Fix potential crashes when Target::make_symbol() returns NULL.
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol.  This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55                     elfcpp::STT type, elfcpp::STB binding,
56                     elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83   this->is_protected_ = false;
84 }
85
86 // Return the demangled version of the symbol's name, but only
87 // if the --demangle flag was set.
88
89 static std::string
90 demangle(const char* name)
91 {
92   if (!parameters->options().do_demangle())
93     return name;
94
95   // cplus_demangle allocates memory for the result it returns,
96   // and returns NULL if the name is already demangled.
97   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
98   if (demangled_name == NULL)
99     return name;
100
101   std::string retval(demangled_name);
102   free(demangled_name);
103   return retval;
104 }
105
106 std::string
107 Symbol::demangled_name() const
108 {
109   return demangle(this->name());
110 }
111
112 // Initialize the fields in the base class Symbol for SYM in OBJECT.
113
114 template<int size, bool big_endian>
115 void
116 Symbol::init_base_object(const char* name, const char* version, Object* object,
117                          const elfcpp::Sym<size, big_endian>& sym,
118                          unsigned int st_shndx, bool is_ordinary)
119 {
120   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
121                     sym.get_st_visibility(), sym.get_st_nonvis());
122   this->u_.from_object.object = object;
123   this->u_.from_object.shndx = st_shndx;
124   this->is_ordinary_shndx_ = is_ordinary;
125   this->source_ = FROM_OBJECT;
126   this->in_reg_ = !object->is_dynamic();
127   this->in_dyn_ = object->is_dynamic();
128   this->in_real_elf_ = object->pluginobj() == NULL;
129 }
130
131 // Initialize the fields in the base class Symbol for a symbol defined
132 // in an Output_data.
133
134 void
135 Symbol::init_base_output_data(const char* name, const char* version,
136                               Output_data* od, elfcpp::STT type,
137                               elfcpp::STB binding, elfcpp::STV visibility,
138                               unsigned char nonvis, bool offset_is_from_end,
139                               bool is_predefined)
140 {
141   this->init_fields(name, version, type, binding, visibility, nonvis);
142   this->u_.in_output_data.output_data = od;
143   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
144   this->source_ = IN_OUTPUT_DATA;
145   this->in_reg_ = true;
146   this->in_real_elf_ = true;
147   this->is_predefined_ = is_predefined;
148 }
149
150 // Initialize the fields in the base class Symbol for a symbol defined
151 // in an Output_segment.
152
153 void
154 Symbol::init_base_output_segment(const char* name, const char* version,
155                                  Output_segment* os, elfcpp::STT type,
156                                  elfcpp::STB binding, elfcpp::STV visibility,
157                                  unsigned char nonvis,
158                                  Segment_offset_base offset_base,
159                                  bool is_predefined)
160 {
161   this->init_fields(name, version, type, binding, visibility, nonvis);
162   this->u_.in_output_segment.output_segment = os;
163   this->u_.in_output_segment.offset_base = offset_base;
164   this->source_ = IN_OUTPUT_SEGMENT;
165   this->in_reg_ = true;
166   this->in_real_elf_ = true;
167   this->is_predefined_ = is_predefined;
168 }
169
170 // Initialize the fields in the base class Symbol for a symbol defined
171 // as a constant.
172
173 void
174 Symbol::init_base_constant(const char* name, const char* version,
175                            elfcpp::STT type, elfcpp::STB binding,
176                            elfcpp::STV visibility, unsigned char nonvis,
177                            bool is_predefined)
178 {
179   this->init_fields(name, version, type, binding, visibility, nonvis);
180   this->source_ = IS_CONSTANT;
181   this->in_reg_ = true;
182   this->in_real_elf_ = true;
183   this->is_predefined_ = is_predefined;
184 }
185
186 // Initialize the fields in the base class Symbol for an undefined
187 // symbol.
188
189 void
190 Symbol::init_base_undefined(const char* name, const char* version,
191                             elfcpp::STT type, elfcpp::STB binding,
192                             elfcpp::STV visibility, unsigned char nonvis)
193 {
194   this->init_fields(name, version, type, binding, visibility, nonvis);
195   this->dynsym_index_ = -1U;
196   this->source_ = IS_UNDEFINED;
197   this->in_reg_ = true;
198   this->in_real_elf_ = true;
199 }
200
201 // Allocate a common symbol in the base.
202
203 void
204 Symbol::allocate_base_common(Output_data* od)
205 {
206   gold_assert(this->is_common());
207   this->source_ = IN_OUTPUT_DATA;
208   this->u_.in_output_data.output_data = od;
209   this->u_.in_output_data.offset_is_from_end = false;
210 }
211
212 // Initialize the fields in Sized_symbol for SYM in OBJECT.
213
214 template<int size>
215 template<bool big_endian>
216 void
217 Sized_symbol<size>::init_object(const char* name, const char* version,
218                                 Object* object,
219                                 const elfcpp::Sym<size, big_endian>& sym,
220                                 unsigned int st_shndx, bool is_ordinary)
221 {
222   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
223   this->value_ = sym.get_st_value();
224   this->symsize_ = sym.get_st_size();
225 }
226
227 // Initialize the fields in Sized_symbol for a symbol defined in an
228 // Output_data.
229
230 template<int size>
231 void
232 Sized_symbol<size>::init_output_data(const char* name, const char* version,
233                                      Output_data* od, Value_type value,
234                                      Size_type symsize, elfcpp::STT type,
235                                      elfcpp::STB binding,
236                                      elfcpp::STV visibility,
237                                      unsigned char nonvis,
238                                      bool offset_is_from_end,
239                                      bool is_predefined)
240 {
241   this->init_base_output_data(name, version, od, type, binding, visibility,
242                               nonvis, offset_is_from_end, is_predefined);
243   this->value_ = value;
244   this->symsize_ = symsize;
245 }
246
247 // Initialize the fields in Sized_symbol for a symbol defined in an
248 // Output_segment.
249
250 template<int size>
251 void
252 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
253                                         Output_segment* os, Value_type value,
254                                         Size_type symsize, elfcpp::STT type,
255                                         elfcpp::STB binding,
256                                         elfcpp::STV visibility,
257                                         unsigned char nonvis,
258                                         Segment_offset_base offset_base,
259                                         bool is_predefined)
260 {
261   this->init_base_output_segment(name, version, os, type, binding, visibility,
262                                  nonvis, offset_base, is_predefined);
263   this->value_ = value;
264   this->symsize_ = symsize;
265 }
266
267 // Initialize the fields in Sized_symbol for a symbol defined as a
268 // constant.
269
270 template<int size>
271 void
272 Sized_symbol<size>::init_constant(const char* name, const char* version,
273                                   Value_type value, Size_type symsize,
274                                   elfcpp::STT type, elfcpp::STB binding,
275                                   elfcpp::STV visibility, unsigned char nonvis,
276                                   bool is_predefined)
277 {
278   this->init_base_constant(name, version, type, binding, visibility, nonvis,
279                            is_predefined);
280   this->value_ = value;
281   this->symsize_ = symsize;
282 }
283
284 // Initialize the fields in Sized_symbol for an undefined symbol.
285
286 template<int size>
287 void
288 Sized_symbol<size>::init_undefined(const char* name, const char* version,
289                                    Value_type value, elfcpp::STT type,
290                                    elfcpp::STB binding, elfcpp::STV visibility,
291                                    unsigned char nonvis)
292 {
293   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
294   this->value_ = value;
295   this->symsize_ = 0;
296 }
297
298 // Return an allocated string holding the symbol's name as
299 // name@version.  This is used for relocatable links.
300
301 std::string
302 Symbol::versioned_name() const
303 {
304   gold_assert(this->version_ != NULL);
305   std::string ret = this->name_;
306   ret.push_back('@');
307   if (this->is_def_)
308     ret.push_back('@');
309   ret += this->version_;
310   return ret;
311 }
312
313 // Return true if SHNDX represents a common symbol.
314
315 bool
316 Symbol::is_common_shndx(unsigned int shndx)
317 {
318   return (shndx == elfcpp::SHN_COMMON
319           || shndx == parameters->target().small_common_shndx()
320           || shndx == parameters->target().large_common_shndx());
321 }
322
323 // Allocate a common symbol.
324
325 template<int size>
326 void
327 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
328 {
329   this->allocate_base_common(od);
330   this->value_ = value;
331 }
332
333 // The ""'s around str ensure str is a string literal, so sizeof works.
334 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
335
336 // Return true if this symbol should be added to the dynamic symbol
337 // table.
338
339 bool
340 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
341 {
342   // If the symbol is only present on plugin files, the plugin decided we
343   // don't need it.
344   if (!this->in_real_elf())
345     return false;
346
347   // If the symbol is used by a dynamic relocation, we need to add it.
348   if (this->needs_dynsym_entry())
349     return true;
350
351   // If this symbol's section is not added, the symbol need not be added. 
352   // The section may have been GCed.  Note that export_dynamic is being 
353   // overridden here.  This should not be done for shared objects.
354   if (parameters->options().gc_sections() 
355       && !parameters->options().shared()
356       && this->source() == Symbol::FROM_OBJECT
357       && !this->object()->is_dynamic())
358     {
359       Relobj* relobj = static_cast<Relobj*>(this->object());
360       bool is_ordinary;
361       unsigned int shndx = this->shndx(&is_ordinary);
362       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
363           && !relobj->is_section_included(shndx)
364           && !symtab->is_section_folded(relobj, shndx))
365         return false;
366     }
367
368   // If the symbol was forced dynamic in a --dynamic-list file
369   // or an --export-dynamic-symbol option, add it.
370   if (!this->is_from_dynobj()
371       && (parameters->options().in_dynamic_list(this->name())
372           || parameters->options().is_export_dynamic_symbol(this->name())))
373     {
374       if (!this->is_forced_local())
375         return true;
376       gold_warning(_("Cannot export local symbol '%s'"),
377                    this->demangled_name().c_str());
378       return false;
379     }
380
381   // If the symbol was forced local in a version script, do not add it.
382   if (this->is_forced_local())
383     return false;
384
385   // If dynamic-list-data was specified, add any STT_OBJECT.
386   if (parameters->options().dynamic_list_data()
387       && !this->is_from_dynobj()
388       && this->type() == elfcpp::STT_OBJECT)
389     return true;
390
391   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
392   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
393   if ((parameters->options().dynamic_list_cpp_new()
394        || parameters->options().dynamic_list_cpp_typeinfo())
395       && !this->is_from_dynobj())
396     {
397       // TODO(csilvers): We could probably figure out if we're an operator
398       //                 new/delete or typeinfo without the need to demangle.
399       char* demangled_name = cplus_demangle(this->name(),
400                                             DMGL_ANSI | DMGL_PARAMS);
401       if (demangled_name == NULL)
402         {
403           // Not a C++ symbol, so it can't satisfy these flags
404         }
405       else if (parameters->options().dynamic_list_cpp_new()
406                && (strprefix(demangled_name, "operator new")
407                    || strprefix(demangled_name, "operator delete")))
408         {
409           free(demangled_name);
410           return true;
411         }
412       else if (parameters->options().dynamic_list_cpp_typeinfo()
413                && (strprefix(demangled_name, "typeinfo name for")
414                    || strprefix(demangled_name, "typeinfo for")))
415         {
416           free(demangled_name);
417           return true;
418         }
419       else
420         free(demangled_name);
421     }
422
423   // If exporting all symbols or building a shared library,
424   // or the symbol should be globally unique (GNU_UNIQUE),
425   // and the symbol is defined in a regular object and is
426   // externally visible, we need to add it.
427   if ((parameters->options().export_dynamic()
428        || parameters->options().shared()
429        || (parameters->options().gnu_unique()
430            && this->binding() == elfcpp::STB_GNU_UNIQUE))
431       && !this->is_from_dynobj()
432       && !this->is_undefined()
433       && this->is_externally_visible())
434     return true;
435
436   return false;
437 }
438
439 // Return true if the final value of this symbol is known at link
440 // time.
441
442 bool
443 Symbol::final_value_is_known() const
444 {
445   // If we are not generating an executable, then no final values are
446   // known, since they will change at runtime, with the exception of
447   // TLS symbols in a position-independent executable.
448   if ((parameters->options().output_is_position_independent()
449        || parameters->options().relocatable())
450       && !(this->type() == elfcpp::STT_TLS
451            && parameters->options().pie()))
452     return false;
453
454   // If the symbol is not from an object file, and is not undefined,
455   // then it is defined, and known.
456   if (this->source_ != FROM_OBJECT)
457     {
458       if (this->source_ != IS_UNDEFINED)
459         return true;
460     }
461   else
462     {
463       // If the symbol is from a dynamic object, then the final value
464       // is not known.
465       if (this->object()->is_dynamic())
466         return false;
467
468       // If the symbol is not undefined (it is defined or common),
469       // then the final value is known.
470       if (!this->is_undefined())
471         return true;
472     }
473
474   // If the symbol is undefined, then whether the final value is known
475   // depends on whether we are doing a static link.  If we are doing a
476   // dynamic link, then the final value could be filled in at runtime.
477   // This could reasonably be the case for a weak undefined symbol.
478   return parameters->doing_static_link();
479 }
480
481 // Return the output section where this symbol is defined.
482
483 Output_section*
484 Symbol::output_section() const
485 {
486   switch (this->source_)
487     {
488     case FROM_OBJECT:
489       {
490         unsigned int shndx = this->u_.from_object.shndx;
491         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
492           {
493             gold_assert(!this->u_.from_object.object->is_dynamic());
494             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
495             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
496             return relobj->output_section(shndx);
497           }
498         return NULL;
499       }
500
501     case IN_OUTPUT_DATA:
502       return this->u_.in_output_data.output_data->output_section();
503
504     case IN_OUTPUT_SEGMENT:
505     case IS_CONSTANT:
506     case IS_UNDEFINED:
507       return NULL;
508
509     default:
510       gold_unreachable();
511     }
512 }
513
514 // Set the symbol's output section.  This is used for symbols defined
515 // in scripts.  This should only be called after the symbol table has
516 // been finalized.
517
518 void
519 Symbol::set_output_section(Output_section* os)
520 {
521   switch (this->source_)
522     {
523     case FROM_OBJECT:
524     case IN_OUTPUT_DATA:
525       gold_assert(this->output_section() == os);
526       break;
527     case IS_CONSTANT:
528       this->source_ = IN_OUTPUT_DATA;
529       this->u_.in_output_data.output_data = os;
530       this->u_.in_output_data.offset_is_from_end = false;
531       break;
532     case IN_OUTPUT_SEGMENT:
533     case IS_UNDEFINED:
534     default:
535       gold_unreachable();
536     }
537 }
538
539 // Set the symbol's output segment.  This is used for pre-defined
540 // symbols whose segments aren't known until after layout is done
541 // (e.g., __ehdr_start).
542
543 void
544 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
545 {
546   gold_assert(this->is_predefined_);
547   this->source_ = IN_OUTPUT_SEGMENT;
548   this->u_.in_output_segment.output_segment = os;
549   this->u_.in_output_segment.offset_base = base;
550 }
551
552 // Set the symbol to undefined.  This is used for pre-defined
553 // symbols whose segments aren't known until after layout is done
554 // (e.g., __ehdr_start).
555
556 void
557 Symbol::set_undefined()
558 {
559   this->source_ = IS_UNDEFINED;
560   this->is_predefined_ = false;
561 }
562
563 // Class Symbol_table.
564
565 Symbol_table::Symbol_table(unsigned int count,
566                            const Version_script_info& version_script)
567   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
568     forwarders_(), commons_(), tls_commons_(), small_commons_(),
569     large_commons_(), forced_locals_(), warnings_(),
570     version_script_(version_script), gc_(NULL), icf_(NULL),
571     target_symbols_()
572 {
573   namepool_.reserve(count);
574 }
575
576 Symbol_table::~Symbol_table()
577 {
578 }
579
580 // The symbol table key equality function.  This is called with
581 // Stringpool keys.
582
583 inline bool
584 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
585                                           const Symbol_table_key& k2) const
586 {
587   return k1.first == k2.first && k1.second == k2.second;
588 }
589
590 bool
591 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
592 {
593   return (parameters->options().icf_enabled()
594           && this->icf_->is_section_folded(obj, shndx));
595 }
596
597 // For symbols that have been listed with a -u or --export-dynamic-symbol
598 // option, add them to the work list to avoid gc'ing them.
599
600 void 
601 Symbol_table::gc_mark_undef_symbols(Layout* layout)
602 {
603   for (options::String_set::const_iterator p =
604          parameters->options().undefined_begin();
605        p != parameters->options().undefined_end();
606        ++p)
607     {
608       const char* name = p->c_str();
609       Symbol* sym = this->lookup(name);
610       gold_assert(sym != NULL);
611       if (sym->source() == Symbol::FROM_OBJECT 
612           && !sym->object()->is_dynamic())
613         {
614           this->gc_mark_symbol(sym);
615         }
616     }
617
618   for (options::String_set::const_iterator p =
619          parameters->options().export_dynamic_symbol_begin();
620        p != parameters->options().export_dynamic_symbol_end();
621        ++p)
622     {
623       const char* name = p->c_str();
624       Symbol* sym = this->lookup(name);
625       // It's not an error if a symbol named by --export-dynamic-symbol
626       // is undefined.
627       if (sym != NULL
628           && sym->source() == Symbol::FROM_OBJECT 
629           && !sym->object()->is_dynamic())
630         {
631           this->gc_mark_symbol(sym);
632         }
633     }
634
635   for (Script_options::referenced_const_iterator p =
636          layout->script_options()->referenced_begin();
637        p != layout->script_options()->referenced_end();
638        ++p)
639     {
640       Symbol* sym = this->lookup(p->c_str());
641       gold_assert(sym != NULL);
642       if (sym->source() == Symbol::FROM_OBJECT
643           && !sym->object()->is_dynamic())
644         {
645           this->gc_mark_symbol(sym);
646         }
647     }
648 }
649
650 void
651 Symbol_table::gc_mark_symbol(Symbol* sym)
652 {
653   // Add the object and section to the work list.
654   bool is_ordinary;
655   unsigned int shndx = sym->shndx(&is_ordinary);
656   if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
657     {
658       gold_assert(this->gc_!= NULL);
659       Relobj* relobj = static_cast<Relobj*>(sym->object());
660       this->gc_->worklist().push_back(Section_id(relobj, shndx));
661     }
662   parameters->target().gc_mark_symbol(this, sym);
663 }
664
665 // When doing garbage collection, keep symbols that have been seen in
666 // dynamic objects.
667 inline void 
668 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
669 {
670   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
671       && !sym->object()->is_dynamic())
672     this->gc_mark_symbol(sym);
673 }
674
675 // Make TO a symbol which forwards to FROM.
676
677 void
678 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
679 {
680   gold_assert(from != to);
681   gold_assert(!from->is_forwarder() && !to->is_forwarder());
682   this->forwarders_[from] = to;
683   from->set_forwarder();
684 }
685
686 // Resolve the forwards from FROM, returning the real symbol.
687
688 Symbol*
689 Symbol_table::resolve_forwards(const Symbol* from) const
690 {
691   gold_assert(from->is_forwarder());
692   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
693     this->forwarders_.find(from);
694   gold_assert(p != this->forwarders_.end());
695   return p->second;
696 }
697
698 // Look up a symbol by name.
699
700 Symbol*
701 Symbol_table::lookup(const char* name, const char* version) const
702 {
703   Stringpool::Key name_key;
704   name = this->namepool_.find(name, &name_key);
705   if (name == NULL)
706     return NULL;
707
708   Stringpool::Key version_key = 0;
709   if (version != NULL)
710     {
711       version = this->namepool_.find(version, &version_key);
712       if (version == NULL)
713         return NULL;
714     }
715
716   Symbol_table_key key(name_key, version_key);
717   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
718   if (p == this->table_.end())
719     return NULL;
720   return p->second;
721 }
722
723 // Resolve a Symbol with another Symbol.  This is only used in the
724 // unusual case where there are references to both an unversioned
725 // symbol and a symbol with a version, and we then discover that that
726 // version is the default version.  Because this is unusual, we do
727 // this the slow way, by converting back to an ELF symbol.
728
729 template<int size, bool big_endian>
730 void
731 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
732 {
733   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
734   elfcpp::Sym_write<size, big_endian> esym(buf);
735   // We don't bother to set the st_name or the st_shndx field.
736   esym.put_st_value(from->value());
737   esym.put_st_size(from->symsize());
738   esym.put_st_info(from->binding(), from->type());
739   esym.put_st_other(from->visibility(), from->nonvis());
740   bool is_ordinary;
741   unsigned int shndx = from->shndx(&is_ordinary);
742   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
743                 from->version(), true);
744   if (from->in_reg())
745     to->set_in_reg();
746   if (from->in_dyn())
747     to->set_in_dyn();
748   if (parameters->options().gc_sections())
749     this->gc_mark_dyn_syms(to);
750 }
751
752 // Record that a symbol is forced to be local by a version script or
753 // by visibility.
754
755 void
756 Symbol_table::force_local(Symbol* sym)
757 {
758   if (!sym->is_defined() && !sym->is_common())
759     return;
760   if (sym->is_forced_local())
761     {
762       // We already got this one.
763       return;
764     }
765   sym->set_is_forced_local();
766   this->forced_locals_.push_back(sym);
767 }
768
769 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
770 // is only called for undefined symbols, when at least one --wrap
771 // option was used.
772
773 const char*
774 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
775 {
776   // For some targets, we need to ignore a specific character when
777   // wrapping, and add it back later.
778   char prefix = '\0';
779   if (name[0] == parameters->target().wrap_char())
780     {
781       prefix = name[0];
782       ++name;
783     }
784
785   if (parameters->options().is_wrap(name))
786     {
787       // Turn NAME into __wrap_NAME.
788       std::string s;
789       if (prefix != '\0')
790         s += prefix;
791       s += "__wrap_";
792       s += name;
793
794       // This will give us both the old and new name in NAMEPOOL_, but
795       // that is OK.  Only the versions we need will wind up in the
796       // real string table in the output file.
797       return this->namepool_.add(s.c_str(), true, name_key);
798     }
799
800   const char* const real_prefix = "__real_";
801   const size_t real_prefix_length = strlen(real_prefix);
802   if (strncmp(name, real_prefix, real_prefix_length) == 0
803       && parameters->options().is_wrap(name + real_prefix_length))
804     {
805       // Turn __real_NAME into NAME.
806       std::string s;
807       if (prefix != '\0')
808         s += prefix;
809       s += name + real_prefix_length;
810       return this->namepool_.add(s.c_str(), true, name_key);
811     }
812
813   return name;
814 }
815
816 // This is called when we see a symbol NAME/VERSION, and the symbol
817 // already exists in the symbol table, and VERSION is marked as being
818 // the default version.  SYM is the NAME/VERSION symbol we just added.
819 // DEFAULT_IS_NEW is true if this is the first time we have seen the
820 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
821
822 template<int size, bool big_endian>
823 void
824 Symbol_table::define_default_version(Sized_symbol<size>* sym,
825                                      bool default_is_new,
826                                      Symbol_table_type::iterator pdef)
827 {
828   if (default_is_new)
829     {
830       // This is the first time we have seen NAME/NULL.  Make
831       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
832       // version.
833       pdef->second = sym;
834       sym->set_is_default();
835     }
836   else if (pdef->second == sym)
837     {
838       // NAME/NULL already points to NAME/VERSION.  Don't mark the
839       // symbol as the default if it is not already the default.
840     }
841   else
842     {
843       // This is the unfortunate case where we already have entries
844       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
845       // NAME/VERSION where VERSION is the default version.  We have
846       // already resolved this new symbol with the existing
847       // NAME/VERSION symbol.
848
849       // It's possible that NAME/NULL and NAME/VERSION are both
850       // defined in regular objects.  This can only happen if one
851       // object file defines foo and another defines foo@@ver.  This
852       // is somewhat obscure, but we call it a multiple definition
853       // error.
854
855       // It's possible that NAME/NULL actually has a version, in which
856       // case it won't be the same as VERSION.  This happens with
857       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
858       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
859       // then see an unadorned t2_2 in an object file and give it
860       // version VER1 from the version script.  This looks like a
861       // default definition for VER1, so it looks like we should merge
862       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
863       // not obvious that this is an error, either.  So we just punt.
864
865       // If one of the symbols has non-default visibility, and the
866       // other is defined in a shared object, then they are different
867       // symbols.
868
869       // If the two symbols are from different shared objects,
870       // they are different symbols.
871
872       // Otherwise, we just resolve the symbols as though they were
873       // the same.
874
875       if (pdef->second->version() != NULL)
876         gold_assert(pdef->second->version() != sym->version());
877       else if (sym->visibility() != elfcpp::STV_DEFAULT
878                && pdef->second->is_from_dynobj())
879         ;
880       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
881                && sym->is_from_dynobj())
882         ;
883       else if (pdef->second->is_from_dynobj()
884                && sym->is_from_dynobj()
885                && pdef->second->object() != sym->object())
886         ;
887       else
888         {
889           const Sized_symbol<size>* symdef;
890           symdef = this->get_sized_symbol<size>(pdef->second);
891           Symbol_table::resolve<size, big_endian>(sym, symdef);
892           this->make_forwarder(pdef->second, sym);
893           pdef->second = sym;
894           sym->set_is_default();
895         }
896     }
897 }
898
899 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
900 // name and VERSION is the version; both are canonicalized.  DEF is
901 // whether this is the default version.  ST_SHNDX is the symbol's
902 // section index; IS_ORDINARY is whether this is a normal section
903 // rather than a special code.
904
905 // If IS_DEFAULT_VERSION is true, then this is the definition of a
906 // default version of a symbol.  That means that any lookup of
907 // NAME/NULL and any lookup of NAME/VERSION should always return the
908 // same symbol.  This is obvious for references, but in particular we
909 // want to do this for definitions: overriding NAME/NULL should also
910 // override NAME/VERSION.  If we don't do that, it would be very hard
911 // to override functions in a shared library which uses versioning.
912
913 // We implement this by simply making both entries in the hash table
914 // point to the same Symbol structure.  That is easy enough if this is
915 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
916 // that we have seen both already, in which case they will both have
917 // independent entries in the symbol table.  We can't simply change
918 // the symbol table entry, because we have pointers to the entries
919 // attached to the object files.  So we mark the entry attached to the
920 // object file as a forwarder, and record it in the forwarders_ map.
921 // Note that entries in the hash table will never be marked as
922 // forwarders.
923 //
924 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
925 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
926 // for a special section code.  ST_SHNDX may be modified if the symbol
927 // is defined in a section being discarded.
928
929 template<int size, bool big_endian>
930 Sized_symbol<size>*
931 Symbol_table::add_from_object(Object* object,
932                               const char* name,
933                               Stringpool::Key name_key,
934                               const char* version,
935                               Stringpool::Key version_key,
936                               bool is_default_version,
937                               const elfcpp::Sym<size, big_endian>& sym,
938                               unsigned int st_shndx,
939                               bool is_ordinary,
940                               unsigned int orig_st_shndx)
941 {
942   // Print a message if this symbol is being traced.
943   if (parameters->options().is_trace_symbol(name))
944     {
945       if (orig_st_shndx == elfcpp::SHN_UNDEF)
946         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
947       else
948         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
949     }
950
951   // For an undefined symbol, we may need to adjust the name using
952   // --wrap.
953   if (orig_st_shndx == elfcpp::SHN_UNDEF
954       && parameters->options().any_wrap())
955     {
956       const char* wrap_name = this->wrap_symbol(name, &name_key);
957       if (wrap_name != name)
958         {
959           // If we see a reference to malloc with version GLIBC_2.0,
960           // and we turn it into a reference to __wrap_malloc, then we
961           // discard the version number.  Otherwise the user would be
962           // required to specify the correct version for
963           // __wrap_malloc.
964           version = NULL;
965           version_key = 0;
966           name = wrap_name;
967         }
968     }
969
970   Symbol* const snull = NULL;
971   std::pair<typename Symbol_table_type::iterator, bool> ins =
972     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
973                                        snull));
974
975   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
976     std::make_pair(this->table_.end(), false);
977   if (is_default_version)
978     {
979       const Stringpool::Key vnull_key = 0;
980       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
981                                                                      vnull_key),
982                                                       snull));
983     }
984
985   // ins.first: an iterator, which is a pointer to a pair.
986   // ins.first->first: the key (a pair of name and version).
987   // ins.first->second: the value (Symbol*).
988   // ins.second: true if new entry was inserted, false if not.
989
990   Sized_symbol<size>* ret;
991   bool was_undefined;
992   bool was_common;
993   if (!ins.second)
994     {
995       // We already have an entry for NAME/VERSION.
996       ret = this->get_sized_symbol<size>(ins.first->second);
997       gold_assert(ret != NULL);
998
999       was_undefined = ret->is_undefined();
1000       // Commons from plugins are just placeholders.
1001       was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1002
1003       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1004                     version, is_default_version);
1005       if (parameters->options().gc_sections())
1006         this->gc_mark_dyn_syms(ret);
1007
1008       if (is_default_version)
1009         this->define_default_version<size, big_endian>(ret, insdefault.second,
1010                                                        insdefault.first);
1011       else
1012         {
1013           bool dummy;
1014           if (version != NULL
1015               && ret->source() == Symbol::FROM_OBJECT
1016               && ret->object() == object
1017               && is_ordinary
1018               && ret->shndx(&dummy) == st_shndx
1019               && ret->is_default())
1020             {
1021               // We have seen NAME/VERSION already, and marked it as the
1022               // default version, but now we see a definition for
1023               // NAME/VERSION that is not the default version. This can
1024               // happen when the assembler generates two symbols for
1025               // a symbol as a result of a ".symver foo,foo@VER"
1026               // directive. We see the first unversioned symbol and
1027               // we may mark it as the default version (from a
1028               // version script); then we see the second versioned
1029               // symbol and we need to override the first.
1030               // In any other case, the two symbols should have generated
1031               // a multiple definition error.
1032               // (See PR gold/18703.)
1033               ret->set_is_not_default();
1034               const Stringpool::Key vnull_key = 0;
1035               this->table_.erase(std::make_pair(name_key, vnull_key));
1036             }
1037         }
1038     }
1039   else
1040     {
1041       // This is the first time we have seen NAME/VERSION.
1042       gold_assert(ins.first->second == NULL);
1043
1044       if (is_default_version && !insdefault.second)
1045         {
1046           // We already have an entry for NAME/NULL.  If we override
1047           // it, then change it to NAME/VERSION.
1048           ret = this->get_sized_symbol<size>(insdefault.first->second);
1049
1050           was_undefined = ret->is_undefined();
1051           // Commons from plugins are just placeholders.
1052           was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1053
1054           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1055                         version, is_default_version);
1056           if (parameters->options().gc_sections())
1057             this->gc_mark_dyn_syms(ret);
1058           ins.first->second = ret;
1059         }
1060       else
1061         {
1062           was_undefined = false;
1063           was_common = false;
1064
1065           Sized_target<size, big_endian>* target =
1066             parameters->sized_target<size, big_endian>();
1067           if (!target->has_make_symbol())
1068             ret = new Sized_symbol<size>();
1069           else
1070             {
1071               ret = target->make_symbol(name, sym.get_st_type(), object,
1072                                         st_shndx, sym.get_st_value());
1073               if (ret == NULL)
1074                 {
1075                   // This means that we don't want a symbol table
1076                   // entry after all.
1077                   if (!is_default_version)
1078                     this->table_.erase(ins.first);
1079                   else
1080                     {
1081                       this->table_.erase(insdefault.first);
1082                       // Inserting INSDEFAULT invalidated INS.
1083                       this->table_.erase(std::make_pair(name_key,
1084                                                         version_key));
1085                     }
1086                   return NULL;
1087                 }
1088             }
1089
1090           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1091
1092           ins.first->second = ret;
1093           if (is_default_version)
1094             {
1095               // This is the first time we have seen NAME/NULL.  Point
1096               // it at the new entry for NAME/VERSION.
1097               gold_assert(insdefault.second);
1098               insdefault.first->second = ret;
1099             }
1100         }
1101
1102       if (is_default_version)
1103         ret->set_is_default();
1104     }
1105
1106   // Record every time we see a new undefined symbol, to speed up
1107   // archive groups.
1108   if (!was_undefined && ret->is_undefined())
1109     {
1110       ++this->saw_undefined_;
1111       if (parameters->options().has_plugins())
1112         parameters->options().plugins()->new_undefined_symbol(ret);
1113     }
1114
1115   // Keep track of common symbols, to speed up common symbol
1116   // allocation.  Don't record commons from plugin objects;
1117   // we need to wait until we see the real symbol in the
1118   // replacement file.
1119   if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1120     {
1121       if (ret->type() == elfcpp::STT_TLS)
1122         this->tls_commons_.push_back(ret);
1123       else if (!is_ordinary
1124                && st_shndx == parameters->target().small_common_shndx())
1125         this->small_commons_.push_back(ret);
1126       else if (!is_ordinary
1127                && st_shndx == parameters->target().large_common_shndx())
1128         this->large_commons_.push_back(ret);
1129       else
1130         this->commons_.push_back(ret);
1131     }
1132
1133   // If we're not doing a relocatable link, then any symbol with
1134   // hidden or internal visibility is local.
1135   if ((ret->visibility() == elfcpp::STV_HIDDEN
1136        || ret->visibility() == elfcpp::STV_INTERNAL)
1137       && (ret->binding() == elfcpp::STB_GLOBAL
1138           || ret->binding() == elfcpp::STB_GNU_UNIQUE
1139           || ret->binding() == elfcpp::STB_WEAK)
1140       && !parameters->options().relocatable())
1141     this->force_local(ret);
1142
1143   return ret;
1144 }
1145
1146 // Add all the symbols in a relocatable object to the hash table.
1147
1148 template<int size, bool big_endian>
1149 void
1150 Symbol_table::add_from_relobj(
1151     Sized_relobj_file<size, big_endian>* relobj,
1152     const unsigned char* syms,
1153     size_t count,
1154     size_t symndx_offset,
1155     const char* sym_names,
1156     size_t sym_name_size,
1157     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1158     size_t* defined)
1159 {
1160   *defined = 0;
1161
1162   gold_assert(size == parameters->target().get_size());
1163
1164   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1165
1166   const bool just_symbols = relobj->just_symbols();
1167
1168   const unsigned char* p = syms;
1169   for (size_t i = 0; i < count; ++i, p += sym_size)
1170     {
1171       (*sympointers)[i] = NULL;
1172
1173       elfcpp::Sym<size, big_endian> sym(p);
1174
1175       unsigned int st_name = sym.get_st_name();
1176       if (st_name >= sym_name_size)
1177         {
1178           relobj->error(_("bad global symbol name offset %u at %zu"),
1179                         st_name, i);
1180           continue;
1181         }
1182
1183       const char* name = sym_names + st_name;
1184
1185       if (!parameters->options().relocatable()
1186           && strcmp (name, "__gnu_lto_slim") == 0)
1187         gold_info(_("%s: plugin needed to handle lto object"),
1188                   relobj->name().c_str());
1189
1190       bool is_ordinary;
1191       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1192                                                        sym.get_st_shndx(),
1193                                                        &is_ordinary);
1194       unsigned int orig_st_shndx = st_shndx;
1195       if (!is_ordinary)
1196         orig_st_shndx = elfcpp::SHN_UNDEF;
1197
1198       if (st_shndx != elfcpp::SHN_UNDEF)
1199         ++*defined;
1200
1201       // A symbol defined in a section which we are not including must
1202       // be treated as an undefined symbol.
1203       bool is_defined_in_discarded_section = false;
1204       if (st_shndx != elfcpp::SHN_UNDEF
1205           && is_ordinary
1206           && !relobj->is_section_included(st_shndx)
1207           && !this->is_section_folded(relobj, st_shndx))
1208         {
1209           st_shndx = elfcpp::SHN_UNDEF;
1210           is_defined_in_discarded_section = true;
1211         }
1212
1213       // In an object file, an '@' in the name separates the symbol
1214       // name from the version name.  If there are two '@' characters,
1215       // this is the default version.
1216       const char* ver = strchr(name, '@');
1217       Stringpool::Key ver_key = 0;
1218       int namelen = 0;
1219       // IS_DEFAULT_VERSION: is the version default?
1220       // IS_FORCED_LOCAL: is the symbol forced local?
1221       bool is_default_version = false;
1222       bool is_forced_local = false;
1223
1224       // FIXME: For incremental links, we don't store version information,
1225       // so we need to ignore version symbols for now.
1226       if (parameters->incremental_update() && ver != NULL)
1227         {
1228           namelen = ver - name;
1229           ver = NULL;
1230         }
1231
1232       if (ver != NULL)
1233         {
1234           // The symbol name is of the form foo@VERSION or foo@@VERSION
1235           namelen = ver - name;
1236           ++ver;
1237           if (*ver == '@')
1238             {
1239               is_default_version = true;
1240               ++ver;
1241             }
1242           ver = this->namepool_.add(ver, true, &ver_key);
1243         }
1244       // We don't want to assign a version to an undefined symbol,
1245       // even if it is listed in the version script.  FIXME: What
1246       // about a common symbol?
1247       else
1248         {
1249           namelen = strlen(name);
1250           if (!this->version_script_.empty()
1251               && st_shndx != elfcpp::SHN_UNDEF)
1252             {
1253               // The symbol name did not have a version, but the
1254               // version script may assign a version anyway.
1255               std::string version;
1256               bool is_global;
1257               if (this->version_script_.get_symbol_version(name, &version,
1258                                                            &is_global))
1259                 {
1260                   if (!is_global)
1261                     is_forced_local = true;
1262                   else if (!version.empty())
1263                     {
1264                       ver = this->namepool_.add_with_length(version.c_str(),
1265                                                             version.length(),
1266                                                             true,
1267                                                             &ver_key);
1268                       is_default_version = true;
1269                     }
1270                 }
1271             }
1272         }
1273
1274       elfcpp::Sym<size, big_endian>* psym = &sym;
1275       unsigned char symbuf[sym_size];
1276       elfcpp::Sym<size, big_endian> sym2(symbuf);
1277       if (just_symbols)
1278         {
1279           memcpy(symbuf, p, sym_size);
1280           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1281           if (orig_st_shndx != elfcpp::SHN_UNDEF
1282               && is_ordinary
1283               && relobj->e_type() == elfcpp::ET_REL)
1284             {
1285               // Symbol values in relocatable object files are section
1286               // relative.  This is normally what we want, but since here
1287               // we are converting the symbol to absolute we need to add
1288               // the section address.  The section address in an object
1289               // file is normally zero, but people can use a linker
1290               // script to change it.
1291               sw.put_st_value(sym.get_st_value()
1292                               + relobj->section_address(orig_st_shndx));
1293             }
1294           st_shndx = elfcpp::SHN_ABS;
1295           is_ordinary = false;
1296           psym = &sym2;
1297         }
1298
1299       // Fix up visibility if object has no-export set.
1300       if (relobj->no_export()
1301           && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1302         {
1303           // We may have copied symbol already above.
1304           if (psym != &sym2)
1305             {
1306               memcpy(symbuf, p, sym_size);
1307               psym = &sym2;
1308             }
1309
1310           elfcpp::STV visibility = sym2.get_st_visibility();
1311           if (visibility == elfcpp::STV_DEFAULT
1312               || visibility == elfcpp::STV_PROTECTED)
1313             {
1314               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1315               unsigned char nonvis = sym2.get_st_nonvis();
1316               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1317             }
1318         }
1319
1320       Stringpool::Key name_key;
1321       name = this->namepool_.add_with_length(name, namelen, true,
1322                                              &name_key);
1323
1324       Sized_symbol<size>* res;
1325       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1326                                   is_default_version, *psym, st_shndx,
1327                                   is_ordinary, orig_st_shndx);
1328
1329       if (res == NULL)
1330         continue;
1331       
1332       if (is_forced_local)
1333         this->force_local(res);
1334
1335       // Do not treat this symbol as garbage if this symbol will be
1336       // exported to the dynamic symbol table.  This is true when
1337       // building a shared library or using --export-dynamic and
1338       // the symbol is externally visible.
1339       if (parameters->options().gc_sections()
1340           && res->is_externally_visible()
1341           && !res->is_from_dynobj()
1342           && (parameters->options().shared()
1343               || parameters->options().export_dynamic()
1344               || parameters->options().in_dynamic_list(res->name())))
1345         this->gc_mark_symbol(res);
1346
1347       if (is_defined_in_discarded_section)
1348         res->set_is_defined_in_discarded_section();
1349
1350       (*sympointers)[i] = res;
1351     }
1352 }
1353
1354 // Add a symbol from a plugin-claimed file.
1355
1356 template<int size, bool big_endian>
1357 Symbol*
1358 Symbol_table::add_from_pluginobj(
1359     Sized_pluginobj<size, big_endian>* obj,
1360     const char* name,
1361     const char* ver,
1362     elfcpp::Sym<size, big_endian>* sym)
1363 {
1364   unsigned int st_shndx = sym->get_st_shndx();
1365   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1366
1367   Stringpool::Key ver_key = 0;
1368   bool is_default_version = false;
1369   bool is_forced_local = false;
1370
1371   if (ver != NULL)
1372     {
1373       ver = this->namepool_.add(ver, true, &ver_key);
1374     }
1375   // We don't want to assign a version to an undefined symbol,
1376   // even if it is listed in the version script.  FIXME: What
1377   // about a common symbol?
1378   else
1379     {
1380       if (!this->version_script_.empty()
1381           && st_shndx != elfcpp::SHN_UNDEF)
1382         {
1383           // The symbol name did not have a version, but the
1384           // version script may assign a version anyway.
1385           std::string version;
1386           bool is_global;
1387           if (this->version_script_.get_symbol_version(name, &version,
1388                                                        &is_global))
1389             {
1390               if (!is_global)
1391                 is_forced_local = true;
1392               else if (!version.empty())
1393                 {
1394                   ver = this->namepool_.add_with_length(version.c_str(),
1395                                                         version.length(),
1396                                                         true,
1397                                                         &ver_key);
1398                   is_default_version = true;
1399                 }
1400             }
1401         }
1402     }
1403
1404   Stringpool::Key name_key;
1405   name = this->namepool_.add(name, true, &name_key);
1406
1407   Sized_symbol<size>* res;
1408   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1409                               is_default_version, *sym, st_shndx,
1410                               is_ordinary, st_shndx);
1411
1412   if (res == NULL)
1413     return NULL;
1414
1415   if (is_forced_local)
1416     this->force_local(res);
1417
1418   return res;
1419 }
1420
1421 // Add all the symbols in a dynamic object to the hash table.
1422
1423 template<int size, bool big_endian>
1424 void
1425 Symbol_table::add_from_dynobj(
1426     Sized_dynobj<size, big_endian>* dynobj,
1427     const unsigned char* syms,
1428     size_t count,
1429     const char* sym_names,
1430     size_t sym_name_size,
1431     const unsigned char* versym,
1432     size_t versym_size,
1433     const std::vector<const char*>* version_map,
1434     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1435     size_t* defined)
1436 {
1437   *defined = 0;
1438
1439   gold_assert(size == parameters->target().get_size());
1440
1441   if (dynobj->just_symbols())
1442     {
1443       gold_error(_("--just-symbols does not make sense with a shared object"));
1444       return;
1445     }
1446
1447   // FIXME: For incremental links, we don't store version information,
1448   // so we need to ignore version symbols for now.
1449   if (parameters->incremental_update())
1450     versym = NULL;
1451
1452   if (versym != NULL && versym_size / 2 < count)
1453     {
1454       dynobj->error(_("too few symbol versions"));
1455       return;
1456     }
1457
1458   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1459
1460   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1461   // weak aliases.  This is necessary because if the dynamic object
1462   // provides the same variable under two names, one of which is a
1463   // weak definition, and the regular object refers to the weak
1464   // definition, we have to put both the weak definition and the
1465   // strong definition into the dynamic symbol table.  Given a weak
1466   // definition, the only way that we can find the corresponding
1467   // strong definition, if any, is to search the symbol table.
1468   std::vector<Sized_symbol<size>*> object_symbols;
1469
1470   const unsigned char* p = syms;
1471   const unsigned char* vs = versym;
1472   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1473     {
1474       elfcpp::Sym<size, big_endian> sym(p);
1475
1476       if (sympointers != NULL)
1477         (*sympointers)[i] = NULL;
1478
1479       // Ignore symbols with local binding or that have
1480       // internal or hidden visibility.
1481       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1482           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1483           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1484         continue;
1485
1486       // A protected symbol in a shared library must be treated as a
1487       // normal symbol when viewed from outside the shared library.
1488       // Implement this by overriding the visibility here.
1489       // Likewise, an IFUNC symbol in a shared library must be treated
1490       // as a normal FUNC symbol.
1491       elfcpp::Sym<size, big_endian>* psym = &sym;
1492       unsigned char symbuf[sym_size];
1493       elfcpp::Sym<size, big_endian> sym2(symbuf);
1494       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1495           || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1496         {
1497           memcpy(symbuf, p, sym_size);
1498           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1499           if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1500             sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1501           if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1502             sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1503           psym = &sym2;
1504         }
1505
1506       unsigned int st_name = psym->get_st_name();
1507       if (st_name >= sym_name_size)
1508         {
1509           dynobj->error(_("bad symbol name offset %u at %zu"),
1510                         st_name, i);
1511           continue;
1512         }
1513
1514       const char* name = sym_names + st_name;
1515
1516       bool is_ordinary;
1517       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1518                                                        &is_ordinary);
1519
1520       if (st_shndx != elfcpp::SHN_UNDEF)
1521         ++*defined;
1522
1523       Sized_symbol<size>* res;
1524
1525       if (versym == NULL)
1526         {
1527           Stringpool::Key name_key;
1528           name = this->namepool_.add(name, true, &name_key);
1529           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1530                                       false, *psym, st_shndx, is_ordinary,
1531                                       st_shndx);
1532         }
1533       else
1534         {
1535           // Read the version information.
1536
1537           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1538
1539           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1540           v &= elfcpp::VERSYM_VERSION;
1541
1542           // The Sun documentation says that V can be VER_NDX_LOCAL,
1543           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1544           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1545           // The old GNU linker will happily generate VER_NDX_LOCAL
1546           // for an undefined symbol.  I don't know what the Sun
1547           // linker will generate.
1548
1549           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1550               && st_shndx != elfcpp::SHN_UNDEF)
1551             {
1552               // This symbol should not be visible outside the object.
1553               continue;
1554             }
1555
1556           // At this point we are definitely going to add this symbol.
1557           Stringpool::Key name_key;
1558           name = this->namepool_.add(name, true, &name_key);
1559
1560           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1561               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1562             {
1563               // This symbol does not have a version.
1564               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1565                                           false, *psym, st_shndx, is_ordinary,
1566                                           st_shndx);
1567             }
1568           else
1569             {
1570               if (v >= version_map->size())
1571                 {
1572                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1573                                 i, v);
1574                   continue;
1575                 }
1576
1577               const char* version = (*version_map)[v];
1578               if (version == NULL)
1579                 {
1580                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1581                                 i, v);
1582                   continue;
1583                 }
1584
1585               Stringpool::Key version_key;
1586               version = this->namepool_.add(version, true, &version_key);
1587
1588               // If this is an absolute symbol, and the version name
1589               // and symbol name are the same, then this is the
1590               // version definition symbol.  These symbols exist to
1591               // support using -u to pull in particular versions.  We
1592               // do not want to record a version for them.
1593               if (st_shndx == elfcpp::SHN_ABS
1594                   && !is_ordinary
1595                   && name_key == version_key)
1596                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1597                                             false, *psym, st_shndx, is_ordinary,
1598                                             st_shndx);
1599               else
1600                 {
1601                   const bool is_default_version =
1602                     !hidden && st_shndx != elfcpp::SHN_UNDEF;
1603                   res = this->add_from_object(dynobj, name, name_key, version,
1604                                               version_key, is_default_version,
1605                                               *psym, st_shndx,
1606                                               is_ordinary, st_shndx);
1607                 }
1608             }
1609         }
1610
1611       if (res == NULL)
1612         continue;
1613
1614       // Note that it is possible that RES was overridden by an
1615       // earlier object, in which case it can't be aliased here.
1616       if (st_shndx != elfcpp::SHN_UNDEF
1617           && is_ordinary
1618           && psym->get_st_type() == elfcpp::STT_OBJECT
1619           && res->source() == Symbol::FROM_OBJECT
1620           && res->object() == dynobj)
1621         object_symbols.push_back(res);
1622
1623       // If the symbol has protected visibility in the dynobj,
1624       // mark it as such if it was not overridden.
1625       if (res->source() == Symbol::FROM_OBJECT
1626           && res->object() == dynobj
1627           && sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1628         res->set_is_protected();
1629
1630       if (sympointers != NULL)
1631         (*sympointers)[i] = res;
1632     }
1633
1634   this->record_weak_aliases(&object_symbols);
1635 }
1636
1637 // Add a symbol from a incremental object file.
1638
1639 template<int size, bool big_endian>
1640 Sized_symbol<size>*
1641 Symbol_table::add_from_incrobj(
1642     Object* obj,
1643     const char* name,
1644     const char* ver,
1645     elfcpp::Sym<size, big_endian>* sym)
1646 {
1647   unsigned int st_shndx = sym->get_st_shndx();
1648   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1649
1650   Stringpool::Key ver_key = 0;
1651   bool is_default_version = false;
1652
1653   Stringpool::Key name_key;
1654   name = this->namepool_.add(name, true, &name_key);
1655
1656   Sized_symbol<size>* res;
1657   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1658                               is_default_version, *sym, st_shndx,
1659                               is_ordinary, st_shndx);
1660
1661   return res;
1662 }
1663
1664 // This is used to sort weak aliases.  We sort them first by section
1665 // index, then by offset, then by weak ahead of strong.
1666
1667 template<int size>
1668 class Weak_alias_sorter
1669 {
1670  public:
1671   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1672 };
1673
1674 template<int size>
1675 bool
1676 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1677                                     const Sized_symbol<size>* s2) const
1678 {
1679   bool is_ordinary;
1680   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1681   gold_assert(is_ordinary);
1682   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1683   gold_assert(is_ordinary);
1684   if (s1_shndx != s2_shndx)
1685     return s1_shndx < s2_shndx;
1686
1687   if (s1->value() != s2->value())
1688     return s1->value() < s2->value();
1689   if (s1->binding() != s2->binding())
1690     {
1691       if (s1->binding() == elfcpp::STB_WEAK)
1692         return true;
1693       if (s2->binding() == elfcpp::STB_WEAK)
1694         return false;
1695     }
1696   return std::string(s1->name()) < std::string(s2->name());
1697 }
1698
1699 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1700 // for any weak aliases, and record them so that if we add the weak
1701 // alias to the dynamic symbol table, we also add the corresponding
1702 // strong symbol.
1703
1704 template<int size>
1705 void
1706 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1707 {
1708   // Sort the vector by section index, then by offset, then by weak
1709   // ahead of strong.
1710   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1711
1712   // Walk through the vector.  For each weak definition, record
1713   // aliases.
1714   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1715          symbols->begin();
1716        p != symbols->end();
1717        ++p)
1718     {
1719       if ((*p)->binding() != elfcpp::STB_WEAK)
1720         continue;
1721
1722       // Build a circular list of weak aliases.  Each symbol points to
1723       // the next one in the circular list.
1724
1725       Sized_symbol<size>* from_sym = *p;
1726       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1727       for (q = p + 1; q != symbols->end(); ++q)
1728         {
1729           bool dummy;
1730           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1731               || (*q)->value() != from_sym->value())
1732             break;
1733
1734           this->weak_aliases_[from_sym] = *q;
1735           from_sym->set_has_alias();
1736           from_sym = *q;
1737         }
1738
1739       if (from_sym != *p)
1740         {
1741           this->weak_aliases_[from_sym] = *p;
1742           from_sym->set_has_alias();
1743         }
1744
1745       p = q - 1;
1746     }
1747 }
1748
1749 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1750 // true, then only create the symbol if there is a reference to it.
1751 // If this does not return NULL, it sets *POLDSYM to the existing
1752 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1753 // resolve the newly created symbol to the old one.  This
1754 // canonicalizes *PNAME and *PVERSION.
1755
1756 template<int size, bool big_endian>
1757 Sized_symbol<size>*
1758 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1759                                     bool only_if_ref,
1760                                     Sized_symbol<size>** poldsym,
1761                                     bool* resolve_oldsym)
1762 {
1763   *resolve_oldsym = false;
1764   *poldsym = NULL;
1765
1766   // If the caller didn't give us a version, see if we get one from
1767   // the version script.
1768   std::string v;
1769   bool is_default_version = false;
1770   if (*pversion == NULL)
1771     {
1772       bool is_global;
1773       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1774         {
1775           if (is_global && !v.empty())
1776             {
1777               *pversion = v.c_str();
1778               // If we get the version from a version script, then we
1779               // are also the default version.
1780               is_default_version = true;
1781             }
1782         }
1783     }
1784
1785   Symbol* oldsym;
1786   Sized_symbol<size>* sym;
1787
1788   bool add_to_table = false;
1789   typename Symbol_table_type::iterator add_loc = this->table_.end();
1790   bool add_def_to_table = false;
1791   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1792
1793   if (only_if_ref)
1794     {
1795       oldsym = this->lookup(*pname, *pversion);
1796       if (oldsym == NULL && is_default_version)
1797         oldsym = this->lookup(*pname, NULL);
1798       if (oldsym == NULL || !oldsym->is_undefined())
1799         return NULL;
1800
1801       *pname = oldsym->name();
1802       if (is_default_version)
1803         *pversion = this->namepool_.add(*pversion, true, NULL);
1804       else
1805         *pversion = oldsym->version();
1806     }
1807   else
1808     {
1809       // Canonicalize NAME and VERSION.
1810       Stringpool::Key name_key;
1811       *pname = this->namepool_.add(*pname, true, &name_key);
1812
1813       Stringpool::Key version_key = 0;
1814       if (*pversion != NULL)
1815         *pversion = this->namepool_.add(*pversion, true, &version_key);
1816
1817       Symbol* const snull = NULL;
1818       std::pair<typename Symbol_table_type::iterator, bool> ins =
1819         this->table_.insert(std::make_pair(std::make_pair(name_key,
1820                                                           version_key),
1821                                            snull));
1822
1823       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1824         std::make_pair(this->table_.end(), false);
1825       if (is_default_version)
1826         {
1827           const Stringpool::Key vnull = 0;
1828           insdefault =
1829             this->table_.insert(std::make_pair(std::make_pair(name_key,
1830                                                               vnull),
1831                                                snull));
1832         }
1833
1834       if (!ins.second)
1835         {
1836           // We already have a symbol table entry for NAME/VERSION.
1837           oldsym = ins.first->second;
1838           gold_assert(oldsym != NULL);
1839
1840           if (is_default_version)
1841             {
1842               Sized_symbol<size>* soldsym =
1843                 this->get_sized_symbol<size>(oldsym);
1844               this->define_default_version<size, big_endian>(soldsym,
1845                                                              insdefault.second,
1846                                                              insdefault.first);
1847             }
1848         }
1849       else
1850         {
1851           // We haven't seen this symbol before.
1852           gold_assert(ins.first->second == NULL);
1853
1854           add_to_table = true;
1855           add_loc = ins.first;
1856
1857           if (is_default_version && !insdefault.second)
1858             {
1859               // We are adding NAME/VERSION, and it is the default
1860               // version.  We already have an entry for NAME/NULL.
1861               oldsym = insdefault.first->second;
1862               *resolve_oldsym = true;
1863             }
1864           else
1865             {
1866               oldsym = NULL;
1867
1868               if (is_default_version)
1869                 {
1870                   add_def_to_table = true;
1871                   add_def_loc = insdefault.first;
1872                 }
1873             }
1874         }
1875     }
1876
1877   const Target& target = parameters->target();
1878   if (!target.has_make_symbol())
1879     sym = new Sized_symbol<size>();
1880   else
1881     {
1882       Sized_target<size, big_endian>* sized_target =
1883         parameters->sized_target<size, big_endian>();
1884       sym = sized_target->make_symbol(*pname, elfcpp::STT_NOTYPE,
1885                                       NULL, elfcpp::SHN_UNDEF, 0);
1886       if (sym == NULL)
1887         return NULL;
1888     }
1889
1890   if (add_to_table)
1891     add_loc->second = sym;
1892   else
1893     gold_assert(oldsym != NULL);
1894
1895   if (add_def_to_table)
1896     add_def_loc->second = sym;
1897
1898   *poldsym = this->get_sized_symbol<size>(oldsym);
1899
1900   return sym;
1901 }
1902
1903 // Define a symbol based on an Output_data.
1904
1905 Symbol*
1906 Symbol_table::define_in_output_data(const char* name,
1907                                     const char* version,
1908                                     Defined defined,
1909                                     Output_data* od,
1910                                     uint64_t value,
1911                                     uint64_t symsize,
1912                                     elfcpp::STT type,
1913                                     elfcpp::STB binding,
1914                                     elfcpp::STV visibility,
1915                                     unsigned char nonvis,
1916                                     bool offset_is_from_end,
1917                                     bool only_if_ref)
1918 {
1919   if (parameters->target().get_size() == 32)
1920     {
1921 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1922       return this->do_define_in_output_data<32>(name, version, defined, od,
1923                                                 value, symsize, type, binding,
1924                                                 visibility, nonvis,
1925                                                 offset_is_from_end,
1926                                                 only_if_ref);
1927 #else
1928       gold_unreachable();
1929 #endif
1930     }
1931   else if (parameters->target().get_size() == 64)
1932     {
1933 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1934       return this->do_define_in_output_data<64>(name, version, defined, od,
1935                                                 value, symsize, type, binding,
1936                                                 visibility, nonvis,
1937                                                 offset_is_from_end,
1938                                                 only_if_ref);
1939 #else
1940       gold_unreachable();
1941 #endif
1942     }
1943   else
1944     gold_unreachable();
1945 }
1946
1947 // Define a symbol in an Output_data, sized version.
1948
1949 template<int size>
1950 Sized_symbol<size>*
1951 Symbol_table::do_define_in_output_data(
1952     const char* name,
1953     const char* version,
1954     Defined defined,
1955     Output_data* od,
1956     typename elfcpp::Elf_types<size>::Elf_Addr value,
1957     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1958     elfcpp::STT type,
1959     elfcpp::STB binding,
1960     elfcpp::STV visibility,
1961     unsigned char nonvis,
1962     bool offset_is_from_end,
1963     bool only_if_ref)
1964 {
1965   Sized_symbol<size>* sym;
1966   Sized_symbol<size>* oldsym;
1967   bool resolve_oldsym;
1968
1969   if (parameters->target().is_big_endian())
1970     {
1971 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1972       sym = this->define_special_symbol<size, true>(&name, &version,
1973                                                     only_if_ref, &oldsym,
1974                                                     &resolve_oldsym);
1975 #else
1976       gold_unreachable();
1977 #endif
1978     }
1979   else
1980     {
1981 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1982       sym = this->define_special_symbol<size, false>(&name, &version,
1983                                                      only_if_ref, &oldsym,
1984                                                      &resolve_oldsym);
1985 #else
1986       gold_unreachable();
1987 #endif
1988     }
1989
1990   if (sym == NULL)
1991     return NULL;
1992
1993   sym->init_output_data(name, version, od, value, symsize, type, binding,
1994                         visibility, nonvis, offset_is_from_end,
1995                         defined == PREDEFINED);
1996
1997   if (oldsym == NULL)
1998     {
1999       if (binding == elfcpp::STB_LOCAL
2000           || this->version_script_.symbol_is_local(name))
2001         this->force_local(sym);
2002       else if (version != NULL)
2003         sym->set_is_default();
2004       return sym;
2005     }
2006
2007   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2008     this->override_with_special(oldsym, sym);
2009
2010   if (resolve_oldsym)
2011     return sym;
2012   else
2013     {
2014       if (defined == PREDEFINED
2015           && (binding == elfcpp::STB_LOCAL
2016               || this->version_script_.symbol_is_local(name)))
2017         this->force_local(oldsym);
2018       delete sym;
2019       return oldsym;
2020     }
2021 }
2022
2023 // Define a symbol based on an Output_segment.
2024
2025 Symbol*
2026 Symbol_table::define_in_output_segment(const char* name,
2027                                        const char* version,
2028                                        Defined defined,
2029                                        Output_segment* os,
2030                                        uint64_t value,
2031                                        uint64_t symsize,
2032                                        elfcpp::STT type,
2033                                        elfcpp::STB binding,
2034                                        elfcpp::STV visibility,
2035                                        unsigned char nonvis,
2036                                        Symbol::Segment_offset_base offset_base,
2037                                        bool only_if_ref)
2038 {
2039   if (parameters->target().get_size() == 32)
2040     {
2041 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2042       return this->do_define_in_output_segment<32>(name, version, defined, os,
2043                                                    value, symsize, type,
2044                                                    binding, visibility, nonvis,
2045                                                    offset_base, only_if_ref);
2046 #else
2047       gold_unreachable();
2048 #endif
2049     }
2050   else if (parameters->target().get_size() == 64)
2051     {
2052 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2053       return this->do_define_in_output_segment<64>(name, version, defined, os,
2054                                                    value, symsize, type,
2055                                                    binding, visibility, nonvis,
2056                                                    offset_base, only_if_ref);
2057 #else
2058       gold_unreachable();
2059 #endif
2060     }
2061   else
2062     gold_unreachable();
2063 }
2064
2065 // Define a symbol in an Output_segment, sized version.
2066
2067 template<int size>
2068 Sized_symbol<size>*
2069 Symbol_table::do_define_in_output_segment(
2070     const char* name,
2071     const char* version,
2072     Defined defined,
2073     Output_segment* os,
2074     typename elfcpp::Elf_types<size>::Elf_Addr value,
2075     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2076     elfcpp::STT type,
2077     elfcpp::STB binding,
2078     elfcpp::STV visibility,
2079     unsigned char nonvis,
2080     Symbol::Segment_offset_base offset_base,
2081     bool only_if_ref)
2082 {
2083   Sized_symbol<size>* sym;
2084   Sized_symbol<size>* oldsym;
2085   bool resolve_oldsym;
2086
2087   if (parameters->target().is_big_endian())
2088     {
2089 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2090       sym = this->define_special_symbol<size, true>(&name, &version,
2091                                                     only_if_ref, &oldsym,
2092                                                     &resolve_oldsym);
2093 #else
2094       gold_unreachable();
2095 #endif
2096     }
2097   else
2098     {
2099 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2100       sym = this->define_special_symbol<size, false>(&name, &version,
2101                                                      only_if_ref, &oldsym,
2102                                                      &resolve_oldsym);
2103 #else
2104       gold_unreachable();
2105 #endif
2106     }
2107
2108   if (sym == NULL)
2109     return NULL;
2110
2111   sym->init_output_segment(name, version, os, value, symsize, type, binding,
2112                            visibility, nonvis, offset_base,
2113                            defined == PREDEFINED);
2114
2115   if (oldsym == NULL)
2116     {
2117       if (binding == elfcpp::STB_LOCAL
2118           || this->version_script_.symbol_is_local(name))
2119         this->force_local(sym);
2120       else if (version != NULL)
2121         sym->set_is_default();
2122       return sym;
2123     }
2124
2125   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2126     this->override_with_special(oldsym, sym);
2127
2128   if (resolve_oldsym)
2129     return sym;
2130   else
2131     {
2132       if (binding == elfcpp::STB_LOCAL
2133           || this->version_script_.symbol_is_local(name))
2134         this->force_local(oldsym);
2135       delete sym;
2136       return oldsym;
2137     }
2138 }
2139
2140 // Define a special symbol with a constant value.  It is a multiple
2141 // definition error if this symbol is already defined.
2142
2143 Symbol*
2144 Symbol_table::define_as_constant(const char* name,
2145                                  const char* version,
2146                                  Defined defined,
2147                                  uint64_t value,
2148                                  uint64_t symsize,
2149                                  elfcpp::STT type,
2150                                  elfcpp::STB binding,
2151                                  elfcpp::STV visibility,
2152                                  unsigned char nonvis,
2153                                  bool only_if_ref,
2154                                  bool force_override)
2155 {
2156   if (parameters->target().get_size() == 32)
2157     {
2158 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2159       return this->do_define_as_constant<32>(name, version, defined, value,
2160                                              symsize, type, binding,
2161                                              visibility, nonvis, only_if_ref,
2162                                              force_override);
2163 #else
2164       gold_unreachable();
2165 #endif
2166     }
2167   else if (parameters->target().get_size() == 64)
2168     {
2169 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2170       return this->do_define_as_constant<64>(name, version, defined, value,
2171                                              symsize, type, binding,
2172                                              visibility, nonvis, only_if_ref,
2173                                              force_override);
2174 #else
2175       gold_unreachable();
2176 #endif
2177     }
2178   else
2179     gold_unreachable();
2180 }
2181
2182 // Define a symbol as a constant, sized version.
2183
2184 template<int size>
2185 Sized_symbol<size>*
2186 Symbol_table::do_define_as_constant(
2187     const char* name,
2188     const char* version,
2189     Defined defined,
2190     typename elfcpp::Elf_types<size>::Elf_Addr value,
2191     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2192     elfcpp::STT type,
2193     elfcpp::STB binding,
2194     elfcpp::STV visibility,
2195     unsigned char nonvis,
2196     bool only_if_ref,
2197     bool force_override)
2198 {
2199   Sized_symbol<size>* sym;
2200   Sized_symbol<size>* oldsym;
2201   bool resolve_oldsym;
2202
2203   if (parameters->target().is_big_endian())
2204     {
2205 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2206       sym = this->define_special_symbol<size, true>(&name, &version,
2207                                                     only_if_ref, &oldsym,
2208                                                     &resolve_oldsym);
2209 #else
2210       gold_unreachable();
2211 #endif
2212     }
2213   else
2214     {
2215 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2216       sym = this->define_special_symbol<size, false>(&name, &version,
2217                                                      only_if_ref, &oldsym,
2218                                                      &resolve_oldsym);
2219 #else
2220       gold_unreachable();
2221 #endif
2222     }
2223
2224   if (sym == NULL)
2225     return NULL;
2226
2227   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2228                      nonvis, defined == PREDEFINED);
2229
2230   if (oldsym == NULL)
2231     {
2232       // Version symbols are absolute symbols with name == version.
2233       // We don't want to force them to be local.
2234       if ((version == NULL
2235            || name != version
2236            || value != 0)
2237           && (binding == elfcpp::STB_LOCAL
2238               || this->version_script_.symbol_is_local(name)))
2239         this->force_local(sym);
2240       else if (version != NULL
2241                && (name != version || value != 0))
2242         sym->set_is_default();
2243       return sym;
2244     }
2245
2246   if (force_override
2247       || Symbol_table::should_override_with_special(oldsym, type, defined))
2248     this->override_with_special(oldsym, sym);
2249
2250   if (resolve_oldsym)
2251     return sym;
2252   else
2253     {
2254       if (binding == elfcpp::STB_LOCAL
2255           || this->version_script_.symbol_is_local(name))
2256         this->force_local(oldsym);
2257       delete sym;
2258       return oldsym;
2259     }
2260 }
2261
2262 // Define a set of symbols in output sections.
2263
2264 void
2265 Symbol_table::define_symbols(const Layout* layout, int count,
2266                              const Define_symbol_in_section* p,
2267                              bool only_if_ref)
2268 {
2269   for (int i = 0; i < count; ++i, ++p)
2270     {
2271       Output_section* os = layout->find_output_section(p->output_section);
2272       if (os != NULL)
2273         this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2274                                     p->size, p->type, p->binding,
2275                                     p->visibility, p->nonvis,
2276                                     p->offset_is_from_end,
2277                                     only_if_ref || p->only_if_ref);
2278       else
2279         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2280                                  p->type, p->binding, p->visibility, p->nonvis,
2281                                  only_if_ref || p->only_if_ref,
2282                                  false);
2283     }
2284 }
2285
2286 // Define a set of symbols in output segments.
2287
2288 void
2289 Symbol_table::define_symbols(const Layout* layout, int count,
2290                              const Define_symbol_in_segment* p,
2291                              bool only_if_ref)
2292 {
2293   for (int i = 0; i < count; ++i, ++p)
2294     {
2295       Output_segment* os = layout->find_output_segment(p->segment_type,
2296                                                        p->segment_flags_set,
2297                                                        p->segment_flags_clear);
2298       if (os != NULL)
2299         this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2300                                        p->size, p->type, p->binding,
2301                                        p->visibility, p->nonvis,
2302                                        p->offset_base,
2303                                        only_if_ref || p->only_if_ref);
2304       else
2305         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2306                                  p->type, p->binding, p->visibility, p->nonvis,
2307                                  only_if_ref || p->only_if_ref,
2308                                  false);
2309     }
2310 }
2311
2312 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2313 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2314 // the offset within POSD.
2315
2316 template<int size>
2317 void
2318 Symbol_table::define_with_copy_reloc(
2319     Sized_symbol<size>* csym,
2320     Output_data* posd,
2321     typename elfcpp::Elf_types<size>::Elf_Addr value)
2322 {
2323   gold_assert(csym->is_from_dynobj());
2324   gold_assert(!csym->is_copied_from_dynobj());
2325   Object* object = csym->object();
2326   gold_assert(object->is_dynamic());
2327   Dynobj* dynobj = static_cast<Dynobj*>(object);
2328
2329   // Our copied variable has to override any variable in a shared
2330   // library.
2331   elfcpp::STB binding = csym->binding();
2332   if (binding == elfcpp::STB_WEAK)
2333     binding = elfcpp::STB_GLOBAL;
2334
2335   this->define_in_output_data(csym->name(), csym->version(), COPY,
2336                               posd, value, csym->symsize(),
2337                               csym->type(), binding,
2338                               csym->visibility(), csym->nonvis(),
2339                               false, false);
2340
2341   csym->set_is_copied_from_dynobj();
2342   csym->set_needs_dynsym_entry();
2343
2344   this->copied_symbol_dynobjs_[csym] = dynobj;
2345
2346   // We have now defined all aliases, but we have not entered them all
2347   // in the copied_symbol_dynobjs_ map.
2348   if (csym->has_alias())
2349     {
2350       Symbol* sym = csym;
2351       while (true)
2352         {
2353           sym = this->weak_aliases_[sym];
2354           if (sym == csym)
2355             break;
2356           gold_assert(sym->output_data() == posd);
2357
2358           sym->set_is_copied_from_dynobj();
2359           this->copied_symbol_dynobjs_[sym] = dynobj;
2360         }
2361     }
2362 }
2363
2364 // SYM is defined using a COPY reloc.  Return the dynamic object where
2365 // the original definition was found.
2366
2367 Dynobj*
2368 Symbol_table::get_copy_source(const Symbol* sym) const
2369 {
2370   gold_assert(sym->is_copied_from_dynobj());
2371   Copied_symbol_dynobjs::const_iterator p =
2372     this->copied_symbol_dynobjs_.find(sym);
2373   gold_assert(p != this->copied_symbol_dynobjs_.end());
2374   return p->second;
2375 }
2376
2377 // Add any undefined symbols named on the command line.
2378
2379 void
2380 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2381 {
2382   if (parameters->options().any_undefined()
2383       || layout->script_options()->any_unreferenced())
2384     {
2385       if (parameters->target().get_size() == 32)
2386         {
2387 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2388           this->do_add_undefined_symbols_from_command_line<32>(layout);
2389 #else
2390           gold_unreachable();
2391 #endif
2392         }
2393       else if (parameters->target().get_size() == 64)
2394         {
2395 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2396           this->do_add_undefined_symbols_from_command_line<64>(layout);
2397 #else
2398           gold_unreachable();
2399 #endif
2400         }
2401       else
2402         gold_unreachable();
2403     }
2404 }
2405
2406 template<int size>
2407 void
2408 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2409 {
2410   for (options::String_set::const_iterator p =
2411          parameters->options().undefined_begin();
2412        p != parameters->options().undefined_end();
2413        ++p)
2414     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2415
2416   for (options::String_set::const_iterator p =
2417          parameters->options().export_dynamic_symbol_begin();
2418        p != parameters->options().export_dynamic_symbol_end();
2419        ++p)
2420     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2421
2422   for (Script_options::referenced_const_iterator p =
2423          layout->script_options()->referenced_begin();
2424        p != layout->script_options()->referenced_end();
2425        ++p)
2426     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2427 }
2428
2429 template<int size>
2430 void
2431 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2432 {
2433   if (this->lookup(name) != NULL)
2434     return;
2435
2436   const char* version = NULL;
2437
2438   Sized_symbol<size>* sym;
2439   Sized_symbol<size>* oldsym;
2440   bool resolve_oldsym;
2441   if (parameters->target().is_big_endian())
2442     {
2443 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2444       sym = this->define_special_symbol<size, true>(&name, &version,
2445                                                     false, &oldsym,
2446                                                     &resolve_oldsym);
2447 #else
2448       gold_unreachable();
2449 #endif
2450     }
2451   else
2452     {
2453 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2454       sym = this->define_special_symbol<size, false>(&name, &version,
2455                                                      false, &oldsym,
2456                                                      &resolve_oldsym);
2457 #else
2458       gold_unreachable();
2459 #endif
2460     }
2461
2462   gold_assert(oldsym == NULL);
2463
2464   sym->init_undefined(name, version, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2465                       elfcpp::STV_DEFAULT, 0);
2466   ++this->saw_undefined_;
2467 }
2468
2469 // Set the dynamic symbol indexes.  INDEX is the index of the first
2470 // global dynamic symbol.  Pointers to the symbols are stored into the
2471 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2472 // updated dynamic symbol index.
2473
2474 unsigned int
2475 Symbol_table::set_dynsym_indexes(unsigned int index,
2476                                  std::vector<Symbol*>* syms,
2477                                  Stringpool* dynpool,
2478                                  Versions* versions)
2479 {
2480   std::vector<Symbol*> as_needed_sym;
2481
2482   // Allow a target to set dynsym indexes.
2483   if (parameters->target().has_custom_set_dynsym_indexes())
2484     {
2485       std::vector<Symbol*> dyn_symbols;
2486       for (Symbol_table_type::iterator p = this->table_.begin();
2487            p != this->table_.end();
2488            ++p)
2489         {
2490           Symbol* sym = p->second;
2491           if (!sym->should_add_dynsym_entry(this))
2492             sym->set_dynsym_index(-1U);
2493           else
2494             dyn_symbols.push_back(sym);
2495         }
2496
2497       return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2498                                                      dynpool, versions, this);
2499     }
2500
2501   for (Symbol_table_type::iterator p = this->table_.begin();
2502        p != this->table_.end();
2503        ++p)
2504     {
2505       Symbol* sym = p->second;
2506
2507       // Note that SYM may already have a dynamic symbol index, since
2508       // some symbols appear more than once in the symbol table, with
2509       // and without a version.
2510
2511       if (!sym->should_add_dynsym_entry(this))
2512         sym->set_dynsym_index(-1U);
2513       else if (!sym->has_dynsym_index())
2514         {
2515           sym->set_dynsym_index(index);
2516           ++index;
2517           syms->push_back(sym);
2518           dynpool->add(sym->name(), false, NULL);
2519
2520           // If the symbol is defined in a dynamic object and is
2521           // referenced strongly in a regular object, then mark the
2522           // dynamic object as needed.  This is used to implement
2523           // --as-needed.
2524           if (sym->is_from_dynobj()
2525               && sym->in_reg()
2526               && !sym->is_undef_binding_weak())
2527             sym->object()->set_is_needed();
2528
2529           // Record any version information, except those from
2530           // as-needed libraries not seen to be needed.  Note that the
2531           // is_needed state for such libraries can change in this loop.
2532           if (sym->version() != NULL)
2533             {
2534               if (!sym->is_from_dynobj()
2535                   || !sym->object()->as_needed()
2536                   || sym->object()->is_needed())
2537                 versions->record_version(this, dynpool, sym);
2538               else
2539                 as_needed_sym.push_back(sym);
2540             }
2541         }
2542     }
2543
2544   // Process version information for symbols from as-needed libraries.
2545   for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2546        p != as_needed_sym.end();
2547        ++p)
2548     {
2549       Symbol* sym = *p;
2550
2551       if (sym->object()->is_needed())
2552         versions->record_version(this, dynpool, sym);
2553       else
2554         sym->clear_version();
2555     }
2556
2557   // Finish up the versions.  In some cases this may add new dynamic
2558   // symbols.
2559   index = versions->finalize(this, index, syms);
2560
2561   // Process target-specific symbols.
2562   for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2563        p != this->target_symbols_.end();
2564        ++p)
2565     {
2566       (*p)->set_dynsym_index(index);
2567       ++index;
2568       syms->push_back(*p);
2569       dynpool->add((*p)->name(), false, NULL);
2570     }
2571
2572   return index;
2573 }
2574
2575 // Set the final values for all the symbols.  The index of the first
2576 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2577 // file offset OFF.  Add their names to POOL.  Return the new file
2578 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2579
2580 off_t
2581 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2582                        size_t dyncount, Stringpool* pool,
2583                        unsigned int* plocal_symcount)
2584 {
2585   off_t ret;
2586
2587   gold_assert(*plocal_symcount != 0);
2588   this->first_global_index_ = *plocal_symcount;
2589
2590   this->dynamic_offset_ = dynoff;
2591   this->first_dynamic_global_index_ = dyn_global_index;
2592   this->dynamic_count_ = dyncount;
2593
2594   if (parameters->target().get_size() == 32)
2595     {
2596 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2597       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2598 #else
2599       gold_unreachable();
2600 #endif
2601     }
2602   else if (parameters->target().get_size() == 64)
2603     {
2604 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2605       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2606 #else
2607       gold_unreachable();
2608 #endif
2609     }
2610   else
2611     gold_unreachable();
2612
2613   // Now that we have the final symbol table, we can reliably note
2614   // which symbols should get warnings.
2615   this->warnings_.note_warnings(this);
2616
2617   return ret;
2618 }
2619
2620 // SYM is going into the symbol table at *PINDEX.  Add the name to
2621 // POOL, update *PINDEX and *POFF.
2622
2623 template<int size>
2624 void
2625 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2626                                   unsigned int* pindex, off_t* poff)
2627 {
2628   sym->set_symtab_index(*pindex);
2629   if (sym->version() == NULL || !parameters->options().relocatable())
2630     pool->add(sym->name(), false, NULL);
2631   else
2632     pool->add(sym->versioned_name(), true, NULL);
2633   ++*pindex;
2634   *poff += elfcpp::Elf_sizes<size>::sym_size;
2635 }
2636
2637 // Set the final value for all the symbols.  This is called after
2638 // Layout::finalize, so all the output sections have their final
2639 // address.
2640
2641 template<int size>
2642 off_t
2643 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2644                              unsigned int* plocal_symcount)
2645 {
2646   off = align_address(off, size >> 3);
2647   this->offset_ = off;
2648
2649   unsigned int index = *plocal_symcount;
2650   const unsigned int orig_index = index;
2651
2652   // First do all the symbols which have been forced to be local, as
2653   // they must appear before all global symbols.
2654   for (Forced_locals::iterator p = this->forced_locals_.begin();
2655        p != this->forced_locals_.end();
2656        ++p)
2657     {
2658       Symbol* sym = *p;
2659       gold_assert(sym->is_forced_local());
2660       if (this->sized_finalize_symbol<size>(sym))
2661         {
2662           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2663           ++*plocal_symcount;
2664         }
2665     }
2666
2667   // Now do all the remaining symbols.
2668   for (Symbol_table_type::iterator p = this->table_.begin();
2669        p != this->table_.end();
2670        ++p)
2671     {
2672       Symbol* sym = p->second;
2673       if (this->sized_finalize_symbol<size>(sym))
2674         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2675     }
2676
2677   // Now do target-specific symbols.
2678   for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2679        p != this->target_symbols_.end();
2680        ++p)
2681     {
2682       this->add_to_final_symtab<size>(*p, pool, &index, &off);
2683     }
2684
2685   this->output_count_ = index - orig_index;
2686
2687   return off;
2688 }
2689
2690 // Compute the final value of SYM and store status in location PSTATUS.
2691 // During relaxation, this may be called multiple times for a symbol to
2692 // compute its would-be final value in each relaxation pass.
2693
2694 template<int size>
2695 typename Sized_symbol<size>::Value_type
2696 Symbol_table::compute_final_value(
2697     const Sized_symbol<size>* sym,
2698     Compute_final_value_status* pstatus) const
2699 {
2700   typedef typename Sized_symbol<size>::Value_type Value_type;
2701   Value_type value;
2702
2703   switch (sym->source())
2704     {
2705     case Symbol::FROM_OBJECT:
2706       {
2707         bool is_ordinary;
2708         unsigned int shndx = sym->shndx(&is_ordinary);
2709
2710         if (!is_ordinary
2711             && shndx != elfcpp::SHN_ABS
2712             && !Symbol::is_common_shndx(shndx))
2713           {
2714             *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2715             return 0;
2716           }
2717
2718         Object* symobj = sym->object();
2719         if (symobj->is_dynamic())
2720           {
2721             value = 0;
2722             shndx = elfcpp::SHN_UNDEF;
2723           }
2724         else if (symobj->pluginobj() != NULL)
2725           {
2726             value = 0;
2727             shndx = elfcpp::SHN_UNDEF;
2728           }
2729         else if (shndx == elfcpp::SHN_UNDEF)
2730           value = 0;
2731         else if (!is_ordinary
2732                  && (shndx == elfcpp::SHN_ABS
2733                      || Symbol::is_common_shndx(shndx)))
2734           value = sym->value();
2735         else
2736           {
2737             Relobj* relobj = static_cast<Relobj*>(symobj);
2738             Output_section* os = relobj->output_section(shndx);
2739
2740             if (this->is_section_folded(relobj, shndx))
2741               {
2742                 gold_assert(os == NULL);
2743                 // Get the os of the section it is folded onto.
2744                 Section_id folded = this->icf_->get_folded_section(relobj,
2745                                                                    shndx);
2746                 gold_assert(folded.first != NULL);
2747                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2748                 unsigned folded_shndx = folded.second;
2749
2750                 os = folded_obj->output_section(folded_shndx);  
2751                 gold_assert(os != NULL);
2752
2753                 // Replace (relobj, shndx) with canonical ICF input section.
2754                 shndx = folded_shndx;
2755                 relobj = folded_obj;
2756               }
2757
2758             uint64_t secoff64 = relobj->output_section_offset(shndx);
2759             if (os == NULL)
2760               {
2761                 bool static_or_reloc = (parameters->doing_static_link() ||
2762                                         parameters->options().relocatable());
2763                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2764
2765                 *pstatus = CFVS_NO_OUTPUT_SECTION;
2766                 return 0;
2767               }
2768
2769             if (secoff64 == -1ULL)
2770               {
2771                 // The section needs special handling (e.g., a merge section).
2772
2773                 value = os->output_address(relobj, shndx, sym->value());
2774               }
2775             else
2776               {
2777                 Value_type secoff =
2778                   convert_types<Value_type, uint64_t>(secoff64);
2779                 if (sym->type() == elfcpp::STT_TLS)
2780                   value = sym->value() + os->tls_offset() + secoff;
2781                 else
2782                   value = sym->value() + os->address() + secoff;
2783               }
2784           }
2785       }
2786       break;
2787
2788     case Symbol::IN_OUTPUT_DATA:
2789       {
2790         Output_data* od = sym->output_data();
2791         value = sym->value();
2792         if (sym->type() != elfcpp::STT_TLS)
2793           value += od->address();
2794         else
2795           {
2796             Output_section* os = od->output_section();
2797             gold_assert(os != NULL);
2798             value += os->tls_offset() + (od->address() - os->address());
2799           }
2800         if (sym->offset_is_from_end())
2801           value += od->data_size();
2802       }
2803       break;
2804
2805     case Symbol::IN_OUTPUT_SEGMENT:
2806       {
2807         Output_segment* os = sym->output_segment();
2808         value = sym->value();
2809         if (sym->type() != elfcpp::STT_TLS)
2810           value += os->vaddr();
2811         switch (sym->offset_base())
2812           {
2813           case Symbol::SEGMENT_START:
2814             break;
2815           case Symbol::SEGMENT_END:
2816             value += os->memsz();
2817             break;
2818           case Symbol::SEGMENT_BSS:
2819             value += os->filesz();
2820             break;
2821           default:
2822             gold_unreachable();
2823           }
2824       }
2825       break;
2826
2827     case Symbol::IS_CONSTANT:
2828       value = sym->value();
2829       break;
2830
2831     case Symbol::IS_UNDEFINED:
2832       value = 0;
2833       break;
2834
2835     default:
2836       gold_unreachable();
2837     }
2838
2839   *pstatus = CFVS_OK;
2840   return value;
2841 }
2842
2843 // Finalize the symbol SYM.  This returns true if the symbol should be
2844 // added to the symbol table, false otherwise.
2845
2846 template<int size>
2847 bool
2848 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2849 {
2850   typedef typename Sized_symbol<size>::Value_type Value_type;
2851
2852   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2853
2854   // The default version of a symbol may appear twice in the symbol
2855   // table.  We only need to finalize it once.
2856   if (sym->has_symtab_index())
2857     return false;
2858
2859   if (!sym->in_reg())
2860     {
2861       gold_assert(!sym->has_symtab_index());
2862       sym->set_symtab_index(-1U);
2863       gold_assert(sym->dynsym_index() == -1U);
2864       return false;
2865     }
2866
2867   // If the symbol is only present on plugin files, the plugin decided we
2868   // don't need it.
2869   if (!sym->in_real_elf())
2870     {
2871       gold_assert(!sym->has_symtab_index());
2872       sym->set_symtab_index(-1U);
2873       return false;
2874     }
2875
2876   // Compute final symbol value.
2877   Compute_final_value_status status;
2878   Value_type value = this->compute_final_value(sym, &status);
2879
2880   switch (status)
2881     {
2882     case CFVS_OK:
2883       break;
2884     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2885       {
2886         bool is_ordinary;
2887         unsigned int shndx = sym->shndx(&is_ordinary);
2888         gold_error(_("%s: unsupported symbol section 0x%x"),
2889                    sym->demangled_name().c_str(), shndx);
2890       }
2891       break;
2892     case CFVS_NO_OUTPUT_SECTION:
2893       sym->set_symtab_index(-1U);
2894       return false;
2895     default:
2896       gold_unreachable();
2897     }
2898
2899   sym->set_value(value);
2900
2901   if (parameters->options().strip_all()
2902       || !parameters->options().should_retain_symbol(sym->name()))
2903     {
2904       sym->set_symtab_index(-1U);
2905       return false;
2906     }
2907
2908   return true;
2909 }
2910
2911 // Write out the global symbols.
2912
2913 void
2914 Symbol_table::write_globals(const Stringpool* sympool,
2915                             const Stringpool* dynpool,
2916                             Output_symtab_xindex* symtab_xindex,
2917                             Output_symtab_xindex* dynsym_xindex,
2918                             Output_file* of) const
2919 {
2920   switch (parameters->size_and_endianness())
2921     {
2922 #ifdef HAVE_TARGET_32_LITTLE
2923     case Parameters::TARGET_32_LITTLE:
2924       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2925                                            dynsym_xindex, of);
2926       break;
2927 #endif
2928 #ifdef HAVE_TARGET_32_BIG
2929     case Parameters::TARGET_32_BIG:
2930       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2931                                           dynsym_xindex, of);
2932       break;
2933 #endif
2934 #ifdef HAVE_TARGET_64_LITTLE
2935     case Parameters::TARGET_64_LITTLE:
2936       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2937                                            dynsym_xindex, of);
2938       break;
2939 #endif
2940 #ifdef HAVE_TARGET_64_BIG
2941     case Parameters::TARGET_64_BIG:
2942       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2943                                           dynsym_xindex, of);
2944       break;
2945 #endif
2946     default:
2947       gold_unreachable();
2948     }
2949 }
2950
2951 // Write out the global symbols.
2952
2953 template<int size, bool big_endian>
2954 void
2955 Symbol_table::sized_write_globals(const Stringpool* sympool,
2956                                   const Stringpool* dynpool,
2957                                   Output_symtab_xindex* symtab_xindex,
2958                                   Output_symtab_xindex* dynsym_xindex,
2959                                   Output_file* of) const
2960 {
2961   const Target& target = parameters->target();
2962
2963   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2964
2965   const unsigned int output_count = this->output_count_;
2966   const section_size_type oview_size = output_count * sym_size;
2967   const unsigned int first_global_index = this->first_global_index_;
2968   unsigned char* psyms;
2969   if (this->offset_ == 0 || output_count == 0)
2970     psyms = NULL;
2971   else
2972     psyms = of->get_output_view(this->offset_, oview_size);
2973
2974   const unsigned int dynamic_count = this->dynamic_count_;
2975   const section_size_type dynamic_size = dynamic_count * sym_size;
2976   const unsigned int first_dynamic_global_index =
2977     this->first_dynamic_global_index_;
2978   unsigned char* dynamic_view;
2979   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2980     dynamic_view = NULL;
2981   else
2982     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2983
2984   for (Symbol_table_type::const_iterator p = this->table_.begin();
2985        p != this->table_.end();
2986        ++p)
2987     {
2988       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2989
2990       // Possibly warn about unresolved symbols in shared libraries.
2991       this->warn_about_undefined_dynobj_symbol(sym);
2992
2993       unsigned int sym_index = sym->symtab_index();
2994       unsigned int dynsym_index;
2995       if (dynamic_view == NULL)
2996         dynsym_index = -1U;
2997       else
2998         dynsym_index = sym->dynsym_index();
2999
3000       if (sym_index == -1U && dynsym_index == -1U)
3001         {
3002           // This symbol is not included in the output file.
3003           continue;
3004         }
3005
3006       unsigned int shndx;
3007       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
3008       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
3009       elfcpp::STB binding = sym->binding();
3010
3011       // If --weak-unresolved-symbols is set, change binding of unresolved
3012       // global symbols to STB_WEAK.
3013       if (parameters->options().weak_unresolved_symbols()
3014           && binding == elfcpp::STB_GLOBAL
3015           && sym->is_undefined())
3016         binding = elfcpp::STB_WEAK;
3017
3018       // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
3019       if (binding == elfcpp::STB_GNU_UNIQUE
3020           && !parameters->options().gnu_unique())
3021         binding = elfcpp::STB_GLOBAL;
3022
3023       switch (sym->source())
3024         {
3025         case Symbol::FROM_OBJECT:
3026           {
3027             bool is_ordinary;
3028             unsigned int in_shndx = sym->shndx(&is_ordinary);
3029
3030             if (!is_ordinary
3031                 && in_shndx != elfcpp::SHN_ABS
3032                 && !Symbol::is_common_shndx(in_shndx))
3033               {
3034                 gold_error(_("%s: unsupported symbol section 0x%x"),
3035                            sym->demangled_name().c_str(), in_shndx);
3036                 shndx = in_shndx;
3037               }
3038             else
3039               {
3040                 Object* symobj = sym->object();
3041                 if (symobj->is_dynamic())
3042                   {
3043                     if (sym->needs_dynsym_value())
3044                       dynsym_value = target.dynsym_value(sym);
3045                     shndx = elfcpp::SHN_UNDEF;
3046                     if (sym->is_undef_binding_weak())
3047                       binding = elfcpp::STB_WEAK;
3048                     else
3049                       binding = elfcpp::STB_GLOBAL;
3050                   }
3051                 else if (symobj->pluginobj() != NULL)
3052                   shndx = elfcpp::SHN_UNDEF;
3053                 else if (in_shndx == elfcpp::SHN_UNDEF
3054                          || (!is_ordinary
3055                              && (in_shndx == elfcpp::SHN_ABS
3056                                  || Symbol::is_common_shndx(in_shndx))))
3057                   shndx = in_shndx;
3058                 else
3059                   {
3060                     Relobj* relobj = static_cast<Relobj*>(symobj);
3061                     Output_section* os = relobj->output_section(in_shndx);
3062                     if (this->is_section_folded(relobj, in_shndx))
3063                       {
3064                         // This global symbol must be written out even though
3065                         // it is folded.
3066                         // Get the os of the section it is folded onto.
3067                         Section_id folded =
3068                              this->icf_->get_folded_section(relobj, in_shndx);
3069                         gold_assert(folded.first !=NULL);
3070                         Relobj* folded_obj = 
3071                           reinterpret_cast<Relobj*>(folded.first);
3072                         os = folded_obj->output_section(folded.second);  
3073                         gold_assert(os != NULL);
3074                       }
3075                     gold_assert(os != NULL);
3076                     shndx = os->out_shndx();
3077
3078                     if (shndx >= elfcpp::SHN_LORESERVE)
3079                       {
3080                         if (sym_index != -1U)
3081                           symtab_xindex->add(sym_index, shndx);
3082                         if (dynsym_index != -1U)
3083                           dynsym_xindex->add(dynsym_index, shndx);
3084                         shndx = elfcpp::SHN_XINDEX;
3085                       }
3086
3087                     // In object files symbol values are section
3088                     // relative.
3089                     if (parameters->options().relocatable())
3090                       sym_value -= os->address();
3091                   }
3092               }
3093           }
3094           break;
3095
3096         case Symbol::IN_OUTPUT_DATA:
3097           {
3098             Output_data* od = sym->output_data();
3099
3100             shndx = od->out_shndx();
3101             if (shndx >= elfcpp::SHN_LORESERVE)
3102               {
3103                 if (sym_index != -1U)
3104                   symtab_xindex->add(sym_index, shndx);
3105                 if (dynsym_index != -1U)
3106                   dynsym_xindex->add(dynsym_index, shndx);
3107                 shndx = elfcpp::SHN_XINDEX;
3108               }
3109
3110             // In object files symbol values are section
3111             // relative.
3112             if (parameters->options().relocatable())
3113               sym_value -= od->address();
3114           }
3115           break;
3116
3117         case Symbol::IN_OUTPUT_SEGMENT:
3118           shndx = elfcpp::SHN_ABS;
3119           break;
3120
3121         case Symbol::IS_CONSTANT:
3122           shndx = elfcpp::SHN_ABS;
3123           break;
3124
3125         case Symbol::IS_UNDEFINED:
3126           shndx = elfcpp::SHN_UNDEF;
3127           break;
3128
3129         default:
3130           gold_unreachable();
3131         }
3132
3133       if (sym_index != -1U)
3134         {
3135           sym_index -= first_global_index;
3136           gold_assert(sym_index < output_count);
3137           unsigned char* ps = psyms + (sym_index * sym_size);
3138           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3139                                                      binding, sympool, ps);
3140         }
3141
3142       if (dynsym_index != -1U)
3143         {
3144           dynsym_index -= first_dynamic_global_index;
3145           gold_assert(dynsym_index < dynamic_count);
3146           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3147           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3148                                                      binding, dynpool, pd);
3149           // Allow a target to adjust dynamic symbol value.
3150           parameters->target().adjust_dyn_symbol(sym, pd);
3151         }
3152     }
3153
3154   // Write the target-specific symbols.
3155   for (std::vector<Symbol*>::const_iterator p = this->target_symbols_.begin();
3156        p != this->target_symbols_.end();
3157        ++p)
3158     {
3159       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(*p);
3160
3161       unsigned int sym_index = sym->symtab_index();
3162       unsigned int dynsym_index;
3163       if (dynamic_view == NULL)
3164         dynsym_index = -1U;
3165       else
3166         dynsym_index = sym->dynsym_index();
3167
3168       unsigned int shndx;
3169       switch (sym->source())
3170         {
3171         case Symbol::IS_CONSTANT:
3172           shndx = elfcpp::SHN_ABS;
3173           break;
3174         case Symbol::IS_UNDEFINED:
3175           shndx = elfcpp::SHN_UNDEF;
3176           break;
3177         default:
3178           gold_unreachable();
3179         }
3180
3181       if (sym_index != -1U)
3182         {
3183           sym_index -= first_global_index;
3184           gold_assert(sym_index < output_count);
3185           unsigned char* ps = psyms + (sym_index * sym_size);
3186           this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3187                                                      sym->binding(), sympool,
3188                                                      ps);
3189         }
3190
3191       if (dynsym_index != -1U)
3192         {
3193           dynsym_index -= first_dynamic_global_index;
3194           gold_assert(dynsym_index < dynamic_count);
3195           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3196           this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3197                                                      sym->binding(), dynpool,
3198                                                      pd);
3199         }
3200     }
3201
3202   of->write_output_view(this->offset_, oview_size, psyms);
3203   if (dynamic_view != NULL)
3204     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3205 }
3206
3207 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
3208 // strtab holding the name.
3209
3210 template<int size, bool big_endian>
3211 void
3212 Symbol_table::sized_write_symbol(
3213     Sized_symbol<size>* sym,
3214     typename elfcpp::Elf_types<size>::Elf_Addr value,
3215     unsigned int shndx,
3216     elfcpp::STB binding,
3217     const Stringpool* pool,
3218     unsigned char* p) const
3219 {
3220   elfcpp::Sym_write<size, big_endian> osym(p);
3221   if (sym->version() == NULL || !parameters->options().relocatable())
3222     osym.put_st_name(pool->get_offset(sym->name()));
3223   else
3224     osym.put_st_name(pool->get_offset(sym->versioned_name()));
3225   osym.put_st_value(value);
3226   // Use a symbol size of zero for undefined symbols from shared libraries.
3227   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3228     osym.put_st_size(0);
3229   else
3230     osym.put_st_size(sym->symsize());
3231   elfcpp::STT type = sym->type();
3232   gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3233   // A version script may have overridden the default binding.
3234   if (sym->is_forced_local())
3235     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3236   else
3237     osym.put_st_info(elfcpp::elf_st_info(binding, type));
3238   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3239   osym.put_st_shndx(shndx);
3240 }
3241
3242 // Check for unresolved symbols in shared libraries.  This is
3243 // controlled by the --allow-shlib-undefined option.
3244
3245 // We only warn about libraries for which we have seen all the
3246 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
3247 // which were not seen in this link.  If we didn't see a DT_NEEDED
3248 // entry, we aren't going to be able to reliably report whether the
3249 // symbol is undefined.
3250
3251 // We also don't warn about libraries found in a system library
3252 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3253 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
3254 // can have undefined references satisfied by ld-linux.so.
3255
3256 inline void
3257 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3258 {
3259   bool dummy;
3260   if (sym->source() == Symbol::FROM_OBJECT
3261       && sym->object()->is_dynamic()
3262       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3263       && sym->binding() != elfcpp::STB_WEAK
3264       && !parameters->options().allow_shlib_undefined()
3265       && !parameters->target().is_defined_by_abi(sym)
3266       && !sym->object()->is_in_system_directory())
3267     {
3268       // A very ugly cast.
3269       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3270       if (!dynobj->has_unknown_needed_entries())
3271         gold_undefined_symbol(sym);
3272     }
3273 }
3274
3275 // Write out a section symbol.  Return the update offset.
3276
3277 void
3278 Symbol_table::write_section_symbol(const Output_section* os,
3279                                    Output_symtab_xindex* symtab_xindex,
3280                                    Output_file* of,
3281                                    off_t offset) const
3282 {
3283   switch (parameters->size_and_endianness())
3284     {
3285 #ifdef HAVE_TARGET_32_LITTLE
3286     case Parameters::TARGET_32_LITTLE:
3287       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3288                                                   offset);
3289       break;
3290 #endif
3291 #ifdef HAVE_TARGET_32_BIG
3292     case Parameters::TARGET_32_BIG:
3293       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3294                                                  offset);
3295       break;
3296 #endif
3297 #ifdef HAVE_TARGET_64_LITTLE
3298     case Parameters::TARGET_64_LITTLE:
3299       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3300                                                   offset);
3301       break;
3302 #endif
3303 #ifdef HAVE_TARGET_64_BIG
3304     case Parameters::TARGET_64_BIG:
3305       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3306                                                  offset);
3307       break;
3308 #endif
3309     default:
3310       gold_unreachable();
3311     }
3312 }
3313
3314 // Write out a section symbol, specialized for size and endianness.
3315
3316 template<int size, bool big_endian>
3317 void
3318 Symbol_table::sized_write_section_symbol(const Output_section* os,
3319                                          Output_symtab_xindex* symtab_xindex,
3320                                          Output_file* of,
3321                                          off_t offset) const
3322 {
3323   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3324
3325   unsigned char* pov = of->get_output_view(offset, sym_size);
3326
3327   elfcpp::Sym_write<size, big_endian> osym(pov);
3328   osym.put_st_name(0);
3329   if (parameters->options().relocatable())
3330     osym.put_st_value(0);
3331   else
3332     osym.put_st_value(os->address());
3333   osym.put_st_size(0);
3334   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3335                                        elfcpp::STT_SECTION));
3336   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3337
3338   unsigned int shndx = os->out_shndx();
3339   if (shndx >= elfcpp::SHN_LORESERVE)
3340     {
3341       symtab_xindex->add(os->symtab_index(), shndx);
3342       shndx = elfcpp::SHN_XINDEX;
3343     }
3344   osym.put_st_shndx(shndx);
3345
3346   of->write_output_view(offset, sym_size, pov);
3347 }
3348
3349 // Print statistical information to stderr.  This is used for --stats.
3350
3351 void
3352 Symbol_table::print_stats() const
3353 {
3354 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3355   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3356           program_name, this->table_.size(), this->table_.bucket_count());
3357 #else
3358   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3359           program_name, this->table_.size());
3360 #endif
3361   this->namepool_.print_stats("symbol table stringpool");
3362 }
3363
3364 // We check for ODR violations by looking for symbols with the same
3365 // name for which the debugging information reports that they were
3366 // defined in disjoint source locations.  When comparing the source
3367 // location, we consider instances with the same base filename to be
3368 // the same.  This is because different object files/shared libraries
3369 // can include the same header file using different paths, and
3370 // different optimization settings can make the line number appear to
3371 // be a couple lines off, and we don't want to report an ODR violation
3372 // in those cases.
3373
3374 // This struct is used to compare line information, as returned by
3375 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3376 // operator used with std::sort.
3377
3378 struct Odr_violation_compare
3379 {
3380   bool
3381   operator()(const std::string& s1, const std::string& s2) const
3382   {
3383     // Inputs should be of the form "dirname/filename:linenum" where
3384     // "dirname/" is optional.  We want to compare just the filename:linenum.
3385
3386     // Find the last '/' in each string.
3387     std::string::size_type s1begin = s1.rfind('/');
3388     std::string::size_type s2begin = s2.rfind('/');
3389     // If there was no '/' in a string, start at the beginning.
3390     if (s1begin == std::string::npos)
3391       s1begin = 0;
3392     if (s2begin == std::string::npos)
3393       s2begin = 0;
3394     return s1.compare(s1begin, std::string::npos,
3395                       s2, s2begin, std::string::npos) < 0;
3396   }
3397 };
3398
3399 // Returns all of the lines attached to LOC, not just the one the
3400 // instruction actually came from.
3401 std::vector<std::string>
3402 Symbol_table::linenos_from_loc(const Task* task,
3403                                const Symbol_location& loc)
3404 {
3405   // We need to lock the object in order to read it.  This
3406   // means that we have to run in a singleton Task.  If we
3407   // want to run this in a general Task for better
3408   // performance, we will need one Task for object, plus
3409   // appropriate locking to ensure that we don't conflict with
3410   // other uses of the object.  Also note, one_addr2line is not
3411   // currently thread-safe.
3412   Task_lock_obj<Object> tl(task, loc.object);
3413
3414   std::vector<std::string> result;
3415   Symbol_location code_loc = loc;
3416   parameters->target().function_location(&code_loc);
3417   // 16 is the size of the object-cache that one_addr2line should use.
3418   std::string canonical_result = Dwarf_line_info::one_addr2line(
3419       code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3420   if (!canonical_result.empty())
3421     result.push_back(canonical_result);
3422   return result;
3423 }
3424
3425 // OutputIterator that records if it was ever assigned to.  This
3426 // allows it to be used with std::set_intersection() to check for
3427 // intersection rather than computing the intersection.
3428 struct Check_intersection
3429 {
3430   Check_intersection()
3431     : value_(false)
3432   {}
3433
3434   bool had_intersection() const
3435   { return this->value_; }
3436
3437   Check_intersection& operator++()
3438   { return *this; }
3439
3440   Check_intersection& operator*()
3441   { return *this; }
3442
3443   template<typename T>
3444   Check_intersection& operator=(const T&)
3445   {
3446     this->value_ = true;
3447     return *this;
3448   }
3449
3450  private:
3451   bool value_;
3452 };
3453
3454 // Check candidate_odr_violations_ to find symbols with the same name
3455 // but apparently different definitions (different source-file/line-no
3456 // for each line assigned to the first instruction).
3457
3458 void
3459 Symbol_table::detect_odr_violations(const Task* task,
3460                                     const char* output_file_name) const
3461 {
3462   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3463        it != candidate_odr_violations_.end();
3464        ++it)
3465     {
3466       const char* const symbol_name = it->first;
3467
3468       std::string first_object_name;
3469       std::vector<std::string> first_object_linenos;
3470
3471       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3472           locs = it->second.begin();
3473       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3474           locs_end = it->second.end();
3475       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3476         {
3477           // Save the line numbers from the first definition to
3478           // compare to the other definitions.  Ideally, we'd compare
3479           // every definition to every other, but we don't want to
3480           // take O(N^2) time to do this.  This shortcut may cause
3481           // false negatives that appear or disappear depending on the
3482           // link order, but it won't cause false positives.
3483           first_object_name = locs->object->name();
3484           first_object_linenos = this->linenos_from_loc(task, *locs);
3485         }
3486       if (first_object_linenos.empty())
3487         continue;
3488
3489       // Sort by Odr_violation_compare to make std::set_intersection work.
3490       std::string first_object_canonical_result = first_object_linenos.back();
3491       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3492                 Odr_violation_compare());
3493
3494       for (; locs != locs_end; ++locs)
3495         {
3496           std::vector<std::string> linenos =
3497               this->linenos_from_loc(task, *locs);
3498           // linenos will be empty if we couldn't parse the debug info.
3499           if (linenos.empty())
3500             continue;
3501           // Sort by Odr_violation_compare to make std::set_intersection work.
3502           gold_assert(!linenos.empty());
3503           std::string second_object_canonical_result = linenos.back();
3504           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3505
3506           Check_intersection intersection_result =
3507               std::set_intersection(first_object_linenos.begin(),
3508                                     first_object_linenos.end(),
3509                                     linenos.begin(),
3510                                     linenos.end(),
3511                                     Check_intersection(),
3512                                     Odr_violation_compare());
3513           if (!intersection_result.had_intersection())
3514             {
3515               gold_warning(_("while linking %s: symbol '%s' defined in "
3516                              "multiple places (possible ODR violation):"),
3517                            output_file_name, demangle(symbol_name).c_str());
3518               // This only prints one location from each definition,
3519               // which may not be the location we expect to intersect
3520               // with another definition.  We could print the whole
3521               // set of locations, but that seems too verbose.
3522               fprintf(stderr, _("  %s from %s\n"),
3523                       first_object_canonical_result.c_str(),
3524                       first_object_name.c_str());
3525               fprintf(stderr, _("  %s from %s\n"),
3526                       second_object_canonical_result.c_str(),
3527                       locs->object->name().c_str());
3528               // Only print one broken pair, to avoid needing to
3529               // compare against a list of the disjoint definition
3530               // locations we've found so far.  (If we kept comparing
3531               // against just the first one, we'd get a lot of
3532               // redundant complaints about the second definition
3533               // location.)
3534               break;
3535             }
3536         }
3537     }
3538   // We only call one_addr2line() in this function, so we can clear its cache.
3539   Dwarf_line_info::clear_addr2line_cache();
3540 }
3541
3542 // Warnings functions.
3543
3544 // Add a new warning.
3545
3546 void
3547 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3548                       const std::string& warning)
3549 {
3550   name = symtab->canonicalize_name(name);
3551   this->warnings_[name].set(obj, warning);
3552 }
3553
3554 // Look through the warnings and mark the symbols for which we should
3555 // warn.  This is called during Layout::finalize when we know the
3556 // sources for all the symbols.
3557
3558 void
3559 Warnings::note_warnings(Symbol_table* symtab)
3560 {
3561   for (Warning_table::iterator p = this->warnings_.begin();
3562        p != this->warnings_.end();
3563        ++p)
3564     {
3565       Symbol* sym = symtab->lookup(p->first, NULL);
3566       if (sym != NULL
3567           && sym->source() == Symbol::FROM_OBJECT
3568           && sym->object() == p->second.object)
3569         sym->set_has_warning();
3570     }
3571 }
3572
3573 // Issue a warning.  This is called when we see a relocation against a
3574 // symbol for which has a warning.
3575
3576 template<int size, bool big_endian>
3577 void
3578 Warnings::issue_warning(const Symbol* sym,
3579                         const Relocate_info<size, big_endian>* relinfo,
3580                         size_t relnum, off_t reloffset) const
3581 {
3582   gold_assert(sym->has_warning());
3583
3584   // We don't want to issue a warning for a relocation against the
3585   // symbol in the same object file in which the symbol is defined.
3586   if (sym->object() == relinfo->object)
3587     return;
3588
3589   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3590   gold_assert(p != this->warnings_.end());
3591   gold_warning_at_location(relinfo, relnum, reloffset,
3592                            "%s", p->second.text.c_str());
3593 }
3594
3595 // Instantiate the templates we need.  We could use the configure
3596 // script to restrict this to only the ones needed for implemented
3597 // targets.
3598
3599 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3600 template
3601 void
3602 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3603 #endif
3604
3605 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3606 template
3607 void
3608 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3609 #endif
3610
3611 #ifdef HAVE_TARGET_32_LITTLE
3612 template
3613 void
3614 Symbol_table::add_from_relobj<32, false>(
3615     Sized_relobj_file<32, false>* relobj,
3616     const unsigned char* syms,
3617     size_t count,
3618     size_t symndx_offset,
3619     const char* sym_names,
3620     size_t sym_name_size,
3621     Sized_relobj_file<32, false>::Symbols* sympointers,
3622     size_t* defined);
3623 #endif
3624
3625 #ifdef HAVE_TARGET_32_BIG
3626 template
3627 void
3628 Symbol_table::add_from_relobj<32, true>(
3629     Sized_relobj_file<32, true>* relobj,
3630     const unsigned char* syms,
3631     size_t count,
3632     size_t symndx_offset,
3633     const char* sym_names,
3634     size_t sym_name_size,
3635     Sized_relobj_file<32, true>::Symbols* sympointers,
3636     size_t* defined);
3637 #endif
3638
3639 #ifdef HAVE_TARGET_64_LITTLE
3640 template
3641 void
3642 Symbol_table::add_from_relobj<64, false>(
3643     Sized_relobj_file<64, false>* relobj,
3644     const unsigned char* syms,
3645     size_t count,
3646     size_t symndx_offset,
3647     const char* sym_names,
3648     size_t sym_name_size,
3649     Sized_relobj_file<64, false>::Symbols* sympointers,
3650     size_t* defined);
3651 #endif
3652
3653 #ifdef HAVE_TARGET_64_BIG
3654 template
3655 void
3656 Symbol_table::add_from_relobj<64, true>(
3657     Sized_relobj_file<64, true>* relobj,
3658     const unsigned char* syms,
3659     size_t count,
3660     size_t symndx_offset,
3661     const char* sym_names,
3662     size_t sym_name_size,
3663     Sized_relobj_file<64, true>::Symbols* sympointers,
3664     size_t* defined);
3665 #endif
3666
3667 #ifdef HAVE_TARGET_32_LITTLE
3668 template
3669 Symbol*
3670 Symbol_table::add_from_pluginobj<32, false>(
3671     Sized_pluginobj<32, false>* obj,
3672     const char* name,
3673     const char* ver,
3674     elfcpp::Sym<32, false>* sym);
3675 #endif
3676
3677 #ifdef HAVE_TARGET_32_BIG
3678 template
3679 Symbol*
3680 Symbol_table::add_from_pluginobj<32, true>(
3681     Sized_pluginobj<32, true>* obj,
3682     const char* name,
3683     const char* ver,
3684     elfcpp::Sym<32, true>* sym);
3685 #endif
3686
3687 #ifdef HAVE_TARGET_64_LITTLE
3688 template
3689 Symbol*
3690 Symbol_table::add_from_pluginobj<64, false>(
3691     Sized_pluginobj<64, false>* obj,
3692     const char* name,
3693     const char* ver,
3694     elfcpp::Sym<64, false>* sym);
3695 #endif
3696
3697 #ifdef HAVE_TARGET_64_BIG
3698 template
3699 Symbol*
3700 Symbol_table::add_from_pluginobj<64, true>(
3701     Sized_pluginobj<64, true>* obj,
3702     const char* name,
3703     const char* ver,
3704     elfcpp::Sym<64, true>* sym);
3705 #endif
3706
3707 #ifdef HAVE_TARGET_32_LITTLE
3708 template
3709 void
3710 Symbol_table::add_from_dynobj<32, false>(
3711     Sized_dynobj<32, false>* dynobj,
3712     const unsigned char* syms,
3713     size_t count,
3714     const char* sym_names,
3715     size_t sym_name_size,
3716     const unsigned char* versym,
3717     size_t versym_size,
3718     const std::vector<const char*>* version_map,
3719     Sized_relobj_file<32, false>::Symbols* sympointers,
3720     size_t* defined);
3721 #endif
3722
3723 #ifdef HAVE_TARGET_32_BIG
3724 template
3725 void
3726 Symbol_table::add_from_dynobj<32, true>(
3727     Sized_dynobj<32, true>* dynobj,
3728     const unsigned char* syms,
3729     size_t count,
3730     const char* sym_names,
3731     size_t sym_name_size,
3732     const unsigned char* versym,
3733     size_t versym_size,
3734     const std::vector<const char*>* version_map,
3735     Sized_relobj_file<32, true>::Symbols* sympointers,
3736     size_t* defined);
3737 #endif
3738
3739 #ifdef HAVE_TARGET_64_LITTLE
3740 template
3741 void
3742 Symbol_table::add_from_dynobj<64, false>(
3743     Sized_dynobj<64, false>* dynobj,
3744     const unsigned char* syms,
3745     size_t count,
3746     const char* sym_names,
3747     size_t sym_name_size,
3748     const unsigned char* versym,
3749     size_t versym_size,
3750     const std::vector<const char*>* version_map,
3751     Sized_relobj_file<64, false>::Symbols* sympointers,
3752     size_t* defined);
3753 #endif
3754
3755 #ifdef HAVE_TARGET_64_BIG
3756 template
3757 void
3758 Symbol_table::add_from_dynobj<64, true>(
3759     Sized_dynobj<64, true>* dynobj,
3760     const unsigned char* syms,
3761     size_t count,
3762     const char* sym_names,
3763     size_t sym_name_size,
3764     const unsigned char* versym,
3765     size_t versym_size,
3766     const std::vector<const char*>* version_map,
3767     Sized_relobj_file<64, true>::Symbols* sympointers,
3768     size_t* defined);
3769 #endif
3770
3771 #ifdef HAVE_TARGET_32_LITTLE
3772 template
3773 Sized_symbol<32>*
3774 Symbol_table::add_from_incrobj(
3775     Object* obj,
3776     const char* name,
3777     const char* ver,
3778     elfcpp::Sym<32, false>* sym);
3779 #endif
3780
3781 #ifdef HAVE_TARGET_32_BIG
3782 template
3783 Sized_symbol<32>*
3784 Symbol_table::add_from_incrobj(
3785     Object* obj,
3786     const char* name,
3787     const char* ver,
3788     elfcpp::Sym<32, true>* sym);
3789 #endif
3790
3791 #ifdef HAVE_TARGET_64_LITTLE
3792 template
3793 Sized_symbol<64>*
3794 Symbol_table::add_from_incrobj(
3795     Object* obj,
3796     const char* name,
3797     const char* ver,
3798     elfcpp::Sym<64, false>* sym);
3799 #endif
3800
3801 #ifdef HAVE_TARGET_64_BIG
3802 template
3803 Sized_symbol<64>*
3804 Symbol_table::add_from_incrobj(
3805     Object* obj,
3806     const char* name,
3807     const char* ver,
3808     elfcpp::Sym<64, true>* sym);
3809 #endif
3810
3811 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3812 template
3813 void
3814 Symbol_table::define_with_copy_reloc<32>(
3815     Sized_symbol<32>* sym,
3816     Output_data* posd,
3817     elfcpp::Elf_types<32>::Elf_Addr value);
3818 #endif
3819
3820 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3821 template
3822 void
3823 Symbol_table::define_with_copy_reloc<64>(
3824     Sized_symbol<64>* sym,
3825     Output_data* posd,
3826     elfcpp::Elf_types<64>::Elf_Addr value);
3827 #endif
3828
3829 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3830 template
3831 void
3832 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3833                                    Output_data* od, Value_type value,
3834                                    Size_type symsize, elfcpp::STT type,
3835                                    elfcpp::STB binding,
3836                                    elfcpp::STV visibility,
3837                                    unsigned char nonvis,
3838                                    bool offset_is_from_end,
3839                                    bool is_predefined);
3840
3841 template
3842 void
3843 Sized_symbol<32>::init_constant(const char* name, const char* version,
3844                                 Value_type value, Size_type symsize,
3845                                 elfcpp::STT type, elfcpp::STB binding,
3846                                 elfcpp::STV visibility, unsigned char nonvis,
3847                                 bool is_predefined);
3848
3849 template
3850 void
3851 Sized_symbol<32>::init_undefined(const char* name, const char* version,
3852                                  Value_type value, elfcpp::STT type,
3853                                  elfcpp::STB binding, elfcpp::STV visibility,
3854                                  unsigned char nonvis);
3855 #endif
3856
3857 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3858 template
3859 void
3860 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3861                                    Output_data* od, Value_type value,
3862                                    Size_type symsize, elfcpp::STT type,
3863                                    elfcpp::STB binding,
3864                                    elfcpp::STV visibility,
3865                                    unsigned char nonvis,
3866                                    bool offset_is_from_end,
3867                                    bool is_predefined);
3868
3869 template
3870 void
3871 Sized_symbol<64>::init_constant(const char* name, const char* version,
3872                                 Value_type value, Size_type symsize,
3873                                 elfcpp::STT type, elfcpp::STB binding,
3874                                 elfcpp::STV visibility, unsigned char nonvis,
3875                                 bool is_predefined);
3876
3877 template
3878 void
3879 Sized_symbol<64>::init_undefined(const char* name, const char* version,
3880                                  Value_type value, elfcpp::STT type,
3881                                  elfcpp::STB binding, elfcpp::STV visibility,
3882                                  unsigned char nonvis);
3883 #endif
3884
3885 #ifdef HAVE_TARGET_32_LITTLE
3886 template
3887 void
3888 Warnings::issue_warning<32, false>(const Symbol* sym,
3889                                    const Relocate_info<32, false>* relinfo,
3890                                    size_t relnum, off_t reloffset) const;
3891 #endif
3892
3893 #ifdef HAVE_TARGET_32_BIG
3894 template
3895 void
3896 Warnings::issue_warning<32, true>(const Symbol* sym,
3897                                   const Relocate_info<32, true>* relinfo,
3898                                   size_t relnum, off_t reloffset) const;
3899 #endif
3900
3901 #ifdef HAVE_TARGET_64_LITTLE
3902 template
3903 void
3904 Warnings::issue_warning<64, false>(const Symbol* sym,
3905                                    const Relocate_info<64, false>* relinfo,
3906                                    size_t relnum, off_t reloffset) const;
3907 #endif
3908
3909 #ifdef HAVE_TARGET_64_BIG
3910 template
3911 void
3912 Warnings::issue_warning<64, true>(const Symbol* sym,
3913                                   const Relocate_info<64, true>* relinfo,
3914                                   size_t relnum, off_t reloffset) const;
3915 #endif
3916
3917 } // End namespace gold.