Add support for --enable-target to control which template
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 #include "gold.h"
4
5 #include <stdint.h>
6 #include <string>
7 #include <utility>
8
9 #include "object.h"
10 #include "dynobj.h"
11 #include "output.h"
12 #include "target.h"
13 #include "workqueue.h"
14 #include "symtab.h"
15
16 namespace gold
17 {
18
19 // Class Symbol.
20
21 // Initialize fields in Symbol.  This initializes everything except u_
22 // and source_.
23
24 void
25 Symbol::init_fields(const char* name, const char* version,
26                     elfcpp::STT type, elfcpp::STB binding,
27                     elfcpp::STV visibility, unsigned char nonvis)
28 {
29   this->name_ = name;
30   this->version_ = version;
31   this->symtab_index_ = 0;
32   this->dynsym_index_ = 0;
33   this->got_offset_ = 0;
34   this->plt_offset_ = 0;
35   this->type_ = type;
36   this->binding_ = binding;
37   this->visibility_ = visibility;
38   this->nonvis_ = nonvis;
39   this->is_target_special_ = false;
40   this->is_def_ = false;
41   this->is_forwarder_ = false;
42   this->needs_dynsym_entry_ = false;
43   this->in_reg_ = false;
44   this->in_dyn_ = false;
45   this->has_got_offset_ = false;
46   this->has_plt_offset_ = false;
47   this->has_warning_ = false;
48 }
49
50 // Initialize the fields in the base class Symbol for SYM in OBJECT.
51
52 template<int size, bool big_endian>
53 void
54 Symbol::init_base(const char* name, const char* version, Object* object,
55                   const elfcpp::Sym<size, big_endian>& sym)
56 {
57   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
58                     sym.get_st_visibility(), sym.get_st_nonvis());
59   this->u_.from_object.object = object;
60   // FIXME: Handle SHN_XINDEX.
61   this->u_.from_object.shndx = sym.get_st_shndx();
62   this->source_ = FROM_OBJECT;
63   this->in_reg_ = !object->is_dynamic();
64   this->in_dyn_ = object->is_dynamic();
65 }
66
67 // Initialize the fields in the base class Symbol for a symbol defined
68 // in an Output_data.
69
70 void
71 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
72                   elfcpp::STB binding, elfcpp::STV visibility,
73                   unsigned char nonvis, bool offset_is_from_end)
74 {
75   this->init_fields(name, NULL, type, binding, visibility, nonvis);
76   this->u_.in_output_data.output_data = od;
77   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
78   this->source_ = IN_OUTPUT_DATA;
79   this->in_reg_ = true;
80 }
81
82 // Initialize the fields in the base class Symbol for a symbol defined
83 // in an Output_segment.
84
85 void
86 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
87                   elfcpp::STB binding, elfcpp::STV visibility,
88                   unsigned char nonvis, Segment_offset_base offset_base)
89 {
90   this->init_fields(name, NULL, type, binding, visibility, nonvis);
91   this->u_.in_output_segment.output_segment = os;
92   this->u_.in_output_segment.offset_base = offset_base;
93   this->source_ = IN_OUTPUT_SEGMENT;
94   this->in_reg_ = true;
95 }
96
97 // Initialize the fields in the base class Symbol for a symbol defined
98 // as a constant.
99
100 void
101 Symbol::init_base(const char* name, elfcpp::STT type,
102                   elfcpp::STB binding, elfcpp::STV visibility,
103                   unsigned char nonvis)
104 {
105   this->init_fields(name, NULL, type, binding, visibility, nonvis);
106   this->source_ = CONSTANT;
107   this->in_reg_ = true;
108 }
109
110 // Initialize the fields in Sized_symbol for SYM in OBJECT.
111
112 template<int size>
113 template<bool big_endian>
114 void
115 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
116                          const elfcpp::Sym<size, big_endian>& sym)
117 {
118   this->init_base(name, version, object, sym);
119   this->value_ = sym.get_st_value();
120   this->symsize_ = sym.get_st_size();
121 }
122
123 // Initialize the fields in Sized_symbol for a symbol defined in an
124 // Output_data.
125
126 template<int size>
127 void
128 Sized_symbol<size>::init(const char* name, Output_data* od,
129                          Value_type value, Size_type symsize,
130                          elfcpp::STT type, elfcpp::STB binding,
131                          elfcpp::STV visibility, unsigned char nonvis,
132                          bool offset_is_from_end)
133 {
134   this->init_base(name, od, type, binding, visibility, nonvis,
135                   offset_is_from_end);
136   this->value_ = value;
137   this->symsize_ = symsize;
138 }
139
140 // Initialize the fields in Sized_symbol for a symbol defined in an
141 // Output_segment.
142
143 template<int size>
144 void
145 Sized_symbol<size>::init(const char* name, Output_segment* os,
146                          Value_type value, Size_type symsize,
147                          elfcpp::STT type, elfcpp::STB binding,
148                          elfcpp::STV visibility, unsigned char nonvis,
149                          Segment_offset_base offset_base)
150 {
151   this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
152   this->value_ = value;
153   this->symsize_ = symsize;
154 }
155
156 // Initialize the fields in Sized_symbol for a symbol defined as a
157 // constant.
158
159 template<int size>
160 void
161 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
162                          elfcpp::STT type, elfcpp::STB binding,
163                          elfcpp::STV visibility, unsigned char nonvis)
164 {
165   this->init_base(name, type, binding, visibility, nonvis);
166   this->value_ = value;
167   this->symsize_ = symsize;
168 }
169
170 // Class Symbol_table.
171
172 Symbol_table::Symbol_table()
173   : size_(0), saw_undefined_(0), offset_(0), table_(), namepool_(),
174     forwarders_(), commons_(), warnings_()
175 {
176 }
177
178 Symbol_table::~Symbol_table()
179 {
180 }
181
182 // The hash function.  The key is always canonicalized, so we use a
183 // simple combination of the pointers.
184
185 size_t
186 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
187 {
188   return key.first ^ key.second;
189 }
190
191 // The symbol table key equality function.  This is only called with
192 // canonicalized name and version strings, so we can use pointer
193 // comparison.
194
195 bool
196 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
197                                           const Symbol_table_key& k2) const
198 {
199   return k1.first == k2.first && k1.second == k2.second;
200 }
201
202 // Make TO a symbol which forwards to FROM.  
203
204 void
205 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
206 {
207   gold_assert(from != to);
208   gold_assert(!from->is_forwarder() && !to->is_forwarder());
209   this->forwarders_[from] = to;
210   from->set_forwarder();
211 }
212
213 // Resolve the forwards from FROM, returning the real symbol.
214
215 Symbol*
216 Symbol_table::resolve_forwards(const Symbol* from) const
217 {
218   gold_assert(from->is_forwarder());
219   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
220     this->forwarders_.find(from);
221   gold_assert(p != this->forwarders_.end());
222   return p->second;
223 }
224
225 // Look up a symbol by name.
226
227 Symbol*
228 Symbol_table::lookup(const char* name, const char* version) const
229 {
230   Stringpool::Key name_key;
231   name = this->namepool_.find(name, &name_key);
232   if (name == NULL)
233     return NULL;
234
235   Stringpool::Key version_key = 0;
236   if (version != NULL)
237     {
238       version = this->namepool_.find(version, &version_key);
239       if (version == NULL)
240         return NULL;
241     }
242
243   Symbol_table_key key(name_key, version_key);
244   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
245   if (p == this->table_.end())
246     return NULL;
247   return p->second;
248 }
249
250 // Resolve a Symbol with another Symbol.  This is only used in the
251 // unusual case where there are references to both an unversioned
252 // symbol and a symbol with a version, and we then discover that that
253 // version is the default version.  Because this is unusual, we do
254 // this the slow way, by converting back to an ELF symbol.
255
256 template<int size, bool big_endian>
257 void
258 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
259                       const char* version ACCEPT_SIZE_ENDIAN)
260 {
261   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
262   elfcpp::Sym_write<size, big_endian> esym(buf);
263   // We don't bother to set the st_name field.
264   esym.put_st_value(from->value());
265   esym.put_st_size(from->symsize());
266   esym.put_st_info(from->binding(), from->type());
267   esym.put_st_other(from->visibility(), from->nonvis());
268   esym.put_st_shndx(from->shndx());
269   Symbol_table::resolve(to, esym.sym(), from->object(), version);
270   if (from->in_reg())
271     to->set_in_reg();
272   if (from->in_dyn())
273     to->set_in_dyn();
274 }
275
276 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
277 // name and VERSION is the version; both are canonicalized.  DEF is
278 // whether this is the default version.
279
280 // If DEF is true, then this is the definition of a default version of
281 // a symbol.  That means that any lookup of NAME/NULL and any lookup
282 // of NAME/VERSION should always return the same symbol.  This is
283 // obvious for references, but in particular we want to do this for
284 // definitions: overriding NAME/NULL should also override
285 // NAME/VERSION.  If we don't do that, it would be very hard to
286 // override functions in a shared library which uses versioning.
287
288 // We implement this by simply making both entries in the hash table
289 // point to the same Symbol structure.  That is easy enough if this is
290 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
291 // that we have seen both already, in which case they will both have
292 // independent entries in the symbol table.  We can't simply change
293 // the symbol table entry, because we have pointers to the entries
294 // attached to the object files.  So we mark the entry attached to the
295 // object file as a forwarder, and record it in the forwarders_ map.
296 // Note that entries in the hash table will never be marked as
297 // forwarders.
298
299 template<int size, bool big_endian>
300 Symbol*
301 Symbol_table::add_from_object(Object* object,
302                               const char *name,
303                               Stringpool::Key name_key,
304                               const char *version,
305                               Stringpool::Key version_key,
306                               bool def,
307                               const elfcpp::Sym<size, big_endian>& sym)
308 {
309   Symbol* const snull = NULL;
310   std::pair<typename Symbol_table_type::iterator, bool> ins =
311     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
312                                        snull));
313
314   std::pair<typename Symbol_table_type::iterator, bool> insdef =
315     std::make_pair(this->table_.end(), false);
316   if (def)
317     {
318       const Stringpool::Key vnull_key = 0;
319       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
320                                                                  vnull_key),
321                                                   snull));
322     }
323
324   // ins.first: an iterator, which is a pointer to a pair.
325   // ins.first->first: the key (a pair of name and version).
326   // ins.first->second: the value (Symbol*).
327   // ins.second: true if new entry was inserted, false if not.
328
329   Sized_symbol<size>* ret;
330   bool was_undefined;
331   bool was_common;
332   if (!ins.second)
333     {
334       // We already have an entry for NAME/VERSION.
335       ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
336                                                            SELECT_SIZE(size));
337       gold_assert(ret != NULL);
338
339       was_undefined = ret->is_undefined();
340       was_common = ret->is_common();
341
342       Symbol_table::resolve(ret, sym, object, version);
343
344       if (def)
345         {
346           if (insdef.second)
347             {
348               // This is the first time we have seen NAME/NULL.  Make
349               // NAME/NULL point to NAME/VERSION.
350               insdef.first->second = ret;
351             }
352           else if (insdef.first->second != ret)
353             {
354               // This is the unfortunate case where we already have
355               // entries for both NAME/VERSION and NAME/NULL.
356               const Sized_symbol<size>* sym2;
357               sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
358                 insdef.first->second
359                 SELECT_SIZE(size));
360               Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
361                 ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian));
362               this->make_forwarder(insdef.first->second, ret);
363               insdef.first->second = ret;
364             }
365         }
366     }
367   else
368     {
369       // This is the first time we have seen NAME/VERSION.
370       gold_assert(ins.first->second == NULL);
371
372       was_undefined = false;
373       was_common = false;
374
375       if (def && !insdef.second)
376         {
377           // We already have an entry for NAME/NULL.  If we override
378           // it, then change it to NAME/VERSION.
379           ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
380               insdef.first->second
381               SELECT_SIZE(size));
382           Symbol_table::resolve(ret, sym, object, version);
383           ins.first->second = ret;
384         }
385       else
386         {
387           Sized_target<size, big_endian>* target =
388             object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
389                 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
390           if (!target->has_make_symbol())
391             ret = new Sized_symbol<size>();
392           else
393             {
394               ret = target->make_symbol();
395               if (ret == NULL)
396                 {
397                   // This means that we don't want a symbol table
398                   // entry after all.
399                   if (!def)
400                     this->table_.erase(ins.first);
401                   else
402                     {
403                       this->table_.erase(insdef.first);
404                       // Inserting insdef invalidated ins.
405                       this->table_.erase(std::make_pair(name_key,
406                                                         version_key));
407                     }
408                   return NULL;
409                 }
410             }
411
412           ret->init(name, version, object, sym);
413
414           ins.first->second = ret;
415           if (def)
416             {
417               // This is the first time we have seen NAME/NULL.  Point
418               // it at the new entry for NAME/VERSION.
419               gold_assert(insdef.second);
420               insdef.first->second = ret;
421             }
422         }
423     }
424
425   // Record every time we see a new undefined symbol, to speed up
426   // archive groups.
427   if (!was_undefined && ret->is_undefined())
428     ++this->saw_undefined_;
429
430   // Keep track of common symbols, to speed up common symbol
431   // allocation.
432   if (!was_common && ret->is_common())
433     this->commons_.push_back(ret);
434
435   return ret;
436 }
437
438 // Add all the symbols in a relocatable object to the hash table.
439
440 template<int size, bool big_endian>
441 void
442 Symbol_table::add_from_relobj(
443     Sized_relobj<size, big_endian>* relobj,
444     const unsigned char* syms,
445     size_t count,
446     const char* sym_names,
447     size_t sym_name_size,
448     Symbol** sympointers)
449 {
450   // We take the size from the first object we see.
451   if (this->get_size() == 0)
452     this->set_size(size);
453
454   if (size != this->get_size() || size != relobj->target()->get_size())
455     {
456       fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
457               program_name, relobj->name().c_str());
458       gold_exit(false);
459     }
460
461   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
462
463   const unsigned char* p = syms;
464   for (size_t i = 0; i < count; ++i, p += sym_size)
465     {
466       elfcpp::Sym<size, big_endian> sym(p);
467       elfcpp::Sym<size, big_endian>* psym = &sym;
468
469       unsigned int st_name = psym->get_st_name();
470       if (st_name >= sym_name_size)
471         {
472           fprintf(stderr,
473                   _("%s: %s: bad global symbol name offset %u at %lu\n"),
474                   program_name, relobj->name().c_str(), st_name,
475                   static_cast<unsigned long>(i));
476           gold_exit(false);
477         }
478
479       const char* name = sym_names + st_name;
480
481       // A symbol defined in a section which we are not including must
482       // be treated as an undefined symbol.
483       unsigned char symbuf[sym_size];
484       elfcpp::Sym<size, big_endian> sym2(symbuf);
485       unsigned int st_shndx = psym->get_st_shndx();
486       if (st_shndx != elfcpp::SHN_UNDEF
487           && st_shndx < elfcpp::SHN_LORESERVE
488           && !relobj->is_section_included(st_shndx))
489         {
490           memcpy(symbuf, p, sym_size);
491           elfcpp::Sym_write<size, big_endian> sw(symbuf);
492           sw.put_st_shndx(elfcpp::SHN_UNDEF);
493           psym = &sym2;
494         }
495
496       // In an object file, an '@' in the name separates the symbol
497       // name from the version name.  If there are two '@' characters,
498       // this is the default version.
499       const char* ver = strchr(name, '@');
500
501       Symbol* res;
502       if (ver == NULL)
503         {
504           Stringpool::Key name_key;
505           name = this->namepool_.add(name, &name_key);
506           res = this->add_from_object(relobj, name, name_key, NULL, 0,
507                                       false, *psym);
508         }
509       else
510         {
511           Stringpool::Key name_key;
512           name = this->namepool_.add(name, ver - name, &name_key);
513
514           bool def = false;
515           ++ver;
516           if (*ver == '@')
517             {
518               def = true;
519               ++ver;
520             }
521
522           Stringpool::Key ver_key;
523           ver = this->namepool_.add(ver, &ver_key);
524
525           res = this->add_from_object(relobj, name, name_key, ver, ver_key,
526                                       def, *psym);
527         }
528
529       *sympointers++ = res;
530     }
531 }
532
533 // Add all the symbols in a dynamic object to the hash table.
534
535 template<int size, bool big_endian>
536 void
537 Symbol_table::add_from_dynobj(
538     Sized_dynobj<size, big_endian>* dynobj,
539     const unsigned char* syms,
540     size_t count,
541     const char* sym_names,
542     size_t sym_name_size,
543     const unsigned char* versym,
544     size_t versym_size,
545     const std::vector<const char*>* version_map)
546 {
547   // We take the size from the first object we see.
548   if (this->get_size() == 0)
549     this->set_size(size);
550
551   if (size != this->get_size() || size != dynobj->target()->get_size())
552     {
553       fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
554               program_name, dynobj->name().c_str());
555       gold_exit(false);
556     }
557
558   if (versym != NULL && versym_size / 2 < count)
559     {
560       fprintf(stderr, _("%s: %s: too few symbol versions\n"),
561               program_name, dynobj->name().c_str());
562       gold_exit(false);
563     }
564
565   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
566
567   const unsigned char* p = syms;
568   const unsigned char* vs = versym;
569   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
570     {
571       elfcpp::Sym<size, big_endian> sym(p);
572
573       // Ignore symbols with local binding.
574       if (sym.get_st_bind() == elfcpp::STB_LOCAL)
575         continue;
576
577       unsigned int st_name = sym.get_st_name();
578       if (st_name >= sym_name_size)
579         {
580           fprintf(stderr, _("%s: %s: bad symbol name offset %u at %lu\n"),
581                   program_name, dynobj->name().c_str(), st_name,
582                   static_cast<unsigned long>(i));
583           gold_exit(false);
584         }
585
586       const char* name = sym_names + st_name;
587
588       if (versym == NULL)
589         {
590           Stringpool::Key name_key;
591           name = this->namepool_.add(name, &name_key);
592           this->add_from_object(dynobj, name, name_key, NULL, 0,
593                                 false, sym);
594           continue;
595         }
596
597       // Read the version information.
598
599       unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
600
601       bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
602       v &= elfcpp::VERSYM_VERSION;
603
604       // The Sun documentation says that V can be VER_NDX_LOCAL, or
605       // VER_NDX_GLOBAL, or a version index.  The meaning of
606       // VER_NDX_LOCAL is defined as "Symbol has local scope."  The
607       // old GNU linker will happily generate VER_NDX_LOCAL for an
608       // undefined symbol.  I don't know what the Sun linker will
609       // generate.
610
611       if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
612           && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
613         {
614           // This symbol should not be visible outside the object.
615           continue;
616         }
617
618       // At this point we are definitely going to add this symbol.
619       Stringpool::Key name_key;
620       name = this->namepool_.add(name, &name_key);
621
622       if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
623           || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
624         {
625           // This symbol does not have a version.
626           this->add_from_object(dynobj, name, name_key, NULL, 0, false, sym);
627           continue;
628         }
629
630       if (v >= version_map->size())
631         {
632           fprintf(stderr,
633                   _("%s: %s: versym for symbol %zu out of range: %u\n"),
634                   program_name, dynobj->name().c_str(), i, v);
635           gold_exit(false);
636         }
637
638       const char* version = (*version_map)[v];
639       if (version == NULL)
640         {
641           fprintf(stderr, _("%s: %s: versym for symbol %zu has no name: %u\n"),
642                   program_name, dynobj->name().c_str(), i, v);
643           gold_exit(false);
644         }
645
646       Stringpool::Key version_key;
647       version = this->namepool_.add(version, &version_key);
648
649       // If this is an absolute symbol, and the version name and
650       // symbol name are the same, then this is the version definition
651       // symbol.  These symbols exist to support using -u to pull in
652       // particular versions.  We do not want to record a version for
653       // them.
654       if (sym.get_st_shndx() == elfcpp::SHN_ABS && name_key == version_key)
655         {
656           this->add_from_object(dynobj, name, name_key, NULL, 0, false, sym);
657           continue;
658         }
659
660       const bool def = !hidden && sym.get_st_shndx() != elfcpp::SHN_UNDEF;
661
662       this->add_from_object(dynobj, name, name_key, version, version_key,
663                             def, sym);
664     }
665 }
666
667 // Create and return a specially defined symbol.  If ONLY_IF_REF is
668 // true, then only create the symbol if there is a reference to it.
669
670 template<int size, bool big_endian>
671 Sized_symbol<size>*
672 Symbol_table::define_special_symbol(const Target* target, const char* name,
673                                     const char* version, bool only_if_ref
674                                     ACCEPT_SIZE_ENDIAN)
675 {
676   gold_assert(this->size_ == size);
677
678   Symbol* oldsym;
679   Sized_symbol<size>* sym;
680
681   if (only_if_ref)
682     {
683       oldsym = this->lookup(name, version);
684       if (oldsym == NULL || !oldsym->is_undefined())
685         return NULL;
686       sym = NULL;
687
688       // Canonicalize NAME and VERSION.
689       name = oldsym->name();
690       version = oldsym->version();
691     }
692   else
693     {
694       // Canonicalize NAME and VERSION.
695       Stringpool::Key name_key;
696       name = this->namepool_.add(name, &name_key);
697
698       Stringpool::Key version_key = 0;
699       if (version != NULL)
700         version = this->namepool_.add(version, &version_key);
701
702       Symbol* const snull = NULL;
703       std::pair<typename Symbol_table_type::iterator, bool> ins =
704         this->table_.insert(std::make_pair(std::make_pair(name_key,
705                                                           version_key),
706                                            snull));
707
708       if (!ins.second)
709         {
710           // We already have a symbol table entry for NAME/VERSION.
711           oldsym = ins.first->second;
712           gold_assert(oldsym != NULL);
713           sym = NULL;
714         }
715       else
716         {
717           // We haven't seen this symbol before.
718           gold_assert(ins.first->second == NULL);
719
720           if (!target->has_make_symbol())
721             sym = new Sized_symbol<size>();
722           else
723             {
724               gold_assert(target->get_size() == size);
725               gold_assert(target->is_big_endian() ? big_endian : !big_endian);
726               typedef Sized_target<size, big_endian> My_target;
727               const My_target* sized_target =
728                 static_cast<const My_target*>(target);
729               sym = sized_target->make_symbol();
730               if (sym == NULL)
731                 return NULL;
732             }
733
734           ins.first->second = sym;
735           oldsym = NULL;
736         }
737     }
738
739   if (oldsym != NULL)
740     {
741       gold_assert(sym == NULL);
742
743       sym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
744                                                            SELECT_SIZE(size));
745       gold_assert(sym->source() == Symbol::FROM_OBJECT);
746       const int old_shndx = sym->shndx();
747       if (old_shndx != elfcpp::SHN_UNDEF
748           && old_shndx != elfcpp::SHN_COMMON
749           && !sym->object()->is_dynamic())
750         {
751           fprintf(stderr, "%s: linker defined: multiple definition of %s\n",
752                   program_name, name);
753           // FIXME: Report old location.  Record that we have seen an
754           // error.
755           return NULL;
756         }
757
758       // Our new definition is going to override the old reference.
759     }
760
761   return sym;
762 }
763
764 // Define a symbol based on an Output_data.
765
766 Symbol*
767 Symbol_table::define_in_output_data(const Target* target, const char* name,
768                                     const char* version, Output_data* od,
769                                     uint64_t value, uint64_t symsize,
770                                     elfcpp::STT type, elfcpp::STB binding,
771                                     elfcpp::STV visibility,
772                                     unsigned char nonvis,
773                                     bool offset_is_from_end,
774                                     bool only_if_ref)
775 {
776   gold_assert(target->get_size() == this->size_);
777   if (this->size_ == 32)
778     return this->do_define_in_output_data<32>(target, name, version, od, value,
779                                               symsize, type, binding,
780                                               visibility, nonvis,
781                                               offset_is_from_end, only_if_ref);
782   else if (this->size_ == 64)
783     return this->do_define_in_output_data<64>(target, name, version, od, value,
784                                               symsize, type, binding,
785                                               visibility, nonvis,
786                                               offset_is_from_end, only_if_ref);
787   else
788     gold_unreachable();
789 }
790
791 // Define a symbol in an Output_data, sized version.
792
793 template<int size>
794 Sized_symbol<size>*
795 Symbol_table::do_define_in_output_data(
796     const Target* target,
797     const char* name,
798     const char* version,
799     Output_data* od,
800     typename elfcpp::Elf_types<size>::Elf_Addr value,
801     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
802     elfcpp::STT type,
803     elfcpp::STB binding,
804     elfcpp::STV visibility,
805     unsigned char nonvis,
806     bool offset_is_from_end,
807     bool only_if_ref)
808 {
809   Sized_symbol<size>* sym;
810
811   if (target->is_big_endian())
812     {
813 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
814       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
815           target, name, version, only_if_ref
816           SELECT_SIZE_ENDIAN(size, true));
817 #else
818       gold_unreachable();
819 #endif
820     }
821   else
822     {
823 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
824       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
825           target, name, version, only_if_ref
826           SELECT_SIZE_ENDIAN(size, false));
827 #else
828       gold_unreachable();
829 #endif
830     }
831
832   if (sym == NULL)
833     return NULL;
834
835   sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
836             offset_is_from_end);
837
838   return sym;
839 }
840
841 // Define a symbol based on an Output_segment.
842
843 Symbol*
844 Symbol_table::define_in_output_segment(const Target* target, const char* name,
845                                        const char* version, Output_segment* os,
846                                        uint64_t value, uint64_t symsize,
847                                        elfcpp::STT type, elfcpp::STB binding,
848                                        elfcpp::STV visibility,
849                                        unsigned char nonvis,
850                                        Symbol::Segment_offset_base offset_base,
851                                        bool only_if_ref)
852 {
853   gold_assert(target->get_size() == this->size_);
854   if (this->size_ == 32)
855     return this->do_define_in_output_segment<32>(target, name, version, os,
856                                                  value, symsize, type, binding,
857                                                  visibility, nonvis,
858                                                  offset_base, only_if_ref);
859   else if (this->size_ == 64)
860     return this->do_define_in_output_segment<64>(target, name, version, os,
861                                                  value, symsize, type, binding,
862                                                  visibility, nonvis,
863                                                  offset_base, only_if_ref);
864   else
865     gold_unreachable();
866 }
867
868 // Define a symbol in an Output_segment, sized version.
869
870 template<int size>
871 Sized_symbol<size>*
872 Symbol_table::do_define_in_output_segment(
873     const Target* target,
874     const char* name,
875     const char* version,
876     Output_segment* os,
877     typename elfcpp::Elf_types<size>::Elf_Addr value,
878     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
879     elfcpp::STT type,
880     elfcpp::STB binding,
881     elfcpp::STV visibility,
882     unsigned char nonvis,
883     Symbol::Segment_offset_base offset_base,
884     bool only_if_ref)
885 {
886   Sized_symbol<size>* sym;
887
888   if (target->is_big_endian())
889     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
890         target, name, version, only_if_ref
891         SELECT_SIZE_ENDIAN(size, true));
892   else
893     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
894         target, name, version, only_if_ref
895         SELECT_SIZE_ENDIAN(size, false));
896
897   if (sym == NULL)
898     return NULL;
899
900   sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
901             offset_base);
902
903   return sym;
904 }
905
906 // Define a special symbol with a constant value.  It is a multiple
907 // definition error if this symbol is already defined.
908
909 Symbol*
910 Symbol_table::define_as_constant(const Target* target, const char* name,
911                                  const char* version, uint64_t value,
912                                  uint64_t symsize, elfcpp::STT type,
913                                  elfcpp::STB binding, elfcpp::STV visibility,
914                                  unsigned char nonvis, bool only_if_ref)
915 {
916   gold_assert(target->get_size() == this->size_);
917   if (this->size_ == 32)
918     return this->do_define_as_constant<32>(target, name, version, value,
919                                            symsize, type, binding, visibility,
920                                            nonvis, only_if_ref);
921   else if (this->size_ == 64)
922     return this->do_define_as_constant<64>(target, name, version, value,
923                                            symsize, type, binding, visibility,
924                                            nonvis, only_if_ref);
925   else
926     gold_unreachable();
927 }
928
929 // Define a symbol as a constant, sized version.
930
931 template<int size>
932 Sized_symbol<size>*
933 Symbol_table::do_define_as_constant(
934     const Target* target,
935     const char* name,
936     const char* version,
937     typename elfcpp::Elf_types<size>::Elf_Addr value,
938     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
939     elfcpp::STT type,
940     elfcpp::STB binding,
941     elfcpp::STV visibility,
942     unsigned char nonvis,
943     bool only_if_ref)
944 {
945   Sized_symbol<size>* sym;
946
947   if (target->is_big_endian())
948     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
949         target, name, version, only_if_ref
950         SELECT_SIZE_ENDIAN(size, true));
951   else
952     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
953         target, name, version, only_if_ref
954         SELECT_SIZE_ENDIAN(size, false));
955
956   if (sym == NULL)
957     return NULL;
958
959   sym->init(name, value, symsize, type, binding, visibility, nonvis);
960
961   return sym;
962 }
963
964 // Define a set of symbols in output sections.
965
966 void
967 Symbol_table::define_symbols(const Layout* layout, const Target* target,
968                              int count, const Define_symbol_in_section* p)
969 {
970   for (int i = 0; i < count; ++i, ++p)
971     {
972       Output_section* os = layout->find_output_section(p->output_section);
973       if (os != NULL)
974         this->define_in_output_data(target, p->name, NULL, os, p->value,
975                                     p->size, p->type, p->binding,
976                                     p->visibility, p->nonvis,
977                                     p->offset_is_from_end, p->only_if_ref);
978       else
979         this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
980                                  p->binding, p->visibility, p->nonvis,
981                                  p->only_if_ref);
982     }
983 }
984
985 // Define a set of symbols in output segments.
986
987 void
988 Symbol_table::define_symbols(const Layout* layout, const Target* target,
989                              int count, const Define_symbol_in_segment* p)
990 {
991   for (int i = 0; i < count; ++i, ++p)
992     {
993       Output_segment* os = layout->find_output_segment(p->segment_type,
994                                                        p->segment_flags_set,
995                                                        p->segment_flags_clear);
996       if (os != NULL)
997         this->define_in_output_segment(target, p->name, NULL, os, p->value,
998                                        p->size, p->type, p->binding,
999                                        p->visibility, p->nonvis,
1000                                        p->offset_base, p->only_if_ref);
1001       else
1002         this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1003                                  p->binding, p->visibility, p->nonvis,
1004                                  p->only_if_ref);
1005     }
1006 }
1007
1008 // Set the dynamic symbol indexes.  INDEX is the index of the first
1009 // global dynamic symbol.  Pointers to the symbols are stored into the
1010 // vector SYMS.  The names are added to DYNPOOL.  This returns an
1011 // updated dynamic symbol index.
1012
1013 unsigned int
1014 Symbol_table::set_dynsym_indexes(const General_options* options,
1015                                  const Target* target,
1016                                  unsigned int index,
1017                                  std::vector<Symbol*>* syms,
1018                                  Stringpool* dynpool,
1019                                  Versions* versions)
1020 {
1021   for (Symbol_table_type::iterator p = this->table_.begin();
1022        p != this->table_.end();
1023        ++p)
1024     {
1025       Symbol* sym = p->second;
1026
1027       // Note that SYM may already have a dynamic symbol index, since
1028       // some symbols appear more than once in the symbol table, with
1029       // and without a version.
1030
1031       if (!sym->needs_dynsym_entry()
1032           && (!options->export_dynamic()
1033               || !sym->in_reg()
1034               || !sym->is_externally_visible()))
1035         sym->set_dynsym_index(-1U);
1036       else if (!sym->has_dynsym_index())
1037         {
1038           sym->set_dynsym_index(index);
1039           ++index;
1040           syms->push_back(sym);
1041           dynpool->add(sym->name(), NULL);
1042
1043           // Record any version information.
1044           if (sym->version() != NULL)
1045             versions->record_version(options, dynpool, sym);
1046         }
1047     }
1048
1049   // Finish up the versions.  In some cases this may add new dynamic
1050   // symbols.
1051   index = versions->finalize(target, this, index, syms);
1052
1053   return index;
1054 }
1055
1056 // Set the final values for all the symbols.  The index of the first
1057 // global symbol in the output file is INDEX.  Record the file offset
1058 // OFF.  Add their names to POOL.  Return the new file offset.
1059
1060 off_t
1061 Symbol_table::finalize(unsigned int index, off_t off, off_t dynoff,
1062                        size_t dyn_global_index, size_t dyncount,
1063                        Stringpool* pool)
1064 {
1065   off_t ret;
1066
1067   gold_assert(index != 0);
1068   this->first_global_index_ = index;
1069
1070   this->dynamic_offset_ = dynoff;
1071   this->first_dynamic_global_index_ = dyn_global_index;
1072   this->dynamic_count_ = dyncount;
1073
1074   if (this->size_ == 32)
1075     ret = this->sized_finalize<32>(index, off, pool);
1076   else if (this->size_ == 64)
1077     ret = this->sized_finalize<64>(index, off, pool);
1078   else
1079     gold_unreachable();
1080
1081   // Now that we have the final symbol table, we can reliably note
1082   // which symbols should get warnings.
1083   this->warnings_.note_warnings(this);
1084
1085   return ret;
1086 }
1087
1088 // Set the final value for all the symbols.  This is called after
1089 // Layout::finalize, so all the output sections have their final
1090 // address.
1091
1092 template<int size>
1093 off_t
1094 Symbol_table::sized_finalize(unsigned index, off_t off, Stringpool* pool)
1095 {
1096   off = align_address(off, size >> 3);
1097   this->offset_ = off;
1098
1099   size_t orig_index = index;
1100
1101   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1102   for (Symbol_table_type::iterator p = this->table_.begin();
1103        p != this->table_.end();
1104        ++p)
1105     {
1106       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1107
1108       // FIXME: Here we need to decide which symbols should go into
1109       // the output file, based on --strip.
1110
1111       // The default version of a symbol may appear twice in the
1112       // symbol table.  We only need to finalize it once.
1113       if (sym->has_symtab_index())
1114         continue;
1115
1116       if (!sym->in_reg())
1117         {
1118           gold_assert(!sym->has_symtab_index());
1119           sym->set_symtab_index(-1U);
1120           gold_assert(sym->dynsym_index() == -1U);
1121           continue;
1122         }
1123
1124       typename Sized_symbol<size>::Value_type value;
1125
1126       switch (sym->source())
1127         {
1128         case Symbol::FROM_OBJECT:
1129           {
1130             unsigned int shndx = sym->shndx();
1131
1132             // FIXME: We need some target specific support here.
1133             if (shndx >= elfcpp::SHN_LORESERVE
1134                 && shndx != elfcpp::SHN_ABS)
1135               {
1136                 fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"),
1137                         program_name, sym->name(), shndx);
1138                 gold_exit(false);
1139               }
1140
1141             Object* symobj = sym->object();
1142             if (symobj->is_dynamic())
1143               {
1144                 value = 0;
1145                 shndx = elfcpp::SHN_UNDEF;
1146               }
1147             else if (shndx == elfcpp::SHN_UNDEF)
1148               value = 0;
1149             else if (shndx == elfcpp::SHN_ABS)
1150               value = sym->value();
1151             else
1152               {
1153                 Relobj* relobj = static_cast<Relobj*>(symobj);
1154                 off_t secoff;
1155                 Output_section* os = relobj->output_section(shndx, &secoff);
1156
1157                 if (os == NULL)
1158                   {
1159                     sym->set_symtab_index(-1U);
1160                     gold_assert(sym->dynsym_index() == -1U);
1161                     continue;
1162                   }
1163
1164                 value = sym->value() + os->address() + secoff;
1165               }
1166           }
1167           break;
1168
1169         case Symbol::IN_OUTPUT_DATA:
1170           {
1171             Output_data* od = sym->output_data();
1172             value = sym->value() + od->address();
1173             if (sym->offset_is_from_end())
1174               value += od->data_size();
1175           }
1176           break;
1177
1178         case Symbol::IN_OUTPUT_SEGMENT:
1179           {
1180             Output_segment* os = sym->output_segment();
1181             value = sym->value() + os->vaddr();
1182             switch (sym->offset_base())
1183               {
1184               case Symbol::SEGMENT_START:
1185                 break;
1186               case Symbol::SEGMENT_END:
1187                 value += os->memsz();
1188                 break;
1189               case Symbol::SEGMENT_BSS:
1190                 value += os->filesz();
1191                 break;
1192               default:
1193                 gold_unreachable();
1194               }
1195           }
1196           break;
1197
1198         case Symbol::CONSTANT:
1199           value = sym->value();
1200           break;
1201
1202         default:
1203           gold_unreachable();
1204         }
1205
1206       sym->set_value(value);
1207       sym->set_symtab_index(index);
1208       pool->add(sym->name(), NULL);
1209       ++index;
1210       off += sym_size;
1211     }
1212
1213   this->output_count_ = index - orig_index;
1214
1215   return off;
1216 }
1217
1218 // Write out the global symbols.
1219
1220 void
1221 Symbol_table::write_globals(const Target* target, const Stringpool* sympool,
1222                             const Stringpool* dynpool, Output_file* of) const
1223 {
1224   if (this->size_ == 32)
1225     {
1226       if (target->is_big_endian())
1227         this->sized_write_globals<32, true>(target, sympool, dynpool, of);
1228       else
1229         this->sized_write_globals<32, false>(target, sympool, dynpool, of);
1230     }
1231   else if (this->size_ == 64)
1232     {
1233       if (target->is_big_endian())
1234         this->sized_write_globals<64, true>(target, sympool, dynpool, of);
1235       else
1236         this->sized_write_globals<64, false>(target, sympool, dynpool, of);
1237     }
1238   else
1239     gold_unreachable();
1240 }
1241
1242 // Write out the global symbols.
1243
1244 template<int size, bool big_endian>
1245 void
1246 Symbol_table::sized_write_globals(const Target*,
1247                                   const Stringpool* sympool,
1248                                   const Stringpool* dynpool,
1249                                   Output_file* of) const
1250 {
1251   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1252   unsigned int index = this->first_global_index_;
1253   const off_t oview_size = this->output_count_ * sym_size;
1254   unsigned char* const psyms = of->get_output_view(this->offset_, oview_size);
1255
1256   unsigned int dynamic_count = this->dynamic_count_;
1257   off_t dynamic_size = dynamic_count * sym_size;
1258   unsigned int first_dynamic_global_index = this->first_dynamic_global_index_;
1259   unsigned char* dynamic_view;
1260   if (this->dynamic_offset_ == 0)
1261     dynamic_view = NULL;
1262   else
1263     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1264
1265   unsigned char* ps = psyms;
1266   for (Symbol_table_type::const_iterator p = this->table_.begin();
1267        p != this->table_.end();
1268        ++p)
1269     {
1270       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1271
1272       unsigned int sym_index = sym->symtab_index();
1273       unsigned int dynsym_index;
1274       if (dynamic_view == NULL)
1275         dynsym_index = -1U;
1276       else
1277         dynsym_index = sym->dynsym_index();
1278
1279       if (sym_index == -1U && dynsym_index == -1U)
1280         {
1281           // This symbol is not included in the output file.
1282           continue;
1283         }
1284
1285       if (sym_index == index)
1286         ++index;
1287       else if (sym_index != -1U)
1288         {
1289           // We have already seen this symbol, because it has a
1290           // default version.
1291           gold_assert(sym_index < index);
1292           if (dynsym_index == -1U)
1293             continue;
1294           sym_index = -1U;
1295         }
1296
1297       unsigned int shndx;
1298       switch (sym->source())
1299         {
1300         case Symbol::FROM_OBJECT:
1301           {
1302             unsigned int in_shndx = sym->shndx();
1303
1304             // FIXME: We need some target specific support here.
1305             if (in_shndx >= elfcpp::SHN_LORESERVE
1306                 && in_shndx != elfcpp::SHN_ABS)
1307               {
1308                 fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"),
1309                         program_name, sym->name(), in_shndx);
1310                 gold_exit(false);
1311               }
1312
1313             Object* symobj = sym->object();
1314             if (symobj->is_dynamic())
1315               {
1316                 // FIXME.
1317                 shndx = elfcpp::SHN_UNDEF;
1318               }
1319             else if (in_shndx == elfcpp::SHN_UNDEF
1320                      || in_shndx == elfcpp::SHN_ABS)
1321               shndx = in_shndx;
1322             else
1323               {
1324                 Relobj* relobj = static_cast<Relobj*>(symobj);
1325                 off_t secoff;
1326                 Output_section* os = relobj->output_section(in_shndx, &secoff);
1327                 gold_assert(os != NULL);
1328                 shndx = os->out_shndx();
1329               }
1330           }
1331           break;
1332
1333         case Symbol::IN_OUTPUT_DATA:
1334           shndx = sym->output_data()->out_shndx();
1335           break;
1336
1337         case Symbol::IN_OUTPUT_SEGMENT:
1338           shndx = elfcpp::SHN_ABS;
1339           break;
1340
1341         case Symbol::CONSTANT:
1342           shndx = elfcpp::SHN_ABS;
1343           break;
1344
1345         default:
1346           gold_unreachable();
1347         }
1348
1349       if (sym_index != -1U)
1350         {
1351           this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1352               sym, shndx, sympool, ps
1353               SELECT_SIZE_ENDIAN(size, big_endian));
1354           ps += sym_size;
1355         }
1356
1357       if (dynsym_index != -1U)
1358         {
1359           dynsym_index -= first_dynamic_global_index;
1360           gold_assert(dynsym_index < dynamic_count);
1361           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1362           this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1363               sym, shndx, dynpool, pd
1364               SELECT_SIZE_ENDIAN(size, big_endian));
1365         }
1366     }
1367
1368   gold_assert(ps - psyms == oview_size);
1369
1370   of->write_output_view(this->offset_, oview_size, psyms);
1371   if (dynamic_view != NULL)
1372     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1373 }
1374
1375 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
1376 // strtab holding the name.
1377
1378 template<int size, bool big_endian>
1379 void
1380 Symbol_table::sized_write_symbol(Sized_symbol<size>* sym,
1381                                  unsigned int shndx,
1382                                  const Stringpool* pool,
1383                                  unsigned char* p
1384                                  ACCEPT_SIZE_ENDIAN) const
1385 {
1386   elfcpp::Sym_write<size, big_endian> osym(p);
1387   osym.put_st_name(pool->get_offset(sym->name()));
1388   osym.put_st_value(sym->value());
1389   osym.put_st_size(sym->symsize());
1390   osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1391   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1392   osym.put_st_shndx(shndx);
1393 }
1394
1395 // Write out a section symbol.  Return the update offset.
1396
1397 void
1398 Symbol_table::write_section_symbol(const Target* target,
1399                                    const Output_section *os,
1400                                    Output_file* of,
1401                                    off_t offset) const
1402 {
1403   if (this->size_ == 32)
1404     {
1405       if (target->is_big_endian())
1406         this->sized_write_section_symbol<32, true>(os, of, offset);
1407       else
1408         this->sized_write_section_symbol<32, false>(os, of, offset);
1409     }
1410   else if (this->size_ == 64)
1411     {
1412       if (target->is_big_endian())
1413         this->sized_write_section_symbol<64, true>(os, of, offset);
1414       else
1415         this->sized_write_section_symbol<64, false>(os, of, offset);
1416     }
1417   else
1418     gold_unreachable();
1419 }
1420
1421 // Write out a section symbol, specialized for size and endianness.
1422
1423 template<int size, bool big_endian>
1424 void
1425 Symbol_table::sized_write_section_symbol(const Output_section* os,
1426                                          Output_file* of,
1427                                          off_t offset) const
1428 {
1429   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1430
1431   unsigned char* pov = of->get_output_view(offset, sym_size);
1432
1433   elfcpp::Sym_write<size, big_endian> osym(pov);
1434   osym.put_st_name(0);
1435   osym.put_st_value(os->address());
1436   osym.put_st_size(0);
1437   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
1438                                        elfcpp::STT_SECTION));
1439   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
1440   osym.put_st_shndx(os->out_shndx());
1441
1442   of->write_output_view(offset, sym_size, pov);
1443 }
1444
1445 // Warnings functions.
1446
1447 // Add a new warning.
1448
1449 void
1450 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
1451                       unsigned int shndx)
1452 {
1453   name = symtab->canonicalize_name(name);
1454   this->warnings_[name].set(obj, shndx);
1455 }
1456
1457 // Look through the warnings and mark the symbols for which we should
1458 // warn.  This is called during Layout::finalize when we know the
1459 // sources for all the symbols.
1460
1461 void
1462 Warnings::note_warnings(Symbol_table* symtab)
1463 {
1464   for (Warning_table::iterator p = this->warnings_.begin();
1465        p != this->warnings_.end();
1466        ++p)
1467     {
1468       Symbol* sym = symtab->lookup(p->first, NULL);
1469       if (sym != NULL
1470           && sym->source() == Symbol::FROM_OBJECT
1471           && sym->object() == p->second.object)
1472         {
1473           sym->set_has_warning();
1474
1475           // Read the section contents to get the warning text.  It
1476           // would be nicer if we only did this if we have to actually
1477           // issue a warning.  Unfortunately, warnings are issued as
1478           // we relocate sections.  That means that we can not lock
1479           // the object then, as we might try to issue the same
1480           // warning multiple times simultaneously.
1481           {
1482             Task_locker_obj<Object> tl(*p->second.object);
1483             const unsigned char* c;
1484             off_t len;
1485             c = p->second.object->section_contents(p->second.shndx, &len);
1486             p->second.set_text(reinterpret_cast<const char*>(c), len);
1487           }
1488         }
1489     }
1490 }
1491
1492 // Issue a warning.  This is called when we see a relocation against a
1493 // symbol for which has a warning.
1494
1495 void
1496 Warnings::issue_warning(const Symbol* sym, const std::string& location) const
1497 {
1498   gold_assert(sym->has_warning());
1499   Warning_table::const_iterator p = this->warnings_.find(sym->name());
1500   gold_assert(p != this->warnings_.end());
1501   fprintf(stderr, _("%s: %s: warning: %s\n"), program_name, location.c_str(),
1502           p->second.text.c_str());
1503 }
1504
1505 // Instantiate the templates we need.  We could use the configure
1506 // script to restrict this to only the ones needed for implemented
1507 // targets.
1508
1509 #ifdef HAVE_TARGET_32_LITTLE
1510 template
1511 void
1512 Symbol_table::add_from_relobj<32, false>(
1513     Sized_relobj<32, false>* relobj,
1514     const unsigned char* syms,
1515     size_t count,
1516     const char* sym_names,
1517     size_t sym_name_size,
1518     Symbol** sympointers);
1519 #endif
1520
1521 #ifdef HAVE_TARGET_32_BIG
1522 template
1523 void
1524 Symbol_table::add_from_relobj<32, true>(
1525     Sized_relobj<32, true>* relobj,
1526     const unsigned char* syms,
1527     size_t count,
1528     const char* sym_names,
1529     size_t sym_name_size,
1530     Symbol** sympointers);
1531 #endif
1532
1533 #ifdef HAVE_TARGET_64_LITTLE
1534 template
1535 void
1536 Symbol_table::add_from_relobj<64, false>(
1537     Sized_relobj<64, false>* relobj,
1538     const unsigned char* syms,
1539     size_t count,
1540     const char* sym_names,
1541     size_t sym_name_size,
1542     Symbol** sympointers);
1543 #endif
1544
1545 #ifdef HAVE_TARGET_64_BIG
1546 template
1547 void
1548 Symbol_table::add_from_relobj<64, true>(
1549     Sized_relobj<64, true>* relobj,
1550     const unsigned char* syms,
1551     size_t count,
1552     const char* sym_names,
1553     size_t sym_name_size,
1554     Symbol** sympointers);
1555 #endif
1556
1557 #ifdef HAVE_TARGET_32_LITTLE
1558 template
1559 void
1560 Symbol_table::add_from_dynobj<32, false>(
1561     Sized_dynobj<32, false>* dynobj,
1562     const unsigned char* syms,
1563     size_t count,
1564     const char* sym_names,
1565     size_t sym_name_size,
1566     const unsigned char* versym,
1567     size_t versym_size,
1568     const std::vector<const char*>* version_map);
1569 #endif
1570
1571 #ifdef HAVE_TARGET_32_BIG
1572 template
1573 void
1574 Symbol_table::add_from_dynobj<32, true>(
1575     Sized_dynobj<32, true>* dynobj,
1576     const unsigned char* syms,
1577     size_t count,
1578     const char* sym_names,
1579     size_t sym_name_size,
1580     const unsigned char* versym,
1581     size_t versym_size,
1582     const std::vector<const char*>* version_map);
1583 #endif
1584
1585 #ifdef HAVE_TARGET_64_LITTLE
1586 template
1587 void
1588 Symbol_table::add_from_dynobj<64, false>(
1589     Sized_dynobj<64, false>* dynobj,
1590     const unsigned char* syms,
1591     size_t count,
1592     const char* sym_names,
1593     size_t sym_name_size,
1594     const unsigned char* versym,
1595     size_t versym_size,
1596     const std::vector<const char*>* version_map);
1597 #endif
1598
1599 #ifdef HAVE_TARGET_64_BIG
1600 template
1601 void
1602 Symbol_table::add_from_dynobj<64, true>(
1603     Sized_dynobj<64, true>* dynobj,
1604     const unsigned char* syms,
1605     size_t count,
1606     const char* sym_names,
1607     size_t sym_name_size,
1608     const unsigned char* versym,
1609     size_t versym_size,
1610     const std::vector<const char*>* version_map);
1611 #endif
1612
1613 } // End namespace gold.