* archive.cc (Library_base::should_include_member): Check for
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol.  This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55                     elfcpp::STT type, elfcpp::STB binding,
56                     elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91   if (!parameters->options().do_demangle())
92     return name;
93
94   // cplus_demangle allocates memory for the result it returns,
95   // and returns NULL if the name is already demangled.
96   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97   if (demangled_name == NULL)
98     return name;
99
100   std::string retval(demangled_name);
101   free(demangled_name);
102   return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108   return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116                          const elfcpp::Sym<size, big_endian>& sym,
117                          unsigned int st_shndx, bool is_ordinary)
118 {
119   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120                     sym.get_st_visibility(), sym.get_st_nonvis());
121   this->u_.from_object.object = object;
122   this->u_.from_object.shndx = st_shndx;
123   this->is_ordinary_shndx_ = is_ordinary;
124   this->source_ = FROM_OBJECT;
125   this->in_reg_ = !object->is_dynamic();
126   this->in_dyn_ = object->is_dynamic();
127   this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135                               Output_data* od, elfcpp::STT type,
136                               elfcpp::STB binding, elfcpp::STV visibility,
137                               unsigned char nonvis, bool offset_is_from_end,
138                               bool is_predefined)
139 {
140   this->init_fields(name, version, type, binding, visibility, nonvis);
141   this->u_.in_output_data.output_data = od;
142   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143   this->source_ = IN_OUTPUT_DATA;
144   this->in_reg_ = true;
145   this->in_real_elf_ = true;
146   this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154                                  Output_segment* os, elfcpp::STT type,
155                                  elfcpp::STB binding, elfcpp::STV visibility,
156                                  unsigned char nonvis,
157                                  Segment_offset_base offset_base,
158                                  bool is_predefined)
159 {
160   this->init_fields(name, version, type, binding, visibility, nonvis);
161   this->u_.in_output_segment.output_segment = os;
162   this->u_.in_output_segment.offset_base = offset_base;
163   this->source_ = IN_OUTPUT_SEGMENT;
164   this->in_reg_ = true;
165   this->in_real_elf_ = true;
166   this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174                            elfcpp::STT type, elfcpp::STB binding,
175                            elfcpp::STV visibility, unsigned char nonvis,
176                            bool is_predefined)
177 {
178   this->init_fields(name, version, type, binding, visibility, nonvis);
179   this->source_ = IS_CONSTANT;
180   this->in_reg_ = true;
181   this->in_real_elf_ = true;
182   this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190                             elfcpp::STT type, elfcpp::STB binding,
191                             elfcpp::STV visibility, unsigned char nonvis)
192 {
193   this->init_fields(name, version, type, binding, visibility, nonvis);
194   this->dynsym_index_ = -1U;
195   this->source_ = IS_UNDEFINED;
196   this->in_reg_ = true;
197   this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205   gold_assert(this->is_common());
206   this->source_ = IN_OUTPUT_DATA;
207   this->u_.in_output_data.output_data = od;
208   this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217                                 Object* object,
218                                 const elfcpp::Sym<size, big_endian>& sym,
219                                 unsigned int st_shndx, bool is_ordinary)
220 {
221   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222   this->value_ = sym.get_st_value();
223   this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232                                      Output_data* od, Value_type value,
233                                      Size_type symsize, elfcpp::STT type,
234                                      elfcpp::STB binding,
235                                      elfcpp::STV visibility,
236                                      unsigned char nonvis,
237                                      bool offset_is_from_end,
238                                      bool is_predefined)
239 {
240   this->init_base_output_data(name, version, od, type, binding, visibility,
241                               nonvis, offset_is_from_end, is_predefined);
242   this->value_ = value;
243   this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252                                         Output_segment* os, Value_type value,
253                                         Size_type symsize, elfcpp::STT type,
254                                         elfcpp::STB binding,
255                                         elfcpp::STV visibility,
256                                         unsigned char nonvis,
257                                         Segment_offset_base offset_base,
258                                         bool is_predefined)
259 {
260   this->init_base_output_segment(name, version, os, type, binding, visibility,
261                                  nonvis, offset_base, is_predefined);
262   this->value_ = value;
263   this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272                                   Value_type value, Size_type symsize,
273                                   elfcpp::STT type, elfcpp::STB binding,
274                                   elfcpp::STV visibility, unsigned char nonvis,
275                                   bool is_predefined)
276 {
277   this->init_base_constant(name, version, type, binding, visibility, nonvis,
278                            is_predefined);
279   this->value_ = value;
280   this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288                                    elfcpp::STT type, elfcpp::STB binding,
289                                    elfcpp::STV visibility, unsigned char nonvis)
290 {
291   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292   this->value_ = 0;
293   this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version.  This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302   gold_assert(this->version_ != NULL);
303   std::string ret = this->name_;
304   ret.push_back('@');
305   if (this->is_def_)
306     ret.push_back('@');
307   ret += this->version_;
308   return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316   return (shndx == elfcpp::SHN_COMMON
317           || shndx == parameters->target().small_common_shndx()
318           || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327   this->allocate_base_common(od);
328   this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 inline bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340   // If the symbol is only present on plugin files, the plugin decided we
341   // don't need it.
342   if (!this->in_real_elf())
343     return false;
344
345   // If the symbol is used by a dynamic relocation, we need to add it.
346   if (this->needs_dynsym_entry())
347     return true;
348
349   // If this symbol's section is not added, the symbol need not be added. 
350   // The section may have been GCed.  Note that export_dynamic is being 
351   // overridden here.  This should not be done for shared objects.
352   if (parameters->options().gc_sections() 
353       && !parameters->options().shared()
354       && this->source() == Symbol::FROM_OBJECT
355       && !this->object()->is_dynamic())
356     {
357       Relobj* relobj = static_cast<Relobj*>(this->object());
358       bool is_ordinary;
359       unsigned int shndx = this->shndx(&is_ordinary);
360       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361           && !relobj->is_section_included(shndx)
362           && !symtab->is_section_folded(relobj, shndx))
363         return false;
364     }
365
366   // If the symbol was forced dynamic in a --dynamic-list file
367   // or an --export-dynamic-symbol option, add it.
368   if (parameters->options().in_dynamic_list(this->name())
369       || parameters->options().is_export_dynamic_symbol(this->name()))
370     {
371       if (!this->is_forced_local())
372         return true;
373       gold_warning(_("Cannot export local symbol '%s'"),
374                    this->demangled_name().c_str());
375       return false;
376     }
377
378   // If the symbol was forced local in a version script, do not add it.
379   if (this->is_forced_local())
380     return false;
381
382   // If dynamic-list-data was specified, add any STT_OBJECT.
383   if (parameters->options().dynamic_list_data()
384       && !this->is_from_dynobj()
385       && this->type() == elfcpp::STT_OBJECT)
386     return true;
387
388   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
389   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
390   if ((parameters->options().dynamic_list_cpp_new()
391        || parameters->options().dynamic_list_cpp_typeinfo())
392       && !this->is_from_dynobj())
393     {
394       // TODO(csilvers): We could probably figure out if we're an operator
395       //                 new/delete or typeinfo without the need to demangle.
396       char* demangled_name = cplus_demangle(this->name(),
397                                             DMGL_ANSI | DMGL_PARAMS);
398       if (demangled_name == NULL)
399         {
400           // Not a C++ symbol, so it can't satisfy these flags
401         }
402       else if (parameters->options().dynamic_list_cpp_new()
403                && (strprefix(demangled_name, "operator new")
404                    || strprefix(demangled_name, "operator delete")))
405         {
406           free(demangled_name);
407           return true;
408         }
409       else if (parameters->options().dynamic_list_cpp_typeinfo()
410                && (strprefix(demangled_name, "typeinfo name for")
411                    || strprefix(demangled_name, "typeinfo for")))
412         {
413           free(demangled_name);
414           return true;
415         }
416       else
417         free(demangled_name);
418     }
419
420   // If exporting all symbols or building a shared library,
421   // and the symbol is defined in a regular object and is
422   // externally visible, we need to add it.
423   if ((parameters->options().export_dynamic() || parameters->options().shared())
424       && !this->is_from_dynobj()
425       && !this->is_undefined()
426       && this->is_externally_visible())
427     return true;
428
429   return false;
430 }
431
432 // Return true if the final value of this symbol is known at link
433 // time.
434
435 bool
436 Symbol::final_value_is_known() const
437 {
438   // If we are not generating an executable, then no final values are
439   // known, since they will change at runtime.
440   if (parameters->options().output_is_position_independent()
441       || parameters->options().relocatable())
442     return false;
443
444   // If the symbol is not from an object file, and is not undefined,
445   // then it is defined, and known.
446   if (this->source_ != FROM_OBJECT)
447     {
448       if (this->source_ != IS_UNDEFINED)
449         return true;
450     }
451   else
452     {
453       // If the symbol is from a dynamic object, then the final value
454       // is not known.
455       if (this->object()->is_dynamic())
456         return false;
457
458       // If the symbol is not undefined (it is defined or common),
459       // then the final value is known.
460       if (!this->is_undefined())
461         return true;
462     }
463
464   // If the symbol is undefined, then whether the final value is known
465   // depends on whether we are doing a static link.  If we are doing a
466   // dynamic link, then the final value could be filled in at runtime.
467   // This could reasonably be the case for a weak undefined symbol.
468   return parameters->doing_static_link();
469 }
470
471 // Return the output section where this symbol is defined.
472
473 Output_section*
474 Symbol::output_section() const
475 {
476   switch (this->source_)
477     {
478     case FROM_OBJECT:
479       {
480         unsigned int shndx = this->u_.from_object.shndx;
481         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
482           {
483             gold_assert(!this->u_.from_object.object->is_dynamic());
484             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
485             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
486             return relobj->output_section(shndx);
487           }
488         return NULL;
489       }
490
491     case IN_OUTPUT_DATA:
492       return this->u_.in_output_data.output_data->output_section();
493
494     case IN_OUTPUT_SEGMENT:
495     case IS_CONSTANT:
496     case IS_UNDEFINED:
497       return NULL;
498
499     default:
500       gold_unreachable();
501     }
502 }
503
504 // Set the symbol's output section.  This is used for symbols defined
505 // in scripts.  This should only be called after the symbol table has
506 // been finalized.
507
508 void
509 Symbol::set_output_section(Output_section* os)
510 {
511   switch (this->source_)
512     {
513     case FROM_OBJECT:
514     case IN_OUTPUT_DATA:
515       gold_assert(this->output_section() == os);
516       break;
517     case IS_CONSTANT:
518       this->source_ = IN_OUTPUT_DATA;
519       this->u_.in_output_data.output_data = os;
520       this->u_.in_output_data.offset_is_from_end = false;
521       break;
522     case IN_OUTPUT_SEGMENT:
523     case IS_UNDEFINED:
524     default:
525       gold_unreachable();
526     }
527 }
528
529 // Class Symbol_table.
530
531 Symbol_table::Symbol_table(unsigned int count,
532                            const Version_script_info& version_script)
533   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
534     forwarders_(), commons_(), tls_commons_(), small_commons_(),
535     large_commons_(), forced_locals_(), warnings_(),
536     version_script_(version_script), gc_(NULL), icf_(NULL)
537 {
538   namepool_.reserve(count);
539 }
540
541 Symbol_table::~Symbol_table()
542 {
543 }
544
545 // The symbol table key equality function.  This is called with
546 // Stringpool keys.
547
548 inline bool
549 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
550                                           const Symbol_table_key& k2) const
551 {
552   return k1.first == k2.first && k1.second == k2.second;
553 }
554
555 bool
556 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
557 {
558   return (parameters->options().icf_enabled()
559           && this->icf_->is_section_folded(obj, shndx));
560 }
561
562 // For symbols that have been listed with a -u or --export-dynamic-symbol
563 // option, add them to the work list to avoid gc'ing them.
564
565 void 
566 Symbol_table::gc_mark_undef_symbols(Layout* layout)
567 {
568   for (options::String_set::const_iterator p =
569          parameters->options().undefined_begin();
570        p != parameters->options().undefined_end();
571        ++p)
572     {
573       const char* name = p->c_str();
574       Symbol* sym = this->lookup(name);
575       gold_assert(sym != NULL);
576       if (sym->source() == Symbol::FROM_OBJECT 
577           && !sym->object()->is_dynamic())
578         {
579           Relobj* obj = static_cast<Relobj*>(sym->object());
580           bool is_ordinary;
581           unsigned int shndx = sym->shndx(&is_ordinary);
582           if (is_ordinary)
583             {
584               gold_assert(this->gc_ != NULL);
585               this->gc_->worklist().push(Section_id(obj, shndx));
586             }
587         }
588     }
589
590   for (options::String_set::const_iterator p =
591          parameters->options().export_dynamic_symbol_begin();
592        p != parameters->options().export_dynamic_symbol_end();
593        ++p)
594     {
595       const char* name = p->c_str();
596       Symbol* sym = this->lookup(name);
597       gold_assert(sym != NULL);
598       if (sym->source() == Symbol::FROM_OBJECT 
599           && !sym->object()->is_dynamic())
600         {
601           Relobj* obj = static_cast<Relobj*>(sym->object());
602           bool is_ordinary;
603           unsigned int shndx = sym->shndx(&is_ordinary);
604           if (is_ordinary)
605             {
606               gold_assert(this->gc_ != NULL);
607               this->gc_->worklist().push(Section_id(obj, shndx));
608             }
609         }
610     }
611
612   for (Script_options::referenced_const_iterator p =
613          layout->script_options()->referenced_begin();
614        p != layout->script_options()->referenced_end();
615        ++p)
616     {
617       Symbol* sym = this->lookup(p->c_str());
618       gold_assert(sym != NULL);
619       if (sym->source() == Symbol::FROM_OBJECT
620           && !sym->object()->is_dynamic())
621         {
622           Relobj* obj = static_cast<Relobj*>(sym->object());
623           bool is_ordinary;
624           unsigned int shndx = sym->shndx(&is_ordinary);
625           if (is_ordinary)
626             {
627               gold_assert(this->gc_ != NULL);
628               this->gc_->worklist().push(Section_id(obj, shndx));
629             }
630         }
631     }
632 }
633
634 void
635 Symbol_table::gc_mark_symbol(Symbol* sym)
636 {
637   // Add the object and section to the work list.
638   Relobj* obj = static_cast<Relobj*>(sym->object());
639   bool is_ordinary;
640   unsigned int shndx = sym->shndx(&is_ordinary);
641   if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
642     {
643       gold_assert(this->gc_!= NULL);
644       this->gc_->worklist().push(Section_id(obj, shndx));
645     }
646 }
647
648 // When doing garbage collection, keep symbols that have been seen in
649 // dynamic objects.
650 inline void 
651 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
652 {
653   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
654       && !sym->object()->is_dynamic())
655     this->gc_mark_symbol(sym);
656 }
657
658 // Make TO a symbol which forwards to FROM.
659
660 void
661 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
662 {
663   gold_assert(from != to);
664   gold_assert(!from->is_forwarder() && !to->is_forwarder());
665   this->forwarders_[from] = to;
666   from->set_forwarder();
667 }
668
669 // Resolve the forwards from FROM, returning the real symbol.
670
671 Symbol*
672 Symbol_table::resolve_forwards(const Symbol* from) const
673 {
674   gold_assert(from->is_forwarder());
675   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
676     this->forwarders_.find(from);
677   gold_assert(p != this->forwarders_.end());
678   return p->second;
679 }
680
681 // Look up a symbol by name.
682
683 Symbol*
684 Symbol_table::lookup(const char* name, const char* version) const
685 {
686   Stringpool::Key name_key;
687   name = this->namepool_.find(name, &name_key);
688   if (name == NULL)
689     return NULL;
690
691   Stringpool::Key version_key = 0;
692   if (version != NULL)
693     {
694       version = this->namepool_.find(version, &version_key);
695       if (version == NULL)
696         return NULL;
697     }
698
699   Symbol_table_key key(name_key, version_key);
700   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
701   if (p == this->table_.end())
702     return NULL;
703   return p->second;
704 }
705
706 // Resolve a Symbol with another Symbol.  This is only used in the
707 // unusual case where there are references to both an unversioned
708 // symbol and a symbol with a version, and we then discover that that
709 // version is the default version.  Because this is unusual, we do
710 // this the slow way, by converting back to an ELF symbol.
711
712 template<int size, bool big_endian>
713 void
714 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
715 {
716   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
717   elfcpp::Sym_write<size, big_endian> esym(buf);
718   // We don't bother to set the st_name or the st_shndx field.
719   esym.put_st_value(from->value());
720   esym.put_st_size(from->symsize());
721   esym.put_st_info(from->binding(), from->type());
722   esym.put_st_other(from->visibility(), from->nonvis());
723   bool is_ordinary;
724   unsigned int shndx = from->shndx(&is_ordinary);
725   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
726                 from->version());
727   if (from->in_reg())
728     to->set_in_reg();
729   if (from->in_dyn())
730     to->set_in_dyn();
731   if (parameters->options().gc_sections())
732     this->gc_mark_dyn_syms(to);
733 }
734
735 // Record that a symbol is forced to be local by a version script or
736 // by visibility.
737
738 void
739 Symbol_table::force_local(Symbol* sym)
740 {
741   if (!sym->is_defined() && !sym->is_common())
742     return;
743   if (sym->is_forced_local())
744     {
745       // We already got this one.
746       return;
747     }
748   sym->set_is_forced_local();
749   this->forced_locals_.push_back(sym);
750 }
751
752 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
753 // is only called for undefined symbols, when at least one --wrap
754 // option was used.
755
756 const char*
757 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
758 {
759   // For some targets, we need to ignore a specific character when
760   // wrapping, and add it back later.
761   char prefix = '\0';
762   if (name[0] == parameters->target().wrap_char())
763     {
764       prefix = name[0];
765       ++name;
766     }
767
768   if (parameters->options().is_wrap(name))
769     {
770       // Turn NAME into __wrap_NAME.
771       std::string s;
772       if (prefix != '\0')
773         s += prefix;
774       s += "__wrap_";
775       s += name;
776
777       // This will give us both the old and new name in NAMEPOOL_, but
778       // that is OK.  Only the versions we need will wind up in the
779       // real string table in the output file.
780       return this->namepool_.add(s.c_str(), true, name_key);
781     }
782
783   const char* const real_prefix = "__real_";
784   const size_t real_prefix_length = strlen(real_prefix);
785   if (strncmp(name, real_prefix, real_prefix_length) == 0
786       && parameters->options().is_wrap(name + real_prefix_length))
787     {
788       // Turn __real_NAME into NAME.
789       std::string s;
790       if (prefix != '\0')
791         s += prefix;
792       s += name + real_prefix_length;
793       return this->namepool_.add(s.c_str(), true, name_key);
794     }
795
796   return name;
797 }
798
799 // This is called when we see a symbol NAME/VERSION, and the symbol
800 // already exists in the symbol table, and VERSION is marked as being
801 // the default version.  SYM is the NAME/VERSION symbol we just added.
802 // DEFAULT_IS_NEW is true if this is the first time we have seen the
803 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
804
805 template<int size, bool big_endian>
806 void
807 Symbol_table::define_default_version(Sized_symbol<size>* sym,
808                                      bool default_is_new,
809                                      Symbol_table_type::iterator pdef)
810 {
811   if (default_is_new)
812     {
813       // This is the first time we have seen NAME/NULL.  Make
814       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
815       // version.
816       pdef->second = sym;
817       sym->set_is_default();
818     }
819   else if (pdef->second == sym)
820     {
821       // NAME/NULL already points to NAME/VERSION.  Don't mark the
822       // symbol as the default if it is not already the default.
823     }
824   else
825     {
826       // This is the unfortunate case where we already have entries
827       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
828       // NAME/VERSION where VERSION is the default version.  We have
829       // already resolved this new symbol with the existing
830       // NAME/VERSION symbol.
831
832       // It's possible that NAME/NULL and NAME/VERSION are both
833       // defined in regular objects.  This can only happen if one
834       // object file defines foo and another defines foo@@ver.  This
835       // is somewhat obscure, but we call it a multiple definition
836       // error.
837
838       // It's possible that NAME/NULL actually has a version, in which
839       // case it won't be the same as VERSION.  This happens with
840       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
841       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
842       // then see an unadorned t2_2 in an object file and give it
843       // version VER1 from the version script.  This looks like a
844       // default definition for VER1, so it looks like we should merge
845       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
846       // not obvious that this is an error, either.  So we just punt.
847
848       // If one of the symbols has non-default visibility, and the
849       // other is defined in a shared object, then they are different
850       // symbols.
851
852       // Otherwise, we just resolve the symbols as though they were
853       // the same.
854
855       if (pdef->second->version() != NULL)
856         gold_assert(pdef->second->version() != sym->version());
857       else if (sym->visibility() != elfcpp::STV_DEFAULT
858                && pdef->second->is_from_dynobj())
859         ;
860       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
861                && sym->is_from_dynobj())
862         ;
863       else
864         {
865           const Sized_symbol<size>* symdef;
866           symdef = this->get_sized_symbol<size>(pdef->second);
867           Symbol_table::resolve<size, big_endian>(sym, symdef);
868           this->make_forwarder(pdef->second, sym);
869           pdef->second = sym;
870           sym->set_is_default();
871         }
872     }
873 }
874
875 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
876 // name and VERSION is the version; both are canonicalized.  DEF is
877 // whether this is the default version.  ST_SHNDX is the symbol's
878 // section index; IS_ORDINARY is whether this is a normal section
879 // rather than a special code.
880
881 // If IS_DEFAULT_VERSION is true, then this is the definition of a
882 // default version of a symbol.  That means that any lookup of
883 // NAME/NULL and any lookup of NAME/VERSION should always return the
884 // same symbol.  This is obvious for references, but in particular we
885 // want to do this for definitions: overriding NAME/NULL should also
886 // override NAME/VERSION.  If we don't do that, it would be very hard
887 // to override functions in a shared library which uses versioning.
888
889 // We implement this by simply making both entries in the hash table
890 // point to the same Symbol structure.  That is easy enough if this is
891 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
892 // that we have seen both already, in which case they will both have
893 // independent entries in the symbol table.  We can't simply change
894 // the symbol table entry, because we have pointers to the entries
895 // attached to the object files.  So we mark the entry attached to the
896 // object file as a forwarder, and record it in the forwarders_ map.
897 // Note that entries in the hash table will never be marked as
898 // forwarders.
899 //
900 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
901 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
902 // for a special section code.  ST_SHNDX may be modified if the symbol
903 // is defined in a section being discarded.
904
905 template<int size, bool big_endian>
906 Sized_symbol<size>*
907 Symbol_table::add_from_object(Object* object,
908                               const char* name,
909                               Stringpool::Key name_key,
910                               const char* version,
911                               Stringpool::Key version_key,
912                               bool is_default_version,
913                               const elfcpp::Sym<size, big_endian>& sym,
914                               unsigned int st_shndx,
915                               bool is_ordinary,
916                               unsigned int orig_st_shndx)
917 {
918   // Print a message if this symbol is being traced.
919   if (parameters->options().is_trace_symbol(name))
920     {
921       if (orig_st_shndx == elfcpp::SHN_UNDEF)
922         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
923       else
924         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
925     }
926
927   // For an undefined symbol, we may need to adjust the name using
928   // --wrap.
929   if (orig_st_shndx == elfcpp::SHN_UNDEF
930       && parameters->options().any_wrap())
931     {
932       const char* wrap_name = this->wrap_symbol(name, &name_key);
933       if (wrap_name != name)
934         {
935           // If we see a reference to malloc with version GLIBC_2.0,
936           // and we turn it into a reference to __wrap_malloc, then we
937           // discard the version number.  Otherwise the user would be
938           // required to specify the correct version for
939           // __wrap_malloc.
940           version = NULL;
941           version_key = 0;
942           name = wrap_name;
943         }
944     }
945
946   Symbol* const snull = NULL;
947   std::pair<typename Symbol_table_type::iterator, bool> ins =
948     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
949                                        snull));
950
951   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
952     std::make_pair(this->table_.end(), false);
953   if (is_default_version)
954     {
955       const Stringpool::Key vnull_key = 0;
956       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
957                                                                      vnull_key),
958                                                       snull));
959     }
960
961   // ins.first: an iterator, which is a pointer to a pair.
962   // ins.first->first: the key (a pair of name and version).
963   // ins.first->second: the value (Symbol*).
964   // ins.second: true if new entry was inserted, false if not.
965
966   Sized_symbol<size>* ret;
967   bool was_undefined;
968   bool was_common;
969   if (!ins.second)
970     {
971       // We already have an entry for NAME/VERSION.
972       ret = this->get_sized_symbol<size>(ins.first->second);
973       gold_assert(ret != NULL);
974
975       was_undefined = ret->is_undefined();
976       was_common = ret->is_common();
977
978       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
979                     version);
980       if (parameters->options().gc_sections())
981         this->gc_mark_dyn_syms(ret);
982
983       if (is_default_version)
984         this->define_default_version<size, big_endian>(ret, insdefault.second,
985                                                        insdefault.first);
986     }
987   else
988     {
989       // This is the first time we have seen NAME/VERSION.
990       gold_assert(ins.first->second == NULL);
991
992       if (is_default_version && !insdefault.second)
993         {
994           // We already have an entry for NAME/NULL.  If we override
995           // it, then change it to NAME/VERSION.
996           ret = this->get_sized_symbol<size>(insdefault.first->second);
997
998           was_undefined = ret->is_undefined();
999           was_common = ret->is_common();
1000
1001           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1002                         version);
1003           if (parameters->options().gc_sections())
1004             this->gc_mark_dyn_syms(ret);
1005           ins.first->second = ret;
1006         }
1007       else
1008         {
1009           was_undefined = false;
1010           was_common = false;
1011
1012           Sized_target<size, big_endian>* target =
1013             parameters->sized_target<size, big_endian>();
1014           if (!target->has_make_symbol())
1015             ret = new Sized_symbol<size>();
1016           else
1017             {
1018               ret = target->make_symbol();
1019               if (ret == NULL)
1020                 {
1021                   // This means that we don't want a symbol table
1022                   // entry after all.
1023                   if (!is_default_version)
1024                     this->table_.erase(ins.first);
1025                   else
1026                     {
1027                       this->table_.erase(insdefault.first);
1028                       // Inserting INSDEFAULT invalidated INS.
1029                       this->table_.erase(std::make_pair(name_key,
1030                                                         version_key));
1031                     }
1032                   return NULL;
1033                 }
1034             }
1035
1036           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1037
1038           ins.first->second = ret;
1039           if (is_default_version)
1040             {
1041               // This is the first time we have seen NAME/NULL.  Point
1042               // it at the new entry for NAME/VERSION.
1043               gold_assert(insdefault.second);
1044               insdefault.first->second = ret;
1045             }
1046         }
1047
1048       if (is_default_version)
1049         ret->set_is_default();
1050     }
1051
1052   // Record every time we see a new undefined symbol, to speed up
1053   // archive groups.
1054   if (!was_undefined && ret->is_undefined())
1055     {
1056       ++this->saw_undefined_;
1057       if (parameters->options().has_plugins())
1058         parameters->options().plugins()->new_undefined_symbol(ret);
1059     }
1060
1061   // Keep track of common symbols, to speed up common symbol
1062   // allocation.
1063   if (!was_common && ret->is_common())
1064     {
1065       if (ret->type() == elfcpp::STT_TLS)
1066         this->tls_commons_.push_back(ret);
1067       else if (!is_ordinary
1068                && st_shndx == parameters->target().small_common_shndx())
1069         this->small_commons_.push_back(ret);
1070       else if (!is_ordinary
1071                && st_shndx == parameters->target().large_common_shndx())
1072         this->large_commons_.push_back(ret);
1073       else
1074         this->commons_.push_back(ret);
1075     }
1076
1077   // If we're not doing a relocatable link, then any symbol with
1078   // hidden or internal visibility is local.
1079   if ((ret->visibility() == elfcpp::STV_HIDDEN
1080        || ret->visibility() == elfcpp::STV_INTERNAL)
1081       && (ret->binding() == elfcpp::STB_GLOBAL
1082           || ret->binding() == elfcpp::STB_GNU_UNIQUE
1083           || ret->binding() == elfcpp::STB_WEAK)
1084       && !parameters->options().relocatable())
1085     this->force_local(ret);
1086
1087   return ret;
1088 }
1089
1090 // Add all the symbols in a relocatable object to the hash table.
1091
1092 template<int size, bool big_endian>
1093 void
1094 Symbol_table::add_from_relobj(
1095     Sized_relobj_file<size, big_endian>* relobj,
1096     const unsigned char* syms,
1097     size_t count,
1098     size_t symndx_offset,
1099     const char* sym_names,
1100     size_t sym_name_size,
1101     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1102     size_t* defined)
1103 {
1104   *defined = 0;
1105
1106   gold_assert(size == parameters->target().get_size());
1107
1108   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1109
1110   const bool just_symbols = relobj->just_symbols();
1111
1112   const unsigned char* p = syms;
1113   for (size_t i = 0; i < count; ++i, p += sym_size)
1114     {
1115       (*sympointers)[i] = NULL;
1116
1117       elfcpp::Sym<size, big_endian> sym(p);
1118
1119       unsigned int st_name = sym.get_st_name();
1120       if (st_name >= sym_name_size)
1121         {
1122           relobj->error(_("bad global symbol name offset %u at %zu"),
1123                         st_name, i);
1124           continue;
1125         }
1126
1127       const char* name = sym_names + st_name;
1128
1129       bool is_ordinary;
1130       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1131                                                        sym.get_st_shndx(),
1132                                                        &is_ordinary);
1133       unsigned int orig_st_shndx = st_shndx;
1134       if (!is_ordinary)
1135         orig_st_shndx = elfcpp::SHN_UNDEF;
1136
1137       if (st_shndx != elfcpp::SHN_UNDEF)
1138         ++*defined;
1139
1140       // A symbol defined in a section which we are not including must
1141       // be treated as an undefined symbol.
1142       bool is_defined_in_discarded_section = false;
1143       if (st_shndx != elfcpp::SHN_UNDEF
1144           && is_ordinary
1145           && !relobj->is_section_included(st_shndx)
1146           && !this->is_section_folded(relobj, st_shndx))
1147         {
1148           st_shndx = elfcpp::SHN_UNDEF;
1149           is_defined_in_discarded_section = true;
1150         }
1151
1152       // In an object file, an '@' in the name separates the symbol
1153       // name from the version name.  If there are two '@' characters,
1154       // this is the default version.
1155       const char* ver = strchr(name, '@');
1156       Stringpool::Key ver_key = 0;
1157       int namelen = 0;
1158       // IS_DEFAULT_VERSION: is the version default?
1159       // IS_FORCED_LOCAL: is the symbol forced local?
1160       bool is_default_version = false;
1161       bool is_forced_local = false;
1162
1163       // FIXME: For incremental links, we don't store version information,
1164       // so we need to ignore version symbols for now.
1165       if (parameters->incremental_update() && ver != NULL)
1166         {
1167           namelen = ver - name;
1168           ver = NULL;
1169         }
1170
1171       if (ver != NULL)
1172         {
1173           // The symbol name is of the form foo@VERSION or foo@@VERSION
1174           namelen = ver - name;
1175           ++ver;
1176           if (*ver == '@')
1177             {
1178               is_default_version = true;
1179               ++ver;
1180             }
1181           ver = this->namepool_.add(ver, true, &ver_key);
1182         }
1183       // We don't want to assign a version to an undefined symbol,
1184       // even if it is listed in the version script.  FIXME: What
1185       // about a common symbol?
1186       else
1187         {
1188           namelen = strlen(name);
1189           if (!this->version_script_.empty()
1190               && st_shndx != elfcpp::SHN_UNDEF)
1191             {
1192               // The symbol name did not have a version, but the
1193               // version script may assign a version anyway.
1194               std::string version;
1195               bool is_global;
1196               if (this->version_script_.get_symbol_version(name, &version,
1197                                                            &is_global))
1198                 {
1199                   if (!is_global)
1200                     is_forced_local = true;
1201                   else if (!version.empty())
1202                     {
1203                       ver = this->namepool_.add_with_length(version.c_str(),
1204                                                             version.length(),
1205                                                             true,
1206                                                             &ver_key);
1207                       is_default_version = true;
1208                     }
1209                 }
1210             }
1211         }
1212
1213       elfcpp::Sym<size, big_endian>* psym = &sym;
1214       unsigned char symbuf[sym_size];
1215       elfcpp::Sym<size, big_endian> sym2(symbuf);
1216       if (just_symbols)
1217         {
1218           memcpy(symbuf, p, sym_size);
1219           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1220           if (orig_st_shndx != elfcpp::SHN_UNDEF
1221               && is_ordinary
1222               && relobj->e_type() == elfcpp::ET_REL)
1223             {
1224               // Symbol values in relocatable object files are section
1225               // relative.  This is normally what we want, but since here
1226               // we are converting the symbol to absolute we need to add
1227               // the section address.  The section address in an object
1228               // file is normally zero, but people can use a linker
1229               // script to change it.
1230               sw.put_st_value(sym.get_st_value()
1231                               + relobj->section_address(orig_st_shndx));
1232             }
1233           st_shndx = elfcpp::SHN_ABS;
1234           is_ordinary = false;
1235           psym = &sym2;
1236         }
1237
1238       // Fix up visibility if object has no-export set.
1239       if (relobj->no_export()
1240           && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1241         {
1242           // We may have copied symbol already above.
1243           if (psym != &sym2)
1244             {
1245               memcpy(symbuf, p, sym_size);
1246               psym = &sym2;
1247             }
1248
1249           elfcpp::STV visibility = sym2.get_st_visibility();
1250           if (visibility == elfcpp::STV_DEFAULT
1251               || visibility == elfcpp::STV_PROTECTED)
1252             {
1253               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1254               unsigned char nonvis = sym2.get_st_nonvis();
1255               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1256             }
1257         }
1258
1259       Stringpool::Key name_key;
1260       name = this->namepool_.add_with_length(name, namelen, true,
1261                                              &name_key);
1262
1263       Sized_symbol<size>* res;
1264       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1265                                   is_default_version, *psym, st_shndx,
1266                                   is_ordinary, orig_st_shndx);
1267       
1268       if (is_forced_local)
1269         this->force_local(res);
1270
1271       // Do not treat this symbol as garbage if this symbol will be
1272       // exported to the dynamic symbol table.  This is true when
1273       // building a shared library or using --export-dynamic and
1274       // the symbol is externally visible.
1275       if (parameters->options().gc_sections()
1276           && res->is_externally_visible()
1277           && !res->is_from_dynobj()
1278           && (parameters->options().shared()
1279               || parameters->options().export_dynamic()))
1280         this->gc_mark_symbol(res);
1281
1282       if (is_defined_in_discarded_section)
1283         res->set_is_defined_in_discarded_section();
1284
1285       (*sympointers)[i] = res;
1286     }
1287 }
1288
1289 // Add a symbol from a plugin-claimed file.
1290
1291 template<int size, bool big_endian>
1292 Symbol*
1293 Symbol_table::add_from_pluginobj(
1294     Sized_pluginobj<size, big_endian>* obj,
1295     const char* name,
1296     const char* ver,
1297     elfcpp::Sym<size, big_endian>* sym)
1298 {
1299   unsigned int st_shndx = sym->get_st_shndx();
1300   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1301
1302   Stringpool::Key ver_key = 0;
1303   bool is_default_version = false;
1304   bool is_forced_local = false;
1305
1306   if (ver != NULL)
1307     {
1308       ver = this->namepool_.add(ver, true, &ver_key);
1309     }
1310   // We don't want to assign a version to an undefined symbol,
1311   // even if it is listed in the version script.  FIXME: What
1312   // about a common symbol?
1313   else
1314     {
1315       if (!this->version_script_.empty()
1316           && st_shndx != elfcpp::SHN_UNDEF)
1317         {
1318           // The symbol name did not have a version, but the
1319           // version script may assign a version anyway.
1320           std::string version;
1321           bool is_global;
1322           if (this->version_script_.get_symbol_version(name, &version,
1323                                                        &is_global))
1324             {
1325               if (!is_global)
1326                 is_forced_local = true;
1327               else if (!version.empty())
1328                 {
1329                   ver = this->namepool_.add_with_length(version.c_str(),
1330                                                         version.length(),
1331                                                         true,
1332                                                         &ver_key);
1333                   is_default_version = true;
1334                 }
1335             }
1336         }
1337     }
1338
1339   Stringpool::Key name_key;
1340   name = this->namepool_.add(name, true, &name_key);
1341
1342   Sized_symbol<size>* res;
1343   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1344                               is_default_version, *sym, st_shndx,
1345                               is_ordinary, st_shndx);
1346
1347   if (is_forced_local)
1348     this->force_local(res);
1349
1350   return res;
1351 }
1352
1353 // Add all the symbols in a dynamic object to the hash table.
1354
1355 template<int size, bool big_endian>
1356 void
1357 Symbol_table::add_from_dynobj(
1358     Sized_dynobj<size, big_endian>* dynobj,
1359     const unsigned char* syms,
1360     size_t count,
1361     const char* sym_names,
1362     size_t sym_name_size,
1363     const unsigned char* versym,
1364     size_t versym_size,
1365     const std::vector<const char*>* version_map,
1366     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1367     size_t* defined)
1368 {
1369   *defined = 0;
1370
1371   gold_assert(size == parameters->target().get_size());
1372
1373   if (dynobj->just_symbols())
1374     {
1375       gold_error(_("--just-symbols does not make sense with a shared object"));
1376       return;
1377     }
1378
1379   // FIXME: For incremental links, we don't store version information,
1380   // so we need to ignore version symbols for now.
1381   if (parameters->incremental_update())
1382     versym = NULL;
1383
1384   if (versym != NULL && versym_size / 2 < count)
1385     {
1386       dynobj->error(_("too few symbol versions"));
1387       return;
1388     }
1389
1390   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1391
1392   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1393   // weak aliases.  This is necessary because if the dynamic object
1394   // provides the same variable under two names, one of which is a
1395   // weak definition, and the regular object refers to the weak
1396   // definition, we have to put both the weak definition and the
1397   // strong definition into the dynamic symbol table.  Given a weak
1398   // definition, the only way that we can find the corresponding
1399   // strong definition, if any, is to search the symbol table.
1400   std::vector<Sized_symbol<size>*> object_symbols;
1401
1402   const unsigned char* p = syms;
1403   const unsigned char* vs = versym;
1404   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1405     {
1406       elfcpp::Sym<size, big_endian> sym(p);
1407
1408       if (sympointers != NULL)
1409         (*sympointers)[i] = NULL;
1410
1411       // Ignore symbols with local binding or that have
1412       // internal or hidden visibility.
1413       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1414           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1415           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1416         continue;
1417
1418       // A protected symbol in a shared library must be treated as a
1419       // normal symbol when viewed from outside the shared library.
1420       // Implement this by overriding the visibility here.
1421       elfcpp::Sym<size, big_endian>* psym = &sym;
1422       unsigned char symbuf[sym_size];
1423       elfcpp::Sym<size, big_endian> sym2(symbuf);
1424       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1425         {
1426           memcpy(symbuf, p, sym_size);
1427           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1428           sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1429           psym = &sym2;
1430         }
1431
1432       unsigned int st_name = psym->get_st_name();
1433       if (st_name >= sym_name_size)
1434         {
1435           dynobj->error(_("bad symbol name offset %u at %zu"),
1436                         st_name, i);
1437           continue;
1438         }
1439
1440       const char* name = sym_names + st_name;
1441
1442       bool is_ordinary;
1443       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1444                                                        &is_ordinary);
1445
1446       if (st_shndx != elfcpp::SHN_UNDEF)
1447         ++*defined;
1448
1449       Sized_symbol<size>* res;
1450
1451       if (versym == NULL)
1452         {
1453           Stringpool::Key name_key;
1454           name = this->namepool_.add(name, true, &name_key);
1455           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1456                                       false, *psym, st_shndx, is_ordinary,
1457                                       st_shndx);
1458         }
1459       else
1460         {
1461           // Read the version information.
1462
1463           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1464
1465           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1466           v &= elfcpp::VERSYM_VERSION;
1467
1468           // The Sun documentation says that V can be VER_NDX_LOCAL,
1469           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1470           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1471           // The old GNU linker will happily generate VER_NDX_LOCAL
1472           // for an undefined symbol.  I don't know what the Sun
1473           // linker will generate.
1474
1475           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1476               && st_shndx != elfcpp::SHN_UNDEF)
1477             {
1478               // This symbol should not be visible outside the object.
1479               continue;
1480             }
1481
1482           // At this point we are definitely going to add this symbol.
1483           Stringpool::Key name_key;
1484           name = this->namepool_.add(name, true, &name_key);
1485
1486           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1487               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1488             {
1489               // This symbol does not have a version.
1490               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1491                                           false, *psym, st_shndx, is_ordinary,
1492                                           st_shndx);
1493             }
1494           else
1495             {
1496               if (v >= version_map->size())
1497                 {
1498                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1499                                 i, v);
1500                   continue;
1501                 }
1502
1503               const char* version = (*version_map)[v];
1504               if (version == NULL)
1505                 {
1506                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1507                                 i, v);
1508                   continue;
1509                 }
1510
1511               Stringpool::Key version_key;
1512               version = this->namepool_.add(version, true, &version_key);
1513
1514               // If this is an absolute symbol, and the version name
1515               // and symbol name are the same, then this is the
1516               // version definition symbol.  These symbols exist to
1517               // support using -u to pull in particular versions.  We
1518               // do not want to record a version for them.
1519               if (st_shndx == elfcpp::SHN_ABS
1520                   && !is_ordinary
1521                   && name_key == version_key)
1522                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1523                                             false, *psym, st_shndx, is_ordinary,
1524                                             st_shndx);
1525               else
1526                 {
1527                   const bool is_default_version =
1528                     !hidden && st_shndx != elfcpp::SHN_UNDEF;
1529                   res = this->add_from_object(dynobj, name, name_key, version,
1530                                               version_key, is_default_version,
1531                                               *psym, st_shndx,
1532                                               is_ordinary, st_shndx);
1533                 }
1534             }
1535         }
1536
1537       // Note that it is possible that RES was overridden by an
1538       // earlier object, in which case it can't be aliased here.
1539       if (st_shndx != elfcpp::SHN_UNDEF
1540           && is_ordinary
1541           && psym->get_st_type() == elfcpp::STT_OBJECT
1542           && res->source() == Symbol::FROM_OBJECT
1543           && res->object() == dynobj)
1544         object_symbols.push_back(res);
1545
1546       if (sympointers != NULL)
1547         (*sympointers)[i] = res;
1548     }
1549
1550   this->record_weak_aliases(&object_symbols);
1551 }
1552
1553 // Add a symbol from a incremental object file.
1554
1555 template<int size, bool big_endian>
1556 Sized_symbol<size>*
1557 Symbol_table::add_from_incrobj(
1558     Object* obj,
1559     const char* name,
1560     const char* ver,
1561     elfcpp::Sym<size, big_endian>* sym)
1562 {
1563   unsigned int st_shndx = sym->get_st_shndx();
1564   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1565
1566   Stringpool::Key ver_key = 0;
1567   bool is_default_version = false;
1568   bool is_forced_local = false;
1569
1570   Stringpool::Key name_key;
1571   name = this->namepool_.add(name, true, &name_key);
1572
1573   Sized_symbol<size>* res;
1574   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1575                               is_default_version, *sym, st_shndx,
1576                               is_ordinary, st_shndx);
1577
1578   if (is_forced_local)
1579     this->force_local(res);
1580
1581   return res;
1582 }
1583
1584 // This is used to sort weak aliases.  We sort them first by section
1585 // index, then by offset, then by weak ahead of strong.
1586
1587 template<int size>
1588 class Weak_alias_sorter
1589 {
1590  public:
1591   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1592 };
1593
1594 template<int size>
1595 bool
1596 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1597                                     const Sized_symbol<size>* s2) const
1598 {
1599   bool is_ordinary;
1600   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1601   gold_assert(is_ordinary);
1602   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1603   gold_assert(is_ordinary);
1604   if (s1_shndx != s2_shndx)
1605     return s1_shndx < s2_shndx;
1606
1607   if (s1->value() != s2->value())
1608     return s1->value() < s2->value();
1609   if (s1->binding() != s2->binding())
1610     {
1611       if (s1->binding() == elfcpp::STB_WEAK)
1612         return true;
1613       if (s2->binding() == elfcpp::STB_WEAK)
1614         return false;
1615     }
1616   return std::string(s1->name()) < std::string(s2->name());
1617 }
1618
1619 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1620 // for any weak aliases, and record them so that if we add the weak
1621 // alias to the dynamic symbol table, we also add the corresponding
1622 // strong symbol.
1623
1624 template<int size>
1625 void
1626 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1627 {
1628   // Sort the vector by section index, then by offset, then by weak
1629   // ahead of strong.
1630   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1631
1632   // Walk through the vector.  For each weak definition, record
1633   // aliases.
1634   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1635          symbols->begin();
1636        p != symbols->end();
1637        ++p)
1638     {
1639       if ((*p)->binding() != elfcpp::STB_WEAK)
1640         continue;
1641
1642       // Build a circular list of weak aliases.  Each symbol points to
1643       // the next one in the circular list.
1644
1645       Sized_symbol<size>* from_sym = *p;
1646       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1647       for (q = p + 1; q != symbols->end(); ++q)
1648         {
1649           bool dummy;
1650           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1651               || (*q)->value() != from_sym->value())
1652             break;
1653
1654           this->weak_aliases_[from_sym] = *q;
1655           from_sym->set_has_alias();
1656           from_sym = *q;
1657         }
1658
1659       if (from_sym != *p)
1660         {
1661           this->weak_aliases_[from_sym] = *p;
1662           from_sym->set_has_alias();
1663         }
1664
1665       p = q - 1;
1666     }
1667 }
1668
1669 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1670 // true, then only create the symbol if there is a reference to it.
1671 // If this does not return NULL, it sets *POLDSYM to the existing
1672 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1673 // resolve the newly created symbol to the old one.  This
1674 // canonicalizes *PNAME and *PVERSION.
1675
1676 template<int size, bool big_endian>
1677 Sized_symbol<size>*
1678 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1679                                     bool only_if_ref,
1680                                     Sized_symbol<size>** poldsym,
1681                                     bool* resolve_oldsym)
1682 {
1683   *resolve_oldsym = false;
1684
1685   // If the caller didn't give us a version, see if we get one from
1686   // the version script.
1687   std::string v;
1688   bool is_default_version = false;
1689   if (*pversion == NULL)
1690     {
1691       bool is_global;
1692       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1693         {
1694           if (is_global && !v.empty())
1695             {
1696               *pversion = v.c_str();
1697               // If we get the version from a version script, then we
1698               // are also the default version.
1699               is_default_version = true;
1700             }
1701         }
1702     }
1703
1704   Symbol* oldsym;
1705   Sized_symbol<size>* sym;
1706
1707   bool add_to_table = false;
1708   typename Symbol_table_type::iterator add_loc = this->table_.end();
1709   bool add_def_to_table = false;
1710   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1711
1712   if (only_if_ref)
1713     {
1714       oldsym = this->lookup(*pname, *pversion);
1715       if (oldsym == NULL && is_default_version)
1716         oldsym = this->lookup(*pname, NULL);
1717       if (oldsym == NULL || !oldsym->is_undefined())
1718         return NULL;
1719
1720       *pname = oldsym->name();
1721       if (is_default_version)
1722         *pversion = this->namepool_.add(*pversion, true, NULL);
1723       else
1724         *pversion = oldsym->version();
1725     }
1726   else
1727     {
1728       // Canonicalize NAME and VERSION.
1729       Stringpool::Key name_key;
1730       *pname = this->namepool_.add(*pname, true, &name_key);
1731
1732       Stringpool::Key version_key = 0;
1733       if (*pversion != NULL)
1734         *pversion = this->namepool_.add(*pversion, true, &version_key);
1735
1736       Symbol* const snull = NULL;
1737       std::pair<typename Symbol_table_type::iterator, bool> ins =
1738         this->table_.insert(std::make_pair(std::make_pair(name_key,
1739                                                           version_key),
1740                                            snull));
1741
1742       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1743         std::make_pair(this->table_.end(), false);
1744       if (is_default_version)
1745         {
1746           const Stringpool::Key vnull = 0;
1747           insdefault =
1748             this->table_.insert(std::make_pair(std::make_pair(name_key,
1749                                                               vnull),
1750                                                snull));
1751         }
1752
1753       if (!ins.second)
1754         {
1755           // We already have a symbol table entry for NAME/VERSION.
1756           oldsym = ins.first->second;
1757           gold_assert(oldsym != NULL);
1758
1759           if (is_default_version)
1760             {
1761               Sized_symbol<size>* soldsym =
1762                 this->get_sized_symbol<size>(oldsym);
1763               this->define_default_version<size, big_endian>(soldsym,
1764                                                              insdefault.second,
1765                                                              insdefault.first);
1766             }
1767         }
1768       else
1769         {
1770           // We haven't seen this symbol before.
1771           gold_assert(ins.first->second == NULL);
1772
1773           add_to_table = true;
1774           add_loc = ins.first;
1775
1776           if (is_default_version && !insdefault.second)
1777             {
1778               // We are adding NAME/VERSION, and it is the default
1779               // version.  We already have an entry for NAME/NULL.
1780               oldsym = insdefault.first->second;
1781               *resolve_oldsym = true;
1782             }
1783           else
1784             {
1785               oldsym = NULL;
1786
1787               if (is_default_version)
1788                 {
1789                   add_def_to_table = true;
1790                   add_def_loc = insdefault.first;
1791                 }
1792             }
1793         }
1794     }
1795
1796   const Target& target = parameters->target();
1797   if (!target.has_make_symbol())
1798     sym = new Sized_symbol<size>();
1799   else
1800     {
1801       Sized_target<size, big_endian>* sized_target =
1802         parameters->sized_target<size, big_endian>();
1803       sym = sized_target->make_symbol();
1804       if (sym == NULL)
1805         return NULL;
1806     }
1807
1808   if (add_to_table)
1809     add_loc->second = sym;
1810   else
1811     gold_assert(oldsym != NULL);
1812
1813   if (add_def_to_table)
1814     add_def_loc->second = sym;
1815
1816   *poldsym = this->get_sized_symbol<size>(oldsym);
1817
1818   return sym;
1819 }
1820
1821 // Define a symbol based on an Output_data.
1822
1823 Symbol*
1824 Symbol_table::define_in_output_data(const char* name,
1825                                     const char* version,
1826                                     Defined defined,
1827                                     Output_data* od,
1828                                     uint64_t value,
1829                                     uint64_t symsize,
1830                                     elfcpp::STT type,
1831                                     elfcpp::STB binding,
1832                                     elfcpp::STV visibility,
1833                                     unsigned char nonvis,
1834                                     bool offset_is_from_end,
1835                                     bool only_if_ref)
1836 {
1837   if (parameters->target().get_size() == 32)
1838     {
1839 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1840       return this->do_define_in_output_data<32>(name, version, defined, od,
1841                                                 value, symsize, type, binding,
1842                                                 visibility, nonvis,
1843                                                 offset_is_from_end,
1844                                                 only_if_ref);
1845 #else
1846       gold_unreachable();
1847 #endif
1848     }
1849   else if (parameters->target().get_size() == 64)
1850     {
1851 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1852       return this->do_define_in_output_data<64>(name, version, defined, od,
1853                                                 value, symsize, type, binding,
1854                                                 visibility, nonvis,
1855                                                 offset_is_from_end,
1856                                                 only_if_ref);
1857 #else
1858       gold_unreachable();
1859 #endif
1860     }
1861   else
1862     gold_unreachable();
1863 }
1864
1865 // Define a symbol in an Output_data, sized version.
1866
1867 template<int size>
1868 Sized_symbol<size>*
1869 Symbol_table::do_define_in_output_data(
1870     const char* name,
1871     const char* version,
1872     Defined defined,
1873     Output_data* od,
1874     typename elfcpp::Elf_types<size>::Elf_Addr value,
1875     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1876     elfcpp::STT type,
1877     elfcpp::STB binding,
1878     elfcpp::STV visibility,
1879     unsigned char nonvis,
1880     bool offset_is_from_end,
1881     bool only_if_ref)
1882 {
1883   Sized_symbol<size>* sym;
1884   Sized_symbol<size>* oldsym;
1885   bool resolve_oldsym;
1886
1887   if (parameters->target().is_big_endian())
1888     {
1889 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1890       sym = this->define_special_symbol<size, true>(&name, &version,
1891                                                     only_if_ref, &oldsym,
1892                                                     &resolve_oldsym);
1893 #else
1894       gold_unreachable();
1895 #endif
1896     }
1897   else
1898     {
1899 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1900       sym = this->define_special_symbol<size, false>(&name, &version,
1901                                                      only_if_ref, &oldsym,
1902                                                      &resolve_oldsym);
1903 #else
1904       gold_unreachable();
1905 #endif
1906     }
1907
1908   if (sym == NULL)
1909     return NULL;
1910
1911   sym->init_output_data(name, version, od, value, symsize, type, binding,
1912                         visibility, nonvis, offset_is_from_end,
1913                         defined == PREDEFINED);
1914
1915   if (oldsym == NULL)
1916     {
1917       if (binding == elfcpp::STB_LOCAL
1918           || this->version_script_.symbol_is_local(name))
1919         this->force_local(sym);
1920       else if (version != NULL)
1921         sym->set_is_default();
1922       return sym;
1923     }
1924
1925   if (Symbol_table::should_override_with_special(oldsym, type, defined))
1926     this->override_with_special(oldsym, sym);
1927
1928   if (resolve_oldsym)
1929     return sym;
1930   else
1931     {
1932       delete sym;
1933       return oldsym;
1934     }
1935 }
1936
1937 // Define a symbol based on an Output_segment.
1938
1939 Symbol*
1940 Symbol_table::define_in_output_segment(const char* name,
1941                                        const char* version,
1942                                        Defined defined,
1943                                        Output_segment* os,
1944                                        uint64_t value,
1945                                        uint64_t symsize,
1946                                        elfcpp::STT type,
1947                                        elfcpp::STB binding,
1948                                        elfcpp::STV visibility,
1949                                        unsigned char nonvis,
1950                                        Symbol::Segment_offset_base offset_base,
1951                                        bool only_if_ref)
1952 {
1953   if (parameters->target().get_size() == 32)
1954     {
1955 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1956       return this->do_define_in_output_segment<32>(name, version, defined, os,
1957                                                    value, symsize, type,
1958                                                    binding, visibility, nonvis,
1959                                                    offset_base, only_if_ref);
1960 #else
1961       gold_unreachable();
1962 #endif
1963     }
1964   else if (parameters->target().get_size() == 64)
1965     {
1966 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1967       return this->do_define_in_output_segment<64>(name, version, defined, os,
1968                                                    value, symsize, type,
1969                                                    binding, visibility, nonvis,
1970                                                    offset_base, only_if_ref);
1971 #else
1972       gold_unreachable();
1973 #endif
1974     }
1975   else
1976     gold_unreachable();
1977 }
1978
1979 // Define a symbol in an Output_segment, sized version.
1980
1981 template<int size>
1982 Sized_symbol<size>*
1983 Symbol_table::do_define_in_output_segment(
1984     const char* name,
1985     const char* version,
1986     Defined defined,
1987     Output_segment* os,
1988     typename elfcpp::Elf_types<size>::Elf_Addr value,
1989     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1990     elfcpp::STT type,
1991     elfcpp::STB binding,
1992     elfcpp::STV visibility,
1993     unsigned char nonvis,
1994     Symbol::Segment_offset_base offset_base,
1995     bool only_if_ref)
1996 {
1997   Sized_symbol<size>* sym;
1998   Sized_symbol<size>* oldsym;
1999   bool resolve_oldsym;
2000
2001   if (parameters->target().is_big_endian())
2002     {
2003 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2004       sym = this->define_special_symbol<size, true>(&name, &version,
2005                                                     only_if_ref, &oldsym,
2006                                                     &resolve_oldsym);
2007 #else
2008       gold_unreachable();
2009 #endif
2010     }
2011   else
2012     {
2013 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2014       sym = this->define_special_symbol<size, false>(&name, &version,
2015                                                      only_if_ref, &oldsym,
2016                                                      &resolve_oldsym);
2017 #else
2018       gold_unreachable();
2019 #endif
2020     }
2021
2022   if (sym == NULL)
2023     return NULL;
2024
2025   sym->init_output_segment(name, version, os, value, symsize, type, binding,
2026                            visibility, nonvis, offset_base,
2027                            defined == PREDEFINED);
2028
2029   if (oldsym == NULL)
2030     {
2031       if (binding == elfcpp::STB_LOCAL
2032           || this->version_script_.symbol_is_local(name))
2033         this->force_local(sym);
2034       else if (version != NULL)
2035         sym->set_is_default();
2036       return sym;
2037     }
2038
2039   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2040     this->override_with_special(oldsym, sym);
2041
2042   if (resolve_oldsym)
2043     return sym;
2044   else
2045     {
2046       delete sym;
2047       return oldsym;
2048     }
2049 }
2050
2051 // Define a special symbol with a constant value.  It is a multiple
2052 // definition error if this symbol is already defined.
2053
2054 Symbol*
2055 Symbol_table::define_as_constant(const char* name,
2056                                  const char* version,
2057                                  Defined defined,
2058                                  uint64_t value,
2059                                  uint64_t symsize,
2060                                  elfcpp::STT type,
2061                                  elfcpp::STB binding,
2062                                  elfcpp::STV visibility,
2063                                  unsigned char nonvis,
2064                                  bool only_if_ref,
2065                                  bool force_override)
2066 {
2067   if (parameters->target().get_size() == 32)
2068     {
2069 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2070       return this->do_define_as_constant<32>(name, version, defined, value,
2071                                              symsize, type, binding,
2072                                              visibility, nonvis, only_if_ref,
2073                                              force_override);
2074 #else
2075       gold_unreachable();
2076 #endif
2077     }
2078   else if (parameters->target().get_size() == 64)
2079     {
2080 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2081       return this->do_define_as_constant<64>(name, version, defined, value,
2082                                              symsize, type, binding,
2083                                              visibility, nonvis, only_if_ref,
2084                                              force_override);
2085 #else
2086       gold_unreachable();
2087 #endif
2088     }
2089   else
2090     gold_unreachable();
2091 }
2092
2093 // Define a symbol as a constant, sized version.
2094
2095 template<int size>
2096 Sized_symbol<size>*
2097 Symbol_table::do_define_as_constant(
2098     const char* name,
2099     const char* version,
2100     Defined defined,
2101     typename elfcpp::Elf_types<size>::Elf_Addr value,
2102     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2103     elfcpp::STT type,
2104     elfcpp::STB binding,
2105     elfcpp::STV visibility,
2106     unsigned char nonvis,
2107     bool only_if_ref,
2108     bool force_override)
2109 {
2110   Sized_symbol<size>* sym;
2111   Sized_symbol<size>* oldsym;
2112   bool resolve_oldsym;
2113
2114   if (parameters->target().is_big_endian())
2115     {
2116 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2117       sym = this->define_special_symbol<size, true>(&name, &version,
2118                                                     only_if_ref, &oldsym,
2119                                                     &resolve_oldsym);
2120 #else
2121       gold_unreachable();
2122 #endif
2123     }
2124   else
2125     {
2126 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2127       sym = this->define_special_symbol<size, false>(&name, &version,
2128                                                      only_if_ref, &oldsym,
2129                                                      &resolve_oldsym);
2130 #else
2131       gold_unreachable();
2132 #endif
2133     }
2134
2135   if (sym == NULL)
2136     return NULL;
2137
2138   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2139                      nonvis, defined == PREDEFINED);
2140
2141   if (oldsym == NULL)
2142     {
2143       // Version symbols are absolute symbols with name == version.
2144       // We don't want to force them to be local.
2145       if ((version == NULL
2146            || name != version
2147            || value != 0)
2148           && (binding == elfcpp::STB_LOCAL
2149               || this->version_script_.symbol_is_local(name)))
2150         this->force_local(sym);
2151       else if (version != NULL
2152                && (name != version || value != 0))
2153         sym->set_is_default();
2154       return sym;
2155     }
2156
2157   if (force_override
2158       || Symbol_table::should_override_with_special(oldsym, type, defined))
2159     this->override_with_special(oldsym, sym);
2160
2161   if (resolve_oldsym)
2162     return sym;
2163   else
2164     {
2165       delete sym;
2166       return oldsym;
2167     }
2168 }
2169
2170 // Define a set of symbols in output sections.
2171
2172 void
2173 Symbol_table::define_symbols(const Layout* layout, int count,
2174                              const Define_symbol_in_section* p,
2175                              bool only_if_ref)
2176 {
2177   for (int i = 0; i < count; ++i, ++p)
2178     {
2179       Output_section* os = layout->find_output_section(p->output_section);
2180       if (os != NULL)
2181         this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2182                                     p->size, p->type, p->binding,
2183                                     p->visibility, p->nonvis,
2184                                     p->offset_is_from_end,
2185                                     only_if_ref || p->only_if_ref);
2186       else
2187         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2188                                  p->type, p->binding, p->visibility, p->nonvis,
2189                                  only_if_ref || p->only_if_ref,
2190                                  false);
2191     }
2192 }
2193
2194 // Define a set of symbols in output segments.
2195
2196 void
2197 Symbol_table::define_symbols(const Layout* layout, int count,
2198                              const Define_symbol_in_segment* p,
2199                              bool only_if_ref)
2200 {
2201   for (int i = 0; i < count; ++i, ++p)
2202     {
2203       Output_segment* os = layout->find_output_segment(p->segment_type,
2204                                                        p->segment_flags_set,
2205                                                        p->segment_flags_clear);
2206       if (os != NULL)
2207         this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2208                                        p->size, p->type, p->binding,
2209                                        p->visibility, p->nonvis,
2210                                        p->offset_base,
2211                                        only_if_ref || p->only_if_ref);
2212       else
2213         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2214                                  p->type, p->binding, p->visibility, p->nonvis,
2215                                  only_if_ref || p->only_if_ref,
2216                                  false);
2217     }
2218 }
2219
2220 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2221 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2222 // the offset within POSD.
2223
2224 template<int size>
2225 void
2226 Symbol_table::define_with_copy_reloc(
2227     Sized_symbol<size>* csym,
2228     Output_data* posd,
2229     typename elfcpp::Elf_types<size>::Elf_Addr value)
2230 {
2231   gold_assert(csym->is_from_dynobj());
2232   gold_assert(!csym->is_copied_from_dynobj());
2233   Object* object = csym->object();
2234   gold_assert(object->is_dynamic());
2235   Dynobj* dynobj = static_cast<Dynobj*>(object);
2236
2237   // Our copied variable has to override any variable in a shared
2238   // library.
2239   elfcpp::STB binding = csym->binding();
2240   if (binding == elfcpp::STB_WEAK)
2241     binding = elfcpp::STB_GLOBAL;
2242
2243   this->define_in_output_data(csym->name(), csym->version(), COPY,
2244                               posd, value, csym->symsize(),
2245                               csym->type(), binding,
2246                               csym->visibility(), csym->nonvis(),
2247                               false, false);
2248
2249   csym->set_is_copied_from_dynobj();
2250   csym->set_needs_dynsym_entry();
2251
2252   this->copied_symbol_dynobjs_[csym] = dynobj;
2253
2254   // We have now defined all aliases, but we have not entered them all
2255   // in the copied_symbol_dynobjs_ map.
2256   if (csym->has_alias())
2257     {
2258       Symbol* sym = csym;
2259       while (true)
2260         {
2261           sym = this->weak_aliases_[sym];
2262           if (sym == csym)
2263             break;
2264           gold_assert(sym->output_data() == posd);
2265
2266           sym->set_is_copied_from_dynobj();
2267           this->copied_symbol_dynobjs_[sym] = dynobj;
2268         }
2269     }
2270 }
2271
2272 // SYM is defined using a COPY reloc.  Return the dynamic object where
2273 // the original definition was found.
2274
2275 Dynobj*
2276 Symbol_table::get_copy_source(const Symbol* sym) const
2277 {
2278   gold_assert(sym->is_copied_from_dynobj());
2279   Copied_symbol_dynobjs::const_iterator p =
2280     this->copied_symbol_dynobjs_.find(sym);
2281   gold_assert(p != this->copied_symbol_dynobjs_.end());
2282   return p->second;
2283 }
2284
2285 // Add any undefined symbols named on the command line.
2286
2287 void
2288 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2289 {
2290   if (parameters->options().any_undefined()
2291       || layout->script_options()->any_unreferenced())
2292     {
2293       if (parameters->target().get_size() == 32)
2294         {
2295 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2296           this->do_add_undefined_symbols_from_command_line<32>(layout);
2297 #else
2298           gold_unreachable();
2299 #endif
2300         }
2301       else if (parameters->target().get_size() == 64)
2302         {
2303 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2304           this->do_add_undefined_symbols_from_command_line<64>(layout);
2305 #else
2306           gold_unreachable();
2307 #endif
2308         }
2309       else
2310         gold_unreachable();
2311     }
2312 }
2313
2314 template<int size>
2315 void
2316 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2317 {
2318   for (options::String_set::const_iterator p =
2319          parameters->options().undefined_begin();
2320        p != parameters->options().undefined_end();
2321        ++p)
2322     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2323
2324   for (options::String_set::const_iterator p =
2325          parameters->options().export_dynamic_symbol_begin();
2326        p != parameters->options().export_dynamic_symbol_end();
2327        ++p)
2328     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2329
2330   for (Script_options::referenced_const_iterator p =
2331          layout->script_options()->referenced_begin();
2332        p != layout->script_options()->referenced_end();
2333        ++p)
2334     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2335 }
2336
2337 template<int size>
2338 void
2339 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2340 {
2341   if (this->lookup(name) != NULL)
2342     return;
2343
2344   const char* version = NULL;
2345
2346   Sized_symbol<size>* sym;
2347   Sized_symbol<size>* oldsym;
2348   bool resolve_oldsym;
2349   if (parameters->target().is_big_endian())
2350     {
2351 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2352       sym = this->define_special_symbol<size, true>(&name, &version,
2353                                                     false, &oldsym,
2354                                                     &resolve_oldsym);
2355 #else
2356       gold_unreachable();
2357 #endif
2358     }
2359   else
2360     {
2361 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2362       sym = this->define_special_symbol<size, false>(&name, &version,
2363                                                      false, &oldsym,
2364                                                      &resolve_oldsym);
2365 #else
2366       gold_unreachable();
2367 #endif
2368     }
2369
2370   gold_assert(oldsym == NULL);
2371
2372   sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2373                       elfcpp::STV_DEFAULT, 0);
2374   ++this->saw_undefined_;
2375 }
2376
2377 // Set the dynamic symbol indexes.  INDEX is the index of the first
2378 // global dynamic symbol.  Pointers to the symbols are stored into the
2379 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2380 // updated dynamic symbol index.
2381
2382 unsigned int
2383 Symbol_table::set_dynsym_indexes(unsigned int index,
2384                                  std::vector<Symbol*>* syms,
2385                                  Stringpool* dynpool,
2386                                  Versions* versions)
2387 {
2388   for (Symbol_table_type::iterator p = this->table_.begin();
2389        p != this->table_.end();
2390        ++p)
2391     {
2392       Symbol* sym = p->second;
2393
2394       // Note that SYM may already have a dynamic symbol index, since
2395       // some symbols appear more than once in the symbol table, with
2396       // and without a version.
2397
2398       if (!sym->should_add_dynsym_entry(this))
2399         sym->set_dynsym_index(-1U);
2400       else if (!sym->has_dynsym_index())
2401         {
2402           sym->set_dynsym_index(index);
2403           ++index;
2404           syms->push_back(sym);
2405           dynpool->add(sym->name(), false, NULL);
2406
2407           // Record any version information.
2408           if (sym->version() != NULL)
2409             versions->record_version(this, dynpool, sym);
2410
2411           // If the symbol is defined in a dynamic object and is
2412           // referenced in a regular object, then mark the dynamic
2413           // object as needed.  This is used to implement --as-needed.
2414           if (sym->is_from_dynobj() && sym->in_reg())
2415             sym->object()->set_is_needed();
2416         }
2417     }
2418
2419   // Finish up the versions.  In some cases this may add new dynamic
2420   // symbols.
2421   index = versions->finalize(this, index, syms);
2422
2423   return index;
2424 }
2425
2426 // Set the final values for all the symbols.  The index of the first
2427 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2428 // file offset OFF.  Add their names to POOL.  Return the new file
2429 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2430
2431 off_t
2432 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2433                        size_t dyncount, Stringpool* pool,
2434                        unsigned int* plocal_symcount)
2435 {
2436   off_t ret;
2437
2438   gold_assert(*plocal_symcount != 0);
2439   this->first_global_index_ = *plocal_symcount;
2440
2441   this->dynamic_offset_ = dynoff;
2442   this->first_dynamic_global_index_ = dyn_global_index;
2443   this->dynamic_count_ = dyncount;
2444
2445   if (parameters->target().get_size() == 32)
2446     {
2447 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2448       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2449 #else
2450       gold_unreachable();
2451 #endif
2452     }
2453   else if (parameters->target().get_size() == 64)
2454     {
2455 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2456       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2457 #else
2458       gold_unreachable();
2459 #endif
2460     }
2461   else
2462     gold_unreachable();
2463
2464   // Now that we have the final symbol table, we can reliably note
2465   // which symbols should get warnings.
2466   this->warnings_.note_warnings(this);
2467
2468   return ret;
2469 }
2470
2471 // SYM is going into the symbol table at *PINDEX.  Add the name to
2472 // POOL, update *PINDEX and *POFF.
2473
2474 template<int size>
2475 void
2476 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2477                                   unsigned int* pindex, off_t* poff)
2478 {
2479   sym->set_symtab_index(*pindex);
2480   if (sym->version() == NULL || !parameters->options().relocatable())
2481     pool->add(sym->name(), false, NULL);
2482   else
2483     pool->add(sym->versioned_name(), true, NULL);
2484   ++*pindex;
2485   *poff += elfcpp::Elf_sizes<size>::sym_size;
2486 }
2487
2488 // Set the final value for all the symbols.  This is called after
2489 // Layout::finalize, so all the output sections have their final
2490 // address.
2491
2492 template<int size>
2493 off_t
2494 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2495                              unsigned int* plocal_symcount)
2496 {
2497   off = align_address(off, size >> 3);
2498   this->offset_ = off;
2499
2500   unsigned int index = *plocal_symcount;
2501   const unsigned int orig_index = index;
2502
2503   // First do all the symbols which have been forced to be local, as
2504   // they must appear before all global symbols.
2505   for (Forced_locals::iterator p = this->forced_locals_.begin();
2506        p != this->forced_locals_.end();
2507        ++p)
2508     {
2509       Symbol* sym = *p;
2510       gold_assert(sym->is_forced_local());
2511       if (this->sized_finalize_symbol<size>(sym))
2512         {
2513           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2514           ++*plocal_symcount;
2515         }
2516     }
2517
2518   // Now do all the remaining symbols.
2519   for (Symbol_table_type::iterator p = this->table_.begin();
2520        p != this->table_.end();
2521        ++p)
2522     {
2523       Symbol* sym = p->second;
2524       if (this->sized_finalize_symbol<size>(sym))
2525         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2526     }
2527
2528   this->output_count_ = index - orig_index;
2529
2530   return off;
2531 }
2532
2533 // Compute the final value of SYM and store status in location PSTATUS.
2534 // During relaxation, this may be called multiple times for a symbol to
2535 // compute its would-be final value in each relaxation pass.
2536
2537 template<int size>
2538 typename Sized_symbol<size>::Value_type
2539 Symbol_table::compute_final_value(
2540     const Sized_symbol<size>* sym,
2541     Compute_final_value_status* pstatus) const
2542 {
2543   typedef typename Sized_symbol<size>::Value_type Value_type;
2544   Value_type value;
2545
2546   switch (sym->source())
2547     {
2548     case Symbol::FROM_OBJECT:
2549       {
2550         bool is_ordinary;
2551         unsigned int shndx = sym->shndx(&is_ordinary);
2552
2553         if (!is_ordinary
2554             && shndx != elfcpp::SHN_ABS
2555             && !Symbol::is_common_shndx(shndx))
2556           {
2557             *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2558             return 0;
2559           }
2560
2561         Object* symobj = sym->object();
2562         if (symobj->is_dynamic())
2563           {
2564             value = 0;
2565             shndx = elfcpp::SHN_UNDEF;
2566           }
2567         else if (symobj->pluginobj() != NULL)
2568           {
2569             value = 0;
2570             shndx = elfcpp::SHN_UNDEF;
2571           }
2572         else if (shndx == elfcpp::SHN_UNDEF)
2573           value = 0;
2574         else if (!is_ordinary
2575                  && (shndx == elfcpp::SHN_ABS
2576                      || Symbol::is_common_shndx(shndx)))
2577           value = sym->value();
2578         else
2579           {
2580             Relobj* relobj = static_cast<Relobj*>(symobj);
2581             Output_section* os = relobj->output_section(shndx);
2582
2583             if (this->is_section_folded(relobj, shndx))
2584               {
2585                 gold_assert(os == NULL);
2586                 // Get the os of the section it is folded onto.
2587                 Section_id folded = this->icf_->get_folded_section(relobj,
2588                                                                    shndx);
2589                 gold_assert(folded.first != NULL);
2590                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2591                 unsigned folded_shndx = folded.second;
2592
2593                 os = folded_obj->output_section(folded_shndx);  
2594                 gold_assert(os != NULL);
2595
2596                 // Replace (relobj, shndx) with canonical ICF input section.
2597                 shndx = folded_shndx;
2598                 relobj = folded_obj;
2599               }
2600
2601             uint64_t secoff64 = relobj->output_section_offset(shndx);
2602             if (os == NULL)
2603               {
2604                 bool static_or_reloc = (parameters->doing_static_link() ||
2605                                         parameters->options().relocatable());
2606                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2607
2608                 *pstatus = CFVS_NO_OUTPUT_SECTION;
2609                 return 0;
2610               }
2611
2612             if (secoff64 == -1ULL)
2613               {
2614                 // The section needs special handling (e.g., a merge section).
2615
2616                 value = os->output_address(relobj, shndx, sym->value());
2617               }
2618             else
2619               {
2620                 Value_type secoff =
2621                   convert_types<Value_type, uint64_t>(secoff64);
2622                 if (sym->type() == elfcpp::STT_TLS)
2623                   value = sym->value() + os->tls_offset() + secoff;
2624                 else
2625                   value = sym->value() + os->address() + secoff;
2626               }
2627           }
2628       }
2629       break;
2630
2631     case Symbol::IN_OUTPUT_DATA:
2632       {
2633         Output_data* od = sym->output_data();
2634         value = sym->value();
2635         if (sym->type() != elfcpp::STT_TLS)
2636           value += od->address();
2637         else
2638           {
2639             Output_section* os = od->output_section();
2640             gold_assert(os != NULL);
2641             value += os->tls_offset() + (od->address() - os->address());
2642           }
2643         if (sym->offset_is_from_end())
2644           value += od->data_size();
2645       }
2646       break;
2647
2648     case Symbol::IN_OUTPUT_SEGMENT:
2649       {
2650         Output_segment* os = sym->output_segment();
2651         value = sym->value();
2652         if (sym->type() != elfcpp::STT_TLS)
2653           value += os->vaddr();
2654         switch (sym->offset_base())
2655           {
2656           case Symbol::SEGMENT_START:
2657             break;
2658           case Symbol::SEGMENT_END:
2659             value += os->memsz();
2660             break;
2661           case Symbol::SEGMENT_BSS:
2662             value += os->filesz();
2663             break;
2664           default:
2665             gold_unreachable();
2666           }
2667       }
2668       break;
2669
2670     case Symbol::IS_CONSTANT:
2671       value = sym->value();
2672       break;
2673
2674     case Symbol::IS_UNDEFINED:
2675       value = 0;
2676       break;
2677
2678     default:
2679       gold_unreachable();
2680     }
2681
2682   *pstatus = CFVS_OK;
2683   return value;
2684 }
2685
2686 // Finalize the symbol SYM.  This returns true if the symbol should be
2687 // added to the symbol table, false otherwise.
2688
2689 template<int size>
2690 bool
2691 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2692 {
2693   typedef typename Sized_symbol<size>::Value_type Value_type;
2694
2695   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2696
2697   // The default version of a symbol may appear twice in the symbol
2698   // table.  We only need to finalize it once.
2699   if (sym->has_symtab_index())
2700     return false;
2701
2702   if (!sym->in_reg())
2703     {
2704       gold_assert(!sym->has_symtab_index());
2705       sym->set_symtab_index(-1U);
2706       gold_assert(sym->dynsym_index() == -1U);
2707       return false;
2708     }
2709
2710   // If the symbol is only present on plugin files, the plugin decided we
2711   // don't need it.
2712   if (!sym->in_real_elf())
2713     {
2714       gold_assert(!sym->has_symtab_index());
2715       sym->set_symtab_index(-1U);
2716       return false;
2717     }
2718
2719   // Compute final symbol value.
2720   Compute_final_value_status status;
2721   Value_type value = this->compute_final_value(sym, &status);
2722
2723   switch (status)
2724     {
2725     case CFVS_OK:
2726       break;
2727     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2728       {
2729         bool is_ordinary;
2730         unsigned int shndx = sym->shndx(&is_ordinary);
2731         gold_error(_("%s: unsupported symbol section 0x%x"),
2732                    sym->demangled_name().c_str(), shndx);
2733       }
2734       break;
2735     case CFVS_NO_OUTPUT_SECTION:
2736       sym->set_symtab_index(-1U);
2737       return false;
2738     default:
2739       gold_unreachable();
2740     }
2741
2742   sym->set_value(value);
2743
2744   if (parameters->options().strip_all()
2745       || !parameters->options().should_retain_symbol(sym->name()))
2746     {
2747       sym->set_symtab_index(-1U);
2748       return false;
2749     }
2750
2751   return true;
2752 }
2753
2754 // Write out the global symbols.
2755
2756 void
2757 Symbol_table::write_globals(const Stringpool* sympool,
2758                             const Stringpool* dynpool,
2759                             Output_symtab_xindex* symtab_xindex,
2760                             Output_symtab_xindex* dynsym_xindex,
2761                             Output_file* of) const
2762 {
2763   switch (parameters->size_and_endianness())
2764     {
2765 #ifdef HAVE_TARGET_32_LITTLE
2766     case Parameters::TARGET_32_LITTLE:
2767       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2768                                            dynsym_xindex, of);
2769       break;
2770 #endif
2771 #ifdef HAVE_TARGET_32_BIG
2772     case Parameters::TARGET_32_BIG:
2773       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2774                                           dynsym_xindex, of);
2775       break;
2776 #endif
2777 #ifdef HAVE_TARGET_64_LITTLE
2778     case Parameters::TARGET_64_LITTLE:
2779       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2780                                            dynsym_xindex, of);
2781       break;
2782 #endif
2783 #ifdef HAVE_TARGET_64_BIG
2784     case Parameters::TARGET_64_BIG:
2785       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2786                                           dynsym_xindex, of);
2787       break;
2788 #endif
2789     default:
2790       gold_unreachable();
2791     }
2792 }
2793
2794 // Write out the global symbols.
2795
2796 template<int size, bool big_endian>
2797 void
2798 Symbol_table::sized_write_globals(const Stringpool* sympool,
2799                                   const Stringpool* dynpool,
2800                                   Output_symtab_xindex* symtab_xindex,
2801                                   Output_symtab_xindex* dynsym_xindex,
2802                                   Output_file* of) const
2803 {
2804   const Target& target = parameters->target();
2805
2806   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2807
2808   const unsigned int output_count = this->output_count_;
2809   const section_size_type oview_size = output_count * sym_size;
2810   const unsigned int first_global_index = this->first_global_index_;
2811   unsigned char* psyms;
2812   if (this->offset_ == 0 || output_count == 0)
2813     psyms = NULL;
2814   else
2815     psyms = of->get_output_view(this->offset_, oview_size);
2816
2817   const unsigned int dynamic_count = this->dynamic_count_;
2818   const section_size_type dynamic_size = dynamic_count * sym_size;
2819   const unsigned int first_dynamic_global_index =
2820     this->first_dynamic_global_index_;
2821   unsigned char* dynamic_view;
2822   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2823     dynamic_view = NULL;
2824   else
2825     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2826
2827   for (Symbol_table_type::const_iterator p = this->table_.begin();
2828        p != this->table_.end();
2829        ++p)
2830     {
2831       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2832
2833       // Possibly warn about unresolved symbols in shared libraries.
2834       this->warn_about_undefined_dynobj_symbol(sym);
2835
2836       unsigned int sym_index = sym->symtab_index();
2837       unsigned int dynsym_index;
2838       if (dynamic_view == NULL)
2839         dynsym_index = -1U;
2840       else
2841         dynsym_index = sym->dynsym_index();
2842
2843       if (sym_index == -1U && dynsym_index == -1U)
2844         {
2845           // This symbol is not included in the output file.
2846           continue;
2847         }
2848
2849       unsigned int shndx;
2850       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2851       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2852       elfcpp::STB binding = sym->binding();
2853
2854       // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2855       if (binding == elfcpp::STB_GNU_UNIQUE
2856           && !parameters->options().gnu_unique())
2857         binding = elfcpp::STB_GLOBAL;
2858
2859       switch (sym->source())
2860         {
2861         case Symbol::FROM_OBJECT:
2862           {
2863             bool is_ordinary;
2864             unsigned int in_shndx = sym->shndx(&is_ordinary);
2865
2866             if (!is_ordinary
2867                 && in_shndx != elfcpp::SHN_ABS
2868                 && !Symbol::is_common_shndx(in_shndx))
2869               {
2870                 gold_error(_("%s: unsupported symbol section 0x%x"),
2871                            sym->demangled_name().c_str(), in_shndx);
2872                 shndx = in_shndx;
2873               }
2874             else
2875               {
2876                 Object* symobj = sym->object();
2877                 if (symobj->is_dynamic())
2878                   {
2879                     if (sym->needs_dynsym_value())
2880                       dynsym_value = target.dynsym_value(sym);
2881                     shndx = elfcpp::SHN_UNDEF;
2882                     if (sym->is_undef_binding_weak())
2883                       binding = elfcpp::STB_WEAK;
2884                     else
2885                       binding = elfcpp::STB_GLOBAL;
2886                   }
2887                 else if (symobj->pluginobj() != NULL)
2888                   shndx = elfcpp::SHN_UNDEF;
2889                 else if (in_shndx == elfcpp::SHN_UNDEF
2890                          || (!is_ordinary
2891                              && (in_shndx == elfcpp::SHN_ABS
2892                                  || Symbol::is_common_shndx(in_shndx))))
2893                   shndx = in_shndx;
2894                 else
2895                   {
2896                     Relobj* relobj = static_cast<Relobj*>(symobj);
2897                     Output_section* os = relobj->output_section(in_shndx);
2898                     if (this->is_section_folded(relobj, in_shndx))
2899                       {
2900                         // This global symbol must be written out even though
2901                         // it is folded.
2902                         // Get the os of the section it is folded onto.
2903                         Section_id folded =
2904                              this->icf_->get_folded_section(relobj, in_shndx);
2905                         gold_assert(folded.first !=NULL);
2906                         Relobj* folded_obj = 
2907                           reinterpret_cast<Relobj*>(folded.first);
2908                         os = folded_obj->output_section(folded.second);  
2909                         gold_assert(os != NULL);
2910                       }
2911                     gold_assert(os != NULL);
2912                     shndx = os->out_shndx();
2913
2914                     if (shndx >= elfcpp::SHN_LORESERVE)
2915                       {
2916                         if (sym_index != -1U)
2917                           symtab_xindex->add(sym_index, shndx);
2918                         if (dynsym_index != -1U)
2919                           dynsym_xindex->add(dynsym_index, shndx);
2920                         shndx = elfcpp::SHN_XINDEX;
2921                       }
2922
2923                     // In object files symbol values are section
2924                     // relative.
2925                     if (parameters->options().relocatable())
2926                       sym_value -= os->address();
2927                   }
2928               }
2929           }
2930           break;
2931
2932         case Symbol::IN_OUTPUT_DATA:
2933           shndx = sym->output_data()->out_shndx();
2934           if (shndx >= elfcpp::SHN_LORESERVE)
2935             {
2936               if (sym_index != -1U)
2937                 symtab_xindex->add(sym_index, shndx);
2938               if (dynsym_index != -1U)
2939                 dynsym_xindex->add(dynsym_index, shndx);
2940               shndx = elfcpp::SHN_XINDEX;
2941             }
2942           break;
2943
2944         case Symbol::IN_OUTPUT_SEGMENT:
2945           shndx = elfcpp::SHN_ABS;
2946           break;
2947
2948         case Symbol::IS_CONSTANT:
2949           shndx = elfcpp::SHN_ABS;
2950           break;
2951
2952         case Symbol::IS_UNDEFINED:
2953           shndx = elfcpp::SHN_UNDEF;
2954           break;
2955
2956         default:
2957           gold_unreachable();
2958         }
2959
2960       if (sym_index != -1U)
2961         {
2962           sym_index -= first_global_index;
2963           gold_assert(sym_index < output_count);
2964           unsigned char* ps = psyms + (sym_index * sym_size);
2965           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2966                                                      binding, sympool, ps);
2967         }
2968
2969       if (dynsym_index != -1U)
2970         {
2971           dynsym_index -= first_dynamic_global_index;
2972           gold_assert(dynsym_index < dynamic_count);
2973           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2974           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2975                                                      binding, dynpool, pd);
2976         }
2977     }
2978
2979   of->write_output_view(this->offset_, oview_size, psyms);
2980   if (dynamic_view != NULL)
2981     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2982 }
2983
2984 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
2985 // strtab holding the name.
2986
2987 template<int size, bool big_endian>
2988 void
2989 Symbol_table::sized_write_symbol(
2990     Sized_symbol<size>* sym,
2991     typename elfcpp::Elf_types<size>::Elf_Addr value,
2992     unsigned int shndx,
2993     elfcpp::STB binding,
2994     const Stringpool* pool,
2995     unsigned char* p) const
2996 {
2997   elfcpp::Sym_write<size, big_endian> osym(p);
2998   if (sym->version() == NULL || !parameters->options().relocatable())
2999     osym.put_st_name(pool->get_offset(sym->name()));
3000   else
3001     osym.put_st_name(pool->get_offset(sym->versioned_name()));
3002   osym.put_st_value(value);
3003   // Use a symbol size of zero for undefined symbols from shared libraries.
3004   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3005     osym.put_st_size(0);
3006   else
3007     osym.put_st_size(sym->symsize());
3008   elfcpp::STT type = sym->type();
3009   // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3010   if (type == elfcpp::STT_GNU_IFUNC
3011       && sym->is_from_dynobj())
3012     type = elfcpp::STT_FUNC;
3013   // A version script may have overridden the default binding.
3014   if (sym->is_forced_local())
3015     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3016   else
3017     osym.put_st_info(elfcpp::elf_st_info(binding, type));
3018   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3019   osym.put_st_shndx(shndx);
3020 }
3021
3022 // Check for unresolved symbols in shared libraries.  This is
3023 // controlled by the --allow-shlib-undefined option.
3024
3025 // We only warn about libraries for which we have seen all the
3026 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
3027 // which were not seen in this link.  If we didn't see a DT_NEEDED
3028 // entry, we aren't going to be able to reliably report whether the
3029 // symbol is undefined.
3030
3031 // We also don't warn about libraries found in a system library
3032 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3033 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
3034 // can have undefined references satisfied by ld-linux.so.
3035
3036 inline void
3037 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3038 {
3039   bool dummy;
3040   if (sym->source() == Symbol::FROM_OBJECT
3041       && sym->object()->is_dynamic()
3042       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3043       && sym->binding() != elfcpp::STB_WEAK
3044       && !parameters->options().allow_shlib_undefined()
3045       && !parameters->target().is_defined_by_abi(sym)
3046       && !sym->object()->is_in_system_directory())
3047     {
3048       // A very ugly cast.
3049       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3050       if (!dynobj->has_unknown_needed_entries())
3051         gold_undefined_symbol(sym);
3052     }
3053 }
3054
3055 // Write out a section symbol.  Return the update offset.
3056
3057 void
3058 Symbol_table::write_section_symbol(const Output_section* os,
3059                                    Output_symtab_xindex* symtab_xindex,
3060                                    Output_file* of,
3061                                    off_t offset) const
3062 {
3063   switch (parameters->size_and_endianness())
3064     {
3065 #ifdef HAVE_TARGET_32_LITTLE
3066     case Parameters::TARGET_32_LITTLE:
3067       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3068                                                   offset);
3069       break;
3070 #endif
3071 #ifdef HAVE_TARGET_32_BIG
3072     case Parameters::TARGET_32_BIG:
3073       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3074                                                  offset);
3075       break;
3076 #endif
3077 #ifdef HAVE_TARGET_64_LITTLE
3078     case Parameters::TARGET_64_LITTLE:
3079       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3080                                                   offset);
3081       break;
3082 #endif
3083 #ifdef HAVE_TARGET_64_BIG
3084     case Parameters::TARGET_64_BIG:
3085       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3086                                                  offset);
3087       break;
3088 #endif
3089     default:
3090       gold_unreachable();
3091     }
3092 }
3093
3094 // Write out a section symbol, specialized for size and endianness.
3095
3096 template<int size, bool big_endian>
3097 void
3098 Symbol_table::sized_write_section_symbol(const Output_section* os,
3099                                          Output_symtab_xindex* symtab_xindex,
3100                                          Output_file* of,
3101                                          off_t offset) const
3102 {
3103   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3104
3105   unsigned char* pov = of->get_output_view(offset, sym_size);
3106
3107   elfcpp::Sym_write<size, big_endian> osym(pov);
3108   osym.put_st_name(0);
3109   if (parameters->options().relocatable())
3110     osym.put_st_value(0);
3111   else
3112     osym.put_st_value(os->address());
3113   osym.put_st_size(0);
3114   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3115                                        elfcpp::STT_SECTION));
3116   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3117
3118   unsigned int shndx = os->out_shndx();
3119   if (shndx >= elfcpp::SHN_LORESERVE)
3120     {
3121       symtab_xindex->add(os->symtab_index(), shndx);
3122       shndx = elfcpp::SHN_XINDEX;
3123     }
3124   osym.put_st_shndx(shndx);
3125
3126   of->write_output_view(offset, sym_size, pov);
3127 }
3128
3129 // Print statistical information to stderr.  This is used for --stats.
3130
3131 void
3132 Symbol_table::print_stats() const
3133 {
3134 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3135   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3136           program_name, this->table_.size(), this->table_.bucket_count());
3137 #else
3138   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3139           program_name, this->table_.size());
3140 #endif
3141   this->namepool_.print_stats("symbol table stringpool");
3142 }
3143
3144 // We check for ODR violations by looking for symbols with the same
3145 // name for which the debugging information reports that they were
3146 // defined in disjoint source locations.  When comparing the source
3147 // location, we consider instances with the same base filename to be
3148 // the same.  This is because different object files/shared libraries
3149 // can include the same header file using different paths, and
3150 // different optimization settings can make the line number appear to
3151 // be a couple lines off, and we don't want to report an ODR violation
3152 // in those cases.
3153
3154 // This struct is used to compare line information, as returned by
3155 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3156 // operator used with std::sort.
3157
3158 struct Odr_violation_compare
3159 {
3160   bool
3161   operator()(const std::string& s1, const std::string& s2) const
3162   {
3163     // Inputs should be of the form "dirname/filename:linenum" where
3164     // "dirname/" is optional.  We want to compare just the filename:linenum.
3165
3166     // Find the last '/' in each string.
3167     std::string::size_type s1begin = s1.rfind('/');
3168     std::string::size_type s2begin = s2.rfind('/');
3169     // If there was no '/' in a string, start at the beginning.
3170     if (s1begin == std::string::npos)
3171       s1begin = 0;
3172     if (s2begin == std::string::npos)
3173       s2begin = 0;
3174     return s1.compare(s1begin, std::string::npos,
3175                       s2, s2begin, std::string::npos) < 0;
3176   }
3177 };
3178
3179 // Returns all of the lines attached to LOC, not just the one the
3180 // instruction actually came from.
3181 std::vector<std::string>
3182 Symbol_table::linenos_from_loc(const Task* task,
3183                                const Symbol_location& loc)
3184 {
3185   // We need to lock the object in order to read it.  This
3186   // means that we have to run in a singleton Task.  If we
3187   // want to run this in a general Task for better
3188   // performance, we will need one Task for object, plus
3189   // appropriate locking to ensure that we don't conflict with
3190   // other uses of the object.  Also note, one_addr2line is not
3191   // currently thread-safe.
3192   Task_lock_obj<Object> tl(task, loc.object);
3193
3194   std::vector<std::string> result;
3195   // 16 is the size of the object-cache that one_addr2line should use.
3196   std::string canonical_result = Dwarf_line_info::one_addr2line(
3197       loc.object, loc.shndx, loc.offset, 16, &result);
3198   if (!canonical_result.empty())
3199     result.push_back(canonical_result);
3200   return result;
3201 }
3202
3203 // OutputIterator that records if it was ever assigned to.  This
3204 // allows it to be used with std::set_intersection() to check for
3205 // intersection rather than computing the intersection.
3206 struct Check_intersection
3207 {
3208   Check_intersection()
3209     : value_(false)
3210   {}
3211
3212   bool had_intersection() const
3213   { return this->value_; }
3214
3215   Check_intersection& operator++()
3216   { return *this; }
3217
3218   Check_intersection& operator*()
3219   { return *this; }
3220
3221   template<typename T>
3222   Check_intersection& operator=(const T&)
3223   {
3224     this->value_ = true;
3225     return *this;
3226   }
3227
3228  private:
3229   bool value_;
3230 };
3231
3232 // Check candidate_odr_violations_ to find symbols with the same name
3233 // but apparently different definitions (different source-file/line-no
3234 // for each line assigned to the first instruction).
3235
3236 void
3237 Symbol_table::detect_odr_violations(const Task* task,
3238                                     const char* output_file_name) const
3239 {
3240   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3241        it != candidate_odr_violations_.end();
3242        ++it)
3243     {
3244       const char* const symbol_name = it->first;
3245
3246       std::string first_object_name;
3247       std::vector<std::string> first_object_linenos;
3248
3249       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3250           locs = it->second.begin();
3251       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3252           locs_end = it->second.end();
3253       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3254         {
3255           // Save the line numbers from the first definition to
3256           // compare to the other definitions.  Ideally, we'd compare
3257           // every definition to every other, but we don't want to
3258           // take O(N^2) time to do this.  This shortcut may cause
3259           // false negatives that appear or disappear depending on the
3260           // link order, but it won't cause false positives.
3261           first_object_name = locs->object->name();
3262           first_object_linenos = this->linenos_from_loc(task, *locs);
3263         }
3264
3265       // Sort by Odr_violation_compare to make std::set_intersection work.
3266       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3267                 Odr_violation_compare());
3268
3269       for (; locs != locs_end; ++locs)
3270         {
3271           std::vector<std::string> linenos =
3272               this->linenos_from_loc(task, *locs);
3273           // linenos will be empty if we couldn't parse the debug info.
3274           if (linenos.empty())
3275             continue;
3276           // Sort by Odr_violation_compare to make std::set_intersection work.
3277           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3278
3279           Check_intersection intersection_result =
3280               std::set_intersection(first_object_linenos.begin(),
3281                                     first_object_linenos.end(),
3282                                     linenos.begin(),
3283                                     linenos.end(),
3284                                     Check_intersection(),
3285                                     Odr_violation_compare());
3286           if (!intersection_result.had_intersection())
3287             {
3288               gold_warning(_("while linking %s: symbol '%s' defined in "
3289                              "multiple places (possible ODR violation):"),
3290                            output_file_name, demangle(symbol_name).c_str());
3291               // This only prints one location from each definition,
3292               // which may not be the location we expect to intersect
3293               // with another definition.  We could print the whole
3294               // set of locations, but that seems too verbose.
3295               gold_assert(!first_object_linenos.empty());
3296               gold_assert(!linenos.empty());
3297               fprintf(stderr, _("  %s from %s\n"),
3298                       first_object_linenos[0].c_str(),
3299                       first_object_name.c_str());
3300               fprintf(stderr, _("  %s from %s\n"),
3301                       linenos[0].c_str(),
3302                       locs->object->name().c_str());
3303               // Only print one broken pair, to avoid needing to
3304               // compare against a list of the disjoint definition
3305               // locations we've found so far.  (If we kept comparing
3306               // against just the first one, we'd get a lot of
3307               // redundant complaints about the second definition
3308               // location.)
3309               break;
3310             }
3311         }
3312     }
3313   // We only call one_addr2line() in this function, so we can clear its cache.
3314   Dwarf_line_info::clear_addr2line_cache();
3315 }
3316
3317 // Warnings functions.
3318
3319 // Add a new warning.
3320
3321 void
3322 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3323                       const std::string& warning)
3324 {
3325   name = symtab->canonicalize_name(name);
3326   this->warnings_[name].set(obj, warning);
3327 }
3328
3329 // Look through the warnings and mark the symbols for which we should
3330 // warn.  This is called during Layout::finalize when we know the
3331 // sources for all the symbols.
3332
3333 void
3334 Warnings::note_warnings(Symbol_table* symtab)
3335 {
3336   for (Warning_table::iterator p = this->warnings_.begin();
3337        p != this->warnings_.end();
3338        ++p)
3339     {
3340       Symbol* sym = symtab->lookup(p->first, NULL);
3341       if (sym != NULL
3342           && sym->source() == Symbol::FROM_OBJECT
3343           && sym->object() == p->second.object)
3344         sym->set_has_warning();
3345     }
3346 }
3347
3348 // Issue a warning.  This is called when we see a relocation against a
3349 // symbol for which has a warning.
3350
3351 template<int size, bool big_endian>
3352 void
3353 Warnings::issue_warning(const Symbol* sym,
3354                         const Relocate_info<size, big_endian>* relinfo,
3355                         size_t relnum, off_t reloffset) const
3356 {
3357   gold_assert(sym->has_warning());
3358
3359   // We don't want to issue a warning for a relocation against the
3360   // symbol in the same object file in which the symbol is defined.
3361   if (sym->object() == relinfo->object)
3362     return;
3363
3364   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3365   gold_assert(p != this->warnings_.end());
3366   gold_warning_at_location(relinfo, relnum, reloffset,
3367                            "%s", p->second.text.c_str());
3368 }
3369
3370 // Instantiate the templates we need.  We could use the configure
3371 // script to restrict this to only the ones needed for implemented
3372 // targets.
3373
3374 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3375 template
3376 void
3377 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3378 #endif
3379
3380 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3381 template
3382 void
3383 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3384 #endif
3385
3386 #ifdef HAVE_TARGET_32_LITTLE
3387 template
3388 void
3389 Symbol_table::add_from_relobj<32, false>(
3390     Sized_relobj_file<32, false>* relobj,
3391     const unsigned char* syms,
3392     size_t count,
3393     size_t symndx_offset,
3394     const char* sym_names,
3395     size_t sym_name_size,
3396     Sized_relobj_file<32, false>::Symbols* sympointers,
3397     size_t* defined);
3398 #endif
3399
3400 #ifdef HAVE_TARGET_32_BIG
3401 template
3402 void
3403 Symbol_table::add_from_relobj<32, true>(
3404     Sized_relobj_file<32, true>* relobj,
3405     const unsigned char* syms,
3406     size_t count,
3407     size_t symndx_offset,
3408     const char* sym_names,
3409     size_t sym_name_size,
3410     Sized_relobj_file<32, true>::Symbols* sympointers,
3411     size_t* defined);
3412 #endif
3413
3414 #ifdef HAVE_TARGET_64_LITTLE
3415 template
3416 void
3417 Symbol_table::add_from_relobj<64, false>(
3418     Sized_relobj_file<64, false>* relobj,
3419     const unsigned char* syms,
3420     size_t count,
3421     size_t symndx_offset,
3422     const char* sym_names,
3423     size_t sym_name_size,
3424     Sized_relobj_file<64, false>::Symbols* sympointers,
3425     size_t* defined);
3426 #endif
3427
3428 #ifdef HAVE_TARGET_64_BIG
3429 template
3430 void
3431 Symbol_table::add_from_relobj<64, true>(
3432     Sized_relobj_file<64, true>* relobj,
3433     const unsigned char* syms,
3434     size_t count,
3435     size_t symndx_offset,
3436     const char* sym_names,
3437     size_t sym_name_size,
3438     Sized_relobj_file<64, true>::Symbols* sympointers,
3439     size_t* defined);
3440 #endif
3441
3442 #ifdef HAVE_TARGET_32_LITTLE
3443 template
3444 Symbol*
3445 Symbol_table::add_from_pluginobj<32, false>(
3446     Sized_pluginobj<32, false>* obj,
3447     const char* name,
3448     const char* ver,
3449     elfcpp::Sym<32, false>* sym);
3450 #endif
3451
3452 #ifdef HAVE_TARGET_32_BIG
3453 template
3454 Symbol*
3455 Symbol_table::add_from_pluginobj<32, true>(
3456     Sized_pluginobj<32, true>* obj,
3457     const char* name,
3458     const char* ver,
3459     elfcpp::Sym<32, true>* sym);
3460 #endif
3461
3462 #ifdef HAVE_TARGET_64_LITTLE
3463 template
3464 Symbol*
3465 Symbol_table::add_from_pluginobj<64, false>(
3466     Sized_pluginobj<64, false>* obj,
3467     const char* name,
3468     const char* ver,
3469     elfcpp::Sym<64, false>* sym);
3470 #endif
3471
3472 #ifdef HAVE_TARGET_64_BIG
3473 template
3474 Symbol*
3475 Symbol_table::add_from_pluginobj<64, true>(
3476     Sized_pluginobj<64, true>* obj,
3477     const char* name,
3478     const char* ver,
3479     elfcpp::Sym<64, true>* sym);
3480 #endif
3481
3482 #ifdef HAVE_TARGET_32_LITTLE
3483 template
3484 void
3485 Symbol_table::add_from_dynobj<32, false>(
3486     Sized_dynobj<32, false>* dynobj,
3487     const unsigned char* syms,
3488     size_t count,
3489     const char* sym_names,
3490     size_t sym_name_size,
3491     const unsigned char* versym,
3492     size_t versym_size,
3493     const std::vector<const char*>* version_map,
3494     Sized_relobj_file<32, false>::Symbols* sympointers,
3495     size_t* defined);
3496 #endif
3497
3498 #ifdef HAVE_TARGET_32_BIG
3499 template
3500 void
3501 Symbol_table::add_from_dynobj<32, true>(
3502     Sized_dynobj<32, true>* dynobj,
3503     const unsigned char* syms,
3504     size_t count,
3505     const char* sym_names,
3506     size_t sym_name_size,
3507     const unsigned char* versym,
3508     size_t versym_size,
3509     const std::vector<const char*>* version_map,
3510     Sized_relobj_file<32, true>::Symbols* sympointers,
3511     size_t* defined);
3512 #endif
3513
3514 #ifdef HAVE_TARGET_64_LITTLE
3515 template
3516 void
3517 Symbol_table::add_from_dynobj<64, false>(
3518     Sized_dynobj<64, false>* dynobj,
3519     const unsigned char* syms,
3520     size_t count,
3521     const char* sym_names,
3522     size_t sym_name_size,
3523     const unsigned char* versym,
3524     size_t versym_size,
3525     const std::vector<const char*>* version_map,
3526     Sized_relobj_file<64, false>::Symbols* sympointers,
3527     size_t* defined);
3528 #endif
3529
3530 #ifdef HAVE_TARGET_64_BIG
3531 template
3532 void
3533 Symbol_table::add_from_dynobj<64, true>(
3534     Sized_dynobj<64, true>* dynobj,
3535     const unsigned char* syms,
3536     size_t count,
3537     const char* sym_names,
3538     size_t sym_name_size,
3539     const unsigned char* versym,
3540     size_t versym_size,
3541     const std::vector<const char*>* version_map,
3542     Sized_relobj_file<64, true>::Symbols* sympointers,
3543     size_t* defined);
3544 #endif
3545
3546 #ifdef HAVE_TARGET_32_LITTLE
3547 template
3548 Sized_symbol<32>*
3549 Symbol_table::add_from_incrobj(
3550     Object* obj,
3551     const char* name,
3552     const char* ver,
3553     elfcpp::Sym<32, false>* sym);
3554 #endif
3555
3556 #ifdef HAVE_TARGET_32_BIG
3557 template
3558 Sized_symbol<32>*
3559 Symbol_table::add_from_incrobj(
3560     Object* obj,
3561     const char* name,
3562     const char* ver,
3563     elfcpp::Sym<32, true>* sym);
3564 #endif
3565
3566 #ifdef HAVE_TARGET_64_LITTLE
3567 template
3568 Sized_symbol<64>*
3569 Symbol_table::add_from_incrobj(
3570     Object* obj,
3571     const char* name,
3572     const char* ver,
3573     elfcpp::Sym<64, false>* sym);
3574 #endif
3575
3576 #ifdef HAVE_TARGET_64_BIG
3577 template
3578 Sized_symbol<64>*
3579 Symbol_table::add_from_incrobj(
3580     Object* obj,
3581     const char* name,
3582     const char* ver,
3583     elfcpp::Sym<64, true>* sym);
3584 #endif
3585
3586 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3587 template
3588 void
3589 Symbol_table::define_with_copy_reloc<32>(
3590     Sized_symbol<32>* sym,
3591     Output_data* posd,
3592     elfcpp::Elf_types<32>::Elf_Addr value);
3593 #endif
3594
3595 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3596 template
3597 void
3598 Symbol_table::define_with_copy_reloc<64>(
3599     Sized_symbol<64>* sym,
3600     Output_data* posd,
3601     elfcpp::Elf_types<64>::Elf_Addr value);
3602 #endif
3603
3604 #ifdef HAVE_TARGET_32_LITTLE
3605 template
3606 void
3607 Warnings::issue_warning<32, false>(const Symbol* sym,
3608                                    const Relocate_info<32, false>* relinfo,
3609                                    size_t relnum, off_t reloffset) const;
3610 #endif
3611
3612 #ifdef HAVE_TARGET_32_BIG
3613 template
3614 void
3615 Warnings::issue_warning<32, true>(const Symbol* sym,
3616                                   const Relocate_info<32, true>* relinfo,
3617                                   size_t relnum, off_t reloffset) const;
3618 #endif
3619
3620 #ifdef HAVE_TARGET_64_LITTLE
3621 template
3622 void
3623 Warnings::issue_warning<64, false>(const Symbol* sym,
3624                                    const Relocate_info<64, false>* relinfo,
3625                                    size_t relnum, off_t reloffset) const;
3626 #endif
3627
3628 #ifdef HAVE_TARGET_64_BIG
3629 template
3630 void
3631 Warnings::issue_warning<64, true>(const Symbol* sym,
3632                                   const Relocate_info<64, true>* relinfo,
3633                                   size_t relnum, off_t reloffset) const;
3634 #endif
3635
3636 } // End namespace gold.