Fix versions of copied symbols.
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <stdint.h>
26 #include <string>
27 #include <utility>
28
29 #include "object.h"
30 #include "dynobj.h"
31 #include "output.h"
32 #include "target.h"
33 #include "workqueue.h"
34 #include "symtab.h"
35
36 namespace gold
37 {
38
39 // Class Symbol.
40
41 // Initialize fields in Symbol.  This initializes everything except u_
42 // and source_.
43
44 void
45 Symbol::init_fields(const char* name, const char* version,
46                     elfcpp::STT type, elfcpp::STB binding,
47                     elfcpp::STV visibility, unsigned char nonvis)
48 {
49   this->name_ = name;
50   this->version_ = version;
51   this->symtab_index_ = 0;
52   this->dynsym_index_ = 0;
53   this->got_offset_ = 0;
54   this->plt_offset_ = 0;
55   this->type_ = type;
56   this->binding_ = binding;
57   this->visibility_ = visibility;
58   this->nonvis_ = nonvis;
59   this->is_target_special_ = false;
60   this->is_def_ = false;
61   this->is_forwarder_ = false;
62   this->has_alias_ = false;
63   this->needs_dynsym_entry_ = false;
64   this->in_reg_ = false;
65   this->in_dyn_ = false;
66   this->has_got_offset_ = false;
67   this->has_plt_offset_ = false;
68   this->has_warning_ = false;
69   this->is_copied_from_dynobj_ = false;
70 }
71
72 // Initialize the fields in the base class Symbol for SYM in OBJECT.
73
74 template<int size, bool big_endian>
75 void
76 Symbol::init_base(const char* name, const char* version, Object* object,
77                   const elfcpp::Sym<size, big_endian>& sym)
78 {
79   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
80                     sym.get_st_visibility(), sym.get_st_nonvis());
81   this->u_.from_object.object = object;
82   // FIXME: Handle SHN_XINDEX.
83   this->u_.from_object.shndx = sym.get_st_shndx();
84   this->source_ = FROM_OBJECT;
85   this->in_reg_ = !object->is_dynamic();
86   this->in_dyn_ = object->is_dynamic();
87 }
88
89 // Initialize the fields in the base class Symbol for a symbol defined
90 // in an Output_data.
91
92 void
93 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
94                   elfcpp::STB binding, elfcpp::STV visibility,
95                   unsigned char nonvis, bool offset_is_from_end)
96 {
97   this->init_fields(name, NULL, type, binding, visibility, nonvis);
98   this->u_.in_output_data.output_data = od;
99   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
100   this->source_ = IN_OUTPUT_DATA;
101   this->in_reg_ = true;
102 }
103
104 // Initialize the fields in the base class Symbol for a symbol defined
105 // in an Output_segment.
106
107 void
108 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
109                   elfcpp::STB binding, elfcpp::STV visibility,
110                   unsigned char nonvis, Segment_offset_base offset_base)
111 {
112   this->init_fields(name, NULL, type, binding, visibility, nonvis);
113   this->u_.in_output_segment.output_segment = os;
114   this->u_.in_output_segment.offset_base = offset_base;
115   this->source_ = IN_OUTPUT_SEGMENT;
116   this->in_reg_ = true;
117 }
118
119 // Initialize the fields in the base class Symbol for a symbol defined
120 // as a constant.
121
122 void
123 Symbol::init_base(const char* name, elfcpp::STT type,
124                   elfcpp::STB binding, elfcpp::STV visibility,
125                   unsigned char nonvis)
126 {
127   this->init_fields(name, NULL, type, binding, visibility, nonvis);
128   this->source_ = CONSTANT;
129   this->in_reg_ = true;
130 }
131
132 // Initialize the fields in Sized_symbol for SYM in OBJECT.
133
134 template<int size>
135 template<bool big_endian>
136 void
137 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
138                          const elfcpp::Sym<size, big_endian>& sym)
139 {
140   this->init_base(name, version, object, sym);
141   this->value_ = sym.get_st_value();
142   this->symsize_ = sym.get_st_size();
143 }
144
145 // Initialize the fields in Sized_symbol for a symbol defined in an
146 // Output_data.
147
148 template<int size>
149 void
150 Sized_symbol<size>::init(const char* name, Output_data* od,
151                          Value_type value, Size_type symsize,
152                          elfcpp::STT type, elfcpp::STB binding,
153                          elfcpp::STV visibility, unsigned char nonvis,
154                          bool offset_is_from_end)
155 {
156   this->init_base(name, od, type, binding, visibility, nonvis,
157                   offset_is_from_end);
158   this->value_ = value;
159   this->symsize_ = symsize;
160 }
161
162 // Initialize the fields in Sized_symbol for a symbol defined in an
163 // Output_segment.
164
165 template<int size>
166 void
167 Sized_symbol<size>::init(const char* name, Output_segment* os,
168                          Value_type value, Size_type symsize,
169                          elfcpp::STT type, elfcpp::STB binding,
170                          elfcpp::STV visibility, unsigned char nonvis,
171                          Segment_offset_base offset_base)
172 {
173   this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
174   this->value_ = value;
175   this->symsize_ = symsize;
176 }
177
178 // Initialize the fields in Sized_symbol for a symbol defined as a
179 // constant.
180
181 template<int size>
182 void
183 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
184                          elfcpp::STT type, elfcpp::STB binding,
185                          elfcpp::STV visibility, unsigned char nonvis)
186 {
187   this->init_base(name, type, binding, visibility, nonvis);
188   this->value_ = value;
189   this->symsize_ = symsize;
190 }
191
192 // Return true if this symbol should be added to the dynamic symbol
193 // table.
194
195 inline bool
196 Symbol::should_add_dynsym_entry() const
197 {
198   // If the symbol is used by a dynamic relocation, we need to add it.
199   if (this->needs_dynsym_entry())
200     return true;
201
202   // If exporting all symbols or building a shared library,
203   // and the symbol is defined in a regular object and is
204   // externally visible, we need to add it.
205   if ((parameters->export_dynamic() || parameters->output_is_shared())
206       && !this->is_from_dynobj()
207       && this->is_externally_visible())
208     return true;
209
210   return false;
211 }
212
213 // Return true if the final value of this symbol is known at link
214 // time.
215
216 bool
217 Symbol::final_value_is_known() const
218 {
219   // If we are not generating an executable, then no final values are
220   // known, since they will change at runtime.
221   if (!parameters->output_is_executable())
222     return false;
223
224   // If the symbol is not from an object file, then it is defined, and
225   // known.
226   if (this->source_ != FROM_OBJECT)
227     return true;
228
229   // If the symbol is from a dynamic object, then the final value is
230   // not known.
231   if (this->object()->is_dynamic())
232     return false;
233
234   // If the symbol is not undefined (it is defined or common), then
235   // the final value is known.
236   if (!this->is_undefined())
237     return true;
238
239   // If the symbol is undefined, then whether the final value is known
240   // depends on whether we are doing a static link.  If we are doing a
241   // dynamic link, then the final value could be filled in at runtime.
242   // This could reasonably be the case for a weak undefined symbol.
243   return parameters->doing_static_link();
244 }
245
246 // Class Symbol_table.
247
248 Symbol_table::Symbol_table()
249   : saw_undefined_(0), offset_(0), table_(), namepool_(),
250     forwarders_(), commons_(), warnings_()
251 {
252 }
253
254 Symbol_table::~Symbol_table()
255 {
256 }
257
258 // The hash function.  The key is always canonicalized, so we use a
259 // simple combination of the pointers.
260
261 size_t
262 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
263 {
264   return key.first ^ key.second;
265 }
266
267 // The symbol table key equality function.  This is only called with
268 // canonicalized name and version strings, so we can use pointer
269 // comparison.
270
271 bool
272 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
273                                           const Symbol_table_key& k2) const
274 {
275   return k1.first == k2.first && k1.second == k2.second;
276 }
277
278 // Make TO a symbol which forwards to FROM.  
279
280 void
281 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
282 {
283   gold_assert(from != to);
284   gold_assert(!from->is_forwarder() && !to->is_forwarder());
285   this->forwarders_[from] = to;
286   from->set_forwarder();
287 }
288
289 // Resolve the forwards from FROM, returning the real symbol.
290
291 Symbol*
292 Symbol_table::resolve_forwards(const Symbol* from) const
293 {
294   gold_assert(from->is_forwarder());
295   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
296     this->forwarders_.find(from);
297   gold_assert(p != this->forwarders_.end());
298   return p->second;
299 }
300
301 // Look up a symbol by name.
302
303 Symbol*
304 Symbol_table::lookup(const char* name, const char* version) const
305 {
306   Stringpool::Key name_key;
307   name = this->namepool_.find(name, &name_key);
308   if (name == NULL)
309     return NULL;
310
311   Stringpool::Key version_key = 0;
312   if (version != NULL)
313     {
314       version = this->namepool_.find(version, &version_key);
315       if (version == NULL)
316         return NULL;
317     }
318
319   Symbol_table_key key(name_key, version_key);
320   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
321   if (p == this->table_.end())
322     return NULL;
323   return p->second;
324 }
325
326 // Resolve a Symbol with another Symbol.  This is only used in the
327 // unusual case where there are references to both an unversioned
328 // symbol and a symbol with a version, and we then discover that that
329 // version is the default version.  Because this is unusual, we do
330 // this the slow way, by converting back to an ELF symbol.
331
332 template<int size, bool big_endian>
333 void
334 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
335                       const char* version ACCEPT_SIZE_ENDIAN)
336 {
337   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
338   elfcpp::Sym_write<size, big_endian> esym(buf);
339   // We don't bother to set the st_name field.
340   esym.put_st_value(from->value());
341   esym.put_st_size(from->symsize());
342   esym.put_st_info(from->binding(), from->type());
343   esym.put_st_other(from->visibility(), from->nonvis());
344   esym.put_st_shndx(from->shndx());
345   this->resolve(to, esym.sym(), from->object(), version);
346   if (from->in_reg())
347     to->set_in_reg();
348   if (from->in_dyn())
349     to->set_in_dyn();
350 }
351
352 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
353 // name and VERSION is the version; both are canonicalized.  DEF is
354 // whether this is the default version.
355
356 // If DEF is true, then this is the definition of a default version of
357 // a symbol.  That means that any lookup of NAME/NULL and any lookup
358 // of NAME/VERSION should always return the same symbol.  This is
359 // obvious for references, but in particular we want to do this for
360 // definitions: overriding NAME/NULL should also override
361 // NAME/VERSION.  If we don't do that, it would be very hard to
362 // override functions in a shared library which uses versioning.
363
364 // We implement this by simply making both entries in the hash table
365 // point to the same Symbol structure.  That is easy enough if this is
366 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
367 // that we have seen both already, in which case they will both have
368 // independent entries in the symbol table.  We can't simply change
369 // the symbol table entry, because we have pointers to the entries
370 // attached to the object files.  So we mark the entry attached to the
371 // object file as a forwarder, and record it in the forwarders_ map.
372 // Note that entries in the hash table will never be marked as
373 // forwarders.
374
375 template<int size, bool big_endian>
376 Sized_symbol<size>*
377 Symbol_table::add_from_object(Object* object,
378                               const char *name,
379                               Stringpool::Key name_key,
380                               const char *version,
381                               Stringpool::Key version_key,
382                               bool def,
383                               const elfcpp::Sym<size, big_endian>& sym)
384 {
385   Symbol* const snull = NULL;
386   std::pair<typename Symbol_table_type::iterator, bool> ins =
387     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
388                                        snull));
389
390   std::pair<typename Symbol_table_type::iterator, bool> insdef =
391     std::make_pair(this->table_.end(), false);
392   if (def)
393     {
394       const Stringpool::Key vnull_key = 0;
395       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
396                                                                  vnull_key),
397                                                   snull));
398     }
399
400   // ins.first: an iterator, which is a pointer to a pair.
401   // ins.first->first: the key (a pair of name and version).
402   // ins.first->second: the value (Symbol*).
403   // ins.second: true if new entry was inserted, false if not.
404
405   Sized_symbol<size>* ret;
406   bool was_undefined;
407   bool was_common;
408   if (!ins.second)
409     {
410       // We already have an entry for NAME/VERSION.
411       ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
412                                                            SELECT_SIZE(size));
413       gold_assert(ret != NULL);
414
415       was_undefined = ret->is_undefined();
416       was_common = ret->is_common();
417
418       this->resolve(ret, sym, object, version);
419
420       if (def)
421         {
422           if (insdef.second)
423             {
424               // This is the first time we have seen NAME/NULL.  Make
425               // NAME/NULL point to NAME/VERSION.
426               insdef.first->second = ret;
427             }
428           else if (insdef.first->second != ret)
429             {
430               // This is the unfortunate case where we already have
431               // entries for both NAME/VERSION and NAME/NULL.
432               const Sized_symbol<size>* sym2;
433               sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
434                 insdef.first->second
435                 SELECT_SIZE(size));
436               Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
437                 ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian));
438               this->make_forwarder(insdef.first->second, ret);
439               insdef.first->second = ret;
440             }
441         }
442     }
443   else
444     {
445       // This is the first time we have seen NAME/VERSION.
446       gold_assert(ins.first->second == NULL);
447
448       was_undefined = false;
449       was_common = false;
450
451       if (def && !insdef.second)
452         {
453           // We already have an entry for NAME/NULL.  If we override
454           // it, then change it to NAME/VERSION.
455           ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
456               insdef.first->second
457               SELECT_SIZE(size));
458           this->resolve(ret, sym, object, version);
459           ins.first->second = ret;
460         }
461       else
462         {
463           Sized_target<size, big_endian>* target =
464             object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
465                 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
466           if (!target->has_make_symbol())
467             ret = new Sized_symbol<size>();
468           else
469             {
470               ret = target->make_symbol();
471               if (ret == NULL)
472                 {
473                   // This means that we don't want a symbol table
474                   // entry after all.
475                   if (!def)
476                     this->table_.erase(ins.first);
477                   else
478                     {
479                       this->table_.erase(insdef.first);
480                       // Inserting insdef invalidated ins.
481                       this->table_.erase(std::make_pair(name_key,
482                                                         version_key));
483                     }
484                   return NULL;
485                 }
486             }
487
488           ret->init(name, version, object, sym);
489
490           ins.first->second = ret;
491           if (def)
492             {
493               // This is the first time we have seen NAME/NULL.  Point
494               // it at the new entry for NAME/VERSION.
495               gold_assert(insdef.second);
496               insdef.first->second = ret;
497             }
498         }
499     }
500
501   // Record every time we see a new undefined symbol, to speed up
502   // archive groups.
503   if (!was_undefined && ret->is_undefined())
504     ++this->saw_undefined_;
505
506   // Keep track of common symbols, to speed up common symbol
507   // allocation.
508   if (!was_common && ret->is_common())
509     this->commons_.push_back(ret);
510
511   return ret;
512 }
513
514 // Add all the symbols in a relocatable object to the hash table.
515
516 template<int size, bool big_endian>
517 void
518 Symbol_table::add_from_relobj(
519     Sized_relobj<size, big_endian>* relobj,
520     const unsigned char* syms,
521     size_t count,
522     const char* sym_names,
523     size_t sym_name_size,
524     Symbol** sympointers)
525 {
526   gold_assert(size == relobj->target()->get_size());
527   gold_assert(size == parameters->get_size());
528
529   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
530
531   const unsigned char* p = syms;
532   for (size_t i = 0; i < count; ++i, p += sym_size)
533     {
534       elfcpp::Sym<size, big_endian> sym(p);
535       elfcpp::Sym<size, big_endian>* psym = &sym;
536
537       unsigned int st_name = psym->get_st_name();
538       if (st_name >= sym_name_size)
539         {
540           relobj->error(_("bad global symbol name offset %u at %zu"),
541                         st_name, i);
542           continue;
543         }
544
545       const char* name = sym_names + st_name;
546
547       // A symbol defined in a section which we are not including must
548       // be treated as an undefined symbol.
549       unsigned char symbuf[sym_size];
550       elfcpp::Sym<size, big_endian> sym2(symbuf);
551       unsigned int st_shndx = psym->get_st_shndx();
552       if (st_shndx != elfcpp::SHN_UNDEF
553           && st_shndx < elfcpp::SHN_LORESERVE
554           && !relobj->is_section_included(st_shndx))
555         {
556           memcpy(symbuf, p, sym_size);
557           elfcpp::Sym_write<size, big_endian> sw(symbuf);
558           sw.put_st_shndx(elfcpp::SHN_UNDEF);
559           psym = &sym2;
560         }
561
562       // In an object file, an '@' in the name separates the symbol
563       // name from the version name.  If there are two '@' characters,
564       // this is the default version.
565       const char* ver = strchr(name, '@');
566
567       Sized_symbol<size>* res;
568       if (ver == NULL)
569         {
570           Stringpool::Key name_key;
571           name = this->namepool_.add(name, true, &name_key);
572           res = this->add_from_object(relobj, name, name_key, NULL, 0,
573                                       false, *psym);
574         }
575       else
576         {
577           Stringpool::Key name_key;
578           name = this->namepool_.add_prefix(name, ver - name, &name_key);
579
580           bool def = false;
581           ++ver;
582           if (*ver == '@')
583             {
584               def = true;
585               ++ver;
586             }
587
588           Stringpool::Key ver_key;
589           ver = this->namepool_.add(ver, true, &ver_key);
590
591           res = this->add_from_object(relobj, name, name_key, ver, ver_key,
592                                       def, *psym);
593         }
594
595       *sympointers++ = res;
596     }
597 }
598
599 // Add all the symbols in a dynamic object to the hash table.
600
601 template<int size, bool big_endian>
602 void
603 Symbol_table::add_from_dynobj(
604     Sized_dynobj<size, big_endian>* dynobj,
605     const unsigned char* syms,
606     size_t count,
607     const char* sym_names,
608     size_t sym_name_size,
609     const unsigned char* versym,
610     size_t versym_size,
611     const std::vector<const char*>* version_map)
612 {
613   gold_assert(size == dynobj->target()->get_size());
614   gold_assert(size == parameters->get_size());
615
616   if (versym != NULL && versym_size / 2 < count)
617     {
618       dynobj->error(_("too few symbol versions"));
619       return;
620     }
621
622   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
623
624   // We keep a list of all STT_OBJECT symbols, so that we can resolve
625   // weak aliases.  This is necessary because if the dynamic object
626   // provides the same variable under two names, one of which is a
627   // weak definition, and the regular object refers to the weak
628   // definition, we have to put both the weak definition and the
629   // strong definition into the dynamic symbol table.  Given a weak
630   // definition, the only way that we can find the corresponding
631   // strong definition, if any, is to search the symbol table.
632   std::vector<Sized_symbol<size>*> object_symbols;
633
634   const unsigned char* p = syms;
635   const unsigned char* vs = versym;
636   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
637     {
638       elfcpp::Sym<size, big_endian> sym(p);
639
640       // Ignore symbols with local binding.
641       if (sym.get_st_bind() == elfcpp::STB_LOCAL)
642         continue;
643
644       unsigned int st_name = sym.get_st_name();
645       if (st_name >= sym_name_size)
646         {
647           dynobj->error(_("bad symbol name offset %u at %zu"),
648                         st_name, i);
649           continue;
650         }
651
652       const char* name = sym_names + st_name;
653
654       Sized_symbol<size>* res;
655
656       if (versym == NULL)
657         {
658           Stringpool::Key name_key;
659           name = this->namepool_.add(name, true, &name_key);
660           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
661                                       false, sym);
662         }
663       else
664         {
665           // Read the version information.
666
667           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
668
669           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
670           v &= elfcpp::VERSYM_VERSION;
671
672           // The Sun documentation says that V can be VER_NDX_LOCAL,
673           // or VER_NDX_GLOBAL, or a version index.  The meaning of
674           // VER_NDX_LOCAL is defined as "Symbol has local scope."
675           // The old GNU linker will happily generate VER_NDX_LOCAL
676           // for an undefined symbol.  I don't know what the Sun
677           // linker will generate.
678
679           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
680               && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
681             {
682               // This symbol should not be visible outside the object.
683               continue;
684             }
685
686           // At this point we are definitely going to add this symbol.
687           Stringpool::Key name_key;
688           name = this->namepool_.add(name, true, &name_key);
689
690           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
691               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
692             {
693               // This symbol does not have a version.
694               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
695                                           false, sym);
696             }
697           else
698             {
699               if (v >= version_map->size())
700                 {
701                   dynobj->error(_("versym for symbol %zu out of range: %u"),
702                                 i, v);
703                   continue;
704                 }
705
706               const char* version = (*version_map)[v];
707               if (version == NULL)
708                 {
709                   dynobj->error(_("versym for symbol %zu has no name: %u"),
710                                 i, v);
711                   continue;
712                 }
713
714               Stringpool::Key version_key;
715               version = this->namepool_.add(version, true, &version_key);
716
717               // If this is an absolute symbol, and the version name
718               // and symbol name are the same, then this is the
719               // version definition symbol.  These symbols exist to
720               // support using -u to pull in particular versions.  We
721               // do not want to record a version for them.
722               if (sym.get_st_shndx() == elfcpp::SHN_ABS
723                   && name_key == version_key)
724                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
725                                             false, sym);
726               else
727                 {
728                   const bool def = (!hidden
729                                     && (sym.get_st_shndx()
730                                         != elfcpp::SHN_UNDEF));
731                   res = this->add_from_object(dynobj, name, name_key, version,
732                                               version_key, def, sym);
733                 }
734             }
735         }
736
737       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
738           && sym.get_st_type() == elfcpp::STT_OBJECT)
739         object_symbols.push_back(res);
740     }
741
742   this->record_weak_aliases(&object_symbols);
743 }
744
745 // This is used to sort weak aliases.  We sort them first by section
746 // index, then by offset, then by weak ahead of strong.
747
748 template<int size>
749 class Weak_alias_sorter
750 {
751  public:
752   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
753 };
754
755 template<int size>
756 bool
757 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
758                                     const Sized_symbol<size>* s2) const
759 {
760   if (s1->shndx() != s2->shndx())
761     return s1->shndx() < s2->shndx();
762   if (s1->value() != s2->value())
763     return s1->value() < s2->value();
764   if (s1->binding() != s2->binding())
765     {
766       if (s1->binding() == elfcpp::STB_WEAK)
767         return true;
768       if (s2->binding() == elfcpp::STB_WEAK)
769         return false;
770     }
771   return std::string(s1->name()) < std::string(s2->name());
772 }
773
774 // SYMBOLS is a list of object symbols from a dynamic object.  Look
775 // for any weak aliases, and record them so that if we add the weak
776 // alias to the dynamic symbol table, we also add the corresponding
777 // strong symbol.
778
779 template<int size>
780 void
781 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
782 {
783   // Sort the vector by section index, then by offset, then by weak
784   // ahead of strong.
785   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
786
787   // Walk through the vector.  For each weak definition, record
788   // aliases.
789   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
790          symbols->begin();
791        p != symbols->end();
792        ++p)
793     {
794       if ((*p)->binding() != elfcpp::STB_WEAK)
795         continue;
796
797       // Build a circular list of weak aliases.  Each symbol points to
798       // the next one in the circular list.
799
800       Sized_symbol<size>* from_sym = *p;
801       typename std::vector<Sized_symbol<size>*>::const_iterator q;
802       for (q = p + 1; q != symbols->end(); ++q)
803         {
804           if ((*q)->shndx() != from_sym->shndx()
805               || (*q)->value() != from_sym->value())
806             break;
807
808           this->weak_aliases_[from_sym] = *q;
809           from_sym->set_has_alias();
810           from_sym = *q;
811         }
812
813       if (from_sym != *p)
814         {
815           this->weak_aliases_[from_sym] = *p;
816           from_sym->set_has_alias();
817         }
818
819       p = q - 1;
820     }
821 }
822
823 // Create and return a specially defined symbol.  If ONLY_IF_REF is
824 // true, then only create the symbol if there is a reference to it.
825 // If this does not return NULL, it sets *POLDSYM to the existing
826 // symbol if there is one.  This canonicalizes *PNAME and *PVERSION.
827
828 template<int size, bool big_endian>
829 Sized_symbol<size>*
830 Symbol_table::define_special_symbol(const Target* target, const char** pname,
831                                     const char** pversion, bool only_if_ref,
832                                     Sized_symbol<size>** poldsym
833                                     ACCEPT_SIZE_ENDIAN)
834 {
835   Symbol* oldsym;
836   Sized_symbol<size>* sym;
837   bool add_to_table = false;
838   typename Symbol_table_type::iterator add_loc = this->table_.end();
839
840   if (only_if_ref)
841     {
842       oldsym = this->lookup(*pname, *pversion);
843       if (oldsym == NULL || !oldsym->is_undefined())
844         return NULL;
845
846       *pname = oldsym->name();
847       *pversion = oldsym->version();
848     }
849   else
850     {
851       // Canonicalize NAME and VERSION.
852       Stringpool::Key name_key;
853       *pname = this->namepool_.add(*pname, true, &name_key);
854
855       Stringpool::Key version_key = 0;
856       if (*pversion != NULL)
857         *pversion = this->namepool_.add(*pversion, true, &version_key);
858
859       Symbol* const snull = NULL;
860       std::pair<typename Symbol_table_type::iterator, bool> ins =
861         this->table_.insert(std::make_pair(std::make_pair(name_key,
862                                                           version_key),
863                                            snull));
864
865       if (!ins.second)
866         {
867           // We already have a symbol table entry for NAME/VERSION.
868           oldsym = ins.first->second;
869           gold_assert(oldsym != NULL);
870         }
871       else
872         {
873           // We haven't seen this symbol before.
874           gold_assert(ins.first->second == NULL);
875           add_to_table = true;
876           add_loc = ins.first;
877           oldsym = NULL;
878         }
879     }
880
881   if (!target->has_make_symbol())
882     sym = new Sized_symbol<size>();
883   else
884     {
885       gold_assert(target->get_size() == size);
886       gold_assert(target->is_big_endian() ? big_endian : !big_endian);
887       typedef Sized_target<size, big_endian> My_target;
888       const My_target* sized_target =
889           static_cast<const My_target*>(target);
890       sym = sized_target->make_symbol();
891       if (sym == NULL)
892         return NULL;
893     }
894
895   if (add_to_table)
896     add_loc->second = sym;
897   else
898     gold_assert(oldsym != NULL);
899
900   *poldsym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
901                                                             SELECT_SIZE(size));
902
903   return sym;
904 }
905
906 // Define a symbol based on an Output_data.
907
908 Symbol*
909 Symbol_table::define_in_output_data(const Target* target, const char* name,
910                                     const char* version, Output_data* od,
911                                     uint64_t value, uint64_t symsize,
912                                     elfcpp::STT type, elfcpp::STB binding,
913                                     elfcpp::STV visibility,
914                                     unsigned char nonvis,
915                                     bool offset_is_from_end,
916                                     bool only_if_ref)
917 {
918   if (parameters->get_size() == 32)
919     {
920 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
921       return this->do_define_in_output_data<32>(target, name, version, od,
922                                                 value, symsize, type, binding,
923                                                 visibility, nonvis,
924                                                 offset_is_from_end,
925                                                 only_if_ref);
926 #else
927       gold_unreachable();
928 #endif
929     }
930   else if (parameters->get_size() == 64)
931     {
932 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
933       return this->do_define_in_output_data<64>(target, name, version, od,
934                                                 value, symsize, type, binding,
935                                                 visibility, nonvis,
936                                                 offset_is_from_end,
937                                                 only_if_ref);
938 #else
939       gold_unreachable();
940 #endif
941     }
942   else
943     gold_unreachable();
944 }
945
946 // Define a symbol in an Output_data, sized version.
947
948 template<int size>
949 Sized_symbol<size>*
950 Symbol_table::do_define_in_output_data(
951     const Target* target,
952     const char* name,
953     const char* version,
954     Output_data* od,
955     typename elfcpp::Elf_types<size>::Elf_Addr value,
956     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
957     elfcpp::STT type,
958     elfcpp::STB binding,
959     elfcpp::STV visibility,
960     unsigned char nonvis,
961     bool offset_is_from_end,
962     bool only_if_ref)
963 {
964   Sized_symbol<size>* sym;
965   Sized_symbol<size>* oldsym;
966
967   if (parameters->is_big_endian())
968     {
969 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
970       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
971           target, &name, &version, only_if_ref, &oldsym
972           SELECT_SIZE_ENDIAN(size, true));
973 #else
974       gold_unreachable();
975 #endif
976     }
977   else
978     {
979 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
980       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
981           target, &name, &version, only_if_ref, &oldsym
982           SELECT_SIZE_ENDIAN(size, false));
983 #else
984       gold_unreachable();
985 #endif
986     }
987
988   if (sym == NULL)
989     return NULL;
990
991   gold_assert(version == NULL || oldsym != NULL);
992   sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
993             offset_is_from_end);
994
995   if (oldsym != NULL
996       && Symbol_table::should_override_with_special(oldsym))
997     this->override_with_special(oldsym, sym);
998
999   return sym;
1000 }
1001
1002 // Define a symbol based on an Output_segment.
1003
1004 Symbol*
1005 Symbol_table::define_in_output_segment(const Target* target, const char* name,
1006                                        const char* version, Output_segment* os,
1007                                        uint64_t value, uint64_t symsize,
1008                                        elfcpp::STT type, elfcpp::STB binding,
1009                                        elfcpp::STV visibility,
1010                                        unsigned char nonvis,
1011                                        Symbol::Segment_offset_base offset_base,
1012                                        bool only_if_ref)
1013 {
1014   if (parameters->get_size() == 32)
1015     {
1016 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1017       return this->do_define_in_output_segment<32>(target, name, version, os,
1018                                                    value, symsize, type,
1019                                                    binding, visibility, nonvis,
1020                                                    offset_base, only_if_ref);
1021 #else
1022       gold_unreachable();
1023 #endif
1024     }
1025   else if (parameters->get_size() == 64)
1026     {
1027 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1028       return this->do_define_in_output_segment<64>(target, name, version, os,
1029                                                    value, symsize, type,
1030                                                    binding, visibility, nonvis,
1031                                                    offset_base, only_if_ref);
1032 #else
1033       gold_unreachable();
1034 #endif
1035     }
1036   else
1037     gold_unreachable();
1038 }
1039
1040 // Define a symbol in an Output_segment, sized version.
1041
1042 template<int size>
1043 Sized_symbol<size>*
1044 Symbol_table::do_define_in_output_segment(
1045     const Target* target,
1046     const char* name,
1047     const char* version,
1048     Output_segment* os,
1049     typename elfcpp::Elf_types<size>::Elf_Addr value,
1050     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1051     elfcpp::STT type,
1052     elfcpp::STB binding,
1053     elfcpp::STV visibility,
1054     unsigned char nonvis,
1055     Symbol::Segment_offset_base offset_base,
1056     bool only_if_ref)
1057 {
1058   Sized_symbol<size>* sym;
1059   Sized_symbol<size>* oldsym;
1060
1061   if (parameters->is_big_endian())
1062     {
1063 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1064       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1065           target, &name, &version, only_if_ref, &oldsym
1066           SELECT_SIZE_ENDIAN(size, true));
1067 #else
1068       gold_unreachable();
1069 #endif
1070     }
1071   else
1072     {
1073 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1074       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1075           target, &name, &version, only_if_ref, &oldsym
1076           SELECT_SIZE_ENDIAN(size, false));
1077 #else
1078       gold_unreachable();
1079 #endif
1080     }
1081
1082   if (sym == NULL)
1083     return NULL;
1084
1085   gold_assert(version == NULL || oldsym != NULL);
1086   sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1087             offset_base);
1088
1089   if (oldsym != NULL
1090       && Symbol_table::should_override_with_special(oldsym))
1091     this->override_with_special(oldsym, sym);
1092
1093   return sym;
1094 }
1095
1096 // Define a special symbol with a constant value.  It is a multiple
1097 // definition error if this symbol is already defined.
1098
1099 Symbol*
1100 Symbol_table::define_as_constant(const Target* target, const char* name,
1101                                  const char* version, uint64_t value,
1102                                  uint64_t symsize, elfcpp::STT type,
1103                                  elfcpp::STB binding, elfcpp::STV visibility,
1104                                  unsigned char nonvis, bool only_if_ref)
1105 {
1106   if (parameters->get_size() == 32)
1107     {
1108 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1109       return this->do_define_as_constant<32>(target, name, version, value,
1110                                              symsize, type, binding,
1111                                              visibility, nonvis, only_if_ref);
1112 #else
1113       gold_unreachable();
1114 #endif
1115     }
1116   else if (parameters->get_size() == 64)
1117     {
1118 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1119       return this->do_define_as_constant<64>(target, name, version, value,
1120                                              symsize, type, binding,
1121                                              visibility, nonvis, only_if_ref);
1122 #else
1123       gold_unreachable();
1124 #endif
1125     }
1126   else
1127     gold_unreachable();
1128 }
1129
1130 // Define a symbol as a constant, sized version.
1131
1132 template<int size>
1133 Sized_symbol<size>*
1134 Symbol_table::do_define_as_constant(
1135     const Target* target,
1136     const char* name,
1137     const char* version,
1138     typename elfcpp::Elf_types<size>::Elf_Addr value,
1139     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1140     elfcpp::STT type,
1141     elfcpp::STB binding,
1142     elfcpp::STV visibility,
1143     unsigned char nonvis,
1144     bool only_if_ref)
1145 {
1146   Sized_symbol<size>* sym;
1147   Sized_symbol<size>* oldsym;
1148
1149   if (parameters->is_big_endian())
1150     {
1151 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1152       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1153           target, &name, &version, only_if_ref, &oldsym
1154           SELECT_SIZE_ENDIAN(size, true));
1155 #else
1156       gold_unreachable();
1157 #endif
1158     }
1159   else
1160     {
1161 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1162       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1163           target, &name, &version, only_if_ref, &oldsym
1164           SELECT_SIZE_ENDIAN(size, false));
1165 #else
1166       gold_unreachable();
1167 #endif
1168     }
1169
1170   if (sym == NULL)
1171     return NULL;
1172
1173   gold_assert(version == NULL || oldsym != NULL);
1174   sym->init(name, value, symsize, type, binding, visibility, nonvis);
1175
1176   if (oldsym != NULL
1177       && Symbol_table::should_override_with_special(oldsym))
1178     this->override_with_special(oldsym, sym);
1179
1180   return sym;
1181 }
1182
1183 // Define a set of symbols in output sections.
1184
1185 void
1186 Symbol_table::define_symbols(const Layout* layout, const Target* target,
1187                              int count, const Define_symbol_in_section* p)
1188 {
1189   for (int i = 0; i < count; ++i, ++p)
1190     {
1191       Output_section* os = layout->find_output_section(p->output_section);
1192       if (os != NULL)
1193         this->define_in_output_data(target, p->name, NULL, os, p->value,
1194                                     p->size, p->type, p->binding,
1195                                     p->visibility, p->nonvis,
1196                                     p->offset_is_from_end, p->only_if_ref);
1197       else
1198         this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1199                                  p->binding, p->visibility, p->nonvis,
1200                                  p->only_if_ref);
1201     }
1202 }
1203
1204 // Define a set of symbols in output segments.
1205
1206 void
1207 Symbol_table::define_symbols(const Layout* layout, const Target* target,
1208                              int count, const Define_symbol_in_segment* p)
1209 {
1210   for (int i = 0; i < count; ++i, ++p)
1211     {
1212       Output_segment* os = layout->find_output_segment(p->segment_type,
1213                                                        p->segment_flags_set,
1214                                                        p->segment_flags_clear);
1215       if (os != NULL)
1216         this->define_in_output_segment(target, p->name, NULL, os, p->value,
1217                                        p->size, p->type, p->binding,
1218                                        p->visibility, p->nonvis,
1219                                        p->offset_base, p->only_if_ref);
1220       else
1221         this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1222                                  p->binding, p->visibility, p->nonvis,
1223                                  p->only_if_ref);
1224     }
1225 }
1226
1227 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
1228 // symbol should be defined--typically a .dyn.bss section.  VALUE is
1229 // the offset within POSD.
1230
1231 template<int size>
1232 void
1233 Symbol_table::define_with_copy_reloc(const Target* target,
1234                                      Sized_symbol<size>* csym,
1235                                      Output_data* posd, uint64_t value)
1236 {
1237   gold_assert(csym->is_from_dynobj());
1238   gold_assert(!csym->is_copied_from_dynobj());
1239   Object* object = csym->object();
1240   gold_assert(object->is_dynamic());
1241   Dynobj* dynobj = static_cast<Dynobj*>(object);
1242
1243   // Our copied variable has to override any variable in a shared
1244   // library.
1245   elfcpp::STB binding = csym->binding();
1246   if (binding == elfcpp::STB_WEAK)
1247     binding = elfcpp::STB_GLOBAL;
1248
1249   this->define_in_output_data(target, csym->name(), csym->version(),
1250                               posd, value, csym->symsize(),
1251                               csym->type(), binding,
1252                               csym->visibility(), csym->nonvis(),
1253                               false, false);
1254
1255   csym->set_is_copied_from_dynobj();
1256   csym->set_needs_dynsym_entry();
1257
1258   this->copied_symbol_dynobjs_[csym] = dynobj;
1259
1260   // We have now defined all aliases, but we have not entered them all
1261   // in the copied_symbol_dynobjs_ map.
1262   if (csym->has_alias())
1263     {
1264       Symbol* sym = csym;
1265       while (true)
1266         {
1267           sym = this->weak_aliases_[sym];
1268           if (sym == csym)
1269             break;
1270           gold_assert(sym->output_data() == posd);
1271
1272           sym->set_is_copied_from_dynobj();
1273           this->copied_symbol_dynobjs_[sym] = dynobj;
1274         }
1275     }
1276 }
1277
1278 // SYM is defined using a COPY reloc.  Return the dynamic object where
1279 // the original definition was found.
1280
1281 Dynobj*
1282 Symbol_table::get_copy_source(const Symbol* sym) const
1283 {
1284   gold_assert(sym->is_copied_from_dynobj());
1285   Copied_symbol_dynobjs::const_iterator p =
1286     this->copied_symbol_dynobjs_.find(sym);
1287   gold_assert(p != this->copied_symbol_dynobjs_.end());
1288   return p->second;
1289 }
1290
1291 // Set the dynamic symbol indexes.  INDEX is the index of the first
1292 // global dynamic symbol.  Pointers to the symbols are stored into the
1293 // vector SYMS.  The names are added to DYNPOOL.  This returns an
1294 // updated dynamic symbol index.
1295
1296 unsigned int
1297 Symbol_table::set_dynsym_indexes(const General_options* options,
1298                                  const Target* target,
1299                                  unsigned int index,
1300                                  std::vector<Symbol*>* syms,
1301                                  Stringpool* dynpool,
1302                                  Versions* versions)
1303 {
1304   for (Symbol_table_type::iterator p = this->table_.begin();
1305        p != this->table_.end();
1306        ++p)
1307     {
1308       Symbol* sym = p->second;
1309
1310       // Note that SYM may already have a dynamic symbol index, since
1311       // some symbols appear more than once in the symbol table, with
1312       // and without a version.
1313
1314       if (!sym->should_add_dynsym_entry())
1315         sym->set_dynsym_index(-1U);
1316       else if (!sym->has_dynsym_index())
1317         {
1318           sym->set_dynsym_index(index);
1319           ++index;
1320           syms->push_back(sym);
1321           dynpool->add(sym->name(), false, NULL);
1322
1323           // Record any version information.
1324           if (sym->version() != NULL)
1325             versions->record_version(options, this, dynpool, sym);
1326         }
1327     }
1328
1329   // Finish up the versions.  In some cases this may add new dynamic
1330   // symbols.
1331   index = versions->finalize(target, this, index, syms);
1332
1333   return index;
1334 }
1335
1336 // Set the final values for all the symbols.  The index of the first
1337 // global symbol in the output file is INDEX.  Record the file offset
1338 // OFF.  Add their names to POOL.  Return the new file offset.
1339
1340 off_t
1341 Symbol_table::finalize(unsigned int index, off_t off, off_t dynoff,
1342                        size_t dyn_global_index, size_t dyncount,
1343                        Stringpool* pool)
1344 {
1345   off_t ret;
1346
1347   gold_assert(index != 0);
1348   this->first_global_index_ = index;
1349
1350   this->dynamic_offset_ = dynoff;
1351   this->first_dynamic_global_index_ = dyn_global_index;
1352   this->dynamic_count_ = dyncount;
1353
1354   if (parameters->get_size() == 32)
1355     {
1356 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1357       ret = this->sized_finalize<32>(index, off, pool);
1358 #else
1359       gold_unreachable();
1360 #endif
1361     }
1362   else if (parameters->get_size() == 64)
1363     {
1364 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1365       ret = this->sized_finalize<64>(index, off, pool);
1366 #else
1367       gold_unreachable();
1368 #endif
1369     }
1370   else
1371     gold_unreachable();
1372
1373   // Now that we have the final symbol table, we can reliably note
1374   // which symbols should get warnings.
1375   this->warnings_.note_warnings(this);
1376
1377   return ret;
1378 }
1379
1380 // Set the final value for all the symbols.  This is called after
1381 // Layout::finalize, so all the output sections have their final
1382 // address.
1383
1384 template<int size>
1385 off_t
1386 Symbol_table::sized_finalize(unsigned index, off_t off, Stringpool* pool)
1387 {
1388   off = align_address(off, size >> 3);
1389   this->offset_ = off;
1390
1391   size_t orig_index = index;
1392
1393   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1394   for (Symbol_table_type::iterator p = this->table_.begin();
1395        p != this->table_.end();
1396        ++p)
1397     {
1398       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1399
1400       // FIXME: Here we need to decide which symbols should go into
1401       // the output file, based on --strip.
1402
1403       // The default version of a symbol may appear twice in the
1404       // symbol table.  We only need to finalize it once.
1405       if (sym->has_symtab_index())
1406         continue;
1407
1408       if (!sym->in_reg())
1409         {
1410           gold_assert(!sym->has_symtab_index());
1411           sym->set_symtab_index(-1U);
1412           gold_assert(sym->dynsym_index() == -1U);
1413           continue;
1414         }
1415
1416       typename Sized_symbol<size>::Value_type value;
1417
1418       switch (sym->source())
1419         {
1420         case Symbol::FROM_OBJECT:
1421           {
1422             unsigned int shndx = sym->shndx();
1423
1424             // FIXME: We need some target specific support here.
1425             if (shndx >= elfcpp::SHN_LORESERVE
1426                 && shndx != elfcpp::SHN_ABS)
1427               {
1428                 gold_error(_("%s: unsupported symbol section 0x%x"),
1429                            sym->name(), shndx);
1430                 shndx = elfcpp::SHN_UNDEF;
1431               }
1432
1433             Object* symobj = sym->object();
1434             if (symobj->is_dynamic())
1435               {
1436                 value = 0;
1437                 shndx = elfcpp::SHN_UNDEF;
1438               }
1439             else if (shndx == elfcpp::SHN_UNDEF)
1440               value = 0;
1441             else if (shndx == elfcpp::SHN_ABS)
1442               value = sym->value();
1443             else
1444               {
1445                 Relobj* relobj = static_cast<Relobj*>(symobj);
1446                 off_t secoff;
1447                 Output_section* os = relobj->output_section(shndx, &secoff);
1448
1449                 if (os == NULL)
1450                   {
1451                     sym->set_symtab_index(-1U);
1452                     gold_assert(sym->dynsym_index() == -1U);
1453                     continue;
1454                   }
1455
1456                 value = sym->value() + os->address() + secoff;
1457               }
1458           }
1459           break;
1460
1461         case Symbol::IN_OUTPUT_DATA:
1462           {
1463             Output_data* od = sym->output_data();
1464             value = sym->value() + od->address();
1465             if (sym->offset_is_from_end())
1466               value += od->data_size();
1467           }
1468           break;
1469
1470         case Symbol::IN_OUTPUT_SEGMENT:
1471           {
1472             Output_segment* os = sym->output_segment();
1473             value = sym->value() + os->vaddr();
1474             switch (sym->offset_base())
1475               {
1476               case Symbol::SEGMENT_START:
1477                 break;
1478               case Symbol::SEGMENT_END:
1479                 value += os->memsz();
1480                 break;
1481               case Symbol::SEGMENT_BSS:
1482                 value += os->filesz();
1483                 break;
1484               default:
1485                 gold_unreachable();
1486               }
1487           }
1488           break;
1489
1490         case Symbol::CONSTANT:
1491           value = sym->value();
1492           break;
1493
1494         default:
1495           gold_unreachable();
1496         }
1497
1498       sym->set_value(value);
1499
1500       if (parameters->strip_all())
1501         sym->set_symtab_index(-1U);
1502       else
1503         {
1504           sym->set_symtab_index(index);
1505           pool->add(sym->name(), false, NULL);
1506           ++index;
1507           off += sym_size;
1508         }
1509     }
1510
1511   this->output_count_ = index - orig_index;
1512
1513   return off;
1514 }
1515
1516 // Write out the global symbols.
1517
1518 void
1519 Symbol_table::write_globals(const Target* target, const Stringpool* sympool,
1520                             const Stringpool* dynpool, Output_file* of) const
1521 {
1522   if (parameters->get_size() == 32)
1523     {
1524       if (parameters->is_big_endian())
1525         {
1526 #ifdef HAVE_TARGET_32_BIG
1527           this->sized_write_globals<32, true>(target, sympool, dynpool, of);
1528 #else
1529           gold_unreachable();
1530 #endif
1531         }
1532       else
1533         {
1534 #ifdef HAVE_TARGET_32_LITTLE
1535           this->sized_write_globals<32, false>(target, sympool, dynpool, of);
1536 #else
1537           gold_unreachable();
1538 #endif
1539         }
1540     }
1541   else if (parameters->get_size() == 64)
1542     {
1543       if (parameters->is_big_endian())
1544         {
1545 #ifdef HAVE_TARGET_64_BIG
1546           this->sized_write_globals<64, true>(target, sympool, dynpool, of);
1547 #else
1548           gold_unreachable();
1549 #endif
1550         }
1551       else
1552         {
1553 #ifdef HAVE_TARGET_64_LITTLE
1554           this->sized_write_globals<64, false>(target, sympool, dynpool, of);
1555 #else
1556           gold_unreachable();
1557 #endif
1558         }
1559     }
1560   else
1561     gold_unreachable();
1562 }
1563
1564 // Write out the global symbols.
1565
1566 template<int size, bool big_endian>
1567 void
1568 Symbol_table::sized_write_globals(const Target* target,
1569                                   const Stringpool* sympool,
1570                                   const Stringpool* dynpool,
1571                                   Output_file* of) const
1572 {
1573   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1574   unsigned int index = this->first_global_index_;
1575   const off_t oview_size = this->output_count_ * sym_size;
1576   unsigned char* const psyms = of->get_output_view(this->offset_, oview_size);
1577
1578   unsigned int dynamic_count = this->dynamic_count_;
1579   off_t dynamic_size = dynamic_count * sym_size;
1580   unsigned int first_dynamic_global_index = this->first_dynamic_global_index_;
1581   unsigned char* dynamic_view;
1582   if (this->dynamic_offset_ == 0)
1583     dynamic_view = NULL;
1584   else
1585     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1586
1587   unsigned char* ps = psyms;
1588   for (Symbol_table_type::const_iterator p = this->table_.begin();
1589        p != this->table_.end();
1590        ++p)
1591     {
1592       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1593
1594       unsigned int sym_index = sym->symtab_index();
1595       unsigned int dynsym_index;
1596       if (dynamic_view == NULL)
1597         dynsym_index = -1U;
1598       else
1599         dynsym_index = sym->dynsym_index();
1600
1601       if (sym_index == -1U && dynsym_index == -1U)
1602         {
1603           // This symbol is not included in the output file.
1604           continue;
1605         }
1606
1607       if (sym_index == index)
1608         ++index;
1609       else if (sym_index != -1U)
1610         {
1611           // We have already seen this symbol, because it has a
1612           // default version.
1613           gold_assert(sym_index < index);
1614           if (dynsym_index == -1U)
1615             continue;
1616           sym_index = -1U;
1617         }
1618
1619       unsigned int shndx;
1620       typename elfcpp::Elf_types<32>::Elf_Addr value = sym->value();
1621       switch (sym->source())
1622         {
1623         case Symbol::FROM_OBJECT:
1624           {
1625             unsigned int in_shndx = sym->shndx();
1626
1627             // FIXME: We need some target specific support here.
1628             if (in_shndx >= elfcpp::SHN_LORESERVE
1629                 && in_shndx != elfcpp::SHN_ABS)
1630               {
1631                 gold_error(_("%s: unsupported symbol section 0x%x"),
1632                            sym->name(), in_shndx);
1633                 shndx = in_shndx;
1634               }
1635             else
1636               {
1637                 Object* symobj = sym->object();
1638                 if (symobj->is_dynamic())
1639                   {
1640                     if (sym->needs_dynsym_value())
1641                       value = target->dynsym_value(sym);
1642                     shndx = elfcpp::SHN_UNDEF;
1643                   }
1644                 else if (in_shndx == elfcpp::SHN_UNDEF
1645                          || in_shndx == elfcpp::SHN_ABS)
1646                   shndx = in_shndx;
1647                 else
1648                   {
1649                     Relobj* relobj = static_cast<Relobj*>(symobj);
1650                     off_t secoff;
1651                     Output_section* os = relobj->output_section(in_shndx,
1652                                                                 &secoff);
1653                     gold_assert(os != NULL);
1654                     shndx = os->out_shndx();
1655                   }
1656               }
1657           }
1658           break;
1659
1660         case Symbol::IN_OUTPUT_DATA:
1661           shndx = sym->output_data()->out_shndx();
1662           break;
1663
1664         case Symbol::IN_OUTPUT_SEGMENT:
1665           shndx = elfcpp::SHN_ABS;
1666           break;
1667
1668         case Symbol::CONSTANT:
1669           shndx = elfcpp::SHN_ABS;
1670           break;
1671
1672         default:
1673           gold_unreachable();
1674         }
1675
1676       if (sym_index != -1U)
1677         {
1678           this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1679               sym, sym->value(), shndx, sympool, ps
1680               SELECT_SIZE_ENDIAN(size, big_endian));
1681           ps += sym_size;
1682         }
1683
1684       if (dynsym_index != -1U)
1685         {
1686           dynsym_index -= first_dynamic_global_index;
1687           gold_assert(dynsym_index < dynamic_count);
1688           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1689           this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1690               sym, value, shndx, dynpool, pd
1691               SELECT_SIZE_ENDIAN(size, big_endian));
1692         }
1693     }
1694
1695   gold_assert(ps - psyms == oview_size);
1696
1697   of->write_output_view(this->offset_, oview_size, psyms);
1698   if (dynamic_view != NULL)
1699     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1700 }
1701
1702 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
1703 // strtab holding the name.
1704
1705 template<int size, bool big_endian>
1706 void
1707 Symbol_table::sized_write_symbol(
1708     Sized_symbol<size>* sym,
1709     typename elfcpp::Elf_types<size>::Elf_Addr value,
1710     unsigned int shndx,
1711     const Stringpool* pool,
1712     unsigned char* p
1713     ACCEPT_SIZE_ENDIAN) const
1714 {
1715   elfcpp::Sym_write<size, big_endian> osym(p);
1716   osym.put_st_name(pool->get_offset(sym->name()));
1717   osym.put_st_value(value);
1718   osym.put_st_size(sym->symsize());
1719   osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1720   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1721   osym.put_st_shndx(shndx);
1722 }
1723
1724 // Write out a section symbol.  Return the update offset.
1725
1726 void
1727 Symbol_table::write_section_symbol(const Output_section *os,
1728                                    Output_file* of,
1729                                    off_t offset) const
1730 {
1731   if (parameters->get_size() == 32)
1732     {
1733       if (parameters->is_big_endian())
1734         {
1735 #ifdef HAVE_TARGET_32_BIG
1736           this->sized_write_section_symbol<32, true>(os, of, offset);
1737 #else
1738           gold_unreachable();
1739 #endif
1740         }
1741       else
1742         {
1743 #ifdef HAVE_TARGET_32_LITTLE
1744           this->sized_write_section_symbol<32, false>(os, of, offset);
1745 #else
1746           gold_unreachable();
1747 #endif
1748         }
1749     }
1750   else if (parameters->get_size() == 64)
1751     {
1752       if (parameters->is_big_endian())
1753         {
1754 #ifdef HAVE_TARGET_64_BIG
1755           this->sized_write_section_symbol<64, true>(os, of, offset);
1756 #else
1757           gold_unreachable();
1758 #endif
1759         }
1760       else
1761         {
1762 #ifdef HAVE_TARGET_64_LITTLE
1763           this->sized_write_section_symbol<64, false>(os, of, offset);
1764 #else
1765           gold_unreachable();
1766 #endif
1767         }
1768     }
1769   else
1770     gold_unreachable();
1771 }
1772
1773 // Write out a section symbol, specialized for size and endianness.
1774
1775 template<int size, bool big_endian>
1776 void
1777 Symbol_table::sized_write_section_symbol(const Output_section* os,
1778                                          Output_file* of,
1779                                          off_t offset) const
1780 {
1781   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1782
1783   unsigned char* pov = of->get_output_view(offset, sym_size);
1784
1785   elfcpp::Sym_write<size, big_endian> osym(pov);
1786   osym.put_st_name(0);
1787   osym.put_st_value(os->address());
1788   osym.put_st_size(0);
1789   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
1790                                        elfcpp::STT_SECTION));
1791   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
1792   osym.put_st_shndx(os->out_shndx());
1793
1794   of->write_output_view(offset, sym_size, pov);
1795 }
1796
1797 // Warnings functions.
1798
1799 // Add a new warning.
1800
1801 void
1802 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
1803                       unsigned int shndx)
1804 {
1805   name = symtab->canonicalize_name(name);
1806   this->warnings_[name].set(obj, shndx);
1807 }
1808
1809 // Look through the warnings and mark the symbols for which we should
1810 // warn.  This is called during Layout::finalize when we know the
1811 // sources for all the symbols.
1812
1813 void
1814 Warnings::note_warnings(Symbol_table* symtab)
1815 {
1816   for (Warning_table::iterator p = this->warnings_.begin();
1817        p != this->warnings_.end();
1818        ++p)
1819     {
1820       Symbol* sym = symtab->lookup(p->first, NULL);
1821       if (sym != NULL
1822           && sym->source() == Symbol::FROM_OBJECT
1823           && sym->object() == p->second.object)
1824         {
1825           sym->set_has_warning();
1826
1827           // Read the section contents to get the warning text.  It
1828           // would be nicer if we only did this if we have to actually
1829           // issue a warning.  Unfortunately, warnings are issued as
1830           // we relocate sections.  That means that we can not lock
1831           // the object then, as we might try to issue the same
1832           // warning multiple times simultaneously.
1833           {
1834             Task_locker_obj<Object> tl(*p->second.object);
1835             const unsigned char* c;
1836             off_t len;
1837             c = p->second.object->section_contents(p->second.shndx, &len,
1838                                                    false);
1839             p->second.set_text(reinterpret_cast<const char*>(c), len);
1840           }
1841         }
1842     }
1843 }
1844
1845 // Issue a warning.  This is called when we see a relocation against a
1846 // symbol for which has a warning.
1847
1848 template<int size, bool big_endian>
1849 void
1850 Warnings::issue_warning(const Symbol* sym,
1851                         const Relocate_info<size, big_endian>* relinfo,
1852                         size_t relnum, off_t reloffset) const
1853 {
1854   gold_assert(sym->has_warning());
1855   Warning_table::const_iterator p = this->warnings_.find(sym->name());
1856   gold_assert(p != this->warnings_.end());
1857   gold_warning_at_location(relinfo, relnum, reloffset,
1858                            "%s", p->second.text.c_str());
1859 }
1860
1861 // Instantiate the templates we need.  We could use the configure
1862 // script to restrict this to only the ones needed for implemented
1863 // targets.
1864
1865 #ifdef HAVE_TARGET_32_LITTLE
1866 template
1867 void
1868 Symbol_table::add_from_relobj<32, false>(
1869     Sized_relobj<32, false>* relobj,
1870     const unsigned char* syms,
1871     size_t count,
1872     const char* sym_names,
1873     size_t sym_name_size,
1874     Symbol** sympointers);
1875 #endif
1876
1877 #ifdef HAVE_TARGET_32_BIG
1878 template
1879 void
1880 Symbol_table::add_from_relobj<32, true>(
1881     Sized_relobj<32, true>* relobj,
1882     const unsigned char* syms,
1883     size_t count,
1884     const char* sym_names,
1885     size_t sym_name_size,
1886     Symbol** sympointers);
1887 #endif
1888
1889 #ifdef HAVE_TARGET_64_LITTLE
1890 template
1891 void
1892 Symbol_table::add_from_relobj<64, false>(
1893     Sized_relobj<64, false>* relobj,
1894     const unsigned char* syms,
1895     size_t count,
1896     const char* sym_names,
1897     size_t sym_name_size,
1898     Symbol** sympointers);
1899 #endif
1900
1901 #ifdef HAVE_TARGET_64_BIG
1902 template
1903 void
1904 Symbol_table::add_from_relobj<64, true>(
1905     Sized_relobj<64, true>* relobj,
1906     const unsigned char* syms,
1907     size_t count,
1908     const char* sym_names,
1909     size_t sym_name_size,
1910     Symbol** sympointers);
1911 #endif
1912
1913 #ifdef HAVE_TARGET_32_LITTLE
1914 template
1915 void
1916 Symbol_table::add_from_dynobj<32, false>(
1917     Sized_dynobj<32, false>* dynobj,
1918     const unsigned char* syms,
1919     size_t count,
1920     const char* sym_names,
1921     size_t sym_name_size,
1922     const unsigned char* versym,
1923     size_t versym_size,
1924     const std::vector<const char*>* version_map);
1925 #endif
1926
1927 #ifdef HAVE_TARGET_32_BIG
1928 template
1929 void
1930 Symbol_table::add_from_dynobj<32, true>(
1931     Sized_dynobj<32, true>* dynobj,
1932     const unsigned char* syms,
1933     size_t count,
1934     const char* sym_names,
1935     size_t sym_name_size,
1936     const unsigned char* versym,
1937     size_t versym_size,
1938     const std::vector<const char*>* version_map);
1939 #endif
1940
1941 #ifdef HAVE_TARGET_64_LITTLE
1942 template
1943 void
1944 Symbol_table::add_from_dynobj<64, false>(
1945     Sized_dynobj<64, false>* dynobj,
1946     const unsigned char* syms,
1947     size_t count,
1948     const char* sym_names,
1949     size_t sym_name_size,
1950     const unsigned char* versym,
1951     size_t versym_size,
1952     const std::vector<const char*>* version_map);
1953 #endif
1954
1955 #ifdef HAVE_TARGET_64_BIG
1956 template
1957 void
1958 Symbol_table::add_from_dynobj<64, true>(
1959     Sized_dynobj<64, true>* dynobj,
1960     const unsigned char* syms,
1961     size_t count,
1962     const char* sym_names,
1963     size_t sym_name_size,
1964     const unsigned char* versym,
1965     size_t versym_size,
1966     const std::vector<const char*>* version_map);
1967 #endif
1968
1969 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1970 template
1971 void
1972 Symbol_table::define_with_copy_reloc<32>(const Target* target,
1973                                          Sized_symbol<32>* sym,
1974                                          Output_data* posd, uint64_t value);
1975 #endif
1976
1977 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1978 template
1979 void
1980 Symbol_table::define_with_copy_reloc<64>(const Target* target,
1981                                          Sized_symbol<64>* sym,
1982                                          Output_data* posd, uint64_t value);
1983 #endif
1984
1985 #ifdef HAVE_TARGET_32_LITTLE
1986 template
1987 void
1988 Warnings::issue_warning<32, false>(const Symbol* sym,
1989                                    const Relocate_info<32, false>* relinfo,
1990                                    size_t relnum, off_t reloffset) const;
1991 #endif
1992
1993 #ifdef HAVE_TARGET_32_BIG
1994 template
1995 void
1996 Warnings::issue_warning<32, true>(const Symbol* sym,
1997                                   const Relocate_info<32, true>* relinfo,
1998                                   size_t relnum, off_t reloffset) const;
1999 #endif
2000
2001 #ifdef HAVE_TARGET_64_LITTLE
2002 template
2003 void
2004 Warnings::issue_warning<64, false>(const Symbol* sym,
2005                                    const Relocate_info<64, false>* relinfo,
2006                                    size_t relnum, off_t reloffset) const;
2007 #endif
2008
2009 #ifdef HAVE_TARGET_64_BIG
2010 template
2011 void
2012 Warnings::issue_warning<64, true>(const Symbol* sym,
2013                                   const Relocate_info<64, true>* relinfo,
2014                                   size_t relnum, off_t reloffset) const;
2015 #endif
2016
2017 } // End namespace gold.