Copy in_reg and in_dyn when resolving NAME/VERSION with NAME/NULL.
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 #include "gold.h"
4
5 #include <stdint.h>
6 #include <string>
7 #include <utility>
8
9 #include "object.h"
10 #include "dynobj.h"
11 #include "output.h"
12 #include "target.h"
13 #include "workqueue.h"
14 #include "symtab.h"
15
16 namespace gold
17 {
18
19 // Class Symbol.
20
21 // Initialize fields in Symbol.  This initializes everything except u_
22 // and source_.
23
24 void
25 Symbol::init_fields(const char* name, const char* version,
26                     elfcpp::STT type, elfcpp::STB binding,
27                     elfcpp::STV visibility, unsigned char nonvis)
28 {
29   this->name_ = name;
30   this->version_ = version;
31   this->symtab_index_ = 0;
32   this->dynsym_index_ = 0;
33   this->got_offset_ = 0;
34   this->plt_offset_ = 0;
35   this->type_ = type;
36   this->binding_ = binding;
37   this->visibility_ = visibility;
38   this->nonvis_ = nonvis;
39   this->is_target_special_ = false;
40   this->is_def_ = false;
41   this->is_forwarder_ = false;
42   this->needs_dynsym_entry_ = false;
43   this->in_reg_ = false;
44   this->in_dyn_ = false;
45   this->has_got_offset_ = false;
46   this->has_plt_offset_ = false;
47   this->has_warning_ = false;
48 }
49
50 // Initialize the fields in the base class Symbol for SYM in OBJECT.
51
52 template<int size, bool big_endian>
53 void
54 Symbol::init_base(const char* name, const char* version, Object* object,
55                   const elfcpp::Sym<size, big_endian>& sym)
56 {
57   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
58                     sym.get_st_visibility(), sym.get_st_nonvis());
59   this->u_.from_object.object = object;
60   // FIXME: Handle SHN_XINDEX.
61   this->u_.from_object.shndx = sym.get_st_shndx();
62   this->source_ = FROM_OBJECT;
63   this->in_reg_ = !object->is_dynamic();
64   this->in_dyn_ = object->is_dynamic();
65 }
66
67 // Initialize the fields in the base class Symbol for a symbol defined
68 // in an Output_data.
69
70 void
71 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
72                   elfcpp::STB binding, elfcpp::STV visibility,
73                   unsigned char nonvis, bool offset_is_from_end)
74 {
75   this->init_fields(name, NULL, type, binding, visibility, nonvis);
76   this->u_.in_output_data.output_data = od;
77   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
78   this->source_ = IN_OUTPUT_DATA;
79   this->in_reg_ = true;
80 }
81
82 // Initialize the fields in the base class Symbol for a symbol defined
83 // in an Output_segment.
84
85 void
86 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
87                   elfcpp::STB binding, elfcpp::STV visibility,
88                   unsigned char nonvis, Segment_offset_base offset_base)
89 {
90   this->init_fields(name, NULL, type, binding, visibility, nonvis);
91   this->u_.in_output_segment.output_segment = os;
92   this->u_.in_output_segment.offset_base = offset_base;
93   this->source_ = IN_OUTPUT_SEGMENT;
94   this->in_reg_ = true;
95 }
96
97 // Initialize the fields in the base class Symbol for a symbol defined
98 // as a constant.
99
100 void
101 Symbol::init_base(const char* name, elfcpp::STT type,
102                   elfcpp::STB binding, elfcpp::STV visibility,
103                   unsigned char nonvis)
104 {
105   this->init_fields(name, NULL, type, binding, visibility, nonvis);
106   this->source_ = CONSTANT;
107   this->in_reg_ = true;
108 }
109
110 // Initialize the fields in Sized_symbol for SYM in OBJECT.
111
112 template<int size>
113 template<bool big_endian>
114 void
115 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
116                          const elfcpp::Sym<size, big_endian>& sym)
117 {
118   this->init_base(name, version, object, sym);
119   this->value_ = sym.get_st_value();
120   this->symsize_ = sym.get_st_size();
121 }
122
123 // Initialize the fields in Sized_symbol for a symbol defined in an
124 // Output_data.
125
126 template<int size>
127 void
128 Sized_symbol<size>::init(const char* name, Output_data* od,
129                          Value_type value, Size_type symsize,
130                          elfcpp::STT type, elfcpp::STB binding,
131                          elfcpp::STV visibility, unsigned char nonvis,
132                          bool offset_is_from_end)
133 {
134   this->init_base(name, od, type, binding, visibility, nonvis,
135                   offset_is_from_end);
136   this->value_ = value;
137   this->symsize_ = symsize;
138 }
139
140 // Initialize the fields in Sized_symbol for a symbol defined in an
141 // Output_segment.
142
143 template<int size>
144 void
145 Sized_symbol<size>::init(const char* name, Output_segment* os,
146                          Value_type value, Size_type symsize,
147                          elfcpp::STT type, elfcpp::STB binding,
148                          elfcpp::STV visibility, unsigned char nonvis,
149                          Segment_offset_base offset_base)
150 {
151   this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
152   this->value_ = value;
153   this->symsize_ = symsize;
154 }
155
156 // Initialize the fields in Sized_symbol for a symbol defined as a
157 // constant.
158
159 template<int size>
160 void
161 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
162                          elfcpp::STT type, elfcpp::STB binding,
163                          elfcpp::STV visibility, unsigned char nonvis)
164 {
165   this->init_base(name, type, binding, visibility, nonvis);
166   this->value_ = value;
167   this->symsize_ = symsize;
168 }
169
170 // Class Symbol_table.
171
172 Symbol_table::Symbol_table()
173   : size_(0), saw_undefined_(0), offset_(0), table_(), namepool_(),
174     forwarders_(), commons_(), warnings_()
175 {
176 }
177
178 Symbol_table::~Symbol_table()
179 {
180 }
181
182 // The hash function.  The key is always canonicalized, so we use a
183 // simple combination of the pointers.
184
185 size_t
186 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
187 {
188   return key.first ^ key.second;
189 }
190
191 // The symbol table key equality function.  This is only called with
192 // canonicalized name and version strings, so we can use pointer
193 // comparison.
194
195 bool
196 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
197                                           const Symbol_table_key& k2) const
198 {
199   return k1.first == k2.first && k1.second == k2.second;
200 }
201
202 // Make TO a symbol which forwards to FROM.  
203
204 void
205 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
206 {
207   gold_assert(from != to);
208   gold_assert(!from->is_forwarder() && !to->is_forwarder());
209   this->forwarders_[from] = to;
210   from->set_forwarder();
211 }
212
213 // Resolve the forwards from FROM, returning the real symbol.
214
215 Symbol*
216 Symbol_table::resolve_forwards(const Symbol* from) const
217 {
218   gold_assert(from->is_forwarder());
219   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
220     this->forwarders_.find(from);
221   gold_assert(p != this->forwarders_.end());
222   return p->second;
223 }
224
225 // Look up a symbol by name.
226
227 Symbol*
228 Symbol_table::lookup(const char* name, const char* version) const
229 {
230   Stringpool::Key name_key;
231   name = this->namepool_.find(name, &name_key);
232   if (name == NULL)
233     return NULL;
234
235   Stringpool::Key version_key = 0;
236   if (version != NULL)
237     {
238       version = this->namepool_.find(version, &version_key);
239       if (version == NULL)
240         return NULL;
241     }
242
243   Symbol_table_key key(name_key, version_key);
244   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
245   if (p == this->table_.end())
246     return NULL;
247   return p->second;
248 }
249
250 // Resolve a Symbol with another Symbol.  This is only used in the
251 // unusual case where there are references to both an unversioned
252 // symbol and a symbol with a version, and we then discover that that
253 // version is the default version.  Because this is unusual, we do
254 // this the slow way, by converting back to an ELF symbol.
255
256 template<int size, bool big_endian>
257 void
258 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
259                       const char* version ACCEPT_SIZE_ENDIAN)
260 {
261   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
262   elfcpp::Sym_write<size, big_endian> esym(buf);
263   // We don't bother to set the st_name field.
264   esym.put_st_value(from->value());
265   esym.put_st_size(from->symsize());
266   esym.put_st_info(from->binding(), from->type());
267   esym.put_st_other(from->visibility(), from->nonvis());
268   esym.put_st_shndx(from->shndx());
269   Symbol_table::resolve(to, esym.sym(), from->object(), version);
270   if (from->in_reg())
271     to->set_in_reg();
272   if (from->in_dyn())
273     to->set_in_dyn();
274 }
275
276 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
277 // name and VERSION is the version; both are canonicalized.  DEF is
278 // whether this is the default version.
279
280 // If DEF is true, then this is the definition of a default version of
281 // a symbol.  That means that any lookup of NAME/NULL and any lookup
282 // of NAME/VERSION should always return the same symbol.  This is
283 // obvious for references, but in particular we want to do this for
284 // definitions: overriding NAME/NULL should also override
285 // NAME/VERSION.  If we don't do that, it would be very hard to
286 // override functions in a shared library which uses versioning.
287
288 // We implement this by simply making both entries in the hash table
289 // point to the same Symbol structure.  That is easy enough if this is
290 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
291 // that we have seen both already, in which case they will both have
292 // independent entries in the symbol table.  We can't simply change
293 // the symbol table entry, because we have pointers to the entries
294 // attached to the object files.  So we mark the entry attached to the
295 // object file as a forwarder, and record it in the forwarders_ map.
296 // Note that entries in the hash table will never be marked as
297 // forwarders.
298
299 template<int size, bool big_endian>
300 Symbol*
301 Symbol_table::add_from_object(Object* object,
302                               const char *name,
303                               Stringpool::Key name_key,
304                               const char *version,
305                               Stringpool::Key version_key,
306                               bool def,
307                               const elfcpp::Sym<size, big_endian>& sym)
308 {
309   Symbol* const snull = NULL;
310   std::pair<typename Symbol_table_type::iterator, bool> ins =
311     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
312                                        snull));
313
314   std::pair<typename Symbol_table_type::iterator, bool> insdef =
315     std::make_pair(this->table_.end(), false);
316   if (def)
317     {
318       const Stringpool::Key vnull_key = 0;
319       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
320                                                                  vnull_key),
321                                                   snull));
322     }
323
324   // ins.first: an iterator, which is a pointer to a pair.
325   // ins.first->first: the key (a pair of name and version).
326   // ins.first->second: the value (Symbol*).
327   // ins.second: true if new entry was inserted, false if not.
328
329   Sized_symbol<size>* ret;
330   bool was_undefined;
331   bool was_common;
332   if (!ins.second)
333     {
334       // We already have an entry for NAME/VERSION.
335       ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
336                                                            SELECT_SIZE(size));
337       gold_assert(ret != NULL);
338
339       was_undefined = ret->is_undefined();
340       was_common = ret->is_common();
341
342       Symbol_table::resolve(ret, sym, object, version);
343
344       if (def)
345         {
346           if (insdef.second)
347             {
348               // This is the first time we have seen NAME/NULL.  Make
349               // NAME/NULL point to NAME/VERSION.
350               insdef.first->second = ret;
351             }
352           else if (insdef.first->second != ret)
353             {
354               // This is the unfortunate case where we already have
355               // entries for both NAME/VERSION and NAME/NULL.
356               const Sized_symbol<size>* sym2;
357               sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
358                 insdef.first->second
359                 SELECT_SIZE(size));
360               Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
361                 ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian));
362               this->make_forwarder(insdef.first->second, ret);
363               insdef.first->second = ret;
364             }
365         }
366     }
367   else
368     {
369       // This is the first time we have seen NAME/VERSION.
370       gold_assert(ins.first->second == NULL);
371
372       was_undefined = false;
373       was_common = false;
374
375       if (def && !insdef.second)
376         {
377           // We already have an entry for NAME/NULL.  If we override
378           // it, then change it to NAME/VERSION.
379           ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
380               insdef.first->second
381               SELECT_SIZE(size));
382           Symbol_table::resolve(ret, sym, object, version);
383           ins.first->second = ret;
384         }
385       else
386         {
387           Sized_target<size, big_endian>* target =
388             object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
389                 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
390           if (!target->has_make_symbol())
391             ret = new Sized_symbol<size>();
392           else
393             {
394               ret = target->make_symbol();
395               if (ret == NULL)
396                 {
397                   // This means that we don't want a symbol table
398                   // entry after all.
399                   if (!def)
400                     this->table_.erase(ins.first);
401                   else
402                     {
403                       this->table_.erase(insdef.first);
404                       // Inserting insdef invalidated ins.
405                       this->table_.erase(std::make_pair(name_key,
406                                                         version_key));
407                     }
408                   return NULL;
409                 }
410             }
411
412           ret->init(name, version, object, sym);
413
414           ins.first->second = ret;
415           if (def)
416             {
417               // This is the first time we have seen NAME/NULL.  Point
418               // it at the new entry for NAME/VERSION.
419               gold_assert(insdef.second);
420               insdef.first->second = ret;
421             }
422         }
423     }
424
425   // Record every time we see a new undefined symbol, to speed up
426   // archive groups.
427   if (!was_undefined && ret->is_undefined())
428     ++this->saw_undefined_;
429
430   // Keep track of common symbols, to speed up common symbol
431   // allocation.
432   if (!was_common && ret->is_common())
433     this->commons_.push_back(ret);
434
435   return ret;
436 }
437
438 // Add all the symbols in a relocatable object to the hash table.
439
440 template<int size, bool big_endian>
441 void
442 Symbol_table::add_from_relobj(
443     Sized_relobj<size, big_endian>* relobj,
444     const unsigned char* syms,
445     size_t count,
446     const char* sym_names,
447     size_t sym_name_size,
448     Symbol** sympointers)
449 {
450   // We take the size from the first object we see.
451   if (this->get_size() == 0)
452     this->set_size(size);
453
454   if (size != this->get_size() || size != relobj->target()->get_size())
455     {
456       fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
457               program_name, relobj->name().c_str());
458       gold_exit(false);
459     }
460
461   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
462
463   const unsigned char* p = syms;
464   for (size_t i = 0; i < count; ++i, p += sym_size)
465     {
466       elfcpp::Sym<size, big_endian> sym(p);
467       elfcpp::Sym<size, big_endian>* psym = &sym;
468
469       unsigned int st_name = psym->get_st_name();
470       if (st_name >= sym_name_size)
471         {
472           fprintf(stderr,
473                   _("%s: %s: bad global symbol name offset %u at %lu\n"),
474                   program_name, relobj->name().c_str(), st_name,
475                   static_cast<unsigned long>(i));
476           gold_exit(false);
477         }
478
479       const char* name = sym_names + st_name;
480
481       // A symbol defined in a section which we are not including must
482       // be treated as an undefined symbol.
483       unsigned char symbuf[sym_size];
484       elfcpp::Sym<size, big_endian> sym2(symbuf);
485       unsigned int st_shndx = psym->get_st_shndx();
486       if (st_shndx != elfcpp::SHN_UNDEF
487           && st_shndx < elfcpp::SHN_LORESERVE
488           && !relobj->is_section_included(st_shndx))
489         {
490           memcpy(symbuf, p, sym_size);
491           elfcpp::Sym_write<size, big_endian> sw(symbuf);
492           sw.put_st_shndx(elfcpp::SHN_UNDEF);
493           psym = &sym2;
494         }
495
496       // In an object file, an '@' in the name separates the symbol
497       // name from the version name.  If there are two '@' characters,
498       // this is the default version.
499       const char* ver = strchr(name, '@');
500
501       Symbol* res;
502       if (ver == NULL)
503         {
504           Stringpool::Key name_key;
505           name = this->namepool_.add(name, &name_key);
506           res = this->add_from_object(relobj, name, name_key, NULL, 0,
507                                       false, *psym);
508         }
509       else
510         {
511           Stringpool::Key name_key;
512           name = this->namepool_.add(name, ver - name, &name_key);
513
514           bool def = false;
515           ++ver;
516           if (*ver == '@')
517             {
518               def = true;
519               ++ver;
520             }
521
522           Stringpool::Key ver_key;
523           ver = this->namepool_.add(ver, &ver_key);
524
525           res = this->add_from_object(relobj, name, name_key, ver, ver_key,
526                                       def, *psym);
527         }
528
529       *sympointers++ = res;
530     }
531 }
532
533 // Add all the symbols in a dynamic object to the hash table.
534
535 template<int size, bool big_endian>
536 void
537 Symbol_table::add_from_dynobj(
538     Sized_dynobj<size, big_endian>* dynobj,
539     const unsigned char* syms,
540     size_t count,
541     const char* sym_names,
542     size_t sym_name_size,
543     const unsigned char* versym,
544     size_t versym_size,
545     const std::vector<const char*>* version_map)
546 {
547   // We take the size from the first object we see.
548   if (this->get_size() == 0)
549     this->set_size(size);
550
551   if (size != this->get_size() || size != dynobj->target()->get_size())
552     {
553       fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
554               program_name, dynobj->name().c_str());
555       gold_exit(false);
556     }
557
558   if (versym != NULL && versym_size / 2 < count)
559     {
560       fprintf(stderr, _("%s: %s: too few symbol versions\n"),
561               program_name, dynobj->name().c_str());
562       gold_exit(false);
563     }
564
565   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
566
567   const unsigned char* p = syms;
568   const unsigned char* vs = versym;
569   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
570     {
571       elfcpp::Sym<size, big_endian> sym(p);
572
573       // Ignore symbols with local binding.
574       if (sym.get_st_bind() == elfcpp::STB_LOCAL)
575         continue;
576
577       unsigned int st_name = sym.get_st_name();
578       if (st_name >= sym_name_size)
579         {
580           fprintf(stderr, _("%s: %s: bad symbol name offset %u at %lu\n"),
581                   program_name, dynobj->name().c_str(), st_name,
582                   static_cast<unsigned long>(i));
583           gold_exit(false);
584         }
585
586       const char* name = sym_names + st_name;
587
588       if (versym == NULL)
589         {
590           Stringpool::Key name_key;
591           name = this->namepool_.add(name, &name_key);
592           this->add_from_object(dynobj, name, name_key, NULL, 0,
593                                 false, sym);
594           continue;
595         }
596
597       // Read the version information.
598
599       unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
600
601       bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
602       v &= elfcpp::VERSYM_VERSION;
603
604       if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL))
605         {
606           // This symbol should not be visible outside the object.
607           continue;
608         }
609
610       // At this point we are definitely going to add this symbol.
611       Stringpool::Key name_key;
612       name = this->namepool_.add(name, &name_key);
613
614       if (v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
615         {
616           // This symbol does not have a version.
617           this->add_from_object(dynobj, name, name_key, NULL, 0, false, sym);
618           continue;
619         }
620
621       if (v >= version_map->size())
622         {
623           fprintf(stderr,
624                   _("%s: %s: versym for symbol %zu out of range: %u\n"),
625                   program_name, dynobj->name().c_str(), i, v);
626           gold_exit(false);
627         }
628
629       const char* version = (*version_map)[v];
630       if (version == NULL)
631         {
632           fprintf(stderr, _("%s: %s: versym for symbol %zu has no name: %u\n"),
633                   program_name, dynobj->name().c_str(), i, v);
634           gold_exit(false);
635         }
636
637       Stringpool::Key version_key;
638       version = this->namepool_.add(version, &version_key);
639
640       // If this is an absolute symbol, and the version name and
641       // symbol name are the same, then this is the version definition
642       // symbol.  These symbols exist to support using -u to pull in
643       // particular versions.  We do not want to record a version for
644       // them.
645       if (sym.get_st_shndx() == elfcpp::SHN_ABS && name_key == version_key)
646         {
647           this->add_from_object(dynobj, name, name_key, NULL, 0, false, sym);
648           continue;
649         }
650
651       const bool def = !hidden && sym.get_st_shndx() != elfcpp::SHN_UNDEF;
652
653       this->add_from_object(dynobj, name, name_key, version, version_key,
654                             def, sym);
655     }
656 }
657
658 // Create and return a specially defined symbol.  If ONLY_IF_REF is
659 // true, then only create the symbol if there is a reference to it.
660
661 template<int size, bool big_endian>
662 Sized_symbol<size>*
663 Symbol_table::define_special_symbol(const Target* target, const char* name,
664                                     const char* version, bool only_if_ref
665                                     ACCEPT_SIZE_ENDIAN)
666 {
667   gold_assert(this->size_ == size);
668
669   Symbol* oldsym;
670   Sized_symbol<size>* sym;
671
672   if (only_if_ref)
673     {
674       oldsym = this->lookup(name, version);
675       if (oldsym == NULL || !oldsym->is_undefined())
676         return NULL;
677       sym = NULL;
678
679       // Canonicalize NAME and VERSION.
680       name = oldsym->name();
681       version = oldsym->version();
682     }
683   else
684     {
685       // Canonicalize NAME and VERSION.
686       Stringpool::Key name_key;
687       name = this->namepool_.add(name, &name_key);
688
689       Stringpool::Key version_key = 0;
690       if (version != NULL)
691         version = this->namepool_.add(version, &version_key);
692
693       Symbol* const snull = NULL;
694       std::pair<typename Symbol_table_type::iterator, bool> ins =
695         this->table_.insert(std::make_pair(std::make_pair(name_key,
696                                                           version_key),
697                                            snull));
698
699       if (!ins.second)
700         {
701           // We already have a symbol table entry for NAME/VERSION.
702           oldsym = ins.first->second;
703           gold_assert(oldsym != NULL);
704           sym = NULL;
705         }
706       else
707         {
708           // We haven't seen this symbol before.
709           gold_assert(ins.first->second == NULL);
710
711           if (!target->has_make_symbol())
712             sym = new Sized_symbol<size>();
713           else
714             {
715               gold_assert(target->get_size() == size);
716               gold_assert(target->is_big_endian() ? big_endian : !big_endian);
717               typedef Sized_target<size, big_endian> My_target;
718               const My_target* sized_target =
719                 static_cast<const My_target*>(target);
720               sym = sized_target->make_symbol();
721               if (sym == NULL)
722                 return NULL;
723             }
724
725           ins.first->second = sym;
726           oldsym = NULL;
727         }
728     }
729
730   if (oldsym != NULL)
731     {
732       gold_assert(sym == NULL);
733
734       sym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
735                                                            SELECT_SIZE(size));
736       gold_assert(sym->source() == Symbol::FROM_OBJECT);
737       const int old_shndx = sym->shndx();
738       if (old_shndx != elfcpp::SHN_UNDEF
739           && old_shndx != elfcpp::SHN_COMMON
740           && !sym->object()->is_dynamic())
741         {
742           fprintf(stderr, "%s: linker defined: multiple definition of %s\n",
743                   program_name, name);
744           // FIXME: Report old location.  Record that we have seen an
745           // error.
746           return NULL;
747         }
748
749       // Our new definition is going to override the old reference.
750     }
751
752   return sym;
753 }
754
755 // Define a symbol based on an Output_data.
756
757 Symbol*
758 Symbol_table::define_in_output_data(const Target* target, const char* name,
759                                     const char* version, Output_data* od,
760                                     uint64_t value, uint64_t symsize,
761                                     elfcpp::STT type, elfcpp::STB binding,
762                                     elfcpp::STV visibility,
763                                     unsigned char nonvis,
764                                     bool offset_is_from_end,
765                                     bool only_if_ref)
766 {
767   gold_assert(target->get_size() == this->size_);
768   if (this->size_ == 32)
769     return this->do_define_in_output_data<32>(target, name, version, od, value,
770                                               symsize, type, binding,
771                                               visibility, nonvis,
772                                               offset_is_from_end, only_if_ref);
773   else if (this->size_ == 64)
774     return this->do_define_in_output_data<64>(target, name, version, od, value,
775                                               symsize, type, binding,
776                                               visibility, nonvis,
777                                               offset_is_from_end, only_if_ref);
778   else
779     gold_unreachable();
780 }
781
782 // Define a symbol in an Output_data, sized version.
783
784 template<int size>
785 Sized_symbol<size>*
786 Symbol_table::do_define_in_output_data(
787     const Target* target,
788     const char* name,
789     const char* version,
790     Output_data* od,
791     typename elfcpp::Elf_types<size>::Elf_Addr value,
792     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
793     elfcpp::STT type,
794     elfcpp::STB binding,
795     elfcpp::STV visibility,
796     unsigned char nonvis,
797     bool offset_is_from_end,
798     bool only_if_ref)
799 {
800   Sized_symbol<size>* sym;
801
802   if (target->is_big_endian())
803     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
804         target, name, version, only_if_ref
805         SELECT_SIZE_ENDIAN(size, true));
806   else
807     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
808         target, name, version, only_if_ref
809         SELECT_SIZE_ENDIAN(size, false));
810
811   if (sym == NULL)
812     return NULL;
813
814   sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
815             offset_is_from_end);
816
817   return sym;
818 }
819
820 // Define a symbol based on an Output_segment.
821
822 Symbol*
823 Symbol_table::define_in_output_segment(const Target* target, const char* name,
824                                        const char* version, Output_segment* os,
825                                        uint64_t value, uint64_t symsize,
826                                        elfcpp::STT type, elfcpp::STB binding,
827                                        elfcpp::STV visibility,
828                                        unsigned char nonvis,
829                                        Symbol::Segment_offset_base offset_base,
830                                        bool only_if_ref)
831 {
832   gold_assert(target->get_size() == this->size_);
833   if (this->size_ == 32)
834     return this->do_define_in_output_segment<32>(target, name, version, os,
835                                                  value, symsize, type, binding,
836                                                  visibility, nonvis,
837                                                  offset_base, only_if_ref);
838   else if (this->size_ == 64)
839     return this->do_define_in_output_segment<64>(target, name, version, os,
840                                                  value, symsize, type, binding,
841                                                  visibility, nonvis,
842                                                  offset_base, only_if_ref);
843   else
844     gold_unreachable();
845 }
846
847 // Define a symbol in an Output_segment, sized version.
848
849 template<int size>
850 Sized_symbol<size>*
851 Symbol_table::do_define_in_output_segment(
852     const Target* target,
853     const char* name,
854     const char* version,
855     Output_segment* os,
856     typename elfcpp::Elf_types<size>::Elf_Addr value,
857     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
858     elfcpp::STT type,
859     elfcpp::STB binding,
860     elfcpp::STV visibility,
861     unsigned char nonvis,
862     Symbol::Segment_offset_base offset_base,
863     bool only_if_ref)
864 {
865   Sized_symbol<size>* sym;
866
867   if (target->is_big_endian())
868     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
869         target, name, version, only_if_ref
870         SELECT_SIZE_ENDIAN(size, true));
871   else
872     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
873         target, name, version, only_if_ref
874         SELECT_SIZE_ENDIAN(size, false));
875
876   if (sym == NULL)
877     return NULL;
878
879   sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
880             offset_base);
881
882   return sym;
883 }
884
885 // Define a special symbol with a constant value.  It is a multiple
886 // definition error if this symbol is already defined.
887
888 Symbol*
889 Symbol_table::define_as_constant(const Target* target, const char* name,
890                                  const char* version, uint64_t value,
891                                  uint64_t symsize, elfcpp::STT type,
892                                  elfcpp::STB binding, elfcpp::STV visibility,
893                                  unsigned char nonvis, bool only_if_ref)
894 {
895   gold_assert(target->get_size() == this->size_);
896   if (this->size_ == 32)
897     return this->do_define_as_constant<32>(target, name, version, value,
898                                            symsize, type, binding, visibility,
899                                            nonvis, only_if_ref);
900   else if (this->size_ == 64)
901     return this->do_define_as_constant<64>(target, name, version, value,
902                                            symsize, type, binding, visibility,
903                                            nonvis, only_if_ref);
904   else
905     gold_unreachable();
906 }
907
908 // Define a symbol as a constant, sized version.
909
910 template<int size>
911 Sized_symbol<size>*
912 Symbol_table::do_define_as_constant(
913     const Target* target,
914     const char* name,
915     const char* version,
916     typename elfcpp::Elf_types<size>::Elf_Addr value,
917     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
918     elfcpp::STT type,
919     elfcpp::STB binding,
920     elfcpp::STV visibility,
921     unsigned char nonvis,
922     bool only_if_ref)
923 {
924   Sized_symbol<size>* sym;
925
926   if (target->is_big_endian())
927     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
928         target, name, version, only_if_ref
929         SELECT_SIZE_ENDIAN(size, true));
930   else
931     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
932         target, name, version, only_if_ref
933         SELECT_SIZE_ENDIAN(size, false));
934
935   if (sym == NULL)
936     return NULL;
937
938   sym->init(name, value, symsize, type, binding, visibility, nonvis);
939
940   return sym;
941 }
942
943 // Define a set of symbols in output sections.
944
945 void
946 Symbol_table::define_symbols(const Layout* layout, const Target* target,
947                              int count, const Define_symbol_in_section* p)
948 {
949   for (int i = 0; i < count; ++i, ++p)
950     {
951       Output_section* os = layout->find_output_section(p->output_section);
952       if (os != NULL)
953         this->define_in_output_data(target, p->name, NULL, os, p->value,
954                                     p->size, p->type, p->binding,
955                                     p->visibility, p->nonvis,
956                                     p->offset_is_from_end, p->only_if_ref);
957       else
958         this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
959                                  p->binding, p->visibility, p->nonvis,
960                                  p->only_if_ref);
961     }
962 }
963
964 // Define a set of symbols in output segments.
965
966 void
967 Symbol_table::define_symbols(const Layout* layout, const Target* target,
968                              int count, const Define_symbol_in_segment* p)
969 {
970   for (int i = 0; i < count; ++i, ++p)
971     {
972       Output_segment* os = layout->find_output_segment(p->segment_type,
973                                                        p->segment_flags_set,
974                                                        p->segment_flags_clear);
975       if (os != NULL)
976         this->define_in_output_segment(target, p->name, NULL, os, p->value,
977                                        p->size, p->type, p->binding,
978                                        p->visibility, p->nonvis,
979                                        p->offset_base, p->only_if_ref);
980       else
981         this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
982                                  p->binding, p->visibility, p->nonvis,
983                                  p->only_if_ref);
984     }
985 }
986
987 // Set the dynamic symbol indexes.  INDEX is the index of the first
988 // global dynamic symbol.  Pointers to the symbols are stored into the
989 // vector SYMS.  The names are added to DYNPOOL.  This returns an
990 // updated dynamic symbol index.
991
992 unsigned int
993 Symbol_table::set_dynsym_indexes(const General_options* options,
994                                  const Target* target,
995                                  unsigned int index,
996                                  std::vector<Symbol*>* syms,
997                                  Stringpool* dynpool,
998                                  Versions* versions)
999 {
1000   for (Symbol_table_type::iterator p = this->table_.begin();
1001        p != this->table_.end();
1002        ++p)
1003     {
1004       Symbol* sym = p->second;
1005
1006       // Note that SYM may already have a dynamic symbol index, since
1007       // some symbols appear more than once in the symbol table, with
1008       // and without a version.
1009
1010       if (!sym->needs_dynsym_entry()
1011           && (!options->export_dynamic()
1012               || !sym->in_reg()
1013               || !sym->is_externally_visible()))
1014         sym->set_dynsym_index(-1U);
1015       else if (!sym->has_dynsym_index())
1016         {
1017           sym->set_dynsym_index(index);
1018           ++index;
1019           syms->push_back(sym);
1020           dynpool->add(sym->name(), NULL);
1021
1022           // Record any version information.
1023           if (sym->version() != NULL)
1024             versions->record_version(options, dynpool, sym);
1025         }
1026     }
1027
1028   // Finish up the versions.  In some cases this may add new dynamic
1029   // symbols.
1030   index = versions->finalize(target, this, index, syms);
1031
1032   return index;
1033 }
1034
1035 // Set the final values for all the symbols.  The index of the first
1036 // global symbol in the output file is INDEX.  Record the file offset
1037 // OFF.  Add their names to POOL.  Return the new file offset.
1038
1039 off_t
1040 Symbol_table::finalize(unsigned int index, off_t off, off_t dynoff,
1041                        size_t dyn_global_index, size_t dyncount,
1042                        Stringpool* pool)
1043 {
1044   off_t ret;
1045
1046   gold_assert(index != 0);
1047   this->first_global_index_ = index;
1048
1049   this->dynamic_offset_ = dynoff;
1050   this->first_dynamic_global_index_ = dyn_global_index;
1051   this->dynamic_count_ = dyncount;
1052
1053   if (this->size_ == 32)
1054     ret = this->sized_finalize<32>(index, off, pool);
1055   else if (this->size_ == 64)
1056     ret = this->sized_finalize<64>(index, off, pool);
1057   else
1058     gold_unreachable();
1059
1060   // Now that we have the final symbol table, we can reliably note
1061   // which symbols should get warnings.
1062   this->warnings_.note_warnings(this);
1063
1064   return ret;
1065 }
1066
1067 // Set the final value for all the symbols.  This is called after
1068 // Layout::finalize, so all the output sections have their final
1069 // address.
1070
1071 template<int size>
1072 off_t
1073 Symbol_table::sized_finalize(unsigned index, off_t off, Stringpool* pool)
1074 {
1075   off = align_address(off, size >> 3);
1076   this->offset_ = off;
1077
1078   size_t orig_index = index;
1079
1080   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1081   for (Symbol_table_type::iterator p = this->table_.begin();
1082        p != this->table_.end();
1083        ++p)
1084     {
1085       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1086
1087       // FIXME: Here we need to decide which symbols should go into
1088       // the output file, based on --strip.
1089
1090       // The default version of a symbol may appear twice in the
1091       // symbol table.  We only need to finalize it once.
1092       if (sym->has_symtab_index())
1093         continue;
1094
1095       if (!sym->in_reg())
1096         {
1097           gold_assert(!sym->has_symtab_index());
1098           sym->set_symtab_index(-1U);
1099           gold_assert(sym->dynsym_index() == -1U);
1100           continue;
1101         }
1102
1103       typename Sized_symbol<size>::Value_type value;
1104
1105       switch (sym->source())
1106         {
1107         case Symbol::FROM_OBJECT:
1108           {
1109             unsigned int shndx = sym->shndx();
1110
1111             // FIXME: We need some target specific support here.
1112             if (shndx >= elfcpp::SHN_LORESERVE
1113                 && shndx != elfcpp::SHN_ABS)
1114               {
1115                 fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"),
1116                         program_name, sym->name(), shndx);
1117                 gold_exit(false);
1118               }
1119
1120             Object* symobj = sym->object();
1121             if (symobj->is_dynamic())
1122               {
1123                 value = 0;
1124                 shndx = elfcpp::SHN_UNDEF;
1125               }
1126             else if (shndx == elfcpp::SHN_UNDEF)
1127               value = 0;
1128             else if (shndx == elfcpp::SHN_ABS)
1129               value = sym->value();
1130             else
1131               {
1132                 Relobj* relobj = static_cast<Relobj*>(symobj);
1133                 off_t secoff;
1134                 Output_section* os = relobj->output_section(shndx, &secoff);
1135
1136                 if (os == NULL)
1137                   {
1138                     sym->set_symtab_index(-1U);
1139                     gold_assert(sym->dynsym_index() == -1U);
1140                     continue;
1141                   }
1142
1143                 value = sym->value() + os->address() + secoff;
1144               }
1145           }
1146           break;
1147
1148         case Symbol::IN_OUTPUT_DATA:
1149           {
1150             Output_data* od = sym->output_data();
1151             value = sym->value() + od->address();
1152             if (sym->offset_is_from_end())
1153               value += od->data_size();
1154           }
1155           break;
1156
1157         case Symbol::IN_OUTPUT_SEGMENT:
1158           {
1159             Output_segment* os = sym->output_segment();
1160             value = sym->value() + os->vaddr();
1161             switch (sym->offset_base())
1162               {
1163               case Symbol::SEGMENT_START:
1164                 break;
1165               case Symbol::SEGMENT_END:
1166                 value += os->memsz();
1167                 break;
1168               case Symbol::SEGMENT_BSS:
1169                 value += os->filesz();
1170                 break;
1171               default:
1172                 gold_unreachable();
1173               }
1174           }
1175           break;
1176
1177         case Symbol::CONSTANT:
1178           value = sym->value();
1179           break;
1180
1181         default:
1182           gold_unreachable();
1183         }
1184
1185       sym->set_value(value);
1186       sym->set_symtab_index(index);
1187       pool->add(sym->name(), NULL);
1188       ++index;
1189       off += sym_size;
1190     }
1191
1192   this->output_count_ = index - orig_index;
1193
1194   return off;
1195 }
1196
1197 // Write out the global symbols.
1198
1199 void
1200 Symbol_table::write_globals(const Target* target, const Stringpool* sympool,
1201                             const Stringpool* dynpool, Output_file* of) const
1202 {
1203   if (this->size_ == 32)
1204     {
1205       if (target->is_big_endian())
1206         this->sized_write_globals<32, true>(target, sympool, dynpool, of);
1207       else
1208         this->sized_write_globals<32, false>(target, sympool, dynpool, of);
1209     }
1210   else if (this->size_ == 64)
1211     {
1212       if (target->is_big_endian())
1213         this->sized_write_globals<64, true>(target, sympool, dynpool, of);
1214       else
1215         this->sized_write_globals<64, false>(target, sympool, dynpool, of);
1216     }
1217   else
1218     gold_unreachable();
1219 }
1220
1221 // Write out the global symbols.
1222
1223 template<int size, bool big_endian>
1224 void
1225 Symbol_table::sized_write_globals(const Target*,
1226                                   const Stringpool* sympool,
1227                                   const Stringpool* dynpool,
1228                                   Output_file* of) const
1229 {
1230   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1231   unsigned int index = this->first_global_index_;
1232   const off_t oview_size = this->output_count_ * sym_size;
1233   unsigned char* const psyms = of->get_output_view(this->offset_, oview_size);
1234
1235   unsigned int dynamic_count = this->dynamic_count_;
1236   off_t dynamic_size = dynamic_count * sym_size;
1237   unsigned int first_dynamic_global_index = this->first_dynamic_global_index_;
1238   unsigned char* dynamic_view;
1239   if (this->dynamic_offset_ == 0)
1240     dynamic_view = NULL;
1241   else
1242     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1243
1244   unsigned char* ps = psyms;
1245   for (Symbol_table_type::const_iterator p = this->table_.begin();
1246        p != this->table_.end();
1247        ++p)
1248     {
1249       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1250
1251       unsigned int sym_index = sym->symtab_index();
1252       unsigned int dynsym_index;
1253       if (dynamic_view == NULL)
1254         dynsym_index = -1U;
1255       else
1256         dynsym_index = sym->dynsym_index();
1257
1258       if (sym_index == -1U && dynsym_index == -1U)
1259         {
1260           // This symbol is not included in the output file.
1261           continue;
1262         }
1263
1264       if (sym_index == index)
1265         ++index;
1266       else if (sym_index != -1U)
1267         {
1268           // We have already seen this symbol, because it has a
1269           // default version.
1270           gold_assert(sym_index < index);
1271           if (dynsym_index == -1U)
1272             continue;
1273           sym_index = -1U;
1274         }
1275
1276       unsigned int shndx;
1277       switch (sym->source())
1278         {
1279         case Symbol::FROM_OBJECT:
1280           {
1281             unsigned int in_shndx = sym->shndx();
1282
1283             // FIXME: We need some target specific support here.
1284             if (in_shndx >= elfcpp::SHN_LORESERVE
1285                 && in_shndx != elfcpp::SHN_ABS)
1286               {
1287                 fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"),
1288                         program_name, sym->name(), in_shndx);
1289                 gold_exit(false);
1290               }
1291
1292             Object* symobj = sym->object();
1293             if (symobj->is_dynamic())
1294               {
1295                 // FIXME.
1296                 shndx = elfcpp::SHN_UNDEF;
1297               }
1298             else if (in_shndx == elfcpp::SHN_UNDEF
1299                      || in_shndx == elfcpp::SHN_ABS)
1300               shndx = in_shndx;
1301             else
1302               {
1303                 Relobj* relobj = static_cast<Relobj*>(symobj);
1304                 off_t secoff;
1305                 Output_section* os = relobj->output_section(in_shndx, &secoff);
1306                 gold_assert(os != NULL);
1307                 shndx = os->out_shndx();
1308               }
1309           }
1310           break;
1311
1312         case Symbol::IN_OUTPUT_DATA:
1313           shndx = sym->output_data()->out_shndx();
1314           break;
1315
1316         case Symbol::IN_OUTPUT_SEGMENT:
1317           shndx = elfcpp::SHN_ABS;
1318           break;
1319
1320         case Symbol::CONSTANT:
1321           shndx = elfcpp::SHN_ABS;
1322           break;
1323
1324         default:
1325           gold_unreachable();
1326         }
1327
1328       if (sym_index != -1U)
1329         {
1330           this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1331               sym, shndx, sympool, ps
1332               SELECT_SIZE_ENDIAN(size, big_endian));
1333           ps += sym_size;
1334         }
1335
1336       if (dynsym_index != -1U)
1337         {
1338           dynsym_index -= first_dynamic_global_index;
1339           gold_assert(dynsym_index < dynamic_count);
1340           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1341           this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1342               sym, shndx, dynpool, pd
1343               SELECT_SIZE_ENDIAN(size, big_endian));
1344         }
1345     }
1346
1347   gold_assert(ps - psyms == oview_size);
1348
1349   of->write_output_view(this->offset_, oview_size, psyms);
1350   if (dynamic_view != NULL)
1351     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1352 }
1353
1354 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
1355 // strtab holding the name.
1356
1357 template<int size, bool big_endian>
1358 void
1359 Symbol_table::sized_write_symbol(Sized_symbol<size>* sym,
1360                                  unsigned int shndx,
1361                                  const Stringpool* pool,
1362                                  unsigned char* p
1363                                  ACCEPT_SIZE_ENDIAN) const
1364 {
1365   elfcpp::Sym_write<size, big_endian> osym(p);
1366   osym.put_st_name(pool->get_offset(sym->name()));
1367   osym.put_st_value(sym->value());
1368   osym.put_st_size(sym->symsize());
1369   osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1370   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1371   osym.put_st_shndx(shndx);
1372 }
1373
1374 // Write out a section symbol.  Return the update offset.
1375
1376 void
1377 Symbol_table::write_section_symbol(const Target* target,
1378                                    const Output_section *os,
1379                                    Output_file* of,
1380                                    off_t offset) const
1381 {
1382   if (this->size_ == 32)
1383     {
1384       if (target->is_big_endian())
1385         this->sized_write_section_symbol<32, true>(os, of, offset);
1386       else
1387         this->sized_write_section_symbol<32, false>(os, of, offset);
1388     }
1389   else if (this->size_ == 64)
1390     {
1391       if (target->is_big_endian())
1392         this->sized_write_section_symbol<64, true>(os, of, offset);
1393       else
1394         this->sized_write_section_symbol<64, false>(os, of, offset);
1395     }
1396   else
1397     gold_unreachable();
1398 }
1399
1400 // Write out a section symbol, specialized for size and endianness.
1401
1402 template<int size, bool big_endian>
1403 void
1404 Symbol_table::sized_write_section_symbol(const Output_section* os,
1405                                          Output_file* of,
1406                                          off_t offset) const
1407 {
1408   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1409
1410   unsigned char* pov = of->get_output_view(offset, sym_size);
1411
1412   elfcpp::Sym_write<size, big_endian> osym(pov);
1413   osym.put_st_name(0);
1414   osym.put_st_value(os->address());
1415   osym.put_st_size(0);
1416   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
1417                                        elfcpp::STT_SECTION));
1418   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
1419   osym.put_st_shndx(os->out_shndx());
1420
1421   of->write_output_view(offset, sym_size, pov);
1422 }
1423
1424 // Warnings functions.
1425
1426 // Add a new warning.
1427
1428 void
1429 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
1430                       unsigned int shndx)
1431 {
1432   name = symtab->canonicalize_name(name);
1433   this->warnings_[name].set(obj, shndx);
1434 }
1435
1436 // Look through the warnings and mark the symbols for which we should
1437 // warn.  This is called during Layout::finalize when we know the
1438 // sources for all the symbols.
1439
1440 void
1441 Warnings::note_warnings(Symbol_table* symtab)
1442 {
1443   for (Warning_table::iterator p = this->warnings_.begin();
1444        p != this->warnings_.end();
1445        ++p)
1446     {
1447       Symbol* sym = symtab->lookup(p->first, NULL);
1448       if (sym != NULL
1449           && sym->source() == Symbol::FROM_OBJECT
1450           && sym->object() == p->second.object)
1451         {
1452           sym->set_has_warning();
1453
1454           // Read the section contents to get the warning text.  It
1455           // would be nicer if we only did this if we have to actually
1456           // issue a warning.  Unfortunately, warnings are issued as
1457           // we relocate sections.  That means that we can not lock
1458           // the object then, as we might try to issue the same
1459           // warning multiple times simultaneously.
1460           {
1461             Task_locker_obj<Object> tl(*p->second.object);
1462             const unsigned char* c;
1463             off_t len;
1464             c = p->second.object->section_contents(p->second.shndx, &len);
1465             p->second.set_text(reinterpret_cast<const char*>(c), len);
1466           }
1467         }
1468     }
1469 }
1470
1471 // Issue a warning.  This is called when we see a relocation against a
1472 // symbol for which has a warning.
1473
1474 void
1475 Warnings::issue_warning(const Symbol* sym, const std::string& location) const
1476 {
1477   gold_assert(sym->has_warning());
1478   Warning_table::const_iterator p = this->warnings_.find(sym->name());
1479   gold_assert(p != this->warnings_.end());
1480   fprintf(stderr, _("%s: %s: warning: %s\n"), program_name, location.c_str(),
1481           p->second.text.c_str());
1482 }
1483
1484 // Instantiate the templates we need.  We could use the configure
1485 // script to restrict this to only the ones needed for implemented
1486 // targets.
1487
1488 template
1489 void
1490 Symbol_table::add_from_relobj<32, true>(
1491     Sized_relobj<32, true>* relobj,
1492     const unsigned char* syms,
1493     size_t count,
1494     const char* sym_names,
1495     size_t sym_name_size,
1496     Symbol** sympointers);
1497
1498 template
1499 void
1500 Symbol_table::add_from_relobj<32, false>(
1501     Sized_relobj<32, false>* relobj,
1502     const unsigned char* syms,
1503     size_t count,
1504     const char* sym_names,
1505     size_t sym_name_size,
1506     Symbol** sympointers);
1507
1508 template
1509 void
1510 Symbol_table::add_from_relobj<64, true>(
1511     Sized_relobj<64, true>* relobj,
1512     const unsigned char* syms,
1513     size_t count,
1514     const char* sym_names,
1515     size_t sym_name_size,
1516     Symbol** sympointers);
1517
1518 template
1519 void
1520 Symbol_table::add_from_relobj<64, false>(
1521     Sized_relobj<64, false>* relobj,
1522     const unsigned char* syms,
1523     size_t count,
1524     const char* sym_names,
1525     size_t sym_name_size,
1526     Symbol** sympointers);
1527
1528 template
1529 void
1530 Symbol_table::add_from_dynobj<32, true>(
1531     Sized_dynobj<32, true>* dynobj,
1532     const unsigned char* syms,
1533     size_t count,
1534     const char* sym_names,
1535     size_t sym_name_size,
1536     const unsigned char* versym,
1537     size_t versym_size,
1538     const std::vector<const char*>* version_map);
1539
1540 template
1541 void
1542 Symbol_table::add_from_dynobj<32, false>(
1543     Sized_dynobj<32, false>* dynobj,
1544     const unsigned char* syms,
1545     size_t count,
1546     const char* sym_names,
1547     size_t sym_name_size,
1548     const unsigned char* versym,
1549     size_t versym_size,
1550     const std::vector<const char*>* version_map);
1551
1552 template
1553 void
1554 Symbol_table::add_from_dynobj<64, true>(
1555     Sized_dynobj<64, true>* dynobj,
1556     const unsigned char* syms,
1557     size_t count,
1558     const char* sym_names,
1559     size_t sym_name_size,
1560     const unsigned char* versym,
1561     size_t versym_size,
1562     const std::vector<const char*>* version_map);
1563
1564 template
1565 void
1566 Symbol_table::add_from_dynobj<64, false>(
1567     Sized_dynobj<64, false>* dynobj,
1568     const unsigned char* syms,
1569     size_t count,
1570     const char* sym_names,
1571     size_t sym_name_size,
1572     const unsigned char* versym,
1573     size_t versym_size,
1574     const std::vector<const char*>* version_map);
1575
1576 } // End namespace gold.