Update year range in copyright notice of binutils files
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol.  This initializes everything except
51 // u1_, u2_ and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55                     elfcpp::STT type, elfcpp::STB binding,
56                     elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83   this->is_protected_ = false;
84   this->non_zero_localentry_ = false;
85 }
86
87 // Return the demangled version of the symbol's name, but only
88 // if the --demangle flag was set.
89
90 static std::string
91 demangle(const char* name)
92 {
93   if (!parameters->options().do_demangle())
94     return name;
95
96   // cplus_demangle allocates memory for the result it returns,
97   // and returns NULL if the name is already demangled.
98   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
99   if (demangled_name == NULL)
100     return name;
101
102   std::string retval(demangled_name);
103   free(demangled_name);
104   return retval;
105 }
106
107 std::string
108 Symbol::demangled_name() const
109 {
110   return demangle(this->name());
111 }
112
113 // Initialize the fields in the base class Symbol for SYM in OBJECT.
114
115 template<int size, bool big_endian>
116 void
117 Symbol::init_base_object(const char* name, const char* version, Object* object,
118                          const elfcpp::Sym<size, big_endian>& sym,
119                          unsigned int st_shndx, bool is_ordinary)
120 {
121   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
122                     sym.get_st_visibility(), sym.get_st_nonvis());
123   this->u1_.object = object;
124   this->u2_.shndx = st_shndx;
125   this->is_ordinary_shndx_ = is_ordinary;
126   this->source_ = FROM_OBJECT;
127   this->in_reg_ = !object->is_dynamic();
128   this->in_dyn_ = object->is_dynamic();
129   this->in_real_elf_ = object->pluginobj() == NULL;
130 }
131
132 // Initialize the fields in the base class Symbol for a symbol defined
133 // in an Output_data.
134
135 void
136 Symbol::init_base_output_data(const char* name, const char* version,
137                               Output_data* od, elfcpp::STT type,
138                               elfcpp::STB binding, elfcpp::STV visibility,
139                               unsigned char nonvis, bool offset_is_from_end,
140                               bool is_predefined)
141 {
142   this->init_fields(name, version, type, binding, visibility, nonvis);
143   this->u1_.output_data = od;
144   this->u2_.offset_is_from_end = offset_is_from_end;
145   this->source_ = IN_OUTPUT_DATA;
146   this->in_reg_ = true;
147   this->in_real_elf_ = true;
148   this->is_predefined_ = is_predefined;
149 }
150
151 // Initialize the fields in the base class Symbol for a symbol defined
152 // in an Output_segment.
153
154 void
155 Symbol::init_base_output_segment(const char* name, const char* version,
156                                  Output_segment* os, elfcpp::STT type,
157                                  elfcpp::STB binding, elfcpp::STV visibility,
158                                  unsigned char nonvis,
159                                  Segment_offset_base offset_base,
160                                  bool is_predefined)
161 {
162   this->init_fields(name, version, type, binding, visibility, nonvis);
163   this->u1_.output_segment = os;
164   this->u2_.offset_base = offset_base;
165   this->source_ = IN_OUTPUT_SEGMENT;
166   this->in_reg_ = true;
167   this->in_real_elf_ = true;
168   this->is_predefined_ = is_predefined;
169 }
170
171 // Initialize the fields in the base class Symbol for a symbol defined
172 // as a constant.
173
174 void
175 Symbol::init_base_constant(const char* name, const char* version,
176                            elfcpp::STT type, elfcpp::STB binding,
177                            elfcpp::STV visibility, unsigned char nonvis,
178                            bool is_predefined)
179 {
180   this->init_fields(name, version, type, binding, visibility, nonvis);
181   this->source_ = IS_CONSTANT;
182   this->in_reg_ = true;
183   this->in_real_elf_ = true;
184   this->is_predefined_ = is_predefined;
185 }
186
187 // Initialize the fields in the base class Symbol for an undefined
188 // symbol.
189
190 void
191 Symbol::init_base_undefined(const char* name, const char* version,
192                             elfcpp::STT type, elfcpp::STB binding,
193                             elfcpp::STV visibility, unsigned char nonvis)
194 {
195   this->init_fields(name, version, type, binding, visibility, nonvis);
196   this->dynsym_index_ = -1U;
197   this->source_ = IS_UNDEFINED;
198   this->in_reg_ = true;
199   this->in_real_elf_ = true;
200 }
201
202 // Allocate a common symbol in the base.
203
204 void
205 Symbol::allocate_base_common(Output_data* od)
206 {
207   gold_assert(this->is_common());
208   this->source_ = IN_OUTPUT_DATA;
209   this->u1_.output_data = od;
210   this->u2_.offset_is_from_end = false;
211 }
212
213 // Initialize the fields in Sized_symbol for SYM in OBJECT.
214
215 template<int size>
216 template<bool big_endian>
217 void
218 Sized_symbol<size>::init_object(const char* name, const char* version,
219                                 Object* object,
220                                 const elfcpp::Sym<size, big_endian>& sym,
221                                 unsigned int st_shndx, bool is_ordinary)
222 {
223   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
224   this->value_ = sym.get_st_value();
225   this->symsize_ = sym.get_st_size();
226 }
227
228 // Initialize the fields in Sized_symbol for a symbol defined in an
229 // Output_data.
230
231 template<int size>
232 void
233 Sized_symbol<size>::init_output_data(const char* name, const char* version,
234                                      Output_data* od, Value_type value,
235                                      Size_type symsize, elfcpp::STT type,
236                                      elfcpp::STB binding,
237                                      elfcpp::STV visibility,
238                                      unsigned char nonvis,
239                                      bool offset_is_from_end,
240                                      bool is_predefined)
241 {
242   this->init_base_output_data(name, version, od, type, binding, visibility,
243                               nonvis, offset_is_from_end, is_predefined);
244   this->value_ = value;
245   this->symsize_ = symsize;
246 }
247
248 // Initialize the fields in Sized_symbol for a symbol defined in an
249 // Output_segment.
250
251 template<int size>
252 void
253 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
254                                         Output_segment* os, Value_type value,
255                                         Size_type symsize, elfcpp::STT type,
256                                         elfcpp::STB binding,
257                                         elfcpp::STV visibility,
258                                         unsigned char nonvis,
259                                         Segment_offset_base offset_base,
260                                         bool is_predefined)
261 {
262   this->init_base_output_segment(name, version, os, type, binding, visibility,
263                                  nonvis, offset_base, is_predefined);
264   this->value_ = value;
265   this->symsize_ = symsize;
266 }
267
268 // Initialize the fields in Sized_symbol for a symbol defined as a
269 // constant.
270
271 template<int size>
272 void
273 Sized_symbol<size>::init_constant(const char* name, const char* version,
274                                   Value_type value, Size_type symsize,
275                                   elfcpp::STT type, elfcpp::STB binding,
276                                   elfcpp::STV visibility, unsigned char nonvis,
277                                   bool is_predefined)
278 {
279   this->init_base_constant(name, version, type, binding, visibility, nonvis,
280                            is_predefined);
281   this->value_ = value;
282   this->symsize_ = symsize;
283 }
284
285 // Initialize the fields in Sized_symbol for an undefined symbol.
286
287 template<int size>
288 void
289 Sized_symbol<size>::init_undefined(const char* name, const char* version,
290                                    Value_type value, elfcpp::STT type,
291                                    elfcpp::STB binding, elfcpp::STV visibility,
292                                    unsigned char nonvis)
293 {
294   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
295   this->value_ = value;
296   this->symsize_ = 0;
297 }
298
299 // Return an allocated string holding the symbol's name as
300 // name@version.  This is used for relocatable links.
301
302 std::string
303 Symbol::versioned_name() const
304 {
305   gold_assert(this->version_ != NULL);
306   std::string ret = this->name_;
307   ret.push_back('@');
308   if (this->is_def_)
309     ret.push_back('@');
310   ret += this->version_;
311   return ret;
312 }
313
314 // Return true if SHNDX represents a common symbol.
315
316 bool
317 Symbol::is_common_shndx(unsigned int shndx)
318 {
319   return (shndx == elfcpp::SHN_COMMON
320           || shndx == parameters->target().small_common_shndx()
321           || shndx == parameters->target().large_common_shndx());
322 }
323
324 // Allocate a common symbol.
325
326 template<int size>
327 void
328 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
329 {
330   this->allocate_base_common(od);
331   this->value_ = value;
332 }
333
334 // The ""'s around str ensure str is a string literal, so sizeof works.
335 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
336
337 // Return true if this symbol should be added to the dynamic symbol
338 // table.
339
340 bool
341 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
342 {
343   // If the symbol is only present on plugin files, the plugin decided we
344   // don't need it.
345   if (!this->in_real_elf())
346     return false;
347
348   // If the symbol is used by a dynamic relocation, we need to add it.
349   if (this->needs_dynsym_entry())
350     return true;
351
352   // If this symbol's section is not added, the symbol need not be added. 
353   // The section may have been GCed.  Note that export_dynamic is being 
354   // overridden here.  This should not be done for shared objects.
355   if (parameters->options().gc_sections() 
356       && !parameters->options().shared()
357       && this->source() == Symbol::FROM_OBJECT
358       && !this->object()->is_dynamic())
359     {
360       Relobj* relobj = static_cast<Relobj*>(this->object());
361       bool is_ordinary;
362       unsigned int shndx = this->shndx(&is_ordinary);
363       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
364           && !relobj->is_section_included(shndx)
365           && !symtab->is_section_folded(relobj, shndx))
366         return false;
367     }
368
369   // If the symbol was forced dynamic in a --dynamic-list file
370   // or an --export-dynamic-symbol option, add it.
371   if (!this->is_from_dynobj()
372       && (parameters->options().in_dynamic_list(this->name())
373           || parameters->options().is_export_dynamic_symbol(this->name())))
374     {
375       if (!this->is_forced_local())
376         return true;
377       gold_warning(_("Cannot export local symbol '%s'"),
378                    this->demangled_name().c_str());
379       return false;
380     }
381
382   // If the symbol was forced local in a version script, do not add it.
383   if (this->is_forced_local())
384     return false;
385
386   // If dynamic-list-data was specified, add any STT_OBJECT.
387   if (parameters->options().dynamic_list_data()
388       && !this->is_from_dynobj()
389       && this->type() == elfcpp::STT_OBJECT)
390     return true;
391
392   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
393   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
394   if ((parameters->options().dynamic_list_cpp_new()
395        || parameters->options().dynamic_list_cpp_typeinfo())
396       && !this->is_from_dynobj())
397     {
398       // TODO(csilvers): We could probably figure out if we're an operator
399       //                 new/delete or typeinfo without the need to demangle.
400       char* demangled_name = cplus_demangle(this->name(),
401                                             DMGL_ANSI | DMGL_PARAMS);
402       if (demangled_name == NULL)
403         {
404           // Not a C++ symbol, so it can't satisfy these flags
405         }
406       else if (parameters->options().dynamic_list_cpp_new()
407                && (strprefix(demangled_name, "operator new")
408                    || strprefix(demangled_name, "operator delete")))
409         {
410           free(demangled_name);
411           return true;
412         }
413       else if (parameters->options().dynamic_list_cpp_typeinfo()
414                && (strprefix(demangled_name, "typeinfo name for")
415                    || strprefix(demangled_name, "typeinfo for")))
416         {
417           free(demangled_name);
418           return true;
419         }
420       else
421         free(demangled_name);
422     }
423
424   // If exporting all symbols or building a shared library,
425   // or the symbol should be globally unique (GNU_UNIQUE),
426   // and the symbol is defined in a regular object and is
427   // externally visible, we need to add it.
428   if ((parameters->options().export_dynamic()
429        || parameters->options().shared()
430        || (parameters->options().gnu_unique()
431            && this->binding() == elfcpp::STB_GNU_UNIQUE))
432       && !this->is_from_dynobj()
433       && !this->is_undefined()
434       && this->is_externally_visible())
435     return true;
436
437   return false;
438 }
439
440 // Return true if the final value of this symbol is known at link
441 // time.
442
443 bool
444 Symbol::final_value_is_known() const
445 {
446   // If we are not generating an executable, then no final values are
447   // known, since they will change at runtime, with the exception of
448   // TLS symbols in a position-independent executable.
449   if ((parameters->options().output_is_position_independent()
450        || parameters->options().relocatable())
451       && !(this->type() == elfcpp::STT_TLS
452            && parameters->options().pie()))
453     return false;
454
455   // If the symbol is not from an object file, and is not undefined,
456   // then it is defined, and known.
457   if (this->source_ != FROM_OBJECT)
458     {
459       if (this->source_ != IS_UNDEFINED)
460         return true;
461     }
462   else
463     {
464       // If the symbol is from a dynamic object, then the final value
465       // is not known.
466       if (this->object()->is_dynamic())
467         return false;
468
469       // If the symbol is not undefined (it is defined or common),
470       // then the final value is known.
471       if (!this->is_undefined())
472         return true;
473     }
474
475   // If the symbol is undefined, then whether the final value is known
476   // depends on whether we are doing a static link.  If we are doing a
477   // dynamic link, then the final value could be filled in at runtime.
478   // This could reasonably be the case for a weak undefined symbol.
479   return parameters->doing_static_link();
480 }
481
482 // Return the output section where this symbol is defined.
483
484 Output_section*
485 Symbol::output_section() const
486 {
487   switch (this->source_)
488     {
489     case FROM_OBJECT:
490       {
491         unsigned int shndx = this->u2_.shndx;
492         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
493           {
494             gold_assert(!this->u1_.object->is_dynamic());
495             gold_assert(this->u1_.object->pluginobj() == NULL);
496             Relobj* relobj = static_cast<Relobj*>(this->u1_.object);
497             return relobj->output_section(shndx);
498           }
499         return NULL;
500       }
501
502     case IN_OUTPUT_DATA:
503       return this->u1_.output_data->output_section();
504
505     case IN_OUTPUT_SEGMENT:
506     case IS_CONSTANT:
507     case IS_UNDEFINED:
508       return NULL;
509
510     default:
511       gold_unreachable();
512     }
513 }
514
515 // Set the symbol's output section.  This is used for symbols defined
516 // in scripts.  This should only be called after the symbol table has
517 // been finalized.
518
519 void
520 Symbol::set_output_section(Output_section* os)
521 {
522   switch (this->source_)
523     {
524     case FROM_OBJECT:
525     case IN_OUTPUT_DATA:
526       gold_assert(this->output_section() == os);
527       break;
528     case IS_CONSTANT:
529       this->source_ = IN_OUTPUT_DATA;
530       this->u1_.output_data = os;
531       this->u2_.offset_is_from_end = false;
532       break;
533     case IN_OUTPUT_SEGMENT:
534     case IS_UNDEFINED:
535     default:
536       gold_unreachable();
537     }
538 }
539
540 // Set the symbol's output segment.  This is used for pre-defined
541 // symbols whose segments aren't known until after layout is done
542 // (e.g., __ehdr_start).
543
544 void
545 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
546 {
547   gold_assert(this->is_predefined_);
548   this->source_ = IN_OUTPUT_SEGMENT;
549   this->u1_.output_segment = os;
550   this->u2_.offset_base = base;
551 }
552
553 // Set the symbol to undefined.  This is used for pre-defined
554 // symbols whose segments aren't known until after layout is done
555 // (e.g., __ehdr_start).
556
557 void
558 Symbol::set_undefined()
559 {
560   this->source_ = IS_UNDEFINED;
561   this->is_predefined_ = false;
562 }
563
564 // Class Symbol_table.
565
566 Symbol_table::Symbol_table(unsigned int count,
567                            const Version_script_info& version_script)
568   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
569     forwarders_(), commons_(), tls_commons_(), small_commons_(),
570     large_commons_(), forced_locals_(), warnings_(),
571     version_script_(version_script), gc_(NULL), icf_(NULL),
572     target_symbols_()
573 {
574   namepool_.reserve(count);
575 }
576
577 Symbol_table::~Symbol_table()
578 {
579 }
580
581 // The symbol table key equality function.  This is called with
582 // Stringpool keys.
583
584 inline bool
585 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
586                                           const Symbol_table_key& k2) const
587 {
588   return k1.first == k2.first && k1.second == k2.second;
589 }
590
591 bool
592 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
593 {
594   return (parameters->options().icf_enabled()
595           && this->icf_->is_section_folded(obj, shndx));
596 }
597
598 // For symbols that have been listed with a -u or --export-dynamic-symbol
599 // option, add them to the work list to avoid gc'ing them.
600
601 void 
602 Symbol_table::gc_mark_undef_symbols(Layout* layout)
603 {
604   for (options::String_set::const_iterator p =
605          parameters->options().undefined_begin();
606        p != parameters->options().undefined_end();
607        ++p)
608     {
609       const char* name = p->c_str();
610       Symbol* sym = this->lookup(name);
611       gold_assert(sym != NULL);
612       if (sym->source() == Symbol::FROM_OBJECT 
613           && !sym->object()->is_dynamic())
614         {
615           this->gc_mark_symbol(sym);
616         }
617     }
618
619   for (options::String_set::const_iterator p =
620          parameters->options().export_dynamic_symbol_begin();
621        p != parameters->options().export_dynamic_symbol_end();
622        ++p)
623     {
624       const char* name = p->c_str();
625       Symbol* sym = this->lookup(name);
626       // It's not an error if a symbol named by --export-dynamic-symbol
627       // is undefined.
628       if (sym != NULL
629           && sym->source() == Symbol::FROM_OBJECT 
630           && !sym->object()->is_dynamic())
631         {
632           this->gc_mark_symbol(sym);
633         }
634     }
635
636   for (Script_options::referenced_const_iterator p =
637          layout->script_options()->referenced_begin();
638        p != layout->script_options()->referenced_end();
639        ++p)
640     {
641       Symbol* sym = this->lookup(p->c_str());
642       gold_assert(sym != NULL);
643       if (sym->source() == Symbol::FROM_OBJECT
644           && !sym->object()->is_dynamic())
645         {
646           this->gc_mark_symbol(sym);
647         }
648     }
649 }
650
651 void
652 Symbol_table::gc_mark_symbol(Symbol* sym)
653 {
654   // Add the object and section to the work list.
655   bool is_ordinary;
656   unsigned int shndx = sym->shndx(&is_ordinary);
657   if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
658     {
659       gold_assert(this->gc_!= NULL);
660       Relobj* relobj = static_cast<Relobj*>(sym->object());
661       this->gc_->worklist().push_back(Section_id(relobj, shndx));
662     }
663   parameters->target().gc_mark_symbol(this, sym);
664 }
665
666 // When doing garbage collection, keep symbols that have been seen in
667 // dynamic objects.
668 inline void 
669 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
670 {
671   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
672       && !sym->object()->is_dynamic())
673     this->gc_mark_symbol(sym);
674 }
675
676 // Make TO a symbol which forwards to FROM.
677
678 void
679 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
680 {
681   gold_assert(from != to);
682   gold_assert(!from->is_forwarder() && !to->is_forwarder());
683   this->forwarders_[from] = to;
684   from->set_forwarder();
685 }
686
687 // Resolve the forwards from FROM, returning the real symbol.
688
689 Symbol*
690 Symbol_table::resolve_forwards(const Symbol* from) const
691 {
692   gold_assert(from->is_forwarder());
693   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
694     this->forwarders_.find(from);
695   gold_assert(p != this->forwarders_.end());
696   return p->second;
697 }
698
699 // Look up a symbol by name.
700
701 Symbol*
702 Symbol_table::lookup(const char* name, const char* version) const
703 {
704   Stringpool::Key name_key;
705   name = this->namepool_.find(name, &name_key);
706   if (name == NULL)
707     return NULL;
708
709   Stringpool::Key version_key = 0;
710   if (version != NULL)
711     {
712       version = this->namepool_.find(version, &version_key);
713       if (version == NULL)
714         return NULL;
715     }
716
717   Symbol_table_key key(name_key, version_key);
718   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
719   if (p == this->table_.end())
720     return NULL;
721   return p->second;
722 }
723
724 // Resolve a Symbol with another Symbol.  This is only used in the
725 // unusual case where there are references to both an unversioned
726 // symbol and a symbol with a version, and we then discover that that
727 // version is the default version.  Because this is unusual, we do
728 // this the slow way, by converting back to an ELF symbol.
729
730 template<int size, bool big_endian>
731 void
732 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
733 {
734   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
735   elfcpp::Sym_write<size, big_endian> esym(buf);
736   // We don't bother to set the st_name or the st_shndx field.
737   esym.put_st_value(from->value());
738   esym.put_st_size(from->symsize());
739   esym.put_st_info(from->binding(), from->type());
740   esym.put_st_other(from->visibility(), from->nonvis());
741   bool is_ordinary;
742   unsigned int shndx = from->shndx(&is_ordinary);
743   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
744                 from->version(), true);
745   if (from->in_reg())
746     to->set_in_reg();
747   if (from->in_dyn())
748     to->set_in_dyn();
749   if (parameters->options().gc_sections())
750     this->gc_mark_dyn_syms(to);
751 }
752
753 // Record that a symbol is forced to be local by a version script or
754 // by visibility.
755
756 void
757 Symbol_table::force_local(Symbol* sym)
758 {
759   if (!sym->is_defined() && !sym->is_common())
760     return;
761   if (sym->is_forced_local())
762     {
763       // We already got this one.
764       return;
765     }
766   sym->set_is_forced_local();
767   this->forced_locals_.push_back(sym);
768 }
769
770 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
771 // is only called for undefined symbols, when at least one --wrap
772 // option was used.
773
774 const char*
775 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
776 {
777   // For some targets, we need to ignore a specific character when
778   // wrapping, and add it back later.
779   char prefix = '\0';
780   if (name[0] == parameters->target().wrap_char())
781     {
782       prefix = name[0];
783       ++name;
784     }
785
786   if (parameters->options().is_wrap(name))
787     {
788       // Turn NAME into __wrap_NAME.
789       std::string s;
790       if (prefix != '\0')
791         s += prefix;
792       s += "__wrap_";
793       s += name;
794
795       // This will give us both the old and new name in NAMEPOOL_, but
796       // that is OK.  Only the versions we need will wind up in the
797       // real string table in the output file.
798       return this->namepool_.add(s.c_str(), true, name_key);
799     }
800
801   const char* const real_prefix = "__real_";
802   const size_t real_prefix_length = strlen(real_prefix);
803   if (strncmp(name, real_prefix, real_prefix_length) == 0
804       && parameters->options().is_wrap(name + real_prefix_length))
805     {
806       // Turn __real_NAME into NAME.
807       std::string s;
808       if (prefix != '\0')
809         s += prefix;
810       s += name + real_prefix_length;
811       return this->namepool_.add(s.c_str(), true, name_key);
812     }
813
814   return name;
815 }
816
817 // This is called when we see a symbol NAME/VERSION, and the symbol
818 // already exists in the symbol table, and VERSION is marked as being
819 // the default version.  SYM is the NAME/VERSION symbol we just added.
820 // DEFAULT_IS_NEW is true if this is the first time we have seen the
821 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
822
823 template<int size, bool big_endian>
824 void
825 Symbol_table::define_default_version(Sized_symbol<size>* sym,
826                                      bool default_is_new,
827                                      Symbol_table_type::iterator pdef)
828 {
829   if (default_is_new)
830     {
831       // This is the first time we have seen NAME/NULL.  Make
832       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
833       // version.
834       pdef->second = sym;
835       sym->set_is_default();
836     }
837   else if (pdef->second == sym)
838     {
839       // NAME/NULL already points to NAME/VERSION.  Don't mark the
840       // symbol as the default if it is not already the default.
841     }
842   else
843     {
844       // This is the unfortunate case where we already have entries
845       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
846       // NAME/VERSION where VERSION is the default version.  We have
847       // already resolved this new symbol with the existing
848       // NAME/VERSION symbol.
849
850       // It's possible that NAME/NULL and NAME/VERSION are both
851       // defined in regular objects.  This can only happen if one
852       // object file defines foo and another defines foo@@ver.  This
853       // is somewhat obscure, but we call it a multiple definition
854       // error.
855
856       // It's possible that NAME/NULL actually has a version, in which
857       // case it won't be the same as VERSION.  This happens with
858       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
859       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
860       // then see an unadorned t2_2 in an object file and give it
861       // version VER1 from the version script.  This looks like a
862       // default definition for VER1, so it looks like we should merge
863       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
864       // not obvious that this is an error, either.  So we just punt.
865
866       // If one of the symbols has non-default visibility, and the
867       // other is defined in a shared object, then they are different
868       // symbols.
869
870       // If the two symbols are from different shared objects,
871       // they are different symbols.
872
873       // Otherwise, we just resolve the symbols as though they were
874       // the same.
875
876       if (pdef->second->version() != NULL)
877         gold_assert(pdef->second->version() != sym->version());
878       else if (sym->visibility() != elfcpp::STV_DEFAULT
879                && pdef->second->is_from_dynobj())
880         ;
881       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
882                && sym->is_from_dynobj())
883         ;
884       else if (pdef->second->is_from_dynobj()
885                && sym->is_from_dynobj()
886                && pdef->second->is_defined()
887                && pdef->second->object() != sym->object())
888         ;
889       else
890         {
891           const Sized_symbol<size>* symdef;
892           symdef = this->get_sized_symbol<size>(pdef->second);
893           Symbol_table::resolve<size, big_endian>(sym, symdef);
894           this->make_forwarder(pdef->second, sym);
895           pdef->second = sym;
896           sym->set_is_default();
897         }
898     }
899 }
900
901 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
902 // name and VERSION is the version; both are canonicalized.  DEF is
903 // whether this is the default version.  ST_SHNDX is the symbol's
904 // section index; IS_ORDINARY is whether this is a normal section
905 // rather than a special code.
906
907 // If IS_DEFAULT_VERSION is true, then this is the definition of a
908 // default version of a symbol.  That means that any lookup of
909 // NAME/NULL and any lookup of NAME/VERSION should always return the
910 // same symbol.  This is obvious for references, but in particular we
911 // want to do this for definitions: overriding NAME/NULL should also
912 // override NAME/VERSION.  If we don't do that, it would be very hard
913 // to override functions in a shared library which uses versioning.
914
915 // We implement this by simply making both entries in the hash table
916 // point to the same Symbol structure.  That is easy enough if this is
917 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
918 // that we have seen both already, in which case they will both have
919 // independent entries in the symbol table.  We can't simply change
920 // the symbol table entry, because we have pointers to the entries
921 // attached to the object files.  So we mark the entry attached to the
922 // object file as a forwarder, and record it in the forwarders_ map.
923 // Note that entries in the hash table will never be marked as
924 // forwarders.
925 //
926 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
927 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
928 // for a special section code.  ST_SHNDX may be modified if the symbol
929 // is defined in a section being discarded.
930
931 template<int size, bool big_endian>
932 Sized_symbol<size>*
933 Symbol_table::add_from_object(Object* object,
934                               const char* name,
935                               Stringpool::Key name_key,
936                               const char* version,
937                               Stringpool::Key version_key,
938                               bool is_default_version,
939                               const elfcpp::Sym<size, big_endian>& sym,
940                               unsigned int st_shndx,
941                               bool is_ordinary,
942                               unsigned int orig_st_shndx)
943 {
944   // Print a message if this symbol is being traced.
945   if (parameters->options().is_trace_symbol(name))
946     {
947       if (orig_st_shndx == elfcpp::SHN_UNDEF)
948         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
949       else
950         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
951     }
952
953   // For an undefined symbol, we may need to adjust the name using
954   // --wrap.
955   if (orig_st_shndx == elfcpp::SHN_UNDEF
956       && parameters->options().any_wrap())
957     {
958       const char* wrap_name = this->wrap_symbol(name, &name_key);
959       if (wrap_name != name)
960         {
961           // If we see a reference to malloc with version GLIBC_2.0,
962           // and we turn it into a reference to __wrap_malloc, then we
963           // discard the version number.  Otherwise the user would be
964           // required to specify the correct version for
965           // __wrap_malloc.
966           version = NULL;
967           version_key = 0;
968           name = wrap_name;
969         }
970     }
971
972   Symbol* const snull = NULL;
973   std::pair<typename Symbol_table_type::iterator, bool> ins =
974     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
975                                        snull));
976
977   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
978     std::make_pair(this->table_.end(), false);
979   if (is_default_version)
980     {
981       const Stringpool::Key vnull_key = 0;
982       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
983                                                                      vnull_key),
984                                                       snull));
985     }
986
987   // ins.first: an iterator, which is a pointer to a pair.
988   // ins.first->first: the key (a pair of name and version).
989   // ins.first->second: the value (Symbol*).
990   // ins.second: true if new entry was inserted, false if not.
991
992   Sized_symbol<size>* ret;
993   bool was_undefined_in_reg;
994   bool was_common;
995   if (!ins.second)
996     {
997       // We already have an entry for NAME/VERSION.
998       ret = this->get_sized_symbol<size>(ins.first->second);
999       gold_assert(ret != NULL);
1000
1001       was_undefined_in_reg = ret->is_undefined() && ret->in_reg();
1002       // Commons from plugins are just placeholders.
1003       was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1004
1005       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1006                     version, is_default_version);
1007       if (parameters->options().gc_sections())
1008         this->gc_mark_dyn_syms(ret);
1009
1010       if (is_default_version)
1011         this->define_default_version<size, big_endian>(ret, insdefault.second,
1012                                                        insdefault.first);
1013       else
1014         {
1015           bool dummy;
1016           if (version != NULL
1017               && ret->source() == Symbol::FROM_OBJECT
1018               && ret->object() == object
1019               && is_ordinary
1020               && ret->shndx(&dummy) == st_shndx
1021               && ret->is_default())
1022             {
1023               // We have seen NAME/VERSION already, and marked it as the
1024               // default version, but now we see a definition for
1025               // NAME/VERSION that is not the default version. This can
1026               // happen when the assembler generates two symbols for
1027               // a symbol as a result of a ".symver foo,foo@VER"
1028               // directive. We see the first unversioned symbol and
1029               // we may mark it as the default version (from a
1030               // version script); then we see the second versioned
1031               // symbol and we need to override the first.
1032               // In any other case, the two symbols should have generated
1033               // a multiple definition error.
1034               // (See PR gold/18703.)
1035               ret->set_is_not_default();
1036               const Stringpool::Key vnull_key = 0;
1037               this->table_.erase(std::make_pair(name_key, vnull_key));
1038             }
1039         }
1040     }
1041   else
1042     {
1043       // This is the first time we have seen NAME/VERSION.
1044       gold_assert(ins.first->second == NULL);
1045
1046       if (is_default_version && !insdefault.second)
1047         {
1048           // We already have an entry for NAME/NULL.  If we override
1049           // it, then change it to NAME/VERSION.
1050           ret = this->get_sized_symbol<size>(insdefault.first->second);
1051
1052           was_undefined_in_reg = ret->is_undefined() && ret->in_reg();
1053           // Commons from plugins are just placeholders.
1054           was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1055
1056           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1057                         version, is_default_version);
1058           if (parameters->options().gc_sections())
1059             this->gc_mark_dyn_syms(ret);
1060           ins.first->second = ret;
1061         }
1062       else
1063         {
1064           was_undefined_in_reg = false;
1065           was_common = false;
1066
1067           Sized_target<size, big_endian>* target =
1068             parameters->sized_target<size, big_endian>();
1069           if (!target->has_make_symbol())
1070             ret = new Sized_symbol<size>();
1071           else
1072             {
1073               ret = target->make_symbol(name, sym.get_st_type(), object,
1074                                         st_shndx, sym.get_st_value());
1075               if (ret == NULL)
1076                 {
1077                   // This means that we don't want a symbol table
1078                   // entry after all.
1079                   if (!is_default_version)
1080                     this->table_.erase(ins.first);
1081                   else
1082                     {
1083                       this->table_.erase(insdefault.first);
1084                       // Inserting INSDEFAULT invalidated INS.
1085                       this->table_.erase(std::make_pair(name_key,
1086                                                         version_key));
1087                     }
1088                   return NULL;
1089                 }
1090             }
1091
1092           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1093
1094           ins.first->second = ret;
1095           if (is_default_version)
1096             {
1097               // This is the first time we have seen NAME/NULL.  Point
1098               // it at the new entry for NAME/VERSION.
1099               gold_assert(insdefault.second);
1100               insdefault.first->second = ret;
1101             }
1102         }
1103
1104       if (is_default_version)
1105         ret->set_is_default();
1106     }
1107
1108   // Record every time we see a new undefined symbol, to speed up archive
1109   // groups. We only care about symbols undefined in regular objects here
1110   // because undefined symbols only in dynamic objects should't trigger rescans.
1111   if (!was_undefined_in_reg && ret->is_undefined() && ret->in_reg())
1112     {
1113       ++this->saw_undefined_;
1114       if (parameters->options().has_plugins())
1115         parameters->options().plugins()->new_undefined_symbol(ret);
1116     }
1117
1118   // Keep track of common symbols, to speed up common symbol
1119   // allocation.  Don't record commons from plugin objects;
1120   // we need to wait until we see the real symbol in the
1121   // replacement file.
1122   if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1123     {
1124       if (ret->type() == elfcpp::STT_TLS)
1125         this->tls_commons_.push_back(ret);
1126       else if (!is_ordinary
1127                && st_shndx == parameters->target().small_common_shndx())
1128         this->small_commons_.push_back(ret);
1129       else if (!is_ordinary
1130                && st_shndx == parameters->target().large_common_shndx())
1131         this->large_commons_.push_back(ret);
1132       else
1133         this->commons_.push_back(ret);
1134     }
1135
1136   // If we're not doing a relocatable link, then any symbol with
1137   // hidden or internal visibility is local.
1138   if ((ret->visibility() == elfcpp::STV_HIDDEN
1139        || ret->visibility() == elfcpp::STV_INTERNAL)
1140       && (ret->binding() == elfcpp::STB_GLOBAL
1141           || ret->binding() == elfcpp::STB_GNU_UNIQUE
1142           || ret->binding() == elfcpp::STB_WEAK)
1143       && !parameters->options().relocatable())
1144     this->force_local(ret);
1145
1146   return ret;
1147 }
1148
1149 // Add all the symbols in a relocatable object to the hash table.
1150
1151 template<int size, bool big_endian>
1152 void
1153 Symbol_table::add_from_relobj(
1154     Sized_relobj_file<size, big_endian>* relobj,
1155     const unsigned char* syms,
1156     size_t count,
1157     size_t symndx_offset,
1158     const char* sym_names,
1159     size_t sym_name_size,
1160     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1161     size_t* defined)
1162 {
1163   *defined = 0;
1164
1165   gold_assert(size == parameters->target().get_size());
1166
1167   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1168
1169   const bool just_symbols = relobj->just_symbols();
1170
1171   const unsigned char* p = syms;
1172   for (size_t i = 0; i < count; ++i, p += sym_size)
1173     {
1174       (*sympointers)[i] = NULL;
1175
1176       elfcpp::Sym<size, big_endian> sym(p);
1177
1178       unsigned int st_name = sym.get_st_name();
1179       if (st_name >= sym_name_size)
1180         {
1181           relobj->error(_("bad global symbol name offset %u at %zu"),
1182                         st_name, i);
1183           continue;
1184         }
1185
1186       const char* name = sym_names + st_name;
1187
1188       if (!parameters->options().relocatable()
1189           && name[0] == '_'
1190           && name[1] == '_'
1191           && strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0)
1192         gold_info(_("%s: plugin needed to handle lto object"),
1193                   relobj->name().c_str());
1194
1195       bool is_ordinary;
1196       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1197                                                        sym.get_st_shndx(),
1198                                                        &is_ordinary);
1199       unsigned int orig_st_shndx = st_shndx;
1200       if (!is_ordinary)
1201         orig_st_shndx = elfcpp::SHN_UNDEF;
1202
1203       if (st_shndx != elfcpp::SHN_UNDEF)
1204         ++*defined;
1205
1206       // A symbol defined in a section which we are not including must
1207       // be treated as an undefined symbol.
1208       bool is_defined_in_discarded_section = false;
1209       if (st_shndx != elfcpp::SHN_UNDEF
1210           && is_ordinary
1211           && !relobj->is_section_included(st_shndx)
1212           && !this->is_section_folded(relobj, st_shndx))
1213         {
1214           st_shndx = elfcpp::SHN_UNDEF;
1215           is_defined_in_discarded_section = true;
1216         }
1217
1218       // In an object file, an '@' in the name separates the symbol
1219       // name from the version name.  If there are two '@' characters,
1220       // this is the default version.
1221       const char* ver = strchr(name, '@');
1222       Stringpool::Key ver_key = 0;
1223       int namelen = 0;
1224       // IS_DEFAULT_VERSION: is the version default?
1225       // IS_FORCED_LOCAL: is the symbol forced local?
1226       bool is_default_version = false;
1227       bool is_forced_local = false;
1228
1229       // FIXME: For incremental links, we don't store version information,
1230       // so we need to ignore version symbols for now.
1231       if (parameters->incremental_update() && ver != NULL)
1232         {
1233           namelen = ver - name;
1234           ver = NULL;
1235         }
1236
1237       if (ver != NULL)
1238         {
1239           // The symbol name is of the form foo@VERSION or foo@@VERSION
1240           namelen = ver - name;
1241           ++ver;
1242           if (*ver == '@')
1243             {
1244               is_default_version = true;
1245               ++ver;
1246             }
1247           ver = this->namepool_.add(ver, true, &ver_key);
1248         }
1249       // We don't want to assign a version to an undefined symbol,
1250       // even if it is listed in the version script.  FIXME: What
1251       // about a common symbol?
1252       else
1253         {
1254           namelen = strlen(name);
1255           if (!this->version_script_.empty()
1256               && st_shndx != elfcpp::SHN_UNDEF)
1257             {
1258               // The symbol name did not have a version, but the
1259               // version script may assign a version anyway.
1260               std::string version;
1261               bool is_global;
1262               if (this->version_script_.get_symbol_version(name, &version,
1263                                                            &is_global))
1264                 {
1265                   if (!is_global)
1266                     is_forced_local = true;
1267                   else if (!version.empty())
1268                     {
1269                       ver = this->namepool_.add_with_length(version.c_str(),
1270                                                             version.length(),
1271                                                             true,
1272                                                             &ver_key);
1273                       is_default_version = true;
1274                     }
1275                 }
1276             }
1277         }
1278
1279       elfcpp::Sym<size, big_endian>* psym = &sym;
1280       unsigned char symbuf[sym_size];
1281       elfcpp::Sym<size, big_endian> sym2(symbuf);
1282       if (just_symbols)
1283         {
1284           memcpy(symbuf, p, sym_size);
1285           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1286           if (orig_st_shndx != elfcpp::SHN_UNDEF
1287               && is_ordinary
1288               && relobj->e_type() == elfcpp::ET_REL)
1289             {
1290               // Symbol values in relocatable object files are section
1291               // relative.  This is normally what we want, but since here
1292               // we are converting the symbol to absolute we need to add
1293               // the section address.  The section address in an object
1294               // file is normally zero, but people can use a linker
1295               // script to change it.
1296               sw.put_st_value(sym.get_st_value()
1297                               + relobj->section_address(orig_st_shndx));
1298             }
1299           st_shndx = elfcpp::SHN_ABS;
1300           is_ordinary = false;
1301           psym = &sym2;
1302         }
1303
1304       // Fix up visibility if object has no-export set.
1305       if (relobj->no_export()
1306           && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1307         {
1308           // We may have copied symbol already above.
1309           if (psym != &sym2)
1310             {
1311               memcpy(symbuf, p, sym_size);
1312               psym = &sym2;
1313             }
1314
1315           elfcpp::STV visibility = sym2.get_st_visibility();
1316           if (visibility == elfcpp::STV_DEFAULT
1317               || visibility == elfcpp::STV_PROTECTED)
1318             {
1319               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1320               unsigned char nonvis = sym2.get_st_nonvis();
1321               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1322             }
1323         }
1324
1325       Stringpool::Key name_key;
1326       name = this->namepool_.add_with_length(name, namelen, true,
1327                                              &name_key);
1328
1329       Sized_symbol<size>* res;
1330       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1331                                   is_default_version, *psym, st_shndx,
1332                                   is_ordinary, orig_st_shndx);
1333
1334       if (res == NULL)
1335         continue;
1336       
1337       if (is_forced_local)
1338         this->force_local(res);
1339
1340       // Do not treat this symbol as garbage if this symbol will be
1341       // exported to the dynamic symbol table.  This is true when
1342       // building a shared library or using --export-dynamic and
1343       // the symbol is externally visible.
1344       if (parameters->options().gc_sections()
1345           && res->is_externally_visible()
1346           && !res->is_from_dynobj()
1347           && (parameters->options().shared()
1348               || parameters->options().export_dynamic()
1349               || parameters->options().in_dynamic_list(res->name())))
1350         this->gc_mark_symbol(res);
1351
1352       if (is_defined_in_discarded_section)
1353         res->set_is_defined_in_discarded_section();
1354
1355       (*sympointers)[i] = res;
1356     }
1357 }
1358
1359 // Add a symbol from a plugin-claimed file.
1360
1361 template<int size, bool big_endian>
1362 Symbol*
1363 Symbol_table::add_from_pluginobj(
1364     Sized_pluginobj<size, big_endian>* obj,
1365     const char* name,
1366     const char* ver,
1367     elfcpp::Sym<size, big_endian>* sym)
1368 {
1369   unsigned int st_shndx = sym->get_st_shndx();
1370   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1371
1372   Stringpool::Key ver_key = 0;
1373   bool is_default_version = false;
1374   bool is_forced_local = false;
1375
1376   if (ver != NULL)
1377     {
1378       ver = this->namepool_.add(ver, true, &ver_key);
1379     }
1380   // We don't want to assign a version to an undefined symbol,
1381   // even if it is listed in the version script.  FIXME: What
1382   // about a common symbol?
1383   else
1384     {
1385       if (!this->version_script_.empty()
1386           && st_shndx != elfcpp::SHN_UNDEF)
1387         {
1388           // The symbol name did not have a version, but the
1389           // version script may assign a version anyway.
1390           std::string version;
1391           bool is_global;
1392           if (this->version_script_.get_symbol_version(name, &version,
1393                                                        &is_global))
1394             {
1395               if (!is_global)
1396                 is_forced_local = true;
1397               else if (!version.empty())
1398                 {
1399                   ver = this->namepool_.add_with_length(version.c_str(),
1400                                                         version.length(),
1401                                                         true,
1402                                                         &ver_key);
1403                   is_default_version = true;
1404                 }
1405             }
1406         }
1407     }
1408
1409   Stringpool::Key name_key;
1410   name = this->namepool_.add(name, true, &name_key);
1411
1412   Sized_symbol<size>* res;
1413   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1414                               is_default_version, *sym, st_shndx,
1415                               is_ordinary, st_shndx);
1416
1417   if (res == NULL)
1418     return NULL;
1419
1420   if (is_forced_local)
1421     this->force_local(res);
1422
1423   return res;
1424 }
1425
1426 // Add all the symbols in a dynamic object to the hash table.
1427
1428 template<int size, bool big_endian>
1429 void
1430 Symbol_table::add_from_dynobj(
1431     Sized_dynobj<size, big_endian>* dynobj,
1432     const unsigned char* syms,
1433     size_t count,
1434     const char* sym_names,
1435     size_t sym_name_size,
1436     const unsigned char* versym,
1437     size_t versym_size,
1438     const std::vector<const char*>* version_map,
1439     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1440     size_t* defined)
1441 {
1442   *defined = 0;
1443
1444   gold_assert(size == parameters->target().get_size());
1445
1446   if (dynobj->just_symbols())
1447     {
1448       gold_error(_("--just-symbols does not make sense with a shared object"));
1449       return;
1450     }
1451
1452   // FIXME: For incremental links, we don't store version information,
1453   // so we need to ignore version symbols for now.
1454   if (parameters->incremental_update())
1455     versym = NULL;
1456
1457   if (versym != NULL && versym_size / 2 < count)
1458     {
1459       dynobj->error(_("too few symbol versions"));
1460       return;
1461     }
1462
1463   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1464
1465   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1466   // weak aliases.  This is necessary because if the dynamic object
1467   // provides the same variable under two names, one of which is a
1468   // weak definition, and the regular object refers to the weak
1469   // definition, we have to put both the weak definition and the
1470   // strong definition into the dynamic symbol table.  Given a weak
1471   // definition, the only way that we can find the corresponding
1472   // strong definition, if any, is to search the symbol table.
1473   std::vector<Sized_symbol<size>*> object_symbols;
1474
1475   const unsigned char* p = syms;
1476   const unsigned char* vs = versym;
1477   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1478     {
1479       elfcpp::Sym<size, big_endian> sym(p);
1480
1481       if (sympointers != NULL)
1482         (*sympointers)[i] = NULL;
1483
1484       // Ignore symbols with local binding or that have
1485       // internal or hidden visibility.
1486       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1487           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1488           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1489         continue;
1490
1491       // A protected symbol in a shared library must be treated as a
1492       // normal symbol when viewed from outside the shared library.
1493       // Implement this by overriding the visibility here.
1494       // Likewise, an IFUNC symbol in a shared library must be treated
1495       // as a normal FUNC symbol.
1496       elfcpp::Sym<size, big_endian>* psym = &sym;
1497       unsigned char symbuf[sym_size];
1498       elfcpp::Sym<size, big_endian> sym2(symbuf);
1499       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1500           || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1501         {
1502           memcpy(symbuf, p, sym_size);
1503           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1504           if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1505             sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1506           if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1507             sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1508           psym = &sym2;
1509         }
1510
1511       unsigned int st_name = psym->get_st_name();
1512       if (st_name >= sym_name_size)
1513         {
1514           dynobj->error(_("bad symbol name offset %u at %zu"),
1515                         st_name, i);
1516           continue;
1517         }
1518
1519       const char* name = sym_names + st_name;
1520
1521       bool is_ordinary;
1522       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1523                                                        &is_ordinary);
1524
1525       if (st_shndx != elfcpp::SHN_UNDEF)
1526         ++*defined;
1527
1528       Sized_symbol<size>* res;
1529
1530       if (versym == NULL)
1531         {
1532           Stringpool::Key name_key;
1533           name = this->namepool_.add(name, true, &name_key);
1534           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1535                                       false, *psym, st_shndx, is_ordinary,
1536                                       st_shndx);
1537         }
1538       else
1539         {
1540           // Read the version information.
1541
1542           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1543
1544           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1545           v &= elfcpp::VERSYM_VERSION;
1546
1547           // The Sun documentation says that V can be VER_NDX_LOCAL,
1548           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1549           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1550           // The old GNU linker will happily generate VER_NDX_LOCAL
1551           // for an undefined symbol.  I don't know what the Sun
1552           // linker will generate.
1553
1554           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1555               && st_shndx != elfcpp::SHN_UNDEF)
1556             {
1557               // This symbol should not be visible outside the object.
1558               continue;
1559             }
1560
1561           // At this point we are definitely going to add this symbol.
1562           Stringpool::Key name_key;
1563           name = this->namepool_.add(name, true, &name_key);
1564
1565           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1566               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1567             {
1568               // This symbol does not have a version.
1569               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1570                                           false, *psym, st_shndx, is_ordinary,
1571                                           st_shndx);
1572             }
1573           else
1574             {
1575               if (v >= version_map->size())
1576                 {
1577                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1578                                 i, v);
1579                   continue;
1580                 }
1581
1582               const char* version = (*version_map)[v];
1583               if (version == NULL)
1584                 {
1585                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1586                                 i, v);
1587                   continue;
1588                 }
1589
1590               Stringpool::Key version_key;
1591               version = this->namepool_.add(version, true, &version_key);
1592
1593               // If this is an absolute symbol, and the version name
1594               // and symbol name are the same, then this is the
1595               // version definition symbol.  These symbols exist to
1596               // support using -u to pull in particular versions.  We
1597               // do not want to record a version for them.
1598               if (st_shndx == elfcpp::SHN_ABS
1599                   && !is_ordinary
1600                   && name_key == version_key)
1601                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1602                                             false, *psym, st_shndx, is_ordinary,
1603                                             st_shndx);
1604               else
1605                 {
1606                   const bool is_default_version =
1607                     !hidden && st_shndx != elfcpp::SHN_UNDEF;
1608                   res = this->add_from_object(dynobj, name, name_key, version,
1609                                               version_key, is_default_version,
1610                                               *psym, st_shndx,
1611                                               is_ordinary, st_shndx);
1612                 }
1613             }
1614         }
1615
1616       if (res == NULL)
1617         continue;
1618
1619       // Note that it is possible that RES was overridden by an
1620       // earlier object, in which case it can't be aliased here.
1621       if (st_shndx != elfcpp::SHN_UNDEF
1622           && is_ordinary
1623           && psym->get_st_type() == elfcpp::STT_OBJECT
1624           && res->source() == Symbol::FROM_OBJECT
1625           && res->object() == dynobj)
1626         object_symbols.push_back(res);
1627
1628       // If the symbol has protected visibility in the dynobj,
1629       // mark it as such if it was not overridden.
1630       if (res->source() == Symbol::FROM_OBJECT
1631           && res->object() == dynobj
1632           && sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1633         res->set_is_protected();
1634
1635       if (sympointers != NULL)
1636         (*sympointers)[i] = res;
1637     }
1638
1639   this->record_weak_aliases(&object_symbols);
1640 }
1641
1642 // Add a symbol from a incremental object file.
1643
1644 template<int size, bool big_endian>
1645 Sized_symbol<size>*
1646 Symbol_table::add_from_incrobj(
1647     Object* obj,
1648     const char* name,
1649     const char* ver,
1650     elfcpp::Sym<size, big_endian>* sym)
1651 {
1652   unsigned int st_shndx = sym->get_st_shndx();
1653   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1654
1655   Stringpool::Key ver_key = 0;
1656   bool is_default_version = false;
1657
1658   Stringpool::Key name_key;
1659   name = this->namepool_.add(name, true, &name_key);
1660
1661   Sized_symbol<size>* res;
1662   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1663                               is_default_version, *sym, st_shndx,
1664                               is_ordinary, st_shndx);
1665
1666   return res;
1667 }
1668
1669 // This is used to sort weak aliases.  We sort them first by section
1670 // index, then by offset, then by weak ahead of strong.
1671
1672 template<int size>
1673 class Weak_alias_sorter
1674 {
1675  public:
1676   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1677 };
1678
1679 template<int size>
1680 bool
1681 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1682                                     const Sized_symbol<size>* s2) const
1683 {
1684   bool is_ordinary;
1685   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1686   gold_assert(is_ordinary);
1687   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1688   gold_assert(is_ordinary);
1689   if (s1_shndx != s2_shndx)
1690     return s1_shndx < s2_shndx;
1691
1692   if (s1->value() != s2->value())
1693     return s1->value() < s2->value();
1694   if (s1->binding() != s2->binding())
1695     {
1696       if (s1->binding() == elfcpp::STB_WEAK)
1697         return true;
1698       if (s2->binding() == elfcpp::STB_WEAK)
1699         return false;
1700     }
1701   return std::string(s1->name()) < std::string(s2->name());
1702 }
1703
1704 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1705 // for any weak aliases, and record them so that if we add the weak
1706 // alias to the dynamic symbol table, we also add the corresponding
1707 // strong symbol.
1708
1709 template<int size>
1710 void
1711 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1712 {
1713   // Sort the vector by section index, then by offset, then by weak
1714   // ahead of strong.
1715   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1716
1717   // Walk through the vector.  For each weak definition, record
1718   // aliases.
1719   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1720          symbols->begin();
1721        p != symbols->end();
1722        ++p)
1723     {
1724       if ((*p)->binding() != elfcpp::STB_WEAK)
1725         continue;
1726
1727       // Build a circular list of weak aliases.  Each symbol points to
1728       // the next one in the circular list.
1729
1730       Sized_symbol<size>* from_sym = *p;
1731       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1732       for (q = p + 1; q != symbols->end(); ++q)
1733         {
1734           bool dummy;
1735           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1736               || (*q)->value() != from_sym->value())
1737             break;
1738
1739           this->weak_aliases_[from_sym] = *q;
1740           from_sym->set_has_alias();
1741           from_sym = *q;
1742         }
1743
1744       if (from_sym != *p)
1745         {
1746           this->weak_aliases_[from_sym] = *p;
1747           from_sym->set_has_alias();
1748         }
1749
1750       p = q - 1;
1751     }
1752 }
1753
1754 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1755 // true, then only create the symbol if there is a reference to it.
1756 // If this does not return NULL, it sets *POLDSYM to the existing
1757 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1758 // resolve the newly created symbol to the old one.  This
1759 // canonicalizes *PNAME and *PVERSION.
1760
1761 template<int size, bool big_endian>
1762 Sized_symbol<size>*
1763 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1764                                     bool only_if_ref,
1765                                     elfcpp::STV visibility,
1766                                     Sized_symbol<size>** poldsym,
1767                                     bool* resolve_oldsym, bool is_forced_local)
1768 {
1769   *resolve_oldsym = false;
1770   *poldsym = NULL;
1771
1772   // If the caller didn't give us a version, see if we get one from
1773   // the version script.
1774   std::string v;
1775   bool is_default_version = false;
1776   if (!is_forced_local && *pversion == NULL)
1777     {
1778       bool is_global;
1779       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1780         {
1781           if (is_global && !v.empty())
1782             {
1783               *pversion = v.c_str();
1784               // If we get the version from a version script, then we
1785               // are also the default version.
1786               is_default_version = true;
1787             }
1788         }
1789     }
1790
1791   Symbol* oldsym;
1792   Sized_symbol<size>* sym;
1793
1794   bool add_to_table = false;
1795   typename Symbol_table_type::iterator add_loc = this->table_.end();
1796   bool add_def_to_table = false;
1797   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1798
1799   if (only_if_ref)
1800     {
1801       oldsym = this->lookup(*pname, *pversion);
1802       if (oldsym == NULL && is_default_version)
1803         oldsym = this->lookup(*pname, NULL);
1804       if (oldsym == NULL)
1805         return NULL;
1806       if (!oldsym->is_undefined())
1807         {
1808           // Skip if the old definition is from a regular object.
1809           if (!oldsym->is_from_dynobj())
1810             return NULL;
1811
1812           // If the symbol has hidden or internal visibility, ignore
1813           // definition and reference from a dynamic object.
1814           if ((visibility == elfcpp::STV_HIDDEN
1815                || visibility == elfcpp::STV_INTERNAL)
1816               && !oldsym->in_reg())
1817             return NULL;
1818         }
1819
1820       *pname = oldsym->name();
1821       if (is_default_version)
1822         *pversion = this->namepool_.add(*pversion, true, NULL);
1823       else
1824         *pversion = oldsym->version();
1825     }
1826   else
1827     {
1828       // Canonicalize NAME and VERSION.
1829       Stringpool::Key name_key;
1830       *pname = this->namepool_.add(*pname, true, &name_key);
1831
1832       Stringpool::Key version_key = 0;
1833       if (*pversion != NULL)
1834         *pversion = this->namepool_.add(*pversion, true, &version_key);
1835
1836       Symbol* const snull = NULL;
1837       std::pair<typename Symbol_table_type::iterator, bool> ins =
1838         this->table_.insert(std::make_pair(std::make_pair(name_key,
1839                                                           version_key),
1840                                            snull));
1841
1842       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1843         std::make_pair(this->table_.end(), false);
1844       if (is_default_version)
1845         {
1846           const Stringpool::Key vnull = 0;
1847           insdefault =
1848             this->table_.insert(std::make_pair(std::make_pair(name_key,
1849                                                               vnull),
1850                                                snull));
1851         }
1852
1853       if (!ins.second)
1854         {
1855           // We already have a symbol table entry for NAME/VERSION.
1856           oldsym = ins.first->second;
1857           gold_assert(oldsym != NULL);
1858
1859           if (is_default_version)
1860             {
1861               Sized_symbol<size>* soldsym =
1862                 this->get_sized_symbol<size>(oldsym);
1863               this->define_default_version<size, big_endian>(soldsym,
1864                                                              insdefault.second,
1865                                                              insdefault.first);
1866             }
1867         }
1868       else
1869         {
1870           // We haven't seen this symbol before.
1871           gold_assert(ins.first->second == NULL);
1872
1873           add_to_table = true;
1874           add_loc = ins.first;
1875
1876           if (is_default_version && !insdefault.second)
1877             {
1878               // We are adding NAME/VERSION, and it is the default
1879               // version.  We already have an entry for NAME/NULL.
1880               oldsym = insdefault.first->second;
1881               *resolve_oldsym = true;
1882             }
1883           else
1884             {
1885               oldsym = NULL;
1886
1887               if (is_default_version)
1888                 {
1889                   add_def_to_table = true;
1890                   add_def_loc = insdefault.first;
1891                 }
1892             }
1893         }
1894     }
1895
1896   const Target& target = parameters->target();
1897   if (!target.has_make_symbol())
1898     sym = new Sized_symbol<size>();
1899   else
1900     {
1901       Sized_target<size, big_endian>* sized_target =
1902         parameters->sized_target<size, big_endian>();
1903       sym = sized_target->make_symbol(*pname, elfcpp::STT_NOTYPE,
1904                                       NULL, elfcpp::SHN_UNDEF, 0);
1905       if (sym == NULL)
1906         return NULL;
1907     }
1908
1909   if (add_to_table)
1910     add_loc->second = sym;
1911   else
1912     gold_assert(oldsym != NULL);
1913
1914   if (add_def_to_table)
1915     add_def_loc->second = sym;
1916
1917   *poldsym = this->get_sized_symbol<size>(oldsym);
1918
1919   return sym;
1920 }
1921
1922 // Define a symbol based on an Output_data.
1923
1924 Symbol*
1925 Symbol_table::define_in_output_data(const char* name,
1926                                     const char* version,
1927                                     Defined defined,
1928                                     Output_data* od,
1929                                     uint64_t value,
1930                                     uint64_t symsize,
1931                                     elfcpp::STT type,
1932                                     elfcpp::STB binding,
1933                                     elfcpp::STV visibility,
1934                                     unsigned char nonvis,
1935                                     bool offset_is_from_end,
1936                                     bool only_if_ref)
1937 {
1938   if (parameters->target().get_size() == 32)
1939     {
1940 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1941       return this->do_define_in_output_data<32>(name, version, defined, od,
1942                                                 value, symsize, type, binding,
1943                                                 visibility, nonvis,
1944                                                 offset_is_from_end,
1945                                                 only_if_ref);
1946 #else
1947       gold_unreachable();
1948 #endif
1949     }
1950   else if (parameters->target().get_size() == 64)
1951     {
1952 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1953       return this->do_define_in_output_data<64>(name, version, defined, od,
1954                                                 value, symsize, type, binding,
1955                                                 visibility, nonvis,
1956                                                 offset_is_from_end,
1957                                                 only_if_ref);
1958 #else
1959       gold_unreachable();
1960 #endif
1961     }
1962   else
1963     gold_unreachable();
1964 }
1965
1966 // Define a symbol in an Output_data, sized version.
1967
1968 template<int size>
1969 Sized_symbol<size>*
1970 Symbol_table::do_define_in_output_data(
1971     const char* name,
1972     const char* version,
1973     Defined defined,
1974     Output_data* od,
1975     typename elfcpp::Elf_types<size>::Elf_Addr value,
1976     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1977     elfcpp::STT type,
1978     elfcpp::STB binding,
1979     elfcpp::STV visibility,
1980     unsigned char nonvis,
1981     bool offset_is_from_end,
1982     bool only_if_ref)
1983 {
1984   Sized_symbol<size>* sym;
1985   Sized_symbol<size>* oldsym;
1986   bool resolve_oldsym;
1987   const bool is_forced_local = binding == elfcpp::STB_LOCAL;
1988
1989   if (parameters->target().is_big_endian())
1990     {
1991 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1992       sym = this->define_special_symbol<size, true>(&name, &version,
1993                                                     only_if_ref,
1994                                                     visibility,
1995                                                     &oldsym,
1996                                                     &resolve_oldsym,
1997                                                     is_forced_local);
1998 #else
1999       gold_unreachable();
2000 #endif
2001     }
2002   else
2003     {
2004 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2005       sym = this->define_special_symbol<size, false>(&name, &version,
2006                                                      only_if_ref,
2007                                                      visibility,
2008                                                      &oldsym,
2009                                                      &resolve_oldsym,
2010                                                      is_forced_local);
2011 #else
2012       gold_unreachable();
2013 #endif
2014     }
2015
2016   if (sym == NULL)
2017     return NULL;
2018
2019   sym->init_output_data(name, version, od, value, symsize, type, binding,
2020                         visibility, nonvis, offset_is_from_end,
2021                         defined == PREDEFINED);
2022
2023   if (oldsym == NULL)
2024     {
2025       if (is_forced_local || this->version_script_.symbol_is_local(name))
2026         this->force_local(sym);
2027       else if (version != NULL)
2028         sym->set_is_default();
2029       return sym;
2030     }
2031
2032   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2033     this->override_with_special(oldsym, sym);
2034
2035   if (resolve_oldsym)
2036     return sym;
2037   else
2038     {
2039       if (defined == PREDEFINED
2040           && (is_forced_local || this->version_script_.symbol_is_local(name)))
2041         this->force_local(oldsym);
2042       delete sym;
2043       return oldsym;
2044     }
2045 }
2046
2047 // Define a symbol based on an Output_segment.
2048
2049 Symbol*
2050 Symbol_table::define_in_output_segment(const char* name,
2051                                        const char* version,
2052                                        Defined defined,
2053                                        Output_segment* os,
2054                                        uint64_t value,
2055                                        uint64_t symsize,
2056                                        elfcpp::STT type,
2057                                        elfcpp::STB binding,
2058                                        elfcpp::STV visibility,
2059                                        unsigned char nonvis,
2060                                        Symbol::Segment_offset_base offset_base,
2061                                        bool only_if_ref)
2062 {
2063   if (parameters->target().get_size() == 32)
2064     {
2065 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2066       return this->do_define_in_output_segment<32>(name, version, defined, os,
2067                                                    value, symsize, type,
2068                                                    binding, visibility, nonvis,
2069                                                    offset_base, only_if_ref);
2070 #else
2071       gold_unreachable();
2072 #endif
2073     }
2074   else if (parameters->target().get_size() == 64)
2075     {
2076 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2077       return this->do_define_in_output_segment<64>(name, version, defined, os,
2078                                                    value, symsize, type,
2079                                                    binding, visibility, nonvis,
2080                                                    offset_base, only_if_ref);
2081 #else
2082       gold_unreachable();
2083 #endif
2084     }
2085   else
2086     gold_unreachable();
2087 }
2088
2089 // Define a symbol in an Output_segment, sized version.
2090
2091 template<int size>
2092 Sized_symbol<size>*
2093 Symbol_table::do_define_in_output_segment(
2094     const char* name,
2095     const char* version,
2096     Defined defined,
2097     Output_segment* os,
2098     typename elfcpp::Elf_types<size>::Elf_Addr value,
2099     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2100     elfcpp::STT type,
2101     elfcpp::STB binding,
2102     elfcpp::STV visibility,
2103     unsigned char nonvis,
2104     Symbol::Segment_offset_base offset_base,
2105     bool only_if_ref)
2106 {
2107   Sized_symbol<size>* sym;
2108   Sized_symbol<size>* oldsym;
2109   bool resolve_oldsym;
2110   const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2111
2112   if (parameters->target().is_big_endian())
2113     {
2114 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2115       sym = this->define_special_symbol<size, true>(&name, &version,
2116                                                     only_if_ref,
2117                                                     visibility,
2118                                                     &oldsym,
2119                                                     &resolve_oldsym,
2120                                                     is_forced_local);
2121 #else
2122       gold_unreachable();
2123 #endif
2124     }
2125   else
2126     {
2127 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2128       sym = this->define_special_symbol<size, false>(&name, &version,
2129                                                      only_if_ref,
2130                                                      visibility,
2131                                                      &oldsym,
2132                                                      &resolve_oldsym,
2133                                                      is_forced_local);
2134 #else
2135       gold_unreachable();
2136 #endif
2137     }
2138
2139   if (sym == NULL)
2140     return NULL;
2141
2142   sym->init_output_segment(name, version, os, value, symsize, type, binding,
2143                            visibility, nonvis, offset_base,
2144                            defined == PREDEFINED);
2145
2146   if (oldsym == NULL)
2147     {
2148       if (is_forced_local || this->version_script_.symbol_is_local(name))
2149         this->force_local(sym);
2150       else if (version != NULL)
2151         sym->set_is_default();
2152       return sym;
2153     }
2154
2155   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2156     this->override_with_special(oldsym, sym);
2157
2158   if (resolve_oldsym)
2159     return sym;
2160   else
2161     {
2162       if (is_forced_local || this->version_script_.symbol_is_local(name))
2163         this->force_local(oldsym);
2164       delete sym;
2165       return oldsym;
2166     }
2167 }
2168
2169 // Define a special symbol with a constant value.  It is a multiple
2170 // definition error if this symbol is already defined.
2171
2172 Symbol*
2173 Symbol_table::define_as_constant(const char* name,
2174                                  const char* version,
2175                                  Defined defined,
2176                                  uint64_t value,
2177                                  uint64_t symsize,
2178                                  elfcpp::STT type,
2179                                  elfcpp::STB binding,
2180                                  elfcpp::STV visibility,
2181                                  unsigned char nonvis,
2182                                  bool only_if_ref,
2183                                  bool force_override)
2184 {
2185   if (parameters->target().get_size() == 32)
2186     {
2187 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2188       return this->do_define_as_constant<32>(name, version, defined, value,
2189                                              symsize, type, binding,
2190                                              visibility, nonvis, only_if_ref,
2191                                              force_override);
2192 #else
2193       gold_unreachable();
2194 #endif
2195     }
2196   else if (parameters->target().get_size() == 64)
2197     {
2198 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2199       return this->do_define_as_constant<64>(name, version, defined, value,
2200                                              symsize, type, binding,
2201                                              visibility, nonvis, only_if_ref,
2202                                              force_override);
2203 #else
2204       gold_unreachable();
2205 #endif
2206     }
2207   else
2208     gold_unreachable();
2209 }
2210
2211 // Define a symbol as a constant, sized version.
2212
2213 template<int size>
2214 Sized_symbol<size>*
2215 Symbol_table::do_define_as_constant(
2216     const char* name,
2217     const char* version,
2218     Defined defined,
2219     typename elfcpp::Elf_types<size>::Elf_Addr value,
2220     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2221     elfcpp::STT type,
2222     elfcpp::STB binding,
2223     elfcpp::STV visibility,
2224     unsigned char nonvis,
2225     bool only_if_ref,
2226     bool force_override)
2227 {
2228   Sized_symbol<size>* sym;
2229   Sized_symbol<size>* oldsym;
2230   bool resolve_oldsym;
2231   const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2232
2233   if (parameters->target().is_big_endian())
2234     {
2235 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2236       sym = this->define_special_symbol<size, true>(&name, &version,
2237                                                     only_if_ref,
2238                                                     visibility,
2239                                                     &oldsym,
2240                                                     &resolve_oldsym,
2241                                                     is_forced_local);
2242 #else
2243       gold_unreachable();
2244 #endif
2245     }
2246   else
2247     {
2248 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2249       sym = this->define_special_symbol<size, false>(&name, &version,
2250                                                      only_if_ref,
2251                                                      visibility,
2252                                                      &oldsym,
2253                                                      &resolve_oldsym,
2254                                                      is_forced_local);
2255 #else
2256       gold_unreachable();
2257 #endif
2258     }
2259
2260   if (sym == NULL)
2261     return NULL;
2262
2263   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2264                      nonvis, defined == PREDEFINED);
2265
2266   if (oldsym == NULL)
2267     {
2268       // Version symbols are absolute symbols with name == version.
2269       // We don't want to force them to be local.
2270       if ((version == NULL
2271            || name != version
2272            || value != 0)
2273           && (is_forced_local || this->version_script_.symbol_is_local(name)))
2274         this->force_local(sym);
2275       else if (version != NULL
2276                && (name != version || value != 0))
2277         sym->set_is_default();
2278       return sym;
2279     }
2280
2281   if (force_override
2282       || Symbol_table::should_override_with_special(oldsym, type, defined))
2283     this->override_with_special(oldsym, sym);
2284
2285   if (resolve_oldsym)
2286     return sym;
2287   else
2288     {
2289       if (is_forced_local || this->version_script_.symbol_is_local(name))
2290         this->force_local(oldsym);
2291       delete sym;
2292       return oldsym;
2293     }
2294 }
2295
2296 // Define a set of symbols in output sections.
2297
2298 void
2299 Symbol_table::define_symbols(const Layout* layout, int count,
2300                              const Define_symbol_in_section* p,
2301                              bool only_if_ref)
2302 {
2303   for (int i = 0; i < count; ++i, ++p)
2304     {
2305       Output_section* os = layout->find_output_section(p->output_section);
2306       if (os != NULL)
2307         this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2308                                     p->size, p->type, p->binding,
2309                                     p->visibility, p->nonvis,
2310                                     p->offset_is_from_end,
2311                                     only_if_ref || p->only_if_ref);
2312       else
2313         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2314                                  p->type, p->binding, p->visibility, p->nonvis,
2315                                  only_if_ref || p->only_if_ref,
2316                                  false);
2317     }
2318 }
2319
2320 // Define a set of symbols in output segments.
2321
2322 void
2323 Symbol_table::define_symbols(const Layout* layout, int count,
2324                              const Define_symbol_in_segment* p,
2325                              bool only_if_ref)
2326 {
2327   for (int i = 0; i < count; ++i, ++p)
2328     {
2329       Output_segment* os = layout->find_output_segment(p->segment_type,
2330                                                        p->segment_flags_set,
2331                                                        p->segment_flags_clear);
2332       if (os != NULL)
2333         this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2334                                        p->size, p->type, p->binding,
2335                                        p->visibility, p->nonvis,
2336                                        p->offset_base,
2337                                        only_if_ref || p->only_if_ref);
2338       else
2339         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2340                                  p->type, p->binding, p->visibility, p->nonvis,
2341                                  only_if_ref || p->only_if_ref,
2342                                  false);
2343     }
2344 }
2345
2346 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2347 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2348 // the offset within POSD.
2349
2350 template<int size>
2351 void
2352 Symbol_table::define_with_copy_reloc(
2353     Sized_symbol<size>* csym,
2354     Output_data* posd,
2355     typename elfcpp::Elf_types<size>::Elf_Addr value)
2356 {
2357   gold_assert(csym->is_from_dynobj());
2358   gold_assert(!csym->is_copied_from_dynobj());
2359   Object* object = csym->object();
2360   gold_assert(object->is_dynamic());
2361   Dynobj* dynobj = static_cast<Dynobj*>(object);
2362
2363   // Our copied variable has to override any variable in a shared
2364   // library.
2365   elfcpp::STB binding = csym->binding();
2366   if (binding == elfcpp::STB_WEAK)
2367     binding = elfcpp::STB_GLOBAL;
2368
2369   this->define_in_output_data(csym->name(), csym->version(), COPY,
2370                               posd, value, csym->symsize(),
2371                               csym->type(), binding,
2372                               csym->visibility(), csym->nonvis(),
2373                               false, false);
2374
2375   csym->set_is_copied_from_dynobj();
2376   csym->set_needs_dynsym_entry();
2377
2378   this->copied_symbol_dynobjs_[csym] = dynobj;
2379
2380   // We have now defined all aliases, but we have not entered them all
2381   // in the copied_symbol_dynobjs_ map.
2382   if (csym->has_alias())
2383     {
2384       Symbol* sym = csym;
2385       while (true)
2386         {
2387           sym = this->weak_aliases_[sym];
2388           if (sym == csym)
2389             break;
2390           gold_assert(sym->output_data() == posd);
2391
2392           sym->set_is_copied_from_dynobj();
2393           this->copied_symbol_dynobjs_[sym] = dynobj;
2394         }
2395     }
2396 }
2397
2398 // SYM is defined using a COPY reloc.  Return the dynamic object where
2399 // the original definition was found.
2400
2401 Dynobj*
2402 Symbol_table::get_copy_source(const Symbol* sym) const
2403 {
2404   gold_assert(sym->is_copied_from_dynobj());
2405   Copied_symbol_dynobjs::const_iterator p =
2406     this->copied_symbol_dynobjs_.find(sym);
2407   gold_assert(p != this->copied_symbol_dynobjs_.end());
2408   return p->second;
2409 }
2410
2411 // Add any undefined symbols named on the command line.
2412
2413 void
2414 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2415 {
2416   if (parameters->options().any_undefined()
2417       || layout->script_options()->any_unreferenced())
2418     {
2419       if (parameters->target().get_size() == 32)
2420         {
2421 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2422           this->do_add_undefined_symbols_from_command_line<32>(layout);
2423 #else
2424           gold_unreachable();
2425 #endif
2426         }
2427       else if (parameters->target().get_size() == 64)
2428         {
2429 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2430           this->do_add_undefined_symbols_from_command_line<64>(layout);
2431 #else
2432           gold_unreachable();
2433 #endif
2434         }
2435       else
2436         gold_unreachable();
2437     }
2438 }
2439
2440 template<int size>
2441 void
2442 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2443 {
2444   for (options::String_set::const_iterator p =
2445          parameters->options().undefined_begin();
2446        p != parameters->options().undefined_end();
2447        ++p)
2448     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2449
2450   for (options::String_set::const_iterator p =
2451          parameters->options().export_dynamic_symbol_begin();
2452        p != parameters->options().export_dynamic_symbol_end();
2453        ++p)
2454     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2455
2456   for (Script_options::referenced_const_iterator p =
2457          layout->script_options()->referenced_begin();
2458        p != layout->script_options()->referenced_end();
2459        ++p)
2460     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2461 }
2462
2463 template<int size>
2464 void
2465 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2466 {
2467   if (this->lookup(name) != NULL)
2468     return;
2469
2470   const char* version = NULL;
2471
2472   Sized_symbol<size>* sym;
2473   Sized_symbol<size>* oldsym;
2474   bool resolve_oldsym;
2475   if (parameters->target().is_big_endian())
2476     {
2477 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2478       sym = this->define_special_symbol<size, true>(&name, &version,
2479                                                     false,
2480                                                     elfcpp::STV_DEFAULT,
2481                                                     &oldsym,
2482                                                     &resolve_oldsym,
2483                                                     false);
2484 #else
2485       gold_unreachable();
2486 #endif
2487     }
2488   else
2489     {
2490 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2491       sym = this->define_special_symbol<size, false>(&name, &version,
2492                                                      false,
2493                                                      elfcpp::STV_DEFAULT,
2494                                                      &oldsym,
2495                                                      &resolve_oldsym,
2496                                                      false);
2497 #else
2498       gold_unreachable();
2499 #endif
2500     }
2501
2502   gold_assert(oldsym == NULL);
2503
2504   sym->init_undefined(name, version, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2505                       elfcpp::STV_DEFAULT, 0);
2506   ++this->saw_undefined_;
2507 }
2508
2509 // Set the dynamic symbol indexes.  INDEX is the index of the first
2510 // global dynamic symbol.  Pointers to the global symbols are stored
2511 // into the vector SYMS.  The names are added to DYNPOOL.
2512 // This returns an updated dynamic symbol index.
2513
2514 unsigned int
2515 Symbol_table::set_dynsym_indexes(unsigned int index,
2516                                  unsigned int* pforced_local_count,
2517                                  std::vector<Symbol*>* syms,
2518                                  Stringpool* dynpool,
2519                                  Versions* versions)
2520 {
2521   std::vector<Symbol*> as_needed_sym;
2522
2523   // First process all the symbols which have been forced to be local,
2524   // as they must appear before all global symbols.
2525   unsigned int forced_local_count = 0;
2526   for (Forced_locals::iterator p = this->forced_locals_.begin();
2527        p != this->forced_locals_.end();
2528        ++p)
2529     {
2530       Symbol* sym = *p;
2531       gold_assert(sym->is_forced_local());
2532       if (sym->has_dynsym_index())
2533         continue;
2534       if (!sym->should_add_dynsym_entry(this))
2535         sym->set_dynsym_index(-1U);
2536       else
2537         {
2538           sym->set_dynsym_index(index);
2539           ++index;
2540           ++forced_local_count;
2541           dynpool->add(sym->name(), false, NULL);
2542         }
2543     }
2544   *pforced_local_count = forced_local_count;
2545
2546   // Allow a target to set dynsym indexes.
2547   if (parameters->target().has_custom_set_dynsym_indexes())
2548     {
2549       std::vector<Symbol*> dyn_symbols;
2550       for (Symbol_table_type::iterator p = this->table_.begin();
2551            p != this->table_.end();
2552            ++p)
2553         {
2554           Symbol* sym = p->second;
2555           if (sym->is_forced_local())
2556             continue;
2557           if (!sym->should_add_dynsym_entry(this))
2558             sym->set_dynsym_index(-1U);
2559           else
2560             dyn_symbols.push_back(sym);
2561         }
2562
2563       return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2564                                                      dynpool, versions, this);
2565     }
2566
2567   for (Symbol_table_type::iterator p = this->table_.begin();
2568        p != this->table_.end();
2569        ++p)
2570     {
2571       Symbol* sym = p->second;
2572
2573       if (sym->is_forced_local())
2574         continue;
2575
2576       // Note that SYM may already have a dynamic symbol index, since
2577       // some symbols appear more than once in the symbol table, with
2578       // and without a version.
2579
2580       if (!sym->should_add_dynsym_entry(this))
2581         sym->set_dynsym_index(-1U);
2582       else if (!sym->has_dynsym_index())
2583         {
2584           sym->set_dynsym_index(index);
2585           ++index;
2586           syms->push_back(sym);
2587           dynpool->add(sym->name(), false, NULL);
2588
2589           // If the symbol is defined in a dynamic object and is
2590           // referenced strongly in a regular object, then mark the
2591           // dynamic object as needed.  This is used to implement
2592           // --as-needed.
2593           if (sym->is_from_dynobj()
2594               && sym->in_reg()
2595               && !sym->is_undef_binding_weak())
2596             sym->object()->set_is_needed();
2597
2598           // Record any version information, except those from
2599           // as-needed libraries not seen to be needed.  Note that the
2600           // is_needed state for such libraries can change in this loop.
2601           if (sym->version() != NULL)
2602             {
2603               if (!sym->is_from_dynobj()
2604                   || !sym->object()->as_needed()
2605                   || sym->object()->is_needed())
2606                 versions->record_version(this, dynpool, sym);
2607               else
2608                 as_needed_sym.push_back(sym);
2609             }
2610         }
2611     }
2612
2613   // Process version information for symbols from as-needed libraries.
2614   for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2615        p != as_needed_sym.end();
2616        ++p)
2617     {
2618       Symbol* sym = *p;
2619
2620       if (sym->object()->is_needed())
2621         versions->record_version(this, dynpool, sym);
2622       else
2623         sym->clear_version();
2624     }
2625
2626   // Finish up the versions.  In some cases this may add new dynamic
2627   // symbols.
2628   index = versions->finalize(this, index, syms);
2629
2630   // Process target-specific symbols.
2631   for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2632        p != this->target_symbols_.end();
2633        ++p)
2634     {
2635       (*p)->set_dynsym_index(index);
2636       ++index;
2637       syms->push_back(*p);
2638       dynpool->add((*p)->name(), false, NULL);
2639     }
2640
2641   return index;
2642 }
2643
2644 // Set the final values for all the symbols.  The index of the first
2645 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2646 // file offset OFF.  Add their names to POOL.  Return the new file
2647 // offset.  Update *PLOCAL_SYMCOUNT if necessary.  DYNOFF and
2648 // DYN_GLOBAL_INDEX refer to the start of the symbols that will be
2649 // written from the global symbol table in Symtab::write_globals(),
2650 // which will include forced-local symbols.  DYN_GLOBAL_INDEX is
2651 // not necessarily the same as the sh_info field for the .dynsym
2652 // section, which will point to the first real global symbol.
2653
2654 off_t
2655 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2656                        size_t dyncount, Stringpool* pool,
2657                        unsigned int* plocal_symcount)
2658 {
2659   off_t ret;
2660
2661   gold_assert(*plocal_symcount != 0);
2662   this->first_global_index_ = *plocal_symcount;
2663
2664   this->dynamic_offset_ = dynoff;
2665   this->first_dynamic_global_index_ = dyn_global_index;
2666   this->dynamic_count_ = dyncount;
2667
2668   if (parameters->target().get_size() == 32)
2669     {
2670 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2671       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2672 #else
2673       gold_unreachable();
2674 #endif
2675     }
2676   else if (parameters->target().get_size() == 64)
2677     {
2678 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2679       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2680 #else
2681       gold_unreachable();
2682 #endif
2683     }
2684   else
2685     gold_unreachable();
2686
2687   // Now that we have the final symbol table, we can reliably note
2688   // which symbols should get warnings.
2689   this->warnings_.note_warnings(this);
2690
2691   return ret;
2692 }
2693
2694 // SYM is going into the symbol table at *PINDEX.  Add the name to
2695 // POOL, update *PINDEX and *POFF.
2696
2697 template<int size>
2698 void
2699 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2700                                   unsigned int* pindex, off_t* poff)
2701 {
2702   sym->set_symtab_index(*pindex);
2703   if (sym->version() == NULL || !parameters->options().relocatable())
2704     pool->add(sym->name(), false, NULL);
2705   else
2706     pool->add(sym->versioned_name(), true, NULL);
2707   ++*pindex;
2708   *poff += elfcpp::Elf_sizes<size>::sym_size;
2709 }
2710
2711 // Set the final value for all the symbols.  This is called after
2712 // Layout::finalize, so all the output sections have their final
2713 // address.
2714
2715 template<int size>
2716 off_t
2717 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2718                              unsigned int* plocal_symcount)
2719 {
2720   off = align_address(off, size >> 3);
2721   this->offset_ = off;
2722
2723   unsigned int index = *plocal_symcount;
2724   const unsigned int orig_index = index;
2725
2726   // First do all the symbols which have been forced to be local, as
2727   // they must appear before all global symbols.
2728   for (Forced_locals::iterator p = this->forced_locals_.begin();
2729        p != this->forced_locals_.end();
2730        ++p)
2731     {
2732       Symbol* sym = *p;
2733       gold_assert(sym->is_forced_local());
2734       if (this->sized_finalize_symbol<size>(sym))
2735         {
2736           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2737           ++*plocal_symcount;
2738         }
2739     }
2740
2741   // Now do all the remaining symbols.
2742   for (Symbol_table_type::iterator p = this->table_.begin();
2743        p != this->table_.end();
2744        ++p)
2745     {
2746       Symbol* sym = p->second;
2747       if (this->sized_finalize_symbol<size>(sym))
2748         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2749     }
2750
2751   // Now do target-specific symbols.
2752   for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2753        p != this->target_symbols_.end();
2754        ++p)
2755     {
2756       this->add_to_final_symtab<size>(*p, pool, &index, &off);
2757     }
2758
2759   this->output_count_ = index - orig_index;
2760
2761   return off;
2762 }
2763
2764 // Compute the final value of SYM and store status in location PSTATUS.
2765 // During relaxation, this may be called multiple times for a symbol to
2766 // compute its would-be final value in each relaxation pass.
2767
2768 template<int size>
2769 typename Sized_symbol<size>::Value_type
2770 Symbol_table::compute_final_value(
2771     const Sized_symbol<size>* sym,
2772     Compute_final_value_status* pstatus) const
2773 {
2774   typedef typename Sized_symbol<size>::Value_type Value_type;
2775   Value_type value;
2776
2777   switch (sym->source())
2778     {
2779     case Symbol::FROM_OBJECT:
2780       {
2781         bool is_ordinary;
2782         unsigned int shndx = sym->shndx(&is_ordinary);
2783
2784         if (!is_ordinary
2785             && shndx != elfcpp::SHN_ABS
2786             && !Symbol::is_common_shndx(shndx))
2787           {
2788             *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2789             return 0;
2790           }
2791
2792         Object* symobj = sym->object();
2793         if (symobj->is_dynamic())
2794           {
2795             value = 0;
2796             shndx = elfcpp::SHN_UNDEF;
2797           }
2798         else if (symobj->pluginobj() != NULL)
2799           {
2800             value = 0;
2801             shndx = elfcpp::SHN_UNDEF;
2802           }
2803         else if (shndx == elfcpp::SHN_UNDEF)
2804           value = 0;
2805         else if (!is_ordinary
2806                  && (shndx == elfcpp::SHN_ABS
2807                      || Symbol::is_common_shndx(shndx)))
2808           value = sym->value();
2809         else
2810           {
2811             Relobj* relobj = static_cast<Relobj*>(symobj);
2812             Output_section* os = relobj->output_section(shndx);
2813
2814             if (this->is_section_folded(relobj, shndx))
2815               {
2816                 gold_assert(os == NULL);
2817                 // Get the os of the section it is folded onto.
2818                 Section_id folded = this->icf_->get_folded_section(relobj,
2819                                                                    shndx);
2820                 gold_assert(folded.first != NULL);
2821                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2822                 unsigned folded_shndx = folded.second;
2823
2824                 os = folded_obj->output_section(folded_shndx);  
2825                 gold_assert(os != NULL);
2826
2827                 // Replace (relobj, shndx) with canonical ICF input section.
2828                 shndx = folded_shndx;
2829                 relobj = folded_obj;
2830               }
2831
2832             uint64_t secoff64 = relobj->output_section_offset(shndx);
2833             if (os == NULL)
2834               {
2835                 bool static_or_reloc = (parameters->doing_static_link() ||
2836                                         parameters->options().relocatable());
2837                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2838
2839                 *pstatus = CFVS_NO_OUTPUT_SECTION;
2840                 return 0;
2841               }
2842
2843             if (secoff64 == -1ULL)
2844               {
2845                 // The section needs special handling (e.g., a merge section).
2846
2847                 value = os->output_address(relobj, shndx, sym->value());
2848               }
2849             else
2850               {
2851                 Value_type secoff =
2852                   convert_types<Value_type, uint64_t>(secoff64);
2853                 if (sym->type() == elfcpp::STT_TLS)
2854                   value = sym->value() + os->tls_offset() + secoff;
2855                 else
2856                   value = sym->value() + os->address() + secoff;
2857               }
2858           }
2859       }
2860       break;
2861
2862     case Symbol::IN_OUTPUT_DATA:
2863       {
2864         Output_data* od = sym->output_data();
2865         value = sym->value();
2866         if (sym->type() != elfcpp::STT_TLS)
2867           value += od->address();
2868         else
2869           {
2870             Output_section* os = od->output_section();
2871             gold_assert(os != NULL);
2872             value += os->tls_offset() + (od->address() - os->address());
2873           }
2874         if (sym->offset_is_from_end())
2875           value += od->data_size();
2876       }
2877       break;
2878
2879     case Symbol::IN_OUTPUT_SEGMENT:
2880       {
2881         Output_segment* os = sym->output_segment();
2882         value = sym->value();
2883         if (sym->type() != elfcpp::STT_TLS)
2884           value += os->vaddr();
2885         switch (sym->offset_base())
2886           {
2887           case Symbol::SEGMENT_START:
2888             break;
2889           case Symbol::SEGMENT_END:
2890             value += os->memsz();
2891             break;
2892           case Symbol::SEGMENT_BSS:
2893             value += os->filesz();
2894             break;
2895           default:
2896             gold_unreachable();
2897           }
2898       }
2899       break;
2900
2901     case Symbol::IS_CONSTANT:
2902       value = sym->value();
2903       break;
2904
2905     case Symbol::IS_UNDEFINED:
2906       value = 0;
2907       break;
2908
2909     default:
2910       gold_unreachable();
2911     }
2912
2913   *pstatus = CFVS_OK;
2914   return value;
2915 }
2916
2917 // Finalize the symbol SYM.  This returns true if the symbol should be
2918 // added to the symbol table, false otherwise.
2919
2920 template<int size>
2921 bool
2922 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2923 {
2924   typedef typename Sized_symbol<size>::Value_type Value_type;
2925
2926   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2927
2928   // The default version of a symbol may appear twice in the symbol
2929   // table.  We only need to finalize it once.
2930   if (sym->has_symtab_index())
2931     return false;
2932
2933   if (!sym->in_reg())
2934     {
2935       gold_assert(!sym->has_symtab_index());
2936       sym->set_symtab_index(-1U);
2937       gold_assert(sym->dynsym_index() == -1U);
2938       return false;
2939     }
2940
2941   // If the symbol is only present on plugin files, the plugin decided we
2942   // don't need it.
2943   if (!sym->in_real_elf())
2944     {
2945       gold_assert(!sym->has_symtab_index());
2946       sym->set_symtab_index(-1U);
2947       return false;
2948     }
2949
2950   // Compute final symbol value.
2951   Compute_final_value_status status;
2952   Value_type value = this->compute_final_value(sym, &status);
2953
2954   switch (status)
2955     {
2956     case CFVS_OK:
2957       break;
2958     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2959       {
2960         bool is_ordinary;
2961         unsigned int shndx = sym->shndx(&is_ordinary);
2962         gold_error(_("%s: unsupported symbol section 0x%x"),
2963                    sym->demangled_name().c_str(), shndx);
2964       }
2965       break;
2966     case CFVS_NO_OUTPUT_SECTION:
2967       sym->set_symtab_index(-1U);
2968       return false;
2969     default:
2970       gold_unreachable();
2971     }
2972
2973   sym->set_value(value);
2974
2975   if (parameters->options().strip_all()
2976       || !parameters->options().should_retain_symbol(sym->name()))
2977     {
2978       sym->set_symtab_index(-1U);
2979       return false;
2980     }
2981
2982   return true;
2983 }
2984
2985 // Write out the global symbols.
2986
2987 void
2988 Symbol_table::write_globals(const Stringpool* sympool,
2989                             const Stringpool* dynpool,
2990                             Output_symtab_xindex* symtab_xindex,
2991                             Output_symtab_xindex* dynsym_xindex,
2992                             Output_file* of) const
2993 {
2994   switch (parameters->size_and_endianness())
2995     {
2996 #ifdef HAVE_TARGET_32_LITTLE
2997     case Parameters::TARGET_32_LITTLE:
2998       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2999                                            dynsym_xindex, of);
3000       break;
3001 #endif
3002 #ifdef HAVE_TARGET_32_BIG
3003     case Parameters::TARGET_32_BIG:
3004       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
3005                                           dynsym_xindex, of);
3006       break;
3007 #endif
3008 #ifdef HAVE_TARGET_64_LITTLE
3009     case Parameters::TARGET_64_LITTLE:
3010       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
3011                                            dynsym_xindex, of);
3012       break;
3013 #endif
3014 #ifdef HAVE_TARGET_64_BIG
3015     case Parameters::TARGET_64_BIG:
3016       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
3017                                           dynsym_xindex, of);
3018       break;
3019 #endif
3020     default:
3021       gold_unreachable();
3022     }
3023 }
3024
3025 // Write out the global symbols.
3026
3027 template<int size, bool big_endian>
3028 void
3029 Symbol_table::sized_write_globals(const Stringpool* sympool,
3030                                   const Stringpool* dynpool,
3031                                   Output_symtab_xindex* symtab_xindex,
3032                                   Output_symtab_xindex* dynsym_xindex,
3033                                   Output_file* of) const
3034 {
3035   const Target& target = parameters->target();
3036
3037   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3038
3039   const unsigned int output_count = this->output_count_;
3040   const section_size_type oview_size = output_count * sym_size;
3041   const unsigned int first_global_index = this->first_global_index_;
3042   unsigned char* psyms;
3043   if (this->offset_ == 0 || output_count == 0)
3044     psyms = NULL;
3045   else
3046     psyms = of->get_output_view(this->offset_, oview_size);
3047
3048   const unsigned int dynamic_count = this->dynamic_count_;
3049   const section_size_type dynamic_size = dynamic_count * sym_size;
3050   const unsigned int first_dynamic_global_index =
3051     this->first_dynamic_global_index_;
3052   unsigned char* dynamic_view;
3053   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
3054     dynamic_view = NULL;
3055   else
3056     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
3057
3058   for (Symbol_table_type::const_iterator p = this->table_.begin();
3059        p != this->table_.end();
3060        ++p)
3061     {
3062       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
3063
3064       // Possibly warn about unresolved symbols in shared libraries.
3065       this->warn_about_undefined_dynobj_symbol(sym);
3066
3067       unsigned int sym_index = sym->symtab_index();
3068       unsigned int dynsym_index;
3069       if (dynamic_view == NULL)
3070         dynsym_index = -1U;
3071       else
3072         dynsym_index = sym->dynsym_index();
3073
3074       if (sym_index == -1U && dynsym_index == -1U)
3075         {
3076           // This symbol is not included in the output file.
3077           continue;
3078         }
3079
3080       unsigned int shndx;
3081       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
3082       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
3083       elfcpp::STB binding = sym->binding();
3084
3085       // If --weak-unresolved-symbols is set, change binding of unresolved
3086       // global symbols to STB_WEAK.
3087       if (parameters->options().weak_unresolved_symbols()
3088           && binding == elfcpp::STB_GLOBAL
3089           && sym->is_undefined())
3090         binding = elfcpp::STB_WEAK;
3091
3092       // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
3093       if (binding == elfcpp::STB_GNU_UNIQUE
3094           && !parameters->options().gnu_unique())
3095         binding = elfcpp::STB_GLOBAL;
3096
3097       switch (sym->source())
3098         {
3099         case Symbol::FROM_OBJECT:
3100           {
3101             bool is_ordinary;
3102             unsigned int in_shndx = sym->shndx(&is_ordinary);
3103
3104             if (!is_ordinary
3105                 && in_shndx != elfcpp::SHN_ABS
3106                 && !Symbol::is_common_shndx(in_shndx))
3107               {
3108                 gold_error(_("%s: unsupported symbol section 0x%x"),
3109                            sym->demangled_name().c_str(), in_shndx);
3110                 shndx = in_shndx;
3111               }
3112             else
3113               {
3114                 Object* symobj = sym->object();
3115                 if (symobj->is_dynamic())
3116                   {
3117                     if (sym->needs_dynsym_value())
3118                       dynsym_value = target.dynsym_value(sym);
3119                     shndx = elfcpp::SHN_UNDEF;
3120                     if (sym->is_undef_binding_weak())
3121                       binding = elfcpp::STB_WEAK;
3122                     else
3123                       binding = elfcpp::STB_GLOBAL;
3124                   }
3125                 else if (symobj->pluginobj() != NULL)
3126                   shndx = elfcpp::SHN_UNDEF;
3127                 else if (in_shndx == elfcpp::SHN_UNDEF
3128                          || (!is_ordinary
3129                              && (in_shndx == elfcpp::SHN_ABS
3130                                  || Symbol::is_common_shndx(in_shndx))))
3131                   shndx = in_shndx;
3132                 else
3133                   {
3134                     Relobj* relobj = static_cast<Relobj*>(symobj);
3135                     Output_section* os = relobj->output_section(in_shndx);
3136                     if (this->is_section_folded(relobj, in_shndx))
3137                       {
3138                         // This global symbol must be written out even though
3139                         // it is folded.
3140                         // Get the os of the section it is folded onto.
3141                         Section_id folded =
3142                              this->icf_->get_folded_section(relobj, in_shndx);
3143                         gold_assert(folded.first !=NULL);
3144                         Relobj* folded_obj = 
3145                           reinterpret_cast<Relobj*>(folded.first);
3146                         os = folded_obj->output_section(folded.second);  
3147                         gold_assert(os != NULL);
3148                       }
3149                     gold_assert(os != NULL);
3150                     shndx = os->out_shndx();
3151
3152                     if (shndx >= elfcpp::SHN_LORESERVE)
3153                       {
3154                         if (sym_index != -1U)
3155                           symtab_xindex->add(sym_index, shndx);
3156                         if (dynsym_index != -1U)
3157                           dynsym_xindex->add(dynsym_index, shndx);
3158                         shndx = elfcpp::SHN_XINDEX;
3159                       }
3160
3161                     // In object files symbol values are section
3162                     // relative.
3163                     if (parameters->options().relocatable())
3164                       sym_value -= os->address();
3165                   }
3166               }
3167           }
3168           break;
3169
3170         case Symbol::IN_OUTPUT_DATA:
3171           {
3172             Output_data* od = sym->output_data();
3173
3174             shndx = od->out_shndx();
3175             if (shndx >= elfcpp::SHN_LORESERVE)
3176               {
3177                 if (sym_index != -1U)
3178                   symtab_xindex->add(sym_index, shndx);
3179                 if (dynsym_index != -1U)
3180                   dynsym_xindex->add(dynsym_index, shndx);
3181                 shndx = elfcpp::SHN_XINDEX;
3182               }
3183
3184             // In object files symbol values are section
3185             // relative.
3186             if (parameters->options().relocatable())
3187               {
3188                 Output_section* os = od->output_section();
3189                 gold_assert(os != NULL);
3190                 sym_value -= os->address();
3191               }
3192           }
3193           break;
3194
3195         case Symbol::IN_OUTPUT_SEGMENT:
3196           {
3197             Output_segment* oseg = sym->output_segment();
3198             Output_section* osect = oseg->first_section();
3199             if (osect == NULL)
3200               shndx = elfcpp::SHN_ABS;
3201             else
3202               shndx = osect->out_shndx();
3203           }
3204           break;
3205
3206         case Symbol::IS_CONSTANT:
3207           shndx = elfcpp::SHN_ABS;
3208           break;
3209
3210         case Symbol::IS_UNDEFINED:
3211           shndx = elfcpp::SHN_UNDEF;
3212           break;
3213
3214         default:
3215           gold_unreachable();
3216         }
3217
3218       if (sym_index != -1U)
3219         {
3220           sym_index -= first_global_index;
3221           gold_assert(sym_index < output_count);
3222           unsigned char* ps = psyms + (sym_index * sym_size);
3223           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3224                                                      binding, sympool, ps);
3225         }
3226
3227       if (dynsym_index != -1U)
3228         {
3229           dynsym_index -= first_dynamic_global_index;
3230           gold_assert(dynsym_index < dynamic_count);
3231           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3232           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3233                                                      binding, dynpool, pd);
3234           // Allow a target to adjust dynamic symbol value.
3235           parameters->target().adjust_dyn_symbol(sym, pd);
3236         }
3237     }
3238
3239   // Write the target-specific symbols.
3240   for (std::vector<Symbol*>::const_iterator p = this->target_symbols_.begin();
3241        p != this->target_symbols_.end();
3242        ++p)
3243     {
3244       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(*p);
3245
3246       unsigned int sym_index = sym->symtab_index();
3247       unsigned int dynsym_index;
3248       if (dynamic_view == NULL)
3249         dynsym_index = -1U;
3250       else
3251         dynsym_index = sym->dynsym_index();
3252
3253       unsigned int shndx;
3254       switch (sym->source())
3255         {
3256         case Symbol::IS_CONSTANT:
3257           shndx = elfcpp::SHN_ABS;
3258           break;
3259         case Symbol::IS_UNDEFINED:
3260           shndx = elfcpp::SHN_UNDEF;
3261           break;
3262         default:
3263           gold_unreachable();
3264         }
3265
3266       if (sym_index != -1U)
3267         {
3268           sym_index -= first_global_index;
3269           gold_assert(sym_index < output_count);
3270           unsigned char* ps = psyms + (sym_index * sym_size);
3271           this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3272                                                      sym->binding(), sympool,
3273                                                      ps);
3274         }
3275
3276       if (dynsym_index != -1U)
3277         {
3278           dynsym_index -= first_dynamic_global_index;
3279           gold_assert(dynsym_index < dynamic_count);
3280           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3281           this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3282                                                      sym->binding(), dynpool,
3283                                                      pd);
3284         }
3285     }
3286
3287   of->write_output_view(this->offset_, oview_size, psyms);
3288   if (dynamic_view != NULL)
3289     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3290 }
3291
3292 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
3293 // strtab holding the name.
3294
3295 template<int size, bool big_endian>
3296 void
3297 Symbol_table::sized_write_symbol(
3298     Sized_symbol<size>* sym,
3299     typename elfcpp::Elf_types<size>::Elf_Addr value,
3300     unsigned int shndx,
3301     elfcpp::STB binding,
3302     const Stringpool* pool,
3303     unsigned char* p) const
3304 {
3305   elfcpp::Sym_write<size, big_endian> osym(p);
3306   if (sym->version() == NULL || !parameters->options().relocatable())
3307     osym.put_st_name(pool->get_offset(sym->name()));
3308   else
3309     osym.put_st_name(pool->get_offset(sym->versioned_name()));
3310   osym.put_st_value(value);
3311   // Use a symbol size of zero for undefined symbols from shared libraries.
3312   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3313     osym.put_st_size(0);
3314   else
3315     osym.put_st_size(sym->symsize());
3316   elfcpp::STT type = sym->type();
3317   gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3318   // A version script may have overridden the default binding.
3319   if (sym->is_forced_local())
3320     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3321   else
3322     osym.put_st_info(elfcpp::elf_st_info(binding, type));
3323   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3324   osym.put_st_shndx(shndx);
3325 }
3326
3327 // Check for unresolved symbols in shared libraries.  This is
3328 // controlled by the --allow-shlib-undefined option.
3329
3330 // We only warn about libraries for which we have seen all the
3331 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
3332 // which were not seen in this link.  If we didn't see a DT_NEEDED
3333 // entry, we aren't going to be able to reliably report whether the
3334 // symbol is undefined.
3335
3336 // We also don't warn about libraries found in a system library
3337 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3338 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
3339 // can have undefined references satisfied by ld-linux.so.
3340
3341 inline void
3342 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3343 {
3344   bool dummy;
3345   if (sym->source() == Symbol::FROM_OBJECT
3346       && sym->object()->is_dynamic()
3347       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3348       && sym->binding() != elfcpp::STB_WEAK
3349       && !parameters->options().allow_shlib_undefined()
3350       && !parameters->target().is_defined_by_abi(sym)
3351       && !sym->object()->is_in_system_directory())
3352     {
3353       // A very ugly cast.
3354       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3355       if (!dynobj->has_unknown_needed_entries())
3356         gold_undefined_symbol(sym);
3357     }
3358 }
3359
3360 // Write out a section symbol.  Return the update offset.
3361
3362 void
3363 Symbol_table::write_section_symbol(const Output_section* os,
3364                                    Output_symtab_xindex* symtab_xindex,
3365                                    Output_file* of,
3366                                    off_t offset) const
3367 {
3368   switch (parameters->size_and_endianness())
3369     {
3370 #ifdef HAVE_TARGET_32_LITTLE
3371     case Parameters::TARGET_32_LITTLE:
3372       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3373                                                   offset);
3374       break;
3375 #endif
3376 #ifdef HAVE_TARGET_32_BIG
3377     case Parameters::TARGET_32_BIG:
3378       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3379                                                  offset);
3380       break;
3381 #endif
3382 #ifdef HAVE_TARGET_64_LITTLE
3383     case Parameters::TARGET_64_LITTLE:
3384       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3385                                                   offset);
3386       break;
3387 #endif
3388 #ifdef HAVE_TARGET_64_BIG
3389     case Parameters::TARGET_64_BIG:
3390       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3391                                                  offset);
3392       break;
3393 #endif
3394     default:
3395       gold_unreachable();
3396     }
3397 }
3398
3399 // Write out a section symbol, specialized for size and endianness.
3400
3401 template<int size, bool big_endian>
3402 void
3403 Symbol_table::sized_write_section_symbol(const Output_section* os,
3404                                          Output_symtab_xindex* symtab_xindex,
3405                                          Output_file* of,
3406                                          off_t offset) const
3407 {
3408   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3409
3410   unsigned char* pov = of->get_output_view(offset, sym_size);
3411
3412   elfcpp::Sym_write<size, big_endian> osym(pov);
3413   osym.put_st_name(0);
3414   if (parameters->options().relocatable())
3415     osym.put_st_value(0);
3416   else
3417     osym.put_st_value(os->address());
3418   osym.put_st_size(0);
3419   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3420                                        elfcpp::STT_SECTION));
3421   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3422
3423   unsigned int shndx = os->out_shndx();
3424   if (shndx >= elfcpp::SHN_LORESERVE)
3425     {
3426       symtab_xindex->add(os->symtab_index(), shndx);
3427       shndx = elfcpp::SHN_XINDEX;
3428     }
3429   osym.put_st_shndx(shndx);
3430
3431   of->write_output_view(offset, sym_size, pov);
3432 }
3433
3434 // Print statistical information to stderr.  This is used for --stats.
3435
3436 void
3437 Symbol_table::print_stats() const
3438 {
3439 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3440   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3441           program_name, this->table_.size(), this->table_.bucket_count());
3442 #else
3443   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3444           program_name, this->table_.size());
3445 #endif
3446   this->namepool_.print_stats("symbol table stringpool");
3447 }
3448
3449 // We check for ODR violations by looking for symbols with the same
3450 // name for which the debugging information reports that they were
3451 // defined in disjoint source locations.  When comparing the source
3452 // location, we consider instances with the same base filename to be
3453 // the same.  This is because different object files/shared libraries
3454 // can include the same header file using different paths, and
3455 // different optimization settings can make the line number appear to
3456 // be a couple lines off, and we don't want to report an ODR violation
3457 // in those cases.
3458
3459 // This struct is used to compare line information, as returned by
3460 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3461 // operator used with std::sort.
3462
3463 struct Odr_violation_compare
3464 {
3465   bool
3466   operator()(const std::string& s1, const std::string& s2) const
3467   {
3468     // Inputs should be of the form "dirname/filename:linenum" where
3469     // "dirname/" is optional.  We want to compare just the filename:linenum.
3470
3471     // Find the last '/' in each string.
3472     std::string::size_type s1begin = s1.rfind('/');
3473     std::string::size_type s2begin = s2.rfind('/');
3474     // If there was no '/' in a string, start at the beginning.
3475     if (s1begin == std::string::npos)
3476       s1begin = 0;
3477     if (s2begin == std::string::npos)
3478       s2begin = 0;
3479     return s1.compare(s1begin, std::string::npos,
3480                       s2, s2begin, std::string::npos) < 0;
3481   }
3482 };
3483
3484 // Returns all of the lines attached to LOC, not just the one the
3485 // instruction actually came from.
3486 std::vector<std::string>
3487 Symbol_table::linenos_from_loc(const Task* task,
3488                                const Symbol_location& loc)
3489 {
3490   // We need to lock the object in order to read it.  This
3491   // means that we have to run in a singleton Task.  If we
3492   // want to run this in a general Task for better
3493   // performance, we will need one Task for object, plus
3494   // appropriate locking to ensure that we don't conflict with
3495   // other uses of the object.  Also note, one_addr2line is not
3496   // currently thread-safe.
3497   Task_lock_obj<Object> tl(task, loc.object);
3498
3499   std::vector<std::string> result;
3500   Symbol_location code_loc = loc;
3501   parameters->target().function_location(&code_loc);
3502   // 16 is the size of the object-cache that one_addr2line should use.
3503   std::string canonical_result = Dwarf_line_info::one_addr2line(
3504       code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3505   if (!canonical_result.empty())
3506     result.push_back(canonical_result);
3507   return result;
3508 }
3509
3510 // OutputIterator that records if it was ever assigned to.  This
3511 // allows it to be used with std::set_intersection() to check for
3512 // intersection rather than computing the intersection.
3513 struct Check_intersection
3514 {
3515   Check_intersection()
3516     : value_(false)
3517   {}
3518
3519   bool had_intersection() const
3520   { return this->value_; }
3521
3522   Check_intersection& operator++()
3523   { return *this; }
3524
3525   Check_intersection& operator*()
3526   { return *this; }
3527
3528   template<typename T>
3529   Check_intersection& operator=(const T&)
3530   {
3531     this->value_ = true;
3532     return *this;
3533   }
3534
3535  private:
3536   bool value_;
3537 };
3538
3539 // Check candidate_odr_violations_ to find symbols with the same name
3540 // but apparently different definitions (different source-file/line-no
3541 // for each line assigned to the first instruction).
3542
3543 void
3544 Symbol_table::detect_odr_violations(const Task* task,
3545                                     const char* output_file_name) const
3546 {
3547   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3548        it != candidate_odr_violations_.end();
3549        ++it)
3550     {
3551       const char* const symbol_name = it->first;
3552
3553       std::string first_object_name;
3554       std::vector<std::string> first_object_linenos;
3555
3556       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3557           locs = it->second.begin();
3558       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3559           locs_end = it->second.end();
3560       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3561         {
3562           // Save the line numbers from the first definition to
3563           // compare to the other definitions.  Ideally, we'd compare
3564           // every definition to every other, but we don't want to
3565           // take O(N^2) time to do this.  This shortcut may cause
3566           // false negatives that appear or disappear depending on the
3567           // link order, but it won't cause false positives.
3568           first_object_name = locs->object->name();
3569           first_object_linenos = this->linenos_from_loc(task, *locs);
3570         }
3571       if (first_object_linenos.empty())
3572         continue;
3573
3574       // Sort by Odr_violation_compare to make std::set_intersection work.
3575       std::string first_object_canonical_result = first_object_linenos.back();
3576       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3577                 Odr_violation_compare());
3578
3579       for (; locs != locs_end; ++locs)
3580         {
3581           std::vector<std::string> linenos =
3582               this->linenos_from_loc(task, *locs);
3583           // linenos will be empty if we couldn't parse the debug info.
3584           if (linenos.empty())
3585             continue;
3586           // Sort by Odr_violation_compare to make std::set_intersection work.
3587           gold_assert(!linenos.empty());
3588           std::string second_object_canonical_result = linenos.back();
3589           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3590
3591           Check_intersection intersection_result =
3592               std::set_intersection(first_object_linenos.begin(),
3593                                     first_object_linenos.end(),
3594                                     linenos.begin(),
3595                                     linenos.end(),
3596                                     Check_intersection(),
3597                                     Odr_violation_compare());
3598           if (!intersection_result.had_intersection())
3599             {
3600               gold_warning(_("while linking %s: symbol '%s' defined in "
3601                              "multiple places (possible ODR violation):"),
3602                            output_file_name, demangle(symbol_name).c_str());
3603               // This only prints one location from each definition,
3604               // which may not be the location we expect to intersect
3605               // with another definition.  We could print the whole
3606               // set of locations, but that seems too verbose.
3607               fprintf(stderr, _("  %s from %s\n"),
3608                       first_object_canonical_result.c_str(),
3609                       first_object_name.c_str());
3610               fprintf(stderr, _("  %s from %s\n"),
3611                       second_object_canonical_result.c_str(),
3612                       locs->object->name().c_str());
3613               // Only print one broken pair, to avoid needing to
3614               // compare against a list of the disjoint definition
3615               // locations we've found so far.  (If we kept comparing
3616               // against just the first one, we'd get a lot of
3617               // redundant complaints about the second definition
3618               // location.)
3619               break;
3620             }
3621         }
3622     }
3623   // We only call one_addr2line() in this function, so we can clear its cache.
3624   Dwarf_line_info::clear_addr2line_cache();
3625 }
3626
3627 // Warnings functions.
3628
3629 // Add a new warning.
3630
3631 void
3632 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3633                       const std::string& warning)
3634 {
3635   name = symtab->canonicalize_name(name);
3636   this->warnings_[name].set(obj, warning);
3637 }
3638
3639 // Look through the warnings and mark the symbols for which we should
3640 // warn.  This is called during Layout::finalize when we know the
3641 // sources for all the symbols.
3642
3643 void
3644 Warnings::note_warnings(Symbol_table* symtab)
3645 {
3646   for (Warning_table::iterator p = this->warnings_.begin();
3647        p != this->warnings_.end();
3648        ++p)
3649     {
3650       Symbol* sym = symtab->lookup(p->first, NULL);
3651       if (sym != NULL
3652           && sym->source() == Symbol::FROM_OBJECT
3653           && sym->object() == p->second.object)
3654         sym->set_has_warning();
3655     }
3656 }
3657
3658 // Issue a warning.  This is called when we see a relocation against a
3659 // symbol for which has a warning.
3660
3661 template<int size, bool big_endian>
3662 void
3663 Warnings::issue_warning(const Symbol* sym,
3664                         const Relocate_info<size, big_endian>* relinfo,
3665                         size_t relnum, off_t reloffset) const
3666 {
3667   gold_assert(sym->has_warning());
3668
3669   // We don't want to issue a warning for a relocation against the
3670   // symbol in the same object file in which the symbol is defined.
3671   if (sym->object() == relinfo->object)
3672     return;
3673
3674   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3675   gold_assert(p != this->warnings_.end());
3676   gold_warning_at_location(relinfo, relnum, reloffset,
3677                            "%s", p->second.text.c_str());
3678 }
3679
3680 // Instantiate the templates we need.  We could use the configure
3681 // script to restrict this to only the ones needed for implemented
3682 // targets.
3683
3684 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3685 template
3686 void
3687 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3688 #endif
3689
3690 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3691 template
3692 void
3693 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3694 #endif
3695
3696 #ifdef HAVE_TARGET_32_LITTLE
3697 template
3698 void
3699 Symbol_table::add_from_relobj<32, false>(
3700     Sized_relobj_file<32, false>* relobj,
3701     const unsigned char* syms,
3702     size_t count,
3703     size_t symndx_offset,
3704     const char* sym_names,
3705     size_t sym_name_size,
3706     Sized_relobj_file<32, false>::Symbols* sympointers,
3707     size_t* defined);
3708 #endif
3709
3710 #ifdef HAVE_TARGET_32_BIG
3711 template
3712 void
3713 Symbol_table::add_from_relobj<32, true>(
3714     Sized_relobj_file<32, true>* relobj,
3715     const unsigned char* syms,
3716     size_t count,
3717     size_t symndx_offset,
3718     const char* sym_names,
3719     size_t sym_name_size,
3720     Sized_relobj_file<32, true>::Symbols* sympointers,
3721     size_t* defined);
3722 #endif
3723
3724 #ifdef HAVE_TARGET_64_LITTLE
3725 template
3726 void
3727 Symbol_table::add_from_relobj<64, false>(
3728     Sized_relobj_file<64, false>* relobj,
3729     const unsigned char* syms,
3730     size_t count,
3731     size_t symndx_offset,
3732     const char* sym_names,
3733     size_t sym_name_size,
3734     Sized_relobj_file<64, false>::Symbols* sympointers,
3735     size_t* defined);
3736 #endif
3737
3738 #ifdef HAVE_TARGET_64_BIG
3739 template
3740 void
3741 Symbol_table::add_from_relobj<64, true>(
3742     Sized_relobj_file<64, true>* relobj,
3743     const unsigned char* syms,
3744     size_t count,
3745     size_t symndx_offset,
3746     const char* sym_names,
3747     size_t sym_name_size,
3748     Sized_relobj_file<64, true>::Symbols* sympointers,
3749     size_t* defined);
3750 #endif
3751
3752 #ifdef HAVE_TARGET_32_LITTLE
3753 template
3754 Symbol*
3755 Symbol_table::add_from_pluginobj<32, false>(
3756     Sized_pluginobj<32, false>* obj,
3757     const char* name,
3758     const char* ver,
3759     elfcpp::Sym<32, false>* sym);
3760 #endif
3761
3762 #ifdef HAVE_TARGET_32_BIG
3763 template
3764 Symbol*
3765 Symbol_table::add_from_pluginobj<32, true>(
3766     Sized_pluginobj<32, true>* obj,
3767     const char* name,
3768     const char* ver,
3769     elfcpp::Sym<32, true>* sym);
3770 #endif
3771
3772 #ifdef HAVE_TARGET_64_LITTLE
3773 template
3774 Symbol*
3775 Symbol_table::add_from_pluginobj<64, false>(
3776     Sized_pluginobj<64, false>* obj,
3777     const char* name,
3778     const char* ver,
3779     elfcpp::Sym<64, false>* sym);
3780 #endif
3781
3782 #ifdef HAVE_TARGET_64_BIG
3783 template
3784 Symbol*
3785 Symbol_table::add_from_pluginobj<64, true>(
3786     Sized_pluginobj<64, true>* obj,
3787     const char* name,
3788     const char* ver,
3789     elfcpp::Sym<64, true>* sym);
3790 #endif
3791
3792 #ifdef HAVE_TARGET_32_LITTLE
3793 template
3794 void
3795 Symbol_table::add_from_dynobj<32, false>(
3796     Sized_dynobj<32, false>* dynobj,
3797     const unsigned char* syms,
3798     size_t count,
3799     const char* sym_names,
3800     size_t sym_name_size,
3801     const unsigned char* versym,
3802     size_t versym_size,
3803     const std::vector<const char*>* version_map,
3804     Sized_relobj_file<32, false>::Symbols* sympointers,
3805     size_t* defined);
3806 #endif
3807
3808 #ifdef HAVE_TARGET_32_BIG
3809 template
3810 void
3811 Symbol_table::add_from_dynobj<32, true>(
3812     Sized_dynobj<32, true>* dynobj,
3813     const unsigned char* syms,
3814     size_t count,
3815     const char* sym_names,
3816     size_t sym_name_size,
3817     const unsigned char* versym,
3818     size_t versym_size,
3819     const std::vector<const char*>* version_map,
3820     Sized_relobj_file<32, true>::Symbols* sympointers,
3821     size_t* defined);
3822 #endif
3823
3824 #ifdef HAVE_TARGET_64_LITTLE
3825 template
3826 void
3827 Symbol_table::add_from_dynobj<64, false>(
3828     Sized_dynobj<64, false>* dynobj,
3829     const unsigned char* syms,
3830     size_t count,
3831     const char* sym_names,
3832     size_t sym_name_size,
3833     const unsigned char* versym,
3834     size_t versym_size,
3835     const std::vector<const char*>* version_map,
3836     Sized_relobj_file<64, false>::Symbols* sympointers,
3837     size_t* defined);
3838 #endif
3839
3840 #ifdef HAVE_TARGET_64_BIG
3841 template
3842 void
3843 Symbol_table::add_from_dynobj<64, true>(
3844     Sized_dynobj<64, true>* dynobj,
3845     const unsigned char* syms,
3846     size_t count,
3847     const char* sym_names,
3848     size_t sym_name_size,
3849     const unsigned char* versym,
3850     size_t versym_size,
3851     const std::vector<const char*>* version_map,
3852     Sized_relobj_file<64, true>::Symbols* sympointers,
3853     size_t* defined);
3854 #endif
3855
3856 #ifdef HAVE_TARGET_32_LITTLE
3857 template
3858 Sized_symbol<32>*
3859 Symbol_table::add_from_incrobj(
3860     Object* obj,
3861     const char* name,
3862     const char* ver,
3863     elfcpp::Sym<32, false>* sym);
3864 #endif
3865
3866 #ifdef HAVE_TARGET_32_BIG
3867 template
3868 Sized_symbol<32>*
3869 Symbol_table::add_from_incrobj(
3870     Object* obj,
3871     const char* name,
3872     const char* ver,
3873     elfcpp::Sym<32, true>* sym);
3874 #endif
3875
3876 #ifdef HAVE_TARGET_64_LITTLE
3877 template
3878 Sized_symbol<64>*
3879 Symbol_table::add_from_incrobj(
3880     Object* obj,
3881     const char* name,
3882     const char* ver,
3883     elfcpp::Sym<64, false>* sym);
3884 #endif
3885
3886 #ifdef HAVE_TARGET_64_BIG
3887 template
3888 Sized_symbol<64>*
3889 Symbol_table::add_from_incrobj(
3890     Object* obj,
3891     const char* name,
3892     const char* ver,
3893     elfcpp::Sym<64, true>* sym);
3894 #endif
3895
3896 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3897 template
3898 void
3899 Symbol_table::define_with_copy_reloc<32>(
3900     Sized_symbol<32>* sym,
3901     Output_data* posd,
3902     elfcpp::Elf_types<32>::Elf_Addr value);
3903 #endif
3904
3905 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3906 template
3907 void
3908 Symbol_table::define_with_copy_reloc<64>(
3909     Sized_symbol<64>* sym,
3910     Output_data* posd,
3911     elfcpp::Elf_types<64>::Elf_Addr value);
3912 #endif
3913
3914 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3915 template
3916 void
3917 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3918                                    Output_data* od, Value_type value,
3919                                    Size_type symsize, elfcpp::STT type,
3920                                    elfcpp::STB binding,
3921                                    elfcpp::STV visibility,
3922                                    unsigned char nonvis,
3923                                    bool offset_is_from_end,
3924                                    bool is_predefined);
3925
3926 template
3927 void
3928 Sized_symbol<32>::init_constant(const char* name, const char* version,
3929                                 Value_type value, Size_type symsize,
3930                                 elfcpp::STT type, elfcpp::STB binding,
3931                                 elfcpp::STV visibility, unsigned char nonvis,
3932                                 bool is_predefined);
3933
3934 template
3935 void
3936 Sized_symbol<32>::init_undefined(const char* name, const char* version,
3937                                  Value_type value, elfcpp::STT type,
3938                                  elfcpp::STB binding, elfcpp::STV visibility,
3939                                  unsigned char nonvis);
3940 #endif
3941
3942 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3943 template
3944 void
3945 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3946                                    Output_data* od, Value_type value,
3947                                    Size_type symsize, elfcpp::STT type,
3948                                    elfcpp::STB binding,
3949                                    elfcpp::STV visibility,
3950                                    unsigned char nonvis,
3951                                    bool offset_is_from_end,
3952                                    bool is_predefined);
3953
3954 template
3955 void
3956 Sized_symbol<64>::init_constant(const char* name, const char* version,
3957                                 Value_type value, Size_type symsize,
3958                                 elfcpp::STT type, elfcpp::STB binding,
3959                                 elfcpp::STV visibility, unsigned char nonvis,
3960                                 bool is_predefined);
3961
3962 template
3963 void
3964 Sized_symbol<64>::init_undefined(const char* name, const char* version,
3965                                  Value_type value, elfcpp::STT type,
3966                                  elfcpp::STB binding, elfcpp::STV visibility,
3967                                  unsigned char nonvis);
3968 #endif
3969
3970 #ifdef HAVE_TARGET_32_LITTLE
3971 template
3972 void
3973 Warnings::issue_warning<32, false>(const Symbol* sym,
3974                                    const Relocate_info<32, false>* relinfo,
3975                                    size_t relnum, off_t reloffset) const;
3976 #endif
3977
3978 #ifdef HAVE_TARGET_32_BIG
3979 template
3980 void
3981 Warnings::issue_warning<32, true>(const Symbol* sym,
3982                                   const Relocate_info<32, true>* relinfo,
3983                                   size_t relnum, off_t reloffset) const;
3984 #endif
3985
3986 #ifdef HAVE_TARGET_64_LITTLE
3987 template
3988 void
3989 Warnings::issue_warning<64, false>(const Symbol* sym,
3990                                    const Relocate_info<64, false>* relinfo,
3991                                    size_t relnum, off_t reloffset) const;
3992 #endif
3993
3994 #ifdef HAVE_TARGET_64_BIG
3995 template
3996 void
3997 Warnings::issue_warning<64, true>(const Symbol* sym,
3998                                   const Relocate_info<64, true>* relinfo,
3999                                   size_t relnum, off_t reloffset) const;
4000 #endif
4001
4002 } // End namespace gold.