdef HAVE_TARGET_32_BIG
3322 template
3323 void
3324 Symbol_table::add_from_relobj<32, true>(
3325     Sized_relobj_file<32, true>* relobj,
3326     const unsigned char* syms,
3327     size_t count,
3328     size_t symndx_offset,
3329     const char* sym_names,
3330     size_t sym_name_size,
3331     Sized_relobj_file<32, true>::Symbols* sympointers,
3332     size_t* defined);
3333 #endif
3334
3335 #ifdef HAVE_TARGET_64_LITTLE
3336 template
3337 void
3338 Symbol_table::add_from_relobj<64, false>(
3339     Sized_relobj_file<64, false>* relobj,
3340     const unsigned char* syms,
3341     size_t count,
3342     size_t symndx_offset,
3343     const char* sym_names,
3344     size_t sym_name_size,
3345     Sized_relobj_file<64, false>::Symbols* sympointers,
3346     size_t* defined);
3347 #endif
3348
3349 #ifdef HAVE_TARGET_64_BIG
3350 template
3351 void
3352 Symbol_table::add_from_relobj<64, true>(
3353     Sized_relobj_file<64, true>* relobj,
3354     const unsigned char* syms,
3355     size_t count,
3356     size_t symndx_offset,
3357     const char* sym_names,
3358     size_t sym_name_size,
3359     Sized_relobj_file<64, true>::Symbols* sympointers,
3360     size_t* defined);
3361 #endif
3362
3363 #ifdef HAVE_TARGET_32_LITTLE
3364 template
3365 Symbol*
3366 Symbol_table::add_from_pluginobj<32, false>(
3367     Sized_pluginobj<32, false>* obj,
3368     const char* name,
3369     const char* ver,
3370     elfcpp::Sym<32, false>* sym);
3371 #endif
3372
3373 #ifdef HAVE_TARGET_32_BIG
3374 template
3375 Symbol*
3376 Symbol_table::add_from_pluginobj<32, true>(
3377     Sized_pluginobj<32, true>* obj,
3378     const char* name,
3379     const char* ver,
3380     elfcpp::Sym<32, true>* sym);
3381 #endif
3382
3383 #ifdef HAVE_TARGET_64_LITTLE
3384 template
3385 Symbol*
3386 Symbol_table::add_from_pluginobj<64, false>(
3387     Sized_pluginobj<64, false>* obj,
3388     const char* name,
3389     const char* ver,
3390     elfcpp::Sym<64, false>* sym);
3391 #endif
3392
3393 #ifdef HAVE_TARGET_64_BIG
3394 template
3395 Symbol*
3396 Symbol_table::add_from_pluginobj<64, true>(
3397     Sized_pluginobj<64, true>* obj,
3398     const char* name,
3399     const char* ver,
3400     elfcpp::Sym<64, true>* sym);
3401 #endif
3402
3403 #ifdef HAVE_TARGET_32_LITTLE
3404 template
3405 void
3406 Symbol_table::add_from_dynobj<32, false>(
3407     Sized_dynobj<32, false>* dynobj,
3408     const unsigned char* syms,
3409     size_t count,
3410     const char* sym_names,
3411     size_t sym_name_size,
3412     const unsigned char* versym,
3413     size_t versym_size,
3414     const std::vector<const char*>* version_map,
3415     Sized_relobj_file<32, false>::Symbols* sympointers,
3416     size_t* defined);
3417 #endif
3418
3419 #ifdef HAVE_TARGET_32_BIG
3420 template
3421 void
3422 Symbol_table::add_from_dynobj<32, true>(
3423     Sized_dynobj<32, true>* dynobj,
3424     const unsigned char* syms,
3425     size_t count,
3426     const char* sym_names,
3427     size_t sym_name_size,
3428     const unsigned char* versym,
3429     size_t versym_size,
3430     const std::vector<const char*>* version_map,
3431     Sized_relobj_file<32, true>::Symbols* sympointers,
3432     size_t* defined);
3433 #endif
3434
3435 #ifdef HAVE_TARGET_64_LITTLE
3436 template
3437 void
3438 Symbol_table::add_from_dynobj<64, false>(
3439     Sized_dynobj<64, false>* dynobj,
3440     const unsigned char* syms,
3441     size_t count,
3442     const char* sym_names,
3443     size_t sym_name_size,
3444     const unsigned char* versym,
3445     size_t versym_size,
3446     const std::vector<const char*>* version_map,
3447     Sized_relobj_file<64, false>::Symbols* sympointers,
3448     size_t* defined);
3449 #endif
3450
3451 #ifdef HAVE_TARGET_64_BIG
3452 template
3453 void
3454 Symbol_table::add_from_dynobj<64, true>(
3455     Sized_dynobj<64, true>* dynobj,
3456     const unsigned char* syms,
3457     size_t count,
3458     const char* sym_names,
3459     size_t sym_name_size,
3460     const unsigned char* versym,
3461     size_t versym_size,
3462     const std::vector<const char*>* version_map,
3463     Sized_relobj_file<64, true>::Symbols* sympointers,
3464     size_t* defined);
3465 #endif
3466
3467 #ifdef HAVE_TARGET_32_LITTLE
3468 template
3469 Sized_symbol<32>*
3470 Symbol_table::add_from_incrobj(
3471     Object* obj,
3472     const char* name,
3473     const char* ver,
3474     elfcpp::Sym<32, false>* sym);
3475 #endif
3476
3477 #ifdef HAVE_TARGET_32_BIG
3478 template
3479 Sized_symbol<32>*
3480 Symbol_table::add_from_incrobj(
3481     Object* obj,
3482     const char* name,
3483     const char* ver,
3484     elfcpp::Sym<32, true>* sym);
3485 #endif
3486
3487 #ifdef HAVE_TARGET_64_LITTLE
3488 template
3489 Sized_symbol<64>*
3490 Symbol_table::add_from_incrobj(
3491     Object* obj,
3492     const char* name,
3493     const char* ver,
3494     elfcpp::Sym<64, false>* sym);
3495 #endif
3496
3497 #ifdef HAVE_TARGET_64_BIG
3498 template
3499 Sized_symbol<64>*
3500 Symbol_table::add_from_incrobj(
3501     Object* obj,
3502     const char* name,
3503     const char* ver,
3504     elfcpp::Sym<64, true>* sym);
3505 #endif
3506
3507 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3508 template
3509 void
3510 Symbol_table::define_with_copy_reloc<32>(
3511     Sized_symbol<32>* sym,
3512     Output_data* posd,
3513     elfcpp::Elf_types<32>::Elf_Addr value);
3514 #endif
3515
3516 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3517 template
3518 void
3519 Symbol_table::define_with_copy_reloc<64>(
3520     Sized_symbol<64>* sym,
3521     Output_data* posd,
3522     elfcpp::Elf_types<64>::Elf_Addr value);
3523 #endif
3524
3525 #ifdef HAVE_TARGET_32_LITTLE
3526 template
3527 void
3528 Warnings::issue_warning<32, false>(const Symbol* sym,
3529                                    const Relocate_info<32, false>* relinfo,
3530                                    size_t relnum, off_t reloffset) const;
3531 #endif
3532
3533 #ifdef HAVE_TARGET_32_BIG
3534 template
3535 void
3536 Warnings::issue_warning<32, true>(const Symbol* sym,
3537                                   const Relocate_info<32, true>* relinfo,
3538                                   size_t relnum, off_t reloffset) const;
3539 #endif
3540
3541 #ifdef HAVE_TARGET_64_LITTLE
3542 template
3543 void
3544 Warnings::issue_warning<64, false>(const Symbol* sym,
3545                                    const Relocate_info<64, false>* relinfo,
3546                                    size_t relnum, off_t reloffset) const;
3547 #endif
3548
3549 #ifdef HAVE_TARGET_64_BIG
3550 template
3551 void
3552 Warnings::issue_warning<64, true>(const Symbol* sym,
3553                                   const Relocate_info<64, true>* relinfo,
3554                                   size_t relnum, off_t reloffset) const;
3555 #endif
3556
3557 } // End namespace gold.