Update copyright years
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol.  This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55                     elfcpp::STT type, elfcpp::STB binding,
56                     elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91   if (!parameters->options().do_demangle())
92     return name;
93
94   // cplus_demangle allocates memory for the result it returns,
95   // and returns NULL if the name is already demangled.
96   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97   if (demangled_name == NULL)
98     return name;
99
100   std::string retval(demangled_name);
101   free(demangled_name);
102   return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108   return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116                          const elfcpp::Sym<size, big_endian>& sym,
117                          unsigned int st_shndx, bool is_ordinary)
118 {
119   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120                     sym.get_st_visibility(), sym.get_st_nonvis());
121   this->u_.from_object.object = object;
122   this->u_.from_object.shndx = st_shndx;
123   this->is_ordinary_shndx_ = is_ordinary;
124   this->source_ = FROM_OBJECT;
125   this->in_reg_ = !object->is_dynamic();
126   this->in_dyn_ = object->is_dynamic();
127   this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135                               Output_data* od, elfcpp::STT type,
136                               elfcpp::STB binding, elfcpp::STV visibility,
137                               unsigned char nonvis, bool offset_is_from_end,
138                               bool is_predefined)
139 {
140   this->init_fields(name, version, type, binding, visibility, nonvis);
141   this->u_.in_output_data.output_data = od;
142   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143   this->source_ = IN_OUTPUT_DATA;
144   this->in_reg_ = true;
145   this->in_real_elf_ = true;
146   this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154                                  Output_segment* os, elfcpp::STT type,
155                                  elfcpp::STB binding, elfcpp::STV visibility,
156                                  unsigned char nonvis,
157                                  Segment_offset_base offset_base,
158                                  bool is_predefined)
159 {
160   this->init_fields(name, version, type, binding, visibility, nonvis);
161   this->u_.in_output_segment.output_segment = os;
162   this->u_.in_output_segment.offset_base = offset_base;
163   this->source_ = IN_OUTPUT_SEGMENT;
164   this->in_reg_ = true;
165   this->in_real_elf_ = true;
166   this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174                            elfcpp::STT type, elfcpp::STB binding,
175                            elfcpp::STV visibility, unsigned char nonvis,
176                            bool is_predefined)
177 {
178   this->init_fields(name, version, type, binding, visibility, nonvis);
179   this->source_ = IS_CONSTANT;
180   this->in_reg_ = true;
181   this->in_real_elf_ = true;
182   this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190                             elfcpp::STT type, elfcpp::STB binding,
191                             elfcpp::STV visibility, unsigned char nonvis)
192 {
193   this->init_fields(name, version, type, binding, visibility, nonvis);
194   this->dynsym_index_ = -1U;
195   this->source_ = IS_UNDEFINED;
196   this->in_reg_ = true;
197   this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205   gold_assert(this->is_common());
206   this->source_ = IN_OUTPUT_DATA;
207   this->u_.in_output_data.output_data = od;
208   this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217                                 Object* object,
218                                 const elfcpp::Sym<size, big_endian>& sym,
219                                 unsigned int st_shndx, bool is_ordinary)
220 {
221   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222   this->value_ = sym.get_st_value();
223   this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232                                      Output_data* od, Value_type value,
233                                      Size_type symsize, elfcpp::STT type,
234                                      elfcpp::STB binding,
235                                      elfcpp::STV visibility,
236                                      unsigned char nonvis,
237                                      bool offset_is_from_end,
238                                      bool is_predefined)
239 {
240   this->init_base_output_data(name, version, od, type, binding, visibility,
241                               nonvis, offset_is_from_end, is_predefined);
242   this->value_ = value;
243   this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252                                         Output_segment* os, Value_type value,
253                                         Size_type symsize, elfcpp::STT type,
254                                         elfcpp::STB binding,
255                                         elfcpp::STV visibility,
256                                         unsigned char nonvis,
257                                         Segment_offset_base offset_base,
258                                         bool is_predefined)
259 {
260   this->init_base_output_segment(name, version, os, type, binding, visibility,
261                                  nonvis, offset_base, is_predefined);
262   this->value_ = value;
263   this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272                                   Value_type value, Size_type symsize,
273                                   elfcpp::STT type, elfcpp::STB binding,
274                                   elfcpp::STV visibility, unsigned char nonvis,
275                                   bool is_predefined)
276 {
277   this->init_base_constant(name, version, type, binding, visibility, nonvis,
278                            is_predefined);
279   this->value_ = value;
280   this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288                                    elfcpp::STT type, elfcpp::STB binding,
289                                    elfcpp::STV visibility, unsigned char nonvis)
290 {
291   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292   this->value_ = 0;
293   this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version.  This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302   gold_assert(this->version_ != NULL);
303   std::string ret = this->name_;
304   ret.push_back('@');
305   if (this->is_def_)
306     ret.push_back('@');
307   ret += this->version_;
308   return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316   return (shndx == elfcpp::SHN_COMMON
317           || shndx == parameters->target().small_common_shndx()
318           || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327   this->allocate_base_common(od);
328   this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 inline bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340   // If the symbol is only present on plugin files, the plugin decided we
341   // don't need it.
342   if (!this->in_real_elf())
343     return false;
344
345   // If the symbol is used by a dynamic relocation, we need to add it.
346   if (this->needs_dynsym_entry())
347     return true;
348
349   // If this symbol's section is not added, the symbol need not be added. 
350   // The section may have been GCed.  Note that export_dynamic is being 
351   // overridden here.  This should not be done for shared objects.
352   if (parameters->options().gc_sections() 
353       && !parameters->options().shared()
354       && this->source() == Symbol::FROM_OBJECT
355       && !this->object()->is_dynamic())
356     {
357       Relobj* relobj = static_cast<Relobj*>(this->object());
358       bool is_ordinary;
359       unsigned int shndx = this->shndx(&is_ordinary);
360       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361           && !relobj->is_section_included(shndx)
362           && !symtab->is_section_folded(relobj, shndx))
363         return false;
364     }
365
366   // If the symbol was forced dynamic in a --dynamic-list file
367   // or an --export-dynamic-symbol option, add it.
368   if (!this->is_from_dynobj()
369       && (parameters->options().in_dynamic_list(this->name())
370           || parameters->options().is_export_dynamic_symbol(this->name())))
371     {
372       if (!this->is_forced_local())
373         return true;
374       gold_warning(_("Cannot export local symbol '%s'"),
375                    this->demangled_name().c_str());
376       return false;
377     }
378
379   // If the symbol was forced local in a version script, do not add it.
380   if (this->is_forced_local())
381     return false;
382
383   // If dynamic-list-data was specified, add any STT_OBJECT.
384   if (parameters->options().dynamic_list_data()
385       && !this->is_from_dynobj()
386       && this->type() == elfcpp::STT_OBJECT)
387     return true;
388
389   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391   if ((parameters->options().dynamic_list_cpp_new()
392        || parameters->options().dynamic_list_cpp_typeinfo())
393       && !this->is_from_dynobj())
394     {
395       // TODO(csilvers): We could probably figure out if we're an operator
396       //                 new/delete or typeinfo without the need to demangle.
397       char* demangled_name = cplus_demangle(this->name(),
398                                             DMGL_ANSI | DMGL_PARAMS);
399       if (demangled_name == NULL)
400         {
401           // Not a C++ symbol, so it can't satisfy these flags
402         }
403       else if (parameters->options().dynamic_list_cpp_new()
404                && (strprefix(demangled_name, "operator new")
405                    || strprefix(demangled_name, "operator delete")))
406         {
407           free(demangled_name);
408           return true;
409         }
410       else if (parameters->options().dynamic_list_cpp_typeinfo()
411                && (strprefix(demangled_name, "typeinfo name for")
412                    || strprefix(demangled_name, "typeinfo for")))
413         {
414           free(demangled_name);
415           return true;
416         }
417       else
418         free(demangled_name);
419     }
420
421   // If exporting all symbols or building a shared library,
422   // and the symbol is defined in a regular object and is
423   // externally visible, we need to add it.
424   if ((parameters->options().export_dynamic() || parameters->options().shared())
425       && !this->is_from_dynobj()
426       && !this->is_undefined()
427       && this->is_externally_visible())
428     return true;
429
430   return false;
431 }
432
433 // Return true if the final value of this symbol is known at link
434 // time.
435
436 bool
437 Symbol::final_value_is_known() const
438 {
439   // If we are not generating an executable, then no final values are
440   // known, since they will change at runtime.
441   if (parameters->options().output_is_position_independent()
442       || parameters->options().relocatable())
443     return false;
444
445   // If the symbol is not from an object file, and is not undefined,
446   // then it is defined, and known.
447   if (this->source_ != FROM_OBJECT)
448     {
449       if (this->source_ != IS_UNDEFINED)
450         return true;
451     }
452   else
453     {
454       // If the symbol is from a dynamic object, then the final value
455       // is not known.
456       if (this->object()->is_dynamic())
457         return false;
458
459       // If the symbol is not undefined (it is defined or common),
460       // then the final value is known.
461       if (!this->is_undefined())
462         return true;
463     }
464
465   // If the symbol is undefined, then whether the final value is known
466   // depends on whether we are doing a static link.  If we are doing a
467   // dynamic link, then the final value could be filled in at runtime.
468   // This could reasonably be the case for a weak undefined symbol.
469   return parameters->doing_static_link();
470 }
471
472 // Return the output section where this symbol is defined.
473
474 Output_section*
475 Symbol::output_section() const
476 {
477   switch (this->source_)
478     {
479     case FROM_OBJECT:
480       {
481         unsigned int shndx = this->u_.from_object.shndx;
482         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
483           {
484             gold_assert(!this->u_.from_object.object->is_dynamic());
485             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
486             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
487             return relobj->output_section(shndx);
488           }
489         return NULL;
490       }
491
492     case IN_OUTPUT_DATA:
493       return this->u_.in_output_data.output_data->output_section();
494
495     case IN_OUTPUT_SEGMENT:
496     case IS_CONSTANT:
497     case IS_UNDEFINED:
498       return NULL;
499
500     default:
501       gold_unreachable();
502     }
503 }
504
505 // Set the symbol's output section.  This is used for symbols defined
506 // in scripts.  This should only be called after the symbol table has
507 // been finalized.
508
509 void
510 Symbol::set_output_section(Output_section* os)
511 {
512   switch (this->source_)
513     {
514     case FROM_OBJECT:
515     case IN_OUTPUT_DATA:
516       gold_assert(this->output_section() == os);
517       break;
518     case IS_CONSTANT:
519       this->source_ = IN_OUTPUT_DATA;
520       this->u_.in_output_data.output_data = os;
521       this->u_.in_output_data.offset_is_from_end = false;
522       break;
523     case IN_OUTPUT_SEGMENT:
524     case IS_UNDEFINED:
525     default:
526       gold_unreachable();
527     }
528 }
529
530 // Class Symbol_table.
531
532 Symbol_table::Symbol_table(unsigned int count,
533                            const Version_script_info& version_script)
534   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
535     forwarders_(), commons_(), tls_commons_(), small_commons_(),
536     large_commons_(), forced_locals_(), warnings_(),
537     version_script_(version_script), gc_(NULL), icf_(NULL)
538 {
539   namepool_.reserve(count);
540 }
541
542 Symbol_table::~Symbol_table()
543 {
544 }
545
546 // The symbol table key equality function.  This is called with
547 // Stringpool keys.
548
549 inline bool
550 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
551                                           const Symbol_table_key& k2) const
552 {
553   return k1.first == k2.first && k1.second == k2.second;
554 }
555
556 bool
557 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
558 {
559   return (parameters->options().icf_enabled()
560           && this->icf_->is_section_folded(obj, shndx));
561 }
562
563 // For symbols that have been listed with a -u or --export-dynamic-symbol
564 // option, add them to the work list to avoid gc'ing them.
565
566 void 
567 Symbol_table::gc_mark_undef_symbols(Layout* layout)
568 {
569   for (options::String_set::const_iterator p =
570          parameters->options().undefined_begin();
571        p != parameters->options().undefined_end();
572        ++p)
573     {
574       const char* name = p->c_str();
575       Symbol* sym = this->lookup(name);
576       gold_assert(sym != NULL);
577       if (sym->source() == Symbol::FROM_OBJECT 
578           && !sym->object()->is_dynamic())
579         {
580           this->gc_mark_symbol(sym);
581         }
582     }
583
584   for (options::String_set::const_iterator p =
585          parameters->options().export_dynamic_symbol_begin();
586        p != parameters->options().export_dynamic_symbol_end();
587        ++p)
588     {
589       const char* name = p->c_str();
590       Symbol* sym = this->lookup(name);
591       // It's not an error if a symbol named by --export-dynamic-symbol
592       // is undefined.
593       if (sym != NULL
594           && sym->source() == Symbol::FROM_OBJECT 
595           && !sym->object()->is_dynamic())
596         {
597           this->gc_mark_symbol(sym);
598         }
599     }
600
601   for (Script_options::referenced_const_iterator p =
602          layout->script_options()->referenced_begin();
603        p != layout->script_options()->referenced_end();
604        ++p)
605     {
606       Symbol* sym = this->lookup(p->c_str());
607       gold_assert(sym != NULL);
608       if (sym->source() == Symbol::FROM_OBJECT
609           && !sym->object()->is_dynamic())
610         {
611           this->gc_mark_symbol(sym);
612         }
613     }
614 }
615
616 void
617 Symbol_table::gc_mark_symbol(Symbol* sym)
618 {
619   // Add the object and section to the work list.
620   bool is_ordinary;
621   unsigned int shndx = sym->shndx(&is_ordinary);
622   if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
623     {
624       gold_assert(this->gc_!= NULL);
625       this->gc_->worklist().push(Section_id(sym->object(), shndx));
626     }
627   parameters->target().gc_mark_symbol(this, sym);
628 }
629
630 // When doing garbage collection, keep symbols that have been seen in
631 // dynamic objects.
632 inline void 
633 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
634 {
635   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
636       && !sym->object()->is_dynamic())
637     this->gc_mark_symbol(sym);
638 }
639
640 // Make TO a symbol which forwards to FROM.
641
642 void
643 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
644 {
645   gold_assert(from != to);
646   gold_assert(!from->is_forwarder() && !to->is_forwarder());
647   this->forwarders_[from] = to;
648   from->set_forwarder();
649 }
650
651 // Resolve the forwards from FROM, returning the real symbol.
652
653 Symbol*
654 Symbol_table::resolve_forwards(const Symbol* from) const
655 {
656   gold_assert(from->is_forwarder());
657   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
658     this->forwarders_.find(from);
659   gold_assert(p != this->forwarders_.end());
660   return p->second;
661 }
662
663 // Look up a symbol by name.
664
665 Symbol*
666 Symbol_table::lookup(const char* name, const char* version) const
667 {
668   Stringpool::Key name_key;
669   name = this->namepool_.find(name, &name_key);
670   if (name == NULL)
671     return NULL;
672
673   Stringpool::Key version_key = 0;
674   if (version != NULL)
675     {
676       version = this->namepool_.find(version, &version_key);
677       if (version == NULL)
678         return NULL;
679     }
680
681   Symbol_table_key key(name_key, version_key);
682   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
683   if (p == this->table_.end())
684     return NULL;
685   return p->second;
686 }
687
688 // Resolve a Symbol with another Symbol.  This is only used in the
689 // unusual case where there are references to both an unversioned
690 // symbol and a symbol with a version, and we then discover that that
691 // version is the default version.  Because this is unusual, we do
692 // this the slow way, by converting back to an ELF symbol.
693
694 template<int size, bool big_endian>
695 void
696 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
697 {
698   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
699   elfcpp::Sym_write<size, big_endian> esym(buf);
700   // We don't bother to set the st_name or the st_shndx field.
701   esym.put_st_value(from->value());
702   esym.put_st_size(from->symsize());
703   esym.put_st_info(from->binding(), from->type());
704   esym.put_st_other(from->visibility(), from->nonvis());
705   bool is_ordinary;
706   unsigned int shndx = from->shndx(&is_ordinary);
707   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
708                 from->version());
709   if (from->in_reg())
710     to->set_in_reg();
711   if (from->in_dyn())
712     to->set_in_dyn();
713   if (parameters->options().gc_sections())
714     this->gc_mark_dyn_syms(to);
715 }
716
717 // Record that a symbol is forced to be local by a version script or
718 // by visibility.
719
720 void
721 Symbol_table::force_local(Symbol* sym)
722 {
723   if (!sym->is_defined() && !sym->is_common())
724     return;
725   if (sym->is_forced_local())
726     {
727       // We already got this one.
728       return;
729     }
730   sym->set_is_forced_local();
731   this->forced_locals_.push_back(sym);
732 }
733
734 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
735 // is only called for undefined symbols, when at least one --wrap
736 // option was used.
737
738 const char*
739 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
740 {
741   // For some targets, we need to ignore a specific character when
742   // wrapping, and add it back later.
743   char prefix = '\0';
744   if (name[0] == parameters->target().wrap_char())
745     {
746       prefix = name[0];
747       ++name;
748     }
749
750   if (parameters->options().is_wrap(name))
751     {
752       // Turn NAME into __wrap_NAME.
753       std::string s;
754       if (prefix != '\0')
755         s += prefix;
756       s += "__wrap_";
757       s += name;
758
759       // This will give us both the old and new name in NAMEPOOL_, but
760       // that is OK.  Only the versions we need will wind up in the
761       // real string table in the output file.
762       return this->namepool_.add(s.c_str(), true, name_key);
763     }
764
765   const char* const real_prefix = "__real_";
766   const size_t real_prefix_length = strlen(real_prefix);
767   if (strncmp(name, real_prefix, real_prefix_length) == 0
768       && parameters->options().is_wrap(name + real_prefix_length))
769     {
770       // Turn __real_NAME into NAME.
771       std::string s;
772       if (prefix != '\0')
773         s += prefix;
774       s += name + real_prefix_length;
775       return this->namepool_.add(s.c_str(), true, name_key);
776     }
777
778   return name;
779 }
780
781 // This is called when we see a symbol NAME/VERSION, and the symbol
782 // already exists in the symbol table, and VERSION is marked as being
783 // the default version.  SYM is the NAME/VERSION symbol we just added.
784 // DEFAULT_IS_NEW is true if this is the first time we have seen the
785 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
786
787 template<int size, bool big_endian>
788 void
789 Symbol_table::define_default_version(Sized_symbol<size>* sym,
790                                      bool default_is_new,
791                                      Symbol_table_type::iterator pdef)
792 {
793   if (default_is_new)
794     {
795       // This is the first time we have seen NAME/NULL.  Make
796       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
797       // version.
798       pdef->second = sym;
799       sym->set_is_default();
800     }
801   else if (pdef->second == sym)
802     {
803       // NAME/NULL already points to NAME/VERSION.  Don't mark the
804       // symbol as the default if it is not already the default.
805     }
806   else
807     {
808       // This is the unfortunate case where we already have entries
809       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
810       // NAME/VERSION where VERSION is the default version.  We have
811       // already resolved this new symbol with the existing
812       // NAME/VERSION symbol.
813
814       // It's possible that NAME/NULL and NAME/VERSION are both
815       // defined in regular objects.  This can only happen if one
816       // object file defines foo and another defines foo@@ver.  This
817       // is somewhat obscure, but we call it a multiple definition
818       // error.
819
820       // It's possible that NAME/NULL actually has a version, in which
821       // case it won't be the same as VERSION.  This happens with
822       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
823       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
824       // then see an unadorned t2_2 in an object file and give it
825       // version VER1 from the version script.  This looks like a
826       // default definition for VER1, so it looks like we should merge
827       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
828       // not obvious that this is an error, either.  So we just punt.
829
830       // If one of the symbols has non-default visibility, and the
831       // other is defined in a shared object, then they are different
832       // symbols.
833
834       // Otherwise, we just resolve the symbols as though they were
835       // the same.
836
837       if (pdef->second->version() != NULL)
838         gold_assert(pdef->second->version() != sym->version());
839       else if (sym->visibility() != elfcpp::STV_DEFAULT
840                && pdef->second->is_from_dynobj())
841         ;
842       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
843                && sym->is_from_dynobj())
844         ;
845       else
846         {
847           const Sized_symbol<size>* symdef;
848           symdef = this->get_sized_symbol<size>(pdef->second);
849           Symbol_table::resolve<size, big_endian>(sym, symdef);
850           this->make_forwarder(pdef->second, sym);
851           pdef->second = sym;
852           sym->set_is_default();
853         }
854     }
855 }
856
857 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
858 // name and VERSION is the version; both are canonicalized.  DEF is
859 // whether this is the default version.  ST_SHNDX is the symbol's
860 // section index; IS_ORDINARY is whether this is a normal section
861 // rather than a special code.
862
863 // If IS_DEFAULT_VERSION is true, then this is the definition of a
864 // default version of a symbol.  That means that any lookup of
865 // NAME/NULL and any lookup of NAME/VERSION should always return the
866 // same symbol.  This is obvious for references, but in particular we
867 // want to do this for definitions: overriding NAME/NULL should also
868 // override NAME/VERSION.  If we don't do that, it would be very hard
869 // to override functions in a shared library which uses versioning.
870
871 // We implement this by simply making both entries in the hash table
872 // point to the same Symbol structure.  That is easy enough if this is
873 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
874 // that we have seen both already, in which case they will both have
875 // independent entries in the symbol table.  We can't simply change
876 // the symbol table entry, because we have pointers to the entries
877 // attached to the object files.  So we mark the entry attached to the
878 // object file as a forwarder, and record it in the forwarders_ map.
879 // Note that entries in the hash table will never be marked as
880 // forwarders.
881 //
882 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
883 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
884 // for a special section code.  ST_SHNDX may be modified if the symbol
885 // is defined in a section being discarded.
886
887 template<int size, bool big_endian>
888 Sized_symbol<size>*
889 Symbol_table::add_from_object(Object* object,
890                               const char* name,
891                               Stringpool::Key name_key,
892                               const char* version,
893                               Stringpool::Key version_key,
894                               bool is_default_version,
895                               const elfcpp::Sym<size, big_endian>& sym,
896                               unsigned int st_shndx,
897                               bool is_ordinary,
898                               unsigned int orig_st_shndx)
899 {
900   // Print a message if this symbol is being traced.
901   if (parameters->options().is_trace_symbol(name))
902     {
903       if (orig_st_shndx == elfcpp::SHN_UNDEF)
904         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
905       else
906         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
907     }
908
909   // For an undefined symbol, we may need to adjust the name using
910   // --wrap.
911   if (orig_st_shndx == elfcpp::SHN_UNDEF
912       && parameters->options().any_wrap())
913     {
914       const char* wrap_name = this->wrap_symbol(name, &name_key);
915       if (wrap_name != name)
916         {
917           // If we see a reference to malloc with version GLIBC_2.0,
918           // and we turn it into a reference to __wrap_malloc, then we
919           // discard the version number.  Otherwise the user would be
920           // required to specify the correct version for
921           // __wrap_malloc.
922           version = NULL;
923           version_key = 0;
924           name = wrap_name;
925         }
926     }
927
928   Symbol* const snull = NULL;
929   std::pair<typename Symbol_table_type::iterator, bool> ins =
930     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
931                                        snull));
932
933   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
934     std::make_pair(this->table_.end(), false);
935   if (is_default_version)
936     {
937       const Stringpool::Key vnull_key = 0;
938       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
939                                                                      vnull_key),
940                                                       snull));
941     }
942
943   // ins.first: an iterator, which is a pointer to a pair.
944   // ins.first->first: the key (a pair of name and version).
945   // ins.first->second: the value (Symbol*).
946   // ins.second: true if new entry was inserted, false if not.
947
948   Sized_symbol<size>* ret;
949   bool was_undefined;
950   bool was_common;
951   if (!ins.second)
952     {
953       // We already have an entry for NAME/VERSION.
954       ret = this->get_sized_symbol<size>(ins.first->second);
955       gold_assert(ret != NULL);
956
957       was_undefined = ret->is_undefined();
958       was_common = ret->is_common();
959
960       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
961                     version);
962       if (parameters->options().gc_sections())
963         this->gc_mark_dyn_syms(ret);
964
965       if (is_default_version)
966         this->define_default_version<size, big_endian>(ret, insdefault.second,
967                                                        insdefault.first);
968     }
969   else
970     {
971       // This is the first time we have seen NAME/VERSION.
972       gold_assert(ins.first->second == NULL);
973
974       if (is_default_version && !insdefault.second)
975         {
976           // We already have an entry for NAME/NULL.  If we override
977           // it, then change it to NAME/VERSION.
978           ret = this->get_sized_symbol<size>(insdefault.first->second);
979
980           was_undefined = ret->is_undefined();
981           was_common = ret->is_common();
982
983           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
984                         version);
985           if (parameters->options().gc_sections())
986             this->gc_mark_dyn_syms(ret);
987           ins.first->second = ret;
988         }
989       else
990         {
991           was_undefined = false;
992           was_common = false;
993
994           Sized_target<size, big_endian>* target =
995             parameters->sized_target<size, big_endian>();
996           if (!target->has_make_symbol())
997             ret = new Sized_symbol<size>();
998           else
999             {
1000               ret = target->make_symbol();
1001               if (ret == NULL)
1002                 {
1003                   // This means that we don't want a symbol table
1004                   // entry after all.
1005                   if (!is_default_version)
1006                     this->table_.erase(ins.first);
1007                   else
1008                     {
1009                       this->table_.erase(insdefault.first);
1010                       // Inserting INSDEFAULT invalidated INS.
1011                       this->table_.erase(std::make_pair(name_key,
1012                                                         version_key));
1013                     }
1014                   return NULL;
1015                 }
1016             }
1017
1018           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1019
1020           ins.first->second = ret;
1021           if (is_default_version)
1022             {
1023               // This is the first time we have seen NAME/NULL.  Point
1024               // it at the new entry for NAME/VERSION.
1025               gold_assert(insdefault.second);
1026               insdefault.first->second = ret;
1027             }
1028         }
1029
1030       if (is_default_version)
1031         ret->set_is_default();
1032     }
1033
1034   // Record every time we see a new undefined symbol, to speed up
1035   // archive groups.
1036   if (!was_undefined && ret->is_undefined())
1037     {
1038       ++this->saw_undefined_;
1039       if (parameters->options().has_plugins())
1040         parameters->options().plugins()->new_undefined_symbol(ret);
1041     }
1042
1043   // Keep track of common symbols, to speed up common symbol
1044   // allocation.
1045   if (!was_common && ret->is_common())
1046     {
1047       if (ret->type() == elfcpp::STT_TLS)
1048         this->tls_commons_.push_back(ret);
1049       else if (!is_ordinary
1050                && st_shndx == parameters->target().small_common_shndx())
1051         this->small_commons_.push_back(ret);
1052       else if (!is_ordinary
1053                && st_shndx == parameters->target().large_common_shndx())
1054         this->large_commons_.push_back(ret);
1055       else
1056         this->commons_.push_back(ret);
1057     }
1058
1059   // If we're not doing a relocatable link, then any symbol with
1060   // hidden or internal visibility is local.
1061   if ((ret->visibility() == elfcpp::STV_HIDDEN
1062        || ret->visibility() == elfcpp::STV_INTERNAL)
1063       && (ret->binding() == elfcpp::STB_GLOBAL
1064           || ret->binding() == elfcpp::STB_GNU_UNIQUE
1065           || ret->binding() == elfcpp::STB_WEAK)
1066       && !parameters->options().relocatable())
1067     this->force_local(ret);
1068
1069   return ret;
1070 }
1071
1072 // Add all the symbols in a relocatable object to the hash table.
1073
1074 template<int size, bool big_endian>
1075 void
1076 Symbol_table::add_from_relobj(
1077     Sized_relobj_file<size, big_endian>* relobj,
1078     const unsigned char* syms,
1079     size_t count,
1080     size_t symndx_offset,
1081     const char* sym_names,
1082     size_t sym_name_size,
1083     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1084     size_t* defined)
1085 {
1086   *defined = 0;
1087
1088   gold_assert(size == parameters->target().get_size());
1089
1090   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1091
1092   const bool just_symbols = relobj->just_symbols();
1093
1094   const unsigned char* p = syms;
1095   for (size_t i = 0; i < count; ++i, p += sym_size)
1096     {
1097       (*sympointers)[i] = NULL;
1098
1099       elfcpp::Sym<size, big_endian> sym(p);
1100
1101       unsigned int st_name = sym.get_st_name();
1102       if (st_name >= sym_name_size)
1103         {
1104           relobj->error(_("bad global symbol name offset %u at %zu"),
1105                         st_name, i);
1106           continue;
1107         }
1108
1109       const char* name = sym_names + st_name;
1110
1111       bool is_ordinary;
1112       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1113                                                        sym.get_st_shndx(),
1114                                                        &is_ordinary);
1115       unsigned int orig_st_shndx = st_shndx;
1116       if (!is_ordinary)
1117         orig_st_shndx = elfcpp::SHN_UNDEF;
1118
1119       if (st_shndx != elfcpp::SHN_UNDEF)
1120         ++*defined;
1121
1122       // A symbol defined in a section which we are not including must
1123       // be treated as an undefined symbol.
1124       bool is_defined_in_discarded_section = false;
1125       if (st_shndx != elfcpp::SHN_UNDEF
1126           && is_ordinary
1127           && !relobj->is_section_included(st_shndx)
1128           && !this->is_section_folded(relobj, st_shndx))
1129         {
1130           st_shndx = elfcpp::SHN_UNDEF;
1131           is_defined_in_discarded_section = true;
1132         }
1133
1134       // In an object file, an '@' in the name separates the symbol
1135       // name from the version name.  If there are two '@' characters,
1136       // this is the default version.
1137       const char* ver = strchr(name, '@');
1138       Stringpool::Key ver_key = 0;
1139       int namelen = 0;
1140       // IS_DEFAULT_VERSION: is the version default?
1141       // IS_FORCED_LOCAL: is the symbol forced local?
1142       bool is_default_version = false;
1143       bool is_forced_local = false;
1144
1145       // FIXME: For incremental links, we don't store version information,
1146       // so we need to ignore version symbols for now.
1147       if (parameters->incremental_update() && ver != NULL)
1148         {
1149           namelen = ver - name;
1150           ver = NULL;
1151         }
1152
1153       if (ver != NULL)
1154         {
1155           // The symbol name is of the form foo@VERSION or foo@@VERSION
1156           namelen = ver - name;
1157           ++ver;
1158           if (*ver == '@')
1159             {
1160               is_default_version = true;
1161               ++ver;
1162             }
1163           ver = this->namepool_.add(ver, true, &ver_key);
1164         }
1165       // We don't want to assign a version to an undefined symbol,
1166       // even if it is listed in the version script.  FIXME: What
1167       // about a common symbol?
1168       else
1169         {
1170           namelen = strlen(name);
1171           if (!this->version_script_.empty()
1172               && st_shndx != elfcpp::SHN_UNDEF)
1173             {
1174               // The symbol name did not have a version, but the
1175               // version script may assign a version anyway.
1176               std::string version;
1177               bool is_global;
1178               if (this->version_script_.get_symbol_version(name, &version,
1179                                                            &is_global))
1180                 {
1181                   if (!is_global)
1182                     is_forced_local = true;
1183                   else if (!version.empty())
1184                     {
1185                       ver = this->namepool_.add_with_length(version.c_str(),
1186                                                             version.length(),
1187                                                             true,
1188                                                             &ver_key);
1189                       is_default_version = true;
1190                     }
1191                 }
1192             }
1193         }
1194
1195       elfcpp::Sym<size, big_endian>* psym = &sym;
1196       unsigned char symbuf[sym_size];
1197       elfcpp::Sym<size, big_endian> sym2(symbuf);
1198       if (just_symbols)
1199         {
1200           memcpy(symbuf, p, sym_size);
1201           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1202           if (orig_st_shndx != elfcpp::SHN_UNDEF
1203               && is_ordinary
1204               && relobj->e_type() == elfcpp::ET_REL)
1205             {
1206               // Symbol values in relocatable object files are section
1207               // relative.  This is normally what we want, but since here
1208               // we are converting the symbol to absolute we need to add
1209               // the section address.  The section address in an object
1210               // file is normally zero, but people can use a linker
1211               // script to change it.
1212               sw.put_st_value(sym.get_st_value()
1213                               + relobj->section_address(orig_st_shndx));
1214             }
1215           st_shndx = elfcpp::SHN_ABS;
1216           is_ordinary = false;
1217           psym = &sym2;
1218         }
1219
1220       // Fix up visibility if object has no-export set.
1221       if (relobj->no_export()
1222           && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1223         {
1224           // We may have copied symbol already above.
1225           if (psym != &sym2)
1226             {
1227               memcpy(symbuf, p, sym_size);
1228               psym = &sym2;
1229             }
1230
1231           elfcpp::STV visibility = sym2.get_st_visibility();
1232           if (visibility == elfcpp::STV_DEFAULT
1233               || visibility == elfcpp::STV_PROTECTED)
1234             {
1235               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1236               unsigned char nonvis = sym2.get_st_nonvis();
1237               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1238             }
1239         }
1240
1241       Stringpool::Key name_key;
1242       name = this->namepool_.add_with_length(name, namelen, true,
1243                                              &name_key);
1244
1245       Sized_symbol<size>* res;
1246       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1247                                   is_default_version, *psym, st_shndx,
1248                                   is_ordinary, orig_st_shndx);
1249       
1250       if (is_forced_local)
1251         this->force_local(res);
1252
1253       // Do not treat this symbol as garbage if this symbol will be
1254       // exported to the dynamic symbol table.  This is true when
1255       // building a shared library or using --export-dynamic and
1256       // the symbol is externally visible.
1257       if (parameters->options().gc_sections()
1258           && res->is_externally_visible()
1259           && !res->is_from_dynobj()
1260           && (parameters->options().shared()
1261               || parameters->options().export_dynamic()
1262               || parameters->options().in_dynamic_list(res->name())))
1263         this->gc_mark_symbol(res);
1264
1265       if (is_defined_in_discarded_section)
1266         res->set_is_defined_in_discarded_section();
1267
1268       (*sympointers)[i] = res;
1269     }
1270 }
1271
1272 // Add a symbol from a plugin-claimed file.
1273
1274 template<int size, bool big_endian>
1275 Symbol*
1276 Symbol_table::add_from_pluginobj(
1277     Sized_pluginobj<size, big_endian>* obj,
1278     const char* name,
1279     const char* ver,
1280     elfcpp::Sym<size, big_endian>* sym)
1281 {
1282   unsigned int st_shndx = sym->get_st_shndx();
1283   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1284
1285   Stringpool::Key ver_key = 0;
1286   bool is_default_version = false;
1287   bool is_forced_local = false;
1288
1289   if (ver != NULL)
1290     {
1291       ver = this->namepool_.add(ver, true, &ver_key);
1292     }
1293   // We don't want to assign a version to an undefined symbol,
1294   // even if it is listed in the version script.  FIXME: What
1295   // about a common symbol?
1296   else
1297     {
1298       if (!this->version_script_.empty()
1299           && st_shndx != elfcpp::SHN_UNDEF)
1300         {
1301           // The symbol name did not have a version, but the
1302           // version script may assign a version anyway.
1303           std::string version;
1304           bool is_global;
1305           if (this->version_script_.get_symbol_version(name, &version,
1306                                                        &is_global))
1307             {
1308               if (!is_global)
1309                 is_forced_local = true;
1310               else if (!version.empty())
1311                 {
1312                   ver = this->namepool_.add_with_length(version.c_str(),
1313                                                         version.length(),
1314                                                         true,
1315                                                         &ver_key);
1316                   is_default_version = true;
1317                 }
1318             }
1319         }
1320     }
1321
1322   Stringpool::Key name_key;
1323   name = this->namepool_.add(name, true, &name_key);
1324
1325   Sized_symbol<size>* res;
1326   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1327                               is_default_version, *sym, st_shndx,
1328                               is_ordinary, st_shndx);
1329
1330   if (is_forced_local)
1331     this->force_local(res);
1332
1333   return res;
1334 }
1335
1336 // Add all the symbols in a dynamic object to the hash table.
1337
1338 template<int size, bool big_endian>
1339 void
1340 Symbol_table::add_from_dynobj(
1341     Sized_dynobj<size, big_endian>* dynobj,
1342     const unsigned char* syms,
1343     size_t count,
1344     const char* sym_names,
1345     size_t sym_name_size,
1346     const unsigned char* versym,
1347     size_t versym_size,
1348     const std::vector<const char*>* version_map,
1349     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1350     size_t* defined)
1351 {
1352   *defined = 0;
1353
1354   gold_assert(size == parameters->target().get_size());
1355
1356   if (dynobj->just_symbols())
1357     {
1358       gold_error(_("--just-symbols does not make sense with a shared object"));
1359       return;
1360     }
1361
1362   // FIXME: For incremental links, we don't store version information,
1363   // so we need to ignore version symbols for now.
1364   if (parameters->incremental_update())
1365     versym = NULL;
1366
1367   if (versym != NULL && versym_size / 2 < count)
1368     {
1369       dynobj->error(_("too few symbol versions"));
1370       return;
1371     }
1372
1373   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1374
1375   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1376   // weak aliases.  This is necessary because if the dynamic object
1377   // provides the same variable under two names, one of which is a
1378   // weak definition, and the regular object refers to the weak
1379   // definition, we have to put both the weak definition and the
1380   // strong definition into the dynamic symbol table.  Given a weak
1381   // definition, the only way that we can find the corresponding
1382   // strong definition, if any, is to search the symbol table.
1383   std::vector<Sized_symbol<size>*> object_symbols;
1384
1385   const unsigned char* p = syms;
1386   const unsigned char* vs = versym;
1387   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1388     {
1389       elfcpp::Sym<size, big_endian> sym(p);
1390
1391       if (sympointers != NULL)
1392         (*sympointers)[i] = NULL;
1393
1394       // Ignore symbols with local binding or that have
1395       // internal or hidden visibility.
1396       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1397           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1398           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1399         continue;
1400
1401       // A protected symbol in a shared library must be treated as a
1402       // normal symbol when viewed from outside the shared library.
1403       // Implement this by overriding the visibility here.
1404       elfcpp::Sym<size, big_endian>* psym = &sym;
1405       unsigned char symbuf[sym_size];
1406       elfcpp::Sym<size, big_endian> sym2(symbuf);
1407       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1408         {
1409           memcpy(symbuf, p, sym_size);
1410           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1411           sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1412           psym = &sym2;
1413         }
1414
1415       unsigned int st_name = psym->get_st_name();
1416       if (st_name >= sym_name_size)
1417         {
1418           dynobj->error(_("bad symbol name offset %u at %zu"),
1419                         st_name, i);
1420           continue;
1421         }
1422
1423       const char* name = sym_names + st_name;
1424
1425       bool is_ordinary;
1426       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1427                                                        &is_ordinary);
1428
1429       if (st_shndx != elfcpp::SHN_UNDEF)
1430         ++*defined;
1431
1432       Sized_symbol<size>* res;
1433
1434       if (versym == NULL)
1435         {
1436           Stringpool::Key name_key;
1437           name = this->namepool_.add(name, true, &name_key);
1438           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1439                                       false, *psym, st_shndx, is_ordinary,
1440                                       st_shndx);
1441         }
1442       else
1443         {
1444           // Read the version information.
1445
1446           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1447
1448           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1449           v &= elfcpp::VERSYM_VERSION;
1450
1451           // The Sun documentation says that V can be VER_NDX_LOCAL,
1452           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1453           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1454           // The old GNU linker will happily generate VER_NDX_LOCAL
1455           // for an undefined symbol.  I don't know what the Sun
1456           // linker will generate.
1457
1458           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1459               && st_shndx != elfcpp::SHN_UNDEF)
1460             {
1461               // This symbol should not be visible outside the object.
1462               continue;
1463             }
1464
1465           // At this point we are definitely going to add this symbol.
1466           Stringpool::Key name_key;
1467           name = this->namepool_.add(name, true, &name_key);
1468
1469           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1470               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1471             {
1472               // This symbol does not have a version.
1473               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1474                                           false, *psym, st_shndx, is_ordinary,
1475                                           st_shndx);
1476             }
1477           else
1478             {
1479               if (v >= version_map->size())
1480                 {
1481                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1482                                 i, v);
1483                   continue;
1484                 }
1485
1486               const char* version = (*version_map)[v];
1487               if (version == NULL)
1488                 {
1489                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1490                                 i, v);
1491                   continue;
1492                 }
1493
1494               Stringpool::Key version_key;
1495               version = this->namepool_.add(version, true, &version_key);
1496
1497               // If this is an absolute symbol, and the version name
1498               // and symbol name are the same, then this is the
1499               // version definition symbol.  These symbols exist to
1500               // support using -u to pull in particular versions.  We
1501               // do not want to record a version for them.
1502               if (st_shndx == elfcpp::SHN_ABS
1503                   && !is_ordinary
1504                   && name_key == version_key)
1505                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1506                                             false, *psym, st_shndx, is_ordinary,
1507                                             st_shndx);
1508               else
1509                 {
1510                   const bool is_default_version =
1511                     !hidden && st_shndx != elfcpp::SHN_UNDEF;
1512                   res = this->add_from_object(dynobj, name, name_key, version,
1513                                               version_key, is_default_version,
1514                                               *psym, st_shndx,
1515                                               is_ordinary, st_shndx);
1516                 }
1517             }
1518         }
1519
1520       // Note that it is possible that RES was overridden by an
1521       // earlier object, in which case it can't be aliased here.
1522       if (st_shndx != elfcpp::SHN_UNDEF
1523           && is_ordinary
1524           && psym->get_st_type() == elfcpp::STT_OBJECT
1525           && res->source() == Symbol::FROM_OBJECT
1526           && res->object() == dynobj)
1527         object_symbols.push_back(res);
1528
1529       if (sympointers != NULL)
1530         (*sympointers)[i] = res;
1531     }
1532
1533   this->record_weak_aliases(&object_symbols);
1534 }
1535
1536 // Add a symbol from a incremental object file.
1537
1538 template<int size, bool big_endian>
1539 Sized_symbol<size>*
1540 Symbol_table::add_from_incrobj(
1541     Object* obj,
1542     const char* name,
1543     const char* ver,
1544     elfcpp::Sym<size, big_endian>* sym)
1545 {
1546   unsigned int st_shndx = sym->get_st_shndx();
1547   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1548
1549   Stringpool::Key ver_key = 0;
1550   bool is_default_version = false;
1551   bool is_forced_local = false;
1552
1553   Stringpool::Key name_key;
1554   name = this->namepool_.add(name, true, &name_key);
1555
1556   Sized_symbol<size>* res;
1557   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1558                               is_default_version, *sym, st_shndx,
1559                               is_ordinary, st_shndx);
1560
1561   if (is_forced_local)
1562     this->force_local(res);
1563
1564   return res;
1565 }
1566
1567 // This is used to sort weak aliases.  We sort them first by section
1568 // index, then by offset, then by weak ahead of strong.
1569
1570 template<int size>
1571 class Weak_alias_sorter
1572 {
1573  public:
1574   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1575 };
1576
1577 template<int size>
1578 bool
1579 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1580                                     const Sized_symbol<size>* s2) const
1581 {
1582   bool is_ordinary;
1583   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1584   gold_assert(is_ordinary);
1585   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1586   gold_assert(is_ordinary);
1587   if (s1_shndx != s2_shndx)
1588     return s1_shndx < s2_shndx;
1589
1590   if (s1->value() != s2->value())
1591     return s1->value() < s2->value();
1592   if (s1->binding() != s2->binding())
1593     {
1594       if (s1->binding() == elfcpp::STB_WEAK)
1595         return true;
1596       if (s2->binding() == elfcpp::STB_WEAK)
1597         return false;
1598     }
1599   return std::string(s1->name()) < std::string(s2->name());
1600 }
1601
1602 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1603 // for any weak aliases, and record them so that if we add the weak
1604 // alias to the dynamic symbol table, we also add the corresponding
1605 // strong symbol.
1606
1607 template<int size>
1608 void
1609 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1610 {
1611   // Sort the vector by section index, then by offset, then by weak
1612   // ahead of strong.
1613   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1614
1615   // Walk through the vector.  For each weak definition, record
1616   // aliases.
1617   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1618          symbols->begin();
1619        p != symbols->end();
1620        ++p)
1621     {
1622       if ((*p)->binding() != elfcpp::STB_WEAK)
1623         continue;
1624
1625       // Build a circular list of weak aliases.  Each symbol points to
1626       // the next one in the circular list.
1627
1628       Sized_symbol<size>* from_sym = *p;
1629       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1630       for (q = p + 1; q != symbols->end(); ++q)
1631         {
1632           bool dummy;
1633           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1634               || (*q)->value() != from_sym->value())
1635             break;
1636
1637           this->weak_aliases_[from_sym] = *q;
1638           from_sym->set_has_alias();
1639           from_sym = *q;
1640         }
1641
1642       if (from_sym != *p)
1643         {
1644           this->weak_aliases_[from_sym] = *p;
1645           from_sym->set_has_alias();
1646         }
1647
1648       p = q - 1;
1649     }
1650 }
1651
1652 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1653 // true, then only create the symbol if there is a reference to it.
1654 // If this does not return NULL, it sets *POLDSYM to the existing
1655 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1656 // resolve the newly created symbol to the old one.  This
1657 // canonicalizes *PNAME and *PVERSION.
1658
1659 template<int size, bool big_endian>
1660 Sized_symbol<size>*
1661 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1662                                     bool only_if_ref,
1663                                     Sized_symbol<size>** poldsym,
1664                                     bool* resolve_oldsym)
1665 {
1666   *resolve_oldsym = false;
1667   *poldsym = NULL;
1668
1669   // If the caller didn't give us a version, see if we get one from
1670   // the version script.
1671   std::string v;
1672   bool is_default_version = false;
1673   if (*pversion == NULL)
1674     {
1675       bool is_global;
1676       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1677         {
1678           if (is_global && !v.empty())
1679             {
1680               *pversion = v.c_str();
1681               // If we get the version from a version script, then we
1682               // are also the default version.
1683               is_default_version = true;
1684             }
1685         }
1686     }
1687
1688   Symbol* oldsym;
1689   Sized_symbol<size>* sym;
1690
1691   bool add_to_table = false;
1692   typename Symbol_table_type::iterator add_loc = this->table_.end();
1693   bool add_def_to_table = false;
1694   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1695
1696   if (only_if_ref)
1697     {
1698       oldsym = this->lookup(*pname, *pversion);
1699       if (oldsym == NULL && is_default_version)
1700         oldsym = this->lookup(*pname, NULL);
1701       if (oldsym == NULL || !oldsym->is_undefined())
1702         return NULL;
1703
1704       *pname = oldsym->name();
1705       if (is_default_version)
1706         *pversion = this->namepool_.add(*pversion, true, NULL);
1707       else
1708         *pversion = oldsym->version();
1709     }
1710   else
1711     {
1712       // Canonicalize NAME and VERSION.
1713       Stringpool::Key name_key;
1714       *pname = this->namepool_.add(*pname, true, &name_key);
1715
1716       Stringpool::Key version_key = 0;
1717       if (*pversion != NULL)
1718         *pversion = this->namepool_.add(*pversion, true, &version_key);
1719
1720       Symbol* const snull = NULL;
1721       std::pair<typename Symbol_table_type::iterator, bool> ins =
1722         this->table_.insert(std::make_pair(std::make_pair(name_key,
1723                                                           version_key),
1724                                            snull));
1725
1726       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1727         std::make_pair(this->table_.end(), false);
1728       if (is_default_version)
1729         {
1730           const Stringpool::Key vnull = 0;
1731           insdefault =
1732             this->table_.insert(std::make_pair(std::make_pair(name_key,
1733                                                               vnull),
1734                                                snull));
1735         }
1736
1737       if (!ins.second)
1738         {
1739           // We already have a symbol table entry for NAME/VERSION.
1740           oldsym = ins.first->second;
1741           gold_assert(oldsym != NULL);
1742
1743           if (is_default_version)
1744             {
1745               Sized_symbol<size>* soldsym =
1746                 this->get_sized_symbol<size>(oldsym);
1747               this->define_default_version<size, big_endian>(soldsym,
1748                                                              insdefault.second,
1749                                                              insdefault.first);
1750             }
1751         }
1752       else
1753         {
1754           // We haven't seen this symbol before.
1755           gold_assert(ins.first->second == NULL);
1756
1757           add_to_table = true;
1758           add_loc = ins.first;
1759
1760           if (is_default_version && !insdefault.second)
1761             {
1762               // We are adding NAME/VERSION, and it is the default
1763               // version.  We already have an entry for NAME/NULL.
1764               oldsym = insdefault.first->second;
1765               *resolve_oldsym = true;
1766             }
1767           else
1768             {
1769               oldsym = NULL;
1770
1771               if (is_default_version)
1772                 {
1773                   add_def_to_table = true;
1774                   add_def_loc = insdefault.first;
1775                 }
1776             }
1777         }
1778     }
1779
1780   const Target& target = parameters->target();
1781   if (!target.has_make_symbol())
1782     sym = new Sized_symbol<size>();
1783   else
1784     {
1785       Sized_target<size, big_endian>* sized_target =
1786         parameters->sized_target<size, big_endian>();
1787       sym = sized_target->make_symbol();
1788       if (sym == NULL)
1789         return NULL;
1790     }
1791
1792   if (add_to_table)
1793     add_loc->second = sym;
1794   else
1795     gold_assert(oldsym != NULL);
1796
1797   if (add_def_to_table)
1798     add_def_loc->second = sym;
1799
1800   *poldsym = this->get_sized_symbol<size>(oldsym);
1801
1802   return sym;
1803 }
1804
1805 // Define a symbol based on an Output_data.
1806
1807 Symbol*
1808 Symbol_table::define_in_output_data(const char* name,
1809                                     const char* version,
1810                                     Defined defined,
1811                                     Output_data* od,
1812                                     uint64_t value,
1813                                     uint64_t symsize,
1814                                     elfcpp::STT type,
1815                                     elfcpp::STB binding,
1816                                     elfcpp::STV visibility,
1817                                     unsigned char nonvis,
1818                                     bool offset_is_from_end,
1819                                     bool only_if_ref)
1820 {
1821   if (parameters->target().get_size() == 32)
1822     {
1823 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1824       return this->do_define_in_output_data<32>(name, version, defined, od,
1825                                                 value, symsize, type, binding,
1826                                                 visibility, nonvis,
1827                                                 offset_is_from_end,
1828                                                 only_if_ref);
1829 #else
1830       gold_unreachable();
1831 #endif
1832     }
1833   else if (parameters->target().get_size() == 64)
1834     {
1835 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1836       return this->do_define_in_output_data<64>(name, version, defined, od,
1837                                                 value, symsize, type, binding,
1838                                                 visibility, nonvis,
1839                                                 offset_is_from_end,
1840                                                 only_if_ref);
1841 #else
1842       gold_unreachable();
1843 #endif
1844     }
1845   else
1846     gold_unreachable();
1847 }
1848
1849 // Define a symbol in an Output_data, sized version.
1850
1851 template<int size>
1852 Sized_symbol<size>*
1853 Symbol_table::do_define_in_output_data(
1854     const char* name,
1855     const char* version,
1856     Defined defined,
1857     Output_data* od,
1858     typename elfcpp::Elf_types<size>::Elf_Addr value,
1859     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1860     elfcpp::STT type,
1861     elfcpp::STB binding,
1862     elfcpp::STV visibility,
1863     unsigned char nonvis,
1864     bool offset_is_from_end,
1865     bool only_if_ref)
1866 {
1867   Sized_symbol<size>* sym;
1868   Sized_symbol<size>* oldsym;
1869   bool resolve_oldsym;
1870
1871   if (parameters->target().is_big_endian())
1872     {
1873 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1874       sym = this->define_special_symbol<size, true>(&name, &version,
1875                                                     only_if_ref, &oldsym,
1876                                                     &resolve_oldsym);
1877 #else
1878       gold_unreachable();
1879 #endif
1880     }
1881   else
1882     {
1883 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1884       sym = this->define_special_symbol<size, false>(&name, &version,
1885                                                      only_if_ref, &oldsym,
1886                                                      &resolve_oldsym);
1887 #else
1888       gold_unreachable();
1889 #endif
1890     }
1891
1892   if (sym == NULL)
1893     return NULL;
1894
1895   sym->init_output_data(name, version, od, value, symsize, type, binding,
1896                         visibility, nonvis, offset_is_from_end,
1897                         defined == PREDEFINED);
1898
1899   if (oldsym == NULL)
1900     {
1901       if (binding == elfcpp::STB_LOCAL
1902           || this->version_script_.symbol_is_local(name))
1903         this->force_local(sym);
1904       else if (version != NULL)
1905         sym->set_is_default();
1906       return sym;
1907     }
1908
1909   if (Symbol_table::should_override_with_special(oldsym, type, defined))
1910     this->override_with_special(oldsym, sym);
1911
1912   if (resolve_oldsym)
1913     return sym;
1914   else
1915     {
1916       delete sym;
1917       return oldsym;
1918     }
1919 }
1920
1921 // Define a symbol based on an Output_segment.
1922
1923 Symbol*
1924 Symbol_table::define_in_output_segment(const char* name,
1925                                        const char* version,
1926                                        Defined defined,
1927                                        Output_segment* os,
1928                                        uint64_t value,
1929                                        uint64_t symsize,
1930                                        elfcpp::STT type,
1931                                        elfcpp::STB binding,
1932                                        elfcpp::STV visibility,
1933                                        unsigned char nonvis,
1934                                        Symbol::Segment_offset_base offset_base,
1935                                        bool only_if_ref)
1936 {
1937   if (parameters->target().get_size() == 32)
1938     {
1939 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1940       return this->do_define_in_output_segment<32>(name, version, defined, os,
1941                                                    value, symsize, type,
1942                                                    binding, visibility, nonvis,
1943                                                    offset_base, only_if_ref);
1944 #else
1945       gold_unreachable();
1946 #endif
1947     }
1948   else if (parameters->target().get_size() == 64)
1949     {
1950 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1951       return this->do_define_in_output_segment<64>(name, version, defined, os,
1952                                                    value, symsize, type,
1953                                                    binding, visibility, nonvis,
1954                                                    offset_base, only_if_ref);
1955 #else
1956       gold_unreachable();
1957 #endif
1958     }
1959   else
1960     gold_unreachable();
1961 }
1962
1963 // Define a symbol in an Output_segment, sized version.
1964
1965 template<int size>
1966 Sized_symbol<size>*
1967 Symbol_table::do_define_in_output_segment(
1968     const char* name,
1969     const char* version,
1970     Defined defined,
1971     Output_segment* os,
1972     typename elfcpp::Elf_types<size>::Elf_Addr value,
1973     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1974     elfcpp::STT type,
1975     elfcpp::STB binding,
1976     elfcpp::STV visibility,
1977     unsigned char nonvis,
1978     Symbol::Segment_offset_base offset_base,
1979     bool only_if_ref)
1980 {
1981   Sized_symbol<size>* sym;
1982   Sized_symbol<size>* oldsym;
1983   bool resolve_oldsym;
1984
1985   if (parameters->target().is_big_endian())
1986     {
1987 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1988       sym = this->define_special_symbol<size, true>(&name, &version,
1989                                                     only_if_ref, &oldsym,
1990                                                     &resolve_oldsym);
1991 #else
1992       gold_unreachable();
1993 #endif
1994     }
1995   else
1996     {
1997 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1998       sym = this->define_special_symbol<size, false>(&name, &version,
1999                                                      only_if_ref, &oldsym,
2000                                                      &resolve_oldsym);
2001 #else
2002       gold_unreachable();
2003 #endif
2004     }
2005
2006   if (sym == NULL)
2007     return NULL;
2008
2009   sym->init_output_segment(name, version, os, value, symsize, type, binding,
2010                            visibility, nonvis, offset_base,
2011                            defined == PREDEFINED);
2012
2013   if (oldsym == NULL)
2014     {
2015       if (binding == elfcpp::STB_LOCAL
2016           || this->version_script_.symbol_is_local(name))
2017         this->force_local(sym);
2018       else if (version != NULL)
2019         sym->set_is_default();
2020       return sym;
2021     }
2022
2023   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2024     this->override_with_special(oldsym, sym);
2025
2026   if (resolve_oldsym)
2027     return sym;
2028   else
2029     {
2030       delete sym;
2031       return oldsym;
2032     }
2033 }
2034
2035 // Define a special symbol with a constant value.  It is a multiple
2036 // definition error if this symbol is already defined.
2037
2038 Symbol*
2039 Symbol_table::define_as_constant(const char* name,
2040                                  const char* version,
2041                                  Defined defined,
2042                                  uint64_t value,
2043                                  uint64_t symsize,
2044                                  elfcpp::STT type,
2045                                  elfcpp::STB binding,
2046                                  elfcpp::STV visibility,
2047                                  unsigned char nonvis,
2048                                  bool only_if_ref,
2049                                  bool force_override)
2050 {
2051   if (parameters->target().get_size() == 32)
2052     {
2053 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2054       return this->do_define_as_constant<32>(name, version, defined, value,
2055                                              symsize, type, binding,
2056                                              visibility, nonvis, only_if_ref,
2057                                              force_override);
2058 #else
2059       gold_unreachable();
2060 #endif
2061     }
2062   else if (parameters->target().get_size() == 64)
2063     {
2064 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2065       return this->do_define_as_constant<64>(name, version, defined, value,
2066                                              symsize, type, binding,
2067                                              visibility, nonvis, only_if_ref,
2068                                              force_override);
2069 #else
2070       gold_unreachable();
2071 #endif
2072     }
2073   else
2074     gold_unreachable();
2075 }
2076
2077 // Define a symbol as a constant, sized version.
2078
2079 template<int size>
2080 Sized_symbol<size>*
2081 Symbol_table::do_define_as_constant(
2082     const char* name,
2083     const char* version,
2084     Defined defined,
2085     typename elfcpp::Elf_types<size>::Elf_Addr value,
2086     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2087     elfcpp::STT type,
2088     elfcpp::STB binding,
2089     elfcpp::STV visibility,
2090     unsigned char nonvis,
2091     bool only_if_ref,
2092     bool force_override)
2093 {
2094   Sized_symbol<size>* sym;
2095   Sized_symbol<size>* oldsym;
2096   bool resolve_oldsym;
2097
2098   if (parameters->target().is_big_endian())
2099     {
2100 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2101       sym = this->define_special_symbol<size, true>(&name, &version,
2102                                                     only_if_ref, &oldsym,
2103                                                     &resolve_oldsym);
2104 #else
2105       gold_unreachable();
2106 #endif
2107     }
2108   else
2109     {
2110 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2111       sym = this->define_special_symbol<size, false>(&name, &version,
2112                                                      only_if_ref, &oldsym,
2113                                                      &resolve_oldsym);
2114 #else
2115       gold_unreachable();
2116 #endif
2117     }
2118
2119   if (sym == NULL)
2120     return NULL;
2121
2122   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2123                      nonvis, defined == PREDEFINED);
2124
2125   if (oldsym == NULL)
2126     {
2127       // Version symbols are absolute symbols with name == version.
2128       // We don't want to force them to be local.
2129       if ((version == NULL
2130            || name != version
2131            || value != 0)
2132           && (binding == elfcpp::STB_LOCAL
2133               || this->version_script_.symbol_is_local(name)))
2134         this->force_local(sym);
2135       else if (version != NULL
2136                && (name != version || value != 0))
2137         sym->set_is_default();
2138       return sym;
2139     }
2140
2141   if (force_override
2142       || Symbol_table::should_override_with_special(oldsym, type, defined))
2143     this->override_with_special(oldsym, sym);
2144
2145   if (resolve_oldsym)
2146     return sym;
2147   else
2148     {
2149       delete sym;
2150       return oldsym;
2151     }
2152 }
2153
2154 // Define a set of symbols in output sections.
2155
2156 void
2157 Symbol_table::define_symbols(const Layout* layout, int count,
2158                              const Define_symbol_in_section* p,
2159                              bool only_if_ref)
2160 {
2161   for (int i = 0; i < count; ++i, ++p)
2162     {
2163       Output_section* os = layout->find_output_section(p->output_section);
2164       if (os != NULL)
2165         this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2166                                     p->size, p->type, p->binding,
2167                                     p->visibility, p->nonvis,
2168                                     p->offset_is_from_end,
2169                                     only_if_ref || p->only_if_ref);
2170       else
2171         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2172                                  p->type, p->binding, p->visibility, p->nonvis,
2173                                  only_if_ref || p->only_if_ref,
2174                                  false);
2175     }
2176 }
2177
2178 // Define a set of symbols in output segments.
2179
2180 void
2181 Symbol_table::define_symbols(const Layout* layout, int count,
2182                              const Define_symbol_in_segment* p,
2183                              bool only_if_ref)
2184 {
2185   for (int i = 0; i < count; ++i, ++p)
2186     {
2187       Output_segment* os = layout->find_output_segment(p->segment_type,
2188                                                        p->segment_flags_set,
2189                                                        p->segment_flags_clear);
2190       if (os != NULL)
2191         this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2192                                        p->size, p->type, p->binding,
2193                                        p->visibility, p->nonvis,
2194                                        p->offset_base,
2195                                        only_if_ref || p->only_if_ref);
2196       else
2197         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2198                                  p->type, p->binding, p->visibility, p->nonvis,
2199                                  only_if_ref || p->only_if_ref,
2200                                  false);
2201     }
2202 }
2203
2204 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2205 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2206 // the offset within POSD.
2207
2208 template<int size>
2209 void
2210 Symbol_table::define_with_copy_reloc(
2211     Sized_symbol<size>* csym,
2212     Output_data* posd,
2213     typename elfcpp::Elf_types<size>::Elf_Addr value)
2214 {
2215   gold_assert(csym->is_from_dynobj());
2216   gold_assert(!csym->is_copied_from_dynobj());
2217   Object* object = csym->object();
2218   gold_assert(object->is_dynamic());
2219   Dynobj* dynobj = static_cast<Dynobj*>(object);
2220
2221   // Our copied variable has to override any variable in a shared
2222   // library.
2223   elfcpp::STB binding = csym->binding();
2224   if (binding == elfcpp::STB_WEAK)
2225     binding = elfcpp::STB_GLOBAL;
2226
2227   this->define_in_output_data(csym->name(), csym->version(), COPY,
2228                               posd, value, csym->symsize(),
2229                               csym->type(), binding,
2230                               csym->visibility(), csym->nonvis(),
2231                               false, false);
2232
2233   csym->set_is_copied_from_dynobj();
2234   csym->set_needs_dynsym_entry();
2235
2236   this->copied_symbol_dynobjs_[csym] = dynobj;
2237
2238   // We have now defined all aliases, but we have not entered them all
2239   // in the copied_symbol_dynobjs_ map.
2240   if (csym->has_alias())
2241     {
2242       Symbol* sym = csym;
2243       while (true)
2244         {
2245           sym = this->weak_aliases_[sym];
2246           if (sym == csym)
2247             break;
2248           gold_assert(sym->output_data() == posd);
2249
2250           sym->set_is_copied_from_dynobj();
2251           this->copied_symbol_dynobjs_[sym] = dynobj;
2252         }
2253     }
2254 }
2255
2256 // SYM is defined using a COPY reloc.  Return the dynamic object where
2257 // the original definition was found.
2258
2259 Dynobj*
2260 Symbol_table::get_copy_source(const Symbol* sym) const
2261 {
2262   gold_assert(sym->is_copied_from_dynobj());
2263   Copied_symbol_dynobjs::const_iterator p =
2264     this->copied_symbol_dynobjs_.find(sym);
2265   gold_assert(p != this->copied_symbol_dynobjs_.end());
2266   return p->second;
2267 }
2268
2269 // Add any undefined symbols named on the command line.
2270
2271 void
2272 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2273 {
2274   if (parameters->options().any_undefined()
2275       || layout->script_options()->any_unreferenced())
2276     {
2277       if (parameters->target().get_size() == 32)
2278         {
2279 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2280           this->do_add_undefined_symbols_from_command_line<32>(layout);
2281 #else
2282           gold_unreachable();
2283 #endif
2284         }
2285       else if (parameters->target().get_size() == 64)
2286         {
2287 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2288           this->do_add_undefined_symbols_from_command_line<64>(layout);
2289 #else
2290           gold_unreachable();
2291 #endif
2292         }
2293       else
2294         gold_unreachable();
2295     }
2296 }
2297
2298 template<int size>
2299 void
2300 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2301 {
2302   for (options::String_set::const_iterator p =
2303          parameters->options().undefined_begin();
2304        p != parameters->options().undefined_end();
2305        ++p)
2306     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2307
2308   for (options::String_set::const_iterator p =
2309          parameters->options().export_dynamic_symbol_begin();
2310        p != parameters->options().export_dynamic_symbol_end();
2311        ++p)
2312     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2313
2314   for (Script_options::referenced_const_iterator p =
2315          layout->script_options()->referenced_begin();
2316        p != layout->script_options()->referenced_end();
2317        ++p)
2318     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2319 }
2320
2321 template<int size>
2322 void
2323 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2324 {
2325   if (this->lookup(name) != NULL)
2326     return;
2327
2328   const char* version = NULL;
2329
2330   Sized_symbol<size>* sym;
2331   Sized_symbol<size>* oldsym;
2332   bool resolve_oldsym;
2333   if (parameters->target().is_big_endian())
2334     {
2335 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2336       sym = this->define_special_symbol<size, true>(&name, &version,
2337                                                     false, &oldsym,
2338                                                     &resolve_oldsym);
2339 #else
2340       gold_unreachable();
2341 #endif
2342     }
2343   else
2344     {
2345 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2346       sym = this->define_special_symbol<size, false>(&name, &version,
2347                                                      false, &oldsym,
2348                                                      &resolve_oldsym);
2349 #else
2350       gold_unreachable();
2351 #endif
2352     }
2353
2354   gold_assert(oldsym == NULL);
2355
2356   sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2357                       elfcpp::STV_DEFAULT, 0);
2358   ++this->saw_undefined_;
2359 }
2360
2361 // Set the dynamic symbol indexes.  INDEX is the index of the first
2362 // global dynamic symbol.  Pointers to the symbols are stored into the
2363 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2364 // updated dynamic symbol index.
2365
2366 unsigned int
2367 Symbol_table::set_dynsym_indexes(unsigned int index,
2368                                  std::vector<Symbol*>* syms,
2369                                  Stringpool* dynpool,
2370                                  Versions* versions)
2371 {
2372   std::vector<Symbol*> as_needed_sym;
2373
2374   for (Symbol_table_type::iterator p = this->table_.begin();
2375        p != this->table_.end();
2376        ++p)
2377     {
2378       Symbol* sym = p->second;
2379
2380       // Note that SYM may already have a dynamic symbol index, since
2381       // some symbols appear more than once in the symbol table, with
2382       // and without a version.
2383
2384       if (!sym->should_add_dynsym_entry(this))
2385         sym->set_dynsym_index(-1U);
2386       else if (!sym->has_dynsym_index())
2387         {
2388           sym->set_dynsym_index(index);
2389           ++index;
2390           syms->push_back(sym);
2391           dynpool->add(sym->name(), false, NULL);
2392
2393           // If the symbol is defined in a dynamic object and is
2394           // referenced strongly in a regular object, then mark the
2395           // dynamic object as needed.  This is used to implement
2396           // --as-needed.
2397           if (sym->is_from_dynobj()
2398               && sym->in_reg()
2399               && !sym->is_undef_binding_weak())
2400             sym->object()->set_is_needed();
2401
2402           // Record any version information, except those from
2403           // as-needed libraries not seen to be needed.  Note that the
2404           // is_needed state for such libraries can change in this loop.
2405           if (sym->version() != NULL)
2406             {
2407               if (!sym->is_from_dynobj()
2408                   || !sym->object()->as_needed()
2409                   || sym->object()->is_needed())
2410                 versions->record_version(this, dynpool, sym);
2411               else
2412                 as_needed_sym.push_back(sym);
2413             }
2414         }
2415     }
2416
2417   // Process version information for symbols from as-needed libraries.
2418   for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2419        p != as_needed_sym.end();
2420        ++p)
2421     {
2422       Symbol* sym = *p;
2423
2424       if (sym->object()->is_needed())
2425         versions->record_version(this, dynpool, sym);
2426       else
2427         sym->clear_version();
2428     }
2429
2430   // Finish up the versions.  In some cases this may add new dynamic
2431   // symbols.
2432   index = versions->finalize(this, index, syms);
2433
2434   return index;
2435 }
2436
2437 // Set the final values for all the symbols.  The index of the first
2438 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2439 // file offset OFF.  Add their names to POOL.  Return the new file
2440 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2441
2442 off_t
2443 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2444                        size_t dyncount, Stringpool* pool,
2445                        unsigned int* plocal_symcount)
2446 {
2447   off_t ret;
2448
2449   gold_assert(*plocal_symcount != 0);
2450   this->first_global_index_ = *plocal_symcount;
2451
2452   this->dynamic_offset_ = dynoff;
2453   this->first_dynamic_global_index_ = dyn_global_index;
2454   this->dynamic_count_ = dyncount;
2455
2456   if (parameters->target().get_size() == 32)
2457     {
2458 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2459       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2460 #else
2461       gold_unreachable();
2462 #endif
2463     }
2464   else if (parameters->target().get_size() == 64)
2465     {
2466 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2467       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2468 #else
2469       gold_unreachable();
2470 #endif
2471     }
2472   else
2473     gold_unreachable();
2474
2475   // Now that we have the final symbol table, we can reliably note
2476   // which symbols should get warnings.
2477   this->warnings_.note_warnings(this);
2478
2479   return ret;
2480 }
2481
2482 // SYM is going into the symbol table at *PINDEX.  Add the name to
2483 // POOL, update *PINDEX and *POFF.
2484
2485 template<int size>
2486 void
2487 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2488                                   unsigned int* pindex, off_t* poff)
2489 {
2490   sym->set_symtab_index(*pindex);
2491   if (sym->version() == NULL || !parameters->options().relocatable())
2492     pool->add(sym->name(), false, NULL);
2493   else
2494     pool->add(sym->versioned_name(), true, NULL);
2495   ++*pindex;
2496   *poff += elfcpp::Elf_sizes<size>::sym_size;
2497 }
2498
2499 // Set the final value for all the symbols.  This is called after
2500 // Layout::finalize, so all the output sections have their final
2501 // address.
2502
2503 template<int size>
2504 off_t
2505 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2506                              unsigned int* plocal_symcount)
2507 {
2508   off = align_address(off, size >> 3);
2509   this->offset_ = off;
2510
2511   unsigned int index = *plocal_symcount;
2512   const unsigned int orig_index = index;
2513
2514   // First do all the symbols which have been forced to be local, as
2515   // they must appear before all global symbols.
2516   for (Forced_locals::iterator p = this->forced_locals_.begin();
2517        p != this->forced_locals_.end();
2518        ++p)
2519     {
2520       Symbol* sym = *p;
2521       gold_assert(sym->is_forced_local());
2522       if (this->sized_finalize_symbol<size>(sym))
2523         {
2524           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2525           ++*plocal_symcount;
2526         }
2527     }
2528
2529   // Now do all the remaining symbols.
2530   for (Symbol_table_type::iterator p = this->table_.begin();
2531        p != this->table_.end();
2532        ++p)
2533     {
2534       Symbol* sym = p->second;
2535       if (this->sized_finalize_symbol<size>(sym))
2536         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2537     }
2538
2539   this->output_count_ = index - orig_index;
2540
2541   return off;
2542 }
2543
2544 // Compute the final value of SYM and store status in location PSTATUS.
2545 // During relaxation, this may be called multiple times for a symbol to
2546 // compute its would-be final value in each relaxation pass.
2547
2548 template<int size>
2549 typename Sized_symbol<size>::Value_type
2550 Symbol_table::compute_final_value(
2551     const Sized_symbol<size>* sym,
2552     Compute_final_value_status* pstatus) const
2553 {
2554   typedef typename Sized_symbol<size>::Value_type Value_type;
2555   Value_type value;
2556
2557   switch (sym->source())
2558     {
2559     case Symbol::FROM_OBJECT:
2560       {
2561         bool is_ordinary;
2562         unsigned int shndx = sym->shndx(&is_ordinary);
2563
2564         if (!is_ordinary
2565             && shndx != elfcpp::SHN_ABS
2566             && !Symbol::is_common_shndx(shndx))
2567           {
2568             *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2569             return 0;
2570           }
2571
2572         Object* symobj = sym->object();
2573         if (symobj->is_dynamic())
2574           {
2575             value = 0;
2576             shndx = elfcpp::SHN_UNDEF;
2577           }
2578         else if (symobj->pluginobj() != NULL)
2579           {
2580             value = 0;
2581             shndx = elfcpp::SHN_UNDEF;
2582           }
2583         else if (shndx == elfcpp::SHN_UNDEF)
2584           value = 0;
2585         else if (!is_ordinary
2586                  && (shndx == elfcpp::SHN_ABS
2587                      || Symbol::is_common_shndx(shndx)))
2588           value = sym->value();
2589         else
2590           {
2591             Relobj* relobj = static_cast<Relobj*>(symobj);
2592             Output_section* os = relobj->output_section(shndx);
2593
2594             if (this->is_section_folded(relobj, shndx))
2595               {
2596                 gold_assert(os == NULL);
2597                 // Get the os of the section it is folded onto.
2598                 Section_id folded = this->icf_->get_folded_section(relobj,
2599                                                                    shndx);
2600                 gold_assert(folded.first != NULL);
2601                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2602                 unsigned folded_shndx = folded.second;
2603
2604                 os = folded_obj->output_section(folded_shndx);  
2605                 gold_assert(os != NULL);
2606
2607                 // Replace (relobj, shndx) with canonical ICF input section.
2608                 shndx = folded_shndx;
2609                 relobj = folded_obj;
2610               }
2611
2612             uint64_t secoff64 = relobj->output_section_offset(shndx);
2613             if (os == NULL)
2614               {
2615                 bool static_or_reloc = (parameters->doing_static_link() ||
2616                                         parameters->options().relocatable());
2617                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2618
2619                 *pstatus = CFVS_NO_OUTPUT_SECTION;
2620                 return 0;
2621               }
2622
2623             if (secoff64 == -1ULL)
2624               {
2625                 // The section needs special handling (e.g., a merge section).
2626
2627                 value = os->output_address(relobj, shndx, sym->value());
2628               }
2629             else
2630               {
2631                 Value_type secoff =
2632                   convert_types<Value_type, uint64_t>(secoff64);
2633                 if (sym->type() == elfcpp::STT_TLS)
2634                   value = sym->value() + os->tls_offset() + secoff;
2635                 else
2636                   value = sym->value() + os->address() + secoff;
2637               }
2638           }
2639       }
2640       break;
2641
2642     case Symbol::IN_OUTPUT_DATA:
2643       {
2644         Output_data* od = sym->output_data();
2645         value = sym->value();
2646         if (sym->type() != elfcpp::STT_TLS)
2647           value += od->address();
2648         else
2649           {
2650             Output_section* os = od->output_section();
2651             gold_assert(os != NULL);
2652             value += os->tls_offset() + (od->address() - os->address());
2653           }
2654         if (sym->offset_is_from_end())
2655           value += od->data_size();
2656       }
2657       break;
2658
2659     case Symbol::IN_OUTPUT_SEGMENT:
2660       {
2661         Output_segment* os = sym->output_segment();
2662         value = sym->value();
2663         if (sym->type() != elfcpp::STT_TLS)
2664           value += os->vaddr();
2665         switch (sym->offset_base())
2666           {
2667           case Symbol::SEGMENT_START:
2668             break;
2669           case Symbol::SEGMENT_END:
2670             value += os->memsz();
2671             break;
2672           case Symbol::SEGMENT_BSS:
2673             value += os->filesz();
2674             break;
2675           default:
2676             gold_unreachable();
2677           }
2678       }
2679       break;
2680
2681     case Symbol::IS_CONSTANT:
2682       value = sym->value();
2683       break;
2684
2685     case Symbol::IS_UNDEFINED:
2686       value = 0;
2687       break;
2688
2689     default:
2690       gold_unreachable();
2691     }
2692
2693   *pstatus = CFVS_OK;
2694   return value;
2695 }
2696
2697 // Finalize the symbol SYM.  This returns true if the symbol should be
2698 // added to the symbol table, false otherwise.
2699
2700 template<int size>
2701 bool
2702 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2703 {
2704   typedef typename Sized_symbol<size>::Value_type Value_type;
2705
2706   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2707
2708   // The default version of a symbol may appear twice in the symbol
2709   // table.  We only need to finalize it once.
2710   if (sym->has_symtab_index())
2711     return false;
2712
2713   if (!sym->in_reg())
2714     {
2715       gold_assert(!sym->has_symtab_index());
2716       sym->set_symtab_index(-1U);
2717       gold_assert(sym->dynsym_index() == -1U);
2718       return false;
2719     }
2720
2721   // If the symbol is only present on plugin files, the plugin decided we
2722   // don't need it.
2723   if (!sym->in_real_elf())
2724     {
2725       gold_assert(!sym->has_symtab_index());
2726       sym->set_symtab_index(-1U);
2727       return false;
2728     }
2729
2730   // Compute final symbol value.
2731   Compute_final_value_status status;
2732   Value_type value = this->compute_final_value(sym, &status);
2733
2734   switch (status)
2735     {
2736     case CFVS_OK:
2737       break;
2738     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2739       {
2740         bool is_ordinary;
2741         unsigned int shndx = sym->shndx(&is_ordinary);
2742         gold_error(_("%s: unsupported symbol section 0x%x"),
2743                    sym->demangled_name().c_str(), shndx);
2744       }
2745       break;
2746     case CFVS_NO_OUTPUT_SECTION:
2747       sym->set_symtab_index(-1U);
2748       return false;
2749     default:
2750       gold_unreachable();
2751     }
2752
2753   sym->set_value(value);
2754
2755   if (parameters->options().strip_all()
2756       || !parameters->options().should_retain_symbol(sym->name()))
2757     {
2758       sym->set_symtab_index(-1U);
2759       return false;
2760     }
2761
2762   return true;
2763 }
2764
2765 // Write out the global symbols.
2766
2767 void
2768 Symbol_table::write_globals(const Stringpool* sympool,
2769                             const Stringpool* dynpool,
2770                             Output_symtab_xindex* symtab_xindex,
2771                             Output_symtab_xindex* dynsym_xindex,
2772                             Output_file* of) const
2773 {
2774   switch (parameters->size_and_endianness())
2775     {
2776 #ifdef HAVE_TARGET_32_LITTLE
2777     case Parameters::TARGET_32_LITTLE:
2778       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2779                                            dynsym_xindex, of);
2780       break;
2781 #endif
2782 #ifdef HAVE_TARGET_32_BIG
2783     case Parameters::TARGET_32_BIG:
2784       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2785                                           dynsym_xindex, of);
2786       break;
2787 #endif
2788 #ifdef HAVE_TARGET_64_LITTLE
2789     case Parameters::TARGET_64_LITTLE:
2790       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2791                                            dynsym_xindex, of);
2792       break;
2793 #endif
2794 #ifdef HAVE_TARGET_64_BIG
2795     case Parameters::TARGET_64_BIG:
2796       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2797                                           dynsym_xindex, of);
2798       break;
2799 #endif
2800     default:
2801       gold_unreachable();
2802     }
2803 }
2804
2805 // Write out the global symbols.
2806
2807 template<int size, bool big_endian>
2808 void
2809 Symbol_table::sized_write_globals(const Stringpool* sympool,
2810                                   const Stringpool* dynpool,
2811                                   Output_symtab_xindex* symtab_xindex,
2812                                   Output_symtab_xindex* dynsym_xindex,
2813                                   Output_file* of) const
2814 {
2815   const Target& target = parameters->target();
2816
2817   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2818
2819   const unsigned int output_count = this->output_count_;
2820   const section_size_type oview_size = output_count * sym_size;
2821   const unsigned int first_global_index = this->first_global_index_;
2822   unsigned char* psyms;
2823   if (this->offset_ == 0 || output_count == 0)
2824     psyms = NULL;
2825   else
2826     psyms = of->get_output_view(this->offset_, oview_size);
2827
2828   const unsigned int dynamic_count = this->dynamic_count_;
2829   const section_size_type dynamic_size = dynamic_count * sym_size;
2830   const unsigned int first_dynamic_global_index =
2831     this->first_dynamic_global_index_;
2832   unsigned char* dynamic_view;
2833   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2834     dynamic_view = NULL;
2835   else
2836     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2837
2838   for (Symbol_table_type::const_iterator p = this->table_.begin();
2839        p != this->table_.end();
2840        ++p)
2841     {
2842       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2843
2844       // Possibly warn about unresolved symbols in shared libraries.
2845       this->warn_about_undefined_dynobj_symbol(sym);
2846
2847       unsigned int sym_index = sym->symtab_index();
2848       unsigned int dynsym_index;
2849       if (dynamic_view == NULL)
2850         dynsym_index = -1U;
2851       else
2852         dynsym_index = sym->dynsym_index();
2853
2854       if (sym_index == -1U && dynsym_index == -1U)
2855         {
2856           // This symbol is not included in the output file.
2857           continue;
2858         }
2859
2860       unsigned int shndx;
2861       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2862       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2863       elfcpp::STB binding = sym->binding();
2864
2865       // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2866       if (binding == elfcpp::STB_GNU_UNIQUE
2867           && !parameters->options().gnu_unique())
2868         binding = elfcpp::STB_GLOBAL;
2869
2870       switch (sym->source())
2871         {
2872         case Symbol::FROM_OBJECT:
2873           {
2874             bool is_ordinary;
2875             unsigned int in_shndx = sym->shndx(&is_ordinary);
2876
2877             if (!is_ordinary
2878                 && in_shndx != elfcpp::SHN_ABS
2879                 && !Symbol::is_common_shndx(in_shndx))
2880               {
2881                 gold_error(_("%s: unsupported symbol section 0x%x"),
2882                            sym->demangled_name().c_str(), in_shndx);
2883                 shndx = in_shndx;
2884               }
2885             else
2886               {
2887                 Object* symobj = sym->object();
2888                 if (symobj->is_dynamic())
2889                   {
2890                     if (sym->needs_dynsym_value())
2891                       dynsym_value = target.dynsym_value(sym);
2892                     shndx = elfcpp::SHN_UNDEF;
2893                     if (sym->is_undef_binding_weak())
2894                       binding = elfcpp::STB_WEAK;
2895                     else
2896                       binding = elfcpp::STB_GLOBAL;
2897                   }
2898                 else if (symobj->pluginobj() != NULL)
2899                   shndx = elfcpp::SHN_UNDEF;
2900                 else if (in_shndx == elfcpp::SHN_UNDEF
2901                          || (!is_ordinary
2902                              && (in_shndx == elfcpp::SHN_ABS
2903                                  || Symbol::is_common_shndx(in_shndx))))
2904                   shndx = in_shndx;
2905                 else
2906                   {
2907                     Relobj* relobj = static_cast<Relobj*>(symobj);
2908                     Output_section* os = relobj->output_section(in_shndx);
2909                     if (this->is_section_folded(relobj, in_shndx))
2910                       {
2911                         // This global symbol must be written out even though
2912                         // it is folded.
2913                         // Get the os of the section it is folded onto.
2914                         Section_id folded =
2915                              this->icf_->get_folded_section(relobj, in_shndx);
2916                         gold_assert(folded.first !=NULL);
2917                         Relobj* folded_obj = 
2918                           reinterpret_cast<Relobj*>(folded.first);
2919                         os = folded_obj->output_section(folded.second);  
2920                         gold_assert(os != NULL);
2921                       }
2922                     gold_assert(os != NULL);
2923                     shndx = os->out_shndx();
2924
2925                     if (shndx >= elfcpp::SHN_LORESERVE)
2926                       {
2927                         if (sym_index != -1U)
2928                           symtab_xindex->add(sym_index, shndx);
2929                         if (dynsym_index != -1U)
2930                           dynsym_xindex->add(dynsym_index, shndx);
2931                         shndx = elfcpp::SHN_XINDEX;
2932                       }
2933
2934                     // In object files symbol values are section
2935                     // relative.
2936                     if (parameters->options().relocatable())
2937                       sym_value -= os->address();
2938                   }
2939               }
2940           }
2941           break;
2942
2943         case Symbol::IN_OUTPUT_DATA:
2944           {
2945             Output_data* od = sym->output_data();
2946
2947             shndx = od->out_shndx();
2948             if (shndx >= elfcpp::SHN_LORESERVE)
2949               {
2950                 if (sym_index != -1U)
2951                   symtab_xindex->add(sym_index, shndx);
2952                 if (dynsym_index != -1U)
2953                   dynsym_xindex->add(dynsym_index, shndx);
2954                 shndx = elfcpp::SHN_XINDEX;
2955               }
2956
2957             // In object files symbol values are section
2958             // relative.
2959             if (parameters->options().relocatable())
2960               sym_value -= od->address();
2961           }
2962           break;
2963
2964         case Symbol::IN_OUTPUT_SEGMENT:
2965           shndx = elfcpp::SHN_ABS;
2966           break;
2967
2968         case Symbol::IS_CONSTANT:
2969           shndx = elfcpp::SHN_ABS;
2970           break;
2971
2972         case Symbol::IS_UNDEFINED:
2973           shndx = elfcpp::SHN_UNDEF;
2974           break;
2975
2976         default:
2977           gold_unreachable();
2978         }
2979
2980       if (sym_index != -1U)
2981         {
2982           sym_index -= first_global_index;
2983           gold_assert(sym_index < output_count);
2984           unsigned char* ps = psyms + (sym_index * sym_size);
2985           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2986                                                      binding, sympool, ps);
2987         }
2988
2989       if (dynsym_index != -1U)
2990         {
2991           dynsym_index -= first_dynamic_global_index;
2992           gold_assert(dynsym_index < dynamic_count);
2993           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2994           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2995                                                      binding, dynpool, pd);
2996         }
2997     }
2998
2999   of->write_output_view(this->offset_, oview_size, psyms);
3000   if (dynamic_view != NULL)
3001     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3002 }
3003
3004 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
3005 // strtab holding the name.
3006
3007 template<int size, bool big_endian>
3008 void
3009 Symbol_table::sized_write_symbol(
3010     Sized_symbol<size>* sym,
3011     typename elfcpp::Elf_types<size>::Elf_Addr value,
3012     unsigned int shndx,
3013     elfcpp::STB binding,
3014     const Stringpool* pool,
3015     unsigned char* p) const
3016 {
3017   elfcpp::Sym_write<size, big_endian> osym(p);
3018   if (sym->version() == NULL || !parameters->options().relocatable())
3019     osym.put_st_name(pool->get_offset(sym->name()));
3020   else
3021     osym.put_st_name(pool->get_offset(sym->versioned_name()));
3022   osym.put_st_value(value);
3023   // Use a symbol size of zero for undefined symbols from shared libraries.
3024   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3025     osym.put_st_size(0);
3026   else
3027     osym.put_st_size(sym->symsize());
3028   elfcpp::STT type = sym->type();
3029   // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3030   if (type == elfcpp::STT_GNU_IFUNC
3031       && sym->is_from_dynobj())
3032     type = elfcpp::STT_FUNC;
3033   // A version script may have overridden the default binding.
3034   if (sym->is_forced_local())
3035     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3036   else
3037     osym.put_st_info(elfcpp::elf_st_info(binding, type));
3038   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3039   osym.put_st_shndx(shndx);
3040 }
3041
3042 // Check for unresolved symbols in shared libraries.  This is
3043 // controlled by the --allow-shlib-undefined option.
3044
3045 // We only warn about libraries for which we have seen all the
3046 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
3047 // which were not seen in this link.  If we didn't see a DT_NEEDED
3048 // entry, we aren't going to be able to reliably report whether the
3049 // symbol is undefined.
3050
3051 // We also don't warn about libraries found in a system library
3052 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3053 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
3054 // can have undefined references satisfied by ld-linux.so.
3055
3056 inline void
3057 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3058 {
3059   bool dummy;
3060   if (sym->source() == Symbol::FROM_OBJECT
3061       && sym->object()->is_dynamic()
3062       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3063       && sym->binding() != elfcpp::STB_WEAK
3064       && !parameters->options().allow_shlib_undefined()
3065       && !parameters->target().is_defined_by_abi(sym)
3066       && !sym->object()->is_in_system_directory())
3067     {
3068       // A very ugly cast.
3069       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3070       if (!dynobj->has_unknown_needed_entries())
3071         gold_undefined_symbol(sym);
3072     }
3073 }
3074
3075 // Write out a section symbol.  Return the update offset.
3076
3077 void
3078 Symbol_table::write_section_symbol(const Output_section* os,
3079                                    Output_symtab_xindex* symtab_xindex,
3080                                    Output_file* of,
3081                                    off_t offset) const
3082 {
3083   switch (parameters->size_and_endianness())
3084     {
3085 #ifdef HAVE_TARGET_32_LITTLE
3086     case Parameters::TARGET_32_LITTLE:
3087       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3088                                                   offset);
3089       break;
3090 #endif
3091 #ifdef HAVE_TARGET_32_BIG
3092     case Parameters::TARGET_32_BIG:
3093       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3094                                                  offset);
3095       break;
3096 #endif
3097 #ifdef HAVE_TARGET_64_LITTLE
3098     case Parameters::TARGET_64_LITTLE:
3099       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3100                                                   offset);
3101       break;
3102 #endif
3103 #ifdef HAVE_TARGET_64_BIG
3104     case Parameters::TARGET_64_BIG:
3105       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3106                                                  offset);
3107       break;
3108 #endif
3109     default:
3110       gold_unreachable();
3111     }
3112 }
3113
3114 // Write out a section symbol, specialized for size and endianness.
3115
3116 template<int size, bool big_endian>
3117 void
3118 Symbol_table::sized_write_section_symbol(const Output_section* os,
3119                                          Output_symtab_xindex* symtab_xindex,
3120                                          Output_file* of,
3121                                          off_t offset) const
3122 {
3123   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3124
3125   unsigned char* pov = of->get_output_view(offset, sym_size);
3126
3127   elfcpp::Sym_write<size, big_endian> osym(pov);
3128   osym.put_st_name(0);
3129   if (parameters->options().relocatable())
3130     osym.put_st_value(0);
3131   else
3132     osym.put_st_value(os->address());
3133   osym.put_st_size(0);
3134   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3135                                        elfcpp::STT_SECTION));
3136   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3137
3138   unsigned int shndx = os->out_shndx();
3139   if (shndx >= elfcpp::SHN_LORESERVE)
3140     {
3141       symtab_xindex->add(os->symtab_index(), shndx);
3142       shndx = elfcpp::SHN_XINDEX;
3143     }
3144   osym.put_st_shndx(shndx);
3145
3146   of->write_output_view(offset, sym_size, pov);
3147 }
3148
3149 // Print statistical information to stderr.  This is used for --stats.
3150
3151 void
3152 Symbol_table::print_stats() const
3153 {
3154 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3155   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3156           program_name, this->table_.size(), this->table_.bucket_count());
3157 #else
3158   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3159           program_name, this->table_.size());
3160 #endif
3161   this->namepool_.print_stats("symbol table stringpool");
3162 }
3163
3164 // We check for ODR violations by looking for symbols with the same
3165 // name for which the debugging information reports that they were
3166 // defined in disjoint source locations.  When comparing the source
3167 // location, we consider instances with the same base filename to be
3168 // the same.  This is because different object files/shared libraries
3169 // can include the same header file using different paths, and
3170 // different optimization settings can make the line number appear to
3171 // be a couple lines off, and we don't want to report an ODR violation
3172 // in those cases.
3173
3174 // This struct is used to compare line information, as returned by
3175 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3176 // operator used with std::sort.
3177
3178 struct Odr_violation_compare
3179 {
3180   bool
3181   operator()(const std::string& s1, const std::string& s2) const
3182   {
3183     // Inputs should be of the form "dirname/filename:linenum" where
3184     // "dirname/" is optional.  We want to compare just the filename:linenum.
3185
3186     // Find the last '/' in each string.
3187     std::string::size_type s1begin = s1.rfind('/');
3188     std::string::size_type s2begin = s2.rfind('/');
3189     // If there was no '/' in a string, start at the beginning.
3190     if (s1begin == std::string::npos)
3191       s1begin = 0;
3192     if (s2begin == std::string::npos)
3193       s2begin = 0;
3194     return s1.compare(s1begin, std::string::npos,
3195                       s2, s2begin, std::string::npos) < 0;
3196   }
3197 };
3198
3199 // Returns all of the lines attached to LOC, not just the one the
3200 // instruction actually came from.
3201 std::vector<std::string>
3202 Symbol_table::linenos_from_loc(const Task* task,
3203                                const Symbol_location& loc)
3204 {
3205   // We need to lock the object in order to read it.  This
3206   // means that we have to run in a singleton Task.  If we
3207   // want to run this in a general Task for better
3208   // performance, we will need one Task for object, plus
3209   // appropriate locking to ensure that we don't conflict with
3210   // other uses of the object.  Also note, one_addr2line is not
3211   // currently thread-safe.
3212   Task_lock_obj<Object> tl(task, loc.object);
3213
3214   std::vector<std::string> result;
3215   Symbol_location code_loc = loc;
3216   parameters->target().function_location(&code_loc);
3217   // 16 is the size of the object-cache that one_addr2line should use.
3218   std::string canonical_result = Dwarf_line_info::one_addr2line(
3219       code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3220   if (!canonical_result.empty())
3221     result.push_back(canonical_result);
3222   return result;
3223 }
3224
3225 // OutputIterator that records if it was ever assigned to.  This
3226 // allows it to be used with std::set_intersection() to check for
3227 // intersection rather than computing the intersection.
3228 struct Check_intersection
3229 {
3230   Check_intersection()
3231     : value_(false)
3232   {}
3233
3234   bool had_intersection() const
3235   { return this->value_; }
3236
3237   Check_intersection& operator++()
3238   { return *this; }
3239
3240   Check_intersection& operator*()
3241   { return *this; }
3242
3243   template<typename T>
3244   Check_intersection& operator=(const T&)
3245   {
3246     this->value_ = true;
3247     return *this;
3248   }
3249
3250  private:
3251   bool value_;
3252 };
3253
3254 // Check candidate_odr_violations_ to find symbols with the same name
3255 // but apparently different definitions (different source-file/line-no
3256 // for each line assigned to the first instruction).
3257
3258 void
3259 Symbol_table::detect_odr_violations(const Task* task,
3260                                     const char* output_file_name) const
3261 {
3262   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3263        it != candidate_odr_violations_.end();
3264        ++it)
3265     {
3266       const char* const symbol_name = it->first;
3267
3268       std::string first_object_name;
3269       std::vector<std::string> first_object_linenos;
3270
3271       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3272           locs = it->second.begin();
3273       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3274           locs_end = it->second.end();
3275       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3276         {
3277           // Save the line numbers from the first definition to
3278           // compare to the other definitions.  Ideally, we'd compare
3279           // every definition to every other, but we don't want to
3280           // take O(N^2) time to do this.  This shortcut may cause
3281           // false negatives that appear or disappear depending on the
3282           // link order, but it won't cause false positives.
3283           first_object_name = locs->object->name();
3284           first_object_linenos = this->linenos_from_loc(task, *locs);
3285         }
3286
3287       // Sort by Odr_violation_compare to make std::set_intersection work.
3288       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3289                 Odr_violation_compare());
3290
3291       for (; locs != locs_end; ++locs)
3292         {
3293           std::vector<std::string> linenos =
3294               this->linenos_from_loc(task, *locs);
3295           // linenos will be empty if we couldn't parse the debug info.
3296           if (linenos.empty())
3297             continue;
3298           // Sort by Odr_violation_compare to make std::set_intersection work.
3299           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3300
3301           Check_intersection intersection_result =
3302               std::set_intersection(first_object_linenos.begin(),
3303                                     first_object_linenos.end(),
3304                                     linenos.begin(),
3305                                     linenos.end(),
3306                                     Check_intersection(),
3307                                     Odr_violation_compare());
3308           if (!intersection_result.had_intersection())
3309             {
3310               gold_warning(_("while linking %s: symbol '%s' defined in "
3311                              "multiple places (possible ODR violation):"),
3312                            output_file_name, demangle(symbol_name).c_str());
3313               // This only prints one location from each definition,
3314               // which may not be the location we expect to intersect
3315               // with another definition.  We could print the whole
3316               // set of locations, but that seems too verbose.
3317               gold_assert(!first_object_linenos.empty());
3318               gold_assert(!linenos.empty());
3319               fprintf(stderr, _("  %s from %s\n"),
3320                       first_object_linenos[0].c_str(),
3321                       first_object_name.c_str());
3322               fprintf(stderr, _("  %s from %s\n"),
3323                       linenos[0].c_str(),
3324                       locs->object->name().c_str());
3325               // Only print one broken pair, to avoid needing to
3326               // compare against a list of the disjoint definition
3327               // locations we've found so far.  (If we kept comparing
3328               // against just the first one, we'd get a lot of
3329               // redundant complaints about the second definition
3330               // location.)
3331               break;
3332             }
3333         }
3334     }
3335   // We only call one_addr2line() in this function, so we can clear its cache.
3336   Dwarf_line_info::clear_addr2line_cache();
3337 }
3338
3339 // Warnings functions.
3340
3341 // Add a new warning.
3342
3343 void
3344 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3345                       const std::string& warning)
3346 {
3347   name = symtab->canonicalize_name(name);
3348   this->warnings_[name].set(obj, warning);
3349 }
3350
3351 // Look through the warnings and mark the symbols for which we should
3352 // warn.  This is called during Layout::finalize when we know the
3353 // sources for all the symbols.
3354
3355 void
3356 Warnings::note_warnings(Symbol_table* symtab)
3357 {
3358   for (Warning_table::iterator p = this->warnings_.begin();
3359        p != this->warnings_.end();
3360        ++p)
3361     {
3362       Symbol* sym = symtab->lookup(p->first, NULL);
3363       if (sym != NULL
3364           && sym->source() == Symbol::FROM_OBJECT
3365           && sym->object() == p->second.object)
3366         sym->set_has_warning();
3367     }
3368 }
3369
3370 // Issue a warning.  This is called when we see a relocation against a
3371 // symbol for which has a warning.
3372
3373 template<int size, bool big_endian>
3374 void
3375 Warnings::issue_warning(const Symbol* sym,
3376                         const Relocate_info<size, big_endian>* relinfo,
3377                         size_t relnum, off_t reloffset) const
3378 {
3379   gold_assert(sym->has_warning());
3380
3381   // We don't want to issue a warning for a relocation against the
3382   // symbol in the same object file in which the symbol is defined.
3383   if (sym->object() == relinfo->object)
3384     return;
3385
3386   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3387   gold_assert(p != this->warnings_.end());
3388   gold_warning_at_location(relinfo, relnum, reloffset,
3389                            "%s", p->second.text.c_str());
3390 }
3391
3392 // Instantiate the templates we need.  We could use the configure
3393 // script to restrict this to only the ones needed for implemented
3394 // targets.
3395
3396 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3397 template
3398 void
3399 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3400 #endif
3401
3402 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3403 template
3404 void
3405 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3406 #endif
3407
3408 #ifdef HAVE_TARGET_32_LITTLE
3409 template
3410 void
3411 Symbol_table::add_from_relobj<32, false>(
3412     Sized_relobj_file<32, false>* relobj,
3413     const unsigned char* syms,
3414     size_t count,
3415     size_t symndx_offset,
3416     const char* sym_names,
3417     size_t sym_name_size,
3418     Sized_relobj_file<32, false>::Symbols* sympointers,
3419     size_t* defined);
3420 #endif
3421
3422 #ifdef HAVE_TARGET_32_BIG
3423 template
3424 void
3425 Symbol_table::add_from_relobj<32, true>(
3426     Sized_relobj_file<32, true>* relobj,
3427     const unsigned char* syms,
3428     size_t count,
3429     size_t symndx_offset,
3430     const char* sym_names,
3431     size_t sym_name_size,
3432     Sized_relobj_file<32, true>::Symbols* sympointers,
3433     size_t* defined);
3434 #endif
3435
3436 #ifdef HAVE_TARGET_64_LITTLE
3437 template
3438 void
3439 Symbol_table::add_from_relobj<64, false>(
3440     Sized_relobj_file<64, false>* relobj,
3441     const unsigned char* syms,
3442     size_t count,
3443     size_t symndx_offset,
3444     const char* sym_names,
3445     size_t sym_name_size,
3446     Sized_relobj_file<64, false>::Symbols* sympointers,
3447     size_t* defined);
3448 #endif
3449
3450 #ifdef HAVE_TARGET_64_BIG
3451 template
3452 void
3453 Symbol_table::add_from_relobj<64, true>(
3454     Sized_relobj_file<64, true>* relobj,
3455     const unsigned char* syms,
3456     size_t count,
3457     size_t symndx_offset,
3458     const char* sym_names,
3459     size_t sym_name_size,
3460     Sized_relobj_file<64, true>::Symbols* sympointers,
3461     size_t* defined);
3462 #endif
3463
3464 #ifdef HAVE_TARGET_32_LITTLE
3465 template
3466 Symbol*
3467 Symbol_table::add_from_pluginobj<32, false>(
3468     Sized_pluginobj<32, false>* obj,
3469     const char* name,
3470     const char* ver,
3471     elfcpp::Sym<32, false>* sym);
3472 #endif
3473
3474 #ifdef HAVE_TARGET_32_BIG
3475 template
3476 Symbol*
3477 Symbol_table::add_from_pluginobj<32, true>(
3478     Sized_pluginobj<32, true>* obj,
3479     const char* name,
3480     const char* ver,
3481     elfcpp::Sym<32, true>* sym);
3482 #endif
3483
3484 #ifdef HAVE_TARGET_64_LITTLE
3485 template
3486 Symbol*
3487 Symbol_table::add_from_pluginobj<64, false>(
3488     Sized_pluginobj<64, false>* obj,
3489     const char* name,
3490     const char* ver,
3491     elfcpp::Sym<64, false>* sym);
3492 #endif
3493
3494 #ifdef HAVE_TARGET_64_BIG
3495 template
3496 Symbol*
3497 Symbol_table::add_from_pluginobj<64, true>(
3498     Sized_pluginobj<64, true>* obj,
3499     const char* name,
3500     const char* ver,
3501     elfcpp::Sym<64, true>* sym);
3502 #endif
3503
3504 #ifdef HAVE_TARGET_32_LITTLE
3505 template
3506 void
3507 Symbol_table::add_from_dynobj<32, false>(
3508     Sized_dynobj<32, false>* dynobj,
3509     const unsigned char* syms,
3510     size_t count,
3511     const char* sym_names,
3512     size_t sym_name_size,
3513     const unsigned char* versym,
3514     size_t versym_size,
3515     const std::vector<const char*>* version_map,
3516     Sized_relobj_file<32, false>::Symbols* sympointers,
3517     size_t* defined);
3518 #endif
3519
3520 #ifdef HAVE_TARGET_32_BIG
3521 template
3522 void
3523 Symbol_table::add_from_dynobj<32, true>(
3524     Sized_dynobj<32, true>* dynobj,
3525     const unsigned char* syms,
3526     size_t count,
3527     const char* sym_names,
3528     size_t sym_name_size,
3529     const unsigned char* versym,
3530     size_t versym_size,
3531     const std::vector<const char*>* version_map,
3532     Sized_relobj_file<32, true>::Symbols* sympointers,
3533     size_t* defined);
3534 #endif
3535
3536 #ifdef HAVE_TARGET_64_LITTLE
3537 template
3538 void
3539 Symbol_table::add_from_dynobj<64, false>(
3540     Sized_dynobj<64, false>* dynobj,
3541     const unsigned char* syms,
3542     size_t count,
3543     const char* sym_names,
3544     size_t sym_name_size,
3545     const unsigned char* versym,
3546     size_t versym_size,
3547     const std::vector<const char*>* version_map,
3548     Sized_relobj_file<64, false>::Symbols* sympointers,
3549     size_t* defined);
3550 #endif
3551
3552 #ifdef HAVE_TARGET_64_BIG
3553 template
3554 void
3555 Symbol_table::add_from_dynobj<64, true>(
3556     Sized_dynobj<64, true>* dynobj,
3557     const unsigned char* syms,
3558     size_t count,
3559     const char* sym_names,
3560     size_t sym_name_size,
3561     const unsigned char* versym,
3562     size_t versym_size,
3563     const std::vector<const char*>* version_map,
3564     Sized_relobj_file<64, true>::Symbols* sympointers,
3565     size_t* defined);
3566 #endif
3567
3568 #ifdef HAVE_TARGET_32_LITTLE
3569 template
3570 Sized_symbol<32>*
3571 Symbol_table::add_from_incrobj(
3572     Object* obj,
3573     const char* name,
3574     const char* ver,
3575     elfcpp::Sym<32, false>* sym);
3576 #endif
3577
3578 #ifdef HAVE_TARGET_32_BIG
3579 template
3580 Sized_symbol<32>*
3581 Symbol_table::add_from_incrobj(
3582     Object* obj,
3583     const char* name,
3584     const char* ver,
3585     elfcpp::Sym<32, true>* sym);
3586 #endif
3587
3588 #ifdef HAVE_TARGET_64_LITTLE
3589 template
3590 Sized_symbol<64>*
3591 Symbol_table::add_from_incrobj(
3592     Object* obj,
3593     const char* name,
3594     const char* ver,
3595     elfcpp::Sym<64, false>* sym);
3596 #endif
3597
3598 #ifdef HAVE_TARGET_64_BIG
3599 template
3600 Sized_symbol<64>*
3601 Symbol_table::add_from_incrobj(
3602     Object* obj,
3603     const char* name,
3604     const char* ver,
3605     elfcpp::Sym<64, true>* sym);
3606 #endif
3607
3608 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3609 template
3610 void
3611 Symbol_table::define_with_copy_reloc<32>(
3612     Sized_symbol<32>* sym,
3613     Output_data* posd,
3614     elfcpp::Elf_types<32>::Elf_Addr value);
3615 #endif
3616
3617 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3618 template
3619 void
3620 Symbol_table::define_with_copy_reloc<64>(
3621     Sized_symbol<64>* sym,
3622     Output_data* posd,
3623     elfcpp::Elf_types<64>::Elf_Addr value);
3624 #endif
3625
3626 #ifdef HAVE_TARGET_32_LITTLE
3627 template
3628 void
3629 Warnings::issue_warning<32, false>(const Symbol* sym,
3630                                    const Relocate_info<32, false>* relinfo,
3631                                    size_t relnum, off_t reloffset) const;
3632 #endif
3633
3634 #ifdef HAVE_TARGET_32_BIG
3635 template
3636 void
3637 Warnings::issue_warning<32, true>(const Symbol* sym,
3638                                   const Relocate_info<32, true>* relinfo,
3639                                   size_t relnum, off_t reloffset) const;
3640 #endif
3641
3642 #ifdef HAVE_TARGET_64_LITTLE
3643 template
3644 void
3645 Warnings::issue_warning<64, false>(const Symbol* sym,
3646                                    const Relocate_info<64, false>* relinfo,
3647                                    size_t relnum, off_t reloffset) const;
3648 #endif
3649
3650 #ifdef HAVE_TARGET_64_BIG
3651 template
3652 void
3653 Warnings::issue_warning<64, true>(const Symbol* sym,
3654                                   const Relocate_info<64, true>* relinfo,
3655                                   size_t relnum, off_t reloffset) const;
3656 #endif
3657
3658 } // End namespace gold.